
DEVS UNIFIED PROCESS FOR INTEGRATED DEVELOPMENT AND
TESTING OF SERVICE ORIENTED ARCHITECTURES

By

Saurabh Mittal

Copyright © Saurabh Mittal 2007

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2007

 2

THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation
prepared by Saurabh Mittal
entitled DEVS Unified Process for Integrated Development and Testing of Service
Oriented Architectures
and recommend that it be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy in Electrical and Computer Engineering.

__ Date: 04/30/07
Bernard P. Zeigler

__ Date: 04/30/07
Jerzy Rozenblit

__ Date: 04/30/07
Salim Hariri

__ Date: 04/30/07
Larry Head

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.
I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

___ Date: 04/30/07
Dissertation Director: Bernard P. Zeigler

 3

STATEMENT BY AUTHOR

 This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University Library
to be made available to borrowers under rules of the Library.

 Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgement of source is made. Requests for permission for
extended quotation from or reproduction of this manuscript in whole or in part may be
granted by the copyright holder

SIGNED: Saurabh Mittal

 4

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Bernard Zeigler, for his endless support,
encouragement, mentoring and invaluable guidance over the years. He gave me the
freedom to develop an original line of thinking and pursue independent ideas.

I express my thanks to the committee members Prof. Jerzy Rozenblit, Dr. Salim Hariri,
and Dr. Larry Head for providing suggestions enhancing the content of this dissertation.

My sincere thanks to my friend Prof. Jose Luis Risco-Martin at University Complutense
de Spain for his inspiration, hard-work and collaborative effort.

Special thanks to Dr. Jerry M. Couretas at Lockheed Corporation for providing me
feedback and research directions.

I express my thanks to the team at Northrup Grumman that includes Dr. Phillip
Hammonds, Kimberly Nunn, Eddie Mak, John Lee, Dale Fulton, Brett Lindskog, Dasia
Benson. Working as a team-member in many of the projects was a learning and
rewarding experience.

Thanks to Robin Moore at Joint Interoperability Test Command (JITC) for his support
and encouragement during the development of GENETSCOPE project.

I would also like to express thanks to my colleagues at ACIMS lab, Chungman Seo,
Mahesh Veena, Dr. Saehoon Cheon, Dr. D.H. Kim, Dr. Moon Ho Hwang, Dr. Fahad Bait
Shiginah, Dr. Xiaolin Hu and Dr. James Nutaro for helping out over the years and staying
together. Many of them are now leading their respective fields.

Last but not the least, my wife Vandana, my family back home and friends who stood by
me during this endeavor. Many many thanks to them for their continuous support,
understanding and encouragement.

 5

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS... 9

LIST OF TABLES .. 12

ACRONYMS... 13

ABSTRACT... 16

CHAPTER 1: INTRODUCTION.. 18

1.1 Problem Definition..24

1.2 Thesis Organization ..28

CHAPTER 2: RELATED TECHNOLOGIES AND EARLIER WORK.................. 29

2.1 Model-Based Software Engineering Process ..29

2.2 Model-Based Testing Methodologies...32

2.3 Automated Test Case Generation using UML Constructs ..36

2.4 DEVS-Based Bifurcated Model-Continuity Process ..41

2.5 Distributed Modeling and Simulation...45

CHAPTER 3: DEVS MODELING AND SIMULATION FRAMEWORK.............. 49

3.1 DEVS System Specifications ..51
3.1.1 Hierarchy of System Specifications ...51
3.1.2 Framework for Modeling & Simulation...54
3.1.3 Model Continuity ...55

3.2 Model/View/Controller (MVC) Paradigm and DEVS Framework ..56
3.2.1 Real-Time Control and Visualization Limitations of Existing Network Simulators..................57
3.2.2 Enhanced MVC..59

3.3 Dynamic Model and Simulation Reconfiguration..61
3.3.1 Variable Structure DEVS ...61
3.3.2 Implementation of Variable Structure in Extended MVC..64
3.3.3 Notion of System Steady State...65

 6

TABLE OF CONTENTS - CONTINUED

3.4 Dynamic Simulation Control ...67
3.4.1 DEVS Simulation Engine...67
3.4.2 Interrupt Handling ..69
3.4.3 The Notion of “Simulation Control” Explored...70
3.4.4 Parameter Control ..72
3.4.5 Synopsis ...73

CHAPTER 4: REQUIREMENT SPECIFICATIONS AND AUTOMATED DEVS
MODEL GENERATION ... 75

4.1 State-Based System Specifications...77
4.1.1 Sample Example...80

4.2 Message-Based System Specifications with Restricted Natural Language Processing85
4.2.1 Sample Example: ...86
4.2.2 Transformation of Rules to universal Primitives:...89
4.2.3 Design of Entity Node model with multiple message streams: ..90

4.3 BPEL/BPMN-Based System Requirement Specifications ...95

4.4 Scenario-Based Systems using DoDAF ...101
4.4.1 DODAF Specifications ..103
4.4.2 Motivation for DoDAF-to-DEVS mapping..107
4.4.3 From OV-6 UML diagrams to DEVS component behavior specifications..............................110
4.4.4 Representing DoDAF within the System Entity Structure: Multiple Aspects..........................116
4.4.5 Deriving testable behaviors from DoDAF specification ..118

CHAPTER 5: AUTOMATED MODEL-BASED TEST CASE GENERATION ... 125

5.1 Automated Test Case Generator: Concept ...126

5.2 Automated Testing Methodology...131
5.2.1 Test Model Generator...132
5.2.2 Test Driver ...134

5.3 Synopsis..137

CHAPTER 6: NET-CENTRIC MODEL EXECUTION USING SERVICE
ORIENTED ARCHITECTURE.. 140

6.1 DEVSML: Automating DEVS Execution over SOA Towards Transparent Simulators......140
6.1.1 Overview of DEVSML ..142
6.1.2 DEVS DTDs and their Standardization..146
6.1.3 Web Services Architecture for DEVSML..152

 7

TABLE OF CONTENTS - CONTINUED

6.2 SOADEVS: Remote Execution of DEVS using Simulation Service..156
6.2.1 WWW and Distributed Simulation ..157
6.2.2 Abstraction of a Coupled model as an Atomic model with DEVS State Machine...................162
6.2.3 Message Serialization...164
6.2.4 Details about the server architecture ..166
6.2.5 DEVSML and SOADEVS ...172

CHAPTER 7: DEVS UNIFIED PROCESS: PUTTING IT ALL TOGETHER..... 174

7.1 Automated DEVS Model Generation and DEVSML...177

7.2 DEVSML Collaborative Development ..180

7.3 Automated Test-case Generation from DEVS models...182

7.4 SOADEVS: Net-centric Execution using Simulation Service..183

7.5 The Complete Process...185

CHAPTER 8: PROJECTS FROM WHICH DUNIP EVOLVED 187

8.1 Joint Close Air Support (JCAS) Model...190
8.1.1 State-based approach..190
8.1.2 BPMN/BPEL based approach ..193
8.1.3 Message-Based Restricted NLP-based approach ...197
8.1.4 Automated test case generation for JCAS ..198
8.1.5 Net-centric Execution of JCAS ..199

8.2 DoDAF-based Activity Scenario ..202
8.2.1 Example: Implementation of an Activity Component..202
8.2.2 Activity taken from Zinn as an example ..204
8.2.3 DEVS Interpretation of Activity 6 ...207
8.2.4 Synopsis ...217

8.3 Link-16 ATC-Gen Project at JITC..218
8.3.1 Auto Correlation Scenario..219
8.3.2 Auto Correlation Experiment Setup & Results ..220
8.3.3 Testing Status ...223

8.4 GENETSCOPE Project at JITC..224
8.4.1 SCOPE Command and DoDAF ...228
8.4.2 SCOPE Architecture Implementation Using Enhanced MVC ...234
8.4.3 Implications of the Example Above and NR-KPP ...244

 8

TABLE OF CONTENTS - CONTINUED

CHAPTER 9: DISCUSSION ... 248

9.1 MDA and DUNIP..248

9.2 DUNIP and SCR ...252

CHAPTER 10: CONCLUSIONS AND FUTURE WORK 253

10.1 Future Work..258

REFERENCES.. 261

 9

LIST OF ILLUSTRATIONS

Figure 1.1: Bifurcated Model-Continuity based System Life-cycle Process................... 25
Figure 2.1: Graphical process extended further from [Utt06] ... 36
Figure 2.2: Summarizing Model-based Testing... 38
Figure 2.3: Test Scenario Generation based on requirement specifications.................... 39
Figure 2.4: Bifurcated DEVS-to-DODAF System Lifecycle Development Process 43
Figure 3.1: Framework entities and relationships... 54
Figure 3.2: Enhanced MVC paradigm with DEVS M&S framework............................. 60
Figure 3.3. DEVS simulation protocol... 68
Figure 3.4: Hierarchical simulator assignment for a hierarchical model......................... 68
Figure 3.5: Automated test suite execution ... 70
Figure 4.1: DEVS state machine Document Type Description (statemachine.dtd) 78
Figure 4.2: XML transformation of JTAC state machine described in tabular format ... 82
Figure 4.3: Generated DEVSJAVA code from valid jtac.xml in Figure 4.2................... 84
Figure 4.4: Rules for Restricted NLP based Requirement Specifications....................... 86
Figure 4.5: Simon Says in English language ... 87
Figure 4.6: Universal State Machine (USM) for Rule-base Requirement Specifications90
Figure 4.7: Graphical structure of internals of node entity with two message streams .. 92
Figure 4.8: Constructor for Node entity of the node diagram in Figure 4.7.................... 93
Figure 4.9: Various library functions supporting automated node coupling relations 94
Figure 4.10: Sample BPMN diagram .. 96
Figure 4.11: View of Web Service implemented as Web Service (courtesy: IBM)........ 97
Figure 4.12: Overview of BPEL-to-DEVS process ... 98
Figure 4.13: BPEL-to-DEVS transformation... 99
Figure 4.14: WSDL-to-DEVS transformation... 100
Figure 4.15: Snapshot of a BPMN-to-DEVS Transformation tool 101
Figure 4.16: Linkages among Views ... 105
Figure 4.17: DoDAF/DEVS execution roadmap... 107
Figure 4.18: Development of DEVS Description model from UML Timing-Sequence
Thread ... 111
Figure 4.19: Representing DoD AF within the SES framework 118
Figure 4.20: SES for enhanced DoDAF with a focus on OV.. 119
Figure 4.21: DEVS Model generation from various types of Requirement Specifications
... 124
Figure 5.1: ATC-Gen Development ... 128
Figure 5.2: IF-THEN rule format .. 128
Figure 5.3: XML RuleSet .. 130
Figure 5.4: Overview of ATC-Gen Tool Development... 132
Figure 5.5: Test Model Generator.. 134
Figure 5.6: Enhanced MSVC paradigm with multiple controllers 136
Figure 6.1: DEVS Transparency and model interoperability using DEVSML 143

 10

LIST OF ILLUSTRATIONS - CONTINUED

Figure 6.2: Operations leading to model composability using DEVSML..................... 145
Figure 6.3: an SOA object capable of DEVS modeling .. 148
Figure 6.4: Automated XML snippet for a DEVS atomic model. 149
Figure 6.5: DEVS atomic DTD.. 151
Figure 6.6: DEVS coupled DTD.. 151
Figure 6.7: Web service Architecture for DEVSML Implementation........................... 153
Figure 6.8: Client side implementation using interfaces. .. 155
Figure 6.9: DEVS/SOA distributed architecture. .. 158
Figure 6.10: Hierarchical simulator assignment for a hierarchical model..................... 163
Figure 6.11: Hierarchical simulator assignment with Digraph2Atomic adapter 163
Figure 6.12: Communication among services ... 165
Figure 6.13: Execution of DEVS SOA-Based M&S... 166
Figure 6.14: Server’s package structure for DEVS SOA .. 167
Figure 6.15: Adapter package containing Digraph to Atomic adapters 168
Figure 6.16: devsml Modeling package for DEVS SOA... 168
Figure 6.17: simulation package in DEVS SOA ... 169
Figure 6.18: Service package in DEVS SOA .. 170
Figure 6.19: Proxy package in DEVS SOA... 171
Figure 6.20: DEVSML implementation over SOADEVS... 172
Figure 6.21: DEVSML and SOADEVS integrated ... 173
Figure 7.1: Bifurcated Model-Continuity based System Life-cycle Process................. 177
Figure 7.2: Netcentric collaboration and execution using DEVSML and SOADEVS . 179
Figure 7.3: Client application snapshot implemented as an applet................................ 181
Figure 7.5: GUI snapshot of SOADEVS client hosting distributed simulation 184
Figure 7.6: Server Assignment to Models ... 185
Figure 7.7: The Complete DEVS Unified Process .. 186
Figure 8.1: JCAS Operational Scenario... 191
Figure 8.2: Coupled scenario for JCAS model .. 192
Figure 8.3: DEVS Execution of JCAS model on console ... 193
Figure 8.4: JCAS BPMN scenario description .. 194
Figure 8.5: Snapshot of a BPMN-to-DEVS Transformation tool 195
Figure 8.6: Message-based Restricted NLP description of JCAS scenario................... 197
Figure 8.7: State-based specification of model CAOC.. 198
Figure 8.8: State-machine for CAOC Observer... 199
Figure 8.9: SOADEVS client running the JCAS model using Simulation services...... 200
Figure 8.10: Simulation output at client’s application using SOADEVS client............ 201
Figure 8.11: OV-5 diagram for “select contractor” in IDEF0 notation 203
Figure 8.12: OV-6a diagram for “select contractor” in IDEF3 notation 203
Figure 8.13: Pseudo Code as per Zinn’s interpretation and integration procedure........ 203
Figure 8.14: Activity Report Model for Activity 6 generated thru Popkin SA 204

 11

LIST OF ILLUSTRATIONS - CONTINUED

Figure 8.15: IDEF3 representation of Activity 6 (“Conduct Dynamic Assessment of
Target” TCT 2005 Architecture, 2003: OV-6a) [Zin04] .. 205
Figure 8.16: Pseudocode for Activity 6 – based on IDEF3 diagram 206
Figure 8.17: DEVS interrelationships of Activity 6 with other Activities. 210
Figure 8.18: DEVS description of Activity 6 in relation to Table 6 components. 211
Figure 8.19: Automated Testing .. 219
Figure 8.20: Auto Correlation Sequential Diagram... 220
Figure 8.21: Minimal Testable I/O pairs for Auto Correlation...................................... 220
Figure 8.22 Test Drivers Setup Diagram ... 221
Figure 8.23: Test Model Test Driver successful Auto Correlation scenario 222
Figure 8.24: SUT Test Driver successful Auto Correlation scenario 222
Figure 8.25: Geographic locations of fixed stations .. 224
Figure 8.26: Communication flow diagram for SCOPE command............................... 224
Figure 8.27: System entity structure for SCOPE command system showing the fixed and
mobile (aircraft) stations ... 227
Figure 8.28: GENETSCOPE simulation architecture for SCOPE command................ 228
Figure 8.29: DEVS M&S and the existing SCOPE command system.......................... 230
Figure 8.30: OV-5 for activity sounding ... 232
Figure 8.31: Simulation architecture for the SCOPE command network...................... 235
Figure 8.32: Experimental frame for GENETSCOPE... 237
Figure 8.33: Ground station configuration screen for Naval Air Station Sigonella 239
Figure 8.34: Mobile station configuration screen where the total count is bounded by the
Experimental frame... 240
Figure 8.35: Callsign entry for a mobile station .. 240
Figure 8.36: Flight path of mobile aircraft and other details ... 240
Figure 8.37: Experimental frame and ICEPAC data configuration 241
Figure 8.38: Run-time simulation visualization screen for rapid feedback................... 242
Figure 10.1: The Complete DEVS Unified Process .. 256

 12

LIST OF TABLES

Table 3.1: DEVS on addressing M&S issues .. 51
Table 3.2: Hierarchy of system specifications ... 52
Table 4.1: Tabular structure for State-based specifications... 79
Table 4.2: State-based specifications for entity JTAC... 80
Table 4.3: Mapping of Rules 1-8 to universal primitives in Universal State Machine
(USM) ... 89
Table 4.4: Mapping of DoDAF with UML and DEVS M&S Elements........................ 116
Table 4.5: Summarizing the contribution of OV-8, 9 to DEVS M&S........................... 123
Table 8.1: Overview of DUNIP application in available case-studies 188
Table 8.2: State machine for component JTAC... 191
Table 8.3: Activity-ID mapping for OV-8 and OV-9 .. 207
Table 8.4: Sample OV-8 document.. 209
Table 8.5: Inner components within Operational Nodes and their mapping with
‘standardized’ DEVS models.. 214
Table 8.6: OV-9 description document mapping the Entity component inside Operational
Node O1 with the Activity Components defined in OV-8 with port-interfaces 216
Table 8.7: Link 16 functionalities vs. Systems .. 223
Table 8.8: Activity 4ID mapping for OV-8 and OV-9 .. 231
Table 8.9: Sample OV-8 document... 232
Table 8.10: Inner components within operational nodes and their mapping with
“standardized” DEVS models... 233
Table 8.11: Sample OV-9 Document... 234
Table 9.1: Comparison of MDA and DUNIP .. 250

 13

ACRONYMS

ATC-Gen Automated Test Case Generator

ALE Automated Link Establishment

BPEL Business Process Execution Language

BPEL4WS Business Process Execution Language For Web Services

BPMN Business Process Modeling Notation

CDE Collaborative Development Environment

CJCSI Chairman of Joint Chief of Staff Instructions

CORBA Common Object Request Broker Architecture

COTS Common Off The Shelf

CPN Colored Petri Nets

CWM Common Warehouse Model

DEVS Discrete Event System Specification

DESS Differential Equations System Specification

DEVSML DEVS Modeling Language

DoD Department of Defense

DoDAF Department of Defense Architecture Framework

DTD Document Type Definition

DTSS Discrete Time System Specification

FSM Finite State Machine

GENETSCOPE Generic Network System Capable of Planned Expansion

HIL Hardware-in-the-loop

HF High Frequency

HLA High Level Architecture

JAVAML JAVA Modeling Language

JCAS Joint Close Air Support

JCIDS Joint Capabilities Integration and Development System

JITC Joint Interoperability Test Command

JNI JAVA Native Interface

 14

ACRONYMS - CONTINUED

KIP Key Interface Profile

LQA Link Quality Analysis

MDA Model Driven Architecture

MDE Model Driven Engineering

MDD Model Driven Development

MIL-STD Military Standard

MOE Measures of Effectiveness

MOF Meta Object Facility

MVC Model View Controller

MSVC Model Simulator View Controller

NCES Network Centric Enterprise Services

NLP Natural Language Processing

NR-KPP Net Ready Key Performance Parameters

OMG Object Management Group

OV Operational View

PES Pruned Entity Structure

PIM Platform Independent Model

PDM Platform Domain Model

PSM Platform Specific Model

RMI Remote Method Invocation

SCOPE System Capable of Planned Expansion

SOA Service Oriented Architecture

SOADEVS Service Oriented Architecture DEVS framework

SOAP Simple Object Access Protocol

SES System Entity Structure

SESM System Entity Structure Modeler

SSN Sun Spot Number

SUT System Under Test

SV System View

 15

ACRONYMS - CONTINUED

TD Test Driver

TMG Test Model Generator

TPL Tactical Programming Language

TV Technical View

UML Unified Modeling Language

USAF United States Air Force

USM Universal State Machine

V&V Verification and Validation

WSDL Web Service Description Language

XMI XML Metadata Interchange

XML eXtensible Markup Language

 16

ABSTRACT

Service Oriented Architectures (SOA) present challenges to current model-based

software engineering methodologies such as Rational Unified Process (RUP). In this

research effort we propose a process called DEVS Unified Process (DUNIP) that uses the

DEVS formalism as a basis for automated generation of models from various requirement

specifications and realization as SOA collaborative services. DEVS is inherently based

on object oriented methodology and systems theory, and categorically separates the

Model, the Simulator and the Experimental frame, and has been used for systems

Modeling & Simulation over the years. DUNIP integrates these concepts into DEVS-

based Bifurcated Model-Continuity life-cycle development methodology. The life-cycle

begins by specifying the system requirements in a number of different formats such as

state-based, BPMN/BPEL-based, message-based requirement specifications. DUNIP then

automates the generation of DEVS models capable for distributed collaboration. The

collaboration uses an XML-based DEVS Modeling Language (DEVSML) framework

that provides the capability to integrate models that may be expressed in different DEVS

implementation languages. The models are also made available for remote and distributed

real-time execution over the SOA middleware in a manner transparent to the user. A

prototype simulation framework has been implemented and is illustrated with an

application to a system of collaborating military systems implemented and tested using

Bifurcated Model-Continuity methodology. We also show how the Department of

 17

Defense Architecture Framework (DoDAF) can be enhanced to incorporate simulation

based executable models using the DUNIP process.

 18

CHAPTER 1: INTRODUCTION

In an editorial [Car05], Carstairs asserts an acute need for a new testing paradigm that

could provide answers to several challenges described in a three-tier structure. The lowest

level, containing the individual systems or programs, does not present a problem. The

second tier, consisting of systems of systems in which interoperability is critical, has not

been addressed in a systematic manner. The third tier, the enterprise level, where joint

and coalition operations are conducted, is even more problematic. Although current test

and evaluation (T&E) systems are approaching adequacy for tier-two challenges, they are

not sufficiently well integrated with defined architectures focusing on interoperability to

meet those of tier three. To address mission thread testing at the second and third tiers,

Carstairs advocates a collaborative distributed environment (CDE), which is a federation

of new and existing facilities from commercial, military, and not-for-profit organizations.

In such an environment, modeling and simulation (M&S) technologies can be exploited

to support model-continuity [Hux04] and model-driven design (MDD) development

[Weg02], making test and evaluation an integral part of the design and operations life-

cycle.

The performance and acceptance of any software system depends on the validation by the

customer that is in part supported by the quality of the test-suite that conducts tests on it.

Consequently, it also depends on the quality of the test cases used during the validation

 19

process. In this particular methodology, the test-cases are automatedly generated that are

created with respect to the software requirement set. Modeling languages are used to

specify the requirement set and generate test cases [Pra05]. UML is the most widely used

and preferred means of such specification. However, the information collected is

insufficient as it lacks pragmatic details and the diagrams must be augmented to be used

by test programmers. Other approach he suggested is to build a standardized library but

then again it requires collaborative effort that spans the entire domain-industry.

Model-based Software Engineering process is commonly referred as Model Drive

Architecture (MDA) or Model-Driven Engineering or MDD. The basic idea behind this

approach is to develop model before the actual artifact or product is designed and then

transform the model itself to the actual product. The MDA is pushed forward by Object

Management Group (OMG) since 2001. The MDA approach defines system functionality

using platform-independent model (PIM) using an appropriate domain-specific language.

Despite such positive benefits of MDA, it lacks sufficient foundation needed to realize

this vision. It is underpinned by a variety of standards, some of which have to specified

(e.g. executable UML). It is too idealistic and doesn’t involve round-trip iterative nature

of software engineering and systems engineering perspective. CORBA also pushed

forward by OMG failed to provide distributed collaborative environment and execution.

DEVS formalism [Zei00] exists in many implementations, primarily in DEVS/C++ and

DEVSJAVA [ACI06]. Extensions of these implementations are available as DEVS/HLA

 20

[Sar01], DEVS/CORBA [Cho01], cell-DEVS [Wai01], and DEVS/RMI [Zha05]. Since

DEVS is inherently based on object oriented methodology, and categorically separates

the model, the Simulator and the Experimental frame. However, one of the major

problems in this kind of mutually exclusively system is that the formalism

implementation is itself limited by the underlying programming language. In other words,

the model and the simulator exist in the same programming language. Consequently,

legacy models as well as models that are available in one implementation are hard to

translate from one language to another even though both the implementations are object

oriented. Other constraints like libraries inherent in C++ and Java are another source of

bottleneck that prevents such interoperability.

In this research effort we propose a new process called DEVS Unified Process (DUNIP)

that utilized the Bifurcated Model-Continuity based life-cycle methodology for a model-

based design, execution and collaboration for DEVS models. The life-cycle begins by

specifying the system requirements in structured and restricted English that facilitate the

requirements gathering from the user. Further, methodologies are also developed to

generate DEVS models from BPMN/BPEL-based and message-based requirement

specifications. The DEVS models are auto-generated from the specifications and are

made available for distributed collaboration using the DEVS Modeling Language

(DEVSML) framework. The motivation for this work stems from this need of model

interoperability between the disparate simulator implementations and provides a means to

make the simulator transparent to model execution. We propose DEVS Modeling

 21

Language (DEVSML) that is built on eXtensible Markup Language (XML) as the

preferred means to provide such transparent simulator implementation. The models are

also made available for remote and distributed execution using the Service Oriented

Architecture (SOA) framework through our developed SOADEVS architecture. A

prototype simulation framework has been implemented using web services technology.

The central point resides in executing the simulator as a web service. The development of

this kind of frameworks will help to solve large-scale problems and guarantees

interoperability among different networked systems and specifically DEVS-validated

models.

Having developed the complete application framework DUNIP that is net-centric

capable, we focus our research effort to a problem equal in magnitude as this but has far

reaching usage. A recent DoD mandate requires that the DoD Architecture Framework

(DoDAF) be adopted to express high level system and operational requirements and

architectures [Dod03a]. DoDAF is the basis for the integrated architectures mandated in

DOD Instruction 5000.2 [Dod03b] and provides broad levels of specification related to

Operational, System, and Technical views. Integrated architectures are the foundation for

interoperability in the joint Capabilities Integration and Development System (JCIDS)

prescribed in CJCSI 3170.01D and further described in CJCSI 6212.01D [CJC04,

CJC06]. DoDAF and other DoD mandates pose significant challenges to the DoD

system and operational architecture development and testing communities since DoDAF

specifications must be evaluated to see if they meet requirements and objectives, yet they

 22

are not expressed in a form that is amenable to such evaluation. However, DoDAF-

compliant system and operational architectures do have the necessary information to

construct high-fidelity simulations. Such simulations become, in effect, the executable

architectures referred to in the DODAF document. DoDAF is mandated for large

procurement projects in the Command and Control domain but its use in relation to M&S

is not explicitly mentioned in the documentation [5,8]. Operational views capture the

requirements of the architecture being evaluated and System views provide its technical

attributes. Together these views form the basis for semi-automated construction of the

needed simulation models.

