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ABSTRACT 
 

 
Service Oriented Architectures (SOA) present challenges to current model-based 

software engineering methodologies such as Rational Unified Process (RUP).  In this 

research effort we propose a process called DEVS Unified Process (DUNIP) that uses the 

DEVS formalism as a basis for automated generation of models from various requirement 

specifications and realization as SOA collaborative services.   DEVS is inherently based 

on object oriented methodology and systems theory, and categorically separates the 

Model, the Simulator and the Experimental frame, and has been used for systems 

Modeling & Simulation over the years. DUNIP integrates these concepts into DEVS-

based Bifurcated Model-Continuity life-cycle development methodology. The life-cycle 

begins by specifying the system requirements in a number of different formats such as 

state-based, BPMN/BPEL-based, message-based requirement specifications. DUNIP then 

automates the generation of DEVS models capable for distributed collaboration. The 

collaboration uses an XML-based DEVS Modeling Language (DEVSML) framework 

that provides the capability to integrate models that may be expressed in different DEVS 

implementation languages. The models are also made available for remote and distributed 

real-time execution over the SOA middleware in a manner transparent to the user. A 

prototype simulation framework has been implemented and is illustrated with an 

application to a system of collaborating military systems implemented and tested using 

Bifurcated Model-Continuity methodology. We also show how the Department of 
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Defense Architecture Framework (DoDAF) can be enhanced to incorporate simulation 

based executable models using the DUNIP process. 
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CHAPTER 1: INTRODUCTION 
 

 

In an editorial [Car05], Carstairs asserts an acute need for a new testing paradigm that 

could provide answers to several challenges described in a three-tier structure. The lowest 

level, containing the individual systems or programs, does not present a problem. The 

second tier, consisting of systems of systems in which interoperability is critical, has not 

been addressed in a systematic manner. The third tier, the enterprise level, where joint 

and coalition operations are conducted, is even more problematic. Although current test 

and evaluation (T&E) systems are approaching adequacy for tier-two challenges, they are 

not sufficiently well integrated with defined architectures focusing on interoperability to 

meet those of tier three. To address mission thread testing at the second and third tiers, 

Carstairs advocates a collaborative distributed environment (CDE), which is a federation 

of new and existing facilities from commercial, military, and not-for-profit organizations. 

In such an environment, modeling and simulation (M&S) technologies can be exploited 

to support model-continuity [Hux04] and model-driven design (MDD) development 

[Weg02], making test and evaluation an integral part of the design and operations life-

cycle.  

 

The performance and acceptance of any software system depends on the validation by the 

customer that is in part supported by the quality of the test-suite that conducts tests on it. 

Consequently, it also depends on the quality of the test cases used during the validation 
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process. In this particular methodology, the test-cases are automatedly generated that are 

created with respect to the software requirement set. Modeling languages are used to 

specify the requirement set and generate test cases [Pra05]. UML is the most widely used 

and preferred means of such specification. However, the information collected is 

insufficient as it lacks pragmatic details and the diagrams must be augmented to be used 

by test programmers. Other approach he suggested is to build a standardized library but 

then again it requires collaborative effort that spans the entire domain-industry. 

 

Model-based Software Engineering process is commonly referred as Model Drive 

Architecture (MDA) or Model-Driven Engineering or MDD. The basic idea behind this 

approach is to develop model before the actual artifact or product is designed and then 

transform the model itself to the actual product. The MDA is pushed forward by Object 

Management Group (OMG) since 2001. The MDA approach defines system functionality 

using platform-independent model (PIM) using an appropriate domain-specific language. 

Despite such positive benefits of MDA, it lacks sufficient foundation needed to realize 

this vision. It is underpinned by a variety of standards, some of which have to specified 

(e.g. executable UML). It is too idealistic and doesn’t involve round-trip iterative nature 

of software engineering and systems engineering perspective. CORBA also pushed 

forward by OMG failed to provide distributed collaborative environment and execution. 

 

DEVS formalism [Zei00] exists in many implementations, primarily in DEVS/C++ and 

DEVSJAVA [ACI06]. Extensions of these implementations are available as DEVS/HLA 
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[Sar01], DEVS/CORBA [Cho01], cell-DEVS [Wai01], and DEVS/RMI [Zha05]. Since 

DEVS is inherently based on object oriented methodology, and categorically separates 

the model, the Simulator and the Experimental frame.  However, one of the major 

problems in this kind of mutually exclusively system is that the formalism 

implementation is itself limited by the underlying programming language. In other words, 

the model and the simulator exist in the same programming language. Consequently, 

legacy models as well as models that are available in one implementation are hard to 

translate from one language to another even though both the implementations are object 

oriented. Other constraints like libraries inherent in C++ and Java are another source of 

bottleneck that prevents such interoperability.  

 

In this research effort we propose a new process called DEVS Unified Process (DUNIP) 

that utilized the Bifurcated Model-Continuity based life-cycle methodology for a model-

based design, execution and collaboration for DEVS models. The life-cycle begins by 

specifying the system requirements in structured and restricted English that facilitate the 

requirements gathering from the user. Further, methodologies are also developed to 

generate DEVS models from BPMN/BPEL-based and message-based requirement 

specifications. The DEVS models are auto-generated from the specifications and are 

made available for distributed collaboration using the DEVS Modeling Language 

(DEVSML) framework. The motivation for this work stems from this need of model 

interoperability between the disparate simulator implementations and provides a means to 

make the simulator transparent to model execution. We propose DEVS Modeling 
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Language (DEVSML) that is built on eXtensible Markup Language (XML) as the 

preferred means to provide such transparent simulator implementation. The models are 

also made available for remote and distributed execution using the Service Oriented 

Architecture (SOA) framework through our developed SOADEVS architecture. A 

prototype simulation framework has been implemented using web services technology. 

The central point resides in executing the simulator as a web service. The development of 

this kind of frameworks will help to solve large-scale problems and guarantees 

interoperability among different networked systems and specifically DEVS-validated 

models. 

 

Having developed the complete application framework DUNIP that is net-centric 

capable, we focus our research effort to a problem equal in magnitude as this but has far 

reaching usage. A recent DoD mandate requires that the DoD Architecture Framework 

(DoDAF) be adopted to express high level system and operational requirements and 

architectures [Dod03a].  DoDAF is the basis for the integrated architectures mandated in 

DOD Instruction 5000.2 [Dod03b] and provides broad levels of specification related to 

Operational, System, and Technical views. Integrated architectures are the foundation for 

interoperability in the joint Capabilities Integration and Development System (JCIDS) 

prescribed in CJCSI 3170.01D and further described in CJCSI 6212.01D [CJC04, 

CJC06].   DoDAF and other DoD mandates pose significant challenges to the DoD 

system and operational architecture development and testing communities since DoDAF 

specifications must be evaluated to see if they meet requirements and objectives, yet they 
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are not expressed in a form that is amenable to such evaluation.  However, DoDAF-

compliant system and operational architectures do have the necessary information to 

construct high-fidelity simulations. Such simulations become, in effect, the executable 

architectures referred to in the DODAF document. DoDAF is mandated for large 

procurement projects in the Command and Control domain but its use in relation to M&S 

is not explicitly mentioned in the documentation [5,8]. Operational views capture the 

requirements of the architecture being evaluated and System views provide its technical 

attributes. Together these views form the basis for semi-automated construction of the 

needed simulation models.   

 

DoDAF is a framework prescribing high level design artifacts, but leaves open the form 

in which the views are expressed. A large number of representational languages are 

candidates for such expression. For example, the Unified Modeling Language, (UML) 

and Colored Petri Nets (CPN) are widely employed in software development and in 

systems engineering. Each popular representation has strengths that support specific 

kinds of objectives and cater to its user community needs. By going to a higher level of 

abstraction, DoDAF seeks to overcome the plethora of “stove-piped” design models that 

have emerged. Integration of such legacy models is necessary for two reasons. One is 

that, as systems, families of systems, and systems-of-systems become more broad and 

heterogeneous in their capabilities, the problems of integrating design models developed 

in languages with different syntax and semantics has become a serious bottleneck to 

progress. The second is that another recent DoD mandate also intended to break down 
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this “stove-piped” culture requires the adoption of the Service Oriented Architecture 

(SOA) paradigm as supported in the development of Network Centric Enterprise Services  

(NCES). However, anecdotal evidence suggests that a major revision of the DoDAF to 

support net-centricity is widely considered to be needed. Indeed, under DoD direction, 

several contractors have begun to design and implement the NCES to support this 

strategy on Global Information Grid. The result is that system development and testing 

must align with this mandate – requiring that all systems interoperate in a net-centric 

environment – a goal that can best be done by having the design languages be subsumed 

within a more abstract framework that can offer common concepts to relate to. However, 

as stated before, DoDAF does not provide a formal algorithmically-enabled process to 

support such integration at higher resolutions. Lacking such processes, DoDAF is 

inapplicable to the SOA domain and GIG in particular. There have been efforts like [7] 

that have tried to map DoDAF products to SOA but as it stands out there is no clear-cut 

methodology to develop an SOA directly from DoDAF, rest aside their testing and 

evaluation. 

 

We also propose a mapping of DoDAF architectures into a computational environment 

that incorporates dynamical systems theory and a modeling and simulation (M&S) 

framework. The methodology will support complex information systems specification 

and evaluation using advanced simulation capabilities. Specifically, the Discrete Event 

System Specification (DEVS) formalism will provide the basis for the computational 

environment with the systems theory and M&S attributes necessary for design modeling 
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and evaluation. We will demonstrate how this information is added and harnessed from 

the available DoDAF products towards development of an extended DoDAF integrated 

architecture that is “Executable”. In our attempt to augment the current DoDAF our focus 

shall remain to add minimal information that would enable DoDAF to become the 

executable architecture. There are potential advantages of making DoDAF, a DEVS 

compliant system. We explore the problem of DoDAF using our developed DUNIP 

framework. 

 

We also demonstrate applications of DUNIP in many active and ongoing research 

projects. To name a few: the GENETSCOPE project [Gen06] and the ATC-Gen project 

[Mak06] are in current use at Joint Interoperability Test Command (JITC).  

 

1.1 Problem Definition 
 
This research effort started with the following basic questions: 

1. Is there a mechanism by which requirement specifications in English language 

can give way to a DEVS model that can be simulated? 

2. Can various scenario requirement specification methodologies like BPMN/BPEL 

be used to generate DEVS models? 

3. Is DEVS framework dynamically reconfigurable, and collaborative? 

4. Is DEVS model net-centric capable? 

5. Can you provide a prototype solution that can be used by system designers and 

can answer some of the requirements of Carstairs[1]? 
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6. DoDAF architectures are very complex and specified in high-level language in 

both textual as well as graphical format. Can you employ your solution towards 

making DoDAF ‘executable’ over a net-centric platform such as SOA? 

 

The solution to the top five problems resulted in a framework called DEVS Unified 

Process, a.k.a. DUNIP, which is the thesis. It is built on the Bifurcated Model-Continuity 

based Life-cycle methodology shown in Figure 1.1. Chapter 7 contains detailed 

description of each of the elements of DUNIP. In a nutshell, this process employs parallel 

development of the system model along with the semi-automated test-suite to perform 

validation and verification studies.  

 
 

Figure 1.1: Bifurcated Model-Continuity based System Life-cycle Process 
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Beginning towards the solutions, the first two questions raised another series of questions 

such as: 

1. How will you contain the amount of unstructured information that is present in 

English? 

2. How will you extract information from requirement specification that is in 

different message-based standards? 

3. Are there any better means to specify requirements, e.g. Business Process 

Modeling Notation (BPMN) or restricted English? 

4. How will you organize the information set so that object-oriented hierarchical 

DEVS modeling system could be auto-generated? 

 
The third question required enhancements in the DEVSJAVA framework wherein, 

dynamic model reconfiguration, dynamic simulation control i.e. ability to steer the 

simulation in ‘right’ direction, and DEVS Modeling Language were implemented. 

DEVSML provided the net-centric collaboration of DEVS models using XML as a 

middleware. 

 

The fourth question stems forth another phase in the development of DEVS technology 

wherein DEVS was made executable over Service Oriented Architecture. Layered 

architecture was proposed and implemented as SOADEVS. 

 

The fifth question resulted in an integrated framework named DUNIP that provides 

answers to all the previous questions. 
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The last question demanded DoDAF to be looked into great depth. This effort unearthed 

various gaps in the current DoDAF document, lapses in high-level model and what 

information set must be augmented with any specified DoDAF architecture to make it 

DEVS compliant. The complete process of augmenting this information is described. 

Finally, the application of DUNIP is aligned with the execution of DoDAF architectures. 

 
This dissertation makes the following research contributions: 

1. Enhance the DEVS modeling software DEVSJAVA towards integrated layered 

Model/View/Controller paradigm for usability and improved visualization 

technologies 

2. Empower DEVS with automated model generation mechanism for multitude of 

requirement specification formats 

3. Development of platform independent DEVS Modeling Language (DEVSML) 

framework based on XML to provide seamless model integration, reuse and 

collaboration 

4. Development of semi-automated Test case generation from existing DEVS 

models to advance model-based testing. 

5. Development of Simulation Service framework to execute model over net-centric 

Service Oriented Architecture (SOA) 

6. Development of DEVS Unified Process as a tool prototype that provides means to 

generate models from various requirement specifications formats and execute on 

SOA. 
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1.2 Thesis Organization 
 
The dissertation is organized in three chapters following this section. Chapter 2 deals 

with related technologies and earlier work done in areas relevant to unified process 

research. Chapter 3 deals with advances made in DEVS technology and current state of 

DEVSJAVA M&S software Version 3.1. Chapter 4 deals with automated DEVS model 

generation that includes DoDAF enhancements as well. Chapter 5 describes the 

automated test case generation methodology. Chapter 6 contains the net-centric execution 

of DEVS models and details about DEVSML and SOA. Chapter 7 puts it all together in 

the unifying framework of Figure 1.1 and provides a prototype solution named as 

DUNIP. Chapter 8 deals with many of the applications of DUNIP. Chapter 9 brings about 

some of the comparative evaluation of DUNIP with the foundational Model-Driven 

Architecture approach. Finally, Chapter 10 presents Conclusions and open research 

directions.  
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CHAPTER 2: RELATED TECHNOLOGIES AND EARLIER 
WORK 

 

This chapter provides an overview of current state of the art in the area of model based 

design, model based testing, automated test case generation, UML constructs and 

distributed component based simulation. Section 2.1 deals with the OMG effort in 

pushing Model Driven Engineering and various proposals and concerns that are 

associated with the paradigm. Section 2.2 deals with model-based testing and various 

methodologies that are used to develop test cases and generate test-data. Section 2.3 deals 

with the support provided by UML and the contributions from various research groups in 

using UML as a means to generate test cases. Section 2.4 deals with the DEVS 

Bifurcated Model-continuity process which describes the development of semi-automated 

test-suite developed simultaneously with the development of system model. The last 

Section 2.5 provides an overview of the concepts in the area of distributed component 

based simulation and how our research effort fit in. 

 

2.1 Model-Based Software Engineering Process  
 
Model-based Software Engineering process is commonly referred as Model Driven 

Architecture (MDA) or Model-Driven Engineering. The basic idea behind this approach 

is to develop model before the actual artifact or product is designed and then transform 

the model itself to the actual product. The MDA is pushed forward by Object 

Management Group (OMG) since 2001. The MDA approach defines system functionality 
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using platform-independent model (PIM) using an appropriate domain-specific language. 

Then given a Platform Definition Model (PDM), the PIM is translated to one or more 

platform-specific models (PSMs). The OMG documents the overall process in a 

document called MDA guide.  

 

MDA is a collection of various standards like the Unified Modeling Language (UML), 

the Meta-Object Facility (MOF), the XML Metadata Interchange (XMI), Common 

Warehouse Model (CWM) and a couple of others. OMG focuses Model-driven 

architecture on forward engineering i.e. producing code from abstract, human-elaborated 

specifications [ref Wiki].  

 

An MDA tool is used to develop, interpret, compare, align etc. models or meta-models. A 

‘model’ is interpreted as meaning any kind of models (e.g. a UML model) or metamodel 

(e.g. CWM metamodel). An MDA tool may be one or more of the following types: 

1. Creation tool: Used to elicit initial models and /or edit derived models 

2. Analysis tool: Used to check models for completeness, inconsistencies or define 

any model metrics 

3. Transformation tool: Used to transform  models into other models or into code 

and documentation 

4. Composition tool: Used to compose several source models, preferably conforming 

to the same metamodel 
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5. Test tool: Used to “test” models. A mechanism in which test cases are derived in 

whole or in part from a model that describes some aspects of system under test 

(SUT) 

6. Simulation tool: Used to simulate the execution of system represented by a given 

model. Simply speaking, is the mechanism by which model is ‘executed’ using a 

programming language 

7. Reverse Engineering tool: Intended to transform a particular legacy or 

information artifact into full-fledged models. 

 

It is not required that one tool may contain all of the features needed for Model Driven 

Engineering. UML is a small subset of much broader scope of UML. Being a subset of 

MDA, the UML is bounded by its own UML metamodel. Progress has been made to 

develop executable UML models but it has not gained industry wide mainstream 

acceptance for the same limited scope. Potential concerns with the current MDA state of 

art include: 

1. MDA approach is underpinned by a variety of technical standards, some of which 

are yet to be specified (e.g. executable UML) 

2. Tools developed my many vendors are not interoperable 

3. MDA approach is considered too-idealistic lacking iterative nature of Software 

Engineering process 

4. MDA practice requires skilled practitioners and design requires engineering 

discipline not commonly available to code developers. 
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5. OMG sponsored CORBA project after much promises but it failed to materialize 

as a widely accepted standard. 

 

2.2 Model-Based Testing Methodologies 
 
Software Testing is not a new area. Many texts have been written in this area and several 

methodologies have been developed. However, the idea of testing Software Architectures 

(SA) is comparatively new and requires more rigorous effort. Testers must not only have 

good development skill but also be knowledgeable in formal language, graph theory, and 

algorithms [Whi00]. The software testing is usually approached in four phases: 1. 

Modeling the software’s environment, 2. Selecting test scenarios, 3. Running and 

evaluating test scenarios, and 4. Measuring the testing process. This serves as partition 

the entire process of testing, similar to the STEP model is given by [Eic96] and [Tor05]. 

There have been plethora of books on software testing since the first text by Myers in 

1978 [Mye78] that address tough testing issues, but the area of Software Architecture 

Testing has not resulted in a mature methodology that is stable. Research is continuing in 

the current area. From code-level testing, the testing area has grown to include model-

based testing, UML as means to support the modeling, to development of Software 

Architecture Analysis Methods (SAAM) framework. However, the transition has not 

been smooth and appears as two separate classes of methodologies. The former is focused 

towards code level testing, and coverage analysis while frameworks like SAAM is 

focused towards the entire evaluation and effectiveness of any particular SA. This section 

summarizes the various efforts that have been put in the recent years in these two 
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disparate classes and argue that Discrete Event Specification-based Modeling & 

Simulation provides an integral framework that helps align these two fields in coherence.  

 

Of the four part process mentioned above, selecting test scenarios appear to be the most 

time consuming, rigorous and well attended in the literature. Test execution is assumed to 

be simpler until DEVS M&S provides a mathematical framework to conduct test-model 

execution in a formalized manner. 

 
Based on the technique used, the literature is classified into the following categories 

[Jur04] when generation of test cases is considered: 

1. Random 

Test cases are generated at random and it stops when there is enough, or a given   

number is  reached or is a user-defined objective has been reached. 

2. Functional 

 Same as Partitioning methodology described above 

3. Control-flow 

Similar to Path-oriented coverage described above. Test cases are generated until 

all the program  sentences are executed atleast once. However, a full 

execution is not recommended as it is cost- prohibitive 

4. Data-flow 

Test cases are generated to cover definitions of each variable for atleast one use of 

the variable. Many  variation of this particular process exist that limit the 
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number of variables and number of  paths traversed  by this variable are 

considered 

5. Mutation 

Test cases are generated based on the mutation operators defined for the 

programming language in  question. Depending on the resources available 

either all of the mutants are used or only a subset  of  them  (after selective 

prioritization). 

6. Regression 

Selection of test cases from an already existing test suite is made through 

selection criteria or all  inclusive methodology. Additions may be suggested 

that would contribute to the test-suite itself 

 

Two broad categories cover the classical methodology section that involves automated 

procedures. Specification-based approach and statistical [Tor05] (“intelligent” as 

described by Pargas [Par99]). Specification based test case generation and selection 

technique can use a formal [Off99b, Avr95] or natural language [Lut00] to automatically 

or semi-automatically generate test cases. Many other authors have contributed to this 

approach [Pas01, Sin03, Sit02, Sir03]. The statistical based techniques consist of 

Mutation analysis [Bau02] and genetic algorithms [Lin01, Jon96, Mic97].  

 



 35

The next step that comes in line after generation of test data and test cases in automated 

or semi-automated manner is their selection. Prioritization of such test cases is discussed 

by Rothermel et.al [Rot01]. 

 

Model-based Testing is a variant of testing that relies on explicit behavior models that 

encode the intended behavior of the system and possibly the behavior of its environment 

[Utt06]. Pairs of input and output of the model of the implementation are interpreted as 

test-cases for this implementation: the output of the model is the expected output of the 

system under test (SUT). This testing methodology must take into account the involved 

abstractions and the design issues that deals with lumping different aspects as these can 

not be tested individually using the developed model.  

 

Following is the process for Model-based testing technique [Utt06] as shown in Figure 

2.1: 

1. a model of the SUT is built on existing requirements specification with desired 

abstraction levels 

2. Test selection criteria are defined with an objective to detect severe and likely 

faults at an acceptable cost. These criteria informally describe the guidelines for a 

test suite.  

3. Test selection criteria are then translated into test case specifications. It is an 

activity where a textual document is turned ‘operational’. Automatic test case 

generators fall into this step of execution. 
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4. A test suite is ‘generated’ that is built upon the underlying model and test case 

specifications.  

5. Test cases from the generated test suite are run on the SUT after suitable 

prioritization and selection mechanism. Each run results in a verdict of ‘passed’ or 

‘failed’ or ‘inconclusive’.  

 
 

Figure 2.1: Graphical process extended further from [Utt06] 
 
 
A summary of contributions to the Model-based Testing domain can be seen at [Utt06]. 

 

2.3 Automated Test Case Generation using UML Constructs 
 
The performance and acceptance of any software system depends on the validation by the 

customer that is in part supported by the quality of the test-suite that conducts tests on it. 

Consequently, it also depends on the quality of the test cases used during the validation 
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process. In this particular methodology, the test-cases are automatedly generated that are 

created with respect to the software requirement set. Modeling languages are used to 

specify the requirement set and generate test cases [Pra05]. UML is the most widely used 

and preferred means of such specification. Williams [Wil02] was the first one to present 

UML as a test planning tool. However, he also concluded that the information collected is 

insufficient as it lacks pragmatic details and the diagrams must be augmented to be used 

by test programmers. Other approach he suggested is to build a standardized library but 

then again it requires collaborative effort that spans the entire domain-industry.  

 

Offut et al [Off99a, Off03] proposed techniques that adapt predefined state based 

specifications to generate test cases from UML statecharts. This resulted in the 

development of UMLTEST – a test data generation tool was integrated with Rational 

Rose [Rose]. Another parallel effort was done by [Mar] using the same concept of UML 

statecharts that resulted in the development of Design and Specification-Based Object-

Oriented Testing (DAS-BOOT). The java class to be tested is compared with the 

statechart specification of the class-behavior, thereby defining the association between 

the code and the specification. Offutt [Off00, Off04] extended their system-level testing 

work to integration-level testing using UML Collaboration diagrams. Message path 

coverage criterion was used to generate test cases from UML Sequence diagrams. They 

concluded that at the unit level, state charts were better compared to sequence charts, but 

at the integration level, it was vice versa.  
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Figure 2.2: Summarizing Model-based Testing 
 

Riebish et al [Rie] presented a procedure for iterative software development process in 

generating test cases with Sequence Diagrams and Use-cases as inputs for requirements 

engineering. They established that obtaining test-cases systematically can help in 

documentation of software’s usage and interactive behavior.  
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Another effort by Hartman [Har] led to the development of a tool that integrates with 

UML to automatically generate black box conformance tests early in the development life 

cycle. For unit and integration testing, the authors derived tests from State-chart and 

Sequence Diagrams and for system level they used Use-case and Activity diagrams. The 

derived test cases were then executed using JUnit or system test tool.  

 
 

Figure 2.3: Test Scenario Generation based on requirement specifications 
 
 

One more approach using Use-case was presented by Salem [Sal04]. Use-cases were 

documented with pre-condition, post-condition, basic and alternate flows and resulted in 

a traceability matrix. Indeed, this approach provides validation of the requirement set. 
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Framework for model level testing of behavioral UML model was proposed in another 

study by Toth et al [Tot03]. This process allowed different UML designs to be tested and 

design flaws be detected in the modeling phase of the development process. One similar 

detailed effort was done by Nebut et.al [Neb06] where they employed UML Use-case 

contracts (Figure 2.3) as the starting point for construction of test cases. They enhanced 

use-cases with contracts (based on use cases pre and post conditions) as they are defined 

in [Sou99] and [Coc97]. Building up on the idea by Meyer’s [Mey92] at the requirement 

level, they made these contracts executable by incorporating requirement-level logical 

expressions. Finally, they constructed a simulation model from these semi-formalized 

use-cases. The simulation model resulted in the extraction of relevant paths using 

coverage criteria. These paths are termed ‘test objectives’. Each use-case is then 

described using a UML Sequence diagram and results in ‘test scenarios’. Their 

requirement-based automatic test generation is summarized as in figure above. Other 

approaches [Bri02, Bas02] also propose to automatedly generate test scenarios from use 

cases and use-case scenarios.  

 

Automating methods to derive tests from fuzzy descriptions of the use cases is a 

formidable task. The requirements-based testing techniques already existing [Ber91, 

Dic93, Leg02, Tah01] are based on formal methods that are difficult to maintain as well 

as rigorous, only to suitable for mission-critical applications. In [Rys98] it is suggested 

that for practical purposes, the testers need to focus on methods of systematic test 
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approach. Among varied efforts in proposing test cases [Off99a, Kim99], only a few 

[Bri02, Bas02, Froh00, Rys99, Rie02] address the system level testing.  

Model based testing is a valuable methodology that helps test automation in conjunction 

with system development. Models allow testers to get more testing accomplished in 

shorter time. Model based design development, supported by Model continuity when 

integrated with model-based testing provides the best of all options. The next section 

presents these integrated ideas. 

 

2.4 DEVS-Based Bifurcated Model-Continuity Process 
 
The Bifurcated Model-Continuity-based Life-cycle Process [Zei05a, Zei05b, Mit06] 

combines the systems theory, M&S framework, and model-continuity concepts reviewed 

earlier.  As illustrated in Figure 2.4, the process bifurcates into two streams – system 

development and test suite development – that converge in the system testing phase. The 

Process has the following characteristics: 

 

Requirement Specifications:  As described in greater detail below, requirement 

descriptions are created by designers. Although initially ill-formulated, as the process 

proceeds, iterative development allows refinement of the requirements and increasingly 

rigorous formulation resulting from the formalization and subsequent phases. 
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Formalization by Mapping into DEVS:  Concurrently with the formulation or capture 

of DoDAF specifications, they are formalized as DEVS model components that are 

coupled together to form an overall Reference Master Model. 

 

Reference Master Model: The master DEVS model serves as a reference model for any 

implementation of the behavior requirements. This model can be analyzed and simulated 

with the DEVS simulation protocol  to study logical and performance attributes.  Using 

model continuity, it can be executed with the DEVS real-time execution protocol and 

provides a proof-of-concept prototype for an operational system.  

 

Semi-automated test suite design: Branching in the lower path from the formalized 

specification, we can develop a test suite consisting of experimental frames called test 

models that can interact with a System Under Test (SUT) to test its behavior relative to 

the specified requirements. 

Simulation based testing: The test suite is implemented in a Net-centric simulation 

infrastructure and executed against the SUT.  The test suite provides explicit 

pass/fail/unresolved results with leads as to components/ that might be sources of failure.  

 

Optimization and Fielded execution: The reference model provides a basis for correct 

implementation of the requirements in a wide variety of technologies. The test suite 

provides a basis for testing such implementations in a suitable test infrastructure.   Test 
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tools should carry into the fielding and operational tests of the system, and provide 

operationally realistic test cases and scenarios. 

 

 
Figure 2.4: Bifurcated DEVS-to-DODAF System Lifecycle Development Process 

 
 

Iterative nature of development: The process is iterative allowing return to modify the 

master DEVS-model and its DoDAF precursor requirements specification. Model 

continuity minimizes the artifacts that have to be modified as the process proceeds. The 

design methodology provides a process to transform the DoDAF description of 

architecture to a DEVS representation supporting evaluation and recommendations for a 

feasible design.  Briefly described steps are as follows: 
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1. The architecture specifications are presented in DoDAF description (or System 

Requirement Specification) format as Operational Views, System Views and 

Technical Views. 

2. The system specifications are then mapped to DEVS specifications according to 

the translation described in [Zei05b] that maps the DoDAF views to 

corresponding DEVS elements. The mapping is illustrated with UML elements 

and is expressed in XML [Cur02].  

3. Test suites for implementations of the design are developed in the test develop 

stream. 

4. Simulation results and their analysis provide the recommendations for a feasible 

design. 

5. Components are developed from the models using Model-continuity principles 

and the design is verified by the Technical View specifications developed earlier 

as a part of DoDAF process. 

 
Creation of DEVS Model Repository and DEVS Test Suite occur in a concurrent manner. 

The DEVS Repository serves as a collection of models that are used to develop scenarios, 

experimental frames and conduct other simulation oriented analysis. DEVS Test Suite is 

designed to ensure that the required behavior as expressed in  input-output pairs is 

correctly implemented when integrated in the  system with timing constraints. One such 

semi-automated Test-suite called Automated Test-case Generator (ATC-Gen) has been 

developed at JITC by Zeigler [Zei05a] and has been applied for Link-16 testing [Mak06]. 

Analysis of the Experimental frame simulations and the System Test results are compared 
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and evaluated to determine departure from required behavior. This error margin is called 

the Conformance Measure. Ideally the designed model has a 100% conformance with 

the Test Suite. If the departure exceeds a given tolerance, the model is revised to increase 

the model-test conformance. All this assumes that the initial DoDAF specifications have 

been cast in stone. Typically however, the iterative process will also suggest new or 

modified specifications at the DoDAF level. The iterative loops can be seen in Figure 4. 

Finally, when the models conform to the system test specifications, the Test Suite 

presents the design and performance recommendations as the outcome of this data-centric 

process. The Model Repository serves as the basis of design of components based on 

Model-continuity principles and the Test Suite serves as the benchmark for performance 

evaluation and matching the Technical specifications as developed in the Technical View 

DoDAF descriptions. 

 

2.5 Distributed Modeling and Simulation 
 
There have been a lot of efforts in the area of distributed simulation using parallelized 

DEVS formalism. Issues like ‘causal dependency’ [1] and ‘synchronization problem’ 

[11] have been adequately dealt with solutions like: 1. restriction of global simulation 

clock until all the models are in sync, or 2. rolling back the simulation of the model that 

has resulted in the causality error. Our chosen method of web centric simulation does not 

address these problems as they fall in a different domain. In our proposed work, the 

simulation engine rests solely on the Server. Consequently, the coordinator and the model 

simulators are always in sync.  
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Most of the existing web-centric simulation efforts consist of the following components: 

1. the Application: the top level coupled model with (optional) integrated 

visualization. 

2. Model partitioner: Element that partitions the model into various smaller coupled 

models to be executed at a different remote location 

3. Model deployer: Element that deployed the smaller partitioned models to different 

locations 

4. Model initializer: Element that initializes the partitioned model and make it ready 

for simulation  

5. Model Simulator: Element that coordinate with root coordinator about the 

execution of partitioned model execution. 

 
The Model Simulator design is almost same in all of the implementation and is derived 

directly from parallel DEVS formalism [1]. There are however, different methods to 

implement the former four elements. DEVS/Grid [12] uses all the components above. 

DEVS/P2P [13] implements step 2 using hierarchical model partitioning based on cost-

based metric. DEVS/RMI [6] has a configuring engine that integrates the functionality of 

step 1, 2 and 3 above. DEVS/Cluster [14] is a multi-threaded distributed DEVS simulator 

built on CORBA, which again, is focused towards development of simulation engine. 

 

As stated earlier, the efforts have been in the area of using the parallel DEVS and 

implementing the simulator engine in the same language as that of the model. Our present 
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work is not focused in this area. It is focused towards interoperability at the application 

level, specifically, at the model level and hiding the simulator engine as a whole. 

 
The research of DEVS Standardization group [15] can be divided into four basic areas 

[8]: 

1. Standardization of DEVS formalism 

2. Standardization of DEVS models 

3. Standardization of the interface of DEVS Simulator 

4. Standardization of libraries of DEVS models 

 
Members of Standardization group have worked concerning area 2 where the model’s 

structure is based on XML [16, 17]. However, their general modeling tool ATOM3 [17] 

is based on meta-meta-modeling. It is based on graph grammars and allows 

transformation of model to different formalism. Vladimir’s [8] work is concerning areas 

2 and 4. His implementation of DEVS meta model is based on underlying JAVA 

Modeling Language (JAVAML) [18]. Vladimir presents a prototype of a modeling tool 

that aims towards model interoperability but the paper lacks sufficient details and any 

working example. Our earlier work presents the detailed W3C Schema for DEVS atomic 

and coupled models [19] as intended by Vladimir. Other research effort using XML 

description is done by [20] called as DEVSW fits areas 2 and 4 but the code for transition 

functions is provided by means of pseudo code.  
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These efforts are in no means similar to what we are proposing in this research, except 

some of ideas presented by Vladimir. The mentioned efforts are aimed towards 

development of an independent meta-language that would aid the user to write models 

effectively and easily and then the process of model generation and simulation is 

automated using XML. We are focused towards taking XML just as a communication 

middleware, as used in SOAP, for existing DEVS models. We would like the user or 

designer to code the behavior in any of the programming languages and let the DEVSML 

SOA architecture be responsible to create a coupled model, integrating code in either of 

the languages and delivering us with an executable model that can be simulated. The user 

need not learn any new syntax, any new language; however, what he must use is the 

standardized version of DEVS implementation such as DEVSJAVA Version 3.0 [2] 

(maintained at www.acims.arizona.edu).  

