
ABSTRACT

TO ERR IS HUMAN:
THE EFFECT OF MISTAKES IN SOCIAL SIMULATIONS

by Jack T. Beerman

In Modeling & Simulation, a model must be fit for purpose. In the case of models for
social simulations, it means that we must adequately capture the mechanisms of human
behaviors. We focus on Agent-Based Models for human behavior and improve their realism
by integrating human errors in an agent’s decision-making routine via Machine Learning.
Our framework allows experts to analyze the impact of different types of errors: superficial
observations, biases, limited ability to comprehend a situation, and inaccurate perceptions.
We illustrate this framework through simulation cases and provide a detailed case-study on
COVID-19 which suggests that errors are essential to a model in order to replicate real-world
vaccination rates. While our work focuses on realism of simulation models, realism can come
at the expense of computational costs. To counter-balance these rising costs, we develop an
innovative scheme that groups similar-thinking agents. We demonstrate that simple metrics
can effectively capture similarities between agents and we create simplified simulations with
average outcomes that are aligned with the results of the original model. Ultimately, we are
able to decrease the computational cost at the expense of the confidence margin.
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Chapter 1

Introduction

Agent Based Models (ABMs) depict the behaviors and interactions of entities within an
environment. This modeling approach is useful in domains where individual differences
exist, as it becomes possible to track heterogeneous perspectives across virtual agents. Most
commonly, the model and its entities pertain to humans in a society [2]; however, these
entities can also represent a variety of organisms within their respective domain such as fish
in a water-system [3]. Over several decades, these models have been developed significantly
to aid in studying social phenomena for concepts in social theory and have been introduced
into numerous disciplines such as Psychology, Marketing, Transportation, and Healthcare [4].
As an example, one of the earliest, most influential ABMs (i.e., in Modeling & Simulation)
is the Schelling Model [5]. In 1971, this model was designed to replicate humans moving in a
neighborhood and measure the likelihood of agents self segregating in the social dimension.
These results illustrated the emergent behavior of like-minded individuals in society. Since
then, these models have continued to advance and have recently exploded in use in systems
science from fields such as public health to sustainability [6, 7, 8].

1.1 Motivation

In Modeling & Simulation (M&S) with Agent Based Models, modelers represent how (vir-
tual) agents behave, as a proxy to their real-world human counterpart. It is not assumed
that agents make perfect decisions, because the data used to build models is imperfect, the-
ories are incomplete, and computing power does not allow for every agent to look at all
possible decisions. Consequently, agents are bounded in their rationality and appear more
humane [9]. However, one may design agents to be perfect in other aspects, which makes
them more mechanical than humans. In particular, agents are generally assumed to make
perfect observations about other agents they interact with and about the environment in
which they act [10]. For example, an agent can tell with 100% accuracy whether another
agent is engaging in a desirable or undesirable behavior [11]. As a representation of humans,
this accuracy is not realistic. In reality, humans make mistakes because they have partial
observations (e.g., you see a fit person eating burgers so you think it’s good for your health
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without knowing that they exercise a lot) or because they are forced to make decisions with
limited time resources [12]. Human decisions are also affected by personal beliefs, values, and
cognitive biases (e.g., an individual may be biased towards a specific race/ethnicity while
having a friend from that group [13]) which may differ from one person to the next and these
differences are not homogeneous across agents [14].

There have been ongoing and recent attempts at making virtual agents more ‘human-
like’, in particular due to the growing use of machine learning in conjunction with M&S.
Intuitively, one illustration is the idea of increasing the intelligence of an agent by growing
their virtual brain (i.e., their ruleset) from data rather than manually coding a small number
of set behavioral templates [15, 16]. As machine learning models often include estimates for
errors (e.g., accuracy, precision, recall), there is an opportunity to create agents who have a
certain likeliness to make mistakes, thus potentially acting more humanely.

1.2 Contributions

My objective is to enable computational models of social systems to resemble real-world in-
dividuals more closely by accounting for individual heterogeneity (e.g., in traits and decision-
making) and changes over time. This will be achieved through three specific aims detailed
below.

1.2.1 Aim 1: Develop a Framework that Utilizes Machine Learn-
ing to Analyze the Effect of Agents Mistakes on Model Tra-
jectory

Humans make mistakes for numerous reasons. People may over-generalize based on a few
anecdotes, that is, they learn from insufficient data. A human may struggle to draw gener-
alizations in complex environments, which depicts their limited ability to infer a model from
data. Another person may discard new knowledge as it conflicts with their deeply held be-
liefs and values; this exemplifies the integration of a model depending on a pre-existing one.
In ABMS, these types of errors and those similar regarding the decision making of agents
are handled inconsistently across models [17]. However, by focusing on integrating these
types of errors into ABMS, modelers are able to model human error and replicate real-world
behavior [18].

In order to examine all three of these causes of error, machine learning can be utilized
to provide a controlled environment [19]. For example, we can control the data that is given
to an agent (human) and examine how the percentage of observations and/or the selection
of these observations change the agents’ decisions and ultimately affects the collective of
agents [18]. Similarly, we can control the ability of each agent in forming a model. An
example would be equipping each agent with a decision tree and limiting its depth. Lastly,
one can examine how a new model competes with existing ones through the notion of en-
sembles of models. Based on these techniques, I have (i) created a simulation testbed in
which these three sources of errors will be configured and their effects observed over the
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Apply the
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Model the results
of new trajectories

Develop a Simulation
Testbed

Figure 1.1: Flow Chart for Aim 1

simulated population; and (ii) applied the testbed to classical social simulations to examine
how certain mistakes (i.e. a greater fidelity to human decision making) may set the model
on a new trajectory (Figure 1.1). This aim is accomplished in Chapter 3.

1.2.2 Aim 2: Assess Whether Errors are a Necessary Component
to Model Social Systems

The previous aim creates a framework that can include errors in a social simulation. The
second aim pivots to a key related question: are human decision-making errors necessary
to create accurate models? To answer this question, my work takes two consecutive steps.
First, I perform a comprehensive review of errors in simulation models of COVID-19, with
particular attention devoted to the types of human errors. The review is provided in Chapter
4. Then, building on this review, I operationalize errors through my framework and apply
it to replicate the real-world vaccination rates of COVID-19 in the USA. As shown by my
findings in Chapter 5, errors are necessary to achieve the expected rates.

1.2.3 Aim 3: Lower Computational Costs by Clustering Like-
Minded Agents

The beliefs and values of an agent can be represented using a modeling approach such
as a Fuzzy Cognitive Map (FCM), which leads into hybrid ABM/FCM systems that have
greater fidelity to human behaviors and allow for the transparent integration of different
behaviors [20]; this approach is explained in detail in Section 6.1. On one hand, simulating
a very large population as individual agents can become computationally prohibitive. On the
other hand, arbitrarily down-sizing the population with a set resolution (e.g., 1 virtual agent
represents 500 people) may lose track of their individual behaviors [21, 22]. A trade-off is
thus necessary to perform simulations given limited computational sources while retaining the
ability to represent key differences in individual behaviors [22]. This research analyzes this
trade-off (Figure 1.2) by creating a population of individual agents, each with their FCM,
and then grouping agents into clusters based on similarities between their FCMs. These
similarities are measured by creating a distance metric for how different the ‘thoughts’ of
two or more agents might be. Results related to this aim can be found in Chapter 6.
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Chapter 2

Background & Related Work

Modeling & Simulation (M&S)

M&S for Social  
Science 

Individual Models Aggregate Models

Agent Based Models Fuzzy  Cognitive
Mapping

Hybrid ABM/FCM
Model

Machine Learning

Clustering

Computational Methods Social Science

Unsupervised
Learning Supervised Learning

Classification

Hybrid Simulation

Figure 2.1: Background Overview

2.1 Modeling & Simulation

In 1955, John Von Neumann stated, ‘The sciences do not try to explain, they hardly ever try
to interpret, they mainly make models.’ [23]. Six years later, Jay W. Forrester expanded on
his work of Systems dynamics and began producing models powered by computer simulations
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to predict industrial, urban, and world dynamics [24, 25, 26]. As time progressed, the
study of System dynamics was revolutionary in its methods which aggregated a system
by disregarding individual characteristics and recording aggregate variables over time [27,
p. 14]. Furthermore, this methodology is continued in practice today and is formally known
as Aggregate Modeling. Around the same period of time (1957), Microsimulation was built
upon a methodology that contrasted System Dynamics. Now known as Individual Modeling,
this approach kept track of all members in a system and detailed the activity of each entity
in its environment. Famous examples of these types of simulations emerged in the following
years such as the fluoridation referendum campaign model in 1963 [28](an early predecessor
of modern day Agent Based Models) and Thomas Schelling’s Cellular Automata model of
segregation in 1971 [29]. Since then, both technology and computational resources have
advanced as well as the methods utilized in Individual and Aggregate Modeling. These
advancements have established a robust field known as Modeling & Simulation, which is
illustrated alongside Machine Learning in Figure 2.1.

Currently, models are utilized that allow researchers to examine data and test hypothe-
ses in simulations that are either too dangerous, expensive, or impossible to physically con-
struct [30, 31]. This process is the backbone of Modeling & Simulation and employs the use
of aggregate, individual, and hybrid models that are centered on the principal constituent of
obtaining, replicating, and manipulating data to provide real-world insights by formulating
predictions and detailing observations. The variety of these models may range greatly; how-
ever, Tolk defines the six epistemological elements of any model as task-driven, purposeful,
simplification, abstraction, perception, and reality [32]. At the bare minimum, a valid model
is designed for a task (task-driven) that handles researchers’ perceived problems (percep-
tion) and creatively innovates solutions and activities based on empirical data, observations,
or theories (purposeful, reality). In addition, simplification and abstraction are necessary
to ensure models are constructed in a concise manner and at various levels (e.g., macro,
micro) [32]. Even with these outlined elements, it is important to note that some models
themselves are theories undergoing development and in order to build a robust model, one
must maintain a balance between exploration and consolidation [33]. Once the model has
been developed, researchers transition their conceptualizations into executable simulations to
test hypotheses via computer programming. These actions are simplified in Figure 2.2 and
illustrate the transitions between Conceptual Models, Mathematical Models, Computational
Models and the cycle of the Validation Process.

A simulation is the action of computing the results of a mathematical model, which
captures key dynamics of a real-world phenomenon. In Modeling & Simulation, the type of
simulation constructed serves specific purposes such as user prediction and may be associated
with the observational category [34]. The observational category is comprised of four primary
purposes that encompass different systems and incorporate various models [34]: Management
of a System, Engineering of a System, Evaluation & Verification, and Comprehension. When
managing a system, a simulation serves as the contributing factor of operational or strategic
decisions as seen in environmental management [35]. These types of systems are primarily
human-centered and/or socio-technical which regard entity interaction commonly found in
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Figure 2.2: Flow Chart of the Modeling Process

Section 2.2. The second purpose of observational simulations is the replication of systems
and the advanced development of these structures, thus being categorized as Engineering a
System. The two final purposes of simulations, evaluation & verification and comprehension,
provide means to test, compare, and possibly refine hypotheses [36].

Whether it is the variety of modeling methodologies, or simulation purposes, Modeling
& Simulation is prevalent in a plethora of disciplines and is only increasing in popularity [37,
p. 14]. Previously unfathomable to confine and control real-world systems and scenarios,
now real-life entities are continually replicated as virtual counterparts and manipulated in
simulations to provide observations, generate predictions, and broaden our understanding of
the world we reside. Furthermore, types of these simulations may be continuously informed
by changes in physical systems and have lead to new frontiers of digital twins.

2.2 Computational Social Science

With the increase and introduction of massive amounts of human-driven data (Big Data),
due to the dependency on information and communications technology (ICT), Modeling
& Simulation has emerged as one of several computational techniques used within Com-
putational Social Science and is an advanced frontier that captures various objectives and
knowledge pertaining to societal phenomena and behavior [38, 39]. Currently, scholars re-
gard Computational Social Science as one of three pillars of modern science [40] and define it
as the study of virtual, complex, socio-economic systems that replicate and analyze humans,
their interactions, and behavior. These behaviors pertain to countless categories such as
reciprocity of humans, terrorism [14], and institutional norms [41]. They are studied in a
variety of disciplines that range from health systems to government policy [40].

Human behaviors and interactions have been studied in social and behavioral science
through mathematics and computations since the mid 20th century [42]; however, the recent
evolution of computational resources and advanced technological capabilities have enabled
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researchers to simulate large-scale populations while simultaneously recording and analyz-
ing the behavior and interaction of every entity. These observations are achieved through
computational models that provide quantitative and qualitative information of societal pat-
terns [38].

Because humans rely on interactions to form beliefs and values and these interactions
additionally shape human behavior, humans are labeled as Complex Adaptive Systems
(CAS) [14]. An example of human process that underpins CAS is Cognitive Dissonance
Theory, which explains how humans adapt their perspectives based on whether their beliefs,
desires, and emotions agree (congruent) or not (dissonant) with the views of their peers [43].
The Social Influence Network (SIN) Theory (i.e., the theory of how individuals assess their
own attitudes and the attitudes of others) depicts the formation of these congruent and
dissonant concepts and defines how they evolve in a CAS [43]. Furthermore, the SIN The-
ory describes changes of human behavior in relation to direct social interaction and details
actions that can be pursued to minimize cognitive dissonance [43].

2.3 Individual Models: Agent Based Models

One technique that serves to measure social phenomena by tracking humans and calculating
results for each person is using Individual Models [44]. Individual Models are capable of
distinguishing characteristics centered on the behavior of the entity or the state of an entity
and are assembled through a bottom-up approach. Furthermore, these models often exhibit
several features, succinctly explained as follows. An individual model could fixate on the
actions of a goose to illustrate the emergent behavior of a flock of geese, such as the V-
shaped flight formation that they display as a group. Emergence is the concept that the
behavior pattern of an entity may create a high level pattern behavior when aggregated as
a group. The initial behavior may be individualized or uniform across a collective of entities
or result in an entire new behavior. In addition, each entity may behave dynamically (i.e.,
adapting through interactions) or statically (i.e., unchanging behavior). Lastly, the conduct
of a (virtual) individual may be constrained by programmed rigid rules or allowed freedom
through random probability [34], resulting in a stochastic model. Even more so, the state
of an individual may be divided between a physical and mental state where the physical
state represents attributes such as wealth, status, and intelligence, and the mental state,
especially in humans, represents complex decision making [34] – Complex decision making
and the mental state will be discussed further in Section 2.5.1. Because the complexity
of individuals’ actions and dispositions vary, there are numerous applications and types of
individual models within Computational Social Science. In this thesis, we focus on Agent
Based Models (ABM) [35].

From determining segregation [29], to developing public policy [45], Agent Based Models
are prevalent across numerous domains and are utilized in modeling environments such as
MESA, NetLogo, MASON, REPAST, GAMA, and Swarm. For example, we may design an ABM in
NetLogo to illustrate the spread of Covid in a classroom (Figure 2.4). At a high level, an
ABM tracks the actions of agents in a space. More specifically, an ABM is comprised of agents
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Figure 2.3: Example of Agent Based Model

that represent entities in the real world, a replicated environment and its possible states, the
interactions of agents with each other and with the environment [2, 3, 7, 8, 46, 47, 48]. These
components are governed by the initial configuration of the system and it various rules to
capture key dynamics of real-world phenomenon such as fish in an ecosystem (Figure 2.3).

2.4 Aggregate Models: Fuzzy Cognitive Maps

2.4.1 Definition and Model Building Process

Unlike Individual Models, Aggregate Models are assembled through a top down approach
that implements causal rules to create and shape social systems. In addition, Aggregate
Models do not operate on heterogeneous data defined by individuals, since they focus on
homogeneous groups to provide insight on systems (e.g. social systems) as a whole [30].
This was originally demonstrated through mathematical equations by treating social systems
as physical systems and was derived by the Lanchester equations [30]. In 1916, Frederick
Lanchester developed an aggregate model pertaining to modern warfare and the elimination
of soldiers on the battlefield. This was constructed by aggregating all soldiers in the system
(battlefield) and determining the collective feedback and interactions attributable to specific
equations [49]. The Lanchester equations were fairly simple, revolutionary, and an example
of Quantitative Aggregate Models.

In Modeling & Simulation, Aggregate Models can be divided into two primary categories:
quantitative and qualitative. Quantitative Aggregate Models characterize systems and com-
ponents of the system through sets of equations and mathematical expressions. For example,
Function Fitting, Regression, Bayesian Nets, Differential Equations, and System Dynamics,
are commonly employed in this top down approach [44]. Another type of approach is the use
of Qualitative Aggregate Models, which tend to focus on social issues. Among many types
of qualitative aggregate models [50], this thesis focuses on Fuzzy Cognitive Maps (FCMs).
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Figure 2.4: Example of Agent Based Model in the NetLogo environment. This high resolution
image can be zoomed in for details.
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Figure 2.5: Simplified Process of Creating an FCM

Fuzzy Cognitive Maps are networks that illustrate causality during decision making.
An FCM is a digraph that is comprised of nodes (a.k.a vertices, representing concepts of
the system) that represent specific concepts and directed edges that state whether there
is a causal increase (“+”) or decrease (“-”) in a concept of a target node from the source
node [51]. Node weights change between [0, 1] where 0 is the absence of a concept, and 1
is the concept’s full presence. In addition, edge weights vary between [-1, 1] where positive
weights represent an increase and negative weights specify a decrease. The primary purpose
of these aggregate models is to produce solutions that answer and characterize “what if”
predictions [52]. For example, these models can answer what would happen if a policy
was implemented in a institution or what may unfold after an individual joins a terrorist
organization [53].

In order to generate these predictions and analyze specific events, FCMs utilize fuzzy
logic (i.e., a degree of causality) which is obtain through elicitation of subject matter experts
(SME). Through elicitation, surveyors are able to access the semantic memory of humans
and produce a conceptual model of their thought process known as a causal map [54, p. 48].
Once a causal map is created, participants of the study are typically given a questionnaire to
associate a level of causal strength (e.g. high, low, medium) for each edge in the network [55].
These three steps are found in Figure 2.5. After the results are collected, the causal strength
is mathematically computed and assigned to each associated edge [56]. At this point, an
FCM is formed and is depicted in Figure 6.1. Lastly, the model is applied to a case until
designated concepts stabilize or stabilization is determined improbable [57]. Stabilization
is assessed at the end of each update of the model (i.e., iteration); specifically, iterations
stop once a threshold value or threshold values are met for a specific concept/concepts. If
the threshold value is not met, a max number of iterations should terminate the update.
The update and termination of a FCM (Figure 2.7) are detailed in the equations below
respectively [58].

V t+1
i = f(V t

i +
∑

j=1,j ̸=i

V t
j × Aj,i) (2.1)
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Figure 2.6: Example of Fuzzy Cognitive Map where positive and negative causation are
shown as green and red arrows, respectively.

while

{
∃i ∈ S such that|Vi(t + 1) − Vi(t)| > ε and

t < tmax

, (2.2)

where V t
i is the value of a concept node i at iteration t, f is a clipping function that

serves to keep the new value within the desired range (e.g., via a sigmoid), Aj,i is the weight
of the link from node j to node i in the adjacency matrix A, and ϵ is set to a very small
positive value [59].

2.4.2 Measuring similarities between FCMs

Once FCMs are developed on a particular subject matter, the comparison of these models
may provide insight to support policy coherence or depict shared goals of a group [60].
Furthermore, these comparisons can highlight significant differences between cognitive and
identity diversity and aid in sustainable management of common-pool resources [61]. In order
to compare FCMs, a variety of methodologies can be used and the selected methodology will
reflect different notions of similarity between graphs or variances between graphs. This thesis
focuses on methodologies that are concentrated on two properties of graphs at two levels:
centrality at the level of individual nodes, and distance at the graph-level.

In network analysis (i.e., applied graph theory), measuring centrality establishes a ranking
system by assigning an individual value to each node in a graph. This value can then be
utilized to establish importance or priority of one node over the others. However, the values
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Figure 2.7: Process of updating an FCM

and importance of each node may fluctuate depending on the type of centrality methodology
implemented. This is a result of the lack of agreement on the definition of centrality and the
creation of abundant centrality measures [62]. Researchers will have various goals in mind
when analyzing networks such as determining the best placement for a hospital, finding which
celebrity is most popular, or selecting whom to quarantine in a pandemic. In addition, each
scenario would require different centralities to measure and rank the data. This thesis will
utilize both degree centrality and betweeness centrality.