DoDAF is a framework prescribing high level design artifacts, but leaves open the form

in which the views are expressed. A large number of representational languages are

candidates for such expression. For example, the Unified Modeling Language, (UML)

and Colored Petri Nets (CPN) are widely employed in software development and in

systems engineering. Each popular representation has strengths that support specific

kinds of objectives and cater to its user community needs. By going to a higher level of

abstraction, DoDAF seeks to overcome the plethora of “stove-piped” design models that

have emerged. Integration of such legacy models is necessary for two reasons. One is

that, as systems, families of systems, and systems-of-systems become more broad and

heterogeneous in their capabilities, the problems of integrating design models developed

in languages with different syntax and semantics has become a serious bottleneck to

progress. The second is that another recent DoD mandate also intended to break down

 23

this “stove-piped” culture requires the adoption of the Service Oriented Architecture

(SOA) paradigm as supported in the development of Network Centric Enterprise Services

(NCES). However, anecdotal evidence suggests that a major revision of the DoDAF to

support net-centricity is widely considered to be needed. Indeed, under DoD direction,

several contractors have begun to design and implement the NCES to support this

strategy on Global Information Grid. The result is that system development and testing

must align with this mandate – requiring that all systems interoperate in a net-centric

environment – a goal that can best be done by having the design languages be subsumed

within a more abstract framework that can offer common concepts to relate to. However,

as stated before, DoDAF does not provide a formal algorithmically-enabled process to

support such integration at higher resolutions. Lacking such processes, DoDAF is

inapplicable to the SOA domain and GIG in particular. There have been efforts like [7]

that have tried to map DoDAF products to SOA but as it stands out there is no clear-cut

methodology to develop an SOA directly from DoDAF, rest aside their testing and

evaluation.

We also propose a mapping of DoDAF architectures into a computational environment

that incorporates dynamical systems theory and a modeling and simulation (M&S)

framework. The methodology will support complex information systems specification

and evaluation using advanced simulation capabilities. Specifically, the Discrete Event

System Specification (DEVS) formalism will provide the basis for the computational

environment with the systems theory and M&S attributes necessary for design modeling

 24

and evaluation. We will demonstrate how this information is added and harnessed from

the available DoDAF products towards development of an extended DoDAF integrated

architecture that is “Executable”. In our attempt to augment the current DoDAF our focus

shall remain to add minimal information that would enable DoDAF to become the

executable architecture. There are potential advantages of making DoDAF, a DEVS

compliant system. We explore the problem of DoDAF using our developed DUNIP

framework.

We also demonstrate applications of DUNIP in many active and ongoing research

projects. To name a few: the GENETSCOPE project [Gen06] and the ATC-Gen project

[Mak06] are in current use at Joint Interoperability Test Command (JITC).

1.1 Problem Definition

This research effort started with the following basic questions:

1. Is there a mechanism by which requirement specifications in English language

can give way to a DEVS model that can be simulated?

2. Can various scenario requirement specification methodologies like BPMN/BPEL

be used to generate DEVS models?

3. Is DEVS framework dynamically reconfigurable, and collaborative?

4. Is DEVS model net-centric capable?

5. Can you provide a prototype solution that can be used by system designers and

can answer some of the requirements of Carstairs[1]?

 25

6. DoDAF architectures are very complex and specified in high-level language in

both textual as well as graphical format. Can you employ your solution towards

making DoDAF ‘executable’ over a net-centric platform such as SOA?

The solution to the top five problems resulted in a framework called DEVS Unified

Process, a.k.a. DUNIP, which is the thesis. It is built on the Bifurcated Model-Continuity

based Life-cycle methodology shown in Figure 1.1. Chapter 7 contains detailed

description of each of the elements of DUNIP. In a nutshell, this process employs parallel

development of the system model along with the semi-automated test-suite to perform

validation and verification studies.

Figure 1.1: Bifurcated Model-Continuity based System Life-cycle Process

RReeaall--ttiimmee
eexxeeccuuttiioonn

Behavior
Requirements
at lower levels

levels of System
Specification

Model Structures
at higher levels of

System
Specification

Verification
and

Validation

Simulation
execution

Test Models/
Federations

Model
Continuity

Experimental
Frames

System
Theory

 26

Beginning towards the solutions, the first two questions raised another series of questions

such as:

1. How will you contain the amount of unstructured information that is present in

English?

2. How will you extract information from requirement specification that is in

different message-based standards?

3. Are there any better means to specify requirements, e.g. Business Process

Modeling Notation (BPMN) or restricted English?

4. How will you organize the information set so that object-oriented hierarchical

DEVS modeling system could be auto-generated?

The third question required enhancements in the DEVSJAVA framework wherein,

dynamic model reconfiguration, dynamic simulation control i.e. ability to steer the

simulation in ‘right’ direction, and DEVS Modeling Language were implemented.

DEVSML provided the net-centric collaboration of DEVS models using XML as a

middleware.

The fourth question stems forth another phase in the development of DEVS technology

wherein DEVS was made executable over Service Oriented Architecture. Layered

architecture was proposed and implemented as SOADEVS.

The fifth question resulted in an integrated framework named DUNIP that provides

answers to all the previous questions.

 27

The last question demanded DoDAF to be looked into great depth. This effort unearthed

various gaps in the current DoDAF document, lapses in high-level model and what

information set must be augmented with any specified DoDAF architecture to make it

DEVS compliant. The complete process of augmenting this information is described.

Finally, the application of DUNIP is aligned with the execution of DoDAF architectures.

This dissertation makes the following research contributions:

1. Enhance the DEVS modeling software DEVSJAVA towards integrated layered

Model/View/Controller paradigm for usability and improved visualization

technologies

2. Empower DEVS with automated model generation mechanism for multitude of

requirement specification formats

3. Development of platform independent DEVS Modeling Language (DEVSML)

framework based on XML to provide seamless model integration, reuse and

collaboration

4. Development of semi-automated Test case generation from existing DEVS

models to advance model-based testing.

5. Development of Simulation Service framework to execute model over net-centric

Service Oriented Architecture (SOA)

6. Development of DEVS Unified Process as a tool prototype that provides means to

generate models from various requirement specifications formats and execute on

SOA.

 28

1.2 Thesis Organization

The dissertation is organized in three chapters following this section. Chapter 2 deals

with related technologies and earlier work done in areas relevant to unified process

research. Chapter 3 deals with advances made in DEVS technology and current state of

DEVSJAVA M&S software Version 3.1. Chapter 4 deals with automated DEVS model

generation that includes DoDAF enhancements as well. Chapter 5 describes the

automated test case generation methodology. Chapter 6 contains the net-centric execution

of DEVS models and details about DEVSML and SOA. Chapter 7 puts it all together in

the unifying framework of Figure 1.1 and provides a prototype solution named as

DUNIP. Chapter 8 deals with many of the applications of DUNIP. Chapter 9 brings about

some of the comparative evaluation of DUNIP with the foundational Model-Driven

Architecture approach. Finally, Chapter 10 presents Conclusions and open research

directions.

 29

CHAPTER 2: RELATED TECHNOLOGIES AND EARLIER
WORK

This chapter provides an overview of current state of the art in the area of model based

design, model based testing, automated test case generation, UML constructs and

distributed component based simulation. Section 2.1 deals with the OMG effort in

pushing Model Driven Engineering and various proposals and concerns that are

associated with the paradigm. Section 2.2 deals with model-based testing and various

methodologies that are used to develop test cases and generate test-data. Section 2.3 deals

with the support provided by UML and the contributions from various research groups in

using UML as a means to generate test cases. Section 2.4 deals with the DEVS

Bifurcated Model-continuity process which describes the development of semi-automated

test-suite developed simultaneously with the development of system model. The last

Section 2.5 provides an overview of the concepts in the area of distributed component

based simulation and how our research effort fit in.

2.1 Model-Based Software Engineering Process

Model-based Software Engineering process is commonly referred as Model Driven

Architecture (MDA) or Model-Driven Engineering. The basic idea behind this approach

is to develop model before the actual artifact or product is designed and then transform

the model itself to the actual product. The MDA is pushed forward by Object

Management Group (OMG) since 2001. The MDA approach defines system functionality

 30

using platform-independent model (PIM) using an appropriate domain-specific language.

Then given a Platform Definition Model (PDM), the PIM is translated to one or more

platform-specific models (PSMs). The OMG documents the overall process in a

document called MDA guide.

MDA is a collection of various standards like the Unified Modeling Language (UML),

the Meta-Object Facility (MOF), the XML Metadata Interchange (XMI), Common

Warehouse Model (CWM) and a couple of others. OMG focuses Model-driven

architecture on forward engineering i.e. producing code from abstract, human-elaborated

specifications [ref Wiki].

An MDA tool is used to develop, interpret, compare, align etc. models or meta-models. A

‘model’ is interpreted as meaning any kind of models (e.g. a UML model) or metamodel

(e.g. CWM metamodel). An MDA tool may be one or more of the following types:

1. Creation tool: Used to elicit initial models and /or edit derived models

2. Analysis tool: Used to check models for completeness, inconsistencies or define

any model metrics

3. Transformation tool: Used to transform models into other models or into code

and documentation

4. Composition tool: Used to compose several source models, preferably conforming

to the same metamodel

 31

5. Test tool: Used to “test” models. A mechanism in which test cases are derived in

whole or in part from a model that describes some aspects of system under test

(SUT)

6. Simulation tool: Used to simulate the execution of system represented by a given

model. Simply speaking, is the mechanism by which model is ‘executed’ using a

programming language

7. Reverse Engineering tool: Intended to transform a particular legacy or

information artifact into full-fledged models.

It is not required that one tool may contain all of the features needed for Model Driven

Engineering. UML is a small subset of much broader scope of UML. Being a subset of

MDA, the UML is bounded by its own UML metamodel. Progress has been made to

develop executable UML models but it has not gained industry wide mainstream

acceptance for the same limited scope. Potential concerns with the current MDA state of

art include:

1. MDA approach is underpinned by a variety of technical standards, some of which

are yet to be specified (e.g. executable UML)

2. Tools developed my many vendors are not interoperable

3. MDA approach is considered too-idealistic lacking iterative nature of Software

Engineering process

4. MDA practice requires skilled practitioners and design requires engineering

discipline not commonly available to code developers.

 32

5. OMG sponsored CORBA project after much promises but it failed to materialize

as a widely accepted standard.

2.2 Model-Based Testing Methodologies

Software Testing is not a new area. Many texts have been written in this area and several

methodologies have been developed. However, the idea of testing Software Architectures

(SA) is comparatively new and requires more rigorous effort. Testers must not only have

good development skill but also be knowledgeable in formal language, graph theory, and

algorithms [Whi00]. The software testing is usually approached in four phases: 1.

Modeling the software’s environment, 2. Selecting test scenarios, 3. Running and

evaluating test scenarios, and 4. Measuring the testing process. This serves as partition

the entire process of testing, similar to the STEP model is given by [Eic96] and [Tor05].

There have been plethora of books on software testing since the first text by Myers in

1978 [Mye78] that address tough testing issues, but the area of Software Architecture

Testing has not resulted in a mature methodology that is stable. Research is continuing in

the current area. From code-level testing, the testing area has grown to include model-

based testing, UML as means to support the modeling, to development of Software

Architecture Analysis Methods (SAAM) framework. However, the transition has not

been smooth and appears as two separate classes of methodologies. The former is focused

towards code level testing, and coverage analysis while frameworks like SAAM is

focused towards the entire evaluation and effectiveness of any particular SA. This section

summarizes the various efforts that have been put in the recent years in these two

 33

disparate classes and argue that Discrete Event Specification-based Modeling &

Simulation provides an integral framework that helps align these two fields in coherence.

Of the four part process mentioned above, selecting test scenarios appear to be the most

time consuming, rigorous and well attended in the literature. Test execution is assumed to

be simpler until DEVS M&S provides a mathematical framework to conduct test-model

execution in a formalized manner.

Based on the technique used, the literature is classified into the following categories

[Jur04] when generation of test cases is considered:

1. Random

Test cases are generated at random and it stops when there is enough, or a given

number is reached or is a user-defined objective has been reached.

2. Functional

 Same as Partitioning methodology described above

3. Control-flow

Similar to Path-oriented coverage described above. Test cases are generated until

all the program sentences are executed atleast once. However, a full

execution is not recommended as it is cost- prohibitive

4. Data-flow

Test cases are generated to cover definitions of each variable for atleast one use of

the variable. Many variation of this particular process exist that limit the

 34

number of variables and number of paths traversed by this variable are

considered

5. Mutation

Test cases are generated based on the mutation operators defined for the

programming language in question. Depending on the resources available

either all of the mutants are used or only a subset of them (after selective

prioritization).

6. Regression

Selection of test cases from an already existing test suite is made through

selection criteria or all inclusive methodology. Additions may be suggested

that would contribute to the test-suite itself

Two broad categories cover the classical methodology section that involves automated

procedures. Specification-based approach and statistical [Tor05] (“intelligent” as

described by Pargas [Par99]). Specification based test case generation and selection

technique can use a formal [Off99b, Avr95] or natural language [Lut00] to automatically

or semi-automatically generate test cases. Many other authors have contributed to this

approach [Pas01, Sin03, Sit02, Sir03]. The statistical based techniques consist of

Mutation analysis [Bau02] and genetic algorithms [Lin01, Jon96, Mic97].

 35

The next step that comes in line after generation of test data and test cases in automated

or semi-automated manner is their selection. Prioritization of such test cases is discussed

by Rothermel et.al [Rot01].

Model-based Testing is a variant of testing that relies on explicit behavior models that

encode the intended behavior of the system and possibly the behavior of its environment

[Utt06]. Pairs of input and output of the model of the implementation are interpreted as

test-cases for this implementation: the output of the model is the expected output of the

system under test (SUT). This testing methodology must take into account the involved

abstractions and the design issues that deals with lumping different aspects as these can

not be tested individually using the developed model.

Following is the process for Model-based testing technique [Utt06] as shown in Figure

2.1:

1. a model of the SUT is built on existing requirements specification with desired

abstraction levels

2. Test selection criteria are defined with an objective to detect severe and likely

faults at an acceptable cost. These criteria informally describe the guidelines for a

test suite.

3. Test selection criteria are then translated into test case specifications. It is an

activity where a textual document is turned ‘operational’. Automatic test case

generators fall into this step of execution.

 36

4. A test suite is ‘generated’ that is built upon the underlying model and test case

specifications.

5. Test cases from the generated test suite are run on the SUT after suitable

prioritization and selection mechanism. Each run results in a verdict of ‘passed’ or

‘failed’ or ‘inconclusive’.

Figure 2.1: Graphical process extended further from [Utt06]

A summary of contributions to the Model-based Testing domain can be seen at [Utt06].

2.3 Automated Test Case Generation using UML Constructs

The performance and acceptance of any software system depends on the validation by the

customer that is in part supported by the quality of the test-suite that conducts tests on it.

Consequently, it also depends on the quality of the test cases used during the validation

 37

process. In this particular methodology, the test-cases are automatedly generated that are

created with respect to the software requirement set. Modeling languages are used to

specify the requirement set and generate test cases [Pra05]. UML is the most widely used

and preferred means of such specification. Williams [Wil02] was the first one to present

UML as a test planning tool. However, he also concluded that the information collected is

insufficient as it lacks pragmatic details and the diagrams must be augmented to be used

by test programmers. Other approach he suggested is to build a standardized library but

then again it requires collaborative effort that spans the entire domain-industry.

Offut et al [Off99a, Off03] proposed techniques that adapt predefined state based

specifications to generate test cases from UML statecharts. This resulted in the

development of UMLTEST – a test data generation tool was integrated with Rational

Rose [Rose]. Another parallel effort was done by [Mar] using the same concept of UML

statecharts that resulted in the development of Design and Specification-Based Object-

Oriented Testing (DAS-BOOT). The java class to be tested is compared with the

statechart specification of the class-behavior, thereby defining the association between

the code and the specification. Offutt [Off00, Off04] extended their system-level testing

work to integration-level testing using UML Collaboration diagrams. Message path

coverage criterion was used to generate test cases from UML Sequence diagrams. They

concluded that at the unit level, state charts were better compared to sequence charts, but

at the integration level, it was vice versa.

 38

Figure 2.2: Summarizing Model-based Testing

Riebish et al [Rie] presented a procedure for iterative software development process in

generating test cases with Sequence Diagrams and Use-cases as inputs for requirements

engineering. They established that obtaining test-cases systematically can help in

documentation of software’s usage and interactive behavior.

 39

Another effort by Hartman [Har] led to the development of a tool that integrates with

UML to automatically generate black box conformance tests early in the development life

cycle. For unit and integration testing, the authors derived tests from State-chart and

Sequence Diagrams and for system level they used Use-case and Activity diagrams. The

derived test cases were then executed using JUnit or system test tool.

Figure 2.3: Test Scenario Generation based on requirement specifications

One more approach using Use-case was presented by Salem [Sal04]. Use-cases were

documented with pre-condition, post-condition, basic and alternate flows and resulted in

a traceability matrix. Indeed, this approach provides validation of the requirement set.

 40

Framework for model level testing of behavioral UML model was proposed in another

study by Toth et al [Tot03]. This process allowed different UML designs to be tested and

design flaws be detected in the modeling phase of the development process. One similar

detailed effort was done by Nebut et.al [Neb06] where they employed UML Use-case

contracts (Figure 2.3) as the starting point for construction of test cases. They enhanced

use-cases with contracts (based on use cases pre and post conditions) as they are defined

in [Sou99] and [Coc97]. Building up on the idea by Meyer’s [Mey92] at the requirement

level, they made these contracts executable by incorporating requirement-level logical

expressions. Finally, they constructed a simulation model from these semi-formalized

use-cases. The simulation model resulted in the extraction of relevant paths using

coverage criteria. These paths are termed ‘test objectives’. Each use-case is then

described using a UML Sequence diagram and results in ‘test scenarios’. Their

requirement-based automatic test generation is summarized as in figure above. Other

approaches [Bri02, Bas02] also propose to automatedly generate test scenarios from use

cases and use-case scenarios.

Automating methods to derive tests from fuzzy descriptions of the use cases is a

formidable task. The requirements-based testing techniques already existing [Ber91,

Dic93, Leg02, Tah01] are based on formal methods that are difficult to maintain as well

as rigorous, only to suitable for mission-critical applications. In [Rys98] it is suggested

that for practical purposes, the testers need to focus on methods of systematic test

 41

approach. Among varied efforts in proposing test cases [Off99a, Kim99], only a few

[Bri02, Bas02, Froh00, Rys99, Rie02] address the system level testing.

Model based testing is a valuable methodology that helps test automation in conjunction

with system development. Models allow testers to get more testing accomplished in

shorter time. Model based design development, supported by Model continuity when

integrated with model-based testing provides the best of all options. The next section

presents these integrated ideas.

2.4 DEVS-Based Bifurcated Model-Continuity Process

The Bifurcated Model-Continuity-based Life-cycle Process [Zei05a, Zei05b, Mit06]

combines the systems theory, M&S framework, and model-continuity concepts reviewed

earlier. As illustrated in Figure 2.4, the process bifurcates into two streams – system

development and test suite development – that converge in the system testing phase. The

Process has the following characteristics:

Requirement Specifications: As described in greater detail below, requirement

descriptions are created by designers. Although initially ill-formulated, as the process

proceeds, iterative development allows refinement of the requirements and increasingly

rigorous formulation resulting from the formalization and subsequent phases.

 42

Formalization by Mapping into DEVS: Concurrently with the formulation or capture

of DoDAF specifications, they are formalized as DEVS model components that are

coupled together to form an overall Reference Master Model.

Reference Master Model: The master DEVS model serves as a reference model for any

implementation of the behavior requirements. This model can be analyzed and simulated

with the DEVS simulation protocol to study logical and performance attributes. Using

model continuity, it can be executed with the DEVS real-time execution protocol and

provides a proof-of-concept prototype for an operational system.

Semi-automated test suite design: Branching in the lower path from the formalized

specification, we can develop a test suite consisting of experimental frames called test

models that can interact with a System Under Test (SUT) to test its behavior relative to

the specified requirements.

Simulation based testing: The test suite is implemented in a Net-centric simulation

infrastructure and executed against the SUT. The test suite provides explicit

pass/fail/unresolved results with leads as to components/ that might be sources of failure.

Optimization and Fielded execution: The reference model provides a basis for correct

implementation of the requirements in a wide variety of technologies. The test suite

provides a basis for testing such implementations in a suitable test infrastructure. Test

 43

tools should carry into the fielding and operational tests of the system, and provide

operationally realistic test cases and scenarios.

Figure 2.4: Bifurcated DEVS-to-DODAF System Lifecycle Development Process

Iterative nature of development: The process is iterative allowing return to modify the

master DEVS-model and its DoDAF precursor requirements specification. Model

continuity minimizes the artifacts that have to be modified as the process proceeds. The

design methodology provides a process to transform the DoDAF description of

architecture to a DEVS representation supporting evaluation and recommendations for a

feasible design. Briefly described steps are as follows:

Exp. Frame/
System Simulation

∆
Measures of

Performance/
Conformance

DEVS
Model

Repository

DEVS
System
Testing

Suite

 I/O Spec
Matrix

DoDAF/D

EVS
Interface

Automated XML DEVS
Model Generation

(Desired functionality)

Automated
Test Case Generation

Using XML

COTS
Specs

Model

XML DEVS
Model Generation

(Basic

Conformance/
System Output

Response Behavior

Conformance/
Model Accuracy

Feedback Loop 1
Model Tuning

Feedback Loop 2
Test Suite Tuning

System Test Results/
Recommendations

 DoDAF
Specs

(OV,SV,
TV)

 44

1. The architecture specifications are presented in DoDAF description (or System

Requirement Specification) format as Operational Views, System Views and

Technical Views.

2. The system specifications are then mapped to DEVS specifications according to

the translation described in [Zei05b] that maps the DoDAF views to

corresponding DEVS elements. The mapping is illustrated with UML elements

and is expressed in XML [Cur02].

3. Test suites for implementations of the design are developed in the test develop

stream.

4. Simulation results and their analysis provide the recommendations for a feasible

design.

5. Components are developed from the models using Model-continuity principles

and the design is verified by the Technical View specifications developed earlier

as a part of DoDAF process.

Creation of DEVS Model Repository and DEVS Test Suite occur in a concurrent manner.

The DEVS Repository serves as a collection of models that are used to develop scenarios,

experimental frames and conduct other simulation oriented analysis. DEVS Test Suite is

designed to ensure that the required behavior as expressed in input-output pairs is

correctly implemented when integrated in the system with timing constraints. One such

semi-automated Test-suite called Automated Test-case Generator (ATC-Gen) has been

developed at JITC by Zeigler [Zei05a] and has been applied for Link-16 testing [Mak06].

Analysis of the Experimental frame simulations and the System Test results are compared

 45

and evaluated to determine departure from required behavior. This error margin is called

the Conformance Measure. Ideally the designed model has a 100% conformance with

the Test Suite. If the departure exceeds a given tolerance, the model is revised to increase

the model-test conformance. All this assumes that the initial DoDAF specifications have

been cast in stone. Typically however, the iterative process will also suggest new or

modified specifications at the DoDAF level. The iterative loops can be seen in Figure 4.

Finally, when the models conform to the system test specifications, the Test Suite

presents the design and performance recommendations as the outcome of this data-centric

process. The Model Repository serves as the basis of design of components based on

Model-continuity principles and the Test Suite serves as the benchmark for performance

evaluation and matching the Technical specifications as developed in the Technical View

DoDAF descriptions.

2.5 Distributed Modeling and Simulation

There have been a lot of efforts in the area of distributed simulation using parallelized

DEVS formalism. Issues like ‘causal dependency’ [1] and ‘synchronization problem’

[11] have been adequately dealt with solutions like: 1. restriction of global simulation

clock until all the models are in sync, or 2. rolling back the simulation of the model that

has resulted in the causality error. Our chosen method of web centric simulation does not

address these problems as they fall in a different domain. In our proposed work, the

simulation engine rests solely on the Server. Consequently, the coordinator and the model

simulators are always in sync.

 46

Most of the existing web-centric simulation efforts consist of the following components:

1. the Application: the top level coupled model with (optional) integrated

visualization.

2. Model partitioner: Element that partitions the model into various smaller coupled

models to be executed at a different remote location

3. Model deployer: Element that deployed the smaller partitioned models to different

locations

4. Model initializer: Element that initializes the partitioned model and make it ready

for simulation

5. Model Simulator: Element that coordinate with root coordinator about the

execution of partitioned model execution.

The Model Simulator design is almost same in all of the implementation and is derived

directly from parallel DEVS formalism [1]. There are however, different methods to

implement the former four elements. DEVS/Grid [12] uses all the components above.

DEVS/P2P [13] implements step 2 using hierarchical model partitioning based on cost-

based metric. DEVS/RMI [6] has a configuring engine that integrates the functionality of

step 1, 2 and 3 above. DEVS/Cluster [14] is a multi-threaded distributed DEVS simulator

built on CORBA, which again, is focused towards development of simulation engine.

As stated earlier, the efforts have been in the area of using the parallel DEVS and

implementing the simulator engine in the same language as that of the model. Our present

 47

work is not focused in this area. It is focused towards interoperability at the application

level, specifically, at the model level and hiding the simulator engine as a whole.