 

This kind of capability where the user can integrate his model from models stored in any 

web repository, whether it contained public models of legacy systems or proprietary 

standardized models will provide more benefit to the industry as well as to the user, 

thereby truly realizing the model-reuse paradigm. 

 

Our work spans areas 2, 3, and 4. In further sections we will provide details about DEVS 

atomic and coupled DTDs, design of DEVS Simulator interface and standardized 

libraries used in our implementation. 
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CHAPTER 3: DEVS MODELING AND SIMULATION 
FRAMEWORK 

 
 

This chapter begins by providing an overview of the current DEVS technology and the 

way in which DEVS is positioned to address the need for a net-centric paradigm for test 

and evaluation at the system-of-systems and enterprise systems levels. DEVS 

environments such as DEVSJAVA, DEVS-C++, and others [ACI06] are embedded in 

object-oriented implementations; they support the goal of representing executable model 

architectures in an object-oriented representational language. As a mathematical 

formalism, DEVS is platform independent, and its implementations adhere to the DEVS 

protocol so that DEVS models easily translate from one form (e.g., C++) to another (e.g., 

Java) [Zei00]. Moreover, DEVS environments, such as DEVSJAVA, execute on 

commercial, off-the-shelf desktops or workstations and employ state-of-the-art libraries 

to produce graphical output that complies with industry and international standards. 

DEVS environments are typically open architectures that have been extended to execute 

on various middleware such as the DoD’s HLA standard, CORBA, SOAP, and others and 

can be readily interfaced to other engineering and simulation and modeling tools [Zei00, 

Bus98, Sar01a, Tol03, Zei03, Sar01b, Cho01]. Furthermore, DEVS operation over web 

middleware (SOAP) enables it to fully participate in the net-centric environment of the 

Global Information Grid [CJC06].  As a result of recent advances, DEVS can support 

model continuity through a simulation-based development and testing life cycle [Hux05].  

This means that the mapping of high-level requirement specifications into lower-level 
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DEVS formalizations enables such specifications to be thoroughly tested in virtual 

simulation environments before being easily and consistently transitioned to operate in a 

real environment for further testing and fielding. 

 

Section 3.1 provides basic DEVS theory. Section 3.2 presents the enhanced 

Model/View/Controller paradigm that encourages complete application development 

using DEVS. Section 3.3 and 3.4 describes the additions made in latest DEVSJAVA 

version 3.1 related to dynamic model reconfiguration and dynamic simulation run-time 

control. It also discusses the inclusion of DEVS Experimental Frame in the enhanced 

MVC framework and how parameters derived from requirements can find their place at 

top-level model and simulator configuration. Notion of steady-state of a complex system 

is also dealt with in Section 3.3.  

 

Brief Overview of Capabilities Provided by DEVS 

To provide a brief overview of the current capabilities, Table 3.1 outlines how it could 

provide solutions to the challenges in net-centric design and evaluation. The net-centric 

DEVS framework requires advancement to the basic DEVS capabilities, which are 

provided in later sub-sections. 

Desired M&S Capability Solutions Provided by DEVS Technology 

Requirement coherence 
and prioritization 
MIL-worth analysis 
(M&S executable 
architectures) 

Enhanced user 

1. Control a simulation on the fly [Mit05b]. 
2. Reconfigure a simulation on the fly [Mit04c]. 
3. Provide dynamic variable-structure component 

modeling [Mit04c, Hux03]. 
4. Separate a model from the act of simulation 
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capabilities 
Execution road maps 
Source selection 
Technology 
application/transition 
Test support including 
vulnerability analysis 
Interoperability and 
integration assurance 
Hierarchical modular 
construction of models 
aiding system-of-systems 
testing 

Provide collaborative 
distributed environment 
for M&S 

itself, which can be executed on single or 
multiple distributed platforms [Zei00]. 

5. Simulation architecture is layered to accomplish 
the technology migration or run different 
technological scenarios [Sar01b, Mit03d]. 

6. With its bifurcated test and development 
process, automated test generation is integral to 
this methodology [Zei05]. 

7. Provide dynamic simulation tuning, 
interoperability testing and benchmarking 
[Mit04c]. 

8. Provide rapid means of deployment using 
model-continuity principles and concepts like 
“simulation becomes the reality” [Hux05]. 

9. Provide net-centric collaboration and integration 
of DEVS ‘validated’ models using Web 
Services [Mit07e] 

  Table 3.1: DEVS on addressing M&S issues 
 

3.1 DEVS System Specifications  
 

3.1.1 Hierarchy of System Specifications 

Systems theory deals with a hierarchy of system specifications that defines levels at 

which a system may be known or specified. Table 3.2 shows this hierarchy of system 

specifications (in simplified form; see [Zei00]). 

• At level 0 we deal with the input and output interface of a system.  

• At level 1 we deal with purely observational recordings of the behavior of a 

system. This is an input/output (I/O) relation that consists of a set of pairs of input 

behaviors and associated output behaviors.  
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• At level 2 we have knowledge of the initial state when the input is applied. This 

allows partitioning the I/O pairs of level 1 into non-overlapping subsets, with each 

subset associated with a different starting state. 

• At level 3 the system is described by state space and state transition functions. 

The transition function describes the state-to-state transitions caused by the inputs 

and the outputs generated thereupon.  

• At level 4 a system is specified by a set of components and a coupling structure. 

The components are systems on their own with their own state set and state 

transition functions. A coupling structure defines how those interact. A property 

of coupled systems, which is called “closure under coupling,” guarantees that a 

coupled system at level 3 itself specifies a system. This property allows 

hierarchical construction of systems, i.e., that coupled systems can be used as 

components in larger coupled systems.  

 
Level Name What We Specify at This Level 
4 Coupled 

systems 
System built up by several component systems that are 
coupled together 

3 I/O 
system 

System with state-space and state transitions to generate 
the behavior 

2 I/O 
function 

Collection of I/O pairs constituting the  allowed 
behavior partitioned according to the initial state the 
system is in when the input is applied 

1 I/O 
behavior 

Collection of I/O pairs constituting the  allowed 
behavior of the system from an external black box view 

0 I/O frame Input and output variables and ports together with 
allowed values 

Table 3.2: Hierarchy of system specifications 
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As we shall see in a moment, the system specification hierarchy provides a mathematical 

underpinning to define a framework for modeling and simulation. Each of the entities 

(e.g., real world, model, simulation, and experimental frame) will be described as a 

system known or specified at some level of specification. The essence of modeling and 

simulation lies in establishing relations between pairs of system descriptions. These 

relations pertain to the validity of a system description at one level of specification 

relative to another system description at a different (higher, lower, or equal) level of 

specification.  

 

Based on the arrangement of system levels as shown in Table 3.2, we distinguish between 

vertical and horizontal relations. A vertical relation is called an association mapping and 

takes a system at one level of specification and generates its counterpart at another level 

of specification. The downward motion in the structure-to-behavior direction formally 

represents the process by which the behavior of a model is generated. This is relevant in 

simulation and testing when the model generates the behavior which then can be 

compared with the desired behavior.   

 

The opposite upward mapping relates a system description at a lower level with one at a 

higher level of specification. While the downward association of specifications is 

straightforward, the upward association is much less so. This is because in the upward 

direction information is introduced while in the downward direction information is 

reduced. Many structures exhibit the same behavior, and recovering a unique structure 
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from a given behavior is not possible. The upward direction, however, is fundamental in 

the design process where a structure (system at level 3) has to be found which is capable 

of generating the desired behavior (system at level 1). 

 

3.1.2 Framework for Modeling & Simulation 

The framework for M&S as described by Zeigler et al. [Zei00] establishes entities and 

their relationships that are central to the M&S enterprise (see Figure 3.1). The entities of 

the framework are source system, experimental frame, model, and simulator; they are 

linked by the modeling and the simulation relationships. Each entity is formally 

characterized as a system at an appropriate level of specification within a generic 

dynamic system. See [Zei00] for a detailed discussion. 

Source 
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

 
 

Figure 3.1:  Framework entities and relationships 
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3.1.3 Model Continuity 

Model continuity refers to the ability to transition as much as possible of a model 

specification through the stages of a development process. This is the opposite of the 

discontinuity problem where artifacts of different design stages are disjointed and thus 

cannot be effectively consumed by each other. This discontinuity between the artifacts of 

different design stages is a common deficiency of most design methods and results in 

inherent inconsistency among analysis, design, test, and implementation artifacts 

[Cho01]. Model continuity allows component models of a distributed real-time system to 

be tested incrementally, and then deployed to a distributed environment for execution. It 

supports a design and test process having four steps (see [Hux05]): 

• Conventional simulation to analyze the system being tested within a model of the 

environment linked by abstract sensor/actuator interfaces;  

• Real-time simulation, in which simulators are replaced by a real-time execution 

engine while leaving the models unchanged;  

• Hardware-in-the-loop (HIL) simulation, in which the environment model is 

simulated by a DEVS real-time simulator on one computer while the model being 

tested is executed by a DEVS real-time execution engine on the real hardware;  

• Real execution, in which DEVS models interact with the real environment 

through the earlier established sensor/actuator interfaces that have been 

appropriately instantiated under DEVS real-time execution. 
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Model continuity reduces the occurrence of design discrepancies along the development 

process, thus increasing the confidence that the final system realizes the specification as 

desired. Furthermore, it makes the design process easier to manage since continuity 

between models of different design stages is retained. 

 

3.2 Model/View/Controller (MVC) Paradigm and DEVS Framework 
 
Although a number of commercial and academic simulators are available for complex 

network studies, none have the capability to tune the simulation while it is in execution. 

Due to tight coupling between the network model and the simulation engine in such 

simulators, the capability to introduce changes in parameter values during execution is 

limited or non-existent. The work described here has the objective of developing a 

DEVS-based network modeling and simulation environment with dynamic simulation 

control and queue visualization. The DEVS modeling and simulation framework 

separates model, experimental frame, and simulator. This modularity facilitates the 

development of a simulation framework supporting run-time simulation tuning. The 

motivation behind providing “real-time” intervention is to support a rapid feedback cycle 

that allows experimentation with network parameters and structures. This can result in an 

effective network configuration that is difficult to achieve when turnaround requires 

hours or days. Furthermore, such instantaneous observation and control enables important 

transient situations to be recognized and considered. 
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3.2.1 Real-Time Control and Visualization Limitations of Existing Network 

Simulators 

 
Some of the limitations of existing network simulation packages are as follows: 

• Everything has to be programmed prior to simulating the network. 

• User interfaces are not easily customized; they provide largely textual interfaces.  

• There is no support for changing parameters and component structures during 

simulation. 

• Simulation run times tend to be long (a few hours); more importantly, if a run 

ends in a crash, there is no way to intervene and readjust the system. 

• There is little run-time visualization of the system behavior to aid understanding 

and to steer the simulation in a productive direction. 

• Model and simulation calibration is a new concept, largely unattended by the 

legacy and current simulators. 

• Model-driven design and development is a new technology supported by only a 

handful of simulation frameworks. 

• Distributed M&S and concepts like model repository are not supported in most of 

the frameworks. 

• Treating an M&S T&E framework as an “online” system by itself is non-existent 

and unaddressed by current simulators. 

• Performance-oriented simulation frameworks are non-existent. Most are bounded 

by initial model configuration. 
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To develop a network modeling and simulation environment that addresses these 

limitations, we extended the existing Discrete Event System Specification (DEVS) 

software, DEVSJAVA. We discuss the layered architecture underlying the network 

simulation environment. After describing this architecture, we discuss some proposed run 

control and visualization techniques intended to greatly improve user understanding of, 

and ability to control, the complex structural and behavioral relationships characteristic of 

large network behaviors.  

 

Nutaro [Nut05] proposed the Model/Simulator/View/Controller (MSVC) paradigm, as an 

extension of MVC. He promoted the separation of model and simulator and has listed 

many advantages that come about with this idea, most important being the reuse of 

simulation software, especially in the context of distributed simulations. The other 

problems that are solved by this paradigm are as follows: 

• Distributed simulation protocol changes can be encapsulated within the controller 

(input and time management policies) and viewer (output policies) objects. 

• By separating the viewer and controller it is straightforward to add displays, 

logging tools, and other output processing devices to the simulator.  

• Modeling, simulation, distribution or parallelization, and user interface issues can 

be addressed separately. 

 
Nutaro demonstrated an application of middleware simulation, wherein the simulator was 

tuned to display the behavior of certain middleware by incorporating effects such as RTI 
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latency (with reference to distributed simulation HLA framework). In his methodology, 

the simulator is a thread derived from the controller thread that contains the platform 

(RTI latency) delay parameter. As the controller thread generates this event, it is 

communicated to the simulator as well as to the viewer using inter-thread 

communication. Although Nutaro did not consider model updating or model control, his 

work constitutes a part of our enhanced MVC framework, where there is full capability in 

the controller to modify the model as well as the simulator.  

 

Our work is implemented in DEVSJAVA and has a super-thread that runs at the root-

coordinator level that monitors the experimental frame for any user-generated activity 

controls. There exists no viewer thread as the viewer objects are created hierarchically as 

delegated classes of the model as well as the simulator object. Any modification in their 

state is also reflected in the contained viewer object. The viewer object displays are 

derived from the java.awt package. Consequently, they inherently have independent 

thread that repaints. 

3.2.2 Enhanced MVC  

Figure 3.2 below provides the graphical representation of an enhanced MVC paradigm. It 

has been represented with respect to the DEVS M&S framework components. Model and 

View take their usual functions and meanings. The Control in MVC is explored in more 

detail and is mapped to the DEVS Experimental frame. Internally, the Experimental 

frame has a modular structure with a basic control component and controller A and B as 

derived components.  
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Figure 3.2: Enhanced MVC paradigm with DEVS M&S framework 

 
 

The basic control component translates the information contained in parameter set 

coming from requirement specifications. It is specialized into two components, one 

dedicated to simulator middleware control and the other dedicated to model control. It 

also assigns different parameters to the appropriate controller. In Nutaro [Nut05], 

controller A provides tools to control the DEVS simulator, more appropriately the 

middleware aspect of simulation. Controller B provides the toolset to control the model. 

Details about middleware control can be seen in [Nut05]. Controller B provides 

functionality to vary the number of components, in addition to the parameters in a 

component, both at the component and subsystem level. The parameter set for both the 

controllers is made available to the user as a sliding bar in the controller frame in the 
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View panel that enables the user to tune the active simulation toward optimum 

performance 

 

The enhanced MVC has exhaustive control expressed in the experimental frame domain. 

The Experimental frame component in the DEVS M&S framework is a key construct that 

enables the user to drive and maneuver the simulation in the “right” direction. The 

concept of experimental frame, i.e., a mechanism by which an experimental scenario is 

designed for the model architecture, is further enhanced to enable the user to reconfigure 

and tune the simulation itself. Benefits of user intervention are explored in more details in 

[Mit06a] Given that the user has the capability to control the simulation parameters, the 

issue of extraction and identification of those parameters is taken care by the basic 

control component that interfaces with the Requirement Specifications document (e.g. 

DoDAF) in restricted Natural Language. Consequently, the Experimental frame now 

provides rich control equipment that the operational test designer can use to his 

advantage. 

3.3 Dynamic Model and Simulation Reconfiguration 

3.3.1 Variable Structure DEVS 

A component is “a nontrivial, nearly independent, and replaceable part of a system that 

fulfills a clear function in the context of a well-defined architecture. It conforms to and 

provides the physical realization of a set of interfaces” [Bro98]. A component system is 

built by composition of various independent components and by establishing 

relationships among them. As each component has a high degree of autonomy and has 



 62

well-defined interfaces, variable structure of components can be achieved during run 

time. For component-based modeling and simulation, variable structure provides several 

advantages: 

• It provides a natural and effective way to model those complex systems that 

exhibit structure and behavior changes to adapt to different situations. Examples 

of these systems include distributed computing systems, reconfigurable computer 

architectures [Zei85, Zei93], fault tolerant computers [Che90], and ecological 

systems [Uhr93]. Structure changing and component upgrading is an essential 

part of these systems. Without the variable structure capability it is very hard, if 

not impossible, to model and simulate them, let alone study the transition effect 

that the system incurs when new components are added in a real deployed system.  

• From the design point of view, variable structure provides the additional 

flexibility to design and analyze a system under development. For example, it 

allows one to design and simulate a system in which the components are added or 

removed incrementally and form dynamic relationships with existing components. 

• It allows one to load only a subset of a system’s components during simulation. 

This is very useful to simulate very large systems with a tremendous number of 

components, as only the active components need to be loaded dynamically to 

conduct the simulation. Otherwise, the entire system has to be loaded before the 

simulation begins. 

 

In general, there are six forms of reconfiguration of component-based systems [Che02]: 
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1. Addition of a component, 

2. Removal of a component, 

3. Addition of a connection between two or more components, 

4. Removal of a connection between two or more components, 

5. Migration of a component, and 

6. Update of a component. 

 
The first two operations result in an update of the modeled system where there is a 

change in the number of components in the system, the next three result in a 

reconfiguration of the existing system, and the last one results in the modification of the 

component itself, either its behavior or its interface structure. In DEVS these are 

collectively known as variable-structure modeling. More details about said operations can 

be found in [Hux03]. 

 

As variable structure changes a component-based simulation during run time, boundary 

conditions and the limits to which a component affects other components need to be 

specified with said operation. With reference to Table 1, the model reconfiguration can 

be implemented at any of the specified levels. These issues are very well addressed in 

[Hux03]. The variable structure provides the flexibility to design and analyze a complex 

hierarchical system under development, as well as during a running simulation, as 

supported by the dynamic structure SES capability. 
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3.3.2 Implementation of Variable Structure in Extended MVC 

 
Variable structure essentially deals with modification of the component as well as of the 

number of components that specify the modeled system. Its power lies in its run-time 

implementation that gives us the capability to study the transition effects when the system 

is presented with a different number of components and interrelationships. This is 

entirely a modeling issue and is independent of how the system is simulated when 

presented with such changes. With the DEVS modeling approach, this is brought to 

fruition in its modeling layer. With the proposed MVC approach, as is quite obvious, this 

is implemented in the modeling layer that is in control of the Experimental frame 

controller layer. The modeling layer that holds the system model, its configuration, and 

the inter-component relationships receives commands from the Experimental frame on 

modifying the system.  The user is in charge of the Experimental frame. Consequently, if 

he wishes to modify the system structure he is given the toolbox to modify the model 

from the experimental frame. Of course, the toolbox is also designed by the modeling 

designer who decides if the system is to be analyzed and the chosen component plays a 

significant role in system dynamics and performance. With the closure under coupling 

property inherent in DEVS formalism, an entire subsystem or an individual component in 

system can be added as a “component” in the model, in addition to its relationships with 

other existing components. This property aids in adding a complete system model as a 

component in a running simulation. With reference to Figure 3.2, the Experimental frame 

view will contain the controls that the user can perform to modify the structure of the 

model. 
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3.3.3 Notion of System Steady State 

Evolution is a discipline by which one can understand the growth of a “system” with 

respect to time. Modeling growth is a difficult concept, let aside simulating “growth.” 

Biological evolution is studied through looking into the past and seeing how different 

species have changed according to their environment. In computer systems, the Internet is 

one such system that has “evolved” over time and has resulted in a World Wide Web that 

now sustains heterogeneous components sustaining together. Evidently, no one could 

foresee during its conception days that it had the potential to become the Internet of today 

with over one billion hosts. In order to model growth, one has to have the capability to 

modify the structure of constituent components—its interfaces on how it changes when 

the component is placed in different environments. Biological organisms survive by a 

process of adaptation, and transmitting this information to progeny with encoded 

information unlike the computer systems. The computer systems are characterized by 

rigid interfaces through which they communicate with the “environment.” Certainly we 

are not focused toward modeling adaptation, though it can be done with the current 

DEVS suite, but trying to understand the response of system when another component is 

introduced in the system is of prime importance. The response time of a system is defined 

as the time taken by the system to display any effect once the model has been modified. 

There are legacy systems, and the new technology is bringing new components that need 

to be backward compatible. The situation with respect to IPV4 and IPV6 is one such 

example in which the communication network has a new standard that needs to be 

deployed. IPV6 has been around for more than ten years, and according to various 
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sources, it will take another ten years for the current Internet to be completely IPV6 

compliant. Testing of IPV6 in conjunction with IPV4 is a big limitation [Dic05]. The 

analysis of these kinds of situations can be very readily done with the current capability 

by introducing links and components to the existing network model and observing how 

the system responds.  

 

The steady state of any network system can be defined as the situation when the 

computer network is stable and there is constant throughput, network latency, and there 

are no overflowing buffers in routers. In essence, it boils down to the efficient utilization 

of bandwidth across all links such that there are no blockages. Total data transmitted 

from network components is received at the designated destinations, with allowable 

errors. Consequently, capacity planning is one study that results in quantifying the 

bandwidth in order to make the system stable with a specified number of components. 

Looking at it in inverse perspective, finding the number of components that can be 

sustained by any particular deployed network is of equal interest. The question arises: 

How can we model a network system in which the system can simulate the growth of this 

network, arriving at a steady state and providing us with the result that the network can 

sustain a particular number of components? The current variable structure capability 

provides us with the needed functionality in which the Experimental frame is given the 

control to “arrive at steady state.” What it actually means is: once a small model of the 

network system is simulated and utilization is reported, the system continues to keep 

adding new (preordained) components, along with their relationships, to the existing 
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system until the system reaches a specified network throughput. At what rate the new 

components are added is a tunable parameter, made available in the experimental frame. 

This whole exercise shows, given a certain system exhibiting certain behavior, how the 

system would perform and evolve if let loose, or what the maximum number of 

components is that the system can be loaded to so that it maintains a steady state! To 

determine at what result-set the system would break, or if it has a “survivable” nature, is 

worth conducting analysis. The run-time capability gives us a window to monitor the 

effects the system incurs when it is modified by external effects like the rate of growth of 

the system.  

3.4 Dynamic Simulation Control 
 

3.4.1 DEVS Simulation Engine 

DEVS has been erected on a framework that exploits the hierarchical, modular 

construction underlying the high level of system specifications. The basis specification 

structure in all the associated DEVS derived formalisms, e.g., DTSS, DESS, is supported 

by a class of atomic models. An atomic model is an irreducible component in DEVS 

framework that implements the behavior of a component. It executes the state-machine 

and interacts with other components using its defined inports and outports. Each such 

atomic class has its own simulator class. A network of these atomic models constitutes a 

coupled model that maintains the coupling relationships between the constituent atomic 

components. Each such coupled model class has its own simulator class, known as a 

coordinator. Assignment of coordinators and simulators follows the lines of hierarchical 
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model structure, with simulators handling the atomic-level components and coordinators 

handling the successive levels until the root of the tree are reached. These simulators and 

coordinators form the DEVS simulation engine, and they exchange messages by adhering 

to what is known as DEVS simulation protocol (see Figure 3.3). The message exchange 

is depicted in the figure below. For more details about the simulation protocol refer to 

chapter 8 of [Zei00]. The figure below shows the mapping of a hierarchical model to an 

abstract simulator associated with it. Atomic simulators are associated with the leaves of 

the hierarchical model. Coordinators are assigned to the coupled models at the inner 

nodes of the hierarchy. At the top of hierarchy there is a root-coordinator that is in charge 

of initiating the simulation cycles (see Figure 3.4). 

 

 
Figure 3.3. DEVS simulation protocol 

 
Figure 3.4: Hierarchical simulator assignment 

for a hierarchical model 
 
 

Since the DEVS model is based on DEVS formalism that is based on mathematical 

systems theory, the behavior expressed through DEVS can be translated to any other 

formalism, though there exist no other theoretical M&S frameworks. With the separation 

of the model from the simulator, the advantage is that it supports formalism 

interoperability. The next subsection throws light on how an experimental frame 
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intervenes in the DEVS simulation protocol by causing interrupts, and how it implements 

dynamic simulation control. 

3.4.2 Interrupt Handling  

The controller frame is built on top of a root coordinator in DEVSJAVA shown in Figure 

3.4 above.  We developed interfaces to enable the DEVS engine to take into account the 

change of experimental frame parameters during the simulation run. It generates 

interrupts, which are handled by the coordinator in DEVSJAVA. The event from the 

controller frame is handled by the root coordinator that holds the simulation at that 

instant, taking care of the simulation state. The event then is channeled through the 

hierarchical simulator network to the intended model. Once the model has been updated, 

the root coordinator resumes the simulation by reinitiating the DEVS simulation protocol. 

Consequently, the model is updated in between the running simulation with other events 

still being held in different component simulators. Only the intended model is updated, 

which then participates accordingly as before. How this event (parameter update inside a 

model) brings change or how the system responds to this change can be seen very well in 

different visualizers. Examples can be seen in later sections and [Mit06a] described a 

complete DEVS software project called Generic Network Capable of Planned Expansion 

(GENETSCOPE) [Gen06]. 
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3.4.3 The Notion of “Simulation Control” Explored 

Having laid out the framework to implement the dynamic simulation control, we also 

explored different methodologies in which the simulation can be controlled. Following 

are the three ways by which the simulation can be interjected and brought to successful 

execution. 

3.4.3.1 Automated Control 
 
In this methodology, we have stored procedures, basically a predefined event list stored 

as a file that is being read actively during the running simulation and generates events 

that sends interrupts to the coordinator.  

 
Figure 3.5: Automated test suite execution 

 

This does not require a controller frame that is used to provide real-time interrupts. The 

experimental frame takes the shape of this file in which different scenarios are preloaded 
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along with simulation parameters. Certainly, execution of a scenario can be considered as 

one simulation run or a session, but the introduction of a parameter set in the 

experimental frame that is injected dynamically in the running simulation is of prime 

interest. This approach has been implemented by Nutaro. This methodology is verily 

extended toward the following setup shown in Figure 3.5 where the SES family of test 

cases is implemented as an XML file. The sequence of test is executed in a sequential 

manner and reported. 

3.4.3.2 Manual Reactive Control 
 
In this methodology, the experimental frame is operated through a controller frame that is 

designed by the system test designers. The significant parameters and models are 

identified with reference to the OV-8 document or NR-KPP set and made available in the 

controller frame [Mit06a]. This methodology provides us with a mechanism to manually 

interject in the running simulation to introduce modifications. It also provides us with the 

capability to steer the simulation if the simulation is moving toward a “crash” or if the 

user wants to see the temporal effects of any parameter update. The capability to steer 

and study the effects of any single parameter is a powerful capability and is almost 

nonexistent in current simulators, both in the academic and commercial arenas. There is, 

however, some software available in the business finance domain that provides this 

capability. We implemented this capability in one of our active projects. Refer to 

GENETSCOPE example in Section 8.4. Reactive Mode Testing is a related concept 

discussed in Section 8.3.3 Testing Status. 
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3.4.3.3 Hybrid Control 
 
As the name suggests, this methodology takes the best of the above two approaches. This 

methodology has an automated scenario generation/modification capability as well as 

reactive control through the controller frame. The main purpose of the controller frame 

in this approach is to study the temporal effects and steer the simulation toward optimum 

performance.  

3.4.4 Parameter Control 

This subsection presents some ideas on the selection and categorization of parameters. 

Two classes of parameters that were identified for any system are the tunable parameter 

set and the result parameter set. 

3.4.4.1 Tunable Parameter Set 
 
This set is comprised of the parameters that are to be included in the Experimental frame. 

This set is termed “tunable” for obvious reasons, as the simulation analysis is conducted 

to study their effects on the system performance when their values are modified. These 

parameters are called tunable parameters because these parameters are implemented as a 

“slider” component in the controller frame with definite bounds. The user can control this 

slider to tune the system for optimum performance. In the network system terminology, 

link capacity, router buffer, etc., can be classified as tunable parameters. With reference 

to the DoDAF and NR-KPP, this makes more sense, as we need to understand the impact 

of the identified “significant” parameter on the overall system performance [Mit06a].  
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3.4.4.2 Result Parameter Set 
 
This set is comprised of the aggregated result values that provide the overall system 

performance estimates. SV-7 provides a place where these documents could be found on 

a per subsystem basis. However, the holistic result parameters still need to find an 

appropriate place. There should be a dedicated place in the systems view with respect to 

the overall system performance. The aggregated parameters in a network system can be 

thought of as latency, network throughput. This parameter takes leverage from the NR-

KPP set that is needed to satisfy the baseline system performance. Its mapping with SV-7 

is beyond the scope of the current work. 

3.4.5 Synopsis 

The above discussion has illustrated how the DEVS simulation framework provides new 

capabilities in the Experimental frame and how these capabilities are implemented. It also 

shows that an experimental frame is the place where the user can modify the model and 

can modulate the simulation according to need. From the basic capability of creating an 

experimental scenario for the modeled system, we have enhanced it by providing more 

features like simulation control and parameter tuning. We have also explored various 

ways simulation control could be performed and how parameters are categorized to find 

their way in the Experimental frame. Together with the variable structure capability 

described in section 7, the experimental frame becomes an all-encompassing user 

interface to a complex hierarchical system model under simulation. It gives the user more 
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power to observe and visualize the simulation by isolation at the parameter level and the 

component level as well as on the subsystem level. 
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CHAPTER 4: REQUIREMENT SPECIFICATIONS AND 
AUTOMATED DEVS MODEL GENERATION 

 
 

This chapter describes various formats in which the system requirements could be 

expressed for today’s systems and the methodologies leading to generation of DEVS 

models in an automated manner. The requirements are the most important part of any 

system development and they are seldom specified in a format that is helpful to the 

developer at large. Consequently, it is refined throughout the system development 

lifecycle until the developer as well as the stake-holder settles on a common ground. 

Testing in such iterative developmental cycle bears the burden of ‘meeting’ the system 

specifications. To automate both the model generation and test case generation is a 

current need of the system design process. Consequently, taking first things first, this 

section enumerates various formats and implementations in which the requirements could 

be specified. They are as follows: 

• State-based system specifications: In this implementation, the system is 

specified using state-machines with UML [omg] tools such as Rational [rat], 

Visio [vis] or Enterprise Architect [spa].  Sometimes the DEVS formalized state 

machine is also available. 

• Rule-based system specifications using restricted natural language 

processing (NLP): Natural language such as English can be very ambiguous. To 

make it more specific, either every aspect must be taken into account for every 

situation, which results in a voluminous record, or the language itself must be 



 76

restricted with chosen keywords. A restricted NLP is provided and model 

generation is described 

• BPMN/BPEL based system specifications: Business Process Modeling Notation 

(BPMN) [bpm] or Business Process Execution Language (BPEL) provide a very 

high level view of any business process involving sub-processes. It can be looked 

upon as a super-activity being composed of many activities in a specified 

sequence and manner. This kind of requirement specification is largely graphical 

in nature and the information is stored in .wsdl and .bpel files for BPEL but in 

proprietary format for BPMN. Methodology is presented on how to extract DEVS 

model information from such specifications 

• DoDAF-based requirement specifications: Department of Defense Architecture 

Framework (DoDAF) [Dod03] is the mandated framework for any future 

government system architecture specification and it suffers from various 

deficiencies largely attributed to the fact that M&S is not mandated in it. An 

enhanced version of DoDAF is proposed and methodology of DEVS model 

generation is described. 

 
Having analyzed the information set available in different formats, DEVS information is 

extracted from these sets. To specify a DEVS system, we have the following basic MUST 

requirements: 

• Entities as Objects and their hierarchical organization  

• Finite State Machines (FSMs) of atomic models 

• Timeouts for each of the phases (States) in atomic models 
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• Entity interfaces as input and output ports 

• External incoming messages at Entity’s interface at specified duration in specific 

State 

• External outgoing messages at Entity’s interface at specified duration in specific 

State 

• Coupling information derived from hierarchical organization and interface 

specifications 

• Experimental Frame specifications 

• As we shall see in each of the ensuing different formats, the required DEVS 

information is extracted and applied towards automated model generation. 

 

4.1 State-Based System Specifications 
 
UML statecharts are the preferred way of specifying state machines. The process to 

generate code from UML diagrams is generally human interpretation and depends on the 

skill and experience of the developer taking into account the help he can get from various 

stub generation UML tools like Rational, Enterprise Architect etc. However, the UML 

statecharts are incomplete when it comes to DEVS state machines. DEVS state machine 

demand more input and specifically the timeouts of each of the specified states to define 

the complete specifications. The issue of ‘timeout’ however critical in many mission-

critical applications is not addressed adequately in UML literature.  
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Not going into the rudimentary details about UML statecharts, we would like to propose 

here a novel way to automate the DEVS state machine specification process. Any state 

machine can be looked upon as the superposition of two behaviors. The first cycle is the 

default execution of the machine, wherein it receives no external inputs. The second 

behavior, which can spawn multiple cycles stems from the actions resulting from 

reception of various inputs in various states. DEVS categorically separates these two 

behaviors in its formal δint and δext specification1.  

  

 
 

Figure 4.1: DEVS state machine Document Type Description (statemachine.dtd) 
 
 

Consequently, a template based state requirement process is developed where the 

designer can specify these two behavior cycles. The chosen way to document the state 

                                                 
1 DEVS atomic specification: M = < X, S, Y, δint, δext, δcon, λ,  ta > 
DEVS coupled specification: M = < X, Y, D, {Mij},{Ij}, {Zij} >  
 Where the symbols have their usual meanings specified in [Zeig] 
 

<!ENTITY % variable-info  
 "name CDATA #REQUIRED  
  type CDATA #REQUIRED"> 
<!ELEMENT statemachine (deltint, deltext)> 
<!ATTLIST statemachine name ID #REQUIRED 
                                         host CDATA #REQUIRED> 
 
<!ELEMENT transition  (startState?, nextState?, timeout?, outMsg*)> 
 
<!ELEMENT deltint (transitionsInt)> 
<!ELEMENT transitionsInt (transition)*> 
 
<!ELEMENT deltext (transitionsExt)> 
<!ELEMENT transitionsExt (transitionExt)*> 
<!ELEMENT transitionExt (incomingMsg?,transition?)> 
 
<!ELEMENT startState (#PCDATA)> 
<!ELEMENT nextState (#PCDATA)> 
<!ELEMENT incomingMsg (#PCDATA)> 
<!ELEMENT timeout  (#PCDATA)> 
<!ELEMENT outMsg (#PCDATA)>
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machines is XML and the constructed artifacts are validated by the DTD. The DEVS 

state machine DTD is presented in Figure 4.1 above. 