One of the most simple centralities to implement is degree centrality [63, 64, 65]. This
centrality is often used in many studies on FCMS [66, 67, 68] and can serve various means such
as analyzing urban resilience and transformation [67] or modeling solar energy usage [68].
Degree centrality functions by calculating a node’s degree (i.e., the amount of connections
a node possesses) and either divides the degree by the total number of nodes to convert the
number to between 0-1 or leaves the degree as it is. The higher the computed value, the
more important or central the node is in the network [69] (Figure 2.8). The average degree
of a given graph can be defined by d(u) for all uϵV as the degree of each node u divided by
the total nodes of the graph as n:

d =

∑
uεV d(u)

n
, (2.3)

Although the degree centrality index is considered an important measure in determining
the centrality of a node in an FCM, it is not sufficient and has significant shortcomings [70].
As an alternative, betweeness centrality has become a popular measure to determine the
cognitive similarities between agents [71, 72, 73]. Betweenness centrality totals the number
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of shortest paths that pass through a given node [74] (Figure 2.8) and is calculated for a
node n by:

g(n) =
∑

x ̸=n ̸=y
σxy(n)

σxy
, (2.4)

where g(n) is the betweenness centrality, σxy(n) is the total number of shortest paths
from x to y that goes through n, and σxy is the total number of shortest paths from x to y.

Lastly, to determine the similarity or distance between two inexact graphs (i.e., inexact
graph matching), Graph edit distance (GED) can be applied [75]. GED operates by trans-
forming a source graph into a target graph by executing a sequence of operations on nodes
and/or edges [76]. At one step at a time, these operations either delete or insert an edge or
node or relabel a node of the source graph while finding the optimal path to the target graph
(Figure 2.9). The search for the optimal path is most important because it is possible to
perform unlimited operations to reach a target graph [76]. In order to determine the best
path, the operations are assigned a value of importance that are of either equal or various
magnitudes. Once the best path is determine, the cost of operations is totaled and the value
can be used to compare the distance and similarities between one graph and another.

2.5 Hybrid Simulations: ABM/FCM Models

2.5.1 ABM/FCM Model

A hybrid technique that has emerged in Computational Social Science is the pairing of an
Agent Based Model with a Fuzzy Cognitive Map [77]. This combination serves various
purposes such as regulating the interactions of agents [58] or establishing decision making
processes in an agent’s environment [51]. As a general overview, agents of a system are
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assigned an FCM that serve as a “brain” individually or collectively. More specifically,
ABM/FCM hybrid models (i) embed each agent with an FCM that shifts during agent-
to-agent interaction (Figure 2.10) or (ii) use a single FCM to describe the system and
expand selected concepts into agents when greater accuracy is required [78]. For example,
researchers are able to simulate the spread of social influences through the hybrid coupling of
ABM/FCMs [51]. In this example, ABMs were paired with a variety of FCMs to replicate the
many rules and behaviors an agent may have. As time steps increased, agents interacted with
the environment and each other while their attached FCM was updated. This application
represented the social phenomena of humans shaping societal norms and transforming their
views over time.
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Figure 2.10: Hybrid ABM/FCM
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CLUSTERING ALGORITHM 

Figure 2.11: Example of Clustering (i.e., dividing segments)

2.6 Machine Learning

In 1997, Tom Mitchell defined Machine Learning (ML) as follows: “A computer program is
said to learn from experience E with respect to some task T and some performance measure
P, if its performance on T, as measured by P, improves with experience E” [79]. Simply
put, Machine Learning is the act of computers learning (training) on data rather than being
given a fixed set of rules. In fact, this act of training can be divided into four categories:
supervised, unsupervised, semi-supervised, and reinforcement [80]. In this thesis, the focus
is on supervised and unsupervised learning for Simulations. During supervised learning, the
selected algorithm operates with the information of the desired output for the input data [81].
Some of the most common algorithms utilized are Decision trees, K Nearest Neighbors, and
Random Forest [81]. On the other hand, unsupervised learning, implements algorithms that
operate on information without any context and labels. The algorithm then labels the data
without any regulation [81]. The algorithms that are most commonly implemented in this
approach are known as Apriori, Hierarchical clustering, and DBSCAN [28].

2.6.1 Clustering

One common algorithm category (i.e., unsupervised learning) of ML implements methods of
data learning through pattern recognition. This occurs by feeding the model variable inputs
that are not labeled [82] then utilizing a clustering algorithm to group and assign labels
to the inputted data (i.e., cluster analysis determines similarities between groups) [83, p.
332]. For example, clustering can be used with social networks to recognize communities of
people, implemented in biology to generate artificial phylogenetic trees, or divide a popula-
tion into marketing segments. A simplified version of these processes can be seen in Figure
2.11. Lastly, there are various methods that accomplish cluster analysis such as Partition-
ing, Hierarchical-based, and Density-based methods [80]. From these methods, a variety of
clustering algorithms are utilized. For example, partitioning methods most commonly use
algorithms known as K-means, CLARA, DBSCAN, and K-Mediods [80, 83].
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2.6.2 Classification

Another prominent task in ML is a methodology of supervised learning: classification. Su-
pervised learning encompasses the process of forecasting data from previous data sets [84]
and can be applied to numerous topics such as demographics, social predictors, and mental
health [84]. In order to predict categorical outcomes, classification can be broken into three
main processes: training, validation, evaluation. First, both training, validation, and eval-
uation operate on the same original data set; however, this data is initially divided into a
training and testing subset (Figure 2.12). Next, training occurs as the model learns via
the training data set which contains attributes and a class outcome. These attributes are
mapped with the class to ultimately build a trained classifier such as a decision tree. (pro-
vide example, illustration, reference) Next, the classifier is then validated with the test data
set which only contains data attributes. This process utilizes the classifier to label the class
outcome. Finally, this process is evaluated to measure the accuracy of the trained model.

2.6.3 Using Machine Learning for Simulations

Even though Machine Learning has been around for over 60 years, only recently, the field
has exploded with advanced research and has been regarded as one of the most disruptive
innovations of modern technology [85]. As Machine Learning has been leading cutting-
edge research and development, many have viewed the field independently from Modeling
& Simulation. However, in recent years, researchers have provided evidence that illustrates
Machine Learning’s ability to solve critical problems in Big Data Simulations [15]. For
example, Machine Learning can be utilized with Agent Based Models, Fuzzy Cognitive Maps,
and Hybrid ABM/FCM models to navigate social phenomena in relation to uncertainty [15].
This was demonstrated by Papageorgiou by refining the values of rules in a FCM to deal
with uncertainty [86] (Figure 2.13).

In order to have adaptive agents, Machine Learning can be utilized to provide agents the
ability to learn from consequences, and guide their own individual experiences [87]. This
can be achieved through combining the two separate cycles of ABMs and Machine Learning.
First, the ABM cycle is defined by (i) initializing the environment and its agents, (ii) the
agents observing the world and (iii) updating their internal model , and (iv) agents taking
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action (Figure 2.14-A.). A ML cycle is similar in its approach; the cycle (i) creates an
internal model, (ii) trains on data, (iii) updates the internal model, and (iv) takes actions
while recording [88] (Figure 2.14-B.). Through minor manipulation, the two processes can
be integrated (Figure 2.14-C.) to produce adaptive agents. The hybrid cycle would then
be composed of 7 primary steps: (i) initialize the environment and agents of the ABM, (ii)
allow agents to interact and observe their environment, (iii) provide the observations to the
ML model to train the model, (iv) update the internal ML model, (v) send the updates
and adaptive actions to the ABM, (vi) update the agents internal model, (vii) agents move,
interact, react.

Integrating ML processes with Modeling & Simulation to equip agents with learning
algorithms potentially improves the quality of their decision-making module, thus changing
their interactions with the environment and/or other agents [89]. Yet, there are multiple
decisions to be considered while integrating the two. Both supervised and unsupervised
learning techniques may be chosen for a ML algorithm; however, the selected methodology
should depend on researchers’ desired actions of agents. For example, we may want an agent
to decide whether it should wear a mask or not (which is a binary classification) based on its
observations of disease severity or symptoms in other agents. Alternatively, an agent may
decide what is a sufficient level of social distancing (e.g., 2 ft, 3 ft, 6 ft) with nearby agents,
thus performing a regression task [88].

Other important aspects of using ML for simulations is the type of data implemented
in the model or the amount of available data for learning [90, 91]. For example, the data
utilized during an integrated ABM and ML process will have major implications on the
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model and simulation [92]. These implications can be categorized as initialization, structure
modifications, and structure generation. When designing or updating the initial setup of an
ABM (i.e., the initialization process) the data applied can modify the initial attributes of
agents or the environment. Furthermore, if new processes or partial model components are
constructed through ML methods, these additions can be hidden or trouble researchers in
tracking the components during structure generation. However, these additions and impacts
of data can be illustrated during structure modification.

The amount of available data will also impact the trajectory of a hybrid model. This
can be illustrated by manipulating a data-frame created using the Python library Pandas
and decision trees. For example, a file of information can be randomly divided from the
original data set into data frames that ascend in the amounts of data. These ascending data
sets can then be sequentially split into separate training and testing data sets that each
build a decision tree classifier. This decision tree classifier would then predict the target
variable and output the accuracy of predicting that response. After the results are recorded,
accuracy can be plotted as a function of the amount of data used to build the classifier
(Figure 2.15). The results of this example illustrate that as the amount of available data
increases the accuracy of ML algorithms increases as a result. Furthermore the validity of this
relationship is detailed in work that demonstrates modeling the spread of COVID-19 with
strong interventions must be done with large amounts of data to achieve stable accuracy [91].
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Chapter 3

A Framework for the Comparison of
Errors in Agent-Based Models using
Machine Learning

Across common ABM frameworks (e.g., BDI, SOAR, ACT-R) errors in human perceptions
are inconsistently handled through implementation or lack thereof. Without the proper in-
tegration or absence of key human behaviors, researchers in cognitive social simulations may
overlook various features that would have affected the overall model trajectory. We address
this concern by developing a framework that illustrates the value of agents possessing internal
models[93] that are driven by Machine Learning. We illustrate the impact of this framework
on two well-known models (Schelling and Axelrod) and on a COVID-19 simulation. Our work
employs various Machine Learning models (e.g., Decision Tree Classifier, Logistic Regressor)
to depict how the inclusion of human errors alters the overall model trajectory and may
justify the integration of imperfections and heterogeneity into individual decision-making
processes. Our open source framework can be integrated into existing and future models
and utilized to examine the consequences of an agent making a decision without the ap-
propriate amount of information (insufficient observation), by ignoring specific information
(superficial observation), when inaccurately recording information (inaccurate perception),
or due to a gap between environmental complexity and individual capacity (limited ability).

All of this chapter is currently under revision.

3.1 Introduction

Agent-Based Models (ABMs) are a simplification of reality in which a system is decomposed
into a set of (potentially heterogeneous) agents that interact with each other and with their
environment. In many instances, simplifications that may at first sound odd can be tolerated
because the model is sufficiently fit for purpose [94]. For example, in a classic prey-predator
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model, sheep may jump with blissful unawareness into a location occupied by a wolf, who
will simply eat them. While real sheep are less suicidal, the perception error does not prevent
the model from being adequate in its ability to reflect population level dynamics over the
course of a simulation. Errors may even be a necessary feature for application domains such
as gaming, where the unpleasant prospect of an all-powerful computer opponent is addressed
by using different decision making algorithms that force an opponent’s agents to make errors
(e.g., greedy algorithms instead of optimization). A similar need arises in several scientific
applications, as a purposeful inclusion of errors in a model can preserve accuracy vis-à-vis
real social systems. For instance, a model of gentrification purposely limited an agent to
finding a house by only looking at a cluster (the ‘microscale’) rather than optimizing over
an entire city. Although results could be sub-optimal for the agents (e.g., a better deal may
only be a few blocks away), the simulation accurately generated patterns of human relocation
within submarkets [95].

Despite such examples, there is a broader tendency to create ABMs where agents are
very homogeneous and rational [96]. Indeed, “most AI researchers have little interest in
replicating the all too human errors [...] observed in nature.” [97] In an application domain
such as agricultural policy, most ABMs use optimization and only 20% employ behavioral
heuristics [98]. In human health behavior research, models have assumed that virtual agents
are perfectly accurate in sensing the state of other agents [99], and that they make informed
decisions after performing a thorough inventory of their surroundings [100]. But in reality,
humans only take in a small portion of the information available in their environment [101],
potentially make errors in memory encoding or retrieval, interpret the world through their
own heterogeneous sets of beliefs [102], and react based on their emotions [103]. Filtering
out information is one of the key skills that characterize human decision making, which
allows us to focus on specific tasks amidst a busy environment [93]. Although emotions
used to be considered as a disruptive and irrational behavior from a modeling standpoint,
they are now seen as essential to generate “a more human-like behavior thus having deeper
and more meaningful human-machine relationship” [103]. The growing recognition that
virtual agents ought to make errors echoes popularized notions such as Pope’s “To Err is
Human”, or established concepts such as bounded rationality [104] and its illustration above
in the gentrification model. In this paper, we focus on including errors in ABMs, thus
contributing to the study of cognitive social simulations by covering errors in the individual
mental processes of agents and in their social processes [105].

The impact of such judgment errors on model outcomes has been inconsistently addressed
in ABMs [17]. Our previous work showed that errors could be introduced into ABMs and
helped to identify problematic assumptions in some of the models, as simulation outcomes
would be either highly sensitive to a small level of errors or (to the other extreme) would
remain unchanged regardless of how erratic an agent may become [18]. However, the ad-hoc
introduction of errors into various implementations of ABMs leads to multiple challenges.
First, tempering with various codes is a laborious process as errors have to be introduced
in different ways, which raises the potential for bugs. Second, comparing the effect of errors
on various ABMs (e.g., to select one that is appropriately robust) becomes a very time-
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consuming enterprise, since each ABM could be written in its own ways. Third, there is
a vast array of phenomena that qualify as ‘errors’, and programmers may only implement
some based on their own awareness and the convenience of modifying existing codes. These
shortcomings point to the need for a framework that facilitates the systematic inclusion of
human errors into ABMs, thus echoing calls for frameworks that let us rigorously handle key
aspects of ABMs [106] and for building blocks that facilitate the inclusion of core features
into ABMs [107].

The growing interest in combining Machine Learning (ML) with ABM offers an oppor-
tunity to support the systematic specification and implementation of errors. Although the
general notion of using ML to set the behaviors of agents has long been discussed [108], a
recent review of 51 ABMs employing ML techniques allows for a more precise definition [109].
The authors suggest that ML can “replace, augment, or optimize the agent’s internal behav-
ioral rules” in two ways: either the ML component is already developed and each agent uses
it as such during the simulation, or the ML component is used to learn and improve agent
decisions at runtime. In this paper, we use the latter approach by equipping each agent
with an ML algorithm (e.g., a decision tree) that receives observations and combines them
to arrive at a decision. The ML algorithm acts as a key conduit to systematically handle
various types of errors, either in observations (e.g., insufficient data, inaccurate measure-
ments) or in inferences (e.g., when an agent’s capacity cannot cope with the complexity of
its environment).

Hybrid ML/ABM models by nature include many ways that lead agents to make sub-
optimal decisions, but these errors were not the main focus of the associated studies. For
instance, agents have previously been equipped with a neural network, and their decisions
were inherently affected by limitations in training data, lack of perfect knowledge about their
peers’ true preferences, and the accuracy of their neural network predictions [16, 110]. In
contrast, this paper focuses on the systematic treatment of errors. Our contributions are
threefold:

� We unify the treatment of errors in the decision-making processes of Agent-Based Mod-
els by using Machine Learning as a filter for observations and inferences. In previous
studies, the mechanisms underlying social learning between agents were treated as a
blackbox [111, 112]. Our framework is thus a first step towards operationalizing the
errors that shape human behaviors.

� We implement our framework in Python and release it open source for the research
community on the Open Science Framework at https://osf.io/n6pja/.

� We instantiate our framework on classic models (Schelling for segregation, Axelrod
for culture) and a sample COVID-19 application, thus illustrating the supported error
types and exemplifying how researchers can assess the effect of errors onto simulation
outcomes.

The remainder of this paper is structured as follows. In section 3.2, we provide an
overview of how previous frameworks have covered the notion of errors in ABMs in order
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to enhance their realism. Rather than detailing every agent architecture as this has been
covered in many studies [113, 114, 115], we utilize a sample of well-known frameworks from
formal logic (e.g., belief-desire-intention) and cognitive science (e.g., appraisal theories) to
illustrate which errors could be incorporated in future work and how these errors would be
implemented. Then, our background covers the inclusion of data in ABMs, to provide the
foundations for our approach at the intersection of ML and ABM. Our framework is intro-
duced in section 3.3 and exemplified via three case studies in section 3.4, with a continued
emphasis on identifying which errors can be included in a model and how. Results are pro-
vided in section 3.5, while noting that they illustrate how modelers can analyze the impact
of errors onto their output, hence the focus is on the ability to perform analyses rather than
on a specific model (e.g., we do not seek to generate new insight into the Schelling model).
Limitations and future works are summarized in section 3.6 and concluding remarks are
offered in section 3.7.

3.2 Background

3.2.1 Integrating Errors into Agent-Based Models

The errors that characterize human behaviors are handled inconsistently among empirical
ABM studies [17]. A variety of works tend to include certain errors (e.g., uncertainty, as-
sumptions) [18, 116, 117, 98] through differing methodologies or exempts human errors from
their ABMs altogether [97] (Table 3.1). In order to develop models which demonstrate
sufficiently realistic human behavior, it is vital to integrate common human errors [18] into
existing ABM frameworks. The Enhancing Realism of Simulations (EROS) [118] approach
seeks to integrate psychological realism into agent-based models. The concept of EROS has
been advocated for over twenty years, yet the theoretical discussion and actual implemen-
tation has only proceeded in recent years [119, 118]. A variety of existing frameworks (e.g.,
SOAR, ACT-R, CLARION, EMA, DETT, eBDI ) attempt to capture psychological realism,
although they may focus on only a subset of aspects and can have drawbacks. For example,
frameworks such as SOAR and ACT-R include complex psychology reasoning by integrating
long and short term memory, but they require an extreme computational cost [120, 121, 119].

One of the most popular ABM frameworks is the Belief-Desire-Intention (BDI) which
was founded on ideas expressed by philosophers [2, 124]. The BDI framework is based on
the idea that it is possible to represent human behavior by defining an individual’s beliefs,
desires and intentions [97]. An agent’s beliefs account for their personal information about
their environment. This is the perception of the world, as seen per the agent, which may be
subject to uncertainty and errors. The agent’s desires are all the possible states of affairs that
the agent wishes to accomplish, and the agent’s intentions are commitments to a particular
course of actions for achieving a particular goal [2, 124, 97]. A variety of languages and
programming environments support the BDI framework, often by using Java and formerly via
interprets of the logic-based language AgentSpeak [125]. Emerging solutions are leveraging
cross-language development platforms such that the socio-psychological module for the BDI
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Table 3.1: Different errors and how they were handled in the literature

Type of Error Example Study

Uncertainty
Probability for agents to make mistakes during perception of their
environment [18]
Used attitudinal models to calculate the values of uncertainty arising
from agent-to-agent interactions [116].

Assumptions
Rule-sets of logic to contrast outcomes of agents’ decisions from mak-
ing assumptions [117]

Emotions
The OCC theory accounts for emotions and social relations in
ABMs [122], for instance by specifying that emotions are posi-
tive/negative reactions due to events, actions of agents, or aspects
of objects [103]
The reasoning module of the agents is directly related to emo-
tions [123]

agents can be written in any language and accessed by a simulator [126].
Behavior with Emotions and Norms (BEN) is a framework that has comprehensively

implemented the principles of EROS [119, p. 148]. For instance, BEN is comprised of pred-
icates, cognitive mental states, emotions, social relations, norms, personalities, and obliga-
tions [127]. BEN thus provides a high-level overview of an agent’s behavior at any moment
during the simulation in efficient computational time [119].

Numerous other extensions to the BDI framework have been proposed but remain at a
theoretical stage [2]. For example, Belief-Obligation-Intention-Desire (BOID) [2, 124, 128]
accounts for normative concepts such as social norms and obligations [129]. In BOID, agents
can choose to follow social rules and contribute to the collective interest of agents. The
decision making of the agents is similar to BDI; however, agents take social norms and
obligations into consideration while interacting in simulation [2, 124]. Similarly, the Belief-
Response-Intention-Desire-Goals-Ego (BRIDGE) framework accounts for social awareness,
‘own’ awareness and reasoning based on the BDI modules [2, 128]. This framework introduces
three new modules called ego, response, and goals while also refining some of the original
modules present in BDI. In addition, BRIDGE differs from BDI by allowing all components
to work in parallel to provide continuous processing of the environment. The BEN ego
component helps specify different types of agents and their emotional responses to various
stimuli [2], which adheres to EROS.