The research of DEVS Standardization group [15] can be divided into four basic areas

[8]:

1. Standardization of DEVS formalism

2. Standardization of DEVS models

3. Standardization of the interface of DEVS Simulator

4. Standardization of libraries of DEVS models

Members of Standardization group have worked concerning area 2 where the model’s

structure is based on XML [16, 17]. However, their general modeling tool ATOM3 [17]

is based on meta-meta-modeling. It is based on graph grammars and allows

transformation of model to different formalism. Vladimir’s [8] work is concerning areas

2 and 4. His implementation of DEVS meta model is based on underlying JAVA

Modeling Language (JAVAML) [18]. Vladimir presents a prototype of a modeling tool

that aims towards model interoperability but the paper lacks sufficient details and any

working example. Our earlier work presents the detailed W3C Schema for DEVS atomic

and coupled models [19] as intended by Vladimir. Other research effort using XML

description is done by [20] called as DEVSW fits areas 2 and 4 but the code for transition

functions is provided by means of pseudo code.

 48

These efforts are in no means similar to what we are proposing in this research, except

some of ideas presented by Vladimir. The mentioned efforts are aimed towards

development of an independent meta-language that would aid the user to write models

effectively and easily and then the process of model generation and simulation is

automated using XML. We are focused towards taking XML just as a communication

middleware, as used in SOAP, for existing DEVS models. We would like the user or

designer to code the behavior in any of the programming languages and let the DEVSML

SOA architecture be responsible to create a coupled model, integrating code in either of

the languages and delivering us with an executable model that can be simulated. The user

need not learn any new syntax, any new language; however, what he must use is the

standardized version of DEVS implementation such as DEVSJAVA Version 3.0 [2]

(maintained at www.acims.arizona.edu).

This kind of capability where the user can integrate his model from models stored in any

web repository, whether it contained public models of legacy systems or proprietary

standardized models will provide more benefit to the industry as well as to the user,

thereby truly realizing the model-reuse paradigm.

Our work spans areas 2, 3, and 4. In further sections we will provide details about DEVS

atomic and coupled DTDs, design of DEVS Simulator interface and standardized

libraries used in our implementation.

 49

CHAPTER 3: DEVS MODELING AND SIMULATION
FRAMEWORK

This chapter begins by providing an overview of the current DEVS technology and the

way in which DEVS is positioned to address the need for a net-centric paradigm for test

and evaluation at the system-of-systems and enterprise systems levels. DEVS

environments such as DEVSJAVA, DEVS-C++, and others [ACI06] are embedded in

object-oriented implementations; they support the goal of representing executable model

architectures in an object-oriented representational language. As a mathematical

formalism, DEVS is platform independent, and its implementations adhere to the DEVS

protocol so that DEVS models easily translate from one form (e.g., C++) to another (e.g.,

Java) [Zei00]. Moreover, DEVS environments, such as DEVSJAVA, execute on

commercial, off-the-shelf desktops or workstations and employ state-of-the-art libraries

to produce graphical output that complies with industry and international standards.

DEVS environments are typically open architectures that have been extended to execute

on various middleware such as the DoD’s HLA standard, CORBA, SOAP, and others and

can be readily interfaced to other engineering and simulation and modeling tools [Zei00,

Bus98, Sar01a, Tol03, Zei03, Sar01b, Cho01]. Furthermore, DEVS operation over web

middleware (SOAP) enables it to fully participate in the net-centric environment of the

Global Information Grid [CJC06]. As a result of recent advances, DEVS can support

model continuity through a simulation-based development and testing life cycle [Hux05].

This means that the mapping of high-level requirement specifications into lower-level

 50

DEVS formalizations enables such specifications to be thoroughly tested in virtual

simulation environments before being easily and consistently transitioned to operate in a

real environment for further testing and fielding.

Section 3.1 provides basic DEVS theory. Section 3.2 presents the enhanced

Model/View/Controller paradigm that encourages complete application development

using DEVS. Section 3.3 and 3.4 describes the additions made in latest DEVSJAVA

version 3.1 related to dynamic model reconfiguration and dynamic simulation run-time

control. It also discusses the inclusion of DEVS Experimental Frame in the enhanced

MVC framework and how parameters derived from requirements can find their place at

top-level model and simulator configuration. Notion of steady-state of a complex system

is also dealt with in Section 3.3.

Brief Overview of Capabilities Provided by DEVS

To provide a brief overview of the current capabilities, Table 3.1 outlines how it could

provide solutions to the challenges in net-centric design and evaluation. The net-centric

DEVS framework requires advancement to the basic DEVS capabilities, which are

provided in later sub-sections.

Desired M&S Capability Solutions Provided by DEVS Technology

Requirement coherence
and prioritization
MIL-worth analysis
(M&S executable
architectures)

Enhanced user

1. Control a simulation on the fly [Mit05b].
2. Reconfigure a simulation on the fly [Mit04c].
3. Provide dynamic variable-structure component

modeling [Mit04c, Hux03].
4. Separate a model from the act of simulation

 51

capabilities
Execution road maps
Source selection
Technology
application/transition
Test support including
vulnerability analysis
Interoperability and
integration assurance
Hierarchical modular
construction of models
aiding system-of-systems
testing

Provide collaborative
distributed environment
for M&S

itself, which can be executed on single or
multiple distributed platforms [Zei00].

5. Simulation architecture is layered to accomplish
the technology migration or run different
technological scenarios [Sar01b, Mit03d].

6. With its bifurcated test and development
process, automated test generation is integral to
this methodology [Zei05].

7. Provide dynamic simulation tuning,
interoperability testing and benchmarking
[Mit04c].

8. Provide rapid means of deployment using
model-continuity principles and concepts like
“simulation becomes the reality” [Hux05].

9. Provide net-centric collaboration and integration
of DEVS ‘validated’ models using Web
Services [Mit07e]

 Table 3.1: DEVS on addressing M&S issues

3.1 DEVS System Specifications

3.1.1 Hierarchy of System Specifications

Systems theory deals with a hierarchy of system specifications that defines levels at

which a system may be known or specified. Table 3.2 shows this hierarchy of system

specifications (in simplified form; see [Zei00]).

• At level 0 we deal with the input and output interface of a system.

• At level 1 we deal with purely observational recordings of the behavior of a

system. This is an input/output (I/O) relation that consists of a set of pairs of input

behaviors and associated output behaviors.

 52

• At level 2 we have knowledge of the initial state when the input is applied. This

allows partitioning the I/O pairs of level 1 into non-overlapping subsets, with each

subset associated with a different starting state.

• At level 3 the system is described by state space and state transition functions.

The transition function describes the state-to-state transitions caused by the inputs

and the outputs generated thereupon.

• At level 4 a system is specified by a set of components and a coupling structure.

The components are systems on their own with their own state set and state

transition functions. A coupling structure defines how those interact. A property

of coupled systems, which is called “closure under coupling,” guarantees that a

coupled system at level 3 itself specifies a system. This property allows

hierarchical construction of systems, i.e., that coupled systems can be used as

components in larger coupled systems.

Level Name What We Specify at This Level
4 Coupled

systems
System built up by several component systems that are
coupled together

3 I/O
system

System with state-space and state transitions to generate
the behavior

2 I/O
function

Collection of I/O pairs constituting the allowed
behavior partitioned according to the initial state the
system is in when the input is applied

1 I/O
behavior

Collection of I/O pairs constituting the allowed
behavior of the system from an external black box view

0 I/O frame Input and output variables and ports together with
allowed values

Table 3.2: Hierarchy of system specifications

 53

As we shall see in a moment, the system specification hierarchy provides a mathematical

underpinning to define a framework for modeling and simulation. Each of the entities

(e.g., real world, model, simulation, and experimental frame) will be described as a

system known or specified at some level of specification. The essence of modeling and

simulation lies in establishing relations between pairs of system descriptions. These

relations pertain to the validity of a system description at one level of specification

relative to another system description at a different (higher, lower, or equal) level of

specification.

Based on the arrangement of system levels as shown in Table 3.2, we distinguish between

vertical and horizontal relations. A vertical relation is called an association mapping and

takes a system at one level of specification and generates its counterpart at another level

of specification. The downward motion in the structure-to-behavior direction formally

represents the process by which the behavior of a model is generated. This is relevant in

simulation and testing when the model generates the behavior which then can be

compared with the desired behavior.

The opposite upward mapping relates a system description at a lower level with one at a

higher level of specification. While the downward association of specifications is

straightforward, the upward association is much less so. This is because in the upward

direction information is introduced while in the downward direction information is

reduced. Many structures exhibit the same behavior, and recovering a unique structure

 54

from a given behavior is not possible. The upward direction, however, is fundamental in

the design process where a structure (system at level 3) has to be found which is capable

of generating the desired behavior (system at level 1).

3.1.2 Framework for Modeling & Simulation

The framework for M&S as described by Zeigler et al. [Zei00] establishes entities and

their relationships that are central to the M&S enterprise (see Figure 3.1). The entities of

the framework are source system, experimental frame, model, and simulator; they are

linked by the modeling and the simulation relationships. Each entity is formally

characterized as a system at an appropriate level of specification within a generic

dynamic system. See [Zei00] for a detailed discussion.

Source
System

Simulator

Model

Experimental Frame

Simulation
Relation

Modeling
Relation

Figure 3.1: Framework entities and relationships

 55

3.1.3 Model Continuity

Model continuity refers to the ability to transition as much as possible of a model

specification through the stages of a development process. This is the opposite of the

discontinuity problem where artifacts of different design stages are disjointed and thus

cannot be effectively consumed by each other. This discontinuity between the artifacts of

different design stages is a common deficiency of most design methods and results in

inherent inconsistency among analysis, design, test, and implementation artifacts

[Cho01]. Model continuity allows component models of a distributed real-time system to

be tested incrementally, and then deployed to a distributed environment for execution. It

supports a design and test process having four steps (see [Hux05]):

• Conventional simulation to analyze the system being tested within a model of the

environment linked by abstract sensor/actuator interfaces;

• Real-time simulation, in which simulators are replaced by a real-time execution

engine while leaving the models unchanged;

• Hardware-in-the-loop (HIL) simulation, in which the environment model is

simulated by a DEVS real-time simulator on one computer while the model being

tested is executed by a DEVS real-time execution engine on the real hardware;

• Real execution, in which DEVS models interact with the real environment

through the earlier established sensor/actuator interfaces that have been

appropriately instantiated under DEVS real-time execution.

 56

Model continuity reduces the occurrence of design discrepancies along the development

process, thus increasing the confidence that the final system realizes the specification as

desired. Furthermore, it makes the design process easier to manage since continuity

between models of different design stages is retained.

3.2 Model/View/Controller (MVC) Paradigm and DEVS Framework

Although a number of commercial and academic simulators are available for complex

network studies, none have the capability to tune the simulation while it is in execution.

Due to tight coupling between the network model and the simulation engine in such

simulators, the capability to introduce changes in parameter values during execution is

limited or non-existent. The work described here has the objective of developing a

DEVS-based network modeling and simulation environment with dynamic simulation

control and queue visualization. The DEVS modeling and simulation framework

separates model, experimental frame, and simulator. This modularity facilitates the

development of a simulation framework supporting run-time simulation tuning. The

motivation behind providing “real-time” intervention is to support a rapid feedback cycle

that allows experimentation with network parameters and structures. This can result in an

effective network configuration that is difficult to achieve when turnaround requires

hours or days. Furthermore, such instantaneous observation and control enables important

transient situations to be recognized and considered.

 57

3.2.1 Real-Time Control and Visualization Limitations of Existing Network

Simulators

Some of the limitations of existing network simulation packages are as follows:

• Everything has to be programmed prior to simulating the network.

• User interfaces are not easily customized; they provide largely textual interfaces.

• There is no support for changing parameters and component structures during

simulation.

• Simulation run times tend to be long (a few hours); more importantly, if a run

ends in a crash, there is no way to intervene and readjust the system.

• There is little run-time visualization of the system behavior to aid understanding

and to steer the simulation in a productive direction.

• Model and simulation calibration is a new concept, largely unattended by the

legacy and current simulators.

• Model-driven design and development is a new technology supported by only a

handful of simulation frameworks.

• Distributed M&S and concepts like model repository are not supported in most of

the frameworks.

• Treating an M&S T&E framework as an “online” system by itself is non-existent

and unaddressed by current simulators.

• Performance-oriented simulation frameworks are non-existent. Most are bounded

by initial model configuration.

 58

To develop a network modeling and simulation environment that addresses these

limitations, we extended the existing Discrete Event System Specification (DEVS)

software, DEVSJAVA. We discuss the layered architecture underlying the network

simulation environment. After describing this architecture, we discuss some proposed run

control and visualization techniques intended to greatly improve user understanding of,

and ability to control, the complex structural and behavioral relationships characteristic of

large network behaviors.

Nutaro [Nut05] proposed the Model/Simulator/View/Controller (MSVC) paradigm, as an

extension of MVC. He promoted the separation of model and simulator and has listed

many advantages that come about with this idea, most important being the reuse of

simulation software, especially in the context of distributed simulations. The other

problems that are solved by this paradigm are as follows:

• Distributed simulation protocol changes can be encapsulated within the controller

(input and time management policies) and viewer (output policies) objects.

• By separating the viewer and controller it is straightforward to add displays,

logging tools, and other output processing devices to the simulator.

• Modeling, simulation, distribution or parallelization, and user interface issues can

be addressed separately.

Nutaro demonstrated an application of middleware simulation, wherein the simulator was

tuned to display the behavior of certain middleware by incorporating effects such as RTI

 59

latency (with reference to distributed simulation HLA framework). In his methodology,

the simulator is a thread derived from the controller thread that contains the platform

(RTI latency) delay parameter. As the controller thread generates this event, it is

communicated to the simulator as well as to the viewer using inter-thread

communication. Although Nutaro did not consider model updating or model control, his

work constitutes a part of our enhanced MVC framework, where there is full capability in

the controller to modify the model as well as the simulator.

Our work is implemented in DEVSJAVA and has a super-thread that runs at the root-

coordinator level that monitors the experimental frame for any user-generated activity

controls. There exists no viewer thread as the viewer objects are created hierarchically as

delegated classes of the model as well as the simulator object. Any modification in their

state is also reflected in the contained viewer object. The viewer object displays are

derived from the java.awt package. Consequently, they inherently have independent

thread that repaints.

3.2.2 Enhanced MVC

Figure 3.2 below provides the graphical representation of an enhanced MVC paradigm. It

has been represented with respect to the DEVS M&S framework components. Model and

View take their usual functions and meanings. The Control in MVC is explored in more

detail and is mapped to the DEVS Experimental frame. Internally, the Experimental

frame has a modular structure with a basic control component and controller A and B as

derived components.

 60

Figure 3.2: Enhanced MVC paradigm with DEVS M&S framework

The basic control component translates the information contained in parameter set

coming from requirement specifications. It is specialized into two components, one

dedicated to simulator middleware control and the other dedicated to model control. It

also assigns different parameters to the appropriate controller. In Nutaro [Nut05],

controller A provides tools to control the DEVS simulator, more appropriately the

middleware aspect of simulation. Controller B provides the toolset to control the model.

Details about middleware control can be seen in [Nut05]. Controller B provides

functionality to vary the number of components, in addition to the parameters in a

component, both at the component and subsystem level. The parameter set for both the

controllers is made available to the user as a sliding bar in the controller frame in the

Model

Control
Panel

Simulator

Controller
B

Controller
A

Basic
Control

Parameter
Set

Model
Panel

Simulator
Panel

VIEW

Experimental
Frame Layer

DEVS Component
Modeling Layer

DEVS Simulation
Layer

Require
ment
Specs

Dynamic variable
structure, model
reconfiguration, tuning
and Calibration

Simulator tuning and
middleware

Model
Parameters Simulator

Parameter

Parameters in
consideration

GUI for
Model in

GUI for Simulation
messages and logging
functions

DEVS Modeling
& Simulation

 61

View panel that enables the user to tune the active simulation toward optimum

performance

The enhanced MVC has exhaustive control expressed in the experimental frame domain.

The Experimental frame component in the DEVS M&S framework is a key construct that

enables the user to drive and maneuver the simulation in the “right” direction. The

concept of experimental frame, i.e., a mechanism by which an experimental scenario is

designed for the model architecture, is further enhanced to enable the user to reconfigure

and tune the simulation itself. Benefits of user intervention are explored in more details in

[Mit06a] Given that the user has the capability to control the simulation parameters, the

issue of extraction and identification of those parameters is taken care by the basic

control component that interfaces with the Requirement Specifications document (e.g.

DoDAF) in restricted Natural Language. Consequently, the Experimental frame now

provides rich control equipment that the operational test designer can use to his

advantage.

3.3 Dynamic Model and Simulation Reconfiguration

3.3.1 Variable Structure DEVS

A component is “a nontrivial, nearly independent, and replaceable part of a system that

fulfills a clear function in the context of a well-defined architecture. It conforms to and

provides the physical realization of a set of interfaces” [Bro98]. A component system is

built by composition of various independent components and by establishing

relationships among them. As each component has a high degree of autonomy and has

 62

well-defined interfaces, variable structure of components can be achieved during run

time. For component-based modeling and simulation, variable structure provides several

advantages:

• It provides a natural and effective way to model those complex systems that

exhibit structure and behavior changes to adapt to different situations. Examples

of these systems include distributed computing systems, reconfigurable computer

architectures [Zei85, Zei93], fault tolerant computers [Che90], and ecological

systems [Uhr93]. Structure changing and component upgrading is an essential

part of these systems. Without the variable structure capability it is very hard, if

not impossible, to model and simulate them, let alone study the transition effect

that the system incurs when new components are added in a real deployed system.

• From the design point of view, variable structure provides the additional

flexibility to design and analyze a system under development. For example, it

allows one to design and simulate a system in which the components are added or

removed incrementally and form dynamic relationships with existing components.

• It allows one to load only a subset of a system’s components during simulation.

This is very useful to simulate very large systems with a tremendous number of

components, as only the active components need to be loaded dynamically to

conduct the simulation. Otherwise, the entire system has to be loaded before the

simulation begins.

In general, there are six forms of reconfiguration of component-based systems [Che02]:

 63

1. Addition of a component,

2. Removal of a component,

3. Addition of a connection between two or more components,

4. Removal of a connection between two or more components,

5. Migration of a component, and

6. Update of a component.

The first two operations result in an update of the modeled system where there is a

change in the number of components in the system, the next three result in a

reconfiguration of the existing system, and the last one results in the modification of the

component itself, either its behavior or its interface structure. In DEVS these are

collectively known as variable-structure modeling. More details about said operations can

be found in [Hux03].

As variable structure changes a component-based simulation during run time, boundary

conditions and the limits to which a component affects other components need to be

specified with said operation. With reference to Table 1, the model reconfiguration can

be implemented at any of the specified levels. These issues are very well addressed in

[Hux03]. The variable structure provides the flexibility to design and analyze a complex

hierarchical system under development, as well as during a running simulation, as

supported by the dynamic structure SES capability.

 64

3.3.2 Implementation of Variable Structure in Extended MVC

Variable structure essentially deals with modification of the component as well as of the

number of components that specify the modeled system. Its power lies in its run-time

implementation that gives us the capability to study the transition effects when the system

is presented with a different number of components and interrelationships. This is

entirely a modeling issue and is independent of how the system is simulated when

presented with such changes. With the DEVS modeling approach, this is brought to

fruition in its modeling layer. With the proposed MVC approach, as is quite obvious, this

is implemented in the modeling layer that is in control of the Experimental frame

controller layer. The modeling layer that holds the system model, its configuration, and

the inter-component relationships receives commands from the Experimental frame on

modifying the system. The user is in charge of the Experimental frame. Consequently, if

he wishes to modify the system structure he is given the toolbox to modify the model

from the experimental frame. Of course, the toolbox is also designed by the modeling

designer who decides if the system is to be analyzed and the chosen component plays a

significant role in system dynamics and performance. With the closure under coupling

property inherent in DEVS formalism, an entire subsystem or an individual component in

system can be added as a “component” in the model, in addition to its relationships with

other existing components. This property aids in adding a complete system model as a

component in a running simulation. With reference to Figure 3.2, the Experimental frame

view will contain the controls that the user can perform to modify the structure of the

model.

 65

3.3.3 Notion of System Steady State

Evolution is a discipline by which one can understand the growth of a “system” with

respect to time. Modeling growth is a difficult concept, let aside simulating “growth.”

Biological evolution is studied through looking into the past and seeing how different

species have changed according to their environment. In computer systems, the Internet is

one such system that has “evolved” over time and has resulted in a World Wide Web that

now sustains heterogeneous components sustaining together. Evidently, no one could

foresee during its conception days that it had the potential to become the Internet of today

with over one billion hosts. In order to model growth, one has to have the capability to

modify the structure of constituent components—its interfaces on how it changes when

the component is placed in different environments. Biological organisms survive by a

process of adaptation, and transmitting this information to progeny with encoded

information unlike the computer systems. The computer systems are characterized by

rigid interfaces through which they communicate with the “environment.” Certainly we

are not focused toward modeling adaptation, though it can be done with the current

DEVS suite, but trying to understand the response of system when another component is

introduced in the system is of prime importance. The response time of a system is defined

as the time taken by the system to display any effect once the model has been modified.

There are legacy systems, and the new technology is bringing new components that need

to be backward compatible. The situation with respect to IPV4 and IPV6 is one such

example in which the communication network has a new standard that needs to be

deployed. IPV6 has been around for more than ten years, and according to various

 66

sources, it will take another ten years for the current Internet to be completely IPV6

compliant. Testing of IPV6 in conjunction with IPV4 is a big limitation [Dic05]. The

analysis of these kinds of situations can be very readily done with the current capability

by introducing links and components to the existing network model and observing how

the system responds.

The steady state of any network system can be defined as the situation when the

computer network is stable and there is constant throughput, network latency, and there

are no overflowing buffers in routers. In essence, it boils down to the efficient utilization

of bandwidth across all links such that there are no blockages. Total data transmitted

from network components is received at the designated destinations, with allowable

errors. Consequently, capacity planning is one study that results in quantifying the

bandwidth in order to make the system stable with a specified number of components.

Looking at it in inverse perspective, finding the number of components that can be

sustained by any particular deployed network is of equal interest. The question arises:

How can we model a network system in which the system can simulate the growth of this

network, arriving at a steady state and providing us with the result that the network can

sustain a particular number of components? The current variable structure capability

provides us with the needed functionality in which the Experimental frame is given the

control to “arrive at steady state.” What it actually means is: once a small model of the

network system is simulated and utilization is reported, the system continues to keep

adding new (preordained) components, along with their relationships, to the existing

 67

system until the system reaches a specified network throughput. At what rate the new

components are added is a tunable parameter, made available in the experimental frame.

This whole exercise shows, given a certain system exhibiting certain behavior, how the

system would perform and evolve if let loose, or what the maximum number of

components is that the system can be loaded to so that it maintains a steady state! To

determine at what result-set the system would break, or if it has a “survivable” nature, is

worth conducting analysis. The run-time capability gives us a window to monitor the

effects the system incurs when it is modified by external effects like the rate of growth of

the system.

3.4 Dynamic Simulation Control

3.4.1 DEVS Simulation Engine

DEVS has been erected on a framework that exploits the hierarchical, modular

construction underlying the high level of system specifications. The basis specification

structure in all the associated DEVS derived formalisms, e.g., DTSS, DESS, is supported

by a class of atomic models. An atomic model is an irreducible component in DEVS

framework that implements the behavior of a component. It executes the state-machine

and interacts with other components using its defined inports and outports. Each such

atomic class has its own simulator class. A network of these atomic models constitutes a

coupled model that maintains the coupling relationships between the constituent atomic

components. Each such coupled model class has its own simulator class, known as a

coordinator. Assignment of coordinators and simulators follows the lines of hierarchical

 68

model structure, with simulators handling the atomic-level components and coordinators

handling the successive levels until the root of the tree are reached. These simulators and

coordinators form the DEVS simulation engine, and they exchange messages by adhering

to what is known as DEVS simulation protocol (see Figure 3.3). The message exchange

is depicted in the figure below. For more details about the simulation protocol refer to

chapter 8 of [Zei00]. The figure below shows the mapping of a hierarchical model to an

abstract simulator associated with it. Atomic simulators are associated with the leaves of

the hierarchical model. Coordinators are assigned to the coupled models at the inner

nodes of the hierarchy. At the top of hierarchy there is a root-coordinator that is in charge

of initiating the simulation cycles (see Figure 3.4).

Figure 3.3. DEVS simulation protocol

Figure 3.4: Hierarchical simulator assignment

for a hierarchical model

Since the DEVS model is based on DEVS formalism that is based on mathematical

systems theory, the behavior expressed through DEVS can be translated to any other

formalism, though there exist no other theoretical M&S frameworks. With the separation

of the model from the simulator, the advantage is that it supports formalism

interoperability. The next subsection throws light on how an experimental frame

 69

intervenes in the DEVS simulation protocol by causing interrupts, and how it implements

dynamic simulation control.

3.4.2 Interrupt Handling

The controller frame is built on top of a root coordinator in DEVSJAVA shown in Figure

3.4 above. We developed interfaces to enable the DEVS engine to take into account the

change of experimental frame parameters during the simulation run. It generates

interrupts, which are handled by the coordinator in DEVSJAVA. The event from the

controller frame is handled by the root coordinator that holds the simulation at that

instant, taking care of the simulation state. The event then is channeled through the

hierarchical simulator network to the intended model. Once the model has been updated,

the root coordinator resumes the simulation by reinitiating the DEVS simulation protocol.

Consequently, the model is updated in between the running simulation with other events

still being held in different component simulators. Only the intended model is updated,

which then participates accordingly as before. How this event (parameter update inside a

model) brings change or how the system responds to this change can be seen very well in

different visualizers. Examples can be seen in later sections and [Mit06a] described a

complete DEVS software project called Generic Network Capable of Planned Expansion

(GENETSCOPE) [Gen06].

 70

3.4.3 The Notion of “Simulation Control” Explored

Having laid out the framework to implement the dynamic simulation control, we also

explored different methodologies in which the simulation can be controlled. Following

are the three ways by which the simulation can be interjected and brought to successful

execution.

3.4.3.1 Automated Control

In this methodology, we have stored procedures, basically a predefined event list stored

as a file that is being read actively during the running simulation and generates events

that sends interrupts to the coordinator.