 

The designer can specify the DEVS state machine in a tabular format shown as below: 

 
 
DEVS Internal State Machine (for default behavior) 
 
Behavior 
S.No. 

State 
(phase)  

Next 
State 
(phase) 

Timeout Outgoing Message  

1 A B 1 C  
2 B D 10 -  
      
      
 
DEVS External State Machine responding to incoming messages 
 
Behavior 
S.No. 

Incoming 
Message 
name 

State 
(phase) 

Next 
State 
(phase) 

Timeout Outgoing 
Message 

1. X A D 5 Y 
2.  Z B A 1 - 
      
      

 
Table 4.1: Tabular structure for State-based specifications 

 

The tabular information presented above in Table 4.1 as a sample is transformed to an 

XML document validated by the DTD (Figure 4.1 above) and mined for DEVS code 

generation. The information can also be used to render any graphical output as in 

conventional UML statechart diagrams.  
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4.1.1 Sample Example 

For illustration purposes, entity name JTAC is specified in the tabular format below 

(Table 4.2). It is taken from the complete example of Joint Close Air Support (JCAS) 

provided in detail in Chapter 8.  

 

Entity: JTAC 

 
DEVS Internal State Machine (for default behavior) 
 
Behavior 
S.No. 

State (phase)  Next State (phase) Timeout Outgoing 
Message 

 

1. RequestImmediateCA
S 

WaitForAssignment 0 CASResourceSp
ec 

 

2. WaitForAssignment Passive Infinity -  
3. ProvideTAC ContinueExecution 1000 -  
4. ContinueExecution Passive 0 CeaseAttack  
5. WaitForTACRequest Passive Infinity -  
 
DEVS External State Machine responding to incoming messages 
 
Behavior 
S.No. 

Incoming Message 
name 

State 
(phase) 

Next State 
(phase) 

Timeout Outgoing 
Message 

1. RequestTAC WaitForTAC
Request 

ProvideTAC 10 InitialAttack  

2.  YouCanUseUSMC
Aircraft 

WaitForAssi
gnment 

WaitForTACR
equest 

0 - 

 
Table 4.2: State-based specifications for entity JTAC 

 
 

The above state description resulted in .xml file validated by the statemachine.dtd in 

Figure 4.1 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE statemachine SYSTEM "statemachine.dtd"> 
 
<statemachine name="JTAC" host="LOCAL"> 
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<deltint> 
    <transitionsInt> 
        <transition> 
            <startState>RequestImmediateCAS</startState> 
            <nextState>WaitForAssignment</nextState> 
            <timeout>0</timeout> 
            <outMsg>CASResourceSpec</outMsg> 
        </transition> 
        <transition> 
            <startState>WaitForAssignment</startState> 
            <nextState>Passive</nextState> 
            <timeout>Infinity</timeout> 
        </transition> 
        <transition> 
            <startState>ProvideTAC</startState> 
            <nextState>ContinueExecution</nextState> 
            <timeout>1000</timeout> 
        </transition> 
        <transition> 
            <startState>ContinueExecution</startState> 
            <nextState>Passive</nextState> 
            <timeout>0</timeout> 
            <outMsg>CeaseAttack</outMsg> 
        </transition> 
        <transition> 
            <startState>WaitForTACRequest</startState> 
            <nextState>Passive</nextState> 
            <timeout>Infinity</timeout> 
        </transition> 
    </transitionsInt> 
</deltint> 
 
<deltext> 
    <transitionsExt> 
        <transitionExt> 
            <incomingMsg>RequestTAC</incomingMsg> 
            <transition> 
                <startState>WaitForTACRequest</startState> 
                <nextState>ProvideTAC</nextState> 
                <timeout>10</timeout> 
                <outMsg>InitialAttack</outMsg> 
            </transition> 
        </transitionExt> 
        <transitionExt> 
            <incomingMsg>YouCanUseUSMCAircraft</incomingMsg> 
            <transition> 
                <startState>WaitForAssignment</startState> 
                <nextState>WaitForTACRequest</nextState> 
                <timeout>0</timeout> 
            </transition> 
        </transitionExt> 
    </transitionsExt> 
</deltext> 
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</statemachine> 

 
Figure 4.2: XML transformation of JTAC state machine described in tabular format 

 
 

The above .xml (Figure 4.2) description is mined using a DOM parser to generate the 

DEVS atomic model. The generated code is shown in Figure 4.3 below. Each of the rows 

in table above correspond to the if-else construct in the categorized deltint() and deltext() 

functions. For the rows that have Outgoing Message, corresponding constructs are 

created in the out() function. Other important aspect of the DEVS code generation is the 

automated creation of DEVS entity interface based on the outgoing and incoming 

messages. The outgoing message port takes the form of “out”+Message_name and the 

incoming message import takes the form of “in”+Incoming_message_name. This 

relieves burden off the designer in programming the interface specification when 

developing the state machine of the entity model. The inports and outports are added in 

the constructor of the said entity and the first state in the default behavior table is the state 

the entity is initialized with. Further for every state (not equaling ‘Passive’) 

corresponding executable stub as ‘processing state’ function is also provided for the 

designer to come later on and provide any other logic for the next state. In the figure 

below, only console messages are printed for logging purposes and tracking the state 

execution of the encoded entity. The confluent function is largely the external transition 

function for this particular example.  

 
public class JTAC extends ViewableAtomic{ 
     
    /** Creates a new instance of JTAC */ 
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    public JTAC() { 
        addInport("inRequestTAC"); 
        addInport("inYouCanUseUSMCAircraft"); 
        addOutport("outCASResourceSpec"); 
        addOutport("outCeaseAttack"); 
        addOutport("outInitialAttack"); 
    } 
     
    public void initialize(){ 
        holdIn("RequestImmediateCAS", 0); 
    } 
     
    public void deltint(){ 
        if(phaseIs("RequestImmediateCAS")){ 
            processWaitForAssignment(); 
            holdIn("WaitForAssignment",0); 
        } 
        else if(phaseIs("WaitForAssignment")){ 
            holdIn("Passive",Integer.MAX_VALUE); 
            } 
        else if(phaseIs("ProvideTAC")){ 
            processContinueExecution(); 
            holdIn("ContinueExecution",1000); 
        } 
        else if(phaseIs("ContinueExecution")){ 
            holdIn("Passive", Integer.MAX_VALUE); 
        } 
        else if(phaseIs("WaitForTACRequest")){ 
            holdIn("Passive",Integer.MAX_VALUE); 
        } 
    } 
     
    public void deltext(double e, message x){ 
        Continue(e); 
        for(int i=0; i<x.getLength(); i++){ 
            if(this.messageOnPort(x,"inRequestTAC",i)){ 
                if(phaseIs("WaitForTACRequest")){ 
                    processProvideTAC(); 
                    holdIn("ProvideTAC",10); 
                } 
            } 
            if(this.messageOnPort(x,"inYouCanUseUSMCAircraft",i)){ 
                if(phaseIs("WaitForAssignment")){ 
                    processWaitForTACRequest(); 
                    holdIn("WaitForTACRequest",0); 
                } 
            } 
        } 
    } 
     
    public void deltcon(double e, message x){ 
        deltext(e,x);        
    } 
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    public message out(){ 
        message m = new message(); 
        
        //deltint output messages 
        if(phaseIs("RequestImmediateCAS")){ 
            m.add(makeContent("outCASResourceSpec",new        
entity("CASResourceSpec"))); 
        } 
        else if(phaseIs("ContinueExecution")){ 
            m.add(makeContent("outCeaseAttack",new 
entity("CeaseAttack"))); 
        } 
        ///deltext output messages 
        else if(phaseIs("ProvideTAC")){ 
            m.add(makeContent("outInitialAttack",new 
entity("InitialAttack"))); 
        } 
         
        return m; 
    } 
     
    public void processWaitForTACRequest(){ 
        System.out.println("Processing: WaitForTACRequest"); 
    } 
    public void processProvideTAC(){ 
        System.out.println("Processing: ProvideTAC"); 
    } 
    public void processContinueExecution(){ 
        System.out.println("Processing: ContinueExecution"); 
    } 
    public void processWaitForAssignment(){ 
        System.out.println("Processing: WaitForAssignment"); 
    } 
     
} 

Figure 4.3: Generated DEVSJAVA code from valid jtac.xml in Figure 4.2 
 
 

Similarly, coupled model can be created through similar means. Various frameworks 

using System Entity Structure (SES) exist that facilitate such automated stub generation. 

SESM tool developed at ASU is the one in lead that provides GUI based organization and 

automated SES and XML transformation resulting in DEVSJAVA code. Various 

methodologies for coupled model creation using SES are not presented here for obvious 

reasons as this technology is very much in use and mature. 
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Hence, we see that DEVS state machine can be more easily described in a tabular format 

rather than going directly to the programming implementation. XML with validating 

DTD is the preferred way of transformation in an automated manner. Generating the 

DEVS state machine in such manner and augmenting the code later on for adding further 

processing constructs based on specific states is very controllable and tractable. Further, 

such development methodology also encourages ‘logic’ reuse in specific state-processing 

functions and separate the execution from the state machine. It also leads to the model-

continuity for this component towards SOA where such state-processing functions can 

become ‘services’ as discussed in the DEVSML architecture and the proposed universal 

DEVS atomic DTDs in Chapter 6. 

4.2 Message-Based System Specifications with Restricted Natural 
Language Processing 
 
Any discrete event system communicates internally by way of messages. Developing 

system requirements in data-flow perspective is of prime importance in this method of 

requirement specification. English language is used as the preferred means of specifying 

these interactions, however, bounded by rules that encompass all the possible interactions 

related to any message type. These rules also limit the way English language is used in 

terms of removing ambiguous statements. The basic idea is as follows. The entity is 

considered as a collection of various message streams. It has been observed in complex 

systems (e.g. GENETSCOPE [Mit06b]) that an entity node can act as receiver and sender 

simultaneously. This appears logical to consider that a node may be processing more than 
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one messages at a given instant. Consequently, developing a framework where the entity 

node model can operate with multiple message streams is the objective of this type of 

requirement specifications.   

 

The rules that provide a binding to this type of requirement specifications are provided 

below in Figure 4.4. The designer can specify each node’s behavior as a sender and a 

receiver with respect to any specific message type. The message stream is initiated with 

Rule 1 when the entity (e.g. A below) sends message (e.g of type MessageX) sends to 

other entity (e.g. B below) at time T. 

 
 

Figure 4.4: Rules for Restricted NLP based Requirement Specifications 
 

4.2.1 Sample Example: 

To illustrate the usage of these rules as requirement specification artifacts let us consider 

an example in Figure 4.5 that is called ‘Simon Says’.  

 

Rules: 
1. A sends MessageX to B at time T 
2. B having received MessageX from A, responds with MessageY within time T1 
3. A having send MessageX, waits for response until time T2 
4. B having received MessageX from A, and responding with MessageY, A if waiting 

sends MessageZ to B within time T3 
5. B having received MessageX from A, and responding with MessageY, can be 

interrupted with MessageL from C 
6. B having interrupted with MessageL from C, responds with MessageN to C within time 

T4 
7. B having interrupted with MessageL from C, does nothing 
8. B forwards MessageX to C within time T 
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Figure 4.5: Simon Says in English language 
 
 

Translating the behavior of Simon in our Rule-based requirements as per Figure 4.4: 

1. Simon sends DoThis(x) or SimonSaysDoThis(x) to Alice at T_1 (Rule 1) 

2. Simon sends DoThis(x) or SimonSaysDoThis(x) to Bruce at T_2 (Rule 1) 

3. Simon sends DoThis(x) or SimonSaysDoThis(x) to Charles at T_3 (Rule 1) 

4. Simon having send DoThis(x), waits for response until T2_1 (Rule3) 

5. Simon having send SimonSaysDoThis(x), waits for response until T2_2 (Rule 

3) 

 
Translating behavior of Alice or Bruce or Charles in our Rule-based requirements: 

Message Stream: DoThis(x) 

1. Alice having received DoThis(x) from Simon, responds with Did(x), within 

time T1 (Rule2) 

2. Alice having received DoThis(x) from Simon, and responding with Did(x), 

Simon if waiting sends YourOut(x) to Alice within time T3 (Rule 3) 

 

1. The playerGroup consists of Alice, Bruce, and Charles. 
2. Simon can send three type of messages to the playerGroup: DoThis(x), 

SimonSaysDoThis(x), and YourOut 
3. A player must respond to DoThis(x) and SimonSaysDoThis(x) with 

Did(x) or DidNot(x) 
4. If  player receives DoThis(x) from Simon, and the player responds with 

Did(x), then Simon sends YourOut to that player. 
5. If a player receives SimonSaysDoThis(x) from Simon, and the player 

responds with DidNot(x), then Simon sends YourOut to that player. 
6. When all players have responded, Simon may issue another request.  
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Message Stream: SimonSaysDoThis(x) 

1. Alice having received SimonSaysDoThis(x) from Simon, responds with 

DidNot(x), within time T1 (Rule2) 

2. Alice having received SimonSaysDoThis(x) from Simon, responding with 

DidNot(x), Simon if waiting sends YourOut(x) to Alice within time T3 (Rule 

3) 

 
The other statements in Figure 4.5 can be similarly used to provide requirement 

specification for the coupled DEVS specifications (see statement 1). The use of 

Statement 2 will be discussed shortly. Statement 3 becomes redundant in our current 

setup of rule-based requirements as shown above. Statement 6 starts up a new cycle of 

these message streams. Hence, we see that using only Rule 1, 2 and 3 (Figure 4.4) we can 

specify the requirements of Simon Says example. 

 

The next step is the automated code generation of Simon or Alice or Bruce etc., which 

leads us to the transformation of these rule to universal primitives (Table 4.3). Each of 

these primitives corresponds to a specific state in the DEVS state machine. The basic idea 

is that that a rule once translated to a specific primitive (and correspondingly to a DEVS 

state) can be turned on-off depending on the rules usage resulting in a dynamic state 

machine. The concept of Universal State Machine USM (Figure 4.6) germinates from this 

idea which contains all of these rule-based primitives. 
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4.2.2 Transformation of Rules to universal Primitives: 

Rule Name Tag Primitive Name Token 1 Token 2 Token 3 
Toke
n 4 

1 send holdSend #1 MsgX_A_B T   

2 respond 
receiveSendInterru
pt #1 MsgX_A_B MsgY_B_A T1  

3 
wait for 
response waitReceive MsgX_A_B T2   

4 
acknowledg
e waitHoldSend MsgX_A_B MsgY_B_A MsgZ_A_B T3 

5 interrupted 
receiveSendInterru
pt #2 MsgX_A_B MsgY_B_A IMsgL_C_B  

6 
acknowledg
e interrupt 

receiveSendInterru
pt #3 MsgX_A_B 

IMsgL_C_
B 

AMsgN_B_
C T4 

7 
ignore 
interrupt 

receiveSendInterru
pt #4 MsgX_A_B 

IMsgL_C_
B   

8 forward holdSend #2 MsgX_B_C T   
 

Table 4.3: Mapping of Rules 1-8 to universal primitives in Universal State Machine 
(USM) 

 
 

Now, assuming that entity A send MessageX to entity B at time T (Rule 1), various other 

features of such rule-based requirement specifications are as follows: 

• Depending on the behavior specified, resulting in activation of Rule 1-8, 

primitives are switched on-off in the Universal State Machine (USM) 

• The message-stream for Message X is encoded in both entities A and B i.e each of 

the node models for A and B will contain the same code for MessageX processing 

as the USM  takes care of sending and receiving operations for Message X 

• The USM generates a stand-alone DEVS state-machine for any Message Stream 

initiated by message of type Message X 

• Each node having multiple message streams keeps track of ‘active’ message 

streams in a queue based system as a state variable.  
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• Each node exists as a coupled model with node controller coordinating with 

various message streams and tracking operational message streams. 

 
 

Figure 4.6: Universal State Machine (USM) for Rule-base Requirement Specifications 
 
 

4.2.3 Design of Entity Node model with multiple message streams: 

The entity node model (e.g. A or B in Figure 4.4) is a coupled model consisting of: 

• Node controller switch (having state variables for each of message streams) 

• Traffic generator that initiates message streams 
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• Message streams 

• Internal coupling relations between the above components 

• External coupling relations between node controller and boundary of entity node 

model 

 
The automated creation of a node model begins with specification of various message 

streams as laid out in example ‘Simon Says’ Figure 4.5. Each of messages is given an ID 

which becomes the identification of the particular message stream for tracking and 

reporting purposes. Rule 1 in Figure 4.4 is the starting point. Information from Rule 1 and 

other rules is categorized into two sets of messages:  

• Initiator messages 

• Participant messages 

 

Initiator messages directly correspond to Rule 1, which activates the message stream and 

set the node model in sender mode. In terms of USM in Figure 4.6, Message X 

corresponds to initiator message. 

 

Participant messages correspond to various other messages, such as Message Y, Z, L and 

N used in Rule 2-7 and others indicated in USM and Table 4.3. 

 

The initiator messages find their way in the Traffic Generator as they contain information 

about the time at which they will activate the particular message stream. 
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The node model displaying the coupling information is shown in Figure 4.7 below for the 

example Simon Says. The formal code and representation is given in the Appendix 

section. For a detailed example refer Chapter 8. 

 

 
 

Figure 4.7: Graphical structure of internals of node entity with two message streams as 
in example of Figure 4.5 

 

The automated code resulted in above coupled diagram is shown in Figure 4.8 below. 

The constructor only takes information about the various message Ids (a.k.a streams) that 

are encoded using USM. 

 
public SimonSaysExample(String[] msgIds){ 
        super("SimonSaysNodeA"); 
        this.msgIds = msgIds; 
        msgStreams = new Hashtable(); 
         
        for(int i=0; i<msgIds.length; i++){ 
            ViewableAtomic ms = new ViewableAtomic(msgIds[i]); 
            addMsgStreamPorts(ms); 
            add(ms); 
            msgStreams.put(msgIds[i],ms); 
        } 
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        ViewableAtomic tg = new ViewableAtomic("TrafGen"); 
        addMsgsToTG(tg, msgIds); 
        add(tg); 
         
        ViewableAtomic nc = new ViewableAtomic("NodeController_A"); 
        nc.addInport("in"); 
        addMsgsToNC(nc, msgIds); 
        add(nc); 
        
        coupleComponents(tg, nc, msgIds); 
        coupleNCwithMsgStreams(nc, msgIds); 
         
    } 

Figure 4.8: Constructor for Node entity of the node diagram in Figure 4.7 
 
 

The automated code borrows various automated coupling constructs stored in the super 

class ‘base’ message node as shown in Figure 4.9 below. 

   

    public void coupleComponents(ViewableAtomic tg,  
ViewableAtomic nc, String[] msgIds){ 

        for(int i=0; i<msgIds.length; i++){ 
            addNodeCouplingTG_NC(tg, nc, msgIds[i]); 
            addSelfNodePortsAndCouplingForMsg(nc, msgIds[i]); 
        } 
    } 
     
    public void coupleNCwithMsgStreams(ViewableAtomic nc,  String[] 
msgIds){ 
        for(int i=0; i<msgIds.length; i++){ 
            ViewableAtomic ms = 
(ViewableAtomic)msgStreams.get(msgIds[i]); 
            addNCtoMsgStreamCoupling(nc, ms, msgIds[i]); 
        } 
    } 
     
    public void addNCtoMsgStreamCoupling(ViewableAtomic nc,  

 ViewableAtomic ms, String msgId){ 
        addCoupling(nc, "cmdOut"+msgId, ms, "cmdInNC"); 
        addCoupling(nc, "out"+msgId, ms, "inMsgNC"); 
        addCoupling(ms, "outMsgNC", nc, "outgoing"+msgId); 
    } 
     
    public void addSelfNodePortsAndCouplingForMsg(ViewableAtomic nc, 
String msgId){ 
        this.addOutport("relayOutgoing"+msgId); 
        this.addInport("in"); 
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        addCoupling(nc, "relayOutgoing"+msgId, this, 
"relayOutgoing"+msgId); 
        addCoupling(this, "in", nc, "in"); 
    } 
     
    public void addMsgStreamPorts(ViewableAtomic ms){ 
        ms.addInport("cmdInNC"); 
        ms.addInport("inMsgNC"); 
        ms.addOutport("outMsgNC"); 
    } 
     
    public void addMsgsToTG(ViewableAtomic tg, String[] msgIds){ 
        for(int i=0; i<msgIds.length; i++){ 
            addMsgToTG(tg, msgIds[i]); 
        } 
    } 
     
    public void addMsgsToNC(ViewableAtomic nc, String[] msgIds){ 
        for(int i=0; i<msgIds.length; i++){ 
            addMsgToNC(nc, msgIds[i]); 
            this.addPortsAtNodeController(nc, msgIds[i]); 
        } 
    } 
    public void addMsgToTG(ViewableAtomic tg, String msgId){ 
        tg.addOutport("out"+msgId); 
    } 
     
    public void addMsgToNC(ViewableAtomic nc, String msgId){ 
        nc.addInport("in"+msgId); 
    } 
     
    public void addNodeCouplingTG_NC(ViewableAtomic tg,  

    ViewableAtomic nc, String msgId){ 
        addCoupling(tg, "out"+msgId, nc, "in"+msgId); 
    } 
     
    public void addPortsAtNodeController(ViewableAtomic nc, String 
msgId){ 
        nc.addInport("outgoing"+msgId); 
        nc.addOutport("relayOutgoing"+msgId); 
        nc.addOutport("cmdOut"+msgId); 
        nc.addOutport("out"+msgId);      
    } 

 
Figure 4.9: Various library functions supporting automated node coupling relations 

 
 

Having constructed a node model with multiple message streams in an automated 

manner, the next step is construction of coupled scenario model containing various node 
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entity models. The details of coupled scenario construction are not provided as it does not 

require any research in present state of DEVS advancements. Tools like SESM modeler 

developed at Arizona State University provide a very solid framework of XML and SES 

towards creation of coupled models.  

 

For a detailed example for requirement specifications using restricted NLP refer Chapter 

8. 

 

4.3 BPEL/BPMN-Based System Requirement Specifications 
 
Business Process Execution Language or BPEL is a business process modeling language 

that is executable. It is serialized in XML and communicated over a net-centric platform. 

It is the latest in development of business scenarios where many business stake holders 

participate towards a common business goal. It is an orchestration language giving a 

global view of the participating business process communicating over the Web. BPEL’s 

messaging facilities depend on the use of Web Service Description Language (WSDL) 

1.1 to describe the outgoing and incoming messages. The BPEL specification [bpel] is 

described as a process flow that uses various Web Services in a goal-oriented scenario. 

BPEL4WS provides language for the formal specification of business processes and 

business interaction protocols. It extends the Web Services interaction model and enables 

it to support business transactions. This information is stored in file with extension .bpel. 

The interfaces of the constituent Web Services are stored in a WSDL file with extension 

.wsdl.  
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There is no standard graphical notation for WS-BPEL. Another format known as 

Business Process Modeling Notation (BPMN), mainly as a graphical front-end is also in 

use to capture the BPEL process descriptions and many vendors have their proprietary 

means to portray and design a BPEL process. Interoperability among these different 

vendors is one of the major problems we faced during this endeavor. Mapping of BPMN 

to BPEL is problematic and fundamental differences between these two approaches along 

with vendor issues make it very difficult and in some cases impossible to produce a 

‘valid’ BPEL specification. Even more difficult is the problem of BPMN-to-BPEL 

roundtrip engineering! A sample BPMN diagram looks like Figure 4.10 

 
 

Figure 4.10: Sample BPMN diagram 
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A typical Web Service when encapsulated in BPEL4WS framework look like Figure 

4.11. The composition primitives found in BPEL4WS comes primarily from many years 

of workflow and business process integration, hence its positioning as a business process 

composition language. The role of BPEL4WS is to define a new Web service by 

composing a set of existing services. BPEL4WS is just a language to implement such a 

composition. The interface of the composite service is described as a collection of WSDL 

portTypes and the composition (called the process) indicates how the service interface 

fits into the overall execution of the composition. As can be clearly seen from the figure, 

there is natural overlapping with DEVS component architecture. DEVS atomic 

component is also port-interface based hiding within itself the state machine (as a 

process) for that particular component. In one of our other efforts, we proposed DEVS 

Service component that builds on top of the DEVS atomic component and can be readily 

deployed using Model-continuity principle in Web service architecture. 

 

 
Figure 4.11: View of Web Service implemented as Web Service (courtesy: IBM) 
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The objective of this section of research deals with the development of DEVS models 

from any BPEL4WS specification constituting of .bpel and .wsdl file. As we shall see in a 

moment that all the information is contained there in the .bpel and .wsdl files, it only 

needs to be mined and put into DEVS perspective. The overall process for such 

transformation is shown in Figure 4.12 

 

 
Figure 4.12: Overview of BPEL-to-DEVS process 

 
 

Not going into the details of actual XML file for .bpel, the structure of .bpel can be 

graphically depicted as in Figure 4.13 for clearer understanding. Also shown in the figure 

is extraction of DEVS elements from various BPEL constructs. As can be seen, the 

message interchanged between different services, various coupling relations, listing of 

atomic models and hierarchical organization can be obtained from a .bpel file. 
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Figure 4.13: BPEL-to-DEVS transformation 

 
 

The second aspect of this development is the information contained about interfaces in 

the accompanying .wsdl file. This file is also specified in valid XML format and is mined 

for DEVS elements of message types, method names and associated input/output 

parameters and location of Web services and their port types. The mapping is shown in 

Figure 4.14 below. 
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Figure 4.14: WSDL-to-DEVS transformation 

 
 

Integration of both of the aspects above led to the development of a tool that takes in a 

scenario with various .bpel and .wsdl files and transform them into a fully functional 

DEVS coupled model with operational state machines for atomic models. The contained 

Web services become the DEVS atomic models and BPEL description produces the 

coupled models. Figure 4.15 shows the snapshot of the tool that transforms a BPMN 

scenario (with contained multiple .bpel to .wsdl file) to an operational DEVS model. A 

detailed example is presented in Chapter 8. 
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Figure 4.15: Snapshot of a BPMN-to-DEVS Transformation tool 
 

 

4.4 Scenario-Based Systems using DoDAF 
 
A recent DoD mandate requires that the DoD Architecture Framework (DoDAF) be 

adopted to express high level system and operational requirements and architectures 

[Dod03a].  DoDAF is the basis for the integrated architectures mandated in DOD 

Instruction 5000.2 [Dod03b] and provides broad levels of specification related to 

operational, system, and technical views. Integrated architectures are the foundation for 

interoperability in the joint Capabilities Integration and Development System (JCIDS) 

prescribed in CJCSI 3170.01D and further described in CJCSI 6212.01D [CJC04, 

CJC06].   DoDAF and other DoD mandates pose significant challenges to the DoD 

system and operational architecture development and testing communities since DoDAF 

specifications must be evaluated to see if they meet requirements and objectives, yet they 



 102

are not expressed in a form that is amenable to such evaluation.  However, DoDAF-

compliant system and operational architectures do have the necessary information to 

construct high-fidelity simulations. Such simulations become, in effect, the executable 

architectures referred to in the DODAF document. DoDAF is mandated for large 

procurement projects in the Command and Control domain but its use in relation to M&S 

is not explicitly mentioned in the documentation [Atk04, Zei05a]. Thus an opportunity 

has emerged to support the translation of DODAF-compliant architectures into models 

that are of sufficient fidelity to support architectural evaluation in capable simulation 

environments.  Operational views capture the requirements of the architecture being 

evaluated and System views provide its technical attributes. Together these views form 

the basis for semi-automated construction of the needed simulation models.   

 

DoDAF is a framework prescribing high level design artifacts, but leaves open the form 

in which the views are expressed. A large number of representational languages are 

candidates for such expression. For example, the Unified Modeling Language, (UML) 

and Colored Petri Nets (CPN) are widely employed in software development and in 

systems engineering. Each popular representation has strengths that support specific 

kinds of objectives and cater to its user community needs. By going to a higher level of 

abstraction, DoDAF seeks to overcome the plethora of “stove-piped” design models that 

have emerged. Integration of such legacy models is necessary for two reasons. One is 

that, as systems, families of systems, and systems-of-systems become more broad and 

heterogeneous in their capabilities, the problems of integrating design models developed 
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in languages with different syntax and semantics has become a serious bottleneck to 

progress. The second is that another recent DoD mandate also intended to break down 

this “stove-piped” culture requires the adoption of the Service Oriented Architecture 

(SOA) paradigm as supported in the development of Network Centric Enterprise Services  

(NCES) [DoD05c]. However, anecdotal evidence suggests that a major revision of the 

DoDAF to support net-centricity is widely considered to be needed. Indeed, under DoD 

direction, several contractors have begun to design and implement the NCES to support 

this strategy on Global Information Grid. The result is that system development and 

testing must align with this mandate – requiring that all systems interoperate in a net-

centric environment – a goal that can best be done by having the design languages be 

subsumed within a more abstract framework that can offer common concepts to relate to. 

However, as stated before, DoDAF does not provide a formal algorithmically-enabled 

process to support such integration at higher resolutions. Lacking such processes, 

DoDAF is inapplicable to the SOA domain and GIG in particular. There have been 

efforts like [Dan04] that have tried to map DoDAF products to SOA but as it stands out 

there is no clear-cut methodology to develop an SOA directly from DoDAF, rest aside 

their testing and evaluation. 

 

4.4.1 DODAF Specifications 

The Department of Defense (DoD) Architectural Framework (DoDAF), Version 1.0 

(2003), defines a common approach for DoD architecture description development, 

presentation and integration. The framework enables architecture descriptions to be 
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compared and related across organizational boundaries, including joint and multinational 

boundaries. DoDAF is an architecture description and it does not define a process to 

obtain or build the description. The Deskbook [Dod03a] provides one method for 

development of IT architectures that meet DoDAF requirements, focusing on gathering 

information and building models required to conduct design and evaluation of 

architecture. The DoDAF defines three elements for any architecture description, taken 

from [Dod03a, Zei05a]. These are: 

 

Operational Views (OV)  

The OV is a description of the tasks and activities, operational elements, and information 

exchanges required to accomplish DoD missions.  DoD missions include both 

warfighting missions and business processes.  The OV contains graphical and textual 

products that comprise an identification of the operational nodes2 and elements, assigned 

tasks and activities, and information flows required between nodes.  It defines the types 

of information exchanged, the frequency of exchange, which tasks and activities are 

supported by the information exchanges, and the nature of information exchanges. 

 

System Views (SV) 

The SV is a set of graphical and textual products that describes systems and 

interconnections providing for, or supporting, DoD functions.  DoD functions include 

                                                 
2 Operational Node: A node specified in OV that performs one or more operations. A functional 
entity that communicates with other functional entity to implement a collective functionality or a 
capability. 
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both warfighting and business functions.  The SV associates systems resources to the OV.  

These systems resources support the operational activities and facilitate the exchange of 

information among operational nodes. Within this view, HOW the functionalities 

specified in OV will be met is elaborated.   

 

Technical Views (TV) 

The Technical view is the minimal set of rules governing the arrangement, interaction, 

and interdependence of system parts or elements, whose purpose is to ensure that a 

conformant system satisfies a specified set of requirements. Within this view, the delivery 

of systems and functionalities is ensured along with their migration strategies towards 

future standards.  

 

 
 

Figure 4.16: Linkages among Views 
 
 

These views provide three different perspectives for looking at an architecture. The 

emphasis of DoDAF lies in establishing the relationship between these three elements 
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ensuring entity relationships and supporting analysis (Figure 4.16). The DoDAF approach 

is essentially data-centric rather than product-centric. The OV, SV and TV are further 

broken down into specialized views whose brief description can be seen in column 3 in 

Table 4.4 ahead. 

 

Another way to look at it is through this pyramid (Figure 4.17), which provides the 

contribution of this research effort, that is, incorporating DEVS M&S is an integral part 

of design and evaluation cycle based on requirement specifications at the top of the 

pyramid. The Execution roadmap is as follows: 

• Define mission capabilities 

• Identify mission threads 

• Decompose into Activities and info needs 

• Perform M&S based design evaluation, 

o Identification of scenarios (Exp. Frames) 

o Identification of Interfaces for KIP 

o Simulation based on KPP 

• Using model-continuity identify systems 

• Evaluate performance based and do calibration based on simulation 

• results of KPP in step 4 
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Figure 4.17: DoDAF/DEVS execution roadmap 

 

4.4.2 Motivation for DoDAF-to-DEVS mapping 

The DoDAF suffers from following shortcomings: 

1. Although there is mention of ‘Executable architectures’ in DoDAF, there is no 

methodology recommended by DoDAF that would facilitate the development of 

executable DoDAF models.   

2. It has completely overlooked the Model-driven Development approach. 

Consequently, there is no formal M&S theory that DoDAF mandates. 

3. DoDAF fails to address performance issues at OV level 

4. DoDAF fails to include measures of effectiveness (MoEs) that can be evaluated at 

OV stage. If at all any performance measures are considered, they are at System 



 108

View level. System parameters and performance is at a totally different resolution 

than MoEs.  