Unlike the previous frameworks, CLARION uses a hybrid neural network system to
simulate tasks in cognitive and social psychology for artificial intelligence applications [130].
This framework emphasizes the difference between explicit and implicit (i.e., learned via
neural networks or reinforcement learning [124]) representation of knowledge. CLARION
integrates routines, generic rules, decision making, and has one of the most complex learning
methodologies across frameworks [2].

As shown in Table 3.2, most of the frameworks aforementioned do not handle emotions.
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Table 3.2: Frameworks, references and some key features of popular ABMs

Framework References Reasoning Emotions Social norms Learning Communication Uncertainty
PRS [97, 2, 124, 122, 128] × × × × × ×
BDI [97, 2, 124, 122, 128, 136] ✓ × × × × ×
eBDI [2, 124, 122, 128] ✓ ✓ × × × ×
BOID [2, 124, 128] ✓ × ✓ × × ×
BRIDGE [2, 128] ✓ ≈ ≈ × × ×
EMIL-A [2, 124, 128] ✓ × ✓ ✓ × ≈ (considered)
Consumat [2, 128] ✓ ≈ (values and money) × ✓ × ✓
CLARION [2, 124] ✓ × × ✓ × ×
BEN [119, 127] ✓ ✓ ✓ ✓ × ≈ (considered)

‘×’ means that the feature is not accounted in the framework, ‘≈’ means that the feature
is partially accounted, and ‘✓’ means that the feature is part of the framework.

Although emotions are not typically included under the umbrella of ‘errors’, they participate
to increasing the realism of agents (particularly for crisis models) and the diversity of their
reactions. Extrapolating from the example in [103], when an agent sees its house burn, it
may express fear and sadness because the house is gone, or joy because the insurance will
build a better house. Advances in neuropsychology suggest that “cognitive information-
processing models and emotion information-processing models work in tandem” [131], hence
a different line of architectures handles emotions by combining these two models in the
decision-making module of an agent. Such architectures may be mathematical grounded
using decision field theory [132] or rooted in less formal approaches such as appraisal theories.
For instance, the emotional Biologically Inspired Cognitive Architecture (eBICA) has been
used in several studies to explain or predict human behavior [133]. This framework integrates
two systems [134]: one is the ‘rational’ system with specified goals, constraints or utility
functions, and a planner; the other is the socio-emotional system, where moral schema and a
representation of the world (i.e. cognitive map) will bias the agent towards certain actions.
To integrate the two systems, the authors note that the purely rational piece only sets high-
level goals and leaves some freedom of choice; instead of being made uniformly at random,
probabilities are biased by what is emotionally preferable [135].

3.2.2 Data-Driven Agents and Data-Driven ABMs

The extracted rule-sets and information from psychological theories that agents utilize and
collect to update their internal model during simulation serve a crucial role in producing
data-driven or adaptive agents. In addition, the data used to compose the entire ABM
defines whether an ABM is data-driven or not. Data-driven ABMs emerged in the 2000’s
(c.f., the first theoretical study in [137]) and researchers have differing definitions of what
comprises a data-driven agent or ABM. Some works consider that a data-driven ABM has
the initial environment constructed at the very start from the available big data [138, 139]
(Figure 3.11-a). This is a static definition, as the agents and their environment derive
rules and attributes during initialization from a variety of analytic methods and/or Machine
Learning (ML). In contrast, others view data-driven agents more dynamically (Figure 3.1
1-b), as entities continually learn from their observations of their surroundings (e.g., other
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Figure 3.1: Difference between initializing a model from Machine Learning (a; static) and
having agents adapt through a simulation by ML (b; dynamic)

Table 3.3: Different data-driven agents found in the literature

Data-driven approach Example studies
Agents with Big-Data Created a new agent-based modeling approach

that incorporates big data at the individual-
level to generate agent behavior rules and ini-
tialize agent attributes [92].

Agents with Reinforcement
Learning

Agents are implemented with no knowledge
and learn iteratively while observing their
surroundings while using reinforcement learn-
ing [140].

Agents with Policy Trees Agents are integrated with interactive dy-
namic influence diagrams to construct decision
making processes with clustering methods and
policy trees [141].

agents, the environment) with the use of Machine Learning [92] (Table 3.3). Our paper is
rooted in this dynamic view.

In a dynamic process, the agents start by making observations through their initial
ruleset. The observations are used as training data for the ML model, which aids in updating
the decisions of each adaptive agent [142, 143]. Consequently, the initial ruleset can shift as
it is updated by ML at each step [142, 143], which allows each agent to gradually differentiate
its behavior based on its local physical and social environment. Note that ‘adapting’ is used
loosely since it can lead an agent to make a decision from which it does not fully benefit (i.e.,
a ‘wrong’ decision). For example, obesity is occasionally presented as ‘maladaptation to a
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Figure 3.2: A data-driven agent observes its surroundings and, between two equally likely
discriminating factors, makes an error in the choice of feature.

modern world’, but agents can become obese (and may make a simulation more realistic) if
they adapt to an obesogenic environment where peers have unhealthy habits (Figure 3.2);
they are socially adapted, at the detriment of their own health. The integration of ML and
evidence based rule-sets in ABMs has demonstrated higher performance compared to ABMs
that exclusively use expert-driven rulesets, or only derive rules from data [144]. However, this
integrated approach is an emerging area of research, so its benefits and drawbacks continue
to be assessed [109].

3.3 Framework

3.3.1 Errors represented

Our framework was developed by integrating four particular human errors. These errors
are motivated by the growing evidence that humans use social information sub-optimally
despite the vast expected benefits, such as obtaining an accurate representation of the world
without incurring costly individual explorations [112] or reusing solutions that have been
honed by peers. We account for over-generalization, which happens when a person forms a
conclusion from insufficient observations. To operationalize over-generalization, we represent
the observations made by an agent in the form of a table where each observation is a row and
its characteristics (or features) are tracked by columns; for example, in Figure 3.2, the table
would have at most three rows (since three peers are observed) and two columns (what they
eat, whether they exercise). One error happens when an agent has insufficient samples of
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information, which means there are too few rows of data. In Figure 3.2, the agent may only
be observing the two neighbors above, who only eat pizza, and hence never learn about the
virtues of exercising. Another error happens when an agent makes superficial observations
and transpires when a human has access to enough samples, but pointedly determines a
position from only a portion of the characteristics. In Figure 3.2, the agent may look at
all three neighbors, but only pay attention to what they eat (i.e., account for only one of
two features). In short, the data received by the agent is either limited in number of rows
(insufficient samples) or in number of columns (superficial observations). The third error is
inaccurate perception, which happens when an agent does not perfectly make an observation.
From a tabular viewpoint, the error is applied on a cell. For instance, an agent may observe
what others eat, but would not be able to perfectly determine the amount of calories. This
covers distortions due to measurement errors and uncertainty in human perceptions. We
stress that this error is about observations, rather than attitudes or expectations (e.g., an
agent incorrectly evaluating flooding risks or acceptable insurance premiums [145]).

Finally, humans cannot necessarily form accurate models even when they are provided
with complete and flawless observations. We represent this as limited ability to capture
that the capacity of the agent cannot match the complexity of its observations, hence a
simplification occurs. Consider the following example: an agent walks into a restaurant with
friends and must order at the counter from dozens of potential items, while other customers
are waiting in line behind. The agent does not have the mental capacity to quickly review
all options and pick the optimal one, hence the agent may just have the same as its peers
or opt for the ‘special of the day’. In fact, obesity research has repeatedly emphasized that
“to promote healthier eating, the healthiest option could be set as the default option” since
individuals are overwhelmed with choices and simplify significantly [146, 147].

The presence of errors do not necessarily mean that the decisions will be worst for the
agents. For example, forced simplifications due to limited ability mean that an agent will
generate a model that does not follow the data too closely; the model is thus less likely to
over-fit, hence it may be more generalizable and the agent can reuse it in a variety of settings.
Further note that despite our presentation of the four errors as separate, they can happen
jointly in a given model; illustrative examples are provided in the next section. Accumulating
several errors does not necessarily imply poorer decisions. For instance, if measurements are
noisy, then a limited ability can be an asset by avoiding an overfit to noise [148]. Conversely,
if there are insufficient samples and, in addition, superficial observations, then the errors
may have a cumulative negative effect.

3.3.2 Operationalization via Machine Learning

The foundation of our framework builds upon data-driven agents which are incorporated
in every case study. We implement data-driven agents that dynamically update their rule-
sets and change their actions after observing the attributes and actions of agents in their
environment and sending these observations to a variety of ML models. All agents start
by collecting data in a perfect manner (i.e., no missing rows or columns, no errors in the
cells). For the first three errors given in section 3.3.1, the data table is altered as follows.
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First, insufficient samples consist of taking a random percentage of the observed data (e.g.,
5%, 15%) and discarding the rest, as in previous studies [91]. Although superficial obser-
vations could be operationalized through a random subset, the literature does not usually
eliminate features randomly. Indeed, a subset of features is identified either based on per-
ceived value [149] (e.g., via feature selection algorithms) or from model-specific questions
(e.g., ‘how would population weight change if individuals tried to match their peers’ weight
based on nutrition only’). Our framework thus allows the user to select specific features
to disregard when agents observe their peers. Inaccurate perceptions are operationalized by
applying noise to the data. We use a Gaussian distribution (i.e., ‘white noise’), in line with
previous works [150, 151]. By setting the parameters of the distribution, users can include
common phenomena such as systematically overestimating calories [152] or systematically
underestimating the weight status of overweight and obese peers [153]. For flexibility, we
allow users to select the features onto which noise will be applied [150, 151]. This reflects
that humans do not make the same amount of mistakes depending on what they attempt to
quantify; for example, weight may be vastly underestimated but height could be accurate.

Once the three errors have been applied to the data, the table can be processed by a
machine learning algorithm. The choice and parameters of the algorithm reflect the limited
ability of the agents. For example, a decision tree with an insufficient depth would coerce
agents into making simplifications. Simplifications could also be caused by certain parameter
values in a penalized regression, or by having too few (or small) layers in a neural network.
Our framework thus allows the user to pass an ML model of their choice and to set limits
on its parameters (e.g., depth of the tree, number of layers).

3.3.3 Implementation

A core network is used to position the agents. Each node of the core network can contain a
set of agents, which can be empty when no agent occupies this position. An edge signifies
that an agent can either reach a node (if a model requires mobility) and/or observe the
behaviors of agents residing in the other node. The core network is a flexible representation
as it can be used to capture two common scenarios:

(a) A physical network (Figure 3.3-a). Each node serves as a physical location, which
is occupied by agents. Connecting edges represent pathways an agent must travel to
traverse from one location to another and a modeler can restrict the edges to only
support mobility. This restriction limits an agent to only observe its peers who are in
the same physical location (i.e., the same node).

(b) A social network (Figure 3.3-b). By creating a one-to-one mapping between nodes
and agents, each node represents an agent and edges capture social tie. In this case,
social ties may specify observable peers rather than mobility.

Although none of our case studies need it, our framework supports a secondary network to
enable applications that require both a mobility network (where individuals see each other
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Figure 3.3: In the core network, each node can contain a (possibly empty) set of agents.
When any number of agents can be in a node, it can be used to represent a physical envi-
ronment (a). In (a), the central location (dashed/red) contains three agents, who can see
each other. The top-right location (green agent) has a single agent, who is able to directly
move into three locations. When each node contains exactly one agent, it serves as a social
network (b).

if they share a physical location) and a social network (where individuals are in contact
regardless of physical locations).

Our framework is built in Python 3.10. This choice is driven by the growth of ABM
packages built on the Python programming language [154, 155, 156, 157], thus indicat-
ing familiarity with this language from our intended user base. Similarly to the Python
Mesa package, our framework “seamlessly integrates with popular data science tools such as
Jupyter notebooks and Pandas for ease of analysis of data” and we also use NumPy arrays to
accelerate computations [154]. Specifically, at each simulation tick, an agent adds the new
observation of its peers to a growing record in the form of a NumPy array. After synchronous
observations have taken place, each agent independently runs a machine learning model on
its array, via scikit-learn. Actions are then decided accordingly and the new states of the
agents are computed. These states may be stored in a Pandas dataframe (e.g., to accumulate
the number of agents who are happy/unhappy at each step) to visualize simulation results at
the end. Users are expected to provide custom code to encapsulate the logic of their model,
in line with recent frameworks [126].
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3.4 Case Studies

We use three models to exemplify (i) which errors are applicable to a given simulation model
and (ii) how they work within our framework. The models cover Schelling’s model of seg-
regation [158], the Axelrod model of culture [159], and a Covid case. In the same way as
Chattoe-Brown, we used classic models because they are “widely known in the ABM com-
munity and simple enough to demonstrate relevant issues clearly without ‘bogging down’
in potentially divisive modeling detail” [160]; the Covid model is more complex but cap-
tures an application area that has recently brought ABMs to attention in a wider scientific
community. Each model is provided on our repository as a dedicated Jupyter Notebook.

3.4.1 Schelling Model of Segregation

The purpose of the well-known Schelling model is to illustrate how agents in society can
become highly segregated based on a seemingly mild preference towards being surrounded
by similar neighbors. As the model has been covered abundantly elsewhere [161, 158, 162],
our succinct description allows us to focus on the nature and inclusion of errors. In short,
the core logic is that each agent belongs to one of two groups (abstracted as colors such as
blue and red) and wants the fraction of at least τ nearby peers to be in the same group. The
use of colors helps to visualize the emergence of segregation patterns. We implement it by
structuring the environment as a 25× 25 grid, where each node represents an agent location
at each time step. The nodes are empty (black; 12% of nodes) or occupied with an agent
(blue or red). At initialization, agents are assigned one of the two colors equally at random
(i.e., 88% of the grid is occupied by agents who are 50% blue and 50% red) and then given
an initial location on the grid. This visualization allows users to ensure the total population
is segregating over time.

During an update, agents synchronously observe their neighbors. We use Moore’s defini-
tion of a neighborhood, whereby each agent is surrounded by eight neighbors; the network
topology is thus created as in Figure 3.3-a, where the central node (red/dashed) is con-
nected to eight neighbors. Since we use closed boundaries, nodes on the edges and corners
have fewer neighbors. For each agent, the observation consists of counting the share of its
neighbors that have the same color. If that fraction is above a user-defined threshold (known
as ‘Preferred Proportion’ and set to 1

3
in our example), then the agent is seen as happy and

stays in its current location. Conversely, unhappy agents will move to an empty location at
the next round; we handle their relocation by creating a queue of agents who seek to move
and matching them with a shuffled queue of available locations. At each step, we record the
amount of happy agents. The simulation stops when this number stabilizes and agents no
longer relocate or 100 steps are reached, whichever comes first.

Each agent uses a decision tree classifier, where the only feature is the number of neighbors
with the same color, and the prediction is a binary outcome of (un)happiness. Since there
is a single feature, this model is not eligible to a perceptual error of superficial observations.
We thus focus our example on the impact of insufficient observations, limited ability, and
the combination of insufficient observations and limited abilities on model trajectory. For
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insufficient observations, each agents’ decision tree was given access to a random percentage
of data observed during the simulation (set to 5%, 10%, 20%, 40%, 60%, 80%, 100%). To
represent the baseline (i.e., simulation outcomes without errors), 100% percent of the data
was utilized to update the agents’ internal models. For limited ability, every agent’s decision
tree was constrained by a maximum depth (set to 1, 2, 3, 4). Note that in this application
scenario, an agent does not need to surpass a depth of 2, so we expect depths of 3 and
4 to have no impact; visualizations should reveal this effect. Finally, we combined both
insufficient and limited ability by limiting the decision tree depth in each simulated run at
specific percentages of observation. (e.g., 5% with depths 1, 2, 3, 4). Note that since each
agent runs its own ML model, the decision process is no longer the same for everyone, so the
inclusion of errors contributes to addressing the issue of heterogeneity discussed in previous
works [160].

3.4.2 Axelrod model of culture

The purpose of the Axelrod model is to reflect the dissemination of culture in a population;
the model can also be interpreted as spreading opinions. Each node of the network represents
a village, characterized by an array of cultural features, each of which has several possible
values (known as ‘traits’). These cultural features can abstract a variety of properties (e.g.,
index 0 can be language, index 1 stand for religion) and their numerical values represent var-
ious states of each property (e.g., language could be comprised of English, French, Chinese).
Nearby villages (i.e., adjacent nodes) interact with a rate proportional to the number of
shared feature values, and they become more similar as a result. Said otherwise, homophily
governs the selection of dyadic interactions, and one agent adopts a trait value from the
other agent as a result of social influence. In the initialization, we create a 2D grid (set to
8 × 8 in this example) and equip each node with 5 feature categories, each with 10 possible
values.

During an update, an agent is selected at random and we measure the ratio of cultural
features shared with each neighbor. To measure this ratio, each feature value must match
exactly: for example, if an agent has the array [3, 5, 6, 7, 0] and a neighbor has [1, 3, 6, 7, 1]
then they share two features out of five, hence a ratio of 2

5
. A neighbor is then selected with

a probability weighted based on the ratio of shared features. The agent randomly picks from
one of the features with a mismatch and aligns its value with the neighbor; in the example,
the first feature would be replaced from its value of 3 (mismatch) into 1 (Figure 3.4). In
a similar vein to the Schelling model, the Axelrod model runs until cultural regions are
established, or for at most 100 steps.

Because of the numerical distance between features, each agent learns by performing a
logistic regression with stochastic gradient descent. Each observation consists of the agent-
neighbor pair, the time step, the absolute differences between features of the pair (e.g., in
the example above we would have [2, 2, 0, 0, 1]), the ratio of shared features (40% in this
example), and whether the neighbor was selected. Note that neither the pair nor the time
step would be used in decision-making; they are only included in order to guarantee that
observations are unique. The ML model learns whether to select a neighbor based on the
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Figure 3.4: Given a randomly picked agent (long dashes / red), a neighbor is selected (short
dashes / green) with a probability proportional to the ratio of shared features. One feature
with a different value is selected at a random and the difference is solved.

absolute differences between features and the ratio. For instance, when agents have five
characteristics, the ML model is given 5+1 = 6 features. Since ML needs some observations
to start learning, we run the first step of the simulation based on the standard Axelrod rules
and then start applying the ML process.

This application allowed us to test all four errors: insufficient and superficial observations,
inaccurate perception, and limited ability. Insufficient observations were produced by only
allowing the machine learning model to have access to a random sample of data, in the same
way as the Schelling model. For superficial observations, agents could drop 1, 2, 3, or 4 of the
features at random when computing the cultural similarity. Inaccurate perception consisted
of adding a Gaussian noise (5%, 10%, 20%, 40%, 80%, 100%) to the perceived values of some
features in a neighbor; values were then rounded up, since they had to be integers. Limited
ability was generated in the same manner as the Schelling Model where we limited the depth
of the decision tree. Errors were combined by pairing each random sample of observations
to a specific amount of dropped features, added percentage of noise, and various depths.

3.4.3 COVID case study

Agent-based modeling emerged as one of the main computational techniques to study the
COVID-19 pandemic [163], which has resulted in an abundance of new ABMs [164]. As
a result, core concepts of ABM have now reached new research communities [165], who
may not have been familiarized with the Schelling or Axelrod models through traditional
training. We address this audience by exemplifying errors in a COVID model whose purpose
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Figure 3.5: Each agent moves in its Moore neighborhood (a) into an empty cell that offers
a safe distance (b) to visibly ill peers. Agents have different masks, immune status, and
symptoms (c). The process accounts for disease avoidance, direct and indirect transmissions,
and ventilation (d).

is to track the spread of infections in a room. In a similar manner to previous COVID-19
ABMs dedicated to indoor transmission, the space is modeled as a large square (without
walls) [166]. Agents can contaminate each other through direct contact or indirectly via
aerosols, which are affected by ventilation systems [167]. Spatially explicit mechanisms
for disease avoidance steer agents away from peers with symptoms [168], while individual
attributes such as wearing certain types of masks or having acquired immunity mediate the
level of aerosols expelled and the risk of infection [169].