Figure 3.5: Automated test suite execution

This does not require a controller frame that is used to provide real-time interrupts. The

experimental frame takes the shape of this file in which different scenarios are preloaded

 71

along with simulation parameters. Certainly, execution of a scenario can be considered as

one simulation run or a session, but the introduction of a parameter set in the

experimental frame that is injected dynamically in the running simulation is of prime

interest. This approach has been implemented by Nutaro. This methodology is verily

extended toward the following setup shown in Figure 3.5 where the SES family of test

cases is implemented as an XML file. The sequence of test is executed in a sequential

manner and reported.

3.4.3.2 Manual Reactive Control

In this methodology, the experimental frame is operated through a controller frame that is

designed by the system test designers. The significant parameters and models are

identified with reference to the OV-8 document or NR-KPP set and made available in the

controller frame [Mit06a]. This methodology provides us with a mechanism to manually

interject in the running simulation to introduce modifications. It also provides us with the

capability to steer the simulation if the simulation is moving toward a “crash” or if the

user wants to see the temporal effects of any parameter update. The capability to steer

and study the effects of any single parameter is a powerful capability and is almost

nonexistent in current simulators, both in the academic and commercial arenas. There is,

however, some software available in the business finance domain that provides this

capability. We implemented this capability in one of our active projects. Refer to

GENETSCOPE example in Section 8.4. Reactive Mode Testing is a related concept

discussed in Section 8.3.3 Testing Status.

 72

3.4.3.3 Hybrid Control

As the name suggests, this methodology takes the best of the above two approaches. This

methodology has an automated scenario generation/modification capability as well as

reactive control through the controller frame. The main purpose of the controller frame

in this approach is to study the temporal effects and steer the simulation toward optimum

performance.

3.4.4 Parameter Control

This subsection presents some ideas on the selection and categorization of parameters.

Two classes of parameters that were identified for any system are the tunable parameter

set and the result parameter set.

3.4.4.1 Tunable Parameter Set

This set is comprised of the parameters that are to be included in the Experimental frame.

This set is termed “tunable” for obvious reasons, as the simulation analysis is conducted

to study their effects on the system performance when their values are modified. These

parameters are called tunable parameters because these parameters are implemented as a

“slider” component in the controller frame with definite bounds. The user can control this

slider to tune the system for optimum performance. In the network system terminology,

link capacity, router buffer, etc., can be classified as tunable parameters. With reference

to the DoDAF and NR-KPP, this makes more sense, as we need to understand the impact

of the identified “significant” parameter on the overall system performance [Mit06a].

 73

3.4.4.2 Result Parameter Set

This set is comprised of the aggregated result values that provide the overall system

performance estimates. SV-7 provides a place where these documents could be found on

a per subsystem basis. However, the holistic result parameters still need to find an

appropriate place. There should be a dedicated place in the systems view with respect to

the overall system performance. The aggregated parameters in a network system can be

thought of as latency, network throughput. This parameter takes leverage from the NR-

KPP set that is needed to satisfy the baseline system performance. Its mapping with SV-7

is beyond the scope of the current work.

3.4.5 Synopsis

The above discussion has illustrated how the DEVS simulation framework provides new

capabilities in the Experimental frame and how these capabilities are implemented. It also

shows that an experimental frame is the place where the user can modify the model and

can modulate the simulation according to need. From the basic capability of creating an

experimental scenario for the modeled system, we have enhanced it by providing more

features like simulation control and parameter tuning. We have also explored various

ways simulation control could be performed and how parameters are categorized to find

their way in the Experimental frame. Together with the variable structure capability

described in section 7, the experimental frame becomes an all-encompassing user

interface to a complex hierarchical system model under simulation. It gives the user more

 74

power to observe and visualize the simulation by isolation at the parameter level and the

component level as well as on the subsystem level.

 75

CHAPTER 4: REQUIREMENT SPECIFICATIONS AND
AUTOMATED DEVS MODEL GENERATION

This chapter describes various formats in which the system requirements could be

expressed for today’s systems and the methodologies leading to generation of DEVS

models in an automated manner. The requirements are the most important part of any

system development and they are seldom specified in a format that is helpful to the

developer at large. Consequently, it is refined throughout the system development

lifecycle until the developer as well as the stake-holder settles on a common ground.

Testing in such iterative developmental cycle bears the burden of ‘meeting’ the system

specifications. To automate both the model generation and test case generation is a

current need of the system design process. Consequently, taking first things first, this

section enumerates various formats and implementations in which the requirements could

be specified. They are as follows:

• State-based system specifications: In this implementation, the system is

specified using state-machines with UML [omg] tools such as Rational [rat],

Visio [vis] or Enterprise Architect [spa]. Sometimes the DEVS formalized state

machine is also available.

• Rule-based system specifications using restricted natural language

processing (NLP): Natural language such as English can be very ambiguous. To

make it more specific, either every aspect must be taken into account for every

situation, which results in a voluminous record, or the language itself must be

 76

restricted with chosen keywords. A restricted NLP is provided and model

generation is described

• BPMN/BPEL based system specifications: Business Process Modeling Notation

(BPMN) [bpm] or Business Process Execution Language (BPEL) provide a very

high level view of any business process involving sub-processes. It can be looked

upon as a super-activity being composed of many activities in a specified

sequence and manner. This kind of requirement specification is largely graphical

in nature and the information is stored in .wsdl and .bpel files for BPEL but in

proprietary format for BPMN. Methodology is presented on how to extract DEVS

model information from such specifications

• DoDAF-based requirement specifications: Department of Defense Architecture

Framework (DoDAF) [Dod03] is the mandated framework for any future

government system architecture specification and it suffers from various

deficiencies largely attributed to the fact that M&S is not mandated in it. An

enhanced version of DoDAF is proposed and methodology of DEVS model

generation is described.

Having analyzed the information set available in different formats, DEVS information is

extracted from these sets. To specify a DEVS system, we have the following basic MUST

requirements:

• Entities as Objects and their hierarchical organization

• Finite State Machines (FSMs) of atomic models

• Timeouts for each of the phases (States) in atomic models

 77

• Entity interfaces as input and output ports

• External incoming messages at Entity’s interface at specified duration in specific

State

• External outgoing messages at Entity’s interface at specified duration in specific

State

• Coupling information derived from hierarchical organization and interface

specifications

• Experimental Frame specifications

• As we shall see in each of the ensuing different formats, the required DEVS

information is extracted and applied towards automated model generation.

4.1 State-Based System Specifications

UML statecharts are the preferred way of specifying state machines. The process to

generate code from UML diagrams is generally human interpretation and depends on the

skill and experience of the developer taking into account the help he can get from various

stub generation UML tools like Rational, Enterprise Architect etc. However, the UML

statecharts are incomplete when it comes to DEVS state machines. DEVS state machine

demand more input and specifically the timeouts of each of the specified states to define

the complete specifications. The issue of ‘timeout’ however critical in many mission-

critical applications is not addressed adequately in UML literature.

 78

Not going into the rudimentary details about UML statecharts, we would like to propose

here a novel way to automate the DEVS state machine specification process. Any state

machine can be looked upon as the superposition of two behaviors. The first cycle is the

default execution of the machine, wherein it receives no external inputs. The second

behavior, which can spawn multiple cycles stems from the actions resulting from

reception of various inputs in various states. DEVS categorically separates these two

behaviors in its formal δint and δext specification1.

Figure 4.1: DEVS state machine Document Type Description (statemachine.dtd)

Consequently, a template based state requirement process is developed where the

designer can specify these two behavior cycles. The chosen way to document the state

1 DEVS atomic specification: M = < X, S, Y, δint, δext, δcon, λ, ta >
DEVS coupled specification: M = < X, Y, D, {Mij},{Ij}, {Zij} >
 Where the symbols have their usual meanings specified in [Zeig]

<!ENTITY % variable-info
 "name CDATA #REQUIRED
 type CDATA #REQUIRED">
<!ELEMENT statemachine (deltint, deltext)>
<!ATTLIST statemachine name ID #REQUIRED
 host CDATA #REQUIRED>

<!ELEMENT transition (startState?, nextState?, timeout?, outMsg*)>

<!ELEMENT deltint (transitionsInt)>
<!ELEMENT transitionsInt (transition)*>

<!ELEMENT deltext (transitionsExt)>
<!ELEMENT transitionsExt (transitionExt)*>
<!ELEMENT transitionExt (incomingMsg?,transition?)>

<!ELEMENT startState (#PCDATA)>
<!ELEMENT nextState (#PCDATA)>
<!ELEMENT incomingMsg (#PCDATA)>
<!ELEMENT timeout (#PCDATA)>
<!ELEMENT outMsg (#PCDATA)>

 79

machines is XML and the constructed artifacts are validated by the DTD. The DEVS

state machine DTD is presented in Figure 4.1 above.

The designer can specify the DEVS state machine in a tabular format shown as below:

DEVS Internal State Machine (for default behavior)

Behavior
S.No.

State
(phase)

Next
State
(phase)

Timeout Outgoing Message

1 A B 1 C
2 B D 10 -

DEVS External State Machine responding to incoming messages

Behavior
S.No.

Incoming
Message
name

State
(phase)

Next
State
(phase)

Timeout Outgoing
Message

1. X A D 5 Y
2. Z B A 1 -

Table 4.1: Tabular structure for State-based specifications

The tabular information presented above in Table 4.1 as a sample is transformed to an

XML document validated by the DTD (Figure 4.1 above) and mined for DEVS code

generation. The information can also be used to render any graphical output as in

conventional UML statechart diagrams.

 80

4.1.1 Sample Example

For illustration purposes, entity name JTAC is specified in the tabular format below

(Table 4.2). It is taken from the complete example of Joint Close Air Support (JCAS)

provided in detail in Chapter 8.

Entity: JTAC

DEVS Internal State Machine (for default behavior)

Behavior
S.No.

State (phase) Next State (phase) Timeout Outgoing
Message

1. RequestImmediateCA
S

WaitForAssignment 0 CASResourceSp
ec

2. WaitForAssignment Passive Infinity -
3. ProvideTAC ContinueExecution 1000 -
4. ContinueExecution Passive 0 CeaseAttack
5. WaitForTACRequest Passive Infinity -

DEVS External State Machine responding to incoming messages

Behavior
S.No.

Incoming Message
name

State
(phase)

Next State
(phase)

Timeout Outgoing
Message

1. RequestTAC WaitForTAC
Request

ProvideTAC 10 InitialAttack

2. YouCanUseUSMC
Aircraft

WaitForAssi
gnment

WaitForTACR
equest

0 -

Table 4.2: State-based specifications for entity JTAC

The above state description resulted in .xml file validated by the statemachine.dtd in

Figure 4.1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE statemachine SYSTEM "statemachine.dtd">

<statemachine name="JTAC" host="LOCAL">

 81

<deltint>
 <transitionsInt>
 <transition>
 <startState>RequestImmediateCAS</startState>
 <nextState>WaitForAssignment</nextState>
 <timeout>0</timeout>
 <outMsg>CASResourceSpec</outMsg>
 </transition>
 <transition>
 <startState>WaitForAssignment</startState>
 <nextState>Passive</nextState>
 <timeout>Infinity</timeout>
 </transition>
 <transition>
 <startState>ProvideTAC</startState>
 <nextState>ContinueExecution</nextState>
 <timeout>1000</timeout>
 </transition>
 <transition>
 <startState>ContinueExecution</startState>
 <nextState>Passive</nextState>
 <timeout>0</timeout>
 <outMsg>CeaseAttack</outMsg>
 </transition>
 <transition>
 <startState>WaitForTACRequest</startState>
 <nextState>Passive</nextState>
 <timeout>Infinity</timeout>
 </transition>
 </transitionsInt>
</deltint>

<deltext>
 <transitionsExt>
 <transitionExt>
 <incomingMsg>RequestTAC</incomingMsg>
 <transition>
 <startState>WaitForTACRequest</startState>
 <nextState>ProvideTAC</nextState>
 <timeout>10</timeout>
 <outMsg>InitialAttack</outMsg>
 </transition>
 </transitionExt>
 <transitionExt>
 <incomingMsg>YouCanUseUSMCAircraft</incomingMsg>
 <transition>
 <startState>WaitForAssignment</startState>
 <nextState>WaitForTACRequest</nextState>
 <timeout>0</timeout>
 </transition>
 </transitionExt>
 </transitionsExt>
</deltext>

 82

</statemachine>

Figure 4.2: XML transformation of JTAC state machine described in tabular format

The above .xml (Figure 4.2) description is mined using a DOM parser to generate the

DEVS atomic model. The generated code is shown in Figure 4.3 below. Each of the rows

in table above correspond to the if-else construct in the categorized deltint() and deltext()

functions. For the rows that have Outgoing Message, corresponding constructs are

created in the out() function. Other important aspect of the DEVS code generation is the

automated creation of DEVS entity interface based on the outgoing and incoming

messages. The outgoing message port takes the form of “out”+Message_name and the

incoming message import takes the form of “in”+Incoming_message_name. This

relieves burden off the designer in programming the interface specification when

developing the state machine of the entity model. The inports and outports are added in

the constructor of the said entity and the first state in the default behavior table is the state

the entity is initialized with. Further for every state (not equaling ‘Passive’)

corresponding executable stub as ‘processing state’ function is also provided for the

designer to come later on and provide any other logic for the next state. In the figure

below, only console messages are printed for logging purposes and tracking the state

execution of the encoded entity. The confluent function is largely the external transition

function for this particular example.

public class JTAC extends ViewableAtomic{

 /** Creates a new instance of JTAC */

 83

 public JTAC() {
 addInport("inRequestTAC");
 addInport("inYouCanUseUSMCAircraft");
 addOutport("outCASResourceSpec");
 addOutport("outCeaseAttack");
 addOutport("outInitialAttack");
 }

 public void initialize(){
 holdIn("RequestImmediateCAS", 0);
 }

 public void deltint(){
 if(phaseIs("RequestImmediateCAS")){
 processWaitForAssignment();
 holdIn("WaitForAssignment",0);
 }
 else if(phaseIs("WaitForAssignment")){
 holdIn("Passive",Integer.MAX_VALUE);
 }
 else if(phaseIs("ProvideTAC")){
 processContinueExecution();
 holdIn("ContinueExecution",1000);
 }
 else if(phaseIs("ContinueExecution")){
 holdIn("Passive", Integer.MAX_VALUE);
 }
 else if(phaseIs("WaitForTACRequest")){
 holdIn("Passive",Integer.MAX_VALUE);
 }
 }

 public void deltext(double e, message x){
 Continue(e);
 for(int i=0; i<x.getLength(); i++){
 if(this.messageOnPort(x,"inRequestTAC",i)){
 if(phaseIs("WaitForTACRequest")){
 processProvideTAC();
 holdIn("ProvideTAC",10);
 }
 }
 if(this.messageOnPort(x,"inYouCanUseUSMCAircraft",i)){
 if(phaseIs("WaitForAssignment")){
 processWaitForTACRequest();
 holdIn("WaitForTACRequest",0);
 }
 }
 }
 }

 public void deltcon(double e, message x){
 deltext(e,x);
 }

 84

 public message out(){
 message m = new message();

 //deltint output messages
 if(phaseIs("RequestImmediateCAS")){
 m.add(makeContent("outCASResourceSpec",new
entity("CASResourceSpec")));
 }
 else if(phaseIs("ContinueExecution")){
 m.add(makeContent("outCeaseAttack",new
entity("CeaseAttack")));
 }
 ///deltext output messages
 else if(phaseIs("ProvideTAC")){
 m.add(makeContent("outInitialAttack",new
entity("InitialAttack")));
 }

 return m;
 }

 public void processWaitForTACRequest(){
 System.out.println("Processing: WaitForTACRequest");
 }
 public void processProvideTAC(){
 System.out.println("Processing: ProvideTAC");
 }
 public void processContinueExecution(){
 System.out.println("Processing: ContinueExecution");
 }
 public void processWaitForAssignment(){
 System.out.println("Processing: WaitForAssignment");
 }

}

Figure 4.3: Generated DEVSJAVA code from valid jtac.xml in Figure 4.2

Similarly, coupled model can be created through similar means. Various frameworks

using System Entity Structure (SES) exist that facilitate such automated stub generation.

SESM tool developed at ASU is the one in lead that provides GUI based organization and

automated SES and XML transformation resulting in DEVSJAVA code. Various

methodologies for coupled model creation using SES are not presented here for obvious

reasons as this technology is very much in use and mature.

 85

Hence, we see that DEVS state machine can be more easily described in a tabular format

rather than going directly to the programming implementation. XML with validating

DTD is the preferred way of transformation in an automated manner. Generating the

DEVS state machine in such manner and augmenting the code later on for adding further

processing constructs based on specific states is very controllable and tractable. Further,

such development methodology also encourages ‘logic’ reuse in specific state-processing

functions and separate the execution from the state machine. It also leads to the model-

continuity for this component towards SOA where such state-processing functions can

become ‘services’ as discussed in the DEVSML architecture and the proposed universal

DEVS atomic DTDs in Chapter 6.

4.2 Message-Based System Specifications with Restricted Natural
Language Processing

Any discrete event system communicates internally by way of messages. Developing

system requirements in data-flow perspective is of prime importance in this method of

requirement specification. English language is used as the preferred means of specifying

these interactions, however, bounded by rules that encompass all the possible interactions

related to any message type. These rules also limit the way English language is used in

terms of removing ambiguous statements. The basic idea is as follows. The entity is

considered as a collection of various message streams. It has been observed in complex

systems (e.g. GENETSCOPE [Mit06b]) that an entity node can act as receiver and sender

simultaneously. This appears logical to consider that a node may be processing more than

 86

one messages at a given instant. Consequently, developing a framework where the entity

node model can operate with multiple message streams is the objective of this type of

requirement specifications.

The rules that provide a binding to this type of requirement specifications are provided

below in Figure 4.4. The designer can specify each node’s behavior as a sender and a

receiver with respect to any specific message type. The message stream is initiated with

Rule 1 when the entity (e.g. A below) sends message (e.g of type MessageX) sends to

other entity (e.g. B below) at time T.

Figure 4.4: Rules for Restricted NLP based Requirement Specifications

4.2.1 Sample Example:

To illustrate the usage of these rules as requirement specification artifacts let us consider

an example in Figure 4.5 that is called ‘Simon Says’.

Rules:
1. A sends MessageX to B at time T
2. B having received MessageX from A, responds with MessageY within time T1
3. A having send MessageX, waits for response until time T2
4. B having received MessageX from A, and responding with MessageY, A if waiting

sends MessageZ to B within time T3
5. B having received MessageX from A, and responding with MessageY, can be

interrupted with MessageL from C
6. B having interrupted with MessageL from C, responds with MessageN to C within time

T4
7. B having interrupted with MessageL from C, does nothing
8. B forwards MessageX to C within time T

 87

Figure 4.5: Simon Says in English language

Translating the behavior of Simon in our Rule-based requirements as per Figure 4.4:

1. Simon sends DoThis(x) or SimonSaysDoThis(x) to Alice at T_1 (Rule 1)

2. Simon sends DoThis(x) or SimonSaysDoThis(x) to Bruce at T_2 (Rule 1)

3. Simon sends DoThis(x) or SimonSaysDoThis(x) to Charles at T_3 (Rule 1)

4. Simon having send DoThis(x), waits for response until T2_1 (Rule3)

5. Simon having send SimonSaysDoThis(x), waits for response until T2_2 (Rule

3)

Translating behavior of Alice or Bruce or Charles in our Rule-based requirements:

Message Stream: DoThis(x)

1. Alice having received DoThis(x) from Simon, responds with Did(x), within

time T1 (Rule2)

2. Alice having received DoThis(x) from Simon, and responding with Did(x),

Simon if waiting sends YourOut(x) to Alice within time T3 (Rule 3)

1. The playerGroup consists of Alice, Bruce, and Charles.
2. Simon can send three type of messages to the playerGroup: DoThis(x),

SimonSaysDoThis(x), and YourOut
3. A player must respond to DoThis(x) and SimonSaysDoThis(x) with

Did(x) or DidNot(x)
4. If player receives DoThis(x) from Simon, and the player responds with

Did(x), then Simon sends YourOut to that player.
5. If a player receives SimonSaysDoThis(x) from Simon, and the player

responds with DidNot(x), then Simon sends YourOut to that player.
6. When all players have responded, Simon may issue another request.

 88

Message Stream: SimonSaysDoThis(x)

1. Alice having received SimonSaysDoThis(x) from Simon, responds with

DidNot(x), within time T1 (Rule2)

2. Alice having received SimonSaysDoThis(x) from Simon, responding with

DidNot(x), Simon if waiting sends YourOut(x) to Alice within time T3 (Rule

3)

The other statements in Figure 4.5 can be similarly used to provide requirement

specification for the coupled DEVS specifications (see statement 1). The use of

Statement 2 will be discussed shortly. Statement 3 becomes redundant in our current

setup of rule-based requirements as shown above. Statement 6 starts up a new cycle of

these message streams. Hence, we see that using only Rule 1, 2 and 3 (Figure 4.4) we can

specify the requirements of Simon Says example.

The next step is the automated code generation of Simon or Alice or Bruce etc., which

leads us to the transformation of these rule to universal primitives (Table 4.3). Each of

these primitives corresponds to a specific state in the DEVS state machine. The basic idea

is that that a rule once translated to a specific primitive (and correspondingly to a DEVS

state) can be turned on-off depending on the rules usage resulting in a dynamic state

machine. The concept of Universal State Machine USM (Figure 4.6) germinates from this

idea which contains all of these rule-based primitives.

 89

4.2.2 Transformation of Rules to universal Primitives:

Rule Name Tag Primitive Name Token 1 Token 2 Token 3
Toke
n 4

1 send holdSend #1 MsgX_A_B T

2 respond
receiveSendInterru
pt #1 MsgX_A_B MsgY_B_A T1

3
wait for
response waitReceive MsgX_A_B T2

4
acknowledg
e waitHoldSend MsgX_A_B MsgY_B_A MsgZ_A_B T3

5 interrupted
receiveSendInterru
pt #2 MsgX_A_B MsgY_B_A IMsgL_C_B

6
acknowledg
e interrupt

receiveSendInterru
pt #3 MsgX_A_B

IMsgL_C_
B

AMsgN_B_
C T4

7
ignore
interrupt

receiveSendInterru
pt #4 MsgX_A_B

IMsgL_C_
B

8 forward holdSend #2 MsgX_B_C T

Table 4.3: Mapping of Rules 1-8 to universal primitives in Universal State Machine
(USM)

Now, assuming that entity A send MessageX to entity B at time T (Rule 1), various other

features of such rule-based requirement specifications are as follows:

• Depending on the behavior specified, resulting in activation of Rule 1-8,

primitives are switched on-off in the Universal State Machine (USM)

• The message-stream for Message X is encoded in both entities A and B i.e each of

the node models for A and B will contain the same code for MessageX processing

as the USM takes care of sending and receiving operations for Message X

• The USM generates a stand-alone DEVS state-machine for any Message Stream

initiated by message of type Message X

• Each node having multiple message streams keeps track of ‘active’ message

streams in a queue based system as a state variable.

 90

• Each node exists as a coupled model with node controller coordinating with

various message streams and tracking operational message streams.

Figure 4.6: Universal State Machine (USM) for Rule-base Requirement Specifications

4.2.3 Design of Entity Node model with multiple message streams:

The entity node model (e.g. A or B in Figure 4.4) is a coupled model consisting of:

• Node controller switch (having state variables for each of message streams)

• Traffic generator that initiates message streams

 91

• Message streams

• Internal coupling relations between the above components

• External coupling relations between node controller and boundary of entity node

model

The automated creation of a node model begins with specification of various message

streams as laid out in example ‘Simon Says’ Figure 4.5. Each of messages is given an ID

which becomes the identification of the particular message stream for tracking and

reporting purposes. Rule 1 in Figure 4.4 is the starting point. Information from Rule 1 and

other rules is categorized into two sets of messages:

• Initiator messages

• Participant messages

Initiator messages directly correspond to Rule 1, which activates the message stream and

set the node model in sender mode. In terms of USM in Figure 4.6, Message X

corresponds to initiator message.

Participant messages correspond to various other messages, such as Message Y, Z, L and

N used in Rule 2-7 and others indicated in USM and Table 4.3.

The initiator messages find their way in the Traffic Generator as they contain information

about the time at which they will activate the particular message stream.

 92

The node model displaying the coupling information is shown in Figure 4.7 below for the

example Simon Says. The formal code and representation is given in the Appendix

section. For a detailed example refer Chapter 8.

Figure 4.7: Graphical structure of internals of node entity with two message streams as
in example of Figure 4.5

The automated code resulted in above coupled diagram is shown in Figure 4.8 below.