5. There is no mechanism to perform Verification and Validation (V&V) at OV 

stage 

6. It fails to address M&S as potent evaluation and acquisition tool. 

 
We propose a mapping of DoDAF architectures into a computational environment that 

incorporates dynamical systems theory and a modeling and simulation (M&S) 

framework. The methodology will support complex information systems specification 

and evaluation using advanced simulation capabilities. Specifically, the Discrete Event 

System Specification (DEVS) formalism will provide the basis for the computational 

environment with the systems theory and M&S attributes necessary for design modeling 

and evaluation. We will see in the forthcoming sections that the proposed mapping will 

require augmentation of current DoDAF with more information set that is far from any 

duplication of the available DoDAF products. We will demonstrate how this information 

is added and harnessed from the available DoDAF products towards development of an 

extended DoDAF integrated architecture that is “Executable”. This kind augmentation 

has been attempted earlier by [Lee05] that used CORE® of the Vitech Co. as a tool to 

develop the executable architecture. They developed ‘architectural templates’ that elicit 

information for both the Operational and System views that contained additional 

information than the usual DoDAF products. In another effort [Ros04] the authors have 

proposed a new model called Rosen-Parenti model that adds another layer of abstraction 

to the existing DoDAF, augmenting the model with various user-oriented perspectives. 
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They further led on to develop the executable architecture with their proposed model and 

how V&V is applicable in their domain. Their model unearthed the shortcoming of 

DoDAF that it fails to address the performance issue at OV level, which their model 

address in one of their perspectives. In our attempt to augment the current DoDAF our 

focus shall remain to add minimal information that would enable DoDAF to become the 

executable architecture. There are potential advantages of making DoDAF, a DEVS 

compliant system. 

 

We seek to employ the DoDAF-to-DEVS mapping to unify multiple model 

representations by expressing their high-level features within DoDAF and their detailed 

features as sub-classes of DEVS specifications.  DEVS has been shown to be a universal 

embedding formalism, in the sense of being able to express any sub-class of discrete 

event systems, such as Petri Nets, Cellular Automata, and Generalized Markov Chains 

[Zei00]. DEVS has also been employed to express a wide variety of more restricted 

formalisms, such as state machines, workflow systems, fuzzy logics, and others [Sar01].  

Moreover, DEVS environments have a long history of development and are now seeing 

ever increasing use in the simulation-based design of commercial and military systems 

[Zei03]. Providing a DoDAF “front end” to a “back end” DEVS environment, will appeal 

to military information system designers facing the DoDAF and NCES mandates. Such 

designers will be able to retain their skills with representations familiar to them, while 

complying with DoDAF abstractions. At the same time they can see the results of their 

specifications evaluated via simulation-based execution of the model architecture. 
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Moreover, since all mappings are into subclasses of DEVS, the resulting models can be 

coupled together and therefore can interoperate at the systems dynamics level. Thus this 

approach to the synthesis of system design formalisms leverages design and execution 

methodologies that are already used, or mandated for use, in commercial and military 

applications. 

 

As a result of recent advances, DEVS can support model continuity through a simulation-

based development and testing life-cycle [Hux05]. This means that the mapping of high-

level DoDAF specifications into lower-level DEVS formalizations would enable such 

specifications to be thoroughly tested in virtual simulation environments before being 

easily and consistently transitions to operate in real environment for further testing and 

fielding.   

 

4.4.3 From OV-6 UML diagrams to DEVS component behavior 

specifications 

 
Figure 4.18 below describes the development of DEVS description model from a simple 

Time-sequencing thread in a Time-sequencing diagram. It must be indicated here that OV 

diagrams are essentially drawn using UML so we are thereby developing a methodology 

to transform UML diagrams to DEVS specifications 

 

A simple timing-sequence diagram is considered to illustrate the DEVS Activity 

component development process and how it fits into the DEVS description of an 
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Operational node. Consider that a hierarchical activity is being addressed by three 

Operational nodes and they are exchanging events between sub-activities in order to 

perform this activity. In the first diagram in Figure 4.18 (leftmost), we can see them 

interacting with each other. The center part of the figure consists of the thread for one 

Operational node and is enlarged for better analysis. The sequencing diagram in 

represented in UML notation and this node has a life-line during the course of which it 

receives events and sends output messages or events to other nodes.  

 
 

Figure 4.18: Development of DEVS Description model from UML Timing-Sequence 
Thread 
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In mapping to DEVS formalism we need to have information about the internal 

transitions (when no events are received) from one activity to another activity and the 

External transitions (when an event is received at this node sent by other node). The time-

line of the node consists of sequence of activities which the node will undergo in the 

event of external transition or internal transition. The complete timeline is available in 

OV-6b, so there is all the more reason to maintain consistency and similar input and 

output trajectories of sequential activities. Different markings on the thread are self-

explanatory. Red boxes indicate the port interfaces where an external event can be 

received and green boxes indicate the port from which output events can be sent to other 

nodes. Activity 1 receives an external event and undergoes Activity 2 after generating an 

output message. Activity 2 undergoes internal transition towards Activity 3 in absence of 

any external event. This particular thread displays only a subset of activities performed 

by this node. Since DEVS employs port-based component structure system we identify 

the input and output ports and assign them to specific activity components at this 

particular developmental stage. This results in introduction of a new OV document OV-8 

that contains the mapping of ports and Activity components. Finally, these activities, if 

not present in OV-6b, are then introduced in OV-6b for a comprehensive set of activities 

performed by this Operational node.  Another byproduct of this stage is the mapping of 

Activity components with Entity components that constitute an Operational node. This is 

specified in a new OV document called as OV-9. This contains information about the 

Activity-ports, Activity components, Entity components and Entity-ports. Introduction of 
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these new OV documents modifies the overall DoDAF OV specification structure that is 

illustrated in Figure 4.18.  

 

DoDAF-to-DEVS Elements 

 
The power of UML can not be ignored. UML has matured to great levels and has become 

integral part of any model based system design. Even the most complex and 

encompassing DoD Architecture Framework lends itself to UML in description of its 

various artifacts. However, the bridge to develop executable code from imprecise UML 

constructs is under research. Executable UML with the aid of Action Semantic approach 

is one effort that brings to light this important gap of “Model to Code” directly. DEVS 

with its advanced Model-Continuity process provides this capability readily. Further, the 

process of developing Executable architectures from object-oriented designs is in place 

[Wag02] but it has not being explored rigorously for testing software architectures. 

 

As capable as DEVS M&S framework is, it is still not in the mainstream industrial 

software system design and planning. The ideal progress path now is the development of 

a mechanism to employ DEVS M&S with UML based developmental methodology. 

Below is a mapping of UML with the DEVS Elements that provides just the same. The 

table below is reproduced from our recent work [Mit06a] that involved the artifacts of 

DoDAF as well. Representation of DoDAF into corresponding UML has been presented 

earlier by Telelogic [Tel04].  To evaluate a complete example on the implementation of 

this table refer [Mit06a].  
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DoDAF Elements 
 
 Name Description 

 
UML 
Elements 

 
DEVS Elements 
(generated using XML) 

OV-1 Top-level 
Operational 
View 

• Use-case 
Diagrams 

• Activity Component 
identification 

• Top level entity 
structure 

 

OV-5 Operational 
Activity Model 

• Use-case 
• Activity-

Sequencing 
Diagrams 

• Data-Flow 
Diagrams 

• Activity Component 
updating 

• Hierarchical 
organization of 
activities 

• Input-output pairs  
• Port Identification 

OV-6 Operational 
Timing and 
Sequencing 
Diagrams 

• Timing-
Sequencing 
Diagrams 

• State-
machine 
Diagrams 

• DEVS Atomic Model 
Creation (Initialize 
Function, internal and 
external, transition 
functions, time 
advance and output 
functions) for Activity 
Components 

• Entity identification 
• Acitivy-Entity 

component mapping 
 

OV-2 Operational 
Node 
Connectivity 

• Composite 
Structure 
diagrams 

• Coupling Information 
• Hierarchical 

component 
organization 

 
OV-8 Activity 

Component 
Description 

• Composite 
Structure 
diagrams 

• Statecharts 

• Activity Component 
update 

• Activity port 
identification and 
refinement 

 

DEVS 
Model 
Repository 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Operational 
View 

OV-3 Operational 
Information 
Matrix 

 • Input-Output 
Transaction Pairs 

• Message formats 
• Activity Interface & 

Coupling information 
 

DEVS 
System-Test 
Suite 
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OV-9 Activity 
Interface 
Specifications 

• Statecharts 
• Composite 

Structure 
diagrams 

• Acitvity-Entity 
Interface 

• Entity structure 
refinement 

• Activity-Entity port 
mapping and 
refinement 

 
OV-7 Logical Data 

Model 
• Packages 

(only for 
xUML) 

• Class 
diagrams 

• Entity identification 
• Hierarchical Structure 
 

OV-4 Organizational 
Relationship 
Chart 

• Class 
diagrams 

• Entity identification 
• Hierarchical entity 

structure 
 

DEVS 
Model 
Repository 

 SV-4 
System 
Functional 
Description 

• Use-case 
Description 

• Activity 
Sequencing 
diagrams 

• Hierarchical 
functional components 
organization 

 

SV-5 

System 
Functional 
Traceability 
Matrix (Based 
on OV-5) 

 • Coupling Info 
Refinement 

SV-10 

System State 
Description and 
Event Trace 
(based on OV-
6) 

• Sequence 
Diagrams 

• Statecharts 

• DEVS atomic model 
transition functions 
refinement 

SV-6 
System Data-
Exchange 
Matrix 

 • Input-Output pair 
refinement 

SV-1 

System 
Interface 
Description 
(based on OV-
2) 

• Composite 
Structure 
diagram 

• Port assignment 
Refinement 

• Entity refinement 

SV-2 
System 
Communication 
Description 

• Deployment 
Diagrams 

• Coupling Info 
Refinement 
(hierarchical 
management) 

DEVS 
Model 
Repository 

System 
View 

SV-7 

System 
Performance 
Parameters 
Matrix 

 • Experimental Frame 
DEVS 
System-Test 
Suite 
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SV-3 System-
Systems Matrix  

• Hierarchical model 
organization 

• Entity refinement 
 

SV-11 Physical 
Schema Class diagrams • Hierarchical Model 

organization 

TV-1 Current 
Standards 

• Timing 
Response 

• Basic DEVS model 
for COTS component Technical 

View TV-2 Future 
Standards  

• Improved DEVS 
model for desired 
Functionality 

DEVS 
Model 
Repository 

 
Table 4.4: Mapping of DoDAF with UML and DEVS M&S Elements 

 

4.4.4 Representing DoDAF within the System Entity Structure: Multiple 

Aspects 

The System Entity Structure (SES) is a high level ontology framework targeted to 

modeling, simulation, systems design and engineering. Its expressive power, both in 

strength and limitation,  derive from that domain of discourse. An SES is a formal 

structure governed by a small number of axioms that provide clarity and rigor to its 

models. The structure supports hierarchical and modular compositions allowing large 

complex structures to be built in stepwise fashion from smaller, simpler ones. Tools have 

been developed to transform SESs back and forth to XML allowing many operations to 

be specified in either SES directly or in its XML guise. The axioms and functionally 

based semantics of the SES promote pragmatic design and are easily understandable by 

data modelers. Together with the availability of appropriate tool support, this makes 

development of XML Schema transparent to the modeler. Finally, SES structures are 

compact relative to equivalent Schema and automatically generate associated executable 

simulation models. 
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Figure 4.19 shows the various DoD AF views map into the SES framework. Operational 

and System perspectives are considered two different decompositions of the system under 

consideration. They are represented by corresponding nodes called aspects labeled by the 

names, OperationalView and SystemView, respectively.. The OperationalView aspect 

has entities labeled opNodes (operational nodes) and activities. The various operational 

views of DoD AF (other than OV-4) are easily interpreted as describing the entities and 

their interactions. Likewise, the SystemView aspect has entities labeled functions with 

DoD AF views that are associated with the functions and their interactions. The one 

exception is SV-5 which is a relation between the functions of the SystemView and the 

activities of the OperationalView. This view describes how the activities are implemented 

via executable functions supplied by the system.  To accommodate OV-4 we have added 

another aspect, the OrganizationalAspect, which represents the decomposition of the 

system into the roles played by participating personnel. 
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Figure 4.19: Representing DoD AF within the SES framework 

 

4.4.5 Deriving testable behaviors from DoDAF specification 

So far the SES has been shown to provide a means of pigeon-holing the various DoD AF 

views. The power of this representation however lies in the support it provides for 

deriving system behaviors that can be transferred in semi-automated fashion to 

executable test federations.  The System View is further refined by explicitly adding 

messages as entities to it. For simplicity, components represent both the functions and 

their decomposition into services. The coupling associated with the components aspect 

specifies how messages are routed among the components. This information is what is 

required to automatically map the System View to a simulation model, that is, in this 



 119

case, a test federation. To obtain such information, we develop a process for deriving it 

from specifications associated with the Operational View and mappings between the 

Operational View elements and their realizations in the System View. If an opNode is 

engaged in an activity which requires a certain information exchange and the opNode is 

mapped to a component that executes the function implementing the activity, then this 

component must be observed to receive and send messages associated with that 

information exchange. 

 

 
 

Figure 4.20: SES for enhanced DoDAF with a focus on OV 
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Information technology–based systems of the future will be increasingly complex with 

participants across the globe communicating through disparate channels. Interoperability 

is very much in question. Scalability and fault-tolerance issues have to be addressed. 

Capabilities have to be satisfied and reliability has to be ensured. Any large system that 

DoDAF specification documents intend to build has to realize these important facets of 

architecture design. Modeling and simulation with its model-continuity principles is fast 

becoming an accepted method of evaluating design principles ensuring accountability to 

various components within the system. DoDAF has completely overlooked M&S as a 

possible means to evaluate design, capabilities, and planned expansion of current 

architectures. There is no provision for testing the constructed system, either in OV or in 

SV. The ability to configure systems for optimum performance is not allowed in the 

current DoDAF specification document. 

 

We have introduced two new operational views, OV-8 and OV-9 that add features to 

enable M&S of the system under design. More details can be found in [Mit06a]. We have 

also demonstrated how these new documents will be created from the existing 

Operational Views. We aim to provide structure to the OV process by shifting the 

perspective from describing functionality as an activity to an Activity-component with 

definite interfaces to other Activity components as well as identified entities within an 

Operational node. To what extent an Operational node is decomposable is a subject 

requiring further research. We have developed a testing process for defined capabilities 

(that were defined during the conceptual design process in OV-5) and ways in which 
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various rules and doctrines (in OV-6a) can be evaluated for interoperability with different 

capabilities. By purview of the information contained in OV-9 we have introduced the 

model repository as an important aspect of DoDAF system specification that enhances 

the DoDAF by making way for M&S activity. Figure 4.20 shows the system entity 

structure (SES)  snapshot of the enhanced DoDAF with focus toward the Operational 

Views. Table 4.4 provides the mapping of various DoDAF OV products into DEVS 

modeling constructs. UML is chosen as the preferred way of DoDAF representation. First 

the UML element is mapped with the DoDAF product document and then the same UML 

element is mapped to the DEVS element(s).  

 

Their representation included SV products as well. In the Table above we have also 

incorporated the two new OV products i.e. OV-8 and OV-9. Since UML is essentially an 

Object-oriented methodology, work has been attempted in the area of transforming UML 

models to CPN executable architectures [Wag02]. Our work is similar in nature, where 

UML elements are transformed to DEVS elements. The last column links the DEVS 

elements to Figure 3 and 4 by categorizing them into Model Repository and Semi-

automated test-suite elements.  

 

DEVS modeled systems are inherently Object-oriented and DoDAF at the OV stage does 

not have full expressiveness to be transformed to an executable model. In one of our 

other systems engineering approaches using System Entity Structure (SES), we 
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developed a hierarchical perspective representation that would enable DEVS to step into 

at various levels of resolutions. The three main perspectives are  

1. Component-based, 

2. Capability-based, and  

3. Rule-Based.  

DEVS Bifurcated model continuity-based system requires all three perspectives to be 

available in order for the system-model be deployable. As you can see in the Table 4.5 

below, the current DoDAF if enhanced with the new OV documents, does make the 

DoDAF a DEVS compliant system. 

 
Artifact SES 

Elements 
Current 
DoDAF 

Enhanced DoDAF Can DEVS model be 
created ? 

Entities  OV-2 
(Operational 
nodes) 
SV-4 (Systems 
identification) 

   
Too early! 

Hierarchical 
entity 
construction 

OV-2, OV-7,  OV-9  
(no mechanism to 
provide information of 
hierarchical formation 
in current OVs) 

YES 
(only the skeleton 
with well-formed 
Coupled models) 

Tree 1 
(Component 
Perspective) 
  
  

Specified 
entity-
based 
constraints 

SV-7 OV-9 
(Hierarchical node 
descriptions help 
localize contraints at 
OV design phase) 

NO 
(information missing 
to develop behavior 
models) 

Capabilities OV1,5,6b, SV-
4 

  NO  
(no Activity-
components defined) 

Hierarchical 
Activities 

OV-6, 6b,c, 
SV-5 

  NO  
(no Activity-
components defined) 

Tree 2 
(Capability 
Perspective) 
  
  
  
  Activity-

based 
parameters 

ABSENT OV-8 
Activity as Activity-
Components definitions 
based on OV-5,6b) 
Documenting 
procedure has place-
holders for Parameters 

YES 
(DEVS Capability 
skeleton can be 
created with 
hierarchical Activity 
composition with 
defined interfaces) 
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and constraints 
identification) See [44]. 

Activity-
based IE 

OV-5,6b OV-8 (may be 
redundant here) 

YES 

Activity-
based ROE 

OV-6a OV-8  YES 

Rule 
Hierarchy 

OV-6a   YES (ATC-Gen 
project [9, 40]) 

Rule-
Activity 
mapping 

ABSENT OV-8  
(the whole purpose of 
OV-8 is realized here) 

YES with full 
behavior for 
(Capability Testing) 

Tree 3 
 (Rule 
perspective) 
  

Rule-Entity 
mapping 

ABSENT 
(partially in 
OV-6a) 

OV-9 
(the whole purpose of 
OV-9 is realized here) 

YES with full 
behavior for (System 
Testing) 

Table 4.5: Summarizing the contribution of OV-8, 9 to DEVS M&S 
 

We have also introduced two new Operational Views OV-8 and OV-9 to address the 

additional information that is needed to make the DoDAF M&S compatible. We have 

also demonstrated the process to create OV-8 and OV-9 from the existing Operational 

Views [Mit06a]. OV-8 contains the information about the Activity Component structure 

and how different Activities are interfaced with each other using the specified logical 

interfaces. OV-9 contains information about the constituent components inside an 

Operational Node and its corresponding DEVS model structure along with their mapping 

to the Activity components in OV-8. Together OV-8 and OV-9 provide a means to 

correlate Activity Components with accountable entities in an Operational node using 

logical interfaces. It is after the transformation of OV-8 and OV-9 into DEVS models that 

rules assigned to specific Activity or Entity components makes OV-8,9 server their 

complete purpose. Automation using XML and simulation-tuning are important concepts 

that can be well executed and performed under current DEVS technology.  Composing 

simulations that are hierarchically stable and realizable is a step forward in evaluation of 
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multi-resolutional architectures. Issues like personnel management and task assignment at 

proper resolution of architectural execution are worth exploring further in future work. 

Capability to objectify parameters and visualize them with respect to end goal in mind is 

critical for success. Current DEVS technology is well equipped to accomplish such a 

capability. 

 
4.5 Synopsis 
 
Referring back to the basic Figure 1.1, the content of this chapter gives way to Figure 

4.21 wherein technology and theory is developed to transform various methods of 

requirement specifications into detailed DEVS operational models. The generalized 

Bifurcated Model-Continuity based process is now transformed to DEVS-Based 

Bifurcated Model-Continuity process with requirements specified in various formats. 

 
Figure 4.21: DEVS Model generation from various types of Requirement Specifications 
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CHAPTER 5: AUTOMATED MODEL-BASED TEST CASE 
GENERATION 

 
 

As detailed in recent DoD reports [Nap97, Nap02], when modeling and simulation is 

properly used, it provides assistance to formulate system capabilities, compares the 

cost/benefit ratios of various alternative designs and evaluates their projected 

effectiveness.  In this paper, we discuss an automated testing framework based on 

Discrete Event System Specification (DEVS) modeling and simulation formalism, 

Extensible Markup Language (XML), and System Entity Structure (SES), being 

introduced at DoD’s Joint Interoperability Test Command (JITC) for interoperability 

testing.  This framework supports the separation of experimentation, models, and 

simulators.  The experimental frames are developed to support reusable models and 

simulators based on the DEVS formalism and dynamic system theory.  The hierarchical 

structures of the models are represented by SES and written in XML format to promote 

extensibility and interoperability.  In order to support the separation of models and 

simulators in the software development, the Model/Simulator/View/Controller design 

pattern provides the framework to support model execution and multiple network 

simulation protocols. 

 

The automated testing framework introduced in this paper is a part of the Automated Test 

Case Generator (ATC-Gen) research project funded by JITC to support the mission of 

standards compliance and certification.  With the simulation-based acquisition initiative, 
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the test requirements in the simulated environments become challenges.  These 

challenges include how to automate and define the scope, the extent, and the 

methodology to update conformance testing. The automated testing framework is 

developed based on three concepts: SES, DEVS, and XML.  SES can represent a family 

of hierarchical DEVS models, and serves as a means of organizing the configuration of a 

model to be designed, which is extracted from a pruning process.  Pruning reduces the 

number of probable models to meet the system requirement.  In the automated testing 

framework, the minimal testable I/O pair and the test model are represented by Pruned 

Entity Structures (PES).  The test models obtained via PES are in executable form.  XML 

uses elements to break up the test model into hierarchical form, and it can be used to 

represent the SES hierarchical structure.  PES is directly mapped into XML, and the three 

SES modes become XML elements.   XML-PES offers simplicity, extensibility, and 

interoperability.  The test models are represented in XML-PES, which can be transformed 

into DEVS C++ source code. 

 

5.1 Automated Test Case Generator: Concept 
 
ATC-Gen is composed of several stages that are developed in conjunction with DEVS 

formalism.  It applies DEVS to the formalization of Military Standard (MIL-STD) 

6016C.  The MIL-STD is written in natural language, and can be formalized into the 

system theory framework by putting a set of requirements in the natural language.  By 

combining system theory and DEVS, the formalization can be transformed into an 

executable simulation model, and the model can be implemented for testing.  By using 
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software tools and modeling packages, the test model can be derived and generated from 

the natural language.  Then, these test models are transformed into an executable format 

and deployed by the Test Driver to perform testing on the SUT.  The processes described 

above become automated testing.  Figure 5.1 illustrates the four stages of the ATC-Gen 

development. 

 

The first stage is Rule Capturing, which captures and formalizes the MIL-STD 6016C in 

XML format.  The military standard is written in the form of natural language, but do not 

support the systematic study of large-scale intelligent system.  By translating the MIL-

STD to a constrained form of natural language that is used in describing system behavior, 

analysis will be easier.  Natural language statements, such as “IF, THEN” used in 

knowledge-based expert system and artificial intelligence will be suitable to describe the 

system behavior.  The disadvantage of the natural language statement is that it is 

incapable of describing the time behavior of the system.  It can be overcome by using a 

finite state machine which will be described in stage 3.  Capturing requires analysts to 

read and interpret the standard.  Formalizing requires the analysts to identity ambiguous 

requirements and extracts the state variables and rules.  The rules are written in the “If, 

Then” format as Figure 5.2, and these rules are not associated with time. 
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Figure 5.1:  ATC-Gen Development 

 
 

 
Figure 5.2: IF-THEN rule format 

  
 

To illustrate this, let us consider a simple system consisting of a vending machine and a 

customer.    The vending machine is in idle state if there is no customer present.  In 

addition, the vending machine does not dispense any item if the customer does not put 

correct amount of money.  It dispenses an item if the correct amount of money is inserted 

into the machine.  This simple system can be described by three statements without any 

time reference: 

• If the vending machine is idle, there is no customer. 

• If the customer doesn’t insert the correct amount of money, no item will be dispensed. 

• If the customer inserts enough money, an item will be dispensed from the machine. 

 

If X is true, 

Then do action Y later 

Rule Set 
Analyzer

ATC Gen

Rule Capture

a) XML Rule 
Repository

b) Rule Capture 
Interface 

c) Document 
Synchronization 
Module 

Rule Formalism

a) Rule Compiler
b) Rule Execution 

Engine 
c) MIL-STD Executable 

Reference 

Test Generation

a) Test Model 
Generator 

b) Test Driver 
Infrastructure 



 129

There are two state variables in the above example: money and item.  Money represents 

the amount of money required to purchase the item, and item represents the product that 

the customer wishes to get from the machine.  The “IF, THEN” statements can be written 

into the XML format.  Tags are created to enhance the structure and identify the 

relationship in the document, and they are the legal building blocks of the XML 

document.  Each statement in Figure 5.3 is considered as a rule.  Each rule is composed 

of conditions and actions.  Conditions and actions can have state variables.  The 

combination of all rules in an example is a rule set.  Based on these guidelines, the 

vending machine example is translated to the XML document.  A XML Document Type 

Definition (DTD) or schema must be created to validate and provide the correct syntax to 

the XML document.   

 

Stage 2 consists of the Rule Set Analyzer.  It employs the Dependency Analyzer (DA) to 

determine useful relationships among rules.  The DA is a DEVS tool and provides a 

visual display of dependencies, allowing selection of test sequences by the test engineer.  

The DA uses DTDs specially written for the project to validate the syntax of the XML 

files.  As mentioned briefly above, the DTD ensures the correctness of the XML files 

before further processing.  Once the syntax is validated, all the rule sets in the XML files 

will be stored in memory.  The DA will determine, manipulate and reorganize all the 

rules and variables, allowing potential dependencies to surface if shared state variables 

are identified between pairs of rules.  Finally, all the rules and variables will be stored in 

a single new XML file, which will be used when creating test sequences in the next stage. 
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Figure 5.3: XML RuleSet 
 

 
Stage 3 is Rule Formalization, which consists of selecting and formulating the test 

sequences; test models are generated from these sequences.  The test engineer formulates 

test sequences in accordance with the structure of the testing requirements, and converts 

them into executable simulation models.  The DA is executed in order to restore the XML 

files and the rules created at the end of stage 2, producing a file containing all the 

possible paths through the simulation and the information required to build a visual 

representation of the rule connections.  By invoking the GUI, it displays the rules by level 

and shows the sequence of rule firing, providing a visual organization of the rules and 

their interrelationships and allowing the test engineer to examine the paths that are 

<RuleSet> 
 <name>Vending machine example</name> 
 <rule name="1"> 
  <condition txt="If vending machine is idle"> 
   <var name="money" varType="currency"/> 
  </condition> 
  <action txt="no action"/> 
 </rule>  
 <rule name="2"> 
  <condition txt="If customer inserts insufficient money"> 
   <var name="money" varType="currency"/> 
  </condition> 
  <action txt="no item is dispensed"> 
   <var name="item" varType="String"/> 
  </action> 
 </rule> 
 <rule name="3"> 
  <condition txt="If customer inserts enough money"> 
   <var name="money" varType="currency"/> 
  </condition> 
  <action txt="dispense item that is chosen by the customer"> 
   <var name="item" varType="String"/> 
  </action> 
 </rule> 
</RuleSet>   
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created between rules in order to finds any potential errors.  Although the DA shows all 

the possible paths, an identification of all possible paths is impractical owing to the fact 

that not all paths are useful.  The test engineer manually examines all feasible paths and 

creates a test case according to the specification and requirement.  The test case is the 

description of the desired SUT behavior in the minimal testable input/output 

representation.  Based on the minimal table I/O pairs, the test model generates the DEVS 

test model in C++. 

 

Stage 4 is Test Generation, which consists of generating DEVS C++ test models and 

executing the test models against a real hardware/software system using the Test Driver.  

The Test Model Generator generates C++ DEVS model in two steps.  First, it converts 

the test cases to XML test models.  Second, the XML test models are converted into C++ 

DEVS model.  The Test Driver is an experimental frame which is capable of executing 

the test model behavior and interacts with and connects to the System Under Test (SUT) 

via a High-Level Architecture (HLA) or Simple J interface.  The Test Driver performs 

SUT conformance testing by inducing the testable behavior expressed in the models into 

the SUT and checking the responses for accuracy.   

 

5.2 Automated Testing Methodology 
 
The automated testing approach combines the systems theory, Modeling and Simulation 

framework, and model-continuity concepts, and applies the Bifurcated Model-Continuity-

based Life-cycle Process [Zei05] to the Link 16 conformance testing.  In this section, the 
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two processes of the ATC-Gen stage 4 are discussed – Test Model Generator and Test 

Driver. The overview is provided in Figure 5.4 

 
Figure 5.4: Overview of ATC-Gen Tool Development 

 
 

5.2.1 Test Model Generator 

The objective of the Test Model Generator is to a create DEVS test models based on 

minimal testable I/O pairs.  In this research effort, we are performing a reachable states 

study and not generating a complete system behavior.  The test scenario is defined in the 

form of inputs and outputs according to the MIL-STD 6016C definition.  The collection 

of I/O function is infinite in principle because there are numerous states to start from and 
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the inputs can be extended indefinitely.  For practice purposes, we restrict our testing 

focus to messages, and assuming they are the only automatable observables available for 

testing. These tests are performed against the military hardware/software systems to study 

its conformity to the MIL-STD.   

 

The DEVS test models are in the form of an experimental frame and allow the Test 

Driver to perform experiments against the System Under Test.  The test engineer 

analyzes the requirements and creates the test scenarios which describe the behaviors of 

the SUT based on the MIL-STD 6016C.  The requirements are written in minimal 

testable input/output representation, and the test models are created by applying the 

model mirroring concept that reverse the minimal testable I/O pairs.  Both the minimal 

testable file and test models are written in XML format and represented by SES, allowing 

for the transformation between the two XML files.  The inputs/output pairs are now 

represented by three primitive atomic models: holdSend, waitReceive, and 

waitNotReceive.  Since the input/output are in sequential order, only one atomic model is 

active each time, and the rest of the atomic models are passive.  In order to try out these 

test models against the real system, they are converted to software programming source 

code.  This allows quick incorporation of the test models into the Test Driver.  Figure 5.5 

below illustrates the process of automated test model generation. 
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Figure 5.5: Test Model Generator 

 

5.2.2 Test Driver 

The ATC-Gen Test Driver (TD) is an experimental frame designed to perform 

interoperability testing on TADIL-J systems.  The objective of the Test Driver is to 

execute the DEVS test models generated by the Test Model Generator (TMG).  TD 

emulates a tactical TADIL-J system by providing simulated TADIL-J messages over the 

simulated tactical communication network, and accepts TADIL-J messages from the SUT 

to determine the condition of the test model, and is implemented via component-based 

design using the enhanced Model/Simulator/View/Controller (MSVC) design pattern.  

The DEVS model is generated by TMG.  The TD simulator is a thread derived from the 

controller that schedules and receives Link-16 messages.  The viewer extracts outputs 

from the simulator, and converts the outputs into a specific middleware format. 

 

 

Enhanced MSVC Design Pattern 

Jim Nutaro [Nut05] demonstrated that the simulator was tuned to the behavior of certain 

network simulation protocols, and the controller could be rapidly modified to support 
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other protocols.  For example, the simulator is associated with HLA time management 

through the controller in order to pace the execution.  The same simulator can be reused 

by implementing a new controller supporting other network simulation protocols to pace 

the execution using the wall clock.  In this methodology, one controller is associated with 

one simulator due to the difficulties inherent in handling multiple control strategies and 

the differing characteristics of the middleware.  The simulator is a child thread derived 

from the controller thread that contains the parameters to influence the simulator.  

Although Nutaro did not consider using the controller to manage the model operation, his 

work led to the enhanced MSVC framework, where a new controller is implemented to 

control the model as well as the simulator. 

 

Figure 5.6 below provides a graphical representation of the enhanced MSVC paradigm 

[Mit06b].  The functions of the model, simulator, and view are the same as the original 

MSVC design.  A basic controller is implemented to receive the messages via 

middleware.  The specialized controllers are derived from the basic controller to handle 

message routing to either the simulator or the model.  For example, as shown in Figure 

5.6, Simple J controller handles the inputs from Simple protocol and controls the DEVS 

simulator.  HLA Controller receives inputs from HLA middleware and controls the 

model’s operations, such as start and stop operations. 
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Figure 5.6: Enhanced MSVC paradigm with multiple controllers 

 
 

It is common for simulation software to support multiple network simulation protocols.  

In a distributed testing environment, there are combinations of test components, such as 

simulation software, gateways, and hardware.  Each of these components is associated 

with different network simulation protocols or middleware.  A test control manager is 

often used to control the basic operations of all the test components or hardware, sending 

operation commands to control the component via a particular middleware.  For example, 

the test control manager synchronizes the time and start/stop of all the test components 

via HLA, and each component is considered as a federate in an HLA federation.     
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The Test Driver is implemented based on the enhanced MSVC pattern design.  It 

supports HLA middleware and the Simple J network protocol.  The test model is 

provided by the TMG, and the model behaviors are generated by three atomic models.  

The view is capable of extracting outputs from the simulator, and provides inputs the 

basic controller.  Model operations are controlled by the HLA controller via HLA 

middleware, and the simulator is controlled by a Simple J controller. 

 

5.3 Synopsis 
 
A new automated testing approach has been successfully developed using System Entity 

Structure, the Extensible Markup Language, the Discrete Event System Specification, 

and the Model/Simulator/View/Controller design pattern.  The hierarchical structures of 

the SUT scenarios and Test models are represented by SES and written in XML format.  

XML DTDs are developed based on the SES to verify the correctness of the XML files.  

The processes of automated testing approach are defined as follows: 

The SUT scenario is constructed by the test engineer based on the system and the test 

requirement using the Minimal Testable Input/Output concept. 

DEVS test models are developed using the model mirroring by reversing the minimal 

testable pairs of the SUT. 

DEVS programming source codes are generated based on the test models. 

The DEVS source codes are implemented into the Test Driver. 