In the initialization, 250 agents are randomly assigned positions in a 50 × 50 closed
grid (Figure 3.5-a) with Moore neighborhood (Figure 3.3-a), as used in the Schelling
model. The agents initially wear masks of different types (cloth, surgical, N95), have acquired
immunity either by recovering from infection or from vaccines, and infected agents may
present symptoms or not (Figure 3.5-c); initial percentages are listed in Table 3.4. During
an update, each agent scans moves in a nearby empty location that puts a safe distance
with any visibly ill agent. Specifically, available cells are sorted by their Euclidean distance
(Figure 3.5-b) to the nearest symptomatic agent in the neighborhood. Note that it allows
an agent to move (unknowingly) next to a person who is infected but asymptomatic, or
into a location with a high density of aerosols. The process continues (Figure 3.5-d) with
direct transmission of infection, then indirect transmission as infected agents cough (thus
dispersing droplets in nearby cells depending on their masks) and susceptible agents have
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Description of the variable Default value Source
Size of the grid 2500 User-defined
N (Number of agents) 250 User-defined
Fraction of initial agents with immunity 0.62 [170]
Vaccine compliance (fully vaccinated) 0.67 [171]
Fraction of initial agents with infection 0.5 User-defined
Strength of ventilation in the closed area 0.8 [172]
Chance of infecting of other agents 0.04 [173]
Chance of coughing 0.05 User-defined
Infection chance for immune agents 0.3 [174]
Chance of being asymptomatic 0.6 [175]
Reduction factor for cloth mask 0.2 [176]
Reduction factor for surgical mask 0.1 [177]
Reduction factor for N95 mask 0.09 [177]
Distribution of cloth masks 0.2 User-defined
Distribution of surgical masks 0.4 User-defined
Distribution of N95 masks 0.4 User-defined
Number of prerun steps 5 User-defined

Table 3.4: Variables used in the COVID-19 model

a risk proportional to the density of aerosols; in both cases, transmission risk is impacted
immune status and mask wearing. Finally, the full outdoor air supply rates provided by
optimal ventilation systems remove aerosols containing viral particles. Each simulation ticks
represents one minute, and the simulation stops after two hours.

The decision tree of each agent governs its steering behavior. That is, each agent decides
whether to move into a particular cell based on the perceived distance to an infectious agent.
In order to store unique observations in the agent’s array, we also record the agent’s ID and
the simulation step, but this information is not used for decision making. Three errors can be
present: insufficient samples, inaccurate perceptions, and limited ability; they are handled
in the same manner as in the previous two models. In the same way as the Axelrod model,
the model runs initially with the baseline ruleset (for five steps) so that agents have made
observations, then they start differentiating via ML.

3.5 Results

By definition of the Schelling model, when agents only look at some of their neighbors, the
condition of ‘moving only if neighbors are too dissimilar’ is no longer applied exactly. This is
akin to introducing uncertainty in the decision to move, as has been studied by Sahasranaman
and Jensen, who found that it affects dynamics by making it harder to produce segregated
clusters [178]. Figure 3.6 confirms this effect, as the amount of time to stabilize is inversely
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proportional to the percentage of samples. To understand the effect of limited abilities, we
measured the depth of the decision tree in the baseline simulation, where it was 0.95 ± 0.25
over 50 simulation runs. Hence we expected a difference between limiting the depth of the
tree to 1 and 2, but no effect beyond this. The heatmap in Figure 3.7 shows the joint
consequence of limited abilities and insufficient samples: there is mostly a gradient along
the x-axis (percentage of samples) and very little effect along the y-axis (limited abilities),
which confirms that outcomes are primarily affected by insufficient samples rather than by
limited abilities.

In the Axelrod model, the concept of noise has often been studied but it was operational-
ized in diverse ways. Several studies of the Axelrod model [179, 180] and related opinion
spread models [181] consider noise as the probability that an agent spontaneously changes
its own values (known as ‘cultural drift’), which is different from the notion of noise in ob-
serving a neighbor’s values. When models include noise in the interactions (e.g., destroying
and recreating links, hesitating), they often find that a homogeneous state is reached after
a much longer time than in the initial Axelrod model [182, 183], and it may even become
impossible to stabilize [184]. Our results on insufficient samples confirm these previous find-
ings, as the number of changes before stabilization is inversely proportional to the sampling
rate (Figure 3.8c–d). The model is visibly robust to small inaccuracies in measurement
(Figure 3.8e), but deviations are observed from an error of 40% and onward (Figure 3.8f).
Superficial observations have a noticeable impact (Figure 3.8b).

The impact of errors on a COVID model is more mixed in the nascent literature. For ex-
ample, meta-modeling studies have shown that in some cases, a small sample of observations
from an entire simulation sufficed to characterize it, but in other cases a much higher sam-
pling rate was necessary [91]. While other studies have examined errors in several models,
they were concerned with software errors (i.e., bugs), which are not our focus [185]. Given
the lack of referential, our observations are based solely on results in Figure 3.9. Of all
three models, the COVID case is the only one where trends are preserved regardless of the
nature or intensity of the errors. This suggests that, despite its relative sophistication in
several aspects (e.g., various masks, direct and indirect transmissions), the decision-making
component for each agent is ultimately so rudimentary that it is hardly swayed by errors.
Results may be different if the mobility of agents was more extensively data-driven [186].

3.6 Discussion

As people, we only pay attention to some of our surroundings and make mistakes when
we record this information [101, 102]. These errors are profoundly human traits, hence
cognitive social simulations may be more adequate when they account for such perceptual
errors. However, ABMs do not systematically account for these errors [17]. In this paper,
we used Machine Learning as a conduit to systematically represent four types of errors for
social learning in ABMs (i.e., how agents learn from information acquired via social ties):
insufficient number of observations, superficial observations that ignore certain features,
mistakes in recording the observations, and a limited ability to process complex information
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Figure 3.6: baseline (a); limited abilities as constrained by the depth of the decision tree(b);
observations using all (100%) or part (5, 10, 20%) of the data (c); and observations using all
or part (40, 80, 100%) of the data(d).

from the world. The errors were exemplified on three ABMs, thus showing which errors are
applicable to a given model and which consequences we may expect. Although our focus
is on the perceptual errors of individual agents, we have repeatedly emphasized that such
individual errors do not necessarily lead to erroneous simulation results for the population.
Indeed, at the level of the collective, perceptual errors may lead to more diversity in decision-
making, ultimately contributing to a population that is more adaptable; this hypothesis has
been confirmed on several occasions, such as in biological and socio-ecological systems [187].
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Figure 3.7: Heatmap of the average number of steps for 10 runs on different percentages
of data available (insufficient samples) and different depths of tree (limited ability) for the
Schelling model. The number of steps displayed is the steps required to reach the end of the
simulation.

From a computational standpoint, users of our open source framework would need to
write all model-specific code in Python. While this language is now well-understood in the
ABM community as evidenced by a growing set of libraries, there are software solutions
to avoid being language-specific. For instance, Bhattacharya and colleagues used Apache
Arrow so that users could write the decision making module in any language and link it with
the framework [126]. Most interestingly for simulationists, extensions of the the framework
may be used to pinpoint where an agent made errors, if modelers wish to investigate why
some agents erred. For example, we could record when an agent took the ‘wrong branch’ in
a decision tree, enabling the model to later flag where the error occurred.

The variety of errors that could be represented in human perceptions is almost boundless,
hence our framework does not claim to be all-encompassing. For instance, real-world indi-
viduals may not be relocating as frequently as agents in the Schelling model, and cognition
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Figure 3.8: Impact of various errors on the number of changes achieved to stabilize the
Axelrod model. Note that superficial observations (b) report the number of features ignored,
hence zero is equivalent to baseline (no feature ignored).

may be affected by other attributes such as age. Future work can reuse and extend our
framework based to account for specific cognitive theories, for example in the representation
of emotions. When it comes to the transmission of information, two broad mechanisms are
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Figure 3.9: Behavior of the COVID model at baseline (a), under limited abilities as con-
strained by the depth of the decision tree (c), by using a few (c) or most (d) of the observations
(including the baseline of 100%), with (e) small or (f) large inaccuracies in perception.

involved and can be detailed: cognitive biases and status asymmetries [188]. Indeed, one
of the reasons for which we do not pay attention to all peers or all of their attributes is
because social learning is selective. As explained through the notion of ‘selective filters’ and
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the handling of conflicts (e.g., via balance theory), this selection depends in part on what
an individual deems compatible with existing knowledge [189]. The inclusion of cognitive
biases in our framework would require extending how the cognition of an agent is repre-
sented. Status asymmetries explains why individuals do not pay equal attention to all of
their peers; that is, the likeliness that some peers make an impact is not uniform, unlike
in the current framework. Social ties are different in nature and frequency, as some peers
may be close friends who are often seen, some may be acquaintances with whom we seldom
interact, and we may even include celebrities whose interactions may be rare and distant yet
impact decision-making [190]. However, accurately capturing the structure and function of
social ties is a research domain in itself, which goes beyond our framework.

3.7 Conclusion

To enhance the realism of a cognitive social simulation, modelers may account for imperfec-
tions in individual decision-making processes. Our framework combines four types of errors
and allows to analyze the change in model trajectory once ‘perfect’ agents become more
error-prone, like their real-world counterparts. By illustrating the practicality of data-driven
ABMs and the importance of including human errors in practice, our study seeks to moti-
vate researchers to further the development of more realistic models and expand upon the
framework we created.
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Chapter 4

Reviewing three dimensions of
COVID-19 vaccination models

The virus that causes COVID-19 changes over time, occasionally leading to Variants of
Interest (VOIs) and Variants of Concern (VOCs) that can behave differently with respect to
detection kits, treatments, or vaccines. As previous vaccines become less effective, new ones
will be released to target specific variants and the whole process of vaccinating the population
will restart. While previous models have detailed logistical aspects and disease progression,
there are three additional key elements to model COVID-19 vaccination coverage in the long
term. First, the willingness of the population to participate in regular vaccination campaigns
is essential for long-term effective COVID-19 vaccination coverage. Previous research has
shown that several categories of variables drive vaccination status: sociodemographic, health-
related, psychological, and information-related constructs. However, the inclusion of these
categories in future models raise questions about the identification of specific factors (e.g.,
which sociodemographic aspects?) and their operationalization (e.g., how to initialize agents
with a plausible combination of factors?). While previous models separately accounted for
natural- and vaccine-induced immunity, the reality is that a significant fraction of individuals
will be both vaccinated and infected over the coming years. Modeling the decay in immunity
with respect to new VOCs will thus need to account for hybrid immunity. Finally, models
rarely assume that individuals make mistakes, even though this over-reliance on perfectly
rational individuals can miss essential dynamics. Using the U.S. as a guiding example, our
scoping review summarizes these aspects (vaccinal choice, immunity, and errors) through ten
recommendations to support the modeling community in developing long-term COVID-19
vaccination models.

All of this chapter was published in the following article:
Beerman, J. T., Beaumont, G. G., & Giabbanelli, P. J. (2022). A Scoping Review of
Three Dimensions for Long-Term COVID-19 Vaccination Models: Hybrid Immunity,
Individual Drivers of Vaccinal Choice, and Human Errors. Vaccines, 10(10), 1716.
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4.1 Introduction

Most Americans have come to agree that “we will never be rid of COVID-19 in our life-
time” [191]. Although vaccines and the ongoing development of antiviral drugs are great
achievements [192, 193], COVID-19 has continued to wreak havoc in several ways. During
the first half of 2022, more than 170,000 individuals died from COVID-19 in the U.S., amount-
ing to over a million deaths since the emergence of the virus [194]. In addition, COVID-19
continues to exert a significant toll on the economy through disruptions in the workforce. As
COVID-19 has exacerbated existing systemic challenges, the temporary matter of sickness-
related absences in the early days of COVID-19 [195] is now amplified by broader issues
manifested through waves of resignation. For example, many nurses or teachers are leaving
the profession‘[196, 197], with departures being even more pronounced in places that already
experienced staffing shortages before COVID-19 [197]. This phenomenon, ”The Great Res-
ignation”, is not limited to healthcare or academia, and is the theme of dozens of articles
that document labor shortage across occupations [198, 199, 200]. As a result, several efforts
are underway to transition to a post-pandemic future, such as shifting work arrangements
with a growing part of remote work [201].

Despite our logistical preparedness, there are reasons to be concerned when we ac-count
for two phenomena. First, and most importantly, the effectiveness of our vaccines is decreas-
ing against new strains, which leads to (re)infections. Indeed, many Americans have already
had COVID-19 multiple times [191] and the spread of immune-evasive sub-variants is fueling
the growth of reinfections. For instance, California went from 1 in 20 reinfections cases at
the beginning of 2022 to 1 in 7 by July [202]. Currently available COVID-19 vaccines were
developed for a prototype strain, but variants such as Omicron have more than 30 mutations
in the spike protein of the prototype strain, which is essential for infection as it initiates the
host cell entry [203]. Consequently, “available FDA-approved and -authorized COVID-19
vaccines are less effective against currently circulating virus variants than against previously
circulating strains of virus”. [204] This effect is demonstrated since most infections in the
U.S. as of June 2022 are attributed to two Omicron sublineages (BA.4 and BA.5) [204]. Sec-
ond, the problem is compounded by our shifting responses and attitudes to the pandemic.
A survey in June 2022 reported that half of U.S. adults wear a face mask “when away from
home, the lowest since the start of the pandemic” [205]. Another survey showed that the
proportion of people bothered when others do not mask in public fell to an all-time low,
at 18% among Republicans and 52% among Democrats [206]. On the one hand, we see
a diminishing use of face masks, lower vaccine effectiveness, and a lower intended receipt
of COVID boosters [207]. On the other hand, we likely need annual vaccine composition
updates [208]. Surveys in Jordan shows that less than 1 in 5 persons would take an annual
booster [209], while about 2 in 3 Canadians [210] and more than 4 in 5 German-speaking
adults would be willing [211]. Results in the U.S. are mixed, as surveys were conducted
across sub-populations with different pro-files [212].

The Modeling & Simulation (M&S) approach of Agent-Based Modeling (ABM) has been
used to model COVID-19 since the second half of 2020, because of the approach’s ability to
track individual agents who can have different attributes, different decision-making processes,
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and be exposed to different environments [213]. This ability to implement heterogeneity is
indeed essential for COVID-19 since it is found in individual risk factors (e.g., age, hyperten-
sion, diabetes), contact patterns (e.g., social networks in the community or work settings),
behaviors (e.g., willingness to be vaccinated), and spatial aspects (e.g., access to health-
care) [214, 215, 216]. Although ABMs for COVID-19 have been extremely varied in purpose
and design [164], their design broadly followed three stages in the pandemic [165]: ABMs
started with a handful of stages (e.g., susceptible, exposed, infected, recovered) and exam-
ined which non-pharmaceutical interventions would have the strongest effect [217, 218, 219],
then ABMs were created to support vaccine-related studies (e.g., who should be vaccinated,
where to place the centers and how to staff them) [220, 169, 221]and lastly, the current wave
of studies where repeated boosters account for waning immunity [222, 223].

Truszkowska and colleagues provided one of the first models in which immunity was to-
tally and gradually lost over the course of six months [222]. This approach included vaccine
hesitancy, which was captured by assuming that only a percentage of the population would
get vaccinated [222]. More recently, Kelly et al. proposed a comprehensive model that ac-
counts for the waning vaccine induced immunity and naturally acquired immunity, as well
as seasonal patterns in infection, and the emergence of annual or biannual variants [223].
Again, vaccine hesitancy was modeled population-wide by assuming either a high booster
intake (85% to 98%) of individuals 50 years of age or higher with comorbidities, or modeled
with a reduced intake of 50%. These models concluded that a high ad-herence to frequent
booster doses is necessary to avoid future outbreaks and prevent a burden on the health-
care system – a conclusion shared by studies using differential equations [224, 225]. Since
adherence to frequent boosters is the key but it was only modeled by assuming a percentage
across wide sub-populations, it is important for future ABMs to address this research gap by
detailing how individuals decide to get vaccinated as a function of sociodemographic, health,
psychological, and information-related variables.

Several open-source COVID-19 ABMs can be reused and extended by the research com-
munity, including COVASIM [226], OpenABM-Covid19 [227], and COMOKIT [228]. These
packages and other individual-based epidemiology simulation kits [229, 230] allow us to cre-
ate a virtual population that reflects several demographic indicators (e.g., age, sex) and
their impact on disease spread (e.g., age-linked disease progression and mortality). Packages
such as COVASIM also embed each individual in several networks (home, community, work,
school) based on age (e.g., children go to school, adults to work). Through revisions, the
current version (3.1.2 from January 16th 2022) also captures “co-circulating variants, imper-
fect immune memory, and multiple vaccines” [231], tracks the properties of variants (relative
transmissibility compared to wild type, relative severity, relative immunity, variant-specific
protection of vaccines), and allows users to add custom variants. The popularity and reuse
of such packages is demonstrated by their applications to multiple settings such as Aus-
tralia [232, 233, 234], the UK and/or US [235, 236, 237], Vietnam [238], or Italy [239], at
both the country- and city-scale [240]. Our scoping review thus emphasizes elements that
are commonly missing across these packages in order to have a broad representation of the
current technical capabilities in the field.
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The main contribution of our scoping review is to support the development of the next
generation of ABMs by examining three aspects: vaccine hesitancy, joint occurrence of
natural- and vaccine-induced immunity, and the inclusion of human errors in decision-
making. Specifically, we synthesize the current evidence base and identify research gaps,
leading to 10 recommendations on aspects to include in future models, alongside their oper-
ationalization. The recommendations are featured prominently (as R1, R2, etc.) throughout
the sections.

The review is organized as follows. Section 2 starts with the concept of immunity and
its representation in models. Then, section 3 summarizes the evidence base regarding strong
drivers of vaccinal choice. We cover the last dimension in section 4 by explaining how
individuals are not perfect and can engage in several types of errors during their decision-
making processes. The last two aspects have received less attention in modeling packages,
hence these two sections include detailed suggestions for inclusion in future models. Finally,
section 4 discusses a list of limitations inherent to the modeling process and limited current
knowledge of variants and individual choices.

4.2 Immunity: variants, waning effect, and hybrid cases

Early models of COVID-19 that included vaccines were developed to help plan ahead. For
instance, models would determine the most effective locations to setup vaccination centers
or prioritize certain sub-populations that should be first administered vaccinations. In the
simulated time spans of these models, it was adequate to consider that individuals would
have a constant level of immunity once recovered or vaccinated, and that the dominant strain
at the time was the only one. As we transition into a more long-term perspective, we need to
account for changes in the level of immunity, including the cumulative effect of vaccination
and recovery (particularly since most Americans have had COVID-19 [91]), as well as the
ongoing emergence of variants. As shown in Table 4.1, recent models have handled im-
munity differently. Most models use a gradual decay, with arguments in favor of a Gamma
distribution rather than an exponential one (to reflect that the initial immunity remains at
a high level for several weeks instead of declining immediately). This is represented either
by the direct use of a fitted Gamma distribution, or by the ‘linear chain trick’ which consists
of use a sequence of exponentially-distributed decays (e.g., agents go through stages V1, · · · ,
V5 back-to-back).

The models either did not account for the synergistic effect of natural infections together
with vaccinations, or created a dedicated stage without specifying the corresponding tran-
sitions. For example, a model considered that a vaccinated person who became infected
lost the vaccine-induced immunity and only gained natural immunity upon recovery, hence
making the two forms of immunity mutually exclusive [242]. However, the hybrid case
resulting from natural infection and vaccination confers the most robust and durable im-
munity [246, 247, 248]. Studies on immunology on different variants and various countries
have found that hybrid immunity was protective against reinfection and severe disease out-
comes [249, 250, 251, 252]. As summarized by Bates and colleagues, “the additional antigen
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Handling of Immunity

Ref Variants Natural Vaccine Hybrid

[222] Delta Variant Only Lasts 180 days

Impact on 5 parameters (e.g., death, infection, hospitalization,
transmission, asymptomatic) defined via piecewise linear functions.

Peak reached 2 weeks after one shot, remains constant for 8 months,
then linear decay for 6 months. The level of immunity for each linear segment

depended on the vaccine used. Booster restores peak vaccination benefits in 1 day.

Exists but
unspecified

[223]
Emerge ahead
of the winter,

every 6 or 12 months

Initial peak at
95% exponential decay

to 20% in 600 days

Initial peak at 85% exponential decay to 15%, half-life 105 days.
Higher peak after a booster, but same decay.

None

[241]
Randomly appear 4/6/10
months after past variant

2-part exponential decay, with half-life and duration parameters fit to data.
Neutralization level depends on variant and vaccine.

None

[242] Omicron variant only
Gamma distribution set either to 9 months (shape 7 and scale 39.11)

or one year (shape 3.7 and 98.65)
None

[243] Omicron variant only

Protection against same
variant has exponential
duration of mean 1/900,

then no protection.

After an average of 6 months since the second dose or a booster,
individuals transition into a ’waned vaccine effectiveness’ status.

Exists but
unspecified

[244] Unspecified (2021 data)
Delayed gamma-distributed temporary immunity with mean 350 (for vaccines) and

242 days (for recovery).
None

[245] Delta variant only

Full immunity for
entire duration of
simulation (March
2020- Nov 2021).