The constructor only takes information about the various message Ids (a.k.a streams) that

are encoded using USM.

public SimonSaysExample(String[] msgIds){
 super("SimonSaysNodeA");
 this.msgIds = msgIds;
 msgStreams = new Hashtable();

 for(int i=0; i<msgIds.length; i++){
 ViewableAtomic ms = new ViewableAtomic(msgIds[i]);
 addMsgStreamPorts(ms);
 add(ms);
 msgStreams.put(msgIds[i],ms);
 }

 93

 ViewableAtomic tg = new ViewableAtomic("TrafGen");
 addMsgsToTG(tg, msgIds);
 add(tg);

 ViewableAtomic nc = new ViewableAtomic("NodeController_A");
 nc.addInport("in");
 addMsgsToNC(nc, msgIds);
 add(nc);

 coupleComponents(tg, nc, msgIds);
 coupleNCwithMsgStreams(nc, msgIds);

 }

Figure 4.8: Constructor for Node entity of the node diagram in Figure 4.7

The automated code borrows various automated coupling constructs stored in the super

class ‘base’ message node as shown in Figure 4.9 below.

 public void coupleComponents(ViewableAtomic tg,
ViewableAtomic nc, String[] msgIds){

 for(int i=0; i<msgIds.length; i++){
 addNodeCouplingTG_NC(tg, nc, msgIds[i]);
 addSelfNodePortsAndCouplingForMsg(nc, msgIds[i]);
 }
 }

 public void coupleNCwithMsgStreams(ViewableAtomic nc, String[]
msgIds){
 for(int i=0; i<msgIds.length; i++){
 ViewableAtomic ms =
(ViewableAtomic)msgStreams.get(msgIds[i]);
 addNCtoMsgStreamCoupling(nc, ms, msgIds[i]);
 }
 }

 public void addNCtoMsgStreamCoupling(ViewableAtomic nc,

 ViewableAtomic ms, String msgId){
 addCoupling(nc, "cmdOut"+msgId, ms, "cmdInNC");
 addCoupling(nc, "out"+msgId, ms, "inMsgNC");
 addCoupling(ms, "outMsgNC", nc, "outgoing"+msgId);
 }

 public void addSelfNodePortsAndCouplingForMsg(ViewableAtomic nc,
String msgId){
 this.addOutport("relayOutgoing"+msgId);
 this.addInport("in");

 94

 addCoupling(nc, "relayOutgoing"+msgId, this,
"relayOutgoing"+msgId);
 addCoupling(this, "in", nc, "in");
 }

 public void addMsgStreamPorts(ViewableAtomic ms){
 ms.addInport("cmdInNC");
 ms.addInport("inMsgNC");
 ms.addOutport("outMsgNC");
 }

 public void addMsgsToTG(ViewableAtomic tg, String[] msgIds){
 for(int i=0; i<msgIds.length; i++){
 addMsgToTG(tg, msgIds[i]);
 }
 }

 public void addMsgsToNC(ViewableAtomic nc, String[] msgIds){
 for(int i=0; i<msgIds.length; i++){
 addMsgToNC(nc, msgIds[i]);
 this.addPortsAtNodeController(nc, msgIds[i]);
 }
 }
 public void addMsgToTG(ViewableAtomic tg, String msgId){
 tg.addOutport("out"+msgId);
 }

 public void addMsgToNC(ViewableAtomic nc, String msgId){
 nc.addInport("in"+msgId);
 }

 public void addNodeCouplingTG_NC(ViewableAtomic tg,

 ViewableAtomic nc, String msgId){
 addCoupling(tg, "out"+msgId, nc, "in"+msgId);
 }

 public void addPortsAtNodeController(ViewableAtomic nc, String
msgId){
 nc.addInport("outgoing"+msgId);
 nc.addOutport("relayOutgoing"+msgId);
 nc.addOutport("cmdOut"+msgId);
 nc.addOutport("out"+msgId);
 }

Figure 4.9: Various library functions supporting automated node coupling relations

Having constructed a node model with multiple message streams in an automated

manner, the next step is construction of coupled scenario model containing various node

 95

entity models. The details of coupled scenario construction are not provided as it does not

require any research in present state of DEVS advancements. Tools like SESM modeler

developed at Arizona State University provide a very solid framework of XML and SES

towards creation of coupled models.

For a detailed example for requirement specifications using restricted NLP refer Chapter

8.

4.3 BPEL/BPMN-Based System Requirement Specifications

Business Process Execution Language or BPEL is a business process modeling language

that is executable. It is serialized in XML and communicated over a net-centric platform.

It is the latest in development of business scenarios where many business stake holders

participate towards a common business goal. It is an orchestration language giving a

global view of the participating business process communicating over the Web. BPEL’s

messaging facilities depend on the use of Web Service Description Language (WSDL)

1.1 to describe the outgoing and incoming messages. The BPEL specification [bpel] is

described as a process flow that uses various Web Services in a goal-oriented scenario.

BPEL4WS provides language for the formal specification of business processes and

business interaction protocols. It extends the Web Services interaction model and enables

it to support business transactions. This information is stored in file with extension .bpel.

The interfaces of the constituent Web Services are stored in a WSDL file with extension

.wsdl.

 96

There is no standard graphical notation for WS-BPEL. Another format known as

Business Process Modeling Notation (BPMN), mainly as a graphical front-end is also in

use to capture the BPEL process descriptions and many vendors have their proprietary

means to portray and design a BPEL process. Interoperability among these different

vendors is one of the major problems we faced during this endeavor. Mapping of BPMN

to BPEL is problematic and fundamental differences between these two approaches along

with vendor issues make it very difficult and in some cases impossible to produce a

‘valid’ BPEL specification. Even more difficult is the problem of BPMN-to-BPEL

roundtrip engineering! A sample BPMN diagram looks like Figure 4.10

Figure 4.10: Sample BPMN diagram

 97

A typical Web Service when encapsulated in BPEL4WS framework look like Figure

4.11. The composition primitives found in BPEL4WS comes primarily from many years

of workflow and business process integration, hence its positioning as a business process

composition language. The role of BPEL4WS is to define a new Web service by

composing a set of existing services. BPEL4WS is just a language to implement such a

composition. The interface of the composite service is described as a collection of WSDL

portTypes and the composition (called the process) indicates how the service interface

fits into the overall execution of the composition. As can be clearly seen from the figure,

there is natural overlapping with DEVS component architecture. DEVS atomic

component is also port-interface based hiding within itself the state machine (as a

process) for that particular component. In one of our other efforts, we proposed DEVS

Service component that builds on top of the DEVS atomic component and can be readily

deployed using Model-continuity principle in Web service architecture.

Figure 4.11: View of Web Service implemented as Web Service (courtesy: IBM)

 98

The objective of this section of research deals with the development of DEVS models

from any BPEL4WS specification constituting of .bpel and .wsdl file. As we shall see in a

moment that all the information is contained there in the .bpel and .wsdl files, it only

needs to be mined and put into DEVS perspective. The overall process for such

transformation is shown in Figure 4.12

Figure 4.12: Overview of BPEL-to-DEVS process

Not going into the details of actual XML file for .bpel, the structure of .bpel can be

graphically depicted as in Figure 4.13 for clearer understanding. Also shown in the figure

is extraction of DEVS elements from various BPEL constructs. As can be seen, the

message interchanged between different services, various coupling relations, listing of

atomic models and hierarchical organization can be obtained from a .bpel file.

 99

Figure 4.13: BPEL-to-DEVS transformation

The second aspect of this development is the information contained about interfaces in

the accompanying .wsdl file. This file is also specified in valid XML format and is mined

for DEVS elements of message types, method names and associated input/output

parameters and location of Web services and their port types. The mapping is shown in

Figure 4.14 below.

 100

Figure 4.14: WSDL-to-DEVS transformation

Integration of both of the aspects above led to the development of a tool that takes in a

scenario with various .bpel and .wsdl files and transform them into a fully functional

DEVS coupled model with operational state machines for atomic models. The contained

Web services become the DEVS atomic models and BPEL description produces the

coupled models. Figure 4.15 shows the snapshot of the tool that transforms a BPMN

scenario (with contained multiple .bpel to .wsdl file) to an operational DEVS model. A

detailed example is presented in Chapter 8.

 101

Figure 4.15: Snapshot of a BPMN-to-DEVS Transformation tool

4.4 Scenario-Based Systems using DoDAF

A recent DoD mandate requires that the DoD Architecture Framework (DoDAF) be

adopted to express high level system and operational requirements and architectures

[Dod03a]. DoDAF is the basis for the integrated architectures mandated in DOD

Instruction 5000.2 [Dod03b] and provides broad levels of specification related to

operational, system, and technical views. Integrated architectures are the foundation for

interoperability in the joint Capabilities Integration and Development System (JCIDS)

prescribed in CJCSI 3170.01D and further described in CJCSI 6212.01D [CJC04,

CJC06]. DoDAF and other DoD mandates pose significant challenges to the DoD

system and operational architecture development and testing communities since DoDAF

specifications must be evaluated to see if they meet requirements and objectives, yet they

 102

are not expressed in a form that is amenable to such evaluation. However, DoDAF-

compliant system and operational architectures do have the necessary information to

construct high-fidelity simulations. Such simulations become, in effect, the executable

architectures referred to in the DODAF document. DoDAF is mandated for large

procurement projects in the Command and Control domain but its use in relation to M&S

is not explicitly mentioned in the documentation [Atk04, Zei05a]. Thus an opportunity

has emerged to support the translation of DODAF-compliant architectures into models

that are of sufficient fidelity to support architectural evaluation in capable simulation

environments. Operational views capture the requirements of the architecture being

evaluated and System views provide its technical attributes. Together these views form

the basis for semi-automated construction of the needed simulation models.

DoDAF is a framework prescribing high level design artifacts, but leaves open the form

in which the views are expressed. A large number of representational languages are

candidates for such expression. For example, the Unified Modeling Language, (UML)

and Colored Petri Nets (CPN) are widely employed in software development and in

systems engineering. Each popular representation has strengths that support specific

kinds of objectives and cater to its user community needs. By going to a higher level of

abstraction, DoDAF seeks to overcome the plethora of “stove-piped” design models that

have emerged. Integration of such legacy models is necessary for two reasons. One is

that, as systems, families of systems, and systems-of-systems become more broad and

heterogeneous in their capabilities, the problems of integrating design models developed

 103

in languages with different syntax and semantics has become a serious bottleneck to

progress. The second is that another recent DoD mandate also intended to break down

this “stove-piped” culture requires the adoption of the Service Oriented Architecture

(SOA) paradigm as supported in the development of Network Centric Enterprise Services

(NCES) [DoD05c]. However, anecdotal evidence suggests that a major revision of the

DoDAF to support net-centricity is widely considered to be needed. Indeed, under DoD

direction, several contractors have begun to design and implement the NCES to support

this strategy on Global Information Grid. The result is that system development and

testing must align with this mandate – requiring that all systems interoperate in a net-

centric environment – a goal that can best be done by having the design languages be

subsumed within a more abstract framework that can offer common concepts to relate to.

However, as stated before, DoDAF does not provide a formal algorithmically-enabled

process to support such integration at higher resolutions. Lacking such processes,

DoDAF is inapplicable to the SOA domain and GIG in particular. There have been

efforts like [Dan04] that have tried to map DoDAF products to SOA but as it stands out

there is no clear-cut methodology to develop an SOA directly from DoDAF, rest aside

their testing and evaluation.

4.4.1 DODAF Specifications

The Department of Defense (DoD) Architectural Framework (DoDAF), Version 1.0

(2003), defines a common approach for DoD architecture description development,

presentation and integration. The framework enables architecture descriptions to be

 104

compared and related across organizational boundaries, including joint and multinational

boundaries. DoDAF is an architecture description and it does not define a process to

obtain or build the description. The Deskbook [Dod03a] provides one method for

development of IT architectures that meet DoDAF requirements, focusing on gathering

information and building models required to conduct design and evaluation of

architecture. The DoDAF defines three elements for any architecture description, taken

from [Dod03a, Zei05a]. These are:

Operational Views (OV)

The OV is a description of the tasks and activities, operational elements, and information

exchanges required to accomplish DoD missions. DoD missions include both

warfighting missions and business processes. The OV contains graphical and textual

products that comprise an identification of the operational nodes2 and elements, assigned

tasks and activities, and information flows required between nodes. It defines the types

of information exchanged, the frequency of exchange, which tasks and activities are

supported by the information exchanges, and the nature of information exchanges.

System Views (SV)

The SV is a set of graphical and textual products that describes systems and

interconnections providing for, or supporting, DoD functions. DoD functions include

2 Operational Node: A node specified in OV that performs one or more operations. A functional
entity that communicates with other functional entity to implement a collective functionality or a
capability.

 105

both warfighting and business functions. The SV associates systems resources to the OV.

These systems resources support the operational activities and facilitate the exchange of

information among operational nodes. Within this view, HOW the functionalities

specified in OV will be met is elaborated.

Technical Views (TV)

The Technical view is the minimal set of rules governing the arrangement, interaction,

and interdependence of system parts or elements, whose purpose is to ensure that a

conformant system satisfies a specified set of requirements. Within this view, the delivery

of systems and functionalities is ensured along with their migration strategies towards

future standards.

Figure 4.16: Linkages among Views

These views provide three different perspectives for looking at an architecture. The

emphasis of DoDAF lies in establishing the relationship between these three elements

 106

ensuring entity relationships and supporting analysis (Figure 4.16). The DoDAF approach

is essentially data-centric rather than product-centric. The OV, SV and TV are further

broken down into specialized views whose brief description can be seen in column 3 in

Table 4.4 ahead.

Another way to look at it is through this pyramid (Figure 4.17), which provides the

contribution of this research effort, that is, incorporating DEVS M&S is an integral part

of design and evaluation cycle based on requirement specifications at the top of the

pyramid. The Execution roadmap is as follows:

• Define mission capabilities

• Identify mission threads

• Decompose into Activities and info needs

• Perform M&S based design evaluation,

o Identification of scenarios (Exp. Frames)

o Identification of Interfaces for KIP

o Simulation based on KPP

• Using model-continuity identify systems

• Evaluate performance based and do calibration based on simulation

• results of KPP in step 4

 107

Figure 4.17: DoDAF/DEVS execution roadmap

4.4.2 Motivation for DoDAF-to-DEVS mapping

The DoDAF suffers from following shortcomings:

1. Although there is mention of ‘Executable architectures’ in DoDAF, there is no

methodology recommended by DoDAF that would facilitate the development of

executable DoDAF models.

2. It has completely overlooked the Model-driven Development approach.

Consequently, there is no formal M&S theory that DoDAF mandates.

3. DoDAF fails to address performance issues at OV level

4. DoDAF fails to include measures of effectiveness (MoEs) that can be evaluated at

OV stage. If at all any performance measures are considered, they are at System

 108

View level. System parameters and performance is at a totally different resolution

than MoEs.

5. There is no mechanism to perform Verification and Validation (V&V) at OV

stage

6. It fails to address M&S as potent evaluation and acquisition tool.

We propose a mapping of DoDAF architectures into a computational environment that

incorporates dynamical systems theory and a modeling and simulation (M&S)

framework. The methodology will support complex information systems specification

and evaluation using advanced simulation capabilities. Specifically, the Discrete Event

System Specification (DEVS) formalism will provide the basis for the computational

environment with the systems theory and M&S attributes necessary for design modeling

and evaluation. We will see in the forthcoming sections that the proposed mapping will

require augmentation of current DoDAF with more information set that is far from any

duplication of the available DoDAF products. We will demonstrate how this information

is added and harnessed from the available DoDAF products towards development of an

extended DoDAF integrated architecture that is “Executable”. This kind augmentation

has been attempted earlier by [Lee05] that used CORE® of the Vitech Co. as a tool to

develop the executable architecture. They developed ‘architectural templates’ that elicit

information for both the Operational and System views that contained additional

information than the usual DoDAF products. In another effort [Ros04] the authors have

proposed a new model called Rosen-Parenti model that adds another layer of abstraction

to the existing DoDAF, augmenting the model with various user-oriented perspectives.

 109

They further led on to develop the executable architecture with their proposed model and

how V&V is applicable in their domain. Their model unearthed the shortcoming of

DoDAF that it fails to address the performance issue at OV level, which their model

address in one of their perspectives. In our attempt to augment the current DoDAF our

focus shall remain to add minimal information that would enable DoDAF to become the

executable architecture. There are potential advantages of making DoDAF, a DEVS

compliant system.

We seek to employ the DoDAF-to-DEVS mapping to unify multiple model

representations by expressing their high-level features within DoDAF and their detailed

features as sub-classes of DEVS specifications. DEVS has been shown to be a universal

embedding formalism, in the sense of being able to express any sub-class of discrete

event systems, such as Petri Nets, Cellular Automata, and Generalized Markov Chains

[Zei00]. DEVS has also been employed to express a wide variety of more restricted

formalisms, such as state machines, workflow systems, fuzzy logics, and others [Sar01].

Moreover, DEVS environments have a long history of development and are now seeing

ever increasing use in the simulation-based design of commercial and military systems

[Zei03]. Providing a DoDAF “front end” to a “back end” DEVS environment, will appeal

to military information system designers facing the DoDAF and NCES mandates. Such

designers will be able to retain their skills with representations familiar to them, while

complying with DoDAF abstractions. At the same time they can see the results of their

specifications evaluated via simulation-based execution of the model architecture.

 110

Moreover, since all mappings are into subclasses of DEVS, the resulting models can be

coupled together and therefore can interoperate at the systems dynamics level. Thus this

approach to the synthesis of system design formalisms leverages design and execution

methodologies that are already used, or mandated for use, in commercial and military

applications.

As a result of recent advances, DEVS can support model continuity through a simulation-

based development and testing life-cycle [Hux05]. This means that the mapping of high-

level DoDAF specifications into lower-level DEVS formalizations would enable such

specifications to be thoroughly tested in virtual simulation environments before being

easily and consistently transitions to operate in real environment for further testing and

fielding.

4.4.3 From OV-6 UML diagrams to DEVS component behavior

specifications

Figure 4.18 below describes the development of DEVS description model from a simple

Time-sequencing thread in a Time-sequencing diagram. It must be indicated here that OV

diagrams are essentially drawn using UML so we are thereby developing a methodology

to transform UML diagrams to DEVS specifications

A simple timing-sequence diagram is considered to illustrate the DEVS Activity

component development process and how it fits into the DEVS description of an

 111

Operational node. Consider that a hierarchical activity is being addressed by three

Operational nodes and they are exchanging events between sub-activities in order to

perform this activity. In the first diagram in Figure 4.18 (leftmost), we can see them

interacting with each other. The center part of the figure consists of the thread for one

Operational node and is enlarged for better analysis. The sequencing diagram in

represented in UML notation and this node has a life-line during the course of which it

receives events and sends output messages or events to other nodes.

Figure 4.18: Development of DEVS Description model from UML Timing-Sequence
Thread

 112

In mapping to DEVS formalism we need to have information about the internal

transitions (when no events are received) from one activity to another activity and the

External transitions (when an event is received at this node sent by other node). The time-

line of the node consists of sequence of activities which the node will undergo in the

event of external transition or internal transition. The complete timeline is available in

OV-6b, so there is all the more reason to maintain consistency and similar input and

output trajectories of sequential activities. Different markings on the thread are self-

explanatory. Red boxes indicate the port interfaces where an external event can be

received and green boxes indicate the port from which output events can be sent to other

nodes. Activity 1 receives an external event and undergoes Activity 2 after generating an

output message. Activity 2 undergoes internal transition towards Activity 3 in absence of

any external event. This particular thread displays only a subset of activities performed

by this node. Since DEVS employs port-based component structure system we identify

the input and output ports and assign them to specific activity components at this

particular developmental stage. This results in introduction of a new OV document OV-8

that contains the mapping of ports and Activity components. Finally, these activities, if

not present in OV-6b, are then introduced in OV-6b for a comprehensive set of activities

performed by this Operational node. Another byproduct of this stage is the mapping of

Activity components with Entity components that constitute an Operational node. This is

specified in a new OV document called as OV-9. This contains information about the

Activity-ports, Activity components, Entity components and Entity-ports. Introduction of

 113

these new OV documents modifies the overall DoDAF OV specification structure that is

illustrated in Figure 4.18.

DoDAF-to-DEVS Elements

The power of UML can not be ignored. UML has matured to great levels and has become

integral part of any model based system design. Even the most complex and

encompassing DoD Architecture Framework lends itself to UML in description of its

various artifacts. However, the bridge to develop executable code from imprecise UML

constructs is under research. Executable UML with the aid of Action Semantic approach

is one effort that brings to light this important gap of “Model to Code” directly. DEVS

with its advanced Model-Continuity process provides this capability readily. Further, the

process of developing Executable architectures from object-oriented designs is in place

[Wag02] but it has not being explored rigorously for testing software architectures.

As capable as DEVS M&S framework is, it is still not in the mainstream industrial

software system design and planning. The ideal progress path now is the development of

a mechanism to employ DEVS M&S with UML based developmental methodology.

Below is a mapping of UML with the DEVS Elements that provides just the same. The

table below is reproduced from our recent work [Mit06a] that involved the artifacts of

DoDAF as well. Representation of DoDAF into corresponding UML has been presented

earlier by Telelogic [Tel04]. To evaluate a complete example on the implementation of

this table refer [Mit06a].

 114

DoDAF Elements

 Name Description

UML
Elements

DEVS Elements
(generated using XML)

OV-1 Top-level
Operational
View

• Use-case
Diagrams

• Activity Component
identification

• Top level entity
structure

OV-5 Operational
Activity Model

• Use-case
• Activity-

Sequencing
Diagrams

• Data-Flow
Diagrams

• Activity Component
updating

• Hierarchical
organization of
activities

• Input-output pairs
• Port Identification

OV-6 Operational
Timing and
Sequencing
Diagrams

• Timing-
Sequencing
Diagrams

• State-
machine
Diagrams

• DEVS Atomic Model
Creation (Initialize
Function, internal and
external, transition
functions, time
advance and output
functions) for Activity
Components

• Entity identification
• Acitivy-Entity

component mapping

OV-2 Operational
Node
Connectivity

• Composite
Structure
diagrams

• Coupling Information
• Hierarchical

component
organization

OV-8 Activity

Component
Description

• Composite
Structure
diagrams

• Statecharts

• Activity Component
update

• Activity port
identification and
refinement

DEVS
Model
Repository

Operational
View

OV-3 Operational
Information
Matrix

 • Input-Output
Transaction Pairs

• Message formats
• Activity Interface &

Coupling information

DEVS
System-Test
Suite

 115

OV-9 Activity
Interface
Specifications

• Statecharts
• Composite

Structure
diagrams

• Acitvity-Entity
Interface

• Entity structure
refinement

• Activity-Entity port
mapping and
refinement

OV-7 Logical Data

Model
• Packages

(only for
xUML)

• Class
diagrams

• Entity identification
• Hierarchical Structure

OV-4 Organizational
Relationship
Chart

• Class
diagrams

• Entity identification
• Hierarchical entity

structure

DEVS
Model
Repository

 SV-4
System
Functional
Description

• Use-case
Description

• Activity
Sequencing
diagrams

• Hierarchical
functional components
organization

SV-5

System
Functional
Traceability
Matrix (Based
on OV-5)

 • Coupling Info
Refinement

SV-10

System State
Description and
Event Trace
(based on OV-
6)

• Sequence
Diagrams

• Statecharts

• DEVS atomic model
transition functions
refinement

SV-6
System Data-
Exchange
Matrix

 • Input-Output pair
refinement

SV-1

System
Interface
Description
(based on OV-
2)

• Composite
Structure
diagram

• Port assignment
Refinement

• Entity refinement

SV-2
System
Communication
Description

• Deployment
Diagrams

• Coupling Info
Refinement
(hierarchical
management)

DEVS
Model
Repository

System
View

SV-7

System
Performance
Parameters
Matrix

 • Experimental Frame
DEVS
System-Test
Suite

 116

SV-3 System-
Systems Matrix

• Hierarchical model
organization

• Entity refinement

SV-11 Physical
Schema Class diagrams • Hierarchical Model

organization

TV-1 Current
Standards

• Timing
Response

• Basic DEVS model
for COTS component Technical

View TV-2 Future
Standards

• Improved DEVS
model for desired
Functionality

DEVS
Model
Repository

Table 4.4: Mapping of DoDAF with UML and DEVS M&S Elements

4.4.4 Representing DoDAF within the System Entity Structure: Multiple

Aspects

The System Entity Structure (SES) is a high level ontology framework targeted to

modeling, simulation, systems design and engineering. Its expressive power, both in

strength and limitation, derive from that domain of discourse. An SES is a formal

structure governed by a small number of axioms that provide clarity and rigor to its

models. The structure supports hierarchical and modular compositions allowing large

complex structures to be built in stepwise fashion from smaller, simpler ones. Tools have

been developed to transform SESs back and forth to XML allowing many operations to

be specified in either SES directly or in its XML guise. The axioms and functionally

based semantics of the SES promote pragmatic design and are easily understandable by

data modelers. Together with the availability of appropriate tool support, this makes

development of XML Schema transparent to the modeler. Finally, SES structures are

compact relative to equivalent Schema and automatically generate associated executable

simulation models.

 117

Figure 4.19 shows the various DoD AF views map into the SES framework. Operational

and System perspectives are considered two different decompositions of the system under

consideration. They are represented by corresponding nodes called aspects labeled by the

names, OperationalView and SystemView, respectively.. The OperationalView aspect

has entities labeled opNodes (operational nodes) and activities. The various operational

views of DoD AF (other than OV-4) are easily interpreted as describing the entities and

their interactions. Likewise, the SystemView aspect has entities labeled functions with

DoD AF views that are associated with the functions and their interactions. The one

exception is SV-5 which is a relation between the functions of the SystemView and the

activities of the OperationalView. This view describes how the activities are implemented

via executable functions supplied by the system. To accommodate OV-4 we have added

another aspect, the OrganizationalAspect, which represents the decomposition of the

system into the roles played by participating personnel.

 118

OperationalView SystemView

activitiesopNodes

functions

activityopNode

function

OrganizationAspect

roles

role

AV-1
DoDAF

OV-4

OV-1

OV-2,3

OV-5

OV-6
b,c

SV-5

SV-1

SV-4

SV-6

Figure 4.19: Representing DoD AF within the SES framework

4.4.5 Deriving testable behaviors from DoDAF specification

So far the SES has been shown to provide a means of pigeon-holing the various DoD AF

views. The power of this representation however lies in the support it provides for

deriving system behaviors that can be transferred in semi-automated fashion to

executable test federations. The System View is further refined by explicitly adding

messages as entities to it. For simplicity, components represent both the functions and

their decomposition into services. The coupling associated with the components aspect

specifies how messages are routed among the components. This information is what is

required to automatically map the System View to a simulation model, that is, in this

 119

case, a test federation. To obtain such information, we develop a process for deriving it

from specifications associated with the Operational View and mappings between the

Operational View elements and their realizations in the System View. If an opNode is

engaged in an activity which requires a certain information exchange and the opNode is

mapped to a component that executes the function implementing the activity, then this

component must be observed to receive and send messages associated with that

information exchange.

Figure 4.20: SES for enhanced DoDAF with a focus on OV

 120

Information technology–based systems of the future will be increasingly complex with

participants across the globe communicating through disparate channels. Interoperability

is very much in question. Scalability and fault-tolerance issues have to be addressed.