Test Driver executes the models and experiments against a real or simulated system. 
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The automated testing approach is developed to perform conformance testing on the 

military TADIL-J systems.  This approach combines the system theory, the DEVS 

modeling and simulation framework, and the model continuity concepts to formulate and 

develop DEVS models.  It promotes the separations of models and simulator, which 

allows model reuse and develops models independently of the simulation engine.  The 

Test models are developed using the system specifications and DEVS framework by 

collecting the input/output pairs with the initial states and describing the I/O behaviors in 

DEVS.  The simulators are well-defined for reusability and implemented according to the 

system behavior.   

 

MSVC design pattern used in the Test Driver provides a model for building distribution 

simulation for the automated testing.  MSVC promotes the component-based design and 

the reusability of the simulation software.  By applying this design pattern in conjunction 

with DEVS modeling and simulation framework, Test models and the simulators are 

developed separately, and we can attach any network simulation protocols to the 

simulation.  The models are expressed in the DEVS formalism, and the simulators are 

associated with ADEVS simulation engine to execute the models.  The well defined 

semantics of the DEVS modeling and simulation formalism allows the simulator to be 

encapsulated and reused.  The Test models developed under the automated testing 

guidelines are able to be executed by the Test Driver.   
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The automated testing approach was used to verify the conformance of the Integrated 

Architecture Behavior Model (IABM) to the MIL-STD 6016C, and the results of the test 

scenarios were validated using the Simple J network packet monitoring tool. Mo re 

details about  the complete research can be seen at [Mak06]. The SUT/Test model 

method was introduced in this thesis to verify the correctness of the DEVS models.  The 

transmissions and the receipts of the Simple J messages were captured by the packet 

monitoring tool.  The system analyst interpreted and verified the messages, and 

determined whether these messages were the intended behavior of the Test Driver. 
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CHAPTER 6: NET-CENTRIC MODEL EXECUTION USING 
SERVICE ORIENTED ARCHITECTURE 

 
 

This chapter presents a novel framework known as DEVSML that is built on XML 

middleware. It provides the capability to develop a portable integration coupled 

description with complete behavior in XML format that can be simulated either centrally, 

remotely or in distributed manner. Section 6.1 describes DEVSML that expresses DEVS 

model with full behavioral representation and provides a novel way to collaborate and 

share models over the web using Web Services technology. Along with the 

standardization of DEVS DTDs, a vice-versa DEVSML transformation to DEVS JAVA 

code is the prime objective of DEVSML. Client and Server side designs of DEVSML 

framework are described. Section 6.2 builds on DEVSML framework and proposes 

SOADEVS that provides the simulation engine to execute DEVS models over the web 

using Simulation Service in SOA. It also describes the underlying design of SOADEVS 

framework. 

6.1 DEVSML: Automating DEVS Execution over SOA Towards 
Transparent Simulators 
 
DEVS formalism [Zei00] exists in many implementations, primarily in DEVS/C++ and 

DEVSJAVA [ACI06]. Extensions of these implementations are available as DEVS/HLA 

[Sar00], DEVS/CORBA [Cho01], cell-DEVS [Wai01], and DEVS/RMI [Zha05]. Since 

DEVS is inherently based on object oriented methodology, C++ and Java are the chosen 

programming languages. Almost all of the extensions capitalize on the underlying object 
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orientation provide by these two programming languages. The models are coded either in 

C++ or Java. DEVS formalism categorically separates the model, the Simulator and the 

Experimental frame.  However, one of the major problems in this kind of mutually 

exclusively system is that the formalism implementation is itself limited by the 

underlying programming language. In other words, the model and the simulator exist in 

the same programming language. Consequently, legacy models as well as models that are 

available in one implementation are hard to translate from one language to another even 

though both the implementations are object oriented. Other constraints like libraries 

inherent in C++ and Java are another source of bottleneck that prevents such 

interoperability.  

 

The motivation for this work stems from this need of model interoperability between the 

disparate simulator implementations and provides a means to make the simulator 

transparent to model execution. We propose DEVS Modeling Language (DEVSML) that 

is built on eXtensible Markup Language (XML) [Xml] as the preferred means to provide 

such transparent simulator implementation. The present work has been done with Java 

and efforts are ongoing in the direction to provide C++ implementation of the concept. 

This work is built on the JAVAML research done by Vladimir for DEVS Meta Language 

[Jan06]. While his work aims to provide a stand-alone XML schema for DEVS 

formalism that can be used by any of programming implementations, research is still 

ongoing to specify the logic behavior in atomic models. The present work aims to extend 

his approach and provide complete behavioral support in DEVSML by implementing the 
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proposed universal Atomic and Coupled DTDs. We look forward toward standardization 

of these DTDs so that models across the web can participate in Dynamic Modeling & 

Simulation over Net-centric web services. 

 

We have implemented our proposed DTDs in web service architecture; specifically a 

Service Oriented Architecture (SOA) [Sun] and paper will illustrate the Server as well as 

Client designs. We also propose modifications in the DEVS formalism as well that will 

make a DEVS model to be a DEVS Service model that can be readily deployed using 

Model-continuity principles [Hux03].  

 

6.1.1 Overview of DEVSML 

DEVSML is a novel way of writing DEVS models in XML language. This DEVSML is 

built on JAVAML, which is infact, XML implementation of JAVA. The current 

development effort of DEVSML takes its power from the underlying JAVAML [Bad05] 

that is needed to specify the ‘behavior’ logic of atomic and coupled models. The 

DEVSML models are transformable back'n forth to java and to DEVSML. It is an 

attempt to provide interoperability between various models and create dynamic scenarios. 

The key concept is shown in the Figure 6.1.  
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Figure 6.1: DEVS Transparency and Net-centric model interoperability using DEVSML 
 
 

The layered architecture of the said capability is shown in Figure 6.1. At the top is the 

application layer that contains model in DEVS/JAVA or DEVSML. The second layer is 

the DEVSML layer itself that provides seamless integration, composition and dynamic 

scenario construction resulting in portable models in DEVSML that are complete in every 

respect. These DEVSML models can be ported to any remote location using the net-

centric infrastructure and be executed at any remote location. Another major advantage of 

such capability is total simulator ‘transparency’. The simulation engine is totally 

transparent to model execution over the net-centric infrastructure. The DEVSML model 

description files in XML contains meta-data information about its compliance with 

various simulation ‘builds’ or versions to provide true interoperability between various 

simulator engine implementations. This has been achieved for at least two independent 

simulation engines as they have an underlying DEVS protocol to adhere to. This has been 
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made possible with the implementation of a single atomic DTD and a single coupled 

DTD that validates the DEVSML descriptions generated from these two 

implementations. Such run-time interoperability provides great advantage when models 

from different repositories are used to compose bigger coupled models using DEVSML 

seamless integration capabilities.  

 

Figure 6.2 provides a basic flow chart of operations that can be done with DEVSML 

framework. The designer can start with either the JAVA code for atomic/coupled model 

or the DEVSML code for atomic/coupled model. In either of the case, the process has to 

lead to DEVSML representation of the model. The DEVSML description that is 

essentially XML is then validated by the standardized DTDs (shown in next section), can 

now participate in model composition (blue box). The composed coupled model as well 

as DEVSML atomic model can verily be stored in the Library for reuse. The composed 

integrated model, that is complete in every respect, as it contains behavior as well, as 

ready for simulation. The DEVSML model is then sent to various remote locations or 

specifically Server, wrapped in SOAP message to the destination host (Server in our 

case). Based on the information contained in the DEVSML model description, 

corresponding simulator is called for to instantiate the model and executes the simulation 

with the designated simulator.  
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Figure 6.2: Flow chart of basic operations leading to model composability using 

DEVSML 
 

 

Web Services and Interoperability using XML 

Service oriented Architecture (SOA) framework is a framework consisting of various 

W3C standards, in which various computational components are made available as 

‘services’ interacting in an automated manner towards achieving machine-to-machine 

interoperable interaction over the network. The interface is specified using Web Service 

Description language (WSDL) [WSD] that contains information about ports, message 

types, port types, and other relating information for binding two interactions. It is 

essentially a client server framework, wherein client request a ‘service’ using SOAP 

message that is transmitted via HTTP in XML format. A Web service is published by any 

commercial vendor at a specific URL to be consumed/requested by another commercial 
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application on the Internet. It is designed specifically for machine-to-machine interaction. 

Both the client and the server encapsulate their message in a SOAP wrapper. 

 

JavaML 

JavaML [Bad05] is an XML-Based source code representation for Java programs. The 

JAVAML Document Type Definition (DTD) specifies various elements of a valid 

JavaML document. It is well-suited to be used as canonical representation of Java source 

code for tools. It comes with an XSLT-based back-converter that translates a JavaML 

document back into java source code. More details about JavaML can be found at 

[Bad05]. 

 

6.1.2 DEVS DTDs and their Standardization 

This section provides details about the modified DEVS formalism for the atomic model 

to make it ‘service enabled’ in the process of software engineering. The motivation 

comes from the fact that testing of Web Services as in ‘system test suite’ is still in 

infancy and DEVS based testing is still in progress. With a slight modification in the 

DEVS formalism for atomic model we plan to achieve the following: 

Transform any existing DEVS atomic as a container that is capable of publishing services 

Promote testing of web service components by making them DEVS enable so that a 

DEVS wrapper would encapsulate a Service as a ‘component’ 

Transition from a DEVS Service component directly to a web service component after 

removal of wrapper and deploy it using model-continuity principles. 
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Figure 6.3 provides a graphical view of an abstract component that inherits the basic 

functionality of DEVS atomic model. The extended DEVS formalism is specified as 

below: 

 SM = <X, S, Y, δint, δext, δconf , λ, ta, V>  

where, 

V is the set of Service methods that are represented by this atomic model. 

 
The other symbols have their usual meaning as described in standard notations in [Zei00].  

As can be seen in Figure 6.4, we express the DEVS atomic model in XML format. We 

have structured the atomic component’s behavior on the line of Service component. Any 

Service component provides ‘services’, which means that, it is implemented as a method 

in the underlying OOP language. We express the new proposed atomic SM formalism 

with a collection set of these services as V. We collect these methods and store their 

names in the collection V with the intent of producing a WSDL that makes these 

operational methods ‘visible’. This manner of making methods available through WSDL 

provides two advantages: 

The DEVS model could become the actual Service using model-continuity concepts 

Each Service, assuming there is only one method that is made visible, is provided a state-

machine for its behavior testing in off-line mode. 

 

The approach is under research and will be reported in near future. 
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Figure 6.3: an SOA object capable of DEVS modeling 
 

The XML representation of this abstract component is shown in Figure 6.4. The idea here 

is that a DEVS atomic model contains the behavior of a component that has defined 

interfaces. The devsObject is the wrapper that takes care of δint, δext, δconf interactions, 

while the serviceObject presents the services, or methods that are either used individually 

or in nested manner to implement a published service. Making this change in the DEVS 

formalism does not change DEVS original formalism. It just introduces a container that 

contains the name of the methods that could be published as a service. In complex 

models, it is a common practice to break the use-case into smaller manageable use-cases 

for implementation purposes. Similarly, implementing complex behaviors and 

complicated state machines [Mit06a] require the functionality to be organized into 

methods that are called in the DEVS δint, δext, δconf functions. The set V keeps an account 
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of such methods that can be made available for service publications. The XML structure 

of a serviceObject is implemented based on the UML diagram in Figure 6.3. What is 

required here is the addition of code for ‘services’ tag. Once implemented on SOA, the 

code with respect to the ‘services’ tag can be exchanged through a SOAP message and a 

DEVS model is made ready for simulation.  

 
<?xml version="1.0" encoding="UTF-8"?> 
<xml-body> 
<model> 
  <atomic> 
     <name>Hello</name> 
     <params>  </params>  
  <construct> 
 <args> </args> 
 <ports> 
     <inports> 
  <inport>in</inport> 
  </inports> 
     <outports> 
  <outport>out</outport> 
     </outports> 
 </ports>  
  </construct> 

 
    <initialize> 
  </initialize> 
    . .  
  <services> 
 <function> 
    <access> public </access> 
  <return> int </return> 
               <inport> in </inport> 
               <outport> out </outport> 
  <fname> decrement() </fname> 
  <logic>    </logic> 
 </function> 
 
  </services>   
  </atomic> 
</model> 
</xml-body> 
 

Figure 6.4: Automated XML snippet for a DEVS atomic model. 
 
 

Figure 6.5 shows the DEVSML DTD for extended DEVS formalism that contains the 

‘services’ container. Similarly, Figure 6.6 contains the DTD for DEVS coupled (digraph) 
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model. The coupled model is a hierarchical model that takes into account of the contained 

atomic or coupled models. Also notice the attribute ‘simulator (devsjava|xdevs)’ in the 

ATTLIST tag for atomic as well as coupled element. This is the meta-data that is stored 

with every model that is used by server to assign the appropriate simulator for this model. 

Components within a coupled model could be managed by different simulators. The 

attribute simulator in the nodes coupledRef and atomicRef (see Figure 6.6) defines the 

simulator to use. This attribute is generated when de whole model is integrated in one 

DEVSML file. Of course, the simulator must comply with the DEVS simulation protocol. 

The authors call for standardization of both of these DTDs [Mit07e].  

 
<!-- DEVS ATOMIC MODEL --> 
<!ENTITY % variable-info  
 "name CDATA #REQUIRED  
  type CDATA #REQUIRED"> 
<!ELEMENT atomic 
(inputs,outputs,states,ta,deltint,deltext,deltcon,lambda,services?,java
-specific?)> 
<!ATTLIST atomic 
 name ID #REQUIRED 
 simulator (devsjava|xdevs) #REQUIRED 
 host CDATA #REQUIRED> 
<!ELEMENT inputs (port*)> 
<!ELEMENT port EMPTY> 
<!ATTLIST port 
 name CDATA #REQUIRED> 
<!ELEMENT states (state*)> 
<!ELEMENT state EMPTY> 
<!ATTLIST state 
 %variable-info;> 
<!ELEMENT outputs (port*)> 
<!ELEMENT ta (block?)> 
<!ELEMENT deltint (block?)> 
<!ELEMENT deltext (block?)> 
<!ELEMENT deltcon (block?)> 
<!ELEMENT lambda (block?)> 
<!ELEMENT services (service*)> 
<!ELEMENT service (method)> 
<!ATTLIST service 
 name ID #REQUIRED 
 port CDATA #REQUIRED> 
<!ELEMENT java-specific (package-decl,import*,constructor*,method*)> 
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<!ELEMENT import EMPTY> 
 

Figure 6.5: DEVS atomic DTD 
 
 
<!—-DEVS COUPLED MODEL--> 
<!ENTITY % connection-info 
 "component_from CDATA #REQUIRED 
  port_from      CDATA #REQUIRED 
  component_to   CDATA #REQUIRED 
  port_to        CDATA #REQUIRED"> 
<!ELEMENT devs (scenario,models)> 
<!ELEMENT scenario (coupled)> 
<!ELEMENT coupled 
(inputs,outputs,components,internal_connections,external_input_connecti
ons,external_output_connections,java-source-program)> 
<!ATTLIST coupled 
 name ID #REQUIRED 
 model CDATA #REQUIRED 
 simulator (devsjava|xdevs) #REQUIRED 
 host CDATA #REQUIRED> 
<!ELEMENT inputs (port*)> 
<!ELEMENT port EMPTY> 
<!ATTLIST port 
 name CDATA #REQUIRED> 
<!ELEMENT outputs (port*)> 
<!ELEMENT components (coupledRef|atomicRef)*> 
<!ELEMENT coupledRef (components?)> 
<!ATTLIST coupledRef 
 name  CDATA #REQUIRED 
 model CDATA #REQUIRED 
 simulator (devsjava|xdevs) #IMPLIED 
 host CDATA #REQUIRED> 
<!ELEMENT atomicRef EMPTY> 
<!ATTLIST atomicRef 
 name  CDATA #REQUIRED 
 model CDATA #REQUIRED 
 simulator (devsjava|xdevs) #IMPLIED 
 host CDATA #REQUIRED> 
<!ELEMENT internal_connections (connection*)> 
<!ELEMENT external_input_connections (connection*)> 
<!ELEMENT external_output_connections (connection*)> 
<!ELEMENT connection EMPTY> 
<!ATTLIST connection 
 %connection-info;> 
     
<!ELEMENT models (model*)> 
<!ELEMENT model (java-source-program)> 
<!ATTLIST model 
 name ID #REQUIRED> 

 
Figure 6.6: DEVS coupled DTD 
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6.1.3 Web Services Architecture for DEVSML 

Figure 6.7 shows the designed Web Architecture. At server’s end, there are N simulators 

registered, the WSDL files containing the Web services offered and an Applet for 

generation and simulation of DEVSML models that uses these Web services. At the 

client’s end, it is possible to use the Applet or an own client program [DML], which 

makes use of the Web services (in Figure 6.7: CLAPP, Client Application). 

 

Registering a simulator means to enable it so that it can be used according to the defined 

DEVSML DTDs. This involves the definition of two additional classes that implement 

the interfaces InterfaceXmlAtomic and InterfaceXmlCoupled (see Figure 6.7). These 

classes must generate XML elements that define the structure of the specific simulator 

models according to the atomic and coupled DTDs, These elements are inputs, outputs, 

etc. Efforts are ongoing to develop a template for the user community to register their 

simulators via a new process in order to make the registration process easier. 

 

Once the simulator is registered, the Web services are available for this simulator. The 

registry is recommended, since the clients can use any simulator registered at the server. 
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Figure 6.7: Web service Architecture for DEVSML Implementation 
 
 

The most important Web services offered in our current architecture are: 

1. Convert Java models to DEVSML. 

2. Convert DEVSML models to Java. 

3. Integrate coupled and atomic DEVSML models towards a portable ‘Composite’ 

Coupled DEVSML file that can be simulated at any server. 

4. Validate an existing DEVSML model. 

5. Simulate a Composite Coupled file at the server 

 

Figure 6.8 shows part of the UML diagram of the Applet developed. xdevs and devsjava 

classes are directly generated from the Web services since we have these two simulators 
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registered. The rest of the diagram provides the functionality of the Applet. Providing 

complete details is outside the scope of this article and will be report in our forthcoming 

publication dedicated to Server and Client designs. Demonstration of these web services 

is available at [DML] that are hosted at ACIMS www.acims.arizona.edu. 

 

Systems M&S based on DEVS theory [Zei00] and web-based collaborative modeling 

leading to composite coupled models based on DEVSML has been attempted for the Java 

programming language. In order to solve the same problem for other programming 

languages such as C++, C#, ADA, etc., we can choose among different alternatives: 

 

Using JNI: In this case, it is necessary to adapt each simulator to JNI. Therefore, the 

models must be rewritten into Java. The reason behind this conversion is due to the fact 

that we need behavior representation in XML. We do have cppML, that is C++ Modeling 

Language in XML but we want only one behavioral representation in XML. Our 

preferred way of doing it is through JavaML as Java is better positioned to address the 

Web Services domain. Using another XML representation more versatile for the behavior 

of the model. In this case it is possible to use XML definitions defined to represent any 

object oriented programming language, such as o:XML [OXML] or OOPML [OPML]. 

This is again a work in progress. 
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Figure 6.8: Client side implementation using interfaces. 

 

 

The disadvantage of using one solution or other resides in the interoperability between 

different simulators executing the same model. Proving interoperability between 

simulators is what true transparency is. If all the simulators are running under JNI, then 

adapters must been made in order to change information among them. The current 
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DEVSML architecture with only one universal underlying atomic DTD and coupled 

DTD is the first step towards interoperable simulators. Defining a distributed coordinator 

between these simulators is the second step. If o:XML or OOPML are used, then it is not 

necessary to define JNI simulators or rewrite models in Java, but what is needed a 

mechanism to interoperate between different DEVS simulators. How to communicate a 

simulator written in C++ with a simulator written in Java? Perhaps the solution resides in 

the definition of standards for the format of the data at the syntactic level. 

 

6.2 SOADEVS: Remote Execution of DEVS using Simulation Service 
 
This section aims to develop and evaluate distributed simulation using the web service 

technology. After the development of World Wide Web, many efforts in the distributed 

simulation field have been made for modeling, executing simulation and creating model 

libraries that can be assembled and executed over WWW. By means of XML and web 

services technology these efforts have entered upon a new phase. 

 

A prototype simulation framework has been implemented using web services technology. 

The central point resides in executing the simulator as a web service. The development of 

this kind of frameworks will help to solve large-scale problems and guarantees 

interoperability among different networked systems and specifically DEVS-validated 

models. 
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Discrete event system specification (DEVS) is one of the most suitable formalisms for 

the representation of real world systems. Simulating a model involves the implementation 

of a behavioral model and running it in the simulator. A simulator is defined as a piece of 

program that executes the model. Our aim is to make the simulation process totally 

transparent in the model-design cycle. By such capability, the modeler need not focus on 

the simulator compatibility or any platform issues as in earlier developments like 

DEVS/C++, DEVSJAVA, DEVS/RMI, DEVS/CORBA and other. Implementing 

simulation platform as a ‘Simulation Service platform’ the designer will be able to 

execute the model over Internet through web services, using SOA as the communication 

protocol. In a first approximation, our framework is able to execute DEVSJAVA models, 

but the reader will see that the web services have been developed using the adapter 

pattern, so the framework is extensible to other simulation platforms. 

6.2.1 WWW and Distributed Simulation 

Web-based simulation requires the convergence of simulation methodology and WWW 

technology (mainly web service technology). The fundamental concept of web services is 

to integrate software application as services. Web services allow the applications to 

communicate with other applications using open standards. We are offering DEVS-based 

simulators as a web service, and they must have these standard technologies: 

communication protocol (Simple Object Access Protocol, SOAP), service description 

(Web Service Description Language, WSDL), and service discovery (Universal 

Description Discovery and Integration, UDDI). 
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Figure 6.9 shows the framework of the proposed distributed simulation using SOA. The 

complete setup requires more than one server that is capable of running DEVS 

Simulation Service. The capability to run the simulation service is provided by the server 

side design of DEVS Simulation protocol supported by the latest DEVSJAVA Version 

3.1.  

 
Figure 6.9: DEVS/SOA distributed architecture. 

 

The Simulation Service framework is two layered framework. The top-layer is the user 

coordination layer that oversees the lower layer. The lower layer is the true simulation 

service layer that executes the DEVS simulation protocol as a Service. The lower layer is 
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• Compile DEVS model service. 

• Simulate DEVS model service.  

 
The top-level Service layer is presented in the WSDL below: 

<?xml version="1.0" encoding="UTF-8"?> 
<wsdl:definitions targetNamespace="http://devsml" 
xmlns:apachesoap="http://xml.apache.org/xml-soap" 
xmlns:impl="http://devsml" xmlns:intf="http://devsml" 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
<!--WSDL created by Apache Axis version: 1.3 
Built on Oct 05, 2005 (05:23:37 EDT)--> 
 <wsdl:types> 
  <schema elementFormDefault="qualified" 
targetNamespace="http://devsml" 
xmlns="http://www.w3.org/2001/XMLSchema"> 
   <element name="upload"> 
    <complexType> 
     <sequence> 
      <element name="packageName" type="xsd:string"/> 
      <element name="arrayOfFileContents" type="xsd:base64Binary"/> 
      <element name="arrayOfFileNames" type="xsd:base64Binary"/> 
      <element maxOccurs="unbounded" name="ips" type="xsd:string"/> 
      <element name="start" type="xsd:int"/> 
     </sequence> 
    </complexType> 
   </element> 
   <element name="uploadResponse"> 
    <complexType> 
     <sequence> 
      <element name="uploadReturn" type="xsd:string"/> 
     </sequence> 
    </complexType> 
   </element> 
   <element name="simulate"> 
    <complexType> 
     <sequence> 
      <element name="clientId" type="xsd:string"/> 
      <element name="mainClass" type="xsd:string"/> 
      <element maxOccurs="unbounded" name="ips" type="xsd:string"/> 
     </sequence> 
    </complexType> 
   </element> 
   <element name="simulateResponse"> 
    <complexType> 
     <sequence> 
      <element name="simulateReturn" type="xsd:string"/> 
     </sequence> 
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    </complexType> 
   </element> 
   <element name="compile"> 
    <complexType> 
     <sequence> 
      <element name="packageName" type="xsd:string"/> 
      <element name="arrayOfFileNames" type="xsd:base64Binary"/> 
      <element maxOccurs="unbounded" name="ips" type="xsd:string"/> 
      <element name="start" type="xsd:int"/> 
     </sequence> 
    </complexType> 
   </element> 
   <element name="compileResponse"> 
    <complexType> 
     <sequence> 
      <element name="compileReturn" type="xsd:string"/> 
     </sequence> 
    </complexType> 
   </element> 
  </schema> 
 </wsdl:types> 
   <wsdl:message name="simulateResponse"> 
      <wsdl:part element="impl:simulateResponse" name="parameters"/> 
   </wsdl:message> 
   <wsdl:message name="uploadRequest"> 
      <wsdl:part element="impl:upload" name="parameters"/> 
   </wsdl:message> 
   <wsdl:message name="compileRequest"> 
      <wsdl:part element="impl:compile" name="parameters"/> 
   </wsdl:message> 
   <wsdl:message name="uploadResponse"> 
      <wsdl:part element="impl:uploadResponse" name="parameters"/> 
   </wsdl:message> 
   <wsdl:message name="simulateRequest"> 
      <wsdl:part element="impl:simulate" name="parameters"/> 
   </wsdl:message> 
   <wsdl:message name="compileResponse"> 
      <wsdl:part element="impl:compileResponse" name="parameters"/> 
   </wsdl:message> 
   <wsdl:portType name="MainServices"> 
      <wsdl:operation name="upload"> 
         <wsdl:input message="impl:uploadRequest" 
name="uploadRequest"/> 
        <wsdl:output message="impl:uploadResponse" 
name="uploadResponse"/> 
      </wsdl:operation> 
      <wsdl:operation name="simulate"> 
         <wsdl:input message="impl:simulateRequest" 
name="simulateRequest"/> 
         <wsdl:output message="impl:simulateResponse" 
name="simulateResponse"/> 
      </wsdl:operation> 
      <wsdl:operation name="compile"> 
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         <wsdl:input message="impl:compileRequest" 
name="compileRequest"/> 
         <wsdl:output message="impl:compileResponse" 
name="compileResponse"/> 
      </wsdl:operation> 
   </wsdl:portType> 
 
   <wsdl:binding name="MainServicesSoapBinding" 
type="impl:MainServices"> 
      <wsdlsoap:binding style="document" 
transport="http://schemas.xmlsoap.org/soap/http"/> 
      <wsdl:operation name="upload"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="uploadRequest"> 
            <wsdlsoap:body use="literal"/> 
         </wsdl:input> 
         <wsdl:output name="uploadResponse"> 
           <wsdlsoap:body use="literal"/> 
        </wsdl:output> 
      </wsdl:operation> 
      <wsdl:operation name="simulate"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="simulateRequest"> 
            <wsdlsoap:body use="literal"/> 
         </wsdl:input> 
         <wsdl:output name="simulateResponse"> 
            <wsdlsoap:body use="literal"/> 
         </wsdl:output> 
      </wsdl:operation> 
      <wsdl:operation name="compile"> 
         <wsdlsoap:operation soapAction=""/> 
         <wsdl:input name="compileRequest"> 
            <wsdlsoap:body use="literal"/> 
         </wsdl:input> 
         <wsdl:output name="compileResponse"> 
            <wsdlsoap:body use="literal"/> 
         </wsdl:output> 
      </wsdl:operation> 
   </wsdl:binding> 
   <wsdl:service name="MainServicesService"> 
      <wsdl:port binding="impl:MainServicesSoapBinding" 
name="MainServices"> 
         <wsdlsoap:address 
location="http://localhost:8080/DevsMLSimpleServer/services/MainService
s"/> 
      </wsdl:port> 
   </wsdl:service> 
</wsdl:definitions> 
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The client is provided a list of servers hosting DEVS Service. He selects some servers to 

distribute the simulation of his model. Then, the model is uploaded and compiled in all 

the servers. The main server selected creates a coordinator that creates simulators in the 

server where the coordinator resides and/or over the other servers selected. 

 

6.2.2 Abstraction of a Coupled model as an Atomic model with DEVS State 

Machine 

 

One of the significant development steps we undertook in this effort is the masking of 

coupled model as an atomic model. What this implies is that we have an abstraction 

mechanism by which a coupled model can be treated as a black box and can be executed 

like an atomic model. In other words, a coupled model now has a state machine similar to 

that of any atomic model. In contrast to the DEVS hierarchical modeling, where a 

coupled model is merely a container and has corresponding coupled-simulators (Figure 

6.10), now it is considered an atomic model with lowest level atomic simulator (Figure 

6.11). This has been accomplished by implementing an adapter as shown in Figure 6.11 

below. The adapter Digraph2Atomic takes each coupled component of the model and 

uses it as an atomic model. We will discuss this point later. 
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Figure 6.10: Hierarchical simulator assignment for a hierarchical model 

 

 
Figure 6.11: Hierarchical simulator assignment with Digraph2Atomic adapter 

 
 
The implementation of the adapter is shown below: 

 
public class Digraph2Atomic extends atomic { 
 private CoordinatorInterface coord; 
  
 public Digraph2Atomic(digraph model) { 
  super(model.getName()); 
   
  couprel couplings = model.getCouprel(); 
  Iterator itr = couplings.iterator(); 
  while(itr.hasNext()) { 
   Pair relation = (Pair)itr.next(); 
   Pair from = (Pair)relation.getKey(); 
   String fromComponentName = (String)from.getKey(); 
   String fromPortName = (String)from.getValue(); 
   Pair to = (Pair)relation.getValue(); 
   String toComponentName = (String)to.getKey(); 
   String toPortName = (String)to.getValue(); 
   if(fromComponentName.equals(model.getName())) 
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    this.addInport(fromPortName); 
   else if(toComponentName.equals(model.getName())) 
    this.addOutport(toPortName); 
  } 
  coord = new coordinator(model); 
 } 
  
 public void initialize() { 
  coord.initialize(); 
 } 
 public void deltext(double e, message x) { 
  coord.simInject(e, x); 
 } 
 public void deltint() { 
  coord.wrapDeltfunc(coord.getTN()); 
 } 
 public message out() { 
  coord.computeInputOutput(coord.getTN()); 
  return (message)coord.getOutput(); 
  
 public double ta() { 
  return coord.getTN() - coord.getTL(); 
 } 
 
} 
 
 

The number of simulators created depends on the number of components of the model at 

the top-level and the number of servers selected by the user. If the model contains 10 top-

level components (including the contained digraphs) and the user select 5 servers, then 2 

simulators are created in each server. After the whole simulation process, each simulation 

service sends a report back to the user containing information related to IP addresses and 

simulator assignment. 

6.2.3 Message Serialization 

The issue of message passing and models upload is done through serialization and SOA 

technologies. Figure 6.12 illustrates the message serialization process. When a 

component makes an external transition or executes the output function, the message 
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received or emitted is serialized and then sent to the coordinator through the simulation 

service. The coordinator stores the location of each simulation service, so he is able to 

request all the messages after each iteration.  

 

All the communication between the coordinator and simulation services is done through 

SOA protocol. The serialization is done through Java serialization utilities. Currently, a 

real time version is under development. In this version each simulator knows each 

simulation service at its end (from coupling information). So the communication can be 

solved by passing messages from simulation services to simulation services directly, 

without using the coordinator. 

 

 
Figure 6.12: Communication among services 
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Summarizing from a user’s perspective, the simulation process is done through three 

steps: 

1. Write a DEVS model (currently DEVSJAVA is only supported). 

2. Have a list of DEVS servers (through UDDI, for example). Since we are testing 

the application, these services have not been published using UDDI by now. 

Select N number of servers from the list available. 

3. Run the simulation (upload, compile and simulate) and wait for the results. 

 

Figure 6.13 shows these steps in graphical format. 

 

 
Figure 6.13: Execution of DEVS SOA-Based M&S 

 

6.2.4 Details about the server architecture 

The global design of the whole architecture at server’s end is as follows, as shown in 

Figure 6.14. 
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api + devsml + adapter + modeling: This constitutes the DEVS modeling library. Once 

a DEVS model is received by the servers, the DEVS model is rebuilt using an adapter 

pattern. By now, only DEVSJAVA models are allowed. But, since this framework 

follows an adapter pattern, other Java-based models will be allowed in future. The api 

package contains only the interfaces. The devsml package contains Entity class. This is 

the starting class for all the modeling classes and allows serialization and deserialization. 

The adapter package contains the Digraph2Atomic class in Figure 6.15. This class is 

used to transform coupled components to atomic components. Thanks to this adapter we 

only have to design simulator services, so coordinator services are not necessary. The 

modeling package contains Atomic and Message classes shown in Figure 6.16. Atomic 

and Message follow an adapter pattern. Atomic encapsulates a DEVS atomic model and 

Message encapsulates a DEVS message.  

 

 
Figure 6.14: Server’s package structure for DEVS SOA 
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Figure 6.15: Adapter package containing Digraph to Atomic adapters 

 

 
Figure 6.16: devsml Modeling package for DEVS SOA 

 

The simulation package contains simulators and coordinators, that is, Simulator and 

Coordinator classes as shown in Figure 6.17. The main difference with other simulators 

platforms starts here. The Coordinator is executed at the first server selected by the user. 

This coordinator is called through a MainService class publish as a Web service. The 
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Coordinator receives the user IP, the name of the root coupled model, and a list of IPs. 

The list of IPs is used to invoke simulation services in other remote servers. In this way, 

the components of the model are shared among N servers, where N is the length of that 

list. Also the Coordinator stores the user IP, the DEVSJAVA model, the last event time, 

the next event time, and a map of simulation services in use. This list is used to propagate 

and receive messages through the coupling protocol stored in the root coupled model. 

 

 
Figure 6.17: simulation package in DEVS SOA 

 
 

The service package contains the services offered. It contains MainService, and 

Simulation classes as shown in Figure 6.18. MainService is designed to allow upload, 

compile and start the simulation process creating the coordinator. Simulation services are 

used to store the simulators used and to establish a communication between the DEVS 

simulators stored at this server and the coordinator housed in (maybe) other server. One 

server could be executing more than one simulator. It depends on the number of 

components that the root coupled model contains and the number of server selected by 

the user. This is the reason because there is not a unique relation between simulation 
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service and simulator. The assignment of simulators corresponding to the models at the 

top-level is done through round-robin mechanism that takes care of model-simulator 

number mismatch. Functionality can be provided through which the user can direct any 

specific model to any particular IP server. 