10% of individuals do not lose immunity, 10% have little
protection, the remaining 80% get temporary protection by
moving through a series of compartments instead of a single
one (which would cause an exponential decay) hence using a
Gamma distribution with peak efficacy of 92% and decay to

35% over 6 months

None

Table 4.1: Handling of variants and (temporary) immunity in recent COVID-19 models.

exposure from natural infection substantially boosts the quantity, quality, and breadth of
humoral immune response regardless of whether it occurs before or after vaccination” [253].
Newer models are starting to include this effect, for example by assuming that a prior in-
fection counts as a single vaccination, hence the ‘actual’ vaccination has the effect of a
booster [254]. A recent retrospective cohort study in Sweden [255] confirmed several of the
numbers in the OpenCOVID model and sheds light on the effect of the synergistic effect of
hybrid immunity. The study showed that natural immunity conferred a 95% lower risk of
infection and 87% lower risk of hospitalization for up to 620 days, which closely aligns with
OpenCOVID. The study further established that hybrid immunity provided an additional
58% (for one dose) or 66% (for two doses) reduction in infection compared to natural im-
munity, and lasted up to 9 months with mixed findings on attenuation. Although numerous
knowledge gaps remain [256], findings are starting to emerge regarding mediating factors in
the immune response created by receiving a vaccine after a natural infection. In particular,
a study using the U.S. Military Health System further suggested that the timing between
a prior infection and vaccination was highly predictive of immune response, while prior dis-
ease severity did not play a role [248]. The prevalence of hybrid immunity is rising quickly;
a cross-sectional study of blood donors in the U.S. found an increase from 0.7% of blood
samples with hybrid immunity in January 2021 to 18.9% by December [257]. A review by
Bhiman and Moore listed several scenarios as potential consequences of this ongoing increase
in the hybrid immune population [258]; the inclusion of such scenarios in future computa-
tional models may improve our ability at forecasting population-wide trends. Few models
examined the continuous emergence of new variants. For example, in the OpenCOVID
model [223], each new variant retained the same severity and was assumed to be 25% more
infective as well as 25% more able to evade immunity than its predecessor. Another model
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considered that new variants would be 3.5-fold as virulent compared to the wild-type [244].
Although models assumed a regular emergence of new variants, illustrative examples [259]
explain that the emergence depends on the number of circulating cases (I) and susceptible
individuals (S) as well as the rate of infection (β) and the chance of each infection to create
an escape variant by mutation (µ). Thus, the time until the first escape mutation appears
is approximated as an exponential of mean

1

SIβµ
(4.1)

Based on sensitivity analyses on the models, scholars determined that the primary effect
of vaccines was to block infections (80%) and secondarily of avoiding severe disease outcomes
(the remaining 5%) [223]. Simulation results from COVASIM [244] on vaccine design further
suggest that, going forward, creating a broadly neutralizing vaccine would be more beneficial
(40% reduction in death) than a more durable vaccine (10% reduction in death). However,
the effect would be highly reliant on releasing the vaccine at the right time, hence the
preferred solution would be a vaccine that is both durable and broadly neutralizing (65%
reduction). Given the evidence base, we recommend that future models include:

� (R1) a gradual decay in immunity by using a Gamma distribution, for instance through
the creation of intermediate states (i.e., the ‘linear chain trick’).

� (R2) hybrid immunity, which confers the most robust and durable immunity; this may
be approximated by counting a prior infection as having the effect of a booster dose.

� (R3) the ongoing emergence of new variants that partially evade immunity, with a
timing depending on circulating cases rather than at fixed time intervals.

4.3 Vaccinal Choice

4.3.1 Drivers of Vaccinal Choice

Numerous studies have been conducted to identify socio-demographic factors related to an
increased or decreased willingness to take vaccines. Using the U.S. population as a guiding
example, sample studies relevant to this context are listed in Table 4.2. Note that models
of COVID-19 have not yet accounted for the many drivers of individual vaccination choices,
instead opting to either use a population-wide percentage of vaccinated individuals [222] or
account for age [169, 239]. This occurred even in highly configurable frameworks where agents
execute detailed plans based on their health, demographic, and organizational roles [260].
Two models accounted for the level of caution (rising with case numbers), sense of safety
(rising with vaccination), or perceived vaccination risk, but at the population-level rather
than via individuals [261, 262]. Given Table 4.2, we recommend that future models include:

� (R4 multiple soci-demographic factors (e.g., age, sex, race and ethnicity, annual in-
come, college degree, key comorbidities, political party) that were found to strongly
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Figure 4.1: A simple initialization scheme (a) would ignore several important dependencies
in the data, but capturing a large number of dependencies (b) may be infeasible given data
limitations. A practical approach is thus to initialize the agents’ attributes in consecutive
waves (c).

predict vaccinal choices.

4.3.2 Capturing Drivers in a Model: The Role of Data and Se-
quential Agent Initialization

When agents possess multiple traits, the values may not be initialized independently, one
at a time (Figure 4.1-1a). Indeed, values can be correlated: for instance, comorbidities
tend to raise with age. Multiple correlations can exist, as is the case with the dependency
of annual income both on employment and on educational attainments. Considering that
every factor may depend on all other factors would be infeasible, as it leads to circular
dependencies. Even a scheme where each factor depends on all those previously initialized
can be practically infeasible since it would be arduous to find a nationally representative
dataset that covers all factors (Figure 4.1-1b). Consequently, an initialization scheme will
have to retain some of the dependencies based on the data available [269] (Figure 4.1-1c).
In this subsection, we illustrate how these considerations can be addressed by using U.S.
data.

Consider that we aim to create a virtual population of agents with multiple target socio-
demographic factors. To start, we identify a data source that contains as many as possible
of the important attributes together. In our case, the US Census Current Population Survey
(CPS) 2019 [270] can serve to create a pool of agents who are jointly assigned an age, income,
race and ethnicity, and sex. That is, all four attributes can be assigned simultaneously,
thus capturing their interdependencies in the population. Then, additional data sources
will need to be found to cover the remaining aspects. Note that these sources need to
also include some of the previously initialized attributes, otherwise dependencies cannot be
adequately reflected. For example, if a dataset contains the prevalence of prior COVID-19
infection based only on data per county, then there would be no way to link the data to
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individuals characterized by age, race and ethnicity, annual income, or sex. In the case of
the U.S., several data sources can be used as shown in Table 4.3. Finally, there can be
a gap between the factors used in studies on social determinants of health and the content
of national surveillance systems. For example, studies reported that comorbidities were a
strong determinant of vaccinal choice (Table 4.2), but different surveillance systems may
track different types of specific comorbidities, hence there will be a need to translate a
high-level concept into specific conditions and work across additional sources. A pitfall for
modelers is to misunderstand the notion of comorbidities. Since comorbidities refer to other
diseases present in a patient, death reporting systems may show pneumonia as a prevalent
comorbidity, hence modelers could (erroneously) use pneumonia as an agent’s attribute for
comorbidity. However, pneumonia is a complication of COVID-19, rather than an underlying
medical condition that increases the risk profile of a person if they get infected. It is thus
important to carefully translate high-level constructs into specific ones given the context.
In this example, comorbidities as risk factors may include hypertension and diabetes since
they are commonly found in patients hospitalized with COVID-19 worldwide [271, 272],
while noting that the evidence-base is weaker for hypertension once we control for other risk
factors such as age [273]. Dependencies matter across comorbidities as well, since diabetic
agents have an elevated risk for hypertension; Table 4.3 thus initializes diabetes and then
hypertension. In sum, a satisfactory initialization of several attributes in the agents will
require:

� (R5) the identification of several data sources that share factors to allow data linkages.

� (R6) an initialization scheme that satisfies multiple core dependencies between factors
by initializing them in a specific batch order.

� (R7) a careful contextual translation from high-level constructs onto specific variables
offered in different surveillance systems and reports.

Note that a model is necessarily a simplification and data availability may govern some
of these simplifications. For example, a modeling team may not have access to data for
some of the strong drivers of vaccinal choice (Table 4.2), hence agents may not possess
the corresponding attributes. For instance, sociodemographic information may not include
occupations, hence a model may lack the notion that certain professions are at higher risk
(e.g., medical professionals) or face specific obligations (e.g., annual vaccine).

4.3.3 Extending an Existing Package: Example in COVASIM

Although COVID-19 modeling packages are often open source, it may not be desirable to
alter their initialization of agents by changing the code to add several factors and dependen-
cies. Indeed, editing the source code of a package (known as ‘forking’) results in creating a
new local version for a modeling team, which complicates the possibility of benefiting from
updates in future package releases. Consequently, we recommend:
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� (R8) to build on top of existing modeling packages whenever possible, so that future
releases (e.g., an optimized COVASIM) can be conveniently used by the team

Expanding the characteristics of agents without altering a package’s initialization process
can be achieved by matching, illustrated in Figure 4.2 for COVASIM. First, the modeling
package would follow its normal procedure to initialize a set S of agents of the desired size. In
parallel, modelers would create a larger pool P of agents with their required characteristics
and dependencies (Section 3.2). Second, we augment the characteristics of each agent in S by
finding a similar agent (i.e., a ‘match’) in P. This requires efficient data structures, as poor
implementations could significantly slow down the process of agent creation. For example,
an inefficient approach for an agent in S would be to scan the entire population P, each time
computing the distance with an agent in P, then finally selecting the most similar one. Once
a match in P has been found, it must be removed, which should also be done carefully to
avoid triggering massive data movements. Research in discrete simulations has often used
hierarchical data structures (e.g., two or three tiers) to optimize operations [282]. In this
case, we need a structure that allows fast lookups to identify a match, hence the attributes
offered by the package (e.g., age, sex) can be used as keys in a dictionary (Figure 4.2). We
also need a structure that supports quick removals of an individual to move on to the next
one, hence a queue.

4.4 Human Errors in Decision-Making

4.4.1 Limitations of Observations and Reflections

There is a broad tendency to create ABMs with highly rational agents [96], which is even more
the case in COVID-19 research as models are often grounded in compartmental techniques
designed for epidemiology. However, humans are neither mechanical objects nor omniscient,
hence individuals neither form homogeneous responses to vaccines (e.g., with a set percentage
of the entire population taking vaccines) nor engage in a comprehensive inventory of all
relevant parameters to achieve an optimum (e.g., by maximizing a utility pay-off). Reusing
the analogy of Giubilini and Savulescu, refusing vaccination is similar to refusing the use of
seat belts when driving [283]: given the balance of extremely rare side effects and the cost of
delayed or absent vaccination [284], this decision would not happen if individuals used the
evidence-base to maximize their own benefits. Indeed, cognitive sciences show that humans
only capture a small portion of the available information [101], sometimes making errors
in storing this information, and ultimately interpreting it based on their own heterogeneous
beliefs [102]. Prior works in modeling COVID-19 [165, 217, 169] and perceptual uncertainties
in ABMs [18] have already accounted for some of these aspects when creating cognitive social
simulations [105] that reflect the imperfect, heterogeneous decisions that individuals make
on vaccination. While some works introduce the notion of imperfect decisions in COVID-19
by accounting for uncertainty about individual health states [285], research shows that there
are at least three sources of individual errors to reflect that individuals use social information
sub-optimally [112] when observing their peers (with respect to infection, vaccine choices, or
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Figure 4.2: The attributes of COVASIM agents can be expanded by matching them with
virtual individuals from a large pool generated from nationally representative U.S. datasets
(Table 4.3). The pool should be larger than the COVASIM population to ensure that each
retrieval request for a matching profile can be satisfied. Icons from User Insights and Domp
Icon at icon-icons.com, CC Attribution license (CC BY 4.0).
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death). That is, an agent may only observe some of its peers (insufficient samples) and/or
pay attention to only some of their information (superficial observations) and/or does not
sufficiently reflect on the evidence collected (limited ability). Consequently, we recommend
to:

� (R9) shift from purely rationale/mechanistic COVID-19 models of human decision-
making onto cognitive social simulations that account for imperfection in information
capture, its storage, and its use for behavior change.

4.4.2 Operationalizing Human Errors in a Model: The Role of
Machine Learning as a Filter

At each simulation tick, each agent can observe the behavior of its peers (e.g., whether to wear
a mask, engage in social distancing, wash hands, vaccinate) along with their characteristics.
Conceptually, the set of observations can simply be reduced to account for insufficient samples
and superficial observations, as shown in Figure 4.3. However, the main technical difficulty
is to ensure that an agent can change based on these observations. The development of
such adaptive skills requires a learning mechanism. As we recently discussed [16], hybrid
agent-based models can deal with adoption behavior in different ways, such as by giving their
observations as input to a machine learning model. That is, an agent observes by gathering
a data table, reflects by deriving a machine learning model (e.g., why do my friends wear
masks?), and acts by applying the model to its own characteristics (e.g., my friends with
comorbidities wear a mask and I have comorbidities hence I will wear masks). We thus
recommend to:

� (R10) enable agents to change behavior not only in response to policies (e.g., lockdown)
or instincts (e.g., disease avoidance), but also by learning from their individual contexts.

4.5 Discussion

4.5.1 Overview

In the absence of global vaccination, simulation experts have predicted continuous waves
of COVID-19 infections [286]. This is now a reality, and most Americans understand that
COVID-19 is here to stay [191]. As mutations and natural selection continue to occur, new
variants emerge and vaccines need to be continuously redeveloped [204] and adopted by the
population [207, 208, 209, 210, 211, 212]. In the U.S., the federal government has purchased
66 million doses of bivalent boosters that target BA.4 and BA.5 Omicron subvariants [287].
Although the Omicron subvariant BA.5 has been called ‘the worst version’, Bruce Y. Lee
explained in a popular piece that “it’s the worst version of what’s been getting progres-
sively worse, and you never know when another even worse version will emerge” (emphasis
added) [288].Since COVID-19 precautions are going away [205, 206], the virus will continue
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Figure 4.3: Each agent observes the vaccination decision and attributes of its peers. The
initially perfect observations are altered by perceptual limitations and errors, thus producing
an observation set with fewer peers and/or fewer attributes. Icons from User Insights and
Coronavirus at icon-icons.com, CC Attribution license (CC BY 4.0).
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to spread and subvariants will emerge. Expecting the problem to just disappear by believing
variants will get gradually weaker may amount to wishful thinking, “like expecting differ-
ent animal and plant species to get weaker over time.” [287] Since Agent-Based Modeling
has been the dominating approach for COVID-19 in recent times [289], our scoping review
sought to guide the development of future ABMs by examining three dimensions that are
essential to effectively pivot into a long-term view. We covered emerging considerations on
immunity (e.g., decays, hybrid cases), the growing evidence base on determinants of vacci-
nal choice and the ability to use them in simulation, and the possibility of shifting towards
cognitive social simulations to better capture human decision-making. While recent reviews
and recommendations have targeted national health systems and governments [290, 291], our
ten recommendations are directed at the community on modeling and simulation. However,
ongoing discussions in the scientific community and changes in the evidence base may lead
to additional considerations, as discussed below.

4.5.2 Limitations

Our scoping review stressed the importance of psychological and information variables, sug-
gesting that they can be included through a sequential initialization process or by engaging
in hybrid modeling (e.g., by using machine learning to create adaptive agents). However,
COVID-19 models may ultimately become too complex, given the pursuit to “covering the
full behavioral and social complexity of societies under pandemic crisis” [292] through an
ever-expanding set of rules and states. The design of COVID-19 models going forward may
thus benefit from a shift from a monolithic piece onto a set of integrated sub-models. This
shift would come with its own challenges, as risks for model integration have been discussed
extensively elsewhere [293]. However, it may be simpler to develop and reuse dedicated
modules, since many COVID-19 models have significant overlaps [294]. For example, this
would facilitate the integration of a sub-model dedicated to capturing the perceived utility
of certain actions (e.g., getting a vaccine) for an agent, such as modeling vaccination as a
function of personal beliefs (e.g., via the Theory of Planned Behavior [295]) or through an
emphasis on government accountability [296]. This paper focused on improving models of
COVID-19. However, the actions taken to prevent COVID-19 will also impact other diseases.
For instance, facemasks and social distancing can reduce other airborne diseases, while the
prioritization of hospital resources for COVID-19 impacts other operations [297]. In addi-
tion, there is a growing interest in coinfection, particularly for coinfections of COVID-19
and bacteria [298], such as tuberculosis [299]. Consequently, COVID-19 cannot always be
designed or expected to be utilized in isolation. Emerging models have started to include
COVID-19 alongside other diseases [300]. Future COVID-19 models may thus have to be
integrated alongside modules for other diseases. Given this requirement, there may be a
tradeoff between the sophistication of a COVID-19 model and the ability to integrate it
alongside other disease models.
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Determinant Category Get Vaccine Effect Strength References

Age

18-29 No

Strong

[263, 264]
30-49 Yes

[265]50-64 Yes
65+ Yes

Sex Male No [263]

Ethnicity

Non-Hispanic
White

Yes [265]

Non-Hispanic
Black

No
[263, 266, 267]

Hispanic No
Asian/Pacific

Islander
Yes [266]

Other No [265, 266]

Employment
Unemployed Yes Weak

[263]
Employed (full or

part time)
No

Strong

Education Level
Bachelor’s degree

or more
Yes [265, 266, 268]

No college
degree

No [266, 268]

Annual Income
<25,000 No [267]

>= 70,000 Yes
[266]

Comorbidities Yes Yes

Political Party
Republican No

[265]
Democrat Yes

Prior COVID-
19 Infection

Yes Yes
[263]

Know someone
who died

Yes Yes

Religion Catholic No Weak

Table 4.2: Propensity of U.S. individuals in specific socio-demographic categories to get
vaccinated or not, and strength of the effect as reported in the references. We counted a
reduction in refusal as being equivalent to an increase in acceptance.
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1st Wave of Initialization of Four Categorial Features Jointly [266]

2nd wave of initialization

Ref Factors Age Income Race and Ethnicity Sex
[274, 275] Bachelor’s Degree ✓ ✓ ✓
[276, 277] Political Party ✓ ✓
[278] Diabetes ✓ ✓ ✓
[279, 280] Hypertension ✓ ✓
[281] less than or equal to 1 dose of vaccine ✓ ✓

Table 4.3: Creation of a large pool of agents by first initializing four attributes together,
then determining the remaining five by accounting for several interdependencies.
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Chapter 5

On the necessity of human
decision-making errors to explain
vaccination rates for COVID-19: an
agent-based modeling study

COVID-19 vaccines are important for individuals to avoid severe illness and collectively to
prevent significant societal disruptions from uncontrolled disease spread. Vaccine adoption
depends both on objective data about vaccine efficiency and on perceptions, which are shaped
by individual characteristics and peer influences. Despite the abundance of Agent-Based
Models (ABMs) models for COVID-19 and the long-term need for booster doses, ABMs have
not yet accounted for the interplay of individual and collective drivers of vaccine adoption.
In this explanatory study, we modify the validated COVASIM framework such that agents
observe their peers’ characteristics (derived from several datasets), use machine learning to
reflect and then take decisions based on their own characteristics. We show that specific
decision-making errors are necessary to replicate the real-world prevalence of COVID-19
vaccine coverage in the USA. Specifically, agents must only observe simple features of their
peers (e.g., age, sex) rather than personal information (e.g., comorbidities).

A slightly shorter version of this chapter has been accepted as:

� Beerman, J. T., Beaumont, G. G., & Giabbanelli, P. J. (2023). On the necessity
of human decision-making errors to explain vaccination rates for COVID-19: an
agent-based modeling study. In Proceedings of the 2023 Annual Modeling and
Simulation Conference (ANNSIM), IEEE/ACM.
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5.1 Introduction

COVID-19 is an infection caused by the SARS-CoV-2 virus and responsible for almost 7M
deaths worldwide by December 2022 [301]. COVID-19 is currently classified as a pandemic,
which signifies that it is spread worldwide, as was the case for other viral respiratory diseases
such as the H1N1 influenza pandemic or SARS [302]. The immunity (albeit temporary)
acquired from natural infections or one of the 33 approved COVID-19 vaccines [303] is
contributing to a transition from a pandemic into an endemic status, which means that
overall infection rates will become static. Concretely, it signifies that the virus will become
a constant presence and will make a resurgence in regions with low cases [304]. Several
reminders, such as [305], have been issued to stress the implications of an endemic status.
For example, “there can still be disruptive waves from endemic infections”. In addition,
an endemic state only means that the number of deaths will become more predictable, not
necessarily lower: when authors forecast COVID-19 to turn into an influenza-like endemic
disease, they note that there are 290,000 to 650,000 influenza-related deaths per year [303].
One of the most striking illustrations comes from China, where a sudden transition into
the endemic phase from the ‘Zero Covid’ [306] has visible consequences for the healthcare
system [307]. It is thus essential to prevent unconstrained spread and focus on a low-
incidence strategy [308], in particular by using vaccines. For instance, the high vaccination
rate of Singapore has resulted in an endemic state for COVID-19, with fewer disruptions on
the economy or the social fabric of society [309].