Capabilities have to be satisfied and reliability has to be ensured. Any large system that

DoDAF specification documents intend to build has to realize these important facets of

architecture design. Modeling and simulation with its model-continuity principles is fast

becoming an accepted method of evaluating design principles ensuring accountability to

various components within the system. DoDAF has completely overlooked M&S as a

possible means to evaluate design, capabilities, and planned expansion of current

architectures. There is no provision for testing the constructed system, either in OV or in

SV. The ability to configure systems for optimum performance is not allowed in the

current DoDAF specification document.

We have introduced two new operational views, OV-8 and OV-9 that add features to

enable M&S of the system under design. More details can be found in [Mit06a]. We have

also demonstrated how these new documents will be created from the existing

Operational Views. We aim to provide structure to the OV process by shifting the

perspective from describing functionality as an activity to an Activity-component with

definite interfaces to other Activity components as well as identified entities within an

Operational node. To what extent an Operational node is decomposable is a subject

requiring further research. We have developed a testing process for defined capabilities

(that were defined during the conceptual design process in OV-5) and ways in which

 121

various rules and doctrines (in OV-6a) can be evaluated for interoperability with different

capabilities. By purview of the information contained in OV-9 we have introduced the

model repository as an important aspect of DoDAF system specification that enhances

the DoDAF by making way for M&S activity. Figure 4.20 shows the system entity

structure (SES) snapshot of the enhanced DoDAF with focus toward the Operational

Views. Table 4.4 provides the mapping of various DoDAF OV products into DEVS

modeling constructs. UML is chosen as the preferred way of DoDAF representation. First

the UML element is mapped with the DoDAF product document and then the same UML

element is mapped to the DEVS element(s).

Their representation included SV products as well. In the Table above we have also

incorporated the two new OV products i.e. OV-8 and OV-9. Since UML is essentially an

Object-oriented methodology, work has been attempted in the area of transforming UML

models to CPN executable architectures [Wag02]. Our work is similar in nature, where

UML elements are transformed to DEVS elements. The last column links the DEVS

elements to Figure 3 and 4 by categorizing them into Model Repository and Semi-

automated test-suite elements.

DEVS modeled systems are inherently Object-oriented and DoDAF at the OV stage does

not have full expressiveness to be transformed to an executable model. In one of our

other systems engineering approaches using System Entity Structure (SES), we

 122

developed a hierarchical perspective representation that would enable DEVS to step into

at various levels of resolutions. The three main perspectives are

1. Component-based,

2. Capability-based, and

3. Rule-Based.

DEVS Bifurcated model continuity-based system requires all three perspectives to be

available in order for the system-model be deployable. As you can see in the Table 4.5

below, the current DoDAF if enhanced with the new OV documents, does make the

DoDAF a DEVS compliant system.

Artifact SES

Elements
Current
DoDAF

Enhanced DoDAF Can DEVS model be
created ?

Entities OV-2
(Operational
nodes)
SV-4 (Systems
identification)

Too early!

Hierarchical
entity
construction

OV-2, OV-7, OV-9
(no mechanism to
provide information of
hierarchical formation
in current OVs)

YES
(only the skeleton
with well-formed
Coupled models)

Tree 1
(Component
Perspective)

Specified
entity-
based
constraints

SV-7 OV-9
(Hierarchical node
descriptions help
localize contraints at
OV design phase)

NO
(information missing
to develop behavior
models)

Capabilities OV1,5,6b, SV-
4

 NO
(no Activity-
components defined)

Hierarchical
Activities

OV-6, 6b,c,
SV-5

 NO
(no Activity-
components defined)

Tree 2
(Capability
Perspective)

 Activity-

based
parameters

ABSENT OV-8
Activity as Activity-
Components definitions
based on OV-5,6b)
Documenting
procedure has place-
holders for Parameters

YES
(DEVS Capability
skeleton can be
created with
hierarchical Activity
composition with
defined interfaces)

 123

and constraints
identification) See [44].

Activity-
based IE

OV-5,6b OV-8 (may be
redundant here)

YES

Activity-
based ROE

OV-6a OV-8 YES

Rule
Hierarchy

OV-6a YES (ATC-Gen
project [9, 40])

Rule-
Activity
mapping

ABSENT OV-8
(the whole purpose of
OV-8 is realized here)

YES with full
behavior for
(Capability Testing)

Tree 3
 (Rule
perspective)

Rule-Entity
mapping

ABSENT
(partially in
OV-6a)

OV-9
(the whole purpose of
OV-9 is realized here)

YES with full
behavior for (System
Testing)

Table 4.5: Summarizing the contribution of OV-8, 9 to DEVS M&S

We have also introduced two new Operational Views OV-8 and OV-9 to address the

additional information that is needed to make the DoDAF M&S compatible. We have

also demonstrated the process to create OV-8 and OV-9 from the existing Operational

Views [Mit06a]. OV-8 contains the information about the Activity Component structure

and how different Activities are interfaced with each other using the specified logical

interfaces. OV-9 contains information about the constituent components inside an

Operational Node and its corresponding DEVS model structure along with their mapping

to the Activity components in OV-8. Together OV-8 and OV-9 provide a means to

correlate Activity Components with accountable entities in an Operational node using

logical interfaces. It is after the transformation of OV-8 and OV-9 into DEVS models that

rules assigned to specific Activity or Entity components makes OV-8,9 server their

complete purpose. Automation using XML and simulation-tuning are important concepts

that can be well executed and performed under current DEVS technology. Composing

simulations that are hierarchically stable and realizable is a step forward in evaluation of

 124

multi-resolutional architectures. Issues like personnel management and task assignment at

proper resolution of architectural execution are worth exploring further in future work.

Capability to objectify parameters and visualize them with respect to end goal in mind is

critical for success. Current DEVS technology is well equipped to accomplish such a

capability.

4.5 Synopsis

Referring back to the basic Figure 1.1, the content of this chapter gives way to Figure

4.21 wherein technology and theory is developed to transform various methods of

requirement specifications into detailed DEVS operational models. The generalized

Bifurcated Model-Continuity based process is now transformed to DEVS-Based

Bifurcated Model-Continuity process with requirements specified in various formats.

Figure 4.21: DEVS Model generation from various types of Requirement Specifications

XML-Based Data Extraction towards DEVS Elements

RReeaall--ttiimmee
eexxeeccuuttiioonn

DEVS
Behavior

Requirements
at lower levels

levels of
System

Specification

DEVS Model
Structures at

higher levels of
System

Specification

Verification
and

Validation

Simulation
execution

Test Models/
Federations

Model
Continuity

Experimental
Frames

System
Theory

State-based
Specs

Message-Based
Scenario

Specs with
Restricted

NLP

BPMN/BPEL
Based

Scenario
Specs

DoDAF
based

Scenario
Specs

 125

CHAPTER 5: AUTOMATED MODEL-BASED TEST CASE
GENERATION

As detailed in recent DoD reports [Nap97, Nap02], when modeling and simulation is

properly used, it provides assistance to formulate system capabilities, compares the

cost/benefit ratios of various alternative designs and evaluates their projected

effectiveness. In this paper, we discuss an automated testing framework based on

Discrete Event System Specification (DEVS) modeling and simulation formalism,

Extensible Markup Language (XML), and System Entity Structure (SES), being

introduced at DoD’s Joint Interoperability Test Command (JITC) for interoperability

testing. This framework supports the separation of experimentation, models, and

simulators. The experimental frames are developed to support reusable models and

simulators based on the DEVS formalism and dynamic system theory. The hierarchical

structures of the models are represented by SES and written in XML format to promote

extensibility and interoperability. In order to support the separation of models and

simulators in the software development, the Model/Simulator/View/Controller design

pattern provides the framework to support model execution and multiple network

simulation protocols.

The automated testing framework introduced in this paper is a part of the Automated Test

Case Generator (ATC-Gen) research project funded by JITC to support the mission of

standards compliance and certification. With the simulation-based acquisition initiative,

 126

the test requirements in the simulated environments become challenges. These

challenges include how to automate and define the scope, the extent, and the

methodology to update conformance testing. The automated testing framework is

developed based on three concepts: SES, DEVS, and XML. SES can represent a family

of hierarchical DEVS models, and serves as a means of organizing the configuration of a

model to be designed, which is extracted from a pruning process. Pruning reduces the

number of probable models to meet the system requirement. In the automated testing

framework, the minimal testable I/O pair and the test model are represented by Pruned

Entity Structures (PES). The test models obtained via PES are in executable form. XML

uses elements to break up the test model into hierarchical form, and it can be used to

represent the SES hierarchical structure. PES is directly mapped into XML, and the three

SES modes become XML elements. XML-PES offers simplicity, extensibility, and

interoperability. The test models are represented in XML-PES, which can be transformed

into DEVS C++ source code.

5.1 Automated Test Case Generator: Concept

ATC-Gen is composed of several stages that are developed in conjunction with DEVS

formalism. It applies DEVS to the formalization of Military Standard (MIL-STD)

6016C. The MIL-STD is written in natural language, and can be formalized into the

system theory framework by putting a set of requirements in the natural language. By

combining system theory and DEVS, the formalization can be transformed into an

executable simulation model, and the model can be implemented for testing. By using

 127

software tools and modeling packages, the test model can be derived and generated from

the natural language. Then, these test models are transformed into an executable format

and deployed by the Test Driver to perform testing on the SUT. The processes described

above become automated testing. Figure 5.1 illustrates the four stages of the ATC-Gen

development.

The first stage is Rule Capturing, which captures and formalizes the MIL-STD 6016C in

XML format. The military standard is written in the form of natural language, but do not

support the systematic study of large-scale intelligent system. By translating the MIL-

STD to a constrained form of natural language that is used in describing system behavior,

analysis will be easier. Natural language statements, such as “IF, THEN” used in

knowledge-based expert system and artificial intelligence will be suitable to describe the

system behavior. The disadvantage of the natural language statement is that it is

incapable of describing the time behavior of the system. It can be overcome by using a

finite state machine which will be described in stage 3. Capturing requires analysts to

read and interpret the standard. Formalizing requires the analysts to identity ambiguous

requirements and extracts the state variables and rules. The rules are written in the “If,

Then” format as Figure 5.2, and these rules are not associated with time.

 128

Figure 5.1: ATC-Gen Development

Figure 5.2: IF-THEN rule format

To illustrate this, let us consider a simple system consisting of a vending machine and a

customer. The vending machine is in idle state if there is no customer present. In

addition, the vending machine does not dispense any item if the customer does not put

correct amount of money. It dispenses an item if the correct amount of money is inserted

into the machine. This simple system can be described by three statements without any

time reference:

• If the vending machine is idle, there is no customer.

• If the customer doesn’t insert the correct amount of money, no item will be dispensed.

• If the customer inserts enough money, an item will be dispensed from the machine.

If X is true,

Then do action Y later

Rule Set
Analyzer

ATC Gen

Rule Capture

a) XML Rule
Repository

b) Rule Capture
Interface

c) Document
Synchronization
Module

Rule Formalism

a) Rule Compiler
b) Rule Execution

Engine
c) MIL-STD Executable

Reference

Test Generation

a) Test Model
Generator

b) Test Driver
Infrastructure

 129

There are two state variables in the above example: money and item. Money represents

the amount of money required to purchase the item, and item represents the product that

the customer wishes to get from the machine. The “IF, THEN” statements can be written

into the XML format. Tags are created to enhance the structure and identify the

relationship in the document, and they are the legal building blocks of the XML

document. Each statement in Figure 5.3 is considered as a rule. Each rule is composed

of conditions and actions. Conditions and actions can have state variables. The

combination of all rules in an example is a rule set. Based on these guidelines, the

vending machine example is translated to the XML document. A XML Document Type

Definition (DTD) or schema must be created to validate and provide the correct syntax to

the XML document.

Stage 2 consists of the Rule Set Analyzer. It employs the Dependency Analyzer (DA) to

determine useful relationships among rules. The DA is a DEVS tool and provides a

visual display of dependencies, allowing selection of test sequences by the test engineer.

The DA uses DTDs specially written for the project to validate the syntax of the XML

files. As mentioned briefly above, the DTD ensures the correctness of the XML files

before further processing. Once the syntax is validated, all the rule sets in the XML files

will be stored in memory. The DA will determine, manipulate and reorganize all the

rules and variables, allowing potential dependencies to surface if shared state variables

are identified between pairs of rules. Finally, all the rules and variables will be stored in

a single new XML file, which will be used when creating test sequences in the next stage.

 130

Figure 5.3: XML RuleSet

Stage 3 is Rule Formalization, which consists of selecting and formulating the test

sequences; test models are generated from these sequences. The test engineer formulates

test sequences in accordance with the structure of the testing requirements, and converts

them into executable simulation models. The DA is executed in order to restore the XML

files and the rules created at the end of stage 2, producing a file containing all the

possible paths through the simulation and the information required to build a visual

representation of the rule connections. By invoking the GUI, it displays the rules by level

and shows the sequence of rule firing, providing a visual organization of the rules and

their interrelationships and allowing the test engineer to examine the paths that are

<RuleSet>
 <name>Vending machine example</name>
 <rule name="1">
 <condition txt="If vending machine is idle">
 <var name="money" varType="currency"/>
 </condition>
 <action txt="no action"/>
 </rule>
 <rule name="2">
 <condition txt="If customer inserts insufficient money">
 <var name="money" varType="currency"/>
 </condition>
 <action txt="no item is dispensed">
 <var name="item" varType="String"/>
 </action>
 </rule>
 <rule name="3">
 <condition txt="If customer inserts enough money">
 <var name="money" varType="currency"/>
 </condition>
 <action txt="dispense item that is chosen by the customer">
 <var name="item" varType="String"/>
 </action>
 </rule>
</RuleSet>

 131

created between rules in order to finds any potential errors. Although the DA shows all

the possible paths, an identification of all possible paths is impractical owing to the fact

that not all paths are useful. The test engineer manually examines all feasible paths and

creates a test case according to the specification and requirement. The test case is the

description of the desired SUT behavior in the minimal testable input/output

representation. Based on the minimal table I/O pairs, the test model generates the DEVS

test model in C++.

Stage 4 is Test Generation, which consists of generating DEVS C++ test models and

executing the test models against a real hardware/software system using the Test Driver.

The Test Model Generator generates C++ DEVS model in two steps. First, it converts

the test cases to XML test models. Second, the XML test models are converted into C++

DEVS model. The Test Driver is an experimental frame which is capable of executing

the test model behavior and interacts with and connects to the System Under Test (SUT)

via a High-Level Architecture (HLA) or Simple J interface. The Test Driver performs

SUT conformance testing by inducing the testable behavior expressed in the models into

the SUT and checking the responses for accuracy.

5.2 Automated Testing Methodology

The automated testing approach combines the systems theory, Modeling and Simulation

framework, and model-continuity concepts, and applies the Bifurcated Model-Continuity-

based Life-cycle Process [Zei05] to the Link 16 conformance testing. In this section, the

 132

two processes of the ATC-Gen stage 4 are discussed – Test Model Generator and Test

Driver. The overview is provided in Figure 5.4

Figure 5.4: Overview of ATC-Gen Tool Development

5.2.1 Test Model Generator

The objective of the Test Model Generator is to a create DEVS test models based on

minimal testable I/O pairs. In this research effort, we are performing a reachable states

study and not generating a complete system behavior. The test scenario is defined in the

form of inputs and outputs according to the MIL-STD 6016C definition. The collection

of I/O function is infinite in principle because there are numerous states to start from and

 133

the inputs can be extended indefinitely. For practice purposes, we restrict our testing

focus to messages, and assuming they are the only automatable observables available for

testing. These tests are performed against the military hardware/software systems to study

its conformity to the MIL-STD.

The DEVS test models are in the form of an experimental frame and allow the Test

Driver to perform experiments against the System Under Test. The test engineer

analyzes the requirements and creates the test scenarios which describe the behaviors of

the SUT based on the MIL-STD 6016C. The requirements are written in minimal

testable input/output representation, and the test models are created by applying the

model mirroring concept that reverse the minimal testable I/O pairs. Both the minimal

testable file and test models are written in XML format and represented by SES, allowing

for the transformation between the two XML files. The inputs/output pairs are now

represented by three primitive atomic models: holdSend, waitReceive, and

waitNotReceive. Since the input/output are in sequential order, only one atomic model is

active each time, and the rest of the atomic models are passive. In order to try out these

test models against the real system, they are converted to software programming source

code. This allows quick incorporation of the test models into the Test Driver. Figure 5.5

below illustrates the process of automated test model generation.

 134

Figure 5.5: Test Model Generator

5.2.2 Test Driver

The ATC-Gen Test Driver (TD) is an experimental frame designed to perform

interoperability testing on TADIL-J systems. The objective of the Test Driver is to

execute the DEVS test models generated by the Test Model Generator (TMG). TD

emulates a tactical TADIL-J system by providing simulated TADIL-J messages over the

simulated tactical communication network, and accepts TADIL-J messages from the SUT

to determine the condition of the test model, and is implemented via component-based

design using the enhanced Model/Simulator/View/Controller (MSVC) design pattern.

The DEVS model is generated by TMG. The TD simulator is a thread derived from the

controller that schedules and receives Link-16 messages. The viewer extracts outputs

from the simulator, and converts the outputs into a specific middleware format.

Enhanced MSVC Design Pattern

Jim Nutaro [Nut05] demonstrated that the simulator was tuned to the behavior of certain

network simulation protocols, and the controller could be rapidly modified to support

Capture Minimal
Testable I/O Spec

Model
Mirroring

Mapping I/O pairs to
DEVS primitives

Generate DEVS C++
Source code

Export to
Test Driver

 135

other protocols. For example, the simulator is associated with HLA time management

through the controller in order to pace the execution. The same simulator can be reused

by implementing a new controller supporting other network simulation protocols to pace

the execution using the wall clock. In this methodology, one controller is associated with

one simulator due to the difficulties inherent in handling multiple control strategies and

the differing characteristics of the middleware. The simulator is a child thread derived

from the controller thread that contains the parameters to influence the simulator.

Although Nutaro did not consider using the controller to manage the model operation, his

work led to the enhanced MSVC framework, where a new controller is implemented to

control the model as well as the simulator.

Figure 5.6 below provides a graphical representation of the enhanced MSVC paradigm

[Mit06b]. The functions of the model, simulator, and view are the same as the original

MSVC design. A basic controller is implemented to receive the messages via

middleware. The specialized controllers are derived from the basic controller to handle

message routing to either the simulator or the model. For example, as shown in Figure

5.6, Simple J controller handles the inputs from Simple protocol and controls the DEVS

simulator. HLA Controller receives inputs from HLA middleware and controls the

model’s operations, such as start and stop operations.

 136

Figure 5.6: Enhanced MSVC paradigm with multiple controllers

It is common for simulation software to support multiple network simulation protocols.

In a distributed testing environment, there are combinations of test components, such as

simulation software, gateways, and hardware. Each of these components is associated

with different network simulation protocols or middleware. A test control manager is

often used to control the basic operations of all the test components or hardware, sending

operation commands to control the component via a particular middleware. For example,

the test control manager synchronizes the time and start/stop of all the test components

via HLA, and each component is considered as a federate in an HLA federation.

Controlling
Layer

Modeling
Layer

Simulation
Layer

View

Simple J
View

HLA
View

Model

Simulator

Basic
Controller

Simple J
Controller

HLA
Controller

Middleware
Communication

Output Extraction

Handling Middleware
inputs and requests

DEVS M&S Relation

Model behavior
influenced by SUT
via Simple J Protocol

Model Operations

 137

The Test Driver is implemented based on the enhanced MSVC pattern design. It

supports HLA middleware and the Simple J network protocol. The test model is

provided by the TMG, and the model behaviors are generated by three atomic models.

The view is capable of extracting outputs from the simulator, and provides inputs the

basic controller. Model operations are controlled by the HLA controller via HLA

middleware, and the simulator is controlled by a Simple J controller.

5.3 Synopsis

A new automated testing approach has been successfully developed using System Entity

Structure, the Extensible Markup Language, the Discrete Event System Specification,

and the Model/Simulator/View/Controller design pattern. The hierarchical structures of

the SUT scenarios and Test models are represented by SES and written in XML format.

XML DTDs are developed based on the SES to verify the correctness of the XML files.

The processes of automated testing approach are defined as follows:

The SUT scenario is constructed by the test engineer based on the system and the test

requirement using the Minimal Testable Input/Output concept.

DEVS test models are developed using the model mirroring by reversing the minimal

testable pairs of the SUT.

DEVS programming source codes are generated based on the test models.

The DEVS source codes are implemented into the Test Driver.

Test Driver executes the models and experiments against a real or simulated system.

 138

The automated testing approach is developed to perform conformance testing on the

military TADIL-J systems. This approach combines the system theory, the DEVS

modeling and simulation framework, and the model continuity concepts to formulate and

develop DEVS models. It promotes the separations of models and simulator, which

allows model reuse and develops models independently of the simulation engine. The

Test models are developed using the system specifications and DEVS framework by

collecting the input/output pairs with the initial states and describing the I/O behaviors in

DEVS. The simulators are well-defined for reusability and implemented according to the

system behavior.

MSVC design pattern used in the Test Driver provides a model for building distribution

simulation for the automated testing. MSVC promotes the component-based design and

the reusability of the simulation software. By applying this design pattern in conjunction

with DEVS modeling and simulation framework, Test models and the simulators are

developed separately, and we can attach any network simulation protocols to the

simulation. The models are expressed in the DEVS formalism, and the simulators are

associated with ADEVS simulation engine to execute the models. The well defined

semantics of the DEVS modeling and simulation formalism allows the simulator to be

encapsulated and reused. The Test models developed under the automated testing

guidelines are able to be executed by the Test Driver.

 139

The automated testing approach was used to verify the conformance of the Integrated

Architecture Behavior Model (IABM) to the MIL-STD 6016C, and the results of the test

scenarios were validated using the Simple J network packet monitoring tool. Mo re

details about the complete research can be seen at [Mak06]. The SUT/Test model

method was introduced in this thesis to verify the correctness of the DEVS models. The

transmissions and the receipts of the Simple J messages were captured by the packet

monitoring tool. The system analyst interpreted and verified the messages, and

determined whether these messages were the intended behavior of the Test Driver.

 140

CHAPTER 6: NET-CENTRIC MODEL EXECUTION USING
SERVICE ORIENTED ARCHITECTURE

This chapter presents a novel framework known as DEVSML that is built on XML

middleware. It provides the capability to develop a portable integration coupled

description with complete behavior in XML format that can be simulated either centrally,

remotely or in distributed manner. Section 6.1 describes DEVSML that expresses DEVS

model with full behavioral representation and provides a novel way to collaborate and

share models over the web using Web Services technology. Along with the

standardization of DEVS DTDs, a vice-versa DEVSML transformation to DEVS JAVA

code is the prime objective of DEVSML. Client and Server side designs of DEVSML

framework are described. Section 6.2 builds on DEVSML framework and proposes

SOADEVS that provides the simulation engine to execute DEVS models over the web

using Simulation Service in SOA. It also describes the underlying design of SOADEVS

framework.

6.1 DEVSML: Automating DEVS Execution over SOA Towards
Transparent Simulators

DEVS formalism [Zei00] exists in many implementations, primarily in DEVS/C++ and

DEVSJAVA [ACI06]. Extensions of these implementations are available as DEVS/HLA

[Sar00], DEVS/CORBA [Cho01], cell-DEVS [Wai01], and DEVS/RMI [Zha05]. Since

DEVS is inherently based on object oriented methodology, C++ and Java are the chosen

programming languages. Almost all of the extensions capitalize on the underlying object

 141

orientation provide by these two programming languages. The models are coded either in

C++ or Java. DEVS formalism categorically separates the model, the Simulator and the

Experimental frame. However, one of the major problems in this kind of mutually

exclusively system is that the formalism implementation is itself limited by the

underlying programming language. In other words, the model and the simulator exist in

the same programming language. Consequently, legacy models as well as models that are

available in one implementation are hard to translate from one language to another even

though both the implementations are object oriented. Other constraints like libraries

inherent in C++ and Java are another source of bottleneck that prevents such

interoperability.

The motivation for this work stems from this need of model interoperability between the

disparate simulator implementations and provides a means to make the simulator

transparent to model execution. We propose DEVS Modeling Language (DEVSML) that

is built on eXtensible Markup Language (XML) [Xml] as the preferred means to provide

such transparent simulator implementation. The present work has been done with Java

and efforts are ongoing in the direction to provide C++ implementation of the concept.

This work is built on the JAVAML research done by Vladimir for DEVS Meta Language

[Jan06]. While his work aims to provide a stand-alone XML schema for DEVS

formalism that can be used by any of programming implementations, research is still

ongoing to specify the logic behavior in atomic models. The present work aims to extend

his approach and provide complete behavioral support in DEVSML by implementing the

 142

proposed universal Atomic and Coupled DTDs. We look forward toward standardization

of these DTDs so that models across the web can participate in Dynamic Modeling &

Simulation over Net-centric web services.

We have implemented our proposed DTDs in web service architecture; specifically a

Service Oriented Architecture (SOA) [Sun] and paper will illustrate the Server as well as

Client designs. We also propose modifications in the DEVS formalism as well that will

make a DEVS model to be a DEVS Service model that can be readily deployed using

Model-continuity principles [Hux03].

6.1.1 Overview of DEVSML

DEVSML is a novel way of writing DEVS models in XML language. This DEVSML is

built on JAVAML, which is infact, XML implementation of JAVA. The current

development effort of DEVSML takes its power from the underlying JAVAML [Bad05]

that is needed to specify the ‘behavior’ logic of atomic and coupled models. The

DEVSML models are transformable back'n forth to java and to DEVSML. It is an

attempt to provide interoperability between various models and create dynamic scenarios.

The key concept is shown in the Figure 6.1.