 

 
Figure 6.18: Service package in DEVS SOA 

 
 

The proxy package contains the proxies of the services as in Figure 6.19. All these 

classes are automatically generated from the WSDL files. The user only needs the 

MainService proxy. The server needs this service and other Simulation services. 



 171

MainService adds like a coordinator for all the lower-level services through interfaces. It 

assigns and initializes the coordinator which starts other simulators, after distributing the 

simulators at respective IPs. Once the simulators are active, the MainService waits for 

them to complete the execution to receive the logs and simulation outputs. This is 

because the main server needs simulation services from other servers to disperse the root 

coupled model through its components.  

 

 
 

Figure 6.19: Proxy package in DEVS SOA  
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6.2.5 DEVSML and SOADEVS 

In Section 6.1 we introduced DEVSML as a means to develop net-centric collaborative 

models resulting in a composite XML portable file that can be executed by the validated 

DEVS simulator. In this section we will illustrate how the DEVSML architecture aides 

the distributed execution over net-centric platform thereby offering simulator 

transparency using Simulation Services. 

 

The DEVSML architecture is now divided in Client and Servers functionalities as shown 

below in Figure 6.20. The client provides model in DEVSJAVA or DEVSML, wherein 

they are transformable into each other and the Server end takes care of executing the 

simulation in a distributed manner using SOADEVS architecture.  

 
 

Figure 6.20: DEVSML implementation over SOADEVS 
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Looking it in another perspective, the integration of DEVSML and SOADEVS is 

performed with the layout as shown below in Figure 6.21. The manner in which 

DEVSJAVA models could be attained or developed by client can be manifold. More 

details can be seen in Chapter 4. Once the client has DEVSJAVA models, DEVSML 

server can be used to integrate the client’s model with model available at some other 

place on the web to get an enhanced integrated DEVSML file that can reproduce 

DEVSJAVA model in .java format. The SOADEVS enabled server can either take this 

integrated DEVSML file directly or can ask user to provide the top-level coupled manner, 

as described in earlier sections.  

 
Figure 6.21: DEVSML and SOADEVS integrated 
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CHAPTER 7: DEVS UNIFIED PROCESS: PUTTING IT ALL 
TOGETHER 

 
 

In an editorial [Car05], Carstairs asserts an acute need for a new testing paradigm that 

could provide answers to several challenges described in a three-tier structure. The lowest 

level, containing the individual systems or programs, does not present a problem. The 

second tier, consisting of systems of systems in which interoperability is critical, has not 

been addressed in a systematic manner. The third tier, the enterprise level, where joint 

and coalition operations are conducted, is even more problematic. Although current test 

and evaluation (T&E) systems are approaching adequacy for tier-two challenges, they are 

not sufficiently well integrated with defined architectures focusing on interoperability to 

meet those of tier three. To address mission thread testing at the second and third tiers, 

Carstairs advocates a collaborative distributed environment (CDE), which is a federation 

of new and existing facilities from commercial, military, and not-for-profit organizations. 

In such an environment, modeling and simulation (M&S) technologies can be exploited 

to support model-continuity [Hux04] and model-driven design (MDD) development 

[Weg02], making test and evaluation an integral part of the design and operations life-

cycle.  

 

The development of such a distributed testing environment would have to comply with 

recent Department of Defense (DoD) mandates requiring that the DoD Architectural 

Framework (DoDAF) be adopted to express high-level system and operational 
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requirements and architectures [Dod03a, Dod03b, CJC04, CJC06]. Unfortunately, 

DoDAF and DoD net-centric [Atk04] mandates pose significant challenges to testing and 

evaluation since DoDAF specifications must be evaluated to see if they meet 

requirements and objectives, yet they are not expressed in a form that is amenable to such 

evaluation. 

 

Combining the systems theory, M&S framework and model-continuity concepts leads 

naturally to a formulation of a Bifurcated Model-Continuity based Life-cycle process as 

illustrated in Figure 7.1 (reproduced again from Chapter 1). The process can be applied to 

development of systems using model-based design principles from scratch or as a process 

of reverse engineering in which requirements have already been developed in an informal 

manner. As we shall see ahead in next chapter, the said process is used in both manners. 

The depicted process is a universal process and is applicable in multiple domains. The 

objective of this research effort is to incorporate DEVS as the binding factor at all phases 

of this universal process.  

 

This chapter describes the refined bifurcated Model-Continuity process and how various 

elements like automated DEVS model generation (Chapter 4), automated test-model 

generation (Chapter 5) and net-centric simulation over SOA (Chapter 6) are put together 

in the process, resulting in DEVS Unified Process. 
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Bifurcated Model-Continuity Based Life-Cycle Methodology 

The process has the following characteristics: 

• Behavior Requirements at lower levels of System Specification: The hierarchy 

of system specification as laid out in [Zeig] offers well-characterized levels at 

which requirements for system behavior can be stated. The process is essentially 

iterative and leads to increasingly rigorous formulation resulting from the 

formalization in subsequent phases. 

• Model Structures at higher levels of System Specification: The formalized 

behavior requirements are then transformed to the chosen model implementations 

e.g. DEVS based transformation in C++, Java, C# and others. 

• Simulation Execution: The model base which may be stored in Model 

Repository is fed to the simulation engine. It is important to state the fact that 

separating the Model from the underlying Simulator is necessary to allow 

independent development of each. Many legacy systems have both the Model and 

the Simulator tightly coupled to each other which restrict their evolution. DEVS 

categorically separates the Model from the Simulator for the same simple reason. 

• Real-time Execution: The simulation can be made executable in real-time mode 

and in conjunction with Model-Continuity principles, the model itself becomes 

the deployed code 

• Test Models/Federations: Branching in the lower-path of the Bifurcated process, 

the formalized models give way to test models which can be developed at the 

atomic level or at the coupled level where they become federations. It also leads 
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to the development of experiments and test cases required to test the system 

specifications. DEVS categorically aids the development of Experimental Frames 

at this step of development of test-suite. 

• Verification and Validation: The simulation provides the basis for correct 

implementation of the system specifications over a wide range of execution 

platforms and the test suite provides basis for testing such implementations in a 

suitable test infrastructure. Both of these phases of systems engineering come 

together in the Verification and Validation (V&V) phase.  

 

 
Figure 7.1: Bifurcated Model-Continuity based System Life-cycle Process 

 

7.1 Automated DEVS Model Generation and DEVSML 
 
This section provides an overview on various technologies developed during this research 
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process. Considerable amount of effort has been spent in analyzing various forms of 

requirement specifications, viz, state-based, Natural Language based, Rule-based, 

BPMN/BPEL-based and DoDAF-based, and the automated processes which each one 

should employ to deliver DEVS hierarchical models and DEVS state machines. Chapter 

4 provides an overview of these automated processes. Simulation execution today is more 

than just model execution on a single machine. With Grid applications and collaborative 

computing a norm in industry as well as in scientific community, this research effort also 

developed a net-centric platform using XML as middleware resulting in an infrastructure 

aiding distributed collaboration and model reuse. It led to the development of DEVS 

Modeling Language (DEVSML) and its net-centric execution using Service-Oriented 

Architecture called as SOADEVS. Both the DEVSML and SOADEVS provide novel 

approaches to integrate, collaborate and remotely execute models on SOA and are 

described in Chapter 6. The third area, in Chapter 5, which required development of 

automated procedures is the area of test-case generation leading to test-models. Using 

XML as the system specifications in rule-based format, a tool known as Automated Test 

Case Generator (ATC-Gen) was developed which facilitated the automated development 

of test models.  

 

The integration of DEVSML and SOADEVS is performed with the layout as shown 

below in Figure 7.2. The manner in which DEVSJAVA models could be attained or 

developed by client can be manifold. As described in Chapter 4, it can come from state-

based approach, BPEL-based or DoDAF-based or through NLP-based requirements. It is 
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fed to the DEVSML client which coordinates with the DEVSML server farm. Once the 

client has DEVSJAVA models, DEVSML server can be used to integrate the client’s 

model with model available at some other place on the web to get an enhanced integrated 

DEVSML file that can reproduce DEVSJAVA model in .java format. The SOADEVS 

enabled server can either take this integrated DEVSML file directly or can ask user to 

provide the top-level coupled manner, as described in earlier sections. Figure 7.2 

provides an overview of the DEVSML input and its output to SOADEVS simulation 

framework with leads to the simulation-based systems testing. 

 
 

Figure 7.2: Netcentric collaboration and execution using DEVSML and SOADEVS 
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7.2 DEVSML Collaborative Development 
 
This section provides information about the client application that communicates with the 

server resting at both ACIMS center and at Spain (redundancy purposes). The application 

is made available as an applet [DML] or as a .exe application that is capable of 

communicating to the server at client’s end.  

  

The following snapshot in Figure 7.3 shows the java application Ver. 2.0 that 

demonstrates the following: 

1. Contains two simulator operability i.e xDEVS (Spain) [xDEVS] and GenDEVS 

(ACIMS-USA) [ACI06] demonstrating validation of DEVSML atomic and 

coupled models with same Atomic and Coupled DTD 

2. Converts any atomic/coupled model from their JAVA implementation to 

DEVSML transformation and vice-versa 

3. Validates any DEVSML model description 

4. Integrates any coupled DEVSML description into a composite DEVSML coupled 

model ready to be simulated with corresponding simulator 

5. Generation of JAVA code library from a composite DEVSML coupled model. 

6. Out of ten web services in operation, five Web Services that are publicly offered 

are: 

a. Convert Java model to DEVSML 

b. Convert DEVSML to java code 

c. Validate the existing DEVSML model 
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d. Integrate coupled and atomic DEVSML models towards a portable 

'Composite' Coupled DEVSML file that is Simulatable at any remote 

server 

e. Simulates the Composite Coupled file and sends console messages at 

Server to Client window giving evidence of simulation running. 

7. Server rests at ACIMS lab that provides these Services 

8. User can select his own Source and Target directories 

9. User can choose his chosen implementation i.e. java code and Simulator 

compatibility. The Server application checks for compatibility as well 

 

 
Figure 7.3: Client application snapshot implemented as an applet. 
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7.3 Automated Test-case Generation from DEVS models 
 
Assuming that the DEVS model is easily specified using State-based approach as 

described in Section 4.1, the automated test-model generation is constructed at Level 1 of 

Input/Output behavior (see Table 3.2) taking DEVS component as a black-box. The test-

model is called the Observer model and its state-machine is defined by the testee 

component’s state-machine. The component model being tested is called Testee and the 

component model doing the testing is called Tester.  

 

The prime objective of this Tester is to verify that the Input/Output pair co-exist 

according to the timeout specification as defined in Testee’s configuration. The Tester’s 

state machine then becomes a very simple state-machine with both the input message of 

Testee and output message of Testee as the external input messages for Tester. When the 

Testee receives the prescribed input message, it is also sent to the Tester’s input port and 

starts a timer, the value of which is user-specified in the Tester’s state machine 

specifications. When the Testee generates the corresponding output message, it is sent as 

an external input to the Tester, which if received before the timeout value, passivates the 

Tester. In case of Tester not receiving Testee’s output message, it generates and 

ErrorReport message that is written in the logs as a failure of I/O transaction pair of the 

Testee model. The example can be seen in Chapter 8, Section 1. The other aspect of 

Tester-Testee configuration is their mutual coupling and the coupling of Tester with that 

of components coupled to the Testee’s input port. The Tester is a mirror model of Testee 
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with same inports and some additional inports that correspond to the outports of Testee. 

Hence, the only coupling between Testee and Tester is this additional coupling set. Rest 

all the couplings are same for Tester. Consequently, the Tester model coupling can be 

also generated automatedly. For a detailed example, refer Chapter 8, Section 1. 

 

7.4 SOADEVS: Net-centric Execution using Simulation Service 
 
This sub-section provides the client application to execute DEVS model over an SOA 

framework using Simulation as a Service as described in Chapter 6. From multifarious 

modes of DEVS model generation, the next step is the simulation of these models. The 

SOADEVS client takes the DEVS models package and through the dedicated servers 

hosting simulation services, it performs the following operations: 

1. Upload the models to specific IP locations 

2. Run-time compile at respective sites 

3. Simulate the coupled-model 

4. Receive the simulation output at client’s end 

 

The SOADEVS client as shown in Figure 7.5 below operates in the following sequential 

manner: 

1. The user selects the DEVS package folder at his machine 

2. The top-level coupled model is selected as shown in Figure 7.5 

3. Various available servers are selected. Any number of available servers can be 

selected. Figure 7.6 shows how Servers are allocated on per-model basis. The user 
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can specifically assign specific IP to specific models at the top-level coupled 

domain. The localhost (Figure 7.5) is chosen using debugging sessions. 

4. The user then uploads the model by clicking the Upload button. The models are 

partitioned in a round-robin mechanism and distributed among various chosen 

servers 

5. The user then compiles the models by clicking the Compile button at server’s end 

6. Finally, Simulate button is pressed to execute the simulation using Simulation 

service hosted by these services.  

7. Once the simulation is over, the console output window displays the aggregated 

simulation logs from various servers at the client’s end. 

 

 
 

Figure 7.5: GUI snapshot of SOADEVS client hosting distributed simulation 
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Figure 7.6: Server Assignment to Models 

 

7.5 The Complete Process 
 
This chapter has described various elements of DEVS Unified Process. Chapter 4 dealt 

with the automated generation of DEVS models from various modes of requirement 

specification. Chapter 5 dealt with Automated Test case generation directly from the 

requirements or from DEVS models. Chapter 6 dealt with the net-centric execution of 

DEVS models using DEVSML and SOADEVS clients. The basic Bifurcated Model 

Continuity-based Life-cycle process for systems engineering in Figure 7.1 in light of the 

developments in DEVS area is summarized in Figure 7.7 below. The grey boxes show the 

original process and the colored boxes show the extensions that were developed to make 

it a DEVS compliant process. A sample demo movie is available at [Dun07]. 

 

With the developed DEVS Unified Process we now have the capability to: 



 186

1. Transform various forms of requirement specifications to DEVS models in an 

automated manner. 

2. Transform any DEVS model to a Platform Independent Model (PIM) using 

DEVSML for model and library reuse and sharing leading to collaborated 

development 

3. Simulate any valid DEVSML using the SOADEVS architecture exploiting the 

transparent simulator paradigm for model interoperability execution (for models 

implemented in disparate languages e.g. Java and C++) 

4. Transform any DEVSML model to a Service component in SOA 

 
 

Figure 7.7: The Complete DEVS Unified Process 
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CHAPTER 8: PROJECTS FROM WHICH DUNIP 
EVOLVED 

 
 

This chapter contains many case studies that came about as DUNIP was defined and 

developed. Many of the projects are currently active at Joint Interoperability Test 

Command (JITC) and others are at concept validation stage towards a deliverable end. 

Each of the project either uses the complete DUNIP process or a subset of it. As we shall 

see on a case by case basis, DEVS emerge as a powerful M&S framework contributing to 

the roundtrip systems software engineering process. With the proposed DEVS Based 

Bifurcated Model-continuity Life-cycle process, systems theory with DEVS 

implementation finds its way to the next generation net-centric application development 

and testing. 

 

This chapter describes the following case studies: 

1. Joint Close Air Support (JCAS) model 

2. DoDAF-based Activity scenario 

3. Link-16 Automated Test Case Generator (ATC-Gen project at JITC) 

4. Generic Network for Systems Capable of Planned Expansion (GENETSCOPE 

project at JITC) 

 
Each of the projects has been developed independently and ATC-Gen and 

GENETSCOPE are team projects. All of the projects stand-alone and applies DUNIP 
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(Figure 7.7 in full or in-part. Table 8.1 below provides an overview of the DUNIP 

elements used in each of the projects. All of the DUNIP elements have been applied at 

least once in one of the projects. However, presently, there is not an available live case 

study that implements all the aspects of DUNIP elements as DUNIP was not defined 

prior to the design of these active projects 

 

Project /  
DUNIP Elements 

JCAS 
model 

DoDAF-based 
Activity 
Scenario 

ATC-
Gen 
Project 

GENETSCOPE
Project 

Requirement Specification Formats X   X 
 State-based Specs X    
 Message-based Specs with 

restricted NLP X    

 BPMN/BPEL based Specs X    
 DoDAF-Based Scenario Specs  X  X 
XML-based Data Extraction X X X  
DEVS Model Structure at lower 
levels of Specification X X X  

DEVS model structure at higher 
levels of System specification  X  X 

DEVSML Platform Independent 
Models X    

Test Model Development X  X  
Verification and Validation using 
Experimental Frames  X X X 

SOADEVS net-centric Simulation X    
 

Table 8.1: Overview of DUNIP application in available case-studies 
 
 

The JCAS system requirements come in many formats and it served as a base example to 

test many of the DUNIP earlier processes for requirements-to-DEVS transformation. It 

was specified using the state-based approach, BPEL-based approach and restricted 

natural language approach. This case study describes all three of the approaches leading 

to an executable DEVS model with identical simulation results. Finally, the executable 
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model is executed over a net-centric platform using DEVSML and SOADEVS 

architecture. 

 

DODAF-based Activity scenario is specified in UML based Activity specification and it 

illustrates the process carried to transform various DoDAF documents into DEVS 

requirement specifications. Population of the new proposed Operational View document 

OV-8 and OV-9 is described and how DEVS models could be generated from these two 

documents is illustrated. Complete example is presented in [Mit06a]. 

 

The ATC-Gen project at JITC is the project dealing with automated Link-16 testing 

environment and the design of ATC-Gen tool. A sample experiment is described and 

results are provided. Complete example is presented in [Mak06]. 

 

The GENETSCOPE project at JITC is another project funded by JITC that employs the 

complete DEVS software engineering process. A ten year old legacy model was taken 

and using automated XML data mining, the C language written process-model was 

transformed to object-oriented DEVS model with enhanced MVSC paradigm. Design 

elements of GENETSCOPE tool are discussed. Its relationship with the overarching 

DoDAF framework is also presented. Complete example is presented in [Mit06b]. 
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8.1 Joint Close Air Support (JCAS) Model 
 
The Joint Close Air Support Model is expressed in plain English as shown in Figure 8.1 

below. It is a small example involving components exchanging messages towards a 

common objective. The requirements are then translated to various DEVS generating 

modes as described in Chapter 4. We shall see the execution of JCAS for each of the 

approaches. 

8.1.1 State-based approach 

The state transitions are provided using the tabular format as described in section 4.1.1. 

The components of JCAS model are: 

1. JTAC 

2. UAV 

3. CAOC 

4. USMC Aircraft 

5. AWACS 

The scenario is provided as follows: 

JCAS JMT Operational Scenario #1 
A. Special Operations Force (SOF) (AFSOC and NSW) JTAC 

working with Operational Detachment-Alpha (ODA) is tasked 
to request Immediate CAS on a stationary mechanized target 
in mountainous terrain.  A Predator unmanned aerial vehicle 
(UAV) is on station for support. 

B. SOF JTAC contacts AWACS with request.  AWACS passes 
the request to Special Operations Liaison Element (SOLE) in 
the Combine Air Operations Center (CAOC).   

C. Joint Special Operations Task Force (JSOFT) approves the 
request and CAOC assigns a section of USMC F/A-18Ds, F-
15Es, and a single B-1B.  Ordnance consists of 20mm, Joint 
Direct Attack Munitions (JDAMs), and Laser Guided Bombs 
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(LGBs). 

D. Aircraft get situational brief from AWACS aircraft while in 
route, then switch to SOF JTAC for Terminal Attack Control 
and deconfliction       from orbiting UAV.  A 9-Line brief will be 
given to each section/single aircraft.  JTAC will continue to 
execute CAS missions until all weapons are expended. 

Figure 8.1: JCAS Operational Scenario 
 

Translating the behavior to Tabular format for the entity JTAC, the state machines looks 

as shown in Table 8.2: 

 
DEVS Internal State Machine (for default behavior) 
 
Behavior 
S.No. 

State (phase)  Next State (phase) Timeout Outgoing Message  

1. RequestImmediateCAS WaitForAssignmen
t 

0 CASResourceSpec  

2. WaitForAssignment Passive Infinity -  
3. ProvideTAC ContinueExecution 1000 -  
4. ContinueExecution Passive 0 CeaseAttack  
5. WaitForTACRequest Passive Infinity -  
 
DEVS External State Machine responding to incoming messages 
 
Behavior 
S.No. 

Incoming Message 
name 

State 
(phase) 

Next State 
(phase) 

Timeout Outgoing 
Message 

1. RequestTAC WaitForTACRequest ProvideTAC 10 InitialAttack 
2.  YouCanUseUSMCAir

craft 
WaitForAssignment WaitForTA

CRequest 
0 - 

Table 8.2: State machine for component JTAC 
 
 
Similarly, all other components can be described. The coupled model created manually is 

shown in Figure 8.2 below: 
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Figure 8.2: Coupled scenario for JCAS model 

 

The execution of the coupled model resulted in the simulation output (on console) of the 

successful message passing and scenario execution as shown below in Figure 8.3. 

 
State at: UAV is: passive       with tN: ? 
State at: JTAC is: requestImmediateCAS  with tN: 0.000 
State at: CAOC is: passive      with tN: ? 
State at: USMCAircraft is: passive      with tN: ? 
State at: AWACS is: passive     with tN: ? 
        JTAC     sending message: << port: ImmediateCASOut value: 
CASResourcesSpec >> 
State at: JTAC is: waitForAssignment    with tN: 0.000 
        AWACS   recvd message: <<  port: ImmediateCASIn value: 
CASResourcesSpec>> 
        AWACS    sending message: << port: requestImmediateCASOut value: 
CASResourcesSpec >> 
        CAOC    recvd message: <<  port: requestImmediateCASIn value: 
CASResourcesSpec >> 
State at: AWACS is: doSurveillance      with tN: 1.000 
        CAOC     sending message: << port: YouCanUseUSMCAircraftOut value: 
CASResources  

port: readyOrderOut value: getReady >> 
        JTAC    recvd message: <<  port: YouCanUseUSMCAircraftIn value: 
CASResources >> 
State at: CAOC is: passive      with tN: 2.000 
        USMCAircraft    recvd message: <<  port: readyOrderIn value: getReady 
>> 
        USMCAircraft     sending message: << port: requestForTACOut value: 
requestTAC >> 
        JTAC    recvd message: <<  port: requestForTACIn value: requestTAC >> 
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State at: USMCAircraft is: waitForTAC   with tN: 102.000 
        JTAC     sending message: << port: TACCommandOut value: initialAttack 
>> 
State at: JTAC is: continueExecution    with tN: 112.000 
        USMCAircraft    recvd message: <<  port: TACCommandIn value: 
initialAttack >> 
        USMCAircraft     sending message: << port: sitBriefRequestOut value: 
sit 
BriefRequest port: deconflictRequestOut value: requestDeconflict >> 
        UAV     recvd message: <<  port: deconflictRequestIn value: 
requestDeconflict >> 
State at: USMCAircraft is: attack       with tN: 122.000 
        AWACS   recvd message: <<  port: sitBriefRequestIn value: 
sitBriefRequest >> 
        UAV      sending message: << port: targetLocationOut value: (Lat,Long) 
>> 
State at: UAV is: passive       with tN: 123.000 
        USMCAircraft    recvd message: <<  port: targetLocationIn value: 
(Lat,Long) >> 
        AWACS    sending message: << port: sitBriefOut value: sitBrief >> 
        USMCAircraft    recvd message: <<  port: sitBriefIn value: sitBrief >> 
State at: AWACS is: doSurveillance      with tN: 132.000 
        USMCAircraft     sending message: << port: fireCommand value: fire >> 
State at: USMCAircraft is: attack       with tN: 222.000 
        JTAC     sending message: << port: TACCommandOut value: ceaseAttack >> 
State at: JTAC is: passive      with tN: 1112.000 
        USMCAircraft    recvd message: <<  port: TACCommandIn value: 
ceaseAttack >> 
Terminated Normally before ITERATION 11 ,time: 1112.0 

 
Figure 8.3: DEVS Execution of JCAS model on console 

 
 

8.1.2 BPMN/BPEL based approach 

In this approach we approached the problem using a BPMN diagram. The scenario in 

Figure 8.1 is expressed as a BPMN diagram shown in Figure 8.4 below. The BPMN 

diagram was created manually using the tool Borland Eclipse Together 2006.  
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Figure 8.4: JCAS BPMN scenario description 

 
The Eclipse Together tool generated the corresponding .bpel and .wsdl files for the JCAS 

scenario. In total 10 files were generated (5 .bpel and 5 .wsdl files). The generated files 

are shown in the left column of Figure 8.5.  

 

We took these generated files to our BPEL-to-DEVS transformation tool as described in 

Chapter 4 and generated the DEVS model out of these files.  
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Figure 8.5: Snapshot of a BPMN-to-DEVS Transformation tool 
 

The transformation process generated the following .java files (which include additional 

files as well) shown in the right column of Figure 8.5 above. 

1. JCAS.java 

2. JTAC.java 

3. AWACS.java 

4. CAOC.java 

5. UAV.java 

6. USMCAircraft.java  

7. CASResources.java 

8. CASResourceSpec.java 

9. CASResSpec.java 

10. ceaseAttackUSMC.java 
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11. CONST.java 

12. getReady.java 

13. initialAttack.java 

14. latLong.java 

15. requestDeconflict.java 

16. requestTAC.java 

17. sitBrief.java 

18. sitBriefRequest.java 

19. TimerMessage.java 

 

The additional files correspond to various messages that were exchanged in the scenario. 

The files in the bold (above) are the main component files that contain the DEVS state 

machine. 

 

Finally, using the BPMN-to-DEVS tool, the package was compiled run-time and 

simulation was executed yielding the same result as of Figure 8.3. The Execute button 

brings up the DEVSJAVA Simulation Viewer (Figure 8.5) which executes the 

simulation. 
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8.1.3 Message-Based Restricted NLP-based approach 

In this approach the JCAS scenario in Figure 8.1 is expressed in message-based NLP 

format as described in Section 4.3. The resulting NLP specification is shown in Figure 

8.6 below. 

 

 
Figure 8.6: Message-based Restricted NLP description of JCAS scenario 

 
 
The DEVS models are created based on the methodology described in Section 4.3 leading 

to the same simulation results as of Figure 8.3. 

 

JTAC sends  CASResourceSpec to AWACS 
Having received CASResourceSpec from JTAC,  
     AWACS sends CASResourceSpec to CAOC within 1 minute 
Having received CASResourceSpec from AWACS,  
     CAOC sends CASResources to JTAC within 1 minute  
                and sends getReady to USMCAircraft within 1 minute 
Having received getReady from CAOC,  
     USMCAircraft sends requestTAC to JTAC within 100 minutes 
Having sent CASResourceSpec to AWACS and 
      Having received requestTAC from USMCAircraft,  
           JTAC sends initateAttack to USMCAircraft within 10 minutes 
Having sent requestTAC to JTAC and 
   Having received initiateAttack from JTAC 
    USMCAircraft sends sitBriefRequest to AWACS within 10 minutes 
              and sends requestDeconflict to UAV within 10 minutes 
              and sends Fire to external within 100 minutes 
              and expects (Lat,Long) from UAV within 100 minutes 
              and expects sitBrief from AWACS within 100 minutes 
   
Having received requestDeconflict from USMCAircraft 
       UAV sends (Lat,Long) to USMCAircraft within 1 minute 
Having sent CASResourceSpec to CAOC and 
    Having received sitBriefRequest from USMCAircraft 
      AWACS sends sitBrief to USMCAircraft within 10 minutes 
Having received initiateAttack from JTAC and 
   Having received (Lat,Long) from UAV and 
         USMCAircraft sends Fire to external 
    Having received sitBrief from AWACS 
          USMCAircraft sends Fire to external 



 198

8.1.4 Automated test case generation for JCAS   

As described in Section 7.3, observer models can be created for each of the entity models listed 

constituting the JCAS coupled model. Figure 8.7. For the JCAS model we created the observer 

for component CAOC. The CAOC model has the following state description as shown in Figure 

8.8 below: 

 

Figure 8.7: State-based specification of model CAOC 
 
 

After generation of the DEVS model for CAOC from Figure 8.7 above, an observer 

model with the state-machine shown in Figure 8.8b can be automatedly generated from 

column 2 (incoming message) and column 6 (output message) pair. The basic operation 

of CAOC Observer is to verify that CAOC performs its I/O operations i.e. on receiving 

an input message it generates the prescribed output message. Both the input and output 

message for COAC becomes the external input message for the CAOC Observer 

component. In this case on receiving CASResourceSpec message it should produce 

YouCanUseUSMCAircraft message. Figure 8.8b below provides the DEVS state-machine 

for CAOC Observer.  
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Figure 8.8: State-machine for CAOC Observer 

 
 
If CAOC fails then ‘watchForError’ gets triggered, thereby producing an ErrorReport 

message indicating that CAOC failed to produce the desired output message. A sample 

timout of 100 seconds is provided as fail-safe time that may incorporate CAOC recycling 

time in case of delays etc. If COAC produces output message YouCanUseUSMCAircraft, 

the CAOC Observer receives it as an external input message and resets the clock as 

CAOC performed its I/O pair correctly.  

 

Similarly, observers for each of the DEVS models could be created automatedly.  

 

8.1.5 Net-centric Execution of JCAS 

Execution of JCAS DEVS models on net-centric SOA platform was done using the 

SOADEVS tool. The client application as described in Section 4.3 was used to execute 

the operation. Two servers were selected to demonstrate the concept (as shown in Figure 

8.9). One server is located at ACIMS lab, University of Arizona and other server at 
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Spain, University Computense de Madrid. Also shown in the figure (in the console 

window) is the process of files being uploaded, compiled and the simulation-in-progress.  

 

 
Figure 8.9: SOADEVS client running the JCAS model using Simulation services on two 

hosts 
 

Finally, when the simulation is over, the console displays the following output. The simulation 

logs from both of the servers are categorically displayed. Figure 8.10 below shows the complete 

console log for all the operations done using SOADEVS client. 

 
Models assigned specifically to respective Server IP: 
--Component Model: JCASNum1 --> 150.135.220.240:8080 
--Component Model: USMCAircraft --> 150.135.220.240:8080 
--Component Model: CAOCobserver --> 150.135.220.240:8080 
--Component Model: UAV --> 150.135.218.205:8080 
--Component Model: CAOC --> 150.135.218.205:8080 
--Component Model: JTAC --> 150.135.218.205:8080 
--Component Model: AWACS --> 150.135.218.205:8080 
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Uploading in progress... please wait... 
Initiating UPLOAD... 
Uploading files to server 150.135.218.205:8080 
Files uploaded. 
Uploading files to server 150.135.220.240:8080 
Files uploaded. 
 
Compilation in progress....please wait.... 
 
Starting compilation at remote servers..... 
Compiling project at 150.135.218.205:8080... 
Project compiled. 
Compiling project at 150.135.220.240:8080... 
Project compiled. 
 
Waiting to start SIMULATION.... 
 
Simulation in Progress....please wait... 
Running simulation ... 
11 iterations. 
Simulators output: 
 
150.135.218.205 output: 
 JTAC  sending message: << port: ImmediateCASOut value: CASResourcesSpec 
>> 
State at: JTAC is: waitForAssignment 
 AWACS  sending message: << port: requestImmediateCASOut value: 
CASResourcesSpec >> 
State at: AWACS is: doSurveillance 
 CAOC  sending message: << port: readyOrderOut value: getReady port: 
YouCanUseUSMCAircraftOut value: CASResources >> 
State at: CAOC is: passive 
 JTAC  sending message: << port: TACCommandOut value: initialAttack >> 
State at: JTAC is: continueExecution 
 UAV  sending message: << port: targetLocationOut value: (Lat,Long) >> 
State at: UAV is: passive 
 AWACS  sending message: << port: sitBriefOut value: sitBrief >> 
State at: AWACS is: doSurveillance 
 JTAC  sending message: << port: TACCommandOut value: ceaseAttack >> 
State at: JTAC is: passive 
 
150.135.220.240 output: 
 USMCAircraft  sending message: << port: requestForTACOut value: 
requestTAC >> 
State at: USMCAircraft is: waitForTAC 
 USMCAircraft  sending message: << port: sitBriefRequestOut value: 
sitBriefRequest port: deconflictRequestOut value: requestDeconflict >> 
State at: USMCAircraft is: attack 
 USMCAircraft  sending message: << port: fireCommand value: fire >> 
State at: USMCAircraft is: attack 
 
SIMULATION over! 

 
Figure 8.10: Simulation output at client’s application using SOADEVS client 
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8.2 DoDAF-based Activity Scenario 

8.2.1 Example: Implementation of an Activity Component 

Consider an Activity as mentioned in Zinn [Zin04 pg 65] described in IDEF0 format 

(Figure 8.11). This activity is governed by the doctrines specified in OV-6a, IDEF3 

format, which are described in [43]. Figure 8.12 is a sample OV-5 diagram for “select 

contractor” and Figure 8.13 is the OV-6a description in IDEF3 format where X represents 

a XOR split and O represents an OR split. These are the critical decision making points 

that impact the outcome of the Activity based on previous step. It is at this point, timing 

needs to be specified so that ‘timeouts’ can occur without leading to any ambiguity. Zinn 

acknowledged this problem in the process. 

 

The information from these two figures is compiled manually to generate the pseudo 

code in the following format. This manual process amounts to the integration of OV-5 

and OV-6a into a single document. The pseudo code is provided below in Figure 12. 