Surveys offer widely different takes (e.g., from 41% to 93% in [310]) regarding the per-
centage of the US populations that would take additional vaccine doses (i.e., ‘booster doses’).
One of the largest cross-sectional survey studies concluded than half of US individuals would
take boosters [311]. These numbers are potentially problematic, since a low-incidence strat-
egy may require the yearly administration of an updated vaccine [312, 208]. Responses are
also highly heterogeneous since they are shaped by geographical, occupational, and sociode-
mographical factors [313, 311]. The variety of factors involved demonstrate that a successful
vaccination campaign is not merely a matter of vaccine efficacy or access: it also strongly
depends on public compliance, where perceptions are important determinants of vaccine up-
take [314, 315]. While perception has been almost exclusively investigated at the individual
level, a study released in November 2022 on a representative sample of the US population
also examined predictors at the collective level [316]. The study found that perceptions are
driven both by individual characteristics and social networks, measured as the percentage of
friends and family that were vaccinated or contracted the virus.

Agent-Based Models (ABMs) allow to represent heterogeneous individuals (thus captur-
ing variations in individual-level predictors) and their interactions through social networks.
While early COVID-19 research employed compartmental models, ABMs have become about
as prevalent as the tool of choice in recent studies [317]. Examples of ABMs for COVID-19
simulations have appeared at ANNSIM [165] and numerous other venues [164, 318]. However,
social networks have only served to model either the spread of the pathogen [226, 217, 317]
and/or contact tracing [319]. The present study thus seeks to address an urgent research gap
by using ABMs to examine vaccine choices as a result of both individual- and collective-level
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factors. Our aim is explanatory, as we seek to build a model of individual decision-making
processes which reproduces the observed pattern of 81% vaccination among US adults as of
January 29, 2023. In sum, the contributions of our study are twofold:

� We extend the validated COVASIM framework [226] by creating the first Agent-Based
Model that combines individual demographic factors with social network influences to
accurately reproduce the vaccination coverage observed in the USA.

� We demonstrate that specific individual decision-making errors are necessary to repro-
duce existing patterns, thus providing a model that can be reused for future COVID-19
ABMs that will need to account for yearly vaccine adoption.

The remainder of this paper is structured as follows. In Section 5.2, we briefly cover the
use of ABMs for vaccine hesitancy and the inclusion of decision-making errors in COVID-
19 ABMs. We introduce our methods and US-focused datasets in Section 5.3 and present
our results in Section 5.4, with an emphasis on identifying combinations of parameters that
reproduce the target vaccination rate of 81.0%. The implications of these results are discussed
in Section 5.5 with respect to policy implications and future ABM developments.

5.2 Background

The percentage of individuals who have received at least one dose of any COVID-19 vaccine
varies across nations (Table 5.1). In Western Europe, similarly to our setting of the USA,
first dose coverage ranges from 70% to 80% [315]. Although numerous determinants are in-
volved in shaping individual decisions regarding vaccination [313], the majority of simulation
models for COVID-19 do not represent how individuals arrive at a decision. Many models
were developed prior to the availability of vaccines, hence they focus on non-pharmaceutical
interventions such as mask wearing and social distance. As vaccines became available, newer
ABMs starting incorporating mechanisms to assign vaccines to specific agents, but assign-
ments tended to be based on priority categories such as the elderly [169] or individuals in
nursing homes [320], people at severe risk or healthcare workers [321]. These allocation
mechanisms are perpetuated in more recent ABMs [240]. Such models have made it clear
that vaccine hesitancy is harmful for public health, as it leads to slower vaccination rates
and ultimately increases fatality [322].

In parallel, ABMs have been developed solely to study the spread of beliefs regarding
vaccines. While ABMs of disease spread are often rooted in SEIR models from computational
epidemiology, ABMs focused on individual beliefs resemble models of rumor spread [323]. For
example, in [324], agents have an opinion (drawn from a normal distribution) and some agents
whose opinions are constant will send up to five messages (or opinions) per step. The action of
anti-vaccination messages may be countered as agents may be convinced to vaccinate if they
visit a supportive doctor; otherwise they will be influenced by the circulating messages. A
similar model was proposed in [325], where agents also had demographic attributes (age, sex,
race, income, education). A more abstract approach was taken by [326], who used an ABM
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to simulate how a person’s sentiment towards vaccines may change when reading Facebook
pages. In all three cases, the model only accounted for the spread of rumors, although
in reality there is a strong interplay between disease spread and information spread. For
example, personally knowing someone who died of COVID-19 increases the odds of getting a
vaccine [327], and getting a vaccine reduces the odds of dying from COVID-19. The need to
jointly simulate disease spread and information spread is a core motivation for the present
work.

Table 5.1: Sample of worldwide rates, sorted alphabetically by country [1]

Country Single-Vaccination Full-Vaccination
Argentina 92% 84%
Canada 92% 84%
China 94% 91%

Costa Rica 91% 85%
France 81% 79%
Mexico 78% 65%
Japan 83% 82%
Spain 88% 86%

United States 81% 68%

5.3 Methods

While early ABMs for COVID-19 were developed from scratch or built on prior efforts
by the same team, several frameworks have made it possible to instantiate an ABM by
leveraging a validated model and adding relevant aspects for a given research problem. In
particular, COVASIM “has become one of the most widely adopted COVID models, and is used
by researchers and policymakers in dozens of countries” [328]. In several cases [240, 169], two
reasons explain the choice of COVASIM for a new study: the framework automatically embeds
agents in multiple realistic synthetic social networks based on their age (home, community,
work or school if age relevant) and handles the entire disease progression, including age-
based disease severity. COVASIM also contains an immunity module, which handles vaccines
and their efficacy against the different variants that may spread simultaneously. To use this
framework in our study, the next two paragraphs detail how we (i) expand the attributes of
the agents and initialize them for our target population of the USA; and (ii) redesign the
agents’ decision-making activities such that they can account for errors typical of human
behavior and are shaped by both individual attributes and peers. For both (i) and (ii), we
implement the recommendations recently formulated by [327]. The section concludes with
the design of our experiments.

COVASIM creates agents with a distribution of age and sex. Given recent reviews on
determinants of COVID-19 vaccination [313, 311], we added six individual attributes : race
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and ethnicity, income, educational attainment (whether a person has a bachelor degree),
diabetes, hypertension, and political belief. These attributes are added through through
consecutive steps. First, we use one data source to generate agents by jointly assigning age,
sex, race and ethnicity, and income (Figure 5.1). This creates realistic demographics for the
US instead of assigning each factor based on a single dependency (e.g., age given sex, income
given age). Second, since no dataset contains all of our target attributes, we use recent
datasets to initialize each of the remaining four constructs. In each case, the initialization
depends on three existing attributes (e.g., diabetes given age, sex, race and ethnicity) to
capture as much as possible the joint distributions in the population (Figure 5.1). Third, we
import these features into COVASIM by matching agents created with the platform with a pool
of synthetic agent created through our process. In addition to socio-demographic attributes,
we initialize the simulation by ensuring that a small subset (5% at random) of agents are
currently actively infectious and some are vaccinated. It is important to accurately assign
vaccines to the right agents at baseline, since the spread of adoption will account for peer
influences (as detailed in the next paragraph). We thus seed the simulation with 10% of
individuals vaccinated, identified among those most likely to have received the first dose
given their age, race and ethnicity.

Figure 5.1: We first initialized four attributes jointly and then used a multitude of data
sources to initialize additional (dependent) attributes. Note: ‘NH’ means Non Hispanic.

Every month each agent decides whether or not to vaccinate based on the knowledge
accumulated about their peers (i.e., the cumulative observations up to the current month)
and the decisions of their internal model. First, agents observe their peers. In reality,
individuals may not know everything about others: for example, it is reasonable to know
the age category of other agents, but we may not be aware of their political opinions or co-
morbidities such as hypertension. We thus account for errors in decision-making by allowing
agents to observe only a percentage of their peers and a subset of their attributes. The
attributes are added gradually (Table 5.2) to test the resemble the more information an
individual learns about another as their relationship strengthens. For example, the first few

62



attributes would be commonly known about an acquaintance (e.g., age, sex, whether they
died), while the next set of attributes adds personal information (e.g., political views and
income bracket) and the last attributes disclose medical information (the two co-morbidities
of diabetes and hypertension). Second, agents reflect on their observations by deriving
a model, similarly to how humans form generalizations from experiences. Each agent was
equipped with a decision tree classifier, with observations from peers as input and whether
to vaccinate as output. We chose decision trees because they can conveniently be visualized
(Figure 5.2) for debugging and constrained by a single parameter (the depth of the decision
tree as in Figure 5.3) such that we can vary the sophistication of each agent’s decision-making
process. Third, agents apply the decision-tree classifier to themselves, given their own
attributes. For example, they may have seen most of their older friends with co-morbidities
taking the vaccine, but if they are young without co-morbidity then they do not feel concerned
by their peers decisions. This mechanism replicates how individuals observe others’ decisions
and (partly) understand their motivations, but do not always feel personally concerned.

A simulation runs for a a full year starting at February 3, 2021 to October 3, 2022. This
time period was selected to follow the timeline of the collected data for the United States
vaccination total (Table 5.1). We initialize the COVASIM model, add agent attributes, seed
the infection and vaccines, and run ML models on each agent as four variants of increasing
strength emerge over a year. At initialization we seeded 10% of the population to be vacci-
nated by randomly selecting agents from the pool of agents who should have been vaccinated
given the data. During the simulation, every agent (including those that were vaccinated
at the start) records all attributes of the peers with whom they interact. Then, at each
month, the agents train their own decision tree with their cumulative list of observations
and finally predict whether or not they will vaccinate based on their own attributes. Note
that the creation of the synthetic population (attributes and social ties) ensures that there is
assortativity, hence an agent cannot decline the vaccine in perpetuity solely because it never
finds its peers relatable.

In our experiments, we varied three model parameters as follows: decision tree depth
from 1 to 4 (to examine the consequences of agents making simpler decisions); the amount
of peers observed from 10, 25, 50, 75, or 100%; and the ten increasingly detailed subsets of
peer information that were available to each agent (Table 5.2). We ran each combination
of parameter values ten times to account for the stochastic behavior of the model. Our
experiments used the following software ecosystem: COVASIM 3.1.2 and Numpy 1.20.3 for the
simulation of disease spread, scikit-learn 1.1.1 for the machine learning activities of each
agent, and Pandas 1.3.3 for data analysis.

Before interpreting the results from an ABM, we must ensure that (i) the model is suffi-
ciently accurate for its purpose and (ii) the population size is sufficient to provide consistent
results. We determine accuracy through a confusion matrix (Figure 5.4) by using our data
to calculate which agents will vaccinate prior to simulation and then we compare those ex-
pectations with the simulation outcomes. Regarding the population size, it should not be
too small as results may be incorrect and subject to significant variations, even as only a
few hundred agents are added; this is exemplified in works such as [22]. The population

63



Figure 5.2: Agent’s decision tree produced by our simulation (Parameters: Depth = 4,
Attributes: {Sex, Age, Race}, Percentage of Observations: 100%).

should not be too large either, as computationals cost may become prohibitive and force
us to compromise the number of combinations examined (i.e., reduction in search space)
and/or the number of repeats [329]. Consequently, we perform simulations at increasingly
large population sizes (10, 000 agents, 25, 000 agents and 50, 000 agents) while looking for
stability in the confusion matrix and the percentage of vaccinated agents.

5.4 Results

For full disclosure, our data is permanently hosted on a third-party repository at https:
//doi.org/10.5281/zenodo.7582642. The data consists of two files: supplementary online
material S1 provides the percentage of vaccinated population for each simulation run (i.e.,
each combination and each repeat) while supplementary online material S2 provides the
average vaccination percentage across repeats for analysis. Our analysis of the average
vaccination percentage at different population sizes confirms that we have enough agents.
Specifically, results across population sizes differ by 0.45±0.84 percentage points on average,
or a relative average difference of 1.55±3.82. For example, for a decision tree depth of 2, the
first combination of features (age only), and 75% of peers observed, we have the following
vaccination rates: 81.45% for 10, 000 agents, 84.00% for 25, 000 agents, and 85.71% for 50, 000
agents. The widest difference is 4.25 percentage points (85.71 - 81.45) or a relative difference
of 5.23%. The fact that most results are very close is further observed as 174 out of 200
combinations have a difference of less than 0.5 percentage points.

The heatmap in Figure 5.6 summarizes the impact of the percentage of available data (i.e.,
observations) for the agent’s internal models and the combination of attributes (Table 5.2).
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Figure 5.3: Each agent has a decision tree classifier, where the output is whether to vaccinate.
The depth of the decision tree is a key parameter. As the depth of a decision tree increases,
the vaccination decision of an individual may depend on a larger number of factors and/or
revisit some factors to refine their choices.

This aggregate visualization of the parameter sweep shows that the real-world coverage of
81% in the U.S.A. can only be obtained if agents observe enough of their peers. That is, if
agents ignored most of their peers and decisions were not subject to social influences, the
simulations suggest that almost the entire population would have been vaccinated. We also
analyzed the number of agents changing their mind regarding vaccination. Figure 5.5 shows
that most agents change their belief after one year of simulation (i.e., between months 12 and
14). To further examine these results, we break down the output per depth of the decision
tree in Figure 5.7. The best parameter combination to reproduce the target coverage of
81% consists of a decision tree depth of 4, 100% of observations, and three attributes (age,
sex, race and ethnicity). Using this combination produced an accuracy over 70% when
using a sufficient population size, per the confusion matrices in Figure 5.4. The second best
combination is a decision tree depth of 2, 75% of observations, and only one attribute (age).
If agents observe fewer peers, then they almost all get vaccinated. If agents have a very
limited ability to reflect on the evidence (i.e., lower depths of the decision tree), then too few
of them get vaccinated. The sensitivity of the model to the parameters is further visualized
in Figure 5.8.
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Table 5.2: Our 10 combinations (or simulation scenarios) add one factor at a time, from
most to least potentially important based on prior reviews. For example, combination 3 has
three factors: age, sex, race.

Combination Attribute added
1 age
2 +sex
3 +race
4 +dead
5 +bachelors
6 +income
7 +political
8 +diagnosed
9 +diabetes
10 +hypertension

5.5 Discussion

A recent study showed that perceptions (and ultimately adoption) regarding the COVID-19
vaccine were driven by both individual characteristics and the social influences conveyed
by peers [316]. Although many ABMs have been developed to study COVID-19, none of
them has so far accounted for the interplay of individual and collective influences on vaccine
decisions. Using machine learning to operationalize the decision-making module of agents, we
found that few combinations of individual and collective features could accurately replicate
the real-world coverage in the USA. Since a model is a simplification of reality, our results
should not be literally interpreted to mean that only the two combinations found here explain
the real-world vaccine coverage. Rather, the trends and high sensitivity of our model suggest
that real-world patterns can be explained by the ability to observe most neighbors and derive
sufficient rules from observations. These rules are based on commonly low-level observed
features (e.g., age, sex) rather than very personal information (e.g., co-morbidities). In
other words, individuals are not blind to their peers, unable to make judgments, or engaged
in complex rules that take into account intimate details about their peers. Rather, they take
into account simple features about most people around them.

The implications for the development of ABMs going forward is that accounting for
individual and collective drivers of vaccine choices can be achieved by letting agents observe
all peers at each round and run relatively light models (decision tree). The characteristics of
peers that are needed for decision-making are already used in many ABMs (many of which
use age in their disease severity module), hence minor to no modifications are needed in
terms of agent features.

We focused on vaccine engagement as a product of a local social context, but it is also
impacted by community- and societal-level factors (e.g., conceptions of health, encounters
with the healthcare system) [330]. For instance, our study setting of the USA is different from
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Figure 5.4: Confusion matrices for various populations where Actual represents the agents we
determined would actually vaccinate and Predicted represents the agents that were predicted
to vaccinate during the simulation. Parameters: Depth = 4, Attributes: {Sex, Age, Race},
Percentage of Observations: 100%.

western European countries in terms of legal system and policy choices. Although article 8 of
the European Court of Human Rights considers that compulsory vaccination may interfere
with private rights, vaccination can legally be mandatory if treatment is not dangerous and
can help others [331]. Austria was the only nation to introduce a vaccination mandate and it
abandoned it a few months later, but other countries use COVID-19 Vaccination Certificates
(known in EU Regulation 2021/953 as ‘Green Digital Certificate’) as incentives [331]. As a
result, societal-level drivers for vaccination may be higher in these countries than in the USA.
In addition, the individual-level constructs most strongly associated with vaccine intention
are different across places [332]. Consequently, if our model is re-calibrated to a different
location, simulation results may show that a different combination of variables best explains
the current rate in the location of interest.

Furthermore, future works could conduct these simulations at a smaller geographical scale
to capture precise demographics which may produce more accurate results. For example,
we may focus on a location such as New York City and only initialize attributes from data
sets accordingly. These data sets could change our demographic variables. The New York
City Community Health Survey [333] (CHS) depicts age groupings to be the following: 0-
17 (21%) 18-24 (8%), 25-44 (30%), 45-64 (25%), 65+ (16%). The American Community
Survey [334] would switch our race percentages to the following: Asian (15%), Black (22%),
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Figure 5.5: Agents changing their beliefs on vaccination over time.

Latino (29%), White (32%). Ultimately, a specific geographical location and its associated
demographic data could change the vaccination rate.

Since it is a simplification, future works could extend our model in numerous ways. Our
results suggest that extensions may not be as necessary when it comes to agent features,
since accounting for a few of them suffices to replicate core results. However, extensions may
be beneficial to examine how agents deal with their memories. Indeed, the observations of
each agent are strictly cumulative, hence there is a perfect recollection of every that was
observed previously. This may artificially reduce the possibility that agents make a different
decision later in the simulation, since their new observations become diluted among their
extensive records of the past. In practice, it is likely that people ‘forget’ some of these past
observations. A simple approach adopted in other ABMs would be to express that the prob-
ability of forgetting a past observation increases as time advances [335]. Most interestingly,
computational models of cognitive science offer different approaches to handle reconsolida-
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Figure 5.6: Average percentage of vaccinated agents as a function of the percentage of peers
observed (y-axis) and the features examined in each peer.

tion, which deals with updating, distorting, or even erasing past observations [336]. As we
shift our focus from a mechanical model of disease progression onto an investigation of hu-
man health behaviors, opportunities abound to incorporate cognitive models into ABMs for
COVID-19.
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Figure 5.7: Vaccination rate as a function of the depth of the decision tree, simulation
combination (x-axis), and percentage of peers observed (y-axis). Values close or above the
observed vaccination rate are in green, while values below are in red.

Figure 5.8: Effect of the percentage of observations, depth of the decision tree, and attribute
combination onto the vaccination rate.
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Chapter 6

Clustering Like-Minded Agents

A variety of models in Modeling & Simulation require a steep computational cost. Specif-
ically, the combination of two separate models: Agent Based Models and Fuzzy Cognitive
Maps, known as Hybrid Modeling requires an expensive computational cost for large agent
populations. Researchers may attempt to offset these costs, by developing more efficient
algorithms or utilizing faster processing units. In our work, we decide if we can reduce the
cost of Hybrid Models by shrinking the agent population while maintaining accuracy of the
initial simulation. We determine how to decrease our model’s computational costs by imple-
menting three innovative and a variety of existing metrics that assess whether agents within
a population are similar (i.e, they think alike). Then, group agents based on their level
of similarities, and construct super nodes (i.e., representative agents) from entire groups of
agents. These super nodes are then reconnected and simulated from their initial values so
we can measure how a reduction in the agent population impacts the accuracy of the overall
model. The accuracy of these models are compared by recording each models: average out-
put, standard deviation, quartile ranges, minimum values, and maximum values. At most,
the simplified models average output deviate from the original model by 1.8%. Ultimately,
we focus on determining the best metrics to utilize when comparing agents, and the impact
super agents have on accuracy which in turn would help reduce computational costs.