 143

Figure 6.1: DEVS Transparency and Net-centric model interoperability using DEVSML

The layered architecture of the said capability is shown in Figure 6.1. At the top is the

application layer that contains model in DEVS/JAVA or DEVSML. The second layer is

the DEVSML layer itself that provides seamless integration, composition and dynamic

scenario construction resulting in portable models in DEVSML that are complete in every

respect. These DEVSML models can be ported to any remote location using the net-

centric infrastructure and be executed at any remote location. Another major advantage of

such capability is total simulator ‘transparency’. The simulation engine is totally

transparent to model execution over the net-centric infrastructure. The DEVSML model

description files in XML contains meta-data information about its compliance with

various simulation ‘builds’ or versions to provide true interoperability between various

simulator engine implementations. This has been achieved for at least two independent

simulation engines as they have an underlying DEVS protocol to adhere to. This has been

 144

made possible with the implementation of a single atomic DTD and a single coupled

DTD that validates the DEVSML descriptions generated from these two

implementations. Such run-time interoperability provides great advantage when models

from different repositories are used to compose bigger coupled models using DEVSML

seamless integration capabilities.

Figure 6.2 provides a basic flow chart of operations that can be done with DEVSML

framework. The designer can start with either the JAVA code for atomic/coupled model

or the DEVSML code for atomic/coupled model. In either of the case, the process has to

lead to DEVSML representation of the model. The DEVSML description that is

essentially XML is then validated by the standardized DTDs (shown in next section), can

now participate in model composition (blue box). The composed coupled model as well

as DEVSML atomic model can verily be stored in the Library for reuse. The composed

integrated model, that is complete in every respect, as it contains behavior as well, as

ready for simulation. The DEVSML model is then sent to various remote locations or

specifically Server, wrapped in SOAP message to the destination host (Server in our

case). Based on the information contained in the DEVSML model description,

corresponding simulator is called for to instantiate the model and executes the simulation

with the designated simulator.

 145

Figure 6.2: Flow chart of basic operations leading to model composability using

DEVSML

Web Services and Interoperability using XML

Service oriented Architecture (SOA) framework is a framework consisting of various

W3C standards, in which various computational components are made available as

‘services’ interacting in an automated manner towards achieving machine-to-machine

interoperable interaction over the network. The interface is specified using Web Service

Description language (WSDL) [WSD] that contains information about ports, message

types, port types, and other relating information for binding two interactions. It is

essentially a client server framework, wherein client request a ‘service’ using SOAP

message that is transmitted via HTTP in XML format. A Web service is published by any

commercial vendor at a specific URL to be consumed/requested by another commercial

 146

application on the Internet. It is designed specifically for machine-to-machine interaction.

Both the client and the server encapsulate their message in a SOAP wrapper.

JavaML

JavaML [Bad05] is an XML-Based source code representation for Java programs. The

JAVAML Document Type Definition (DTD) specifies various elements of a valid

JavaML document. It is well-suited to be used as canonical representation of Java source

code for tools. It comes with an XSLT-based back-converter that translates a JavaML

document back into java source code. More details about JavaML can be found at

[Bad05].

6.1.2 DEVS DTDs and their Standardization

This section provides details about the modified DEVS formalism for the atomic model

to make it ‘service enabled’ in the process of software engineering. The motivation

comes from the fact that testing of Web Services as in ‘system test suite’ is still in

infancy and DEVS based testing is still in progress. With a slight modification in the

DEVS formalism for atomic model we plan to achieve the following:

Transform any existing DEVS atomic as a container that is capable of publishing services

Promote testing of web service components by making them DEVS enable so that a

DEVS wrapper would encapsulate a Service as a ‘component’

Transition from a DEVS Service component directly to a web service component after

removal of wrapper and deploy it using model-continuity principles.

 147

Figure 6.3 provides a graphical view of an abstract component that inherits the basic

functionality of DEVS atomic model. The extended DEVS formalism is specified as

below:

 SM = <X, S, Y, δint, δext, δconf , λ, ta, V>

where,

V is the set of Service methods that are represented by this atomic model.

The other symbols have their usual meaning as described in standard notations in [Zei00].

As can be seen in Figure 6.4, we express the DEVS atomic model in XML format. We

have structured the atomic component’s behavior on the line of Service component. Any

Service component provides ‘services’, which means that, it is implemented as a method

in the underlying OOP language. We express the new proposed atomic SM formalism

with a collection set of these services as V. We collect these methods and store their

names in the collection V with the intent of producing a WSDL that makes these

operational methods ‘visible’. This manner of making methods available through WSDL

provides two advantages:

The DEVS model could become the actual Service using model-continuity concepts

Each Service, assuming there is only one method that is made visible, is provided a state-

machine for its behavior testing in off-line mode.

The approach is under research and will be reported in near future.

 148

Figure 6.3: an SOA object capable of DEVS modeling

The XML representation of this abstract component is shown in Figure 6.4. The idea here

is that a DEVS atomic model contains the behavior of a component that has defined

interfaces. The devsObject is the wrapper that takes care of δint, δext, δconf interactions,

while the serviceObject presents the services, or methods that are either used individually

or in nested manner to implement a published service. Making this change in the DEVS

formalism does not change DEVS original formalism. It just introduces a container that

contains the name of the methods that could be published as a service. In complex

models, it is a common practice to break the use-case into smaller manageable use-cases

for implementation purposes. Similarly, implementing complex behaviors and

complicated state machines [Mit06a] require the functionality to be organized into

methods that are called in the DEVS δint, δext, δconf functions. The set V keeps an account

 149

of such methods that can be made available for service publications. The XML structure

of a serviceObject is implemented based on the UML diagram in Figure 6.3. What is

required here is the addition of code for ‘services’ tag. Once implemented on SOA, the

code with respect to the ‘services’ tag can be exchanged through a SOAP message and a

DEVS model is made ready for simulation.

<?xml version="1.0" encoding="UTF-8"?>
<xml-body>
<model>
 <atomic>
 <name>Hello</name>
 <params> </params>
 <construct>
 <args> </args>
 <ports>
 <inports>
 <inport>in</inport>
 </inports>
 <outports>
 <outport>out</outport>
 </outports>
 </ports>
 </construct>

 <initialize>
 </initialize>
 . .
 <services>
 <function>
 <access> public </access>
 <return> int </return>
 <inport> in </inport>
 <outport> out </outport>
 <fname> decrement() </fname>
 <logic> </logic>
 </function>

 </services>
 </atomic>
</model>
</xml-body>

Figure 6.4: Automated XML snippet for a DEVS atomic model.

Figure 6.5 shows the DEVSML DTD for extended DEVS formalism that contains the

‘services’ container. Similarly, Figure 6.6 contains the DTD for DEVS coupled (digraph)

 150

model. The coupled model is a hierarchical model that takes into account of the contained

atomic or coupled models. Also notice the attribute ‘simulator (devsjava|xdevs)’ in the

ATTLIST tag for atomic as well as coupled element. This is the meta-data that is stored

with every model that is used by server to assign the appropriate simulator for this model.

Components within a coupled model could be managed by different simulators. The

attribute simulator in the nodes coupledRef and atomicRef (see Figure 6.6) defines the

simulator to use. This attribute is generated when de whole model is integrated in one

DEVSML file. Of course, the simulator must comply with the DEVS simulation protocol.

The authors call for standardization of both of these DTDs [Mit07e].

<!-- DEVS ATOMIC MODEL -->
<!ENTITY % variable-info
 "name CDATA #REQUIRED
 type CDATA #REQUIRED">
<!ELEMENT atomic
(inputs,outputs,states,ta,deltint,deltext,deltcon,lambda,services?,java
-specific?)>
<!ATTLIST atomic
 name ID #REQUIRED
 simulator (devsjava|xdevs) #REQUIRED
 host CDATA #REQUIRED>
<!ELEMENT inputs (port*)>
<!ELEMENT port EMPTY>
<!ATTLIST port
 name CDATA #REQUIRED>
<!ELEMENT states (state*)>
<!ELEMENT state EMPTY>
<!ATTLIST state
 %variable-info;>
<!ELEMENT outputs (port*)>
<!ELEMENT ta (block?)>
<!ELEMENT deltint (block?)>
<!ELEMENT deltext (block?)>
<!ELEMENT deltcon (block?)>
<!ELEMENT lambda (block?)>
<!ELEMENT services (service*)>
<!ELEMENT service (method)>
<!ATTLIST service
 name ID #REQUIRED
 port CDATA #REQUIRED>
<!ELEMENT java-specific (package-decl,import*,constructor*,method*)>

 151

<!ELEMENT import EMPTY>

Figure 6.5: DEVS atomic DTD

<!—-DEVS COUPLED MODEL-->
<!ENTITY % connection-info
 "component_from CDATA #REQUIRED
 port_from CDATA #REQUIRED
 component_to CDATA #REQUIRED
 port_to CDATA #REQUIRED">
<!ELEMENT devs (scenario,models)>
<!ELEMENT scenario (coupled)>
<!ELEMENT coupled
(inputs,outputs,components,internal_connections,external_input_connecti
ons,external_output_connections,java-source-program)>
<!ATTLIST coupled
 name ID #REQUIRED
 model CDATA #REQUIRED
 simulator (devsjava|xdevs) #REQUIRED
 host CDATA #REQUIRED>
<!ELEMENT inputs (port*)>
<!ELEMENT port EMPTY>
<!ATTLIST port
 name CDATA #REQUIRED>
<!ELEMENT outputs (port*)>
<!ELEMENT components (coupledRef|atomicRef)*>
<!ELEMENT coupledRef (components?)>
<!ATTLIST coupledRef
 name CDATA #REQUIRED
 model CDATA #REQUIRED
 simulator (devsjava|xdevs) #IMPLIED
 host CDATA #REQUIRED>
<!ELEMENT atomicRef EMPTY>
<!ATTLIST atomicRef
 name CDATA #REQUIRED
 model CDATA #REQUIRED
 simulator (devsjava|xdevs) #IMPLIED
 host CDATA #REQUIRED>
<!ELEMENT internal_connections (connection*)>
<!ELEMENT external_input_connections (connection*)>
<!ELEMENT external_output_connections (connection*)>
<!ELEMENT connection EMPTY>
<!ATTLIST connection
 %connection-info;>

<!ELEMENT models (model*)>
<!ELEMENT model (java-source-program)>
<!ATTLIST model
 name ID #REQUIRED>

Figure 6.6: DEVS coupled DTD

 152

6.1.3 Web Services Architecture for DEVSML

Figure 6.7 shows the designed Web Architecture. At server’s end, there are N simulators

registered, the WSDL files containing the Web services offered and an Applet for

generation and simulation of DEVSML models that uses these Web services. At the

client’s end, it is possible to use the Applet or an own client program [DML], which

makes use of the Web services (in Figure 6.7: CLAPP, Client Application).

Registering a simulator means to enable it so that it can be used according to the defined

DEVSML DTDs. This involves the definition of two additional classes that implement

the interfaces InterfaceXmlAtomic and InterfaceXmlCoupled (see Figure 6.7). These

classes must generate XML elements that define the structure of the specific simulator

models according to the atomic and coupled DTDs, These elements are inputs, outputs,

etc. Efforts are ongoing to develop a template for the user community to register their

simulators via a new process in order to make the registration process easier.

Once the simulator is registered, the Web services are available for this simulator. The

registry is recommended, since the clients can use any simulator registered at the server.

 153

Figure 6.7: Web service Architecture for DEVSML Implementation

The most important Web services offered in our current architecture are:

1. Convert Java models to DEVSML.

2. Convert DEVSML models to Java.

3. Integrate coupled and atomic DEVSML models towards a portable ‘Composite’

Coupled DEVSML file that can be simulated at any server.

4. Validate an existing DEVSML model.

5. Simulate a Composite Coupled file at the server

Figure 6.8 shows part of the UML diagram of the Applet developed. xdevs and devsjava

classes are directly generated from the Web services since we have these two simulators

Web Services
wsJava2DevsML
wsDevsML2Java

wsIntegrate
wsValidate
wsSimulate

Client
Simulator

Simulator

…

Simulator

Simulator I

Simulator I (*)

Simulator I

Request (model)

response

WSIL documents

Client Application (Applet)

C
L
A
P
P

Request (model)
response

Provided
by the user

Create a client
application

CLAPP (*)
(*) Optional

S
E
R
V
E
R

 154

registered. The rest of the diagram provides the functionality of the Applet. Providing

complete details is outside the scope of this article and will be report in our forthcoming

publication dedicated to Server and Client designs. Demonstration of these web services

is available at [DML] that are hosted at ACIMS www.acims.arizona.edu.

Systems M&S based on DEVS theory [Zei00] and web-based collaborative modeling

leading to composite coupled models based on DEVSML has been attempted for the Java

programming language. In order to solve the same problem for other programming

languages such as C++, C#, ADA, etc., we can choose among different alternatives:

Using JNI: In this case, it is necessary to adapt each simulator to JNI. Therefore, the

models must be rewritten into Java. The reason behind this conversion is due to the fact

that we need behavior representation in XML. We do have cppML, that is C++ Modeling

Language in XML but we want only one behavioral representation in XML. Our

preferred way of doing it is through JavaML as Java is better positioned to address the

Web Services domain. Using another XML representation more versatile for the behavior

of the model. In this case it is possible to use XML definitions defined to represent any

object oriented programming language, such as o:XML [OXML] or OOPML [OPML].

This is again a work in progress.

 155

Figure 6.8: Client side implementation using interfaces.

The disadvantage of using one solution or other resides in the interoperability between

different simulators executing the same model. Proving interoperability between

simulators is what true transparency is. If all the simulators are running under JNI, then

adapters must been made in order to change information among them. The current

 156

DEVSML architecture with only one universal underlying atomic DTD and coupled

DTD is the first step towards interoperable simulators. Defining a distributed coordinator

between these simulators is the second step. If o:XML or OOPML are used, then it is not

necessary to define JNI simulators or rewrite models in Java, but what is needed a

mechanism to interoperate between different DEVS simulators. How to communicate a

simulator written in C++ with a simulator written in Java? Perhaps the solution resides in

the definition of standards for the format of the data at the syntactic level.

6.2 SOADEVS: Remote Execution of DEVS using Simulation Service

This section aims to develop and evaluate distributed simulation using the web service

technology. After the development of World Wide Web, many efforts in the distributed

simulation field have been made for modeling, executing simulation and creating model

libraries that can be assembled and executed over WWW. By means of XML and web

services technology these efforts have entered upon a new phase.

A prototype simulation framework has been implemented using web services technology.

The central point resides in executing the simulator as a web service. The development of

this kind of frameworks will help to solve large-scale problems and guarantees

interoperability among different networked systems and specifically DEVS-validated

models.

 157

Discrete event system specification (DEVS) is one of the most suitable formalisms for

the representation of real world systems. Simulating a model involves the implementation

of a behavioral model and running it in the simulator. A simulator is defined as a piece of

program that executes the model. Our aim is to make the simulation process totally

transparent in the model-design cycle. By such capability, the modeler need not focus on

the simulator compatibility or any platform issues as in earlier developments like

DEVS/C++, DEVSJAVA, DEVS/RMI, DEVS/CORBA and other. Implementing

simulation platform as a ‘Simulation Service platform’ the designer will be able to

execute the model over Internet through web services, using SOA as the communication

protocol. In a first approximation, our framework is able to execute DEVSJAVA models,

but the reader will see that the web services have been developed using the adapter

pattern, so the framework is extensible to other simulation platforms.

6.2.1 WWW and Distributed Simulation

Web-based simulation requires the convergence of simulation methodology and WWW

technology (mainly web service technology). The fundamental concept of web services is

to integrate software application as services. Web services allow the applications to

communicate with other applications using open standards. We are offering DEVS-based

simulators as a web service, and they must have these standard technologies:

communication protocol (Simple Object Access Protocol, SOAP), service description

(Web Service Description Language, WSDL), and service discovery (Universal

Description Discovery and Integration, UDDI).

 158

Figure 6.9 shows the framework of the proposed distributed simulation using SOA. The

complete setup requires more than one server that is capable of running DEVS

Simulation Service. The capability to run the simulation service is provided by the server

side design of DEVS Simulation protocol supported by the latest DEVSJAVA Version

3.1.

Figure 6.9: DEVS/SOA distributed architecture.

The Simulation Service framework is two layered framework. The top-layer is the user

coordination layer that oversees the lower layer. The lower layer is the true simulation

service layer that executes the DEVS simulation protocol as a Service. The lower layer is

transparent to the modeler and only the top-level is provided to the user. The top-level

has three main services:

• Upload DEVS model service.

MODEL

Server 1

COORDINATOR

SIMULATION
SERVICE

SIMULATORS

Server 2

COORDINATOR

SIMULATION
SERVICE

SIMULATORS

Server n

COORDINATOR

SIMULATION
SERVICE

SIMULATORS

Upload and compile

Simulators creation and message passing

 159

• Compile DEVS model service.

• Simulate DEVS model service.

The top-level Service layer is presented in the WSDL below:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://devsml"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://devsml" xmlns:intf="http://devsml"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.3
Built on Oct 05, 2005 (05:23:37 EDT)-->
 <wsdl:types>
 <schema elementFormDefault="qualified"
targetNamespace="http://devsml"
xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="upload">
 <complexType>
 <sequence>
 <element name="packageName" type="xsd:string"/>
 <element name="arrayOfFileContents" type="xsd:base64Binary"/>
 <element name="arrayOfFileNames" type="xsd:base64Binary"/>
 <element maxOccurs="unbounded" name="ips" type="xsd:string"/>
 <element name="start" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="uploadResponse">
 <complexType>
 <sequence>
 <element name="uploadReturn" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="simulate">
 <complexType>
 <sequence>
 <element name="clientId" type="xsd:string"/>
 <element name="mainClass" type="xsd:string"/>
 <element maxOccurs="unbounded" name="ips" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 <element name="simulateResponse">
 <complexType>
 <sequence>
 <element name="simulateReturn" type="xsd:string"/>
 </sequence>

 160

 </complexType>
 </element>
 <element name="compile">
 <complexType>
 <sequence>
 <element name="packageName" type="xsd:string"/>
 <element name="arrayOfFileNames" type="xsd:base64Binary"/>
 <element maxOccurs="unbounded" name="ips" type="xsd:string"/>
 <element name="start" type="xsd:int"/>
 </sequence>
 </complexType>
 </element>
 <element name="compileResponse">
 <complexType>
 <sequence>
 <element name="compileReturn" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <wsdl:message name="simulateResponse">
 <wsdl:part element="impl:simulateResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="uploadRequest">
 <wsdl:part element="impl:upload" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="compileRequest">
 <wsdl:part element="impl:compile" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="uploadResponse">
 <wsdl:part element="impl:uploadResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="simulateRequest">
 <wsdl:part element="impl:simulate" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="compileResponse">
 <wsdl:part element="impl:compileResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="MainServices">
 <wsdl:operation name="upload">
 <wsdl:input message="impl:uploadRequest"
name="uploadRequest"/>
 <wsdl:output message="impl:uploadResponse"
name="uploadResponse"/>
 </wsdl:operation>
 <wsdl:operation name="simulate">
 <wsdl:input message="impl:simulateRequest"
name="simulateRequest"/>
 <wsdl:output message="impl:simulateResponse"
name="simulateResponse"/>
 </wsdl:operation>
 <wsdl:operation name="compile">

 161

 <wsdl:input message="impl:compileRequest"
name="compileRequest"/>
 <wsdl:output message="impl:compileResponse"
name="compileResponse"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="MainServicesSoapBinding"
type="impl:MainServices">
 <wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="upload">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="uploadRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="uploadResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="simulate">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="simulateRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="simulateResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="compile">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="compileRequest">
 <wsdlsoap:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="compileResponse">
 <wsdlsoap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="MainServicesService">
 <wsdl:port binding="impl:MainServicesSoapBinding"
name="MainServices">
 <wsdlsoap:address
location="http://localhost:8080/DevsMLSimpleServer/services/MainService
s"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

 162

The client is provided a list of servers hosting DEVS Service. He selects some servers to

distribute the simulation of his model. Then, the model is uploaded and compiled in all

the servers. The main server selected creates a coordinator that creates simulators in the

server where the coordinator resides and/or over the other servers selected.

6.2.2 Abstraction of a Coupled model as an Atomic model with DEVS State

Machine

One of the significant development steps we undertook in this effort is the masking of

coupled model as an atomic model. What this implies is that we have an abstraction

mechanism by which a coupled model can be treated as a black box and can be executed

like an atomic model. In other words, a coupled model now has a state machine similar to

that of any atomic model. In contrast to the DEVS hierarchical modeling, where a

coupled model is merely a container and has corresponding coupled-simulators (Figure

6.10), now it is considered an atomic model with lowest level atomic simulator (Figure

6.11). This has been accomplished by implementing an adapter as shown in Figure 6.11

below. The adapter Digraph2Atomic takes each coupled component of the model and

uses it as an atomic model. We will discuss this point later.

 163

Figure 6.10: Hierarchical simulator assignment for a hierarchical model

Figure 6.11: Hierarchical simulator assignment with Digraph2Atomic adapter

The implementation of the adapter is shown below:

public class Digraph2Atomic extends atomic {
 private CoordinatorInterface coord;

 public Digraph2Atomic(digraph model) {
 super(model.getName());

 couprel couplings = model.getCouprel();
 Iterator itr = couplings.iterator();
 while(itr.hasNext()) {
 Pair relation = (Pair)itr.next();
 Pair from = (Pair)relation.getKey();
 String fromComponentName = (String)from.getKey();
 String fromPortName = (String)from.getValue();
 Pair to = (Pair)relation.getValue();
 String toComponentName = (String)to.getKey();
 String toPortName = (String)to.getValue();
 if(fromComponentName.equals(model.getName()))

 164

 this.addInport(fromPortName);
 else if(toComponentName.equals(model.getName()))
 this.addOutport(toPortName);
 }
 coord = new coordinator(model);
 }

 public void initialize() {
 coord.initialize();
 }
 public void deltext(double e, message x) {
 coord.simInject(e, x);
 }
 public void deltint() {
 coord.wrapDeltfunc(coord.getTN());
 }
 public message out() {
 coord.computeInputOutput(coord.getTN());
 return (message)coord.getOutput();

 public double ta() {
 return coord.getTN() - coord.getTL();
 }

}

The number of simulators created depends on the number of components of the model at

the top-level and the number of servers selected by the user. If the model contains 10 top-

level components (including the contained digraphs) and the user select 5 servers, then 2

simulators are created in each server. After the whole simulation process, each simulation

service sends a report back to the user containing information related to IP addresses and

simulator assignment.

6.2.3 Message Serialization

The issue of message passing and models upload is done through serialization and SOA

technologies. Figure 6.12 illustrates the message serialization process. When a

component makes an external transition or executes the output function, the message

 165

received or emitted is serialized and then sent to the coordinator through the simulation

service. The coordinator stores the location of each simulation service, so he is able to

request all the messages after each iteration.

All the communication between the coordinator and simulation services is done through

SOA protocol. The serialization is done through Java serialization utilities. Currently, a

real time version is under development. In this version each simulator knows each

simulation service at its end (from coupling information). So the communication can be

solved by passing messages from simulation services to simulation services directly,

without using the coordinator.

Figure 6.12: Communication among services

COORDINATOR

SIMULATION

SERVICE

SIMULATOR

SIMULATION

SERVICE

SIMULATOR

0.- nextTN

1.- nextTN 2.- Message

3.- Message
serialized

4.- Message
serialized

5.- Message
deserialized

Output
propagation

External
transitionInternal

transition

 166

Summarizing from a user’s perspective, the simulation process is done through three

steps:

1. Write a DEVS model (currently DEVSJAVA is only supported).

2. Have a list of DEVS servers (through UDDI, for example). Since we are testing

the application, these services have not been published using UDDI by now.

Select N number of servers from the list available.

3. Run the simulation (upload, compile and simulate) and wait for the results.

Figure 6.13 shows these steps in graphical format.

Figure 6.13: Execution of DEVS SOA-Based M&S

6.2.4 Details about the server architecture

The global design of the whole architecture at server’s end is as follows, as shown in

Figure 6.14.

 167

api + devsml + adapter + modeling: This constitutes the DEVS modeling library. Once

a DEVS model is received by the servers, the DEVS model is rebuilt using an adapter

pattern. By now, only DEVSJAVA models are allowed. But, since this framework

follows an adapter pattern, other Java-based models will be allowed in future. The api

package contains only the interfaces. The devsml package contains Entity class. This is

the starting class for all the modeling classes and allows serialization and deserialization.

The adapter package contains the Digraph2Atomic class in Figure 6.15. This class is

used to transform coupled components to atomic components. Thanks to this adapter we

only have to design simulator services, so coordinator services are not necessary. The

modeling package contains Atomic and Message classes shown in Figure 6.16. Atomic

and Message follow an adapter pattern. Atomic encapsulates a DEVS atomic model and

Message encapsulates a DEVS message.

Figure 6.14: Server’s package structure for DEVS SOA

 168

Figure 6.15: Adapter package containing Digraph to Atomic adapters

Figure 6.16: devsml Modeling package for DEVS SOA

The simulation package contains simulators and coordinators, that is, Simulator and

Coordinator classes as shown in Figure 6.17. The main difference with other simulators

platforms starts here. The Coordinator is executed at the first server selected by the user.

This coordinator is called through a MainService class publish as a Web service. The

 169

Coordinator receives the user IP, the name of the root coupled model, and a list of IPs.

The list of IPs is used to invoke simulation services in other remote servers. In this way,

the components of the model are shared among N servers, where N is the length of that

list. Also the Coordinator stores the user IP, the DEVSJAVA model, the last event time,

the next event time, and a map of simulation services in use. This list is used to propagate

and receive messages through the coupling protocol stored in the root coupled model.

Figure 6.17: simulation package in DEVS SOA

The service package contains the services offered. It contains MainService, and

Simulation classes as shown in Figure 6.18. MainService is designed to allow upload,

compile and start the simulation process creating the coordinator. Simulation services are

used to store the simulators used and to establish a communication between the DEVS

simulators stored at this server and the coordinator housed in (maybe) other server. One

server could be executing more than one simulator. It depends on the number of

components that the root coupled model contains and the number of server selected by

the user. This is the reason because there is not a unique relation between simulation

 170

service and simulator. The assignment of simulators corresponding to the models at the

top-level is done through round-robin mechanism that takes care of model-simulator

number mismatch. Functionality can be provided through which the user can direct any

specific model to any particular IP server.