 

The graphical representation in Figure 8.11 is represented textually through the Popkin 

System Architect as shown in Figure 8.14. Consequently Figure 8.13 and Figure 8.14 

gives us the comprehensive information about the Activity, its purpose, its input-output 

information thru ICOM3 lines, and pseudocode for operational rules (as defined in OV-

6a). Figure 8.11, 8.12 and 8.13 describe a general step approach to arrive at this 
                                                 
3 In IDEF0 diagrams, Inputs, Controls, Outputs and Mechanisms are collectively referred to as 
ICOM arrows. 
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pseudocode, which is then utilized by an agent based modeling software (e,g. SEAS) via 

Tactical Programming Language (TPL). Once pseudo code has been made available, any 

software developer who is versed with TPL or any other language can interpret it. This 

process is then followed for the case study (for all the 11 Activities) considered in 

[Zin04] Zinn. Zinn brought forward the information expressed in graphical format in OV-

5 diagrams and OV-6a doctrines in the form of psedocodes that are realizable into 

software code. We utilize his efforts and demonstrate how this information can be used to 

feed the integrated DEVS methodology and development of OV-8 and OV-9.  

 
 

 
 

Figure 8.11: OV-5 diagram for 
“select contractor” in IDEF0 

notation (from [Zin04]) 

Figure 8.12: OV-6a diagram for “select 
contractor” in IDEF3 notation, (from [Zin04]) 

 
              

 
 

Figure 8.13: Pseudo Code as per Zinn’s interpretation and integration procedure [Zin04] 

Activity 1: Select Contractor 
 
Description: The process used by the company to select the contractor for a new project  
Inputs:  Proposal: contains the cost, schedule, and technical information as proposed by the contractor 
Outputs: Contract  - the awarded contract 
Controls: 
 Policy: Company contracting policy 
 Law: Federal, State and Local regulations 
 

Pseudocode for Activity 1 
Evaluate Proposal 
IF (cost > budget) THEN 
  Reject Proposal 
ELSE 
  (Accept Proposal for Core Contract) OR  

(Accept Proposal for Options) OR 
  ((Accept Proposal for Core Contract) AND (Accept Proposal for Options)) 
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8.2.2 Activity taken from Zinn as an example 

Let us consider, the same example that is described in [Zin04]. Let the Activity that is 

being modeled is defined as Activity 6: TCT-Determine Target Significance/Urgency. 

There are about 11 Activities that are being evaluated and pseudo-code provided in 

[Zin04]. Figure 8.14 below provides the Activity Model Report as generated by Popkin 

System Architect. 

  
 

 
Figure 8.14: Activity Report Model for Activity 6 generated thru Popkin System 

Architect 
 
 

This Activity Report is nothing but the interface descriptions for an Activity in OV-5 

diagram. It tells us that Activity 6 receives input from which other Activities and sends 

outputs to which Activities. It also provides us the information about the ‘control’ 

6 Operational Activity: TCT-Determine target significance/urgency  (Track)   
[Within OV-5 Diagram 'TCT-Level 1']     
 
Glossary Text: Utilizing track data and other target information, C2 Warriors determine if the target/target set is threatening and/or fleeting, and  
estimate target availability, i.e., how long the target will remain susceptible  to attack. 
 
From 2005 C2 Constellation 3.2.5.2 and  CAOC-4.5.2.7     
ICOM line: Air Track (J3.2)   

Output: going to TCT-Validate target/target set (Target) as input   
Glossary Text:    

ICOM line: Current Intelligence - Dynamic Assessment/Target Status   
Input: coming from <offpage>   
Glossary Text:    

ICOM line: Current Intelligence - Target Classification   
Input: coming from TCT-Define target/target set (Fix) as output   
Glossary Text:    

ICOM line: Current Intelligence - Target Identification   
Input: coming from <offpage>   
Glossary Text:    

ICOM line: line: Doctrine, Policy, LOAC, SROE, ROE   
Control: coming from <offpage>   
Glossary Text:    

ICOM line: line: Dynamic Target Nomination   
Output: going to <offpage>   

Glossary Text: 
ICOM line: line: Dynamic Targeting Execution Direction and Guidance   

Control: coming from <offpage>   
Glossary Text:    

ICOM line: JMSNSTAT   
Input: coming from <offpage>   
Glossary Text:    

ICOM line: Land (Ground) Point/Track (J3.5)   
Output: going to TCT-Validate target/target set (Target) as input   
Glossary Text:    

ICOM line: Reattack Recommendation   
Output: going to TCT-Nominate engagement option (Target) as input   
Glossary Text:    

ICOM line: TRKREP   
Output: going to TCT-Validate target/target set (Target) as input  
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interfaces that are needed to execute the doctrines and rules. Figure 8.15 depicts the 

IDEF3 model that implements the OV-6a doctrines and rules for Activity 6. 

 

 
 

Figure 8.15: IDEF3 representation of Activity 6 (“Conduct Dynamic Assessment of 
Target” TCT 2005 Architecture, 2003: OV-6a) [Zin04] 

 

The pseudocode for Activity 6 is provided in Figure 8.16 which is compiled manually 

from the information contained in OV-6a. For complete description of the Activity 6, 

refer to [Zin04]. Briefly, the context of Activity 6 in TCT architecture is immediately 

after a target (or target set) is found and fixed. The upper half of Figure 8.15 shows an 

XOR junction that indicates only one path be taken. The resulting “target update” is then 

put thru 4 simultaneous analyses indicated by AND junction. This results (after integrated 
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IF Significant Movement of target   
Then Monitor Target/Target Status     

Project Target Movement     
Target Vector = . . . .. ?   

Else Monitor for Movement     
 
Analyze Threat from Target (is the target closing on Friendlies or Fleeing?)   
Analyze Dynamic Targeting Ex Direction and Guidance (does this agree with the commander’s  
requirements?)     
Determine target window of vulnerability (urgency)   
Determine target significance – partly based on above findings     
 
IF it is determined to be a TCT based on the above info   
Then IF this is the first strike attempt on this target     

Then Goto Activity 7 (Validate Target/Target set)     
Else Goto Activity 8 (Nominate engagement option)   

Else Pass target to ATO Planners      
Monitor Target of Interest for Status Change 

processing) into “Is the target time critical?” If it passes this TCT test it is again presented 

with a decision-point “Is the initial attack on the target?” The answer to this question 

results in two different modes of action, indicated by XOR junction. Zinn acknowledges 

the fact that even though there is certain sequencing present, precise information about 

the rules defined are left to imagination. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.16: Pseudocode for Activity 6 – based on IDEF3 diagram in Figure 8.15, taken 
from [Zin04] 

 
The next section demonstrates how the information in Figure 8.14 and Figure 8.16 is 

transformed into DEVS component modeling framework. It also shows how OV-8 and 

OV-9 gets populated. However, it must be realized that an “operational node” hasn’t been 

defined with respect to the current example. Consequently, we will assume an entity 

structure that will illustrate the concept. 
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8.2.3 DEVS Interpretation of Activity 6 

Based on the available information let us assume that dynamic target assessment happens 

at a particular node. Assume that Activity 6 and its sub-activities are all happening at 

TCT. Let’s call this Operational Node 1, with Id O1. This will comprise our OV-2 

diagram containing only one Operational Node executing all the 11 activities [Zin04]. 

Again, a simple example has been considered to demonstrate the construction of the new 

OV document, namely OV-8 and OV-9. 

The following Table 8.3 assigns identification numbers to various activities 

S.No. Activity Sub-Activity Internal-Activity ID 
1 Activity 6 Dynamic Target Assessment  A6 
2.  Monitor Target/ 

Target Status 
 A6.1 

3.  Monitor for Movement  A6.2 
4.  Project Target Movement  A6.3 
5.  Analyze Threat from Target  A6.4 
6.  Analyze Dynamic Target 

Execution/Direction and Guidance  
 A6.5 

7.  Determine Target Window of 
Vulnerability (Urgency) 

 A6.6 

8.  Determine Target Significance 
(Value/Effect) 

 A6.7 

9.  Nominate as Dynamic Target (NCT)  A6.8 
10.  Pass Target to ATO Parameters  A6.9 
11.  Pass Target to ATO Planners  A6.10 
12.   Significant Movement 

Yes/No 
A6.11 

13.   Target Monitoring A6.12 
14.   Target Significance 

Analysis 
A6.13 

15.   Synthesize Results A6.14 
16.   TCT Determination 

Yes/No 
A6.15 

17.   Initial Attack Yes/No A6.16 
18.   Review Established 

Target Lists 
A6.17 

19.   Attack Decision A6.18 
 

Table 8.3: Activity-ID mapping for OV-8 and OV-9 
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Based on the IDEF3 diagram (graphical information for OV-6) in Figure 8.15, and our 

constructed OV-2 in previous paragraph, we can construct our OV-8 document that lists 

Activities and their logical interface information. We need such port information to be 

able to create components. Such logical-port construction has been attempted in [Tel04] 

where the focus was to create an SV executable model. Developing and specifying 

Activity port-interfaces at this level is a logical step towards SV interface design as 

tractability is ensured. The OV-8 document below does not address the performance issue 

at OV level and its refined structure is presented in [Mit06b]. A sample OV-8 document 

looks like the following Table 8.4: 

S.No
. 

Activity 
ID 
compone
nt 

Connection 
ID 

Source 
Activit
y 

Input 
Interface 
Name 
(Logical 
Port) 

Message 
Descriptio
n /OIEs 

Contai
ner  
Op 
Node 

Source 
document/ 
diagram 

1 A6     O1  
2. A6.1 CA6.1 A6.11 inSigMovY AMT/GMT

I 
 

O1 Figure 12/OV-
6b,c 

3. A6.2 CA6.2 A6.11 inSigMovN StaticTarget O1 Figure 12/OV-
6b,c 

4. A6.3 CA6.3 A6.1 inTrkData TrackData O1 Figure 12/OV-
6b,c 

5. A6.4 CA6.4 A6.13 inCurrInte Current 
Intelligence 

O1 Figure 12/OV-
6b,c 

6. A6.5 CA6.5 A6.13 inDirGuid Direction 
and 
Guidance 

O1 Figure 12/OV-
6b,c 

7. A6.6 CA6.6 A6.13 inTarAnaly Target 
Analysis 

O1 Figure 12/OV-
6b,c 

8. A6.7 CA6.7 A6.13 inTarAnaly Target 
Analysis 

O1 Figure 12/OV-
6b,c 

9. A6.8 CA6.8 A6.14 inTctYes TCT Yes O1 Figure 12/OV-
6b,c 

10. A6.9 CA6.9 A6.14 inTctNo TCT No O1 Figure 12/OV-
6b,c 

11. A6.10 CA6.10 A6.9 inToiInfo TOI Info O1 Figure 12/OV-
6b,c 
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12. A6.11 CA6.11  inIsSigMov Significant 
Movement 

O1 Figure 12/OV-
6b,c 

13. A6.12 CA6.121 A6.2, inTargCoord Target 
Coordinates 

O1 Figure 12/OV-
6b,c 

  CA6.122 A6.3 inTargVec Target 
Vector  

O1 Figure 12/OV-
6b,c 

14. A6.13 CA6.13 A6.12 inTarUpdate Target 
Update 

O1 Figure 12/OV-
6b,c 

15. A6.14 CA6.141 A6.4 inTarThreat Target 
Threat 

O1 Figure 12/OV-
6b,c 

  CA6.142 A6.5 inDGCompl Direction 
Guidance 
Compliance 

O1 Figure 12/OV-
6b,c 

  CA6.143 A6.6 inTarUrg Target 
Urgency 

O1 Figure 12/OV-
6b,c 

  CA6.144 A6.7 inTarSig Target 
Significanc
e 

O1 Figure 12/OV-
6b,c 

16. A6.15 CA6.15 A6.14 inSigUrgRes Significanc
e/Urgency 
Results 

O1 Figure 12/OV-
6b,c 

17. A6.16 CA6.16 A6.8 inTctNom TCT 
Nomination 

O1 Figure 12/OV-
6b,c 

18. A6.17 CA6.17 A6.16 inFirstStr First Strike O1 Figure 12/OV-
6b,c 

19. A6.18 CA6.18 A6.16 inReAtkRec Reattack 
Recommen
dation 

O1 Figure 12/OV-
6b,c 

 
Table 8.4: Sample OV-8 document 

 
Based on the information provide in Figure 8.15, we have constructed and identified the 

interfaces that are being used by different activities to communicate. However, we have 

not considered the information contained in Figure 8.17 that describes how Activity 6 

communicates with other activities. We did not explore connectivity between other 

destination activities just to keep the example in the needed perspective. However, the 

procedure is essentially the same with more rows being added to the above table.  To give 

a glimpse on how this interconnected activities (as components) will perform in tandem; 

notice the inports and outports of Activity 6 in Figure 8.17. The other Activities are 

shown in the figure below don’t have any resemblance to the actual example in [Zin04]. 
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They are just meant for understanding. To understand how Activity 6 works internally 

based on the different activities in Table 8.3, please look at Figure 8.15. 

 

 
 

Figure 8.17: DEVS interrelationships of Activity 6 with other Activities. 
 
 

The coupling relations shown in Figure 8.18 are generated in an automated manner from 

the data presented in Table 8.4. Columns 2,3,4 and 5 provide sufficient information to 

generate the following lines of code with simple string manipulations. Consequently, an 

automated generation of DEVS model is realizable. Hence OV-8 document provides 

sufficient information to develop a skeleton DEVS model that can make its entry into the 

Model-repository. Let’s name the Model for Acitivity6 as MA6. The inner models are 

identified in the same predictable manner as MA6.1, MA6.2…MA6.18. 

 
ViewableAtomic a61 = new ViewableAtomic("A6.1");         
add(a61);         
ViewableAtomic a62 = new ViewableAtomic("A6.2"); 
add(a62); 
….. 
ViewableAtomic a611 = new ViewableAtomic("A6.11");        
add(a611); 
…. 
a611.addOutport("outSigMovY"); 
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a61.addInport("inSigMovY"); 
addCoupling(a611,"outSigMovY",a61,"inSigMovY"); 
 
a611.addOutport("outSigMovN"); 
a62.addInport("inSigMovN");       
addCoupling(a611,"outSigMovN",a62, "inSigMovN"); 
….. 

 

 
 

Figure 8.18: DEVS description of Activity 6 in relation to Table 6 Activity components. 
 

 

The next task in line is the inclusion of pseudo code that contains the doctrines and rules 

form OV-6a, described in Figure 8.16. Consider these 4 initial lines from Figure 8.16. 

 
IF Significant Movement of target   
Then Monitor Target/Target Status     

Project Target Movement     
Target Vector = . . . .. ?   

Else Monitor for Movement 
 
 

This particular doctrine is to be implemented at A6.11 (refer Table 8.3). This has far 

reaching advantages. By assigning doctrines and rules to specific Activity components, 
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we are ensuring that each rule is formally implemented and is synchronized with other 

rules that are ‘in operation’ at that instant of time. In a sense, which rules are compatible 

and which can cause ‘deadlocks’ can be determined by execution of the above Activity6 

DEVS model. The sample lines above are implemented in the deltext() function of 

component A6.11. The deltint() function defines the natural course of the activity. 

 
public void deltext(double e, messagex){ 
…. 
 for(int i=0; i<x.length; i++){ 
  if(messageOnPort(“inIsSigMov”){ 
   MessageTypeA msg = (MessageTypeA)x.getValOnPort(i, 
“inIsSigMov”); 
   If(msg.equals(“yes”)) 
    holdIn(0, “yesSigMov”); 
   else 

if(msg.equals(“no”)) 
    holdIn(0, “noSigMov”)); 
 } 
….. 
} 
public message out(){ 
…. 
 if(phaseIs(“yesSigMov”)){ 
  m.add(makeContent(“outSigMovY”, new entity(“start”))); 
  
 if(phaseIs(“noSigMov”)) 
  m.add(makeContent(“outSigMovN”, new entity(“start”))); 
…… 
} 
 

Similarly, all other Activities will receive inputs from other source Activities in their 

deltext() functions that will contain the logic for implementation of doctrines. For 

convenience purposes, the execution time of these doctrines is considered zero. Notice 

the holdIn() function in the code above.  However, this is an important place where we 

can tune and implement the realistic time in issuing commands by human commanders. 

For example, in a situation where the system is ‘waiting’ for a command from an 

authority figure and decision has to arrive until a ‘time-out’ occurs. In addition, consider 

that the activity component is executing certain process with respect to its deltint() 
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function and is in certain ‘phase’ waiting for any external input from other activities. In 

the situation of not receiving this input within allowable time-window, time-outs can very 

effectively guide the simulation to its completion and prevent the wait-to-infinity 

problem.  

 

The OR split problem pointed out by Zinn in IDEF3 methodology has no effect in DEVS 

methodology. This problem is resolved by making the &, X, and O constructs in IDEF3 

methodology as ‘internal-activity’ components (Table 8.3). Once they are 

componentized, time-outs can be implemented very easily that will completely eradicate 

this problem. These components are very well documented in DEVS SimpArc package 

Version 3.0. This solution also puts the focus back on the system-logic implementation 

and test if the communication delays are significant enough that time-outs are occurring 

frequently. 

 

Finally, the last task is the description of OV-9 document. This document contains 

information about the Activities happening inside an Operational Node and how the sub-

activities are mapped on to the components inside the Operational Node. For simplicity, 

we are working on the assumption that there is only one Operational Node O1 in the 

example. As there is no information present on what are its inner components are in 

[Zin04], we will assume that there are, let’s say, 7 inner components that make up this 

Node. Four of these seven components are associated with Activity6 and the other three 
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components are associated with some other activities, not considered for illustration 

purposes.  

 
S.No. Operational 

Node 
Inner 
Component 
Entities 

Component 
Name 

Associated 
Models 
added to 
Repository 

Hierarchical 
Parent/Container 

DEVS 
Model 
Type 

1. O1 OCE1 TCT ME1 - Digraph 
2.  OCE1.1 Radar 

Tracking 
System 

ME1.1 ME1 Atomic 

3.  OCE1.2 Significance 
Analyzer 

ME1.2 ME1 Atomic 

4  OCE1.3 Urgency 
Analyzer 

ME1.3 ME1 Atomic 

5  OCE1.4 Vigilance 
Controller 

ME1.4 ME1 Atomic 

6.  OCE1.5 Attack 
Evaluator 

ME1.5 ME1 Digraph 

7.  OCE1.6 Attack 
Initiator 

ME1.6 ME1.5 Atomic 

8.  OCE1.7 Attack 
Terminator 

ME1.6 ME1.5 Atomic 

 
Table 8.5: Inner components within Operational Nodes and their mapping with 

‘standardized’ DEVS models 
 
 
The defined components are essentially COTS components with defined behavior. They 

can even come from System View document SV-4. Consequently, each of them has their 

‘models’ for simulation purposes specified in DEVS formalism. These models are 

essentially Open-source models available to public thru a common repository and are 

‘standardized’. The following table depicts the information assumed for construction of 

OV-9. The inner components depicted in the table below are only for illustration 

purposes. 
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Having Table 8.5 as available resources for OV-9, we have enough information to 

construct the Activity-entity mapping in Table 8.6. We identify and define port-interfaces 

that need to be added to the entity component models so that they can be coupled to the 

Activity components. Once OV-9 document is in place, the added interface information is 

used to update the models defined during the construction of these two documents. We 

saw in construction of OV-8 document that the resulting model is a stand-alone model 

that is capable to execute the simulation in ‘capability’ mode, testing the OV-5 and OV-6 

description of the system. A sample OV-9 document looks as following: 

 
S.No. Operational 

Node 
Inner 
Component 
Entities 

Component 
Name 

Activity 
Component 

Activity 
Component 
Name 

Interface 
description 

OCE1 
 

TCT    

A6.1 Monitor 
Target/Target 
Status 

monTarE 

A6.2 Monitor for 
Movement 

monTarMovE 

A6.3 Project Target 
Movement 

proTarMovE 

A6.11 Significant 
Movement 
Yes/No 

sigMovYesNoE 

A6.12 Target 
Monitoring 

tarMonE 

OCE1.1 Radar 
Tracking 
System 

A6.10 Monitor Target 
of Interest for 
Status change 

monTarInterE 

A6.13 Target 
Significance 
Analysis 

tarSigAnalyE 

A6.4 Analyze threat 
from Target 

analyThrTarE 

A6.5 Analyze 
Dynamic 
Target 
Execution 
Direction and 
Guidance 

analyEDGE 

1. 
 

O1 

OCE1.2 Significance 
Analyzer 

A6.7 Determine detTarSigE 
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Target 
Significance 

A6.14 Synthesize 
Results 

syncE 

OCE1.3 Urgency 
Analyzer 

A6.6 Determine 
Target 
Window of 
Vulnerability 

detWinVulE 

A6.15  TCT 
Determination 
Yes/No 

tctDetYesNoE 

A6.8 Nominate as 
dynamic 
Target 

nomDynTarE 

A6.9 Pass Target to 
ATO Planners 

passTarAtoE 

OCE1.4 Vigilance 
Controller 

A6.16 Initial Attack 
Yes/No 

initAtckYesNoE 

  A6.18 Attack 
Decision 

atckDecE 

  A6.17 Review 
established 
Target Lists 

revEstTarListsE 

OCE1.5 Attack 
Evaluator 

A6.16 Initial Attack 
Yes/No 

initAtckYesNoE 

OCE1.6 Attack 
Initiator 

   

OCE1.7 Attack 
Terminator 

   

Table 8.6: OV-9 description document mapping the Entity component inside Operational 
Node O1 with the Activity Components defined in OV-8 with port-interfaces 

 
 

OV-9 document aids in bringing the systems perspective to the design and how the 

system’s components initiate the designated Activities. Assignment of an Activity to 

appropriate component entity is a job of an experienced ‘designer’, as per the definition 

of Designer in DoDAF document. This document ensures accountability that there is at 

least one Component entity that is responsible for the execution of that particular 

Activity. Notice that all the Activity Components addressed in the example have been 

assigned at least one Operational Node inner component entity. After the creation of OV-
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9 document, the Interface information, in the last column, is used to update the 

corresponding Activity and the Entity models in the Model Repository that were created 

during the construction of OV-8. This is again an automated task with simple string 

manipulation as described earlier, during the construction of OV-8 models. 

 

Hence, during the creation of OV-8 and OV-9 we have populated the Model Repository 

with Activity Models (MA6.1-MA6.18) and Operational Node’s inner component models 

(ME1, ME1.1-ME1.6), have created an interface between these two aspects of DoDAF 

design.  

8.2.4 Synopsis 

Looking Figure 4.18 in an Activity component perspective, we have our defined inputs 

and outputs, and eventually the activity-ports. In the example above, we have defined the 

interfaces of an Activity that could be subjected to component coupling and testing. The 

coupling information can be integrated using OV-3 document, as described in Table 8.4. 

The timing information is added using the OV-6b and OV-6c diagrams as we have 

defined ‘components’, the effects of which have been highlighted in [Mit06a]. This 

information, along with the pseudocode provided by Zinn, is integrated to develop the 

DEVS model of the Activity in question. The pseudo code is very well directed to the 

Activity that is best responsible to execute those ‘rules’. At this point the whole purpose 

of creating OV-8, the rule-Activity mapping, is realized. 
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OV-9 document deals with the mapping of the Activity components with the entity 

components. Since Zinn [31] did not define internal components for any Operational 

Node, we assumed certain inner components and mapped the Activities to these 

components. Having ensured accountability for each of the Activities, another area that 

OV-9 contributes to is System Design, Reuse and Composability. We have available with 

us a document that contains information of the functionalities any particular component 

can perform or participate in collective functionality. Consider the situation when two or 

more inner components, from Systems perspective are thrown together to observe, if the 

system is capable of performing ‘something’. This allows us to experiment with different 

systems who are claiming to exhibit certain functionality. It allows us to test 

interoperability. 

 

Hence, the resulting integrated information from OV-3, OV-2 and OV-6 is converted to 

the information in documents OV-8 and OV-9, with the addition of logical ports, 

dedicated to the M&S area that are focused towards Operational Views.  

 
 

8.3 Link-16 ATC-Gen Project at JITC 
 
In this section, a testing approach to Link16 standards conformance is described. For 

details see [Mak06]. The auto correlation experiment is conducted using the automated 

test generation processes shown in Figure 8.19.  The scenario was performed against the 

Integrated Architecture Behavior Model (IABM) developed by the Joint SIAP System 

Engineering Organization (JSSEO).  The result of this scenario was verified by the ATC-
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Gen Test Driver and validated using JITC’s Simple J network packet monitoring tool.  

Due to the classification of this system, the experimental results can not be shown.  Thus, 

the System under Test (SUT) test models are developed to allow the test driver to act as 

the SUT and allow the experiment to be conducted. 

 
 

Figure 8.19: Automated Testing 
 

8.3.1 Auto Correlation Scenario 

As MIL-STD 6016C stated, when a system receives a remote track from a remote system 

that is within the correlation window of the local track, it initiates the tentative correlation 

process.  If a second track arrives within the local track correlation window, it shall be 

correlated and held as common local track by transmitting a correlation request to the 

remote system.  If the local track number is greater than the remote track number, the 

local system drops its own track and sends out a drop track notification; otherwise, the 

remote system drops its track and sends out the notification.  Figure 8.20 illustrates the 

auto correlation process in the sequential diagram. 

 

Minimal Testable 
I/O Spec 

Test Model 
Generator 

DEV-C++ Source 
Codes 

Test Driver SUT 
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Figure 8.20: Auto Correlation Sequential Diagram 
 
 
The test engineer follows the sequential diagram to construct the minimal testable pairs.  

Furthermore, the test models are generated using the Test Model Generator.  Figure 8.21 

illustrates the minimal testable pairs for SUT and Test Driver.   

 
Figure 8.21: Minimal Testable I/O pairs for Auto Correlation 

 

8.3.2 Auto Correlation Experiment Setup & Results 

The auto correlation scenario is created to demonstrate the correctness of the models 

generated by the Test Model Generator.  The models are implemented into the SUT and 

Test Model Test Drivers and communicate via Simple J protocol as illustrated in Figure 

  

  

 

 

J3.2 J3.2 

J7.2 J7.0 

Inputs to SUT 
(Output from Test Driver) 

Output from SUT 
(Input to Test Driver) 
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8.22.  The transmissions and the receipt of the Simple J messages of the scenario are 

captured by a Simple J network packet monitoring tool.  The packet monitor captures and 

decodes the Simple J messages, and the messages are saved into a log file.  The log file is 

analyzed and the data is verified to ensure that the scenario data is the intended behavior 

of the Test Driver.  

 

 
 

Figure 8.22 Test Drivers Setup Diagram 
 

Successful Auto Correlation 

In this scenario, the Test Drivers are communicated via Simple J protocol.  The messages 

setup in the correct sequence and auto correlation is induced.  The SUT models and Test 

Models are generated by the Test Model Generator, and implemented into the Test 

Driver.  The SUT TD has the track number of 03000, and the Test Model TD has the 

track number of 00500.  The two J3.2 track positions of the Test Model TD are exactly 

the same as the SUT J3.2 track position.  This causes the tracks to correlate and creates a 

common local track with the track number of 00500.  The SUT TD sends a correlation 

request and drops the local track with the track number of 03000.  Figure 8.23 illustrates 

the outputs from the Test Model TD, and Figure 8.24 illustrates the results for the SUT 

TD. 

SUT  
Test Driver 

Test Model 
Test Driver 

 
 

IP Network 

HLA or 
SimpleJ 

HLA or 
SimpleJ 
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Figure 8.23: Test Model Test Driver successful Auto Correlation scenario 
 

 
 

Figure 8.24: SUT Test Driver successful Auto Correlation scenario 
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8.3.3 Testing Status 

ATC-Gen Test Driver was tested in both standalone and distributed environments.  In the 

standalone environment, it performed Link 16 testing against two Link-16 systems: 

IABM and Air Defense System Integrator (ADSI).  Recently, ATC-Gen Test Driver was 

participated in a distributed live testing environment in JITC.  Table 8.7 summaries the 

results of the Link 16 functionalities against the systems. In recent developments, three 

modes of testing have been developed: Active, Reactive and Passive. The Reactive mode 

is developed at JITC by Dale Fulton and others. In this approach, the user interactively is 

able to inject parameters to tune SUT to real system. This allows the capability to use the 

same SUT model with different real-world implementations by dynamically tuning the 

SUT model. The reactive mode of changing system parameters is similar to reactive-

manner of controlling model or simulator parameters discussed in Section 3.4.3. 

 
Link 16 Systems

 
MIL-STD 6016C Functions 

IABM ADSI Distributed 
Environment 

AutoCorrelation Y Y Y 
Correlation Window Size N Y Y 
Decorrelation Y Y Y 
Track Management Y N N 
Report Responsibility Y Y Y 
Track Quality Y Y Y 
Identity Different Resolution N Y Y 

 
Table 8.7: Link 16 functionalities vs. Systems 
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8.4 GENETSCOPE Project at JITC 
 
SCOPE command is a highly automated, high-frequency (HF) communication system 

that links U.S. Air Force (USAF) command and control (C2) functions with globally 

deployed strategic and tactical airborne platforms. SCOPE command replaces existing 

USAF high-power HF stations with a communication system featuring operational ease 

of use, dependability, and seamless end-to-end connectivity comparable to commercial 

telephone services. The network consists of fifteen worldwide HF stations (see Figure 

8.25) interconnected through various military and commercial telecommunications media 

(see Figure 8.26). It increases overall operational and mission capabilities while reducing 

operation and maintenance costs. 

 
 

 

 
Figure 8.25: Geographic locations of fixed 

stations 

 
 

Figure 8.26: Communication flow 
diagram for SCOPE command 

 

The HF radio equipment includes the Collin’s Spectrum DSP Receiver/Exciter, Model 

RT-2200. The radios feature Automatic Link Establishment (ALE) and Link Quality 

Analysis (LQA) capability and are adaptable to future ECCM waveforms FSK, MIL-

STD-188-110B, and STANAG 5066. The transmit subsystem includes 4-kW solid-state 
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power amplifiers, a high-power transmit matrix, and a combination receive/multicoupler 

antenna matrix. A typical SCOPE command station includes operator consoles (HFNC), 

circuit switching equipment (DES, DSN, LCO), HF radios (ALEs), RF matrixes (RTs), 

and antennas (RXs, TXs). A non-blocking digital electronic switch (DES) connects the 

station to the local military and/or commercial telecommunication services. The switch 

features unlimited conferencing, modular sizing, a digital switch network, a precedence 

function, and capacity for up to 2,016 user lines. 

SCOPE command uses a modular, open-system design to automatically manage and 

control all network operations, including those at split-site stations. To achieve maximum 

flexibility, the system uses commercially available standards-based software and a 

multitasking operating system. This approach permits fourteen out of fifteen network 

stations to operate “lights out” (unmanned) and to be economically controlled from a 

central location. The control system also includes LAN software, servers, and routers to 

support unlimited LAN/WAN. 

 

The program includes a Systems Integration Lab (SIL) and test-bed facility located in 

Rockwell Collins’s Texas facility. The SIL is used to predict the impact and risk that any 

changes or upgrades will have on system performance, integrity, or costs before actual 

implementation begins. The SIL includes a fully functional SCOPE command station for 

performing baseline design verification, and interface compatibility and functional 

verification tests. 
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Joint Interoperability Test Command (JITC) is the only government agency that is 

assigned the task to validate and authorize IT systems for military operations [CJC06]. 

The HF SCOPE command system has also been evaluated by JITC. In collaboration with 

Dr. Eric Johnson, a simulator was developed in the C language around 1997 that was 

validated and eventually used by both the government and the industry to conduct 

experiments and run scenarios. The simulator was an exhaustive and comprehensive 

effort with respect to the details it implemented and served its purpose well. However, in 

today’s circumstances, the same simulator is obsolete due to the heterogeneous nature of 

today’s network traffic, in which e-mail occupies a considerable percentage of traffic. 

The simulator is now being upgraded at the ACIMS lab in order to make it more useful 

for current demands. These demands stem from the possibility of expansion of the current 

infrastructure of the SCOPE command. Questions arise such as how many stations need 

be added to service a required workload. Also needing to be investigated are trade-offs 

such as whether it is more economical to add more stations or increase the number of 

internal radio levels within stations to meet the anticipated demands. Air traffic has 

increased manifold since 1997, along with the computing technology. Consequently, the 

transition effects need to be monitored more closely, and the overall system response 

time4 needs to be documented. The significant parameters that have the most impact on 

system performance have to be identified. To more easily address such questions, an 

effort is being made to modularize Johnson’s 15K lines of code into a component-based 

structure depicted in Figure 8.27. Once “componentized,” the components are made 

                                                 
4 Response time of a system is defined as the time taken by the system to display significant effect caused 
by any update in the configuration parameters.  
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DEVS compliant resulting in a DEVS-based simulation package to support the systems 

engineering needs of the SCOPE command.5 

 
Figure 8.27: System entity structure for SCOPE command system showing the fixed and 

mobile (aircraft) stations 
 
 
To study the effect of changes/upgrades introduced to the existing SCOPE command 

system we built the Experimental frame, based on DEVS principles for our modular 

DEVS-NETSIM simulation model, named GENETSCOPE [Gen06]. Figure 8.28 shows 

the block architecture of the simulation model. The right-hand box is the system 

phenomenon that contains the Automatic Link Establishment (ALE), STANAG 5066 

protocols used for establishing links and exchanging data messages between mobile 

stations and fixed stations. The left-hand box is the experimental frame that generates 

various scenarios and parameters under study. The scenarios and parameters are fed into 

the model and performance characteristics are obtained from it, which are then visualized 

and analyzed in real time as per the extended MVC architecture described in Chapter 3.  

                                                 
5 A methodology using intermediate XML processing to automate much of the process of “componentizing” 
legacy simulation code will be reported soon.  
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Figure 8.28: GENETSCOPE simulation architecture for SCOPE command 
 

8.4.1 SCOPE Command and DoDAF 

Certainly, a system like SCOPE command qualifies to be represented as a DoDAF 

specification. Though not provided in this paper, all three views, viz., Operational, 

System, and Technical, can be developed. The documents are fairly easy to construct as 

the system is not in the design phase but is a live system with working standards and 

people managing the system for as long as twenty years. The physics of the HF 

communication is still the same, and the radio equipment has set standards that have not 

been revised that often. What is new in the system is the incorporation of new standards, 

for example, the STANAG 5066 data-exchange protocol that modulates the modem rates 

and reliable data delivery across the HF messaging system. This is being added to 

provide the capability to send e-mail messages through the HF system. The other major 

thing that has changed is the increased intensity of traffic, demanding upgrades to the 
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existing system. For illustration purposes, suppose that we had the DoDAF description of 

SCOPE as well as all the details on how the system would be constructed and its 

functionality implemented. Remaining solely within the DoDAF, there still would not be 

any means to analyze or experiment with the projected system. As stressed earlier, the 

DoDAF does not provide for any M&S capability to support the system design process. It 

only provides a means to build a system on the presumption that analysis has already 

been done, a “design” is available, and the system is ready to be deployed. The purpose 

of the DoDAF in this case is nothing more than a documenting procedure.  