6.1 Introduction

Agent-Based Modeling (ABM) serves to represent physical entities as virtual entities in a
simulation for a plethora of real world scenarios [337]. These entities known as “agents” can
imitate living organisms such as cells or physical objects such as cities. Furthermore, ABMs
are constructed with specific rule sets and laws governing the actions of agents depending
on the problem that modelers are attempting to analyze. For example, we may want to
study the spread of HIV in the human body and incorporate biological concepts into the
rule sets [90], or focus on the travel of humans in an urban society with traffic laws governing
the system [338]. Regardless of the problem at hand, there is a balance to be struck between
model size, which we use as a measure of accuracy, and the resources required for computa-
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tion. For example, HIV can infect billions of cells in the human body [339], and cities may
have tens of thousands of cars that are affected by traffic systems and pedestrians [340, 341].
While an accurate model would require accounting for every entity in these systems, doing
so would likely exceed available computational resources. Therefore, it is necessary to find a
compromise between model resolution (i.e., how many entities should be included) and avail-
able computational resources. Because lower resolution does not necessarily result in reduced
accuracy. Simulating millions of cells instead of billions can still yield valuable insights, such
as whether a particular treatment is effective. Due to this occurrence, we may want to utilize
faster processing devices [342]; however, these items my not be accessible. Therefore we may
aim to reduce the computational cost of agents by creating “super nodes“ [343, 344, 345].

Another type of informative model in Modeling & Simulation are known as Fuzzy Cog-
nitive Maps (FCMs) [346]. FCMs are designed to depict the behavior of various concepts in
relation to a scenario or select topic. These models are digraphs (i.e., directed graphs) con-
structed by a team of subject matter experts (SMEs) in their respective fields. This process
incorporates surveying of subjects, defining causality, and implementing fuzzy logic to define
edge and node weights of the FCM. Node weights vary from 0 to 1 where 0 is the absence
of a concept and 1 is the full presence of a concept. Edge weights vary from -1 to 1 where
a negative edge weight from a source node to a target node depicts that an increase in the
source node causes a negative decrease in the concept of the target node. Once initialized,
an FCM will iteratively update its node weights at each time step (Figure 6.1). The model
finishes it simulations once a set amount of iterations have been reached or the focus concept
has changed by a threshold amount.
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Figure 6.1: Simulating an FCM for one time step, using the example from [58, 347].

A methodology to incorporate both ABMs and FCMs in Modeling & Simulation is known
as Hybrid Modelling (HM) [348]. Moreover, HMs are constructed by developing an ABM
and FCM for a particular problem and attaching an FCM or various FCMs to agents in
the ABM (i.e., we add the FCM as an attribute of the agent). This process allows us to
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understand how concepts depicted in the FCM may shift due to the interactions of agents
in an ABM [342]. However the combination of two individual models for a population of
agents creates concern for computational cost.

In our work, we address this concern by reducing the population sizes of HM by es-
tablishing representative communities of agents while maintaining accuracy. Furthermore,
we implement new and existing techniques to compare FCMs for community detection and
division. Ultimately our work contributes in two areas:

� Reduce computational costs of existing HMs

� Introduce new measures to compare weighted digraphs

We detail these new and existing metrics in Section 6.2 with a variety of equations, il-
lustrations, and examples with FCMs. Once these metrics are established, in Section 6.3 we
described how we compared FCMs in our simulations, assigned social ties between agents to
represent the similarity/dissimilarity between their FCMs, and how we utilized community
detection algorithms to cluster agents. Agents are selected from these clusters as representa-
tives and reconnected to form smaller HMs that are simulated again with the initial values
of the main HM. Finally, in Section 6.4 we present our results.

6.2 Background

Due to the heterogeneity and malleability of these models, ABMs have flourished in numerous
disciplines and have been utilized specifically in Network Science [349]. Network scientists
have designed these models to fit specific network topologies such as small-world, scale free, or
random graphs [350, 351]. Small-world networks have agents with a high clustering coefficient
and groups of communities with few links between the clusters [352]. Scale Free networks
illustrate the rarity of humans having a disproportionally large distribution of social capital
compared to the majority of humans in a social network [353]. Furthermore the topology
is established with a power-law degree distribution [342]. Random graphs could resemble
a variety of topologies but their construction must follow the probability that each node is
equally likely to connect to any other node [354, 355].

6.2.1 Graph Metrics

Due to the prevalence of network models in Modeling & Simulation, we can implement a
variety of metrics to characterize the cognitive map of an agent [356, 357] and hence compare
maps [358, 359]. However, the purpose for comparison and properties of the graphs being
compared dictate the types of measures that should be implemented. In our work, we focused
on singular agents (i.e., nodes) representing a community of agents (i.e., group of related
nodes) based on their FCM similarities and as a result, detail a number of graph metrics for
this objective. We utilize both new and existing measures detailed in Table 6.1.
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Figure 6.2: Graph Density Increasing from Left to Right

Graph Density is the number of connections in a map compared to the maximum
number of connections possible for all concepts (Figure 6.2). Ultimately, the density of a
graph depicts the interwovenness of concepts within an FCM [358]. The density of a graph is
calculated in one of two ways which depends on whether the graph is directed (Equation 6.1)
or not (Equation 6.2).

D =
|E|

2
(|V |

2

) =
|E|

|V |(|V | − 1)
(6.1)

D =
|E|(|V |
2

) =
2|E|

|V |(|V | − 1)
(6.2)

Graph kernels can be used to compare a variety of information attributed to a graph.
Graph kernels provide a comprehensive measurement of diverse structural features or prop-
erties of a graph and return a single number [76]. Specifically, graph kernels focus on the
patterns of graph structure during comparison [360]. Numerous methods have been im-
plemented with graph kernels such as using graph kernels with loops or triads. A triad
represents a subgraph of three nodes in a larger graph [361]. With this metric, we focus on
the Triad Significance Profile (TSP). With 16 possible types of triads and we would calculate
the total number of occurrences for each of these triads and then use that to calculate the
percent difference between two FCMs. In order to extract a TSP from a given graph you
would iteratively search for three nodes linked by 1 or more of the 16 possible types of triads.
Once every profile is accounted for in two graphs, we would then compare the prevalence
of each specific type of triad discovered in the network through frequency or distribution
measures. This statistical significance can be quantified in Equation 6.3 using its Z-score,
denoted ZM , where nM represents the frequency of motif M in the given network, and

〈
nrand
M

〉
and σrand

M represent the mean and standard deviation of M’s occurrences in a set of randomly
generated networks, respectively [362, 363].
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ZM =
NM −

〈
N rand

M

〉
σrand
M

(6.3)

Number of Concepts is similar to the aspect of comparing node properties. The
number of concepts compares the total number of nodes in graph A to the total number of
nodes in graph B [364]. This measure is known as number of concepts. When comparing
FCMs, this metric can be implemented to compare the complexity of entire graphs and how
comprehensive the data might be.

Clustering Coefficient of a node is how close a node and its neighbors are to being
a complete graph. This is defined in Equation 6.7. The clustering coefficient of a graph is
then found by averaging the clustering coefficient of all nodes. The clustering coefficient of a
graph measures the relative frequency of triangles (level of connection) and is similar to the
transitivity of a graph [365]. Let G = (V,E) be a graph with a set of vertices V and edges
E. Then, the neighborhood N − i of vi ∈ V is given by Equation 6.4:

Ni = {vj|eij ∈ E ∨ eji ∈ E} (6.4)

The clustering coefficient of a vertex vi ∈ V is given by Equation 6.5 for the directed case
and Equation 6.6 for the undirected case.

Ci =
|ejk|

|Ni| · (|Ni| − 1)
, vj, vk ∈ Ni, ejk ∈ E if G is directed. (6.5)

Ci =
2|ejk|

|Ni| · (|Ni| − 1)
, vj, vk ∈ Ni, ejk ∈ E if G is un-directed. (6.6)

If |Ni| = 0 we set Ci = 0
Finally the clustering coefficient is defined per Equation 6.7:

C =
1

|V |
·

n∑
i

Ci (6.7)

Receiver-transmitter ratio may be employed when examining graph similarities due
to the properties and focus of FCMs. Receiver transmitter ratio can be broken down into two
parts: receiver nodes and transmitter nodes [366]. Receiver nodes are commonly denoted as
R and do not influence any nodes in a graph which means R nodes have directed edges but
serve as the target node (Figure 6.3) (i.e., they are never a source node) [358]. Transmitter
nodes are the exact opposite. Denoted by T , transmitter nodes are always a source node
and never serve as a target node (Figure 6.3). Once both transmitters and receivers are
defined (Figure 6.4), the Receiver-transmitter ratio can be calculated via Equation 6.8.

ratio =
R

T
(6.8)

Weighted Jaccard similarity measures the distance between two sets or vectors with
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A. Transmitter B. Receiver

Figure 6.3: A transmitter is a source node (a) and a receiver is a target node (b).

Receiver(s): 1 | Transmitter(s): 2

Figure 6.4: One receiver node (Blue) and two transmitter nodes (Green). The Receiver
Transmitter Ratio is 0.5.

all positive real numbers for both xi and yi. First the similarity coefficient JW (x, y) must
be determined through the summation of the minimum xi and yi values divided by the
summation of the maximum xi and yi values (Equation 6.9). To calculate the distance the
similarity coefficient is subtracted from the value of 1 (Equation 6.10). In network science,
the Jaccard similarity is often defined between two nodes on the basis of the intersection
and union of their neighborhood sets [367]. However, note that our work uses the Jaccard
similarity between discrete distributions (e.g., the degree distribution) at the graph-level,
rather than between sets of neighbors at the node-level. For example, our measure takes two
FCMs’ set of edges and their corresponding weights and computes the Jaccard similarity
coefficient. This value is then utilized to calculate the distance between the two sets.
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JW (x, y) =

∑
i min(xi, yi)∑
i max(xi, yi)

(6.9)

dJW (x, y) = 1 − JW (x, y) (6.10)

Measuring a node’s importance to a graph can be determined by various centrality mea-
sures and then comparing the output of these measures via cosine similarity. Centrality
calculates the rank or importance of nodes in a graph. Some of the most common centrality
measures used are betweenness, closeness, and degree [368]. Betweenness centrality measures
the importance of a node by determining the shortests paths that flow through that node
and the rest of the network. Furthermore, this measure can incorporate edge weights into
the ranking by accounting for the lowest total edge weight to traverse a network from a node.

Similar to betweenness centrality, closeness centrality places an importance on the dis-
tance of nodes; however, this measure is focused on the average distance instead of shortest
distance. This is computed by taking the shortest distance from one node to each respective
node in the graph. The average distance is then computed and the lower the average dis-
tance the higher ranking a node will have. A higher closeness centrality depicts that a node
is more central or important to a network.

Degree centrality focuses on the direct contact or edges associated with each node. For
an undirected graph, degree is simply calculated by the summation of the number of edges of
a node. For directed graphs degree centrality can be divided into two categories : In-Degree
and Out-Degree. In-degree calculates the number of edges directed to the selected node
whereas Out-degree is the exact opposite and computes the number of edges the selected
node directs to its neighbors.

In relation to the various centralities and their differing rankings, a common issue that
arises is comparing the results of various centralities. Due to the discrepancies, cosine sim-
ilarity may be used to compare the rank. Cosine similarity converts vectors into normal
vectors and determine how they compare against one another by computing the dot product
and scaling the dot product by the magnitude of the two vectors (Equation 6.11). This
computation results in output between the values -1 and 1 where -1 depicts the least amount
of similarity [369].

A ·B
∥A∥ ∥B∥

(6.11)

Kullback-Leibler Divergence (KL Divergence) can be used in a variety of applications
for classification and comparison of distributions. This is defined in Equation 6.12 by two
distributions P and Q which are independent of each other. We then take the summation over
all possible values of the random variable, x, for Q(x) and P (x)which are the probabilities
assigned to each value x by the distributions Q and P . The output of this metric is always
positive and will only equal to zero if the two distributions are identical. The greater the
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value of KL divergence between two distributions, the greater the difference between them.

D(P∥Q) =
k∑

i=1

Pi log
Pi

Qi

(6.12)

Another statistical test to measure distributions is known as Kolmogorov-Smirnov
(KS) statistic, defined in Equation 6.13. This test is designed to compute the maximum
difference between the two distributions and determine whether the select distributions are
from the same cumulative distribution [370].

Dn = sup
x∈R

|Fn(x) − F (x)| (6.13)

Table 6.1: Measures in previous work or implemented for FCM comparison for the first time.

Measure Implementation

Graph Density [358]
Graph Kernels (TSP) [358]
Number of Concepts [358]
Clustering Coefficient [358]
Receiver-transmitter

Ratio
[358]

Weighted Jaccard
similarity

Not previously implemented

Centralities and
Cosine Similarity

Not previously implemented

Kullback-Leibler
Divergence

Not previously implemented

Kolmogorov-Smirnov [358]

6.2.2 Community Detection Algorithm

Community detection algorithms are used to identify groups within a network. These al-
gorithms attempt to identify the nodes in a network that are more closely related to each
other than to the rest of the network. The goal of community detection is to identify these
groups in a way that maximizes the number of connections within a group and minimizes the
number of connections between groups. The resulting groups of nodes are known as com-
munities. Having these communities can help reveal the underlying structure of a network
and provide insight into the relationships between the nodes.

It is important to carefully evaluate the strengths and limitations of different community
detection algorithms. Different algorithms are better suited for different types of networks.
Some will perform better on networks with a high degree of connectivity, while others may
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Figure 6.5: Variation of Quality from Community Detection

work better with more complex structures. Each algorithm will also have different quality
communities. Some may produce high-quality communities that are well-defined, while oth-
ers may produce communities that overlap as shown in figure 6.5. These communities may
make possible the formation of suoer nodes. Community detection is complex and can be
prone to bias and error, so iterating through different community detection algorithms and
function parameters will allow you to find one that is the most balanced and best suited for
the use case.

6.3 Methods

6.3.1 Case Studies

To analyze the effectiveness of utilizing various graph metrics to compare FCMs, we recreated
two case studies: fast generation of heterogeneous mental models [371] and modeling joint
effects on obesity [372]. Each case study was designed with three network topologies, small-
world, scale free, and random. We randomly attached each agent in the ABM an attribute
of an entire graph as their FCM. To simulate the population interacting with each other
we first created a deep copy of the model to serve as a buffer. Once we copied the current
state of the model we replicated interaction and influence of agents by looping through each
agent and randomly and selecting one of their neighboring agents. Once a pair of agents was
determined, we defined the influence that one agent had on another agent’s FCM’s concepts
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through a random probability. This random probability was designed so that each agent
had an equal chance to influence a particular concept of the other agent. Then each agent’s
FCM was iterated through for each concept. At each concept, each agent was given a random
probability between 0 and 1;whichever agent had the higher probability, that agent’s concept
value was going to influence the current concept of the neighbor with the lower probability.
The influence was computed by taking the hyperbolic tangent of the two values and the
buffer was updated with the result. Once every agent had been iterated through these new
values were then loaded into the original model and the FCM was simulation.

For the FCM’s simulation, a similar process was followed regarding the buffering of values.
First, we defined our concept or focus node to be the Perceived Intake of agents and our
max number of iterations to be 100 if the model did not stabilize on its own. In order to
stabilize, we measured whether the Perceived Intake value had increased by 0.05. If it had
not, we updated the values of the concepts nodes in its buffer by also taking the hyperbolic
tangent of the concept nodes and overall summation of the weights.

6.3.2 Assigning Social Ties

After each case study was constructed, we simulated the original model. After the model
was simulated we compared every pair of neighbors’ FCMs in the HM. This was completed
by looping through the edges of the HM. Then, both the selected agent and its neighbor’s
FCM were analyzed for 11 various measures that utilized the computations discussed in
Section 6.2.1:

� KS for edge weight distributions

� Jaccard for edge weight distributions

� Centrality: Betweenness, Degree, Closeness Averaged and compared w Cosine Simi-
larity

� Graph Density

� KL for edge weight distributions

� Graph TSP

� KL for node weight distributions

� KL for node, KS for edge

� Receiver-transmitter ratio

� Clustering coefficient

� Number of concepts
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The computed value was assigned as the value of the edge weight between the selected
agent and its neighbor (Figure 6.6). Assigning social ties was the process of assigning
weighted social ties in an ABM. Each agent’s FCM in the model is compared to every
other connected agent (Figure 6.6). In this example, the total number of graph concepts is
being used to calculate similarities between the FCMs. Agents one and two have the same
number of concepts so the resulting weight between them will be 1. Agents one and three
have a different number of concepts, so when calculating the weight it won’t be 1 as they are
not as structurally similar. To find the weight between these agents we used Equation 6.14.
In this equation, we have variables n1 and n2 which represent the number of concepts of two
different agents FCMs. So, solving for agent one and agent two, we arrive at our answer of
6
7

as shown in the graph.

Measure Metric

Network Topology
Scale Free small-world

Algorithm
chinese-
whispers

der paris pycombo
chinese-
whispers

der paris pycombo

Average #
of Agents

Clustering Coefficient 15.1 361.0 128.7 50.7 5.8 361.0 193.1 38.5
# of Concepts 102.2 361.0 135.6 48.9 12.1 361.0 240.7 45.1
Graph Density 16.4 361.0 83.5 48.2 5.9 361.0 185.3 36.3

R/T Ratio 104.7 361.0 135.6 48.9 12.1 361.0 240.7 45.1
TSP 15.7 361.0 123.2 48.1 5.9 361.0 187.7 32.0

Max #
of Agents

Clustering Coefficient 306.0 414.3 268.6 123.5 13.0 375.4 235.4 44.0
# of Concepts 532.7 448.9 276.1 123.3 27.7 374.1 256.0 46.0
Graph Density 331.6 411.9 194.1 125.8 13.7 371.0 223.8 43.3

R/T Ratio 530.0 422.8 276.1 123.3 27.3 373.0 256.0 46.0
TSP 305.8 403.3 249.4 126.3 13.1 370.0 223.6 41.6

Min #
of Agents

Clustering Coefficient 1.9 307.7 22.4 11.2 3.0 346.6 150.6 33.3
# of Concepts 2.9 273.1 30.9 6.7 2.6 347.9 210.0 45.0
Graph Density 1.9 310.1 11.6 11.9 3.0 351.0 153.8 29.6

R/T Ratio 2.8 299.2 30.9 6.7 2.5 349.0 210.0 45.0
TSP 1.9 318.7 17.9 7.9 3.0 352.0 147.5 21.6

# of
Communities

Clustering Coefficient 55.2 2.0 15.7 14.6 123.8 2.0 4.3 18.8
# of Concepts 10.6 2.0 13.1 15.1 59.8 2.0 3.0 16.0
Graph Density 51.4 2.0 19.9 15.3 122.9 2.0 4.2 19.9

R/T Ratio 10.8 2.0 13.1 15.1 59.9 2.0 3.0 16.0
TSP 54.3 2.0 10.0 15.3 123.1 2.0 4.0 22.6

Table 6.2: Exploration of community detection algorithms.

1 − abs
(n1 − n2)

(n1 + n2)
(6.14)

6.3.3 Clustering with a Community Detection Algorithm

Once every pair of agents were assigned a social tie, we transitioned to utilizing a community
detection algorithm on the ABM to cluster agents. When determining how to cluster our
agents with community detection algorithms, we were focused on avoiding super clusters
(i.e., large grouping of agents), overlapping clusters (i.e., agents were a part of multiple com-
munities), and a large amount of small communities. To find the most effective community
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Figure 6.6: Assigning social ties, where X can be various metrics.

detection algorithm we examined a variety of detection algorithms from NetworkX that in-
cluded the weight of edges during community detection. From our initial search, we narrowed
down four algorithms: chinesewhispers [373], DER [374], paris [375], and pycombo [376]. We
then selected one algorithm for our work by comparing the four algorithms performance on
the CMAES case study for both the small-world and scale free network topology. To meet
our criteria above we recorded four values: (i) the number of communities, (ii) the average
number of agents in a community, (iii) the number of agents in the largest community, (iiii)
the number of agents in the smallest community (Table 6.2). Our analysis determined that
chinesewhispers was the best algorithm to use due it having the most variable distributions
depending on the measure and network topology. For example, the average number of com-
munities for chinesewhispers for a scale free network and the metric clustering coefficient was
55.2 where as the same network topology, but different metric such as Receiver Transmitter
ratio was 10.8. These results illustrated that chinesewhispers was able to balance the variety
of metrics and not analyze metrics as the exact same (e.g., DER results in 2 communities
every time and pycombo results in approximately 15 communities every time).

After determining chinesewhispers as our detection algorithm, we clustered the HM by
focusing on the social ties computed for every pair of agents. Once these communities were
established, we iterated through each cluster, calculated the sum of each agent’s FCM’s
concept values, and then selected an agent that represented a median of these values. This
agent was selected to be representative of the communities aggregate concept values. Once
an agent was selected as a representative of each community, we rebuilt the HM with the
representative of each community, and connected the representative agents by verifying two

82



communities had a edge(s) to each other from the previous model. Once these reduced
HM were constructed, we restored the initial values of each agent before the original model
was simulated. Finally, we simulated the reduced HM with the same ruleset as before and
collected the output for each run. To analyze the impact of reducing HMs by creating super
nodes, we calculated the KL Divergence between each distribution, recorded the number
of reduced nodes, measured common statistics such as mean, quartile ranges, and standard
deviation, and plotted the most similar distributions to the original model as violin plots.

Algorithm 1 Algorithm to Reduce HMs

create communities;
for each cluster in communities

calculate sum of each agent’s FCM concept values;
select an agent as median of these values to represent the community;

//Build Reduced HM
for each representative agent

connect to representatives of other communities with edge(s) from previous HM;
rebuild HM with representative agents;

//Restore Initial Values of Agents:
for each agent

restore initial values;

//Simulate Reduced HM:
run simulation with same ruleset as before;
collect output for each run;
//Analyze Impact of Reducing HMs:
calculate KL divergence between each distribution;
record number of reduced nodes;
measure common statistics (mean, quartile ranges, standard deviation);
plot most similar distributions to original model as violin plots;

6.4 Results

6.4.1 CMAES

To capture diversity in individual thought and behavior we utilized a variety of heterogeneous
FCMs. This was accomplished by applying our previous work that created 722 unique FCMs
from longitudinal data [371]. CMA-ES was integrated in our work to establish a FCM for our
population of 722 agents in each of the three graph topologies for specific concepts regarding
nutrition intake (Table 6.3).
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6.4.2 Obesity

Due to obesity being shaped by a variety of interacting psycho-social factors in an environ-
ment, HMs may be deployed to understand the complexity surrounding the concept [377].
In previous work, we analyzed experts’ knowledge pertaining to obesity among Canadian
adults and the social factors that attributed to the prevalence of obesity. First, the FCM
was created from an original system dynamics model [377] by aggregating experts’ knowl-
edge on obesity and then simplified due to the availability of operationalizing current data.
More importantly, we introduced the concept of knowledge which impacted physical exer-
cise and food intake in the FCM. We wanted to increase the heterogeneity of the FCM to
resemble that of CMAES so we created the FCM and varied the edge weights for 722 FCMs.
These were initialized by a random uniform distribution between -1.0 and 1.0 for each edge
between the defined concepts in the original FCM. Once created, the FCMs were randomly
assigned to the population of 722 agents for the three topologies where every agent in the
same topology had a unique FCM. The simulation then followed the same rules as CMAES
except the focus node was “Obesity”.

For both case studies, we analyzed the output of the new hybrid models to their original
model in three ways: (i) KL divergence between the distributions of output values, (ii) violin
plots of the distributions, and (iii) statistical measures such as mean, median, and quartile
ranges. We reported the KL divergence between the two distributions of each metric’s HM
and the original model (Table 6.5) and found that most distributions were similar with the
majority of values being less than. We further analyzed these results by plotting the most
similar distributions for each case study in Figure 6.7 and Figure 6.8. Finally we created a
Table 6.6 that depicts the mean, standard deviation, minimum value, maximum value, and
quartile ranges for each case study, every topology, and all measures.

6.5 Conclusion

In our work, we provided a comprehensive analysis of the impact of reducing the number
of nodes in an HM based on the comparison of FCMs. We incorporated three new metrics
along with existing metrics to measure the similarities of FCMs of various agents and studied
the impact of clustering agents into representative super agents. These simplified models
were compared to the original results of the initial model to emphasize an important balance
between model accuracy and computational costs. In future work, we hope to examine how
various population sizes of ABMs may impact the accuracy of the model as reduction takes
place. Furthermore, analyzing the exact differences in run time would allow us to better
determine how valuable simplifications may be to an overall model.
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Figure 6.7: Violin Plot of Super Node Simulations CMAES
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Table 6.3: CMAE’s Concepts

Concept # Construct Operationalization

1. Awareness
One’s awareness of the number
of fruits s/he thinks s/he eats?

2. Attitude
One’s belief that eating 2 servings

of fruits daily is healthy.

3. Attitude Price
One’s belief that eating 2 servings

of fruits daily is expensive.

4.
Self-efficacy

One’s belief that s/he can eat more fruit per day
in the next six months if s/he really wants to?

5.
One’s belief about the extent to which it is

difficult to eat more fruit in the next six months?

6.
Social-influence

One’s belief that most people who are
important to her/him think s/he should

eat two pieces of fruit per day.

7.
One’s belief that most people who are important
to him/her consume two pieces of fruit per day.

8. Intention
One’s intention to eat two

pieces of fruit per day?

9.
Action-planning

One has a clear plan for when
s/he is going to eat more fruit.

10.
One has a clear plan for which

fruit s/he is going to eat more/less.

11.
One has a clear plan for how many
fruits s/he is going to eat more/less.

12.
Coping planning

One has a clear plan for what s/he is going to do when
something interferes with his/her plans to eat more fruit.

13.
One has a clear plan for what s/he is going to do in
situations in which it is difficult to eat more fruit.

14.
Perception of

availability at home
How often does one have fruit
products available at home?

15. Visibility at home Visibility of fruits at home
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Source Node Target Node Edge Weight
Age Exercise -0.44

Income Exercise 0.548
Income Fatness Perceived as Negative 0.478

Fatness Perceived as Negative Weight Discrimination 0.739
Belief in Personal Responsibility Weight Discrimination 0.578

Obesity Weight Discrimination 0.840
Weight Discrimination Depression 0.732

Exercise Depression -0.649
Exercise Obesity -0.638

Depression Anti-Depressants 0.592
Anti-Depressants Obesity 0.528
Anti-Depressants Food Intake 0.526

Food Intake Obesity 0.637
Knowledge Food Intake -0.500
Knowledge Exercise 0.500

Obesity Physical Health -0.795
Exercise Physical Health 0.860
Stress Depression 0.540
Stress Food Intake 0.607
Stress Physical Health -0.694

Table 6.4: Nutrition FCM’s Edge Value

87



Topology Measure
Case Study

CMAES NUTR
Entropy Entropy

Scale Free

KS Edges 0.000870775 0.008200573
Jaccard 0.001041824 0.000768558

Centrality 0.000805587 0.015100711
Density 0.000915756 0.010683189
Edge KL 0.001147539 0.00879268

TSP 0.000712275 0.008513862
Node KL 0.000981851 0.000910494
Graphs 0.001265705 0.000966754

RT 0.015818707 0.01707571
Clustering 0.000957229 0.012937348
Concepts 0.009017314 0.012548926

small-world

KS Edges 0.000887428 0.0028738
Jaccard 0.00114878 0.000944116

Centrality 0.000921387 0.002506133
Density 0.001132987 0.002756311
Edge KL 0.000898797 0.001757961

TSP 0.000976396 0.002445733
NodeWeights 0.00102551 0.001044938

Graphs 0.000711031 0.001006291
RT 0.002344465 0.002411796

Clustering 0.001190033 0.002115926
Concepts 0.002385118 0.002533634

Random

KS Edges 0.000858849 0.004756609
Jaccard 0.001229995 0.000699844

Centrality 0.000587468 0.004140896
Density 0.000635022 0.005002704
Edge KL 0.000803183 0.004376142

TSP 0.00057372 0.00363466
Node KL 0.000644129 0.000897676
Graphs 0.000922512 0.000898402

RT 0.004680375 0.004151029
Clustering 0.000528615 0.00463623
Concepts 0.003638542 0.003159536

Table 6.5: Comparison of Case Studies’ Distributions of Output via KL Divergence
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Figure 6.8: Violin Plot of Super Node Simulations Obesity
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Table 6.6: The output is computed at the end of each simulation by taking the concept node
value and average it across 100 runs.

Nutrition CMAES
Output Output

Topology Measure mean std min 25% 50% 75% max mean std min 25% 50% 75% max

Random

Original 0.501 0.010 0.476 0.494 0.501 0.506 0.531 0.502 0.010 0.479 0.495 0.502 0.508 0.529
centrality 0.502 0.047 0.385 0.470 0.501 0.531 0.643 0.504 0.020 0.444 0.494 0.504 0.516 0.581
clustering 0.503 0.048 0.382 0.474 0.505 0.529 0.623 0.502 0.019 0.450 0.490 0.498 0.514 0.556

compare graphs 0.500 0.022 0.440 0.485 0.500 0.515 0.544 0.502 0.024 0.442 0.488 0.501 0.519 0.558
concepts 0.502 0.041 0.420 0.473 0.507 0.530 0.588 0.499 0.044 0.389 0.465 0.496 0.530 0.604
density 0.501 0.052 0.363 0.471 0.500 0.534 0.688 0.500 0.018 0.462 0.487 0.500 0.512 0.549

edge weight kl 0.504 0.047 0.371 0.476 0.508 0.534 0.626 0.500 0.023 0.439 0.485 0.500 0.516 0.547
Jaccard 0.501 0.019 0.464 0.489 0.500 0.511 0.577 0.500 0.027 0.439 0.481 0.500 0.515 0.581
KS edges 0.504 0.051 0.373 0.472 0.500 0.537 0.624 0.504 0.023 0.445 0.488 0.502 0.519 0.578

node weights kl 0.501 0.022 0.439 0.484 0.504 0.515 0.553 0.501 0.021 0.439 0.487 0.502 0.517 0.559
rt ratio 0.504 0.046 0.387 0.476 0.505 0.529 0.598 0.505 0.051 0.379 0.473 0.506 0.537 0.643

tsp 0.501 0.044 0.408 0.466 0.497 0.527 0.634 0.499 0.019 0.456 0.486 0.496 0.513 0.551

Scale-Free

Original 0.500 0.010 0.476 0.493 0.500 0.507 0.533 0.500 0.010 0.475 0.493 0.499 0.507 0.520
centrality 0.493 0.085 0.265 0.457 0.494 0.522 0.807 0.499 0.022 0.448 0.483 0.500 0.514 0.546
clustering 0.494 0.076 0.200 0.461 0.498 0.528 0.736 0.499 0.024 0.443 0.484 0.499 0.518 0.546

compare graphs 0.499 0.026 0.435 0.481 0.495 0.513 0.571 0.500 0.028 0.437 0.484 0.500 0.516 0.568
concepts 0.504 0.079 0.266 0.475 0.505 0.541 0.712 0.504 0.070 0.267 0.482 0.500 0.522 0.832
density 0.500 0.073 0.280 0.461 0.503 0.537 0.748 0.498 0.024 0.425 0.483 0.497 0.510 0.559

edge weight kl 0.492 0.065 0.365 0.440 0.498 0.532 0.639 0.499 0.025 0.416 0.484 0.499 0.513 0.561
Jaccard 0.500 0.022 0.441 0.487 0.501 0.513 0.562 0.498 0.025 0.441 0.479 0.500 0.514 0.564
KS edges 0.500 0.064 0.350 0.454 0.493 0.548 0.652 0.497 0.022 0.448 0.485 0.496 0.509 0.592

node weights kl 0.500 0.025 0.444 0.483 0.500 0.514 0.567 0.499 0.025 0.431 0.482 0.499 0.518 0.555
rt ratio 0.496 0.098 0.251 0.442 0.493 0.519 0.895 0.504 0.089 0.201 0.461 0.494 0.535 0.903

tsp 0.504 0.068 0.316 0.472 0.502 0.532 0.768 0.499 0.022 0.438 0.486 0.501 0.514 0.550

small-world

Original 0.500 0.010 0.473 0.492 0.501 0.508 0.520 0.502 0.011 0.478 0.496 0.502 0.507 0.535
centrality 0.500 0.035 0.403 0.480 0.501 0.521 0.569 0.498 0.023 0.447 0.482 0.498 0.514 0.554
clustering 0.499 0.035 0.426 0.472 0.496 0.522 0.597 0.501 0.025 0.445 0.483 0.503 0.520 0.555

compare graphs 0.504 0.027 0.422 0.487 0.505 0.522 0.566 0.504 0.022 0.433 0.488 0.506 0.518 0.560
concepts 0.502 0.039 0.416 0.479 0.498 0.530 0.592 0.497 0.036 0.430 0.471 0.497 0.516 0.635
density 0.497 0.039 0.394 0.476 0.494 0.523 0.588 0.501 0.024 0.444 0.484 0.501 0.517 0.573

edge weight kl 0.499 0.031 0.421 0.478 0.500 0.514 0.577 0.500 0.023 0.447 0.483 0.502 0.515 0.564
Jaccard 0.505 0.025 0.446 0.488 0.504 0.523 0.557 0.504 0.028 0.452 0.485 0.498 0.526 0.586
KS edges 0.501 0.039 0.421 0.473 0.502 0.525 0.612 0.501 0.023 0.444 0.486 0.502 0.514 0.554

node weights kl 0.501 0.027 0.420 0.484 0.502 0.518 0.568 0.502 0.025 0.455 0.483 0.501 0.518 0.572
rt ratio 0.501 0.037 0.389 0.477 0.500 0.528 0.593 0.503 0.037 0.383 0.479 0.504 0.532 0.575

tsp 0.499 0.036 0.418 0.476 0.495 0.527 0.583 0.502 0.023 0.450 0.484 0.503 0.517 0.561
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Chapter 7

Conclusion

7.0.1 Contribution

Our work demonstrates the importance of incorporating heterogeneity of human behavior to
increase the realism of computational models and additionally aims to offset this incorpora-
tion of various data by lowering computational costs.

We developed an open source framework that can inject human errors (insufficient ob-
servations, superficial observations, biases, and limited abilities) into pre-existing and future
Agent Based Models. Furthermore, this framework allows us to incorporate various Machine
Learning models such as Decision Tree Classifiers or Logistic Regressor to aid in realistically
replicating human errors.

Once we were able to replicate these errors, we shifted to demonstrating that these
decision-making errors are critical to constructing accurate models. This was accomplished
through a comprehensive review of improving COVID-19 vaccination models and implemen-
tation of our recommendations on our fork of a popular model known as COVASIM. These
modifications to the existing COVASIM model confirm that both heterogeneous data and
human error are essential to achieving expected results.

Finally, we introduced innovative measures to compare the similarities of agents’ decision-
making processes. These similarities are incorporated when creating super nodes to reduce
the size of various case studies’ agent populations. After establishing these reduced pop-
ulations, we compare the simplified hybrid models to the original model’s results. These
processes are developed to stress the importance of maintaining accuracy while balancing
the overall computational cost.

7.0.2 Future Work

Improving our Framework to Incorporate Cognitive Theories

Because there are boundless errors that humans may make, our framework for the comparison
of errors is not all-encompassing. In the future, we can expand our model to account for
other facets of human behavior and cognitive theories such as cognitive biases and status
asymmetries [188]. This can be explored by replicating how humans may be selective in
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social learning through the balance theory which details how individuals assimilate new
knowledge with existing knowledge [189]. Furthermore, status asymmetries would depict
how particular social contacts have more social influence over one individual than other
contacts. This unbalanced influence could sway the dissemination of information across
particular models [190]. Ultimately, we can continue to build upon this framework and
incorporate countless errors to increase the realism of our models.

Smaller Geographical Scales and Human Memory

Socio-demographics fluctuate from one geographical region to the next [333]. To account
for these heterogeneous regions, we can explore loading relevant data for small-scale regions
based on user specifications. For example, the race/ethnicity demographics for Memphis
Tennessee are broken-down as the following: White 27.1%, African American 64.6% Asian
1.7%, and Hispanic 7.7%. In contrast, Boise Idaho follows different proportions: White
86.4%, Black 1.7%, Asian 3.4% and Hispanic 8.8% [378, 379]. These varying distributions
of demographics may result in entirely different populations vaccinating over time.

It is also important to explore the longevity of human memory over time. Although
humans may have experienced a situation in the past or learned previous material, some of
this information may be lost over an extended duration. Our improvements in COVASIM
could account for this loss of information from past observations by introducing functions
from previous works [335] that reduce retained information over an extended period.

Account for Changing Beliefs Over Time

The notion of ‘green computing’ is all about saving energy. In a simulation, it often leads
us to avoid any redundancy, thus computing only what is strictly necessary and reusing
results whenever possible [380]. In a social simulation, it means that modelers can aggregate
agents as a group if they are similar, compute what happens for one ‘sample’ agent from
the group, and use that sample as the result for each individual of the group. While this
practice of ‘grouping agents’ and reusing results does save on computations, it faces one
challenge: people change over time [381]. New beliefs form, others are modified, and some
are forgotten. In a simulation, it means that agents that may have shared similar beliefs
at a specific moment can later differentiate. As a result, some agents may be assigned
to a group for several steps, but group composition may later have to be re-done. The
notion of dynamically grouping agents during a simulation has been well-researched from
the perspective of dynamic or ‘adaptive’ workload balancing, which seeks to group agents
onto compute cores for distributed simulations by creating an equal distribution of workloads
while minimizing communication between cores [382, 383, 384]. In contrast to a focus on
workloads, there has been a paucity of research devoted to dynamically managing groups
based on the cognitive similarities of their constituting members. It would be possible to
utilize graph distance metrics to analyze (i) how to assign individuals to groups based on
a balance between similar beliefs and their interactions in a social network and (ii) under
which conditions the composition of a group should be revised (Figure 7.1).
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Figure 7.1: Potential future research
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importance of vaccination in the context of the covid-19 pandemic: A brief update
regarding the use of vaccines. Vaccines, 10(4):591, 2022.

[304] Nicky Phillips et al. The coronavirus is here to stay-here’s what that means. Nature,
590(7846):382–384, 2021.

[305] Aris Katzourakis. Covid-19: endemic doesn’t mean harmless. Nature, pages 485–485,
2022.

[306] Qianer Liu, Cheng Leng, Sun Yu, and Ryan McMorrow. China estimates 250mn people
have caught covid in 20 days, 2022. Available via https://www.ft.com/content/
1fb6044a-3050-44d8-b715-80c18ca5c9ab. Accessed Dec. 28, 2022.

[307] Farah Master and David Stanway. China lacked a ’zero covid’ exit plan. its peo-
ple are paying the price, 2022. Available via https://www.reuters.com/world/china/
china-lacked-zero-covid-exit-plan-its-people-are-paying-price-2022-12-23/.
Accessed Dec. 28, 2022.

[308] Thomas Czypionka, Emil N Iftekhar, Barbara Prainsack, Viola Priesemann, Si-
mon Bauer, Andre Calero Valdez, Sarah Cuschieri, Enrico Glaab, Eva Grill, Jenny
Krutzinna, et al. The benefits, costs and feasibility of a low incidence covid-19 strat-
egy. The Lancet Regional Health-Europe, 13:100294, 2022.

[309] Jaffar A Al-Tawfiq, Dinh-Toi Chu, Van-Thuan Hoang, and Ziad A Memish. From
pandemicity to endemicity: The journey of sars-cov-2. Journal of Epidemiology and
Global Health, pages 1–3, 2022.

[310] Shaimaa Abdelaziz Abdelmoneim, Malik Sallam, Dina Mohamed Hafez, Ehab Elre-
wany, Hesham Metwalli Mousli, Elsayed Mohamed Hammad, Sally Waheed Elkhadry,
Mohammed Fathelrahman Adam, Amr Abdelraouf Ghobashy, Manal Naguib, et al.
Covid-19 vaccine booster dose acceptance: Systematic review and meta-analysis. Trop-
ical Medicine and Infectious Disease, 7(10):298, 2022.

[311] Israel T Agaku, Caleb Adeoye, and Theodore G Long. Geographic, occupational, and
sociodemographic variations in uptake of covid-19 booster doses among fully vaccinated
us adults, december 1, 2021, to january 10, 2022. JAMA Network Open, 5(8):e2227680–
e2227680, 2022.

[312] Ingrid Torjesen. Covid-19 will become endemic but with decreased potency over time,
scientists believe. BMJ: British Medical Journal (Online), 372, 2021.

[313] Emily Terry, Sapphire Cartledge, Sarah Damery, and Sheila Greenfield. Factors as-
sociated with covid-19 vaccine intentions during the covid-19 pandemic; a systematic

121

https://www.ft.com/content/1fb6044a-3050-44d8-b715-80c18ca5c9ab
https://www.ft.com/content/1fb6044a-3050-44d8-b715-80c18ca5c9ab
https://www.reuters.com/world/china/china-lacked-zero-covid-exit-plan-its-people-are-paying-price-2022-12-23/
https://www.reuters.com/world/china/china-lacked-zero-covid-exit-plan-its-people-are-paying-price-2022-12-23/


review and meta-analysis of cross-sectional studies. BMC Public Health, 22(1):1–16,
2022.

[314] Emil Nafis Iftekhar, Viola Priesemann, Rudi Balling, Simon Bauer, Philippe Beutels,
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