 

The methodology presented in this paper takes the DoDAF as a front-end documentation 

procedure that aids M&S and design objectives. With respect to Figure 4, the central 

theme of the paper, we present sample OV-8 and OV-9 documents to illustrate how the 

experimental frame is developed from the DoDAF terminology.  

 

Although the current DoDAF views are insufficient to provide the M&S for the purpose 

of enhancing and recommending upgrades to the existing SCOPE system, the DEVS 

approach readily provides the needed tools. Going back to the basic DEVS M&S 

components (see Figure 3.1), the legacy SCOPE simulation model was transformed by 

the base high resolution model. The Experimental frame is constructed over this existing 

system along with various other additions that would control and direct the possible 

upgrades. This component is responsible to provide environmental conditions, workload 

generation, performance analysis, system evolution and control, and achievement of 
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steady state. The other advantage of this separation is the construction of a DEVS lumped 

model in which various details of the base model are abstracted and lumped together. 

Whereas the base model is oriented to technical components, the lumped model directly 

addresses system level issues and supports faster simulation runs to answer these 

questions. As always, the question arises as to how close these results match with the 

detailed model. The lumped model is preferred if it is able to perform to the same level of 

accuracy and helps answer the questions raised by the SCOPE command designers. The 

comparison of a lumped model with a base model is only possible if the underlying M&S 

formalism supports modular construction of the three components, viz., model, simulator, 

and Experimental frame [11]. Figure 8.29 summarizes the general idea. 

 

 
 

Figure 8.29: DEVS M&S and the existing SCOPE command system 
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Sample OV-8 and OV-9 Documents 
 

Let’s consider two activities out of many activities that are a part of any HF radio 

communication, i.e., sounding and listening. Sounding is defined as the process by which 

different stations (refer to Figure 8.27) periodically send broadcast messages at different 

frequencies so that other stations know who else is available on the HF radio sky. 

Listening is defined as the process by which these stations identify and hear RF tones and 

go through a demodulation process to decode and decipher the incoming transmission.  

 
S. 
No. 

Activity Sub-activity Internal Activity ID 

1 Sounding   A1 
2.  Prepare Call  A1.1 
3.  Send Call  A1.2 
4.  Send Transmission  A1.3 
5. Listening   A2 
6.  Receive Transmission   A2.1 
7.  Evaluate Signal  A2.2 
8.  Decode Signal  A2.3 
9.  Report Message  A2.4 

 
Table 8.8: Activity 4ID mapping for OV-8 and OV-9 

 
 
Table 8.8 describes the initial process that is done to populate the OV-8 document. It 

assigns various IDs to different Activities and sub-activities that are then used as 

reference tokens and automation processes, as described in [Mit06a]. Figure 8.30 depicts 

the OV-5 for activity sounding. Activity listening will have a similar Operational View 

depiction. Table 8.9 presents a sample OV-8 document with refined structure (see Table 

3) showing the significant parameter set for sounding and listening activities. It should be 

well stressed here that documention and aggregation of this information with the 
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corresponding activity helps find faults in testing the “feasibility” of the system [Mit06a] 

when M&S is employed. 

 
Figure 8.30: OV-5 for activity sounding 

 
 
S. 
No. 

Activity 
ID 
Compo
nent 

Signify-cant 
Para-meter 

Connec
tion ID 

Source 
Activity 

Input 
Interface 
Name 

Message 
Descript-
ion 

Contai
ner Op. 
Node 

Source 
Docum
ent/ 
Diagra
m 

1 A1      Station  
2. A1.1 Sounding- 

interval, 
duration 

CA1.1 Ax 
(hypoth
etical) 

inSta Send sound 
 

Station Figure 
5.29/ 
OV-5 

3. A1.2 Message 
size, 
frame count 

CA1.2 A1.1 inAle Send  
frame (s) 

Station Figure 
5.29/ 
OV-5 

4. A1.3 Duration CA1.3 A1.2 inRt Add 
transmission 

Station Figure 
5.29/ 
OV-5 

5. A2        
6. A2.1 Duration CA2.1 Ay 

(hypoth
etical) 

inRt Receive 
transmission 

Station Figure x 

7. A2.2 Station to-
station SNR 

CA2.2 A2.1 inAle SNR Station Figure x 

8. A2.3 Received 
frames, 
valid 
frames, 
duration 

CA2.3 A2.2 inAle Incoming 
sound 

Station Figure x 

9. A2.4 None CA2.4 A2.3 inHfnc Heard 
station X 

Station Figure x 

Table 8.9:  Sample OV-8 document 

A1.1 
Prepare 

Call

A1.2 
Send Call 

A1.3 
Send 

Transmissio

A1 Sounding 

Send 
Sound 

Send 
Frame 

Add 
Transmission 
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Having constructed the OV-8 document, let us construct the OV-9 documents according 

to the proposed structure in [Mit06a]. Table 8.10 presents the components that lie within 

the Operational Node station and their assigned IDs for automation purposes. For more 

details, refer to [Mit06a]. It is worth stressing here that this information comes readily 

from the SES of the existing SCOPE command system, as shown in Figure 8.27. The 

inner components within the station Operational Node are clearly defined in Figure 8.27.  

 
S. 
No. 

Operational 
Node 

Inner 
Component 
Entities 

Component 
Name 

Associated 
Models 
Added to 
Repository 

Hierarchical 
Parent/Container 

DEVS 
Model 
Type 

1. O1 OCE1 Station ME1 - Digraph 
2.  OCE1.1 HFNC ME1.1 ME1 Atomic 
3.  OCE1.2 ALE ME1.2 ME1 Atomic 

4  OCE1.3 RT ME1.3 ME1 Atomic 
5  OCE1.4 TX ME1.4 ME1 Atomic 
6.  OCE1.5 RX ME1.5 ME1 Atomic 
7.  OCE1.6 PA ME1.6 ME1 Atomic 

 
Table 8.10: Inner components within operational nodes and their mapping with 

“standardized” DEVS models 
 
 
 
S. 
No. 

Operational 
Node 

Inner 
Component 
Entities 

Component 
Name 

Activity 
Component 

Activity 
Component 
Name 

Interface 
Description 

OCE1 
 

TCT    

Ax Time To Sound tts OCE1.1 HFNC 
A2.4 Report Message repMsg 
A1.1 Prepare Call prepCall 
A1.2  Send Call sendCall 
A2.2 Evaluate Signal evalSig 

OCE1.2 ALE 

A2.3 Decode Signal decSig 
A1.3 Send 

Transmission 
sendTransm OCE1.3 RT 

A2.1 Receive 
Transmission 

recvTransm 

1. 
 

O1 

OCE1.4 TX A1.3 Send 
Transmission 

putTransm 
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OCE1.5 RX A2.1 Receive 
Transmission 

getTransm 

OCE1.6 PA None None None 
Table 8.11: Sample OV-9 Document 

 
Hence, during the creation of OV-8 and OV-9 we have populated the model repository 

with  Activity models (MA6.1–MA6.18) and Operational node’s inner components 

models (ME1, ME1.1–ME1.6) and have created an interface between these two aspects 

of DoDAF design. In the subsequent sections, we shall see how these enhanced OV-8 and 

OV-9 documents prove to be advantageous in defining the DEVS Experimental frame 

parameters and hierarchical GUI developments or code development of the simulation 

model. 

 

8.4.2 SCOPE Architecture Implementation Using Enhanced MVC 

Figure 8.31 shows the simulation architecture for GENETSCOPE [Gen06] using the 

concepts laid out in the paper. With reference to Figure 5.27, the ionosphere model used 

in the architecture is ICEPAC data. It is worth stressing that the initial NETSIM model 

written in C language has this database tightly coupled with the model. In our present 

implementation, we made it modular so that it can be replaced by any other database that 

could provide the channel propagation values through the ionosphere, e.g., VOACAP. In 

the current implementation, there is no ICEPAC database included but the complete 

ICEPAC software that is executed at run time. This is one of the biggest advantages in 

separating ICEPAC from the model itself. The ICEPAC software is configured through 

the Experimental frame parameters and is made available for real-time execution as an 

independent thread for different stations that are active in the running DEVS model. The 
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real-time execution of ICEPAC software involves creation of a dynamic ICEPAC 

configuration file that contains information about the two stations, their geographical 

locations in latitude and longitude, the Sun Spot Number (SSN), and the time of year, 

month, and day. This implementation allows us to get the ionospheric SNR values for any 

location at any time of the year (for SSN) unlike the earlier implementation (NETSIM-

SC) where we were limited to only a handful SSN values (10, 70, 100, and 130) with 

locations specified in five-degree increments. This has the added benefit of using the 

exact location of any mobile station rather than using projections within the implemented 

grid as in the earlier NETSIM-SC. The DEVS layer comprises both models as well as the 

DEVS simulation environment. The Experimental frame layer also contains the controls 

required to modify/update the model as well as a simulator as per enhanced MVC. The 

simulation visualization is modular in construction and reflects the updates in the 

Experimental frame layer and the DEVS layer. See Figure 8.31. 

 

 
 

Figure 8.31: Simulation architecture for the SCOPE command network 
 

 
The above architecture is shown below in various screen shots taken from the developed 

GENETSCOPE (beta version). Figure 8.32 shows the Experimental frame and various 
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parameters (along with their default values) used in scenario configuration.  The 

parameters shown in bold below are the parameters that have been identified as 

significant parameters in OV-8 (see Table 8.9, in shaded cells). Similarly, other 

parameters too come from an elaborate OV-8 document of the SCOPE command. These 

significant parameters find their way in various configurable parameters all through the 

model configuration settings as shown in Figures 8.32-34, and the simulation model finds 

its design through the SES (see Figure 8.27) or the corresponding OV-9 document (see 

Table 8.11). The total parameter set is comprised of: 

1. Number of fixed stations, 

2. Number of levels inside a fixed station, 

3. Number of mobile stations (aircrafts), 

4. Messages per hour, 

5. Data message size, 

6. Voice call duration, 

7. Ground stations sounding interval, and 

8. SNR threshold for a received signal. 
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Figure 8.32: Experimental frame for GENETSCOPE 

 
 
Once the experimental frame parameters are configured, these parameters are channeled 

down to the individual components. The top-level design parameters then bound the other 

internal component parametric settings. For example, Figure 8.33shows a typical 

configuration of the ground station Sigonella. The left column in Figure 8.33 shows all 

the fourteen ground stations, and the individual details about each station can be seen by 

pressing the Lookup button. Figure 8.33 also shows the message traffic that is transmitted 

by this station. Notice that the Experimental frame settings are shown as the traffic 

stream originated from this station. Similarly, a mobile station configuration panel is 

shown in Figure 8.34. The user can select any specific mobile aircrafts bounded by the 

Set up values 
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number of mobile stations specified in the Experimental frame.  The next figure, 8.35, 

basically lets the user enter call-signs to these mobile stations and invites the user to enter 

aircraft-specific details like message traffic, flight path (see Figure 8.36), radio 

parameters, and channel frequencies being used. Other internal details of station 

configuration can be seen in the GENETSCOPE software user’s manual [Gen06]. The 

purpose of showing GUI snapshots in Figures 8.33-36 is to illustrate how top-down 

design parameters (from OV-8) can be taken down to the component level (through both 

OV-8 and OV-9). The other important aspect of this process is that during simulation 

run-time, if the Experimental frame parameters are changed to study any particular 

parameter, that change is channeled across the whole system model configuration using 

“interrupts,” thereby exploiting the discrete event simulation methodology. The update of 

any Experimental frame parameter is taken by the simulation model as an “external” 

event. 
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Figure 8.33: Ground station configuration screen for Naval Air Station Sigonella 
 

 

The last piece of information being fed through the Experimental frame is the ICEPAC 

setting, based on the Sun Spot Number (SSN). Once the system model is configured 

through the Experimental frame settings, the user is directed toward the simulation setup. 

Figure 8.37 shows the final setup screen after which the user then moves on to the run-

time simulation screen (see Figure 8.38) to execute the simulation.  When the user clicks 

the Write Files button in Figure 8.37, it results in writing up of the detailed configuration 

file for repository purposes.  
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Figure 8.34: Mobile station configuration screen where the total count is bounded by the 

Experimental frame 
 

 

 
Figure 8.35: Callsign entry for a 

mobile station 

 
Figure 8.36: Flight path of mobile aircraft 

and other details 

 

2. The selected Aircraft is “C130”, and 
the number of “C5” is “two” 

3. If all the numbers of aircraft has been selected, n push 
“Enter Details” to enter specific details. 
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Figure 8.37: Experimental frame and ICEPAC data configuration through selection of 

SSN 
 
 

Figure 8.38 shows the simulation clock as it happens in real time and the obtained 

statistics. The above snapshots complete the architectural components specified in Figure 

8.31. Figure 8.38 has the functionalities that are described earlier in the paper: e.g., run-

time configuration updating and simulation control. It has four buttons at the top of the 

screen, viz.: 

1. Run Abstract Model (using lumped parameters), 

2. Run Detailed Model (using detailed parametric settings), 

3. Pause (to interrupt the simulation), 

4. Terminate (to end the simulation). 
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Figure 8.38: Run-time simulation visualization screen for rapid feedback 
 
 
The Pause button is of special interest here, as the user can interrupt the running 

simulation (manual reactive control described in Chapter 4) and change the Experimental 

frame or system configuration settings while the simulation is in action. Once the 

parameters have been updated, the user can resume the simulation and can see the impact 

of that update on the above “active” simulation visualization screen. One such example 

may be the two obtained values of total transmissions and total sounds heard. If the 

number of sounds heard is not up to the mark (with respect to a validated real-world 

scenario), the user may change sound-interval time or any other parameter that would 

impact this number, or may conclude that the model is not “performing” correctly. The 
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rapid impact of any such parameter can be studied by pausing the simulation and 

changing it and then observing the effects in the simulation pane.  

 

The DEVS layer in Figure 8.31 is implemented in the following manner. The simulation 

engine running behind uses the following code. 

 
NetsimSC net = new NetsimSC(createdConfigFile, debugOption); 
tCoord = new TunableCoordinator(net); 
tCoord.initialize(); 
tCoord.setTimeScale(0.0001); 
tCoord.simulate(Integer.MAX_VALUE); 
 

 
The model configuration is written into a configuration file that is used to create the 

DEVS digraph model, with automated coupling using the system SES shown in Figure 

8.27. The DEVS model is then passed on to the TunableCoordinator derived from DEVS 

RTcoordinator class. The TunableCoordinator is initialized and is then directed to 

simulate for a maximum number of iterations, which means that simulation will proceed 

indefinitely (in logical sense). The Pause button executes the following line.  

 tCoord.interrupt(); 
 
 
After the simulation is paused and updates are made, the simulation is restarted by simply 

calling the coordinator to “simulate.”  

tCoord.simulate(Integer.MAX_VALUE); 
 

 
The simulation core functionality provided by the DEVS simulation protocol facilitates 

interrupting the coordinator and makes real-time parametric and component structures at 

run time as described in sections 6 and 7 earlier. 
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Figure 8.38 contains a very limited set of aggregated information. However, run-time 

graphs and projections can be very well aligned with this visualization to see patterns and 

the direction in which the simulation is proceeding. Logs are generated for each 

simulation run. This visualization pane shows the important information of the 

Experimental frame (in red) and the run-time information from the system model (in 

blue), which, needless to say, is according to the enhanced MVC (through the 

development of appropriate interfaces between these layers). The View layer (see Figure 

3.2) in the current example shows only the model and the Experimental frame control 

visualization. The Experimental frame control is controller B in Figure 3.2, i.e., 

parameters that “control” the model. The lowest layer, i.e., controller A in the enhanced 

MVC process, is not the focus of the GENETSCOPE project and consequently not 

illustrated here. Its implementation is illustrated in the work [Nut05].  

 

8.4.3 Implications of the Example Above and NR-KPP 

Having laid out the framework to conduct and design the experiments, the next item on 

the agenda is to identify the measures of effectiveness (MoEs) that eventually will be 

considered in making recommendations for any update or modification needed in the 

current SCOPE command infrastructure. Since the SCOPE command is a deployed 

system, we were given various statistical reports by JITC [JITC] in order to determine 

these MoEs. The point of this exercise is to provide sufficient analysis through simulation 

of the modeled system so that the impact of any particular infrastructural change intended 
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in the system can be observed on these MoEs. Some of the MoEs that were identified are 

as follows: 

1. Longest time taken by any e-mail on HF network, 

2. Number of e-mails sent and number of e-mails actually delivered, 

3. Average message transmission time at any station per hour, 

4. Messages attempted versus messages received per hour, 

5. Bandwidth usage at Central Network Command Station (CNCS6),  

6. Number of planes in “good” signal to noise ratio (SNR) range per hour. 

 
The parameters that are to be set in order to recommend any upgrades in the current 

infrastructure can be listed as follows: 

1. Average number of daily flights, 

2. Minimum number of messages attempted by any station, 

3. Number of fixed stations participating in any mission scenario, 

4. Number of active levels within a fixed station,  

5. Minimum and maximum message size in KB, 

6. Minimum and maximum duration of a phone call (VOICE message), 

7. Minimum data rate by any ALE radio-modem. 

 
As can been seen clearly, there is not a one-to-one mapping between MoEs and 

experimentation parameters. The MoEs tell us about the effectiveness of any mission that 

would be executed. They are holistic measures that tell about the fitness, capacities, and 

                                                 
6 CNCS is the gateway for any land-based network (SIPRNET or NIPRNET) to be connected to the SCOPE 
command HF network. All e-mails are routed through CNCS. 
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limitations of the system. M&S is the preferred means for assessing the impact of 

parameters on MoEs, with the goal of determining the most significant parameters. A 

simulation execution environment can help this investigation through a rapid feedback 

cycle where the analyst can change parameter values on the fly and quickly assess their 

impact on holistic measures. These MoEs impact evaluations very well and become part 

of the result set as mentioned in Chapter 3, while the parameters identified become part 

of the Experimental frame layer as shown in Figure 8.31. 

 

Similarly, for any DoDAF architecture, the MoEs are also specialized for that particular 

architecture. Considering the breadth of the SCOPE command system, some of the MoEs 

mentioned above also apply to any net-centric architecture. Within the DoD, JITC has the 

sole responsibility of certifying the Information Technology (IT) and National Security 

Systems (NSS) for interoperability purposes [Buc04]. The major T&E problem identified 

today by JITC is how to verify that a solution provided by any architecture is data 

integrated and net centric in operation. The traditional T&E approaches are optimized to 

verify performance and effectiveness of point solutions, but new criteria are needed to 

reflect the realities of systems operating within networked systems. Such criteria are just 

beginning to emerge and are not yet matured for immediate and widespread use of T&E 

[Buc04]. 

 

The NR-KPP assesses net-readiness information assurance (IA) requirements, and end-

to-end operational effectiveness of that exchange with respect to the COIs mentioned 
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earlier. Description of Key Interface Profile (KIP) with relation to this scenario is beyond 

the scope of this paper. The major object underlying NR-KPPs is to identify verifiable 

performance parameters and associated metrics required to evaluate timely, accurate, and 

complete exchange and use of information to satisfy the information needs for a given 

capability [Buc04]. 
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CHAPTER 9: DISCUSSION 
 

 

This chapter discusses the DUNIP process with current state of the art in model-based 

engineering processes. Two paradigms have been chosen: MDA and SCR. MDA or 

Model-Driven Architecture is philosophy as put forward by Object Modeling Group 

(OMG) that comprises of many standards like UML, XMI, Meta-Object Facility (MOF) 

and others. SCR is the Software Cost Reduction methodology developed at Naval 

Research Laboratory to develop models based on requirements specified in tabular 

format.  

 

9.1 MDA and DUNIP 
 

DUNIP is built on the paradigm of Model-Based Engineering, or Model-Driven 

Architecture (MDA). However, the scope of DUNIP goes beyond the MDA objectives. 

Potential concerns with the current MDA state of art include: 

• MDA approach is underpinned by a variety of technical standards, some of which 

are yet to be specified (e.g. executable UML) 

• Tools developed my many vendors are not interoperable 

• MDA approach is considered too-idealistic lacking iterative nature of Software 

Engineering process 

• MDA practice requires skilled practitioners and design requires engineering 

discipline not commonly available to code developers. 
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Further, MDA does not have any underlying Systems theory and groups like INCOSE7 

are working with OMG to adapt UML to systems engineering. Testing is included only as 

an extension of UML, known as executable UML [Mel02], for which there is no current 

standard. Consequently, there is no testing framework that binds executable UML and 

simulation-based testing.  

 

Despite these shortcomings, MDA has been adopted by Joint Single Integrated Air 

Picture (SIAP) Systems Engineering Organization (JSSEO) and various 

recommendations have come forth to enhance the MDA process. JSSEO is applying 

MDA approach toward development of aerospace Command and Control (C2) 

capabilities, for which a single integrated air picture is foundational. The data-driven 

nature of C2 System of Systems (SoS) means that powerful MDA concepts adapt well to 

collaborative SoS challenges.  

 

Current DoD enterprise-level approaches for managing SoS interoperability, like the Net 

Centric Operations and Warfare Reference Model (NCOW/RM), DoD Architecture 

Framework (DoDAF) and the Joint Technical Architecture (JTA), simply do not have the 

technical strength to deal with the extremely complex engineering challenges [Jac04]. We 

proposed enhanced DoDAF [Mit06a] to provide DEVS-based Model engineering. MDA 

as implemented by industry and adapted by JSSEO, does have the requisite technical 

power, but requires innovative engineering practices.   

                                                 
7 International Council on Systems Engineering 
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Realizing the importance of MDA concepts and the executable profile of UML, the basic 

objective of which is to simulate the model, JSSEO is indirectly looking at the Modeling 

& Simulation domain as applicable to SoS engineering. The following table brings out 

the shortcomings of MDA in its current state and the capabilities provided by DEVS 

technology and in turn, DUNIP process. 

 
Desired M&S Capability  MDA DUNIP 
Need for executable 
architectures using  M&S  

Yes, although not 
a standard yet 

Yes, underlying DEVS theory  

Applicable to GIG SOA Not reported yet Yes 
Interoperability and cross-
platform M&S using 
GIG/SOA 

-- Yes, DEVSML and SOADEVS 
provides cross-platform M&S using 
Simulation Web Services 

Automated test generation 
and deployment in 
distributed simulation 

-- Yes, based on formal Systems 
theory and test-models 
autogeneration at various levels of 
System specifications  

Test artifact continuity 
and traceability through 
phases of system 
development 

To some extent, 
model becomes 
the application 
itself 

Yes 

Real time observation and 
control of test 
environment  

-- Dynamic Model Reconfiguration 
and run-time simulation control 
integral to DEVS M&S. Enhanced 
MVC framework is designed to 
provide this capability 

 
Table 9.1: Comparison of MDA and DUNIP 

 
 
MDA as applied to Integration of Process-Driven SOA Models 

In an independent study [Zdu02], Model Driven Software Development (MDSD) was 

applied to the integration of process-driven SOA models. UML2 was used as the basis 

towards integration. Their approach is based on the notion of domain-specific languages 
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(DSL) for modeling various types of models. Once DSL has been identified, its meta-

model is created that represents this particular modeling domain. Meta-models are 

defined in terms of meta-meta-model. In UML, this is the meta object facility (MOF). 

They created a meta-meta-model that would define both the UML2 meta-model and their 

selected DSL extensions. The whole objective is to find a common ground and a way to 

express the relationship between a meta-model and the implementation code. This kind of 

capability where a single meta-meta-model can be used to integrate two different DSLs 

towards a common model allowing specific constraints of each meta-model is very much 

needed in SOA domain as multiple tools and standards exist preventing such integration. 

To integrate two models with different DSLs, the models are first decomposed at the 

meta-model level, required information extracted and supplemented (on the basis of 

meta-meta-model), which results in an integrated model. 

 

In our DUNIP process, such collaboration comes naturally due to the proposed DEVS 

atomic and coupled Document Type Definitions (DTDs) that specify any DEVS model in 

any domain specific language implementations. The underlying DEVS Modeling 

Language (DEVSML) meta-model that defines these atomic and coupled DTDs is used 

for validating any DEVS model. The current DEVSML implementation has successfully 

integrated two DSL implementations (GenDEVS-ACIMS and xDEVS-Spain) on 

common DEVSML atomic and coupled DTDs.  
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9.2 DUNIP and SCR 
 

Software Cost Reduction (SCR) method allows development of formal requirements 

using a tabular notation. The SCR toolset includes an editor for building the 

specifications, a consistency checker for testing the specifications for consistency with 

formal requirements model, a simulator for symbolically executing the specifications and 

a verifier for checking that the specifications satisfy selected applications properties 

[Heit95]. SCR has been used to define requirements for embedded systems as well as 

software systems. SCR is more exhaustive and complete in terms of model checking and 

consistency checking. It is at a higher order of resolution where state variables can be a 

part of the specification definition.  

 

In DUNIP, although it is based on DEVS, the state-variables are not considered in the 

automated DEVS model generation as described in Chapter 4. Our current work falls in 

the category of a subset of DEVS specifications, where only message passing between 

the components is considered. The motivation of this research effort stems from the need 

of absence of an M&S framework for Net-centric systems collaborating over the GIG. 

The systems are at a much higher level of abstractions than any embedded system where 

state-variable bear much importance and criticalities. The current version of DUNIP 

addresses the need of these abstract systems. Inclusion of state-variables, more like on the 

lines of SCR will be included in future, to develop more sophisticated models.  
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CHAPTER 10: CONCLUSIONS AND FUTURE WORK 
 
 

This research effort has provided contribution towards development of an integrated 

solution for the problem of executable models from user specified system requirements in 

structured English format. The solution is made available as a prototype called DUNIP 

which is an acronym for DEVS Unified Process. It added capabilities of enhanced MVC 

framework, DEVS Modeling Language and SOADEVS to the existing DEVS framework 

to make it net-centric capable.  

 

The enhanced MVC complements the basic DEVS framework components, viz., the 

Experimental frame, the model, and the simulator. The integration of these two 

frameworks results in a well constructed control panel that provides a more 

comprehensive feature set and controls to calibrate the model and configure the 

simulation. The recent advances in DEVS technology, like variable structure modeling, 

real-time simulation tuning with rapid feedback, and model/simulator calibration, have 

been described; they help in the analysis and study of fast-changing network scenarios. 

The first major advantage of incorporating these technologies is the study and 

visualization of the “transition” effects when the model configuration is modified in a 

running simulation. Various methods of controlling simulation execution were explored 

as well as ways in which they can be used in different scenarios. The second major 

advantage of this enhanced MVC framework is the capability to reach the desired 

mission effectiveness or performance benchmarks in an active simulation. With variable 
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structure capability, along with setting the bounds of any result parameter, the system can 

be observed to arrive at the corresponding “steady state.” This methodology also aids in 

determining the most significant parameters for any complex system for which 

theoretical analysis is not feasible. These parameters are discussed with respect to the 

Net-Ready Key Performance Parameter (NR-KPP) set, in relation to DoDAF, and the 

advantages of identification of these parameters during the operational view design phase 

are emphasized.  

 

We have addressed the problem of model interoperability with a novel approach of 

developing DEVSML as the transformation medium towards composability and dynamic 

scenario construction. The composed coupled models are then validated using the 

proposed universal atomic and coupled DTDs. The simulators validated at the server’s 

end are maintained centrally such that the efforts of the community can be brought 

together through the standardized processes. Other advantage of using DEVSML as the 

communication medium gives the coder the independence to concentrate on the behavior 

of the component in their native languages (C++ and Java). In addition, it gives them the 

capability to share and integrate their models with that of other remote models and get 

that integrated validated model back in their own language. It also gives models the 

capability to get simulated with various simulator implementations that are stored at 

Server. This information is stored in meta-data that is contained in every model. 

Currently, this capability is meant only for Java but efforts are in progress to develop the 

corresponding methodology in C++ and will be reported in future. The research also 
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proposes modification in DEVS formalism towards making them Service capable such 

that model continuity can be exploited towards deploying any DEVS component as a 

Service.  

 

We addressed the problem of net-centricity with the development of SOADEVS, which 

is the SOA implementation of DEVS simulation engine so that models can be executed 

remotely as well as in a distributed manner using Simulation as a Service within SOA 

framework. The SOADEVS framework provides the capability to send models to a 

remote location, run the simulation from other computer and partition the hierarchical 

network over a set of server farms that host Simulation service. 

 

The integration of enhanced MVC, DEVSML and SOADEVS along with the automated 

model generation from multifarious modes of requirement specifications resulted in a 

unifying framework called DUNIP. Figure 6.1 is reproduced again to summary the 

contribution of DUNIP. 

 

This research effort has described various elements of DEVS Unified Process. With the 

developed DEVS Unified Process we now have the capability to: 

1. Transform various forms of requirement specifications to DEVS models in an 

automated manner. 

2. Generate automated Tester models from DEVS models to verify the Input/Output 

behavior of any DEVS component. 
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3. Transform any DEVS model to a Platform Independent Model (PIM) using 

DEVSML for model and library reuse and sharing leading to collaborated 

development 

4. Simulate any valid DEVSML using the SOADEVS architecture exploiting the 

transparent simulator paradigm for model interoperability execution (for models 

implemented in disparate languages e.g. Java and C++) 

5. Transform any DEVSML model to a Service component in SOA 

 
 

Figure 10.1: The Complete DEVS Unified Process 
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Further, the problem of DoDAF in making it executable is looked into sufficient detail. 

Although the current DoDAF specification provides an extensive methodology for 

system architectural development, it is deficient in several related dimensions – absence 

of integrated modeling and simulation support, especially for model-continuity 

throughout the development process,   and lack of associated testing support. To 

overcome these deficiencies, we described an approach to support specification of 

DoDAF architectures within a development environment based on DEVS-based 

modeling and simulation. The result is an enhanced system lifecycle development process 

that includes model-continuity based development and testing in an integral manner. 

 

We have also introduced two new Operational Views OV-8 and OV-9 to address the 

additional information that is needed to make the DoDAF M&S compatible. We have 

also demonstrated the process to create OV-8 and OV-9 from the existing Operational 

Views. OV-8 contains the information about the Activity Component structure and how 

different Activities are interfaced with each other using the specified logical interfaces. 

OV-9 contains information about the constituent components inside an Operational Node 

and its corresponding DEVS model structure along with their mapping to the Activity 

components in OV-8. Together OV-8 and OV-9 provide a means to correlate Activity 

Components with accountable entities in an Operational node using logical interfaces. It 

is after the transformation of OV-8 and OV-9 into DEVS models that rules assigned to 

specific Activity or Entity components makes OV-8,9 server their complete purpose. 
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Automation using XML and simulation-tuning are important concepts that can be well 

executed and performed under current DEVS technology.   

 

We also discussed the applicability of Modeling and Simulation for DoDAF and how this 

research effort is aligned with DoDAF architectures. We also demonstrate how DUNIP 

as a whole is used in various active projects at JITC including the GENETSCOPE and 

ATC-Gen project. 

 

10.1 Future Work 
 
The present research work has the following scope for future development: 

• Towards standardization of DEVS formalism 

The DEVSML framework developed the atomic and coupled DTDs as meta-

models towards collaborative DEVS model development. They are proposed with 

an idea towards their standardization where the DEVS community can come to a 

common ground for model reuse and repository management. 

 

• Enhancement of DoDAF towards development of ‘executable’ architectures 

DoDAF Operational View was enhanced towards creation of two new views OV-

8 and OV-9 which augment the information contained in OV-2,3,5,6. These new 

OVs are dedicated to the application of Modeling and Simulation domain towards 

creation of executable architecture from DoDAF OV specifications. Efforts are 

needed to include them in the next version of DoDAF specifications. 
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• A Prototype solution with underlying formal systems theory applied in whole or 

in-part to active projects at JITC.  

Many aspects of DUNIP have been applied independently to projects like ATC-

Gen and GENETSCOPE, however, not as per say. Efforts in future would be 

directed in the framework of DUNIP development process. 

 

• Refine the DUNIP process 

A Prototype was demonstrated as a final outcome of this research effort. More 

features like, validation, consistency checking, etc. should be added to develop it 

as a COTS product. 

 

• Inclusion of more requirement specifications formats 

The current research effort described four formats to specify abstract requirement 

scenarios. The resulting DEVS models are at a higher level of abstraction. More 

formats could be included that utilize the full power of DEVS formalism and 

address criteria like elapsed time and state-variables. 

 

• Performance evaluation of distributed SOADEVS protocol 

The SOADEVS protocol required tailoring of DEVS simulation protocol for SOA 

domain. Performance evaluation of this version is required to compare it with 
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performance of DEVS protocol with current implementations like DEVS/RMI, 

DEVS/CORBA etc. 

 

• Make it easier for other DEVS groups to participate in DEVSML and SOADEVS 

development by registering their simulators 

DEVSML is developed as a framework for collaborative model development and 

portable model specifications resulting from net-centric collaboration using XML 

middleware. Remote simulation is one capability that is also provided by 

DEVSML. Various simulator versions from different groups should be gathered 

and worked upon towards standardized DTDs for an efficient model-sharing 

system. Currently, two simulator implementations, viz. GenDEVS-ACIMS and 

xDEVS-Spain have been used to provide proof of concept. Better design of 

website offering DEVSML service should be designed that would facilitate 

various groups to submit their simulator implementations. 

 

• Make prototype tool as an Educational aide 

The demonstrated prototype should be enhanced for teaching DEVS-based 

Modeling and Simulation courses. Various manuals and GUI enhancements 

would be added that facilitate learning and future development. 
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