Figure 6.18: Service package in DEVS SOA

The proxy package contains the proxies of the services as in Figure 6.19. All these

classes are automatically generated from the WSDL files. The user only needs the

MainService proxy. The server needs this service and other Simulation services.

 171

MainService adds like a coordinator for all the lower-level services through interfaces. It

assigns and initializes the coordinator which starts other simulators, after distributing the

simulators at respective IPs. Once the simulators are active, the MainService waits for

them to complete the execution to receive the logs and simulation outputs. This is

because the main server needs simulation services from other servers to disperse the root

coupled model through its components.

Figure 6.19: Proxy package in DEVS SOA

 172

6.2.5 DEVSML and SOADEVS

In Section 6.1 we introduced DEVSML as a means to develop net-centric collaborative

models resulting in a composite XML portable file that can be executed by the validated

DEVS simulator. In this section we will illustrate how the DEVSML architecture aides

the distributed execution over net-centric platform thereby offering simulator

transparency using Simulation Services.

The DEVSML architecture is now divided in Client and Servers functionalities as shown

below in Figure 6.20. The client provides model in DEVSJAVA or DEVSML, wherein

they are transformable into each other and the Server end takes care of executing the

simulation in a distributed manner using SOADEVS architecture.

Figure 6.20: DEVSML implementation over SOADEVS

 173

Looking it in another perspective, the integration of DEVSML and SOADEVS is

performed with the layout as shown below in Figure 6.21. The manner in which

DEVSJAVA models could be attained or developed by client can be manifold. More

details can be seen in Chapter 4. Once the client has DEVSJAVA models, DEVSML

server can be used to integrate the client’s model with model available at some other

place on the web to get an enhanced integrated DEVSML file that can reproduce

DEVSJAVA model in .java format. The SOADEVS enabled server can either take this

integrated DEVSML file directly or can ask user to provide the top-level coupled manner,

as described in earlier sections.

Figure 6.21: DEVSML and SOADEVS integrated

 174

CHAPTER 7: DEVS UNIFIED PROCESS: PUTTING IT ALL
TOGETHER

In an editorial [Car05], Carstairs asserts an acute need for a new testing paradigm that

could provide answers to several challenges described in a three-tier structure. The lowest

level, containing the individual systems or programs, does not present a problem. The

second tier, consisting of systems of systems in which interoperability is critical, has not

been addressed in a systematic manner. The third tier, the enterprise level, where joint

and coalition operations are conducted, is even more problematic. Although current test

and evaluation (T&E) systems are approaching adequacy for tier-two challenges, they are

not sufficiently well integrated with defined architectures focusing on interoperability to

meet those of tier three. To address mission thread testing at the second and third tiers,

Carstairs advocates a collaborative distributed environment (CDE), which is a federation

of new and existing facilities from commercial, military, and not-for-profit organizations.

In such an environment, modeling and simulation (M&S) technologies can be exploited

to support model-continuity [Hux04] and model-driven design (MDD) development

[Weg02], making test and evaluation an integral part of the design and operations life-

cycle.

The development of such a distributed testing environment would have to comply with

recent Department of Defense (DoD) mandates requiring that the DoD Architectural

Framework (DoDAF) be adopted to express high-level system and operational

 175

requirements and architectures [Dod03a, Dod03b, CJC04, CJC06]. Unfortunately,

DoDAF and DoD net-centric [Atk04] mandates pose significant challenges to testing and

evaluation since DoDAF specifications must be evaluated to see if they meet

requirements and objectives, yet they are not expressed in a form that is amenable to such

evaluation.

Combining the systems theory, M&S framework and model-continuity concepts leads

naturally to a formulation of a Bifurcated Model-Continuity based Life-cycle process as

illustrated in Figure 7.1 (reproduced again from Chapter 1). The process can be applied to

development of systems using model-based design principles from scratch or as a process

of reverse engineering in which requirements have already been developed in an informal

manner. As we shall see ahead in next chapter, the said process is used in both manners.

The depicted process is a universal process and is applicable in multiple domains. The

objective of this research effort is to incorporate DEVS as the binding factor at all phases

of this universal process.

This chapter describes the refined bifurcated Model-Continuity process and how various

elements like automated DEVS model generation (Chapter 4), automated test-model

generation (Chapter 5) and net-centric simulation over SOA (Chapter 6) are put together

in the process, resulting in DEVS Unified Process.

 176

Bifurcated Model-Continuity Based Life-Cycle Methodology

The process has the following characteristics:

• Behavior Requirements at lower levels of System Specification: The hierarchy

of system specification as laid out in [Zeig] offers well-characterized levels at

which requirements for system behavior can be stated. The process is essentially

iterative and leads to increasingly rigorous formulation resulting from the

formalization in subsequent phases.

• Model Structures at higher levels of System Specification: The formalized

behavior requirements are then transformed to the chosen model implementations

e.g. DEVS based transformation in C++, Java, C# and others.

• Simulation Execution: The model base which may be stored in Model

Repository is fed to the simulation engine. It is important to state the fact that

separating the Model from the underlying Simulator is necessary to allow

independent development of each. Many legacy systems have both the Model and

the Simulator tightly coupled to each other which restrict their evolution. DEVS

categorically separates the Model from the Simulator for the same simple reason.

• Real-time Execution: The simulation can be made executable in real-time mode

and in conjunction with Model-Continuity principles, the model itself becomes

the deployed code

• Test Models/Federations: Branching in the lower-path of the Bifurcated process,

the formalized models give way to test models which can be developed at the

atomic level or at the coupled level where they become federations. It also leads

 177

to the development of experiments and test cases required to test the system

specifications. DEVS categorically aids the development of Experimental Frames

at this step of development of test-suite.

• Verification and Validation: The simulation provides the basis for correct

implementation of the system specifications over a wide range of execution

platforms and the test suite provides basis for testing such implementations in a

suitable test infrastructure. Both of these phases of systems engineering come

together in the Verification and Validation (V&V) phase.

Figure 7.1: Bifurcated Model-Continuity based System Life-cycle Process

7.1 Automated DEVS Model Generation and DEVSML

This section provides an overview on various technologies developed during this research

effort in empowering DEVS to provide the complete solution for Bifurcated Life-cycle

RealReal--timetime
executionexecution

Behavior
Requirements
at lower levels

levels of System
Specification

Model Structures
at higher levels of

System
Specification

Verification
and

Validation

Simulation
execution

Test Models/
Federations

Model
Continuity

Experimental
Frames

System
Theory

 178

process. Considerable amount of effort has been spent in analyzing various forms of

requirement specifications, viz, state-based, Natural Language based, Rule-based,

BPMN/BPEL-based and DoDAF-based, and the automated processes which each one

should employ to deliver DEVS hierarchical models and DEVS state machines. Chapter

4 provides an overview of these automated processes. Simulation execution today is more

than just model execution on a single machine. With Grid applications and collaborative

computing a norm in industry as well as in scientific community, this research effort also

developed a net-centric platform using XML as middleware resulting in an infrastructure

aiding distributed collaboration and model reuse. It led to the development of DEVS

Modeling Language (DEVSML) and its net-centric execution using Service-Oriented

Architecture called as SOADEVS. Both the DEVSML and SOADEVS provide novel

approaches to integrate, collaborate and remotely execute models on SOA and are

described in Chapter 6. The third area, in Chapter 5, which required development of

automated procedures is the area of test-case generation leading to test-models. Using

XML as the system specifications in rule-based format, a tool known as Automated Test

Case Generator (ATC-Gen) was developed which facilitated the automated development

of test models.

The integration of DEVSML and SOADEVS is performed with the layout as shown

below in Figure 7.2. The manner in which DEVSJAVA models could be attained or

developed by client can be manifold. As described in Chapter 4, it can come from state-

based approach, BPEL-based or DoDAF-based or through NLP-based requirements. It is

 179

fed to the DEVSML client which coordinates with the DEVSML server farm. Once the

client has DEVSJAVA models, DEVSML server can be used to integrate the client’s

model with model available at some other place on the web to get an enhanced integrated

DEVSML file that can reproduce DEVSJAVA model in .java format. The SOADEVS

enabled server can either take this integrated DEVSML file directly or can ask user to

provide the top-level coupled manner, as described in earlier sections. Figure 7.2

provides an overview of the DEVSML input and its output to SOADEVS simulation

framework with leads to the simulation-based systems testing.

Figure 7.2: Netcentric collaboration and execution using DEVSML and SOADEVS

X
M

L-B
ased D

ata E
xtraction tow

ards D
E

V
S

E

lem
ents

DEVS
Web-Service

 Engine

DEVS
Web-Service

 Engine

DEVS Atomic
Skeletons with BPEL

Web-port Hooks

DEVS Atomic
Skeletons with BPEL

Web-port Hooks

DEVS Atomic
in DEVSML

DEVS
Model

Generator
i

DEVS Coupled
in DEVSML

DEVS
Web-Service

 Engines

Simulation-
Based
Testing

DEVSML
Composition

DEVSML
Integration

Automated
DEVS

Automated
DEVS

1

2

3

4a

4b

6

6

DEVSML
Server

Distributed
DEVS
Execution

SIMULATION
SERVICES

5

State-based
Specs

Message-
Based

Scenario
Specs with
Restricted

NLP

BPMN/BPEL
Based

Scenario
Specs

DoDAF
based

Scenario
Specs

 180

7.2 DEVSML Collaborative Development

This section provides information about the client application that communicates with the

server resting at both ACIMS center and at Spain (redundancy purposes). The application

is made available as an applet [DML] or as a .exe application that is capable of

communicating to the server at client’s end.

The following snapshot in Figure 7.3 shows the java application Ver. 2.0 that

demonstrates the following:

1. Contains two simulator operability i.e xDEVS (Spain) [xDEVS] and GenDEVS

(ACIMS-USA) [ACI06] demonstrating validation of DEVSML atomic and

coupled models with same Atomic and Coupled DTD

2. Converts any atomic/coupled model from their JAVA implementation to

DEVSML transformation and vice-versa

3. Validates any DEVSML model description

4. Integrates any coupled DEVSML description into a composite DEVSML coupled

model ready to be simulated with corresponding simulator

5. Generation of JAVA code library from a composite DEVSML coupled model.

6. Out of ten web services in operation, five Web Services that are publicly offered

are:

a. Convert Java model to DEVSML

b. Convert DEVSML to java code

c. Validate the existing DEVSML model

 181

d. Integrate coupled and atomic DEVSML models towards a portable

'Composite' Coupled DEVSML file that is Simulatable at any remote

server

e. Simulates the Composite Coupled file and sends console messages at

Server to Client window giving evidence of simulation running.

7. Server rests at ACIMS lab that provides these Services

8. User can select his own Source and Target directories

9. User can choose his chosen implementation i.e. java code and Simulator

compatibility. The Server application checks for compatibility as well

Figure 7.3: Client application snapshot implemented as an applet.

 182

7.3 Automated Test-case Generation from DEVS models

Assuming that the DEVS model is easily specified using State-based approach as

described in Section 4.1, the automated test-model generation is constructed at Level 1 of

Input/Output behavior (see Table 3.2) taking DEVS component as a black-box. The test-

model is called the Observer model and its state-machine is defined by the testee

component’s state-machine. The component model being tested is called Testee and the

component model doing the testing is called Tester.

The prime objective of this Tester is to verify that the Input/Output pair co-exist

according to the timeout specification as defined in Testee’s configuration. The Tester’s

state machine then becomes a very simple state-machine with both the input message of

Testee and output message of Testee as the external input messages for Tester. When the

Testee receives the prescribed input message, it is also sent to the Tester’s input port and

starts a timer, the value of which is user-specified in the Tester’s state machine

specifications. When the Testee generates the corresponding output message, it is sent as

an external input to the Tester, which if received before the timeout value, passivates the

Tester. In case of Tester not receiving Testee’s output message, it generates and

ErrorReport message that is written in the logs as a failure of I/O transaction pair of the

Testee model. The example can be seen in Chapter 8, Section 1. The other aspect of

Tester-Testee configuration is their mutual coupling and the coupling of Tester with that

of components coupled to the Testee’s input port. The Tester is a mirror model of Testee

 183

with same inports and some additional inports that correspond to the outports of Testee.

Hence, the only coupling between Testee and Tester is this additional coupling set. Rest

all the couplings are same for Tester. Consequently, the Tester model coupling can be

also generated automatedly. For a detailed example, refer Chapter 8, Section 1.

7.4 SOADEVS: Net-centric Execution using Simulation Service

This sub-section provides the client application to execute DEVS model over an SOA

framework using Simulation as a Service as described in Chapter 6. From multifarious

modes of DEVS model generation, the next step is the simulation of these models. The

SOADEVS client takes the DEVS models package and through the dedicated servers

hosting simulation services, it performs the following operations:

1. Upload the models to specific IP locations

2. Run-time compile at respective sites

3. Simulate the coupled-model

4. Receive the simulation output at client’s end

The SOADEVS client as shown in Figure 7.5 below operates in the following sequential

manner:

1. The user selects the DEVS package folder at his machine

2. The top-level coupled model is selected as shown in Figure 7.5

3. Various available servers are selected. Any number of available servers can be

selected. Figure 7.6 shows how Servers are allocated on per-model basis. The user

 184

can specifically assign specific IP to specific models at the top-level coupled

domain. The localhost (Figure 7.5) is chosen using debugging sessions.

4. The user then uploads the model by clicking the Upload button. The models are

partitioned in a round-robin mechanism and distributed among various chosen

servers

5. The user then compiles the models by clicking the Compile button at server’s end

6. Finally, Simulate button is pressed to execute the simulation using Simulation

service hosted by these services.

7. Once the simulation is over, the console output window displays the aggregated

simulation logs from various servers at the client’s end.

Figure 7.5: GUI snapshot of SOADEVS client hosting distributed simulation

 185

Figure 7.6: Server Assignment to Models

7.5 The Complete Process

This chapter has described various elements of DEVS Unified Process. Chapter 4 dealt

with the automated generation of DEVS models from various modes of requirement

specification. Chapter 5 dealt with Automated Test case generation directly from the

requirements or from DEVS models. Chapter 6 dealt with the net-centric execution of

DEVS models using DEVSML and SOADEVS clients. The basic Bifurcated Model

Continuity-based Life-cycle process for systems engineering in Figure 7.1 in light of the

developments in DEVS area is summarized in Figure 7.7 below. The grey boxes show the

original process and the colored boxes show the extensions that were developed to make

it a DEVS compliant process. A sample demo movie is available at [Dun07].

With the developed DEVS Unified Process we now have the capability to:

 186

1. Transform various forms of requirement specifications to DEVS models in an

automated manner.

2. Transform any DEVS model to a Platform Independent Model (PIM) using

DEVSML for model and library reuse and sharing leading to collaborated

development

3. Simulate any valid DEVSML using the SOADEVS architecture exploiting the

transparent simulator paradigm for model interoperability execution (for models

implemented in disparate languages e.g. Java and C++)

4. Transform any DEVSML model to a Service component in SOA

Figure 7.7: The Complete DEVS Unified Process

XML-Based Data Extraction towards DEVS
Elements RReeaall--ttiimmee

eexxeeccuuttiioonn

DEVS
Behavior

Requirements
at lower levels

levels of
System

Specification

DEVS Model
Structures at

higher levels of
System

Specification

Verification and

Validation

Simulation
Execution
SOADEVS

Test Models/
Federations

Models
To

Services

Experimental
Frames

System
Theory

State-
based
Specs

Message-Based
Scenario

Specs with
Restricted

NLP

BPMN/BPEL
Based

Scenario
Specs

DoDAF
based

Scenario
Specs

DEVSML
Platform

Independe
nt

Platform Specific
Models

Transparent Simulators

 187

CHAPTER 8: PROJECTS FROM WHICH DUNIP
EVOLVED

This chapter contains many case studies that came about as DUNIP was defined and

developed. Many of the projects are currently active at Joint Interoperability Test

Command (JITC) and others are at concept validation stage towards a deliverable end.

Each of the project either uses the complete DUNIP process or a subset of it. As we shall

see on a case by case basis, DEVS emerge as a powerful M&S framework contributing to

the roundtrip systems software engineering process. With the proposed DEVS Based

Bifurcated Model-continuity Life-cycle process, systems theory with DEVS

implementation finds its way to the next generation net-centric application development

and testing.

This chapter describes the following case studies:

1. Joint Close Air Support (JCAS) model

2. DoDAF-based Activity scenario

3. Link-16 Automated Test Case Generator (ATC-Gen project at JITC)

4. Generic Network for Systems Capable of Planned Expansion (GENETSCOPE

project at JITC)

Each of the projects has been developed independently and ATC-Gen and

GENETSCOPE are team projects. All of the projects stand-alone and applies DUNIP

 188

(Figure 7.7 in full or in-part. Table 8.1 below provides an overview of the DUNIP

elements used in each of the projects. All of the DUNIP elements have been applied at

least once in one of the projects. However, presently, there is not an available live case

study that implements all the aspects of DUNIP elements as DUNIP was not defined

prior to the design of these active projects

Project /
DUNIP Elements

JCAS
model

DoDAF-based
Activity
Scenario

ATC-
Gen
Project

GENETSCOPE
Project

Requirement Specification Formats X X
 State-based Specs X
 Message-based Specs with

restricted NLP X

 BPMN/BPEL based Specs X
 DoDAF-Based Scenario Specs X X
XML-based Data Extraction X X X
DEVS Model Structure at lower
levels of Specification X X X

DEVS model structure at higher
levels of System specification X X

DEVSML Platform Independent
Models X

Test Model Development X X
Verification and Validation using
Experimental Frames X X X

SOADEVS net-centric Simulation X

Table 8.1: Overview of DUNIP application in available case-studies

The JCAS system requirements come in many formats and it served as a base example to

test many of the DUNIP earlier processes for requirements-to-DEVS transformation. It

was specified using the state-based approach, BPEL-based approach and restricted

natural language approach. This case study describes all three of the approaches leading

to an executable DEVS model with identical simulation results. Finally, the executable

 189

model is executed over a net-centric platform using DEVSML and SOADEVS

architecture.

DODAF-based Activity scenario is specified in UML based Activity specification and it

illustrates the process carried to transform various DoDAF documents into DEVS

requirement specifications. Population of the new proposed Operational View document

OV-8 and OV-9 is described and how DEVS models could be generated from these two

documents is illustrated. Complete example is presented in [Mit06a].

The ATC-Gen project at JITC is the project dealing with automated Link-16 testing

environment and the design of ATC-Gen tool. A sample experiment is described and

results are provided. Complete example is presented in [Mak06].

The GENETSCOPE project at JITC is another project funded by JITC that employs the

complete DEVS software engineering process. A ten year old legacy model was taken

and using automated XML data mining, the C language written process-model was

transformed to object-oriented DEVS model with enhanced MVSC paradigm. Design

elements of GENETSCOPE tool are discussed. Its relationship with the overarching

DoDAF framework is also presented. Complete example is presented in [Mit06b].

 190

8.1 Joint Close Air Support (JCAS) Model

The Joint Close Air Support Model is expressed in plain English as shown in Figure 8.1

below. It is a small example involving components exchanging messages towards a

common objective. The requirements are then translated to various DEVS generating

modes as described in Chapter 4. We shall see the execution of JCAS for each of the

approaches.

8.1.1 State-based approach

The state transitions are provided using the tabular format as described in section 4.1.1.

The components of JCAS model are:

1. JTAC

2. UAV

3. CAOC

4. USMC Aircraft

5. AWACS

The scenario is provided as follows:

JCAS JMT Operational Scenario #1
A. Special Operations Force (SOF) (AFSOC and NSW) JTAC

working with Operational Detachment-Alpha (ODA) is tasked
to request Immediate CAS on a stationary mechanized target
in mountainous terrain. A Predator unmanned aerial vehicle
(UAV) is on station for support.

B. SOF JTAC contacts AWACS with request. AWACS passes
the request to Special Operations Liaison Element (SOLE) in
the Combine Air Operations Center (CAOC).

C. Joint Special Operations Task Force (JSOFT) approves the
request and CAOC assigns a section of USMC F/A-18Ds, F-
15Es, and a single B-1B. Ordnance consists of 20mm, Joint
Direct Attack Munitions (JDAMs), and Laser Guided Bombs

 191

(LGBs).

D. Aircraft get situational brief from AWACS aircraft while in
route, then switch to SOF JTAC for Terminal Attack Control
and deconfliction from orbiting UAV. A 9-Line brief will be
given to each section/single aircraft. JTAC will continue to
execute CAS missions until all weapons are expended.

Figure 8.1: JCAS Operational Scenario

Translating the behavior to Tabular format for the entity JTAC, the state machines looks

as shown in Table 8.2:

DEVS Internal State Machine (for default behavior)

Behavior
S.No.

State (phase) Next State (phase) Timeout Outgoing Message

1. RequestImmediateCAS WaitForAssignmen
t

0 CASResourceSpec

2. WaitForAssignment Passive Infinity -
3. ProvideTAC ContinueExecution 1000 -
4. ContinueExecution Passive 0 CeaseAttack
5. WaitForTACRequest Passive Infinity -

DEVS External State Machine responding to incoming messages

Behavior
S.No.

Incoming Message
name

State
(phase)

Next State
(phase)

Timeout Outgoing
Message

1. RequestTAC WaitForTACRequest ProvideTAC 10 InitialAttack
2. YouCanUseUSMCAir

craft
WaitForAssignment WaitForTA

CRequest
0 -

Table 8.2: State machine for component JTAC

Similarly, all other components can be described. The coupled model created manually is

shown in Figure 8.2 below:

 192

Figure 8.2: Coupled scenario for JCAS model

The execution of the coupled model resulted in the simulation output (on console) of the

successful message passing and scenario execution as shown below in Figure 8.3.

State at: UAV is: passive with tN: ?
State at: JTAC is: requestImmediateCAS with tN: 0.000
State at: CAOC is: passive with tN: ?
State at: USMCAircraft is: passive with tN: ?
State at: AWACS is: passive with tN: ?
 JTAC sending message: << port: ImmediateCASOut value:
CASResourcesSpec >>
State at: JTAC is: waitForAssignment with tN: 0.000
 AWACS recvd message: << port: ImmediateCASIn value:
CASResourcesSpec>>
 AWACS sending message: << port: requestImmediateCASOut value:
CASResourcesSpec >>
 CAOC recvd message: << port: requestImmediateCASIn value:
CASResourcesSpec >>
State at: AWACS is: doSurveillance with tN: 1.000
 CAOC sending message: << port: YouCanUseUSMCAircraftOut value:
CASResources

port: readyOrderOut value: getReady >>
 JTAC recvd message: << port: YouCanUseUSMCAircraftIn value:
CASResources >>
State at: CAOC is: passive with tN: 2.000
 USMCAircraft recvd message: << port: readyOrderIn value: getReady
>>
 USMCAircraft sending message: << port: requestForTACOut value:
requestTAC >>
 JTAC recvd message: << port: requestForTACIn value: requestTAC >>

 193

State at: USMCAircraft is: waitForTAC with tN: 102.000
 JTAC sending message: << port: TACCommandOut value: initialAttack
>>
State at: JTAC is: continueExecution with tN: 112.000
 USMCAircraft recvd message: << port: TACCommandIn value:
initialAttack >>
 USMCAircraft sending message: << port: sitBriefRequestOut value:
sit
BriefRequest port: deconflictRequestOut value: requestDeconflict >>
 UAV recvd message: << port: deconflictRequestIn value:
requestDeconflict >>
State at: USMCAircraft is: attack with tN: 122.000
 AWACS recvd message: << port: sitBriefRequestIn value:
sitBriefRequest >>
 UAV sending message: << port: targetLocationOut value: (Lat,Long)
>>
State at: UAV is: passive with tN: 123.000
 USMCAircraft recvd message: << port: targetLocationIn value:
(Lat,Long) >>
 AWACS sending message: << port: sitBriefOut value: sitBrief >>
 USMCAircraft recvd message: << port: sitBriefIn value: sitBrief >>
State at: AWACS is: doSurveillance with tN: 132.000
 USMCAircraft sending message: << port: fireCommand value: fire >>
State at: USMCAircraft is: attack with tN: 222.000
 JTAC sending message: << port: TACCommandOut value: ceaseAttack >>
State at: JTAC is: passive with tN: 1112.000
 USMCAircraft recvd message: << port: TACCommandIn value:
ceaseAttack >>
Terminated Normally before ITERATION 11 ,time: 1112.0

Figure 8.3: DEVS Execution of JCAS model on console

8.1.2 BPMN/BPEL based approach

In this approach we approached the problem using a BPMN diagram. The scenario in

Figure 8.1 is expressed as a BPMN diagram shown in Figure 8.4 below. The BPMN

diagram was created manually using the tool Borland Eclipse Together 2006.

 194

Figure 8.4: JCAS BPMN scenario description

The Eclipse Together tool generated the corresponding .bpel and .wsdl files for the JCAS

scenario. In total 10 files were generated (5 .bpel and 5 .wsdl files). The generated files

are shown in the left column of Figure 8.5.

We took these generated files to our BPEL-to-DEVS transformation tool as described in

Chapter 4 and generated the DEVS model out of these files.

 195

Figure 8.5: Snapshot of a BPMN-to-DEVS Transformation tool

The transformation process generated the following .java files (which include additional

files as well) shown in the right column of Figure 8.5 above.

1. JCAS.java

2. JTAC.java

3. AWACS.java

4. CAOC.java

5. UAV.java

6. USMCAircraft.java

7. CASResources.java

8. CASResourceSpec.java

9. CASResSpec.java

10. ceaseAttackUSMC.java

 196

11. CONST.java

12. getReady.java

13. initialAttack.java

14. latLong.java

15. requestDeconflict.java

16. requestTAC.java

17. sitBrief.java

18. sitBriefRequest.java

19. TimerMessage.java

The additional files correspond to various messages that were exchanged in the scenario.

The files in the bold (above) are the main component files that contain the DEVS state

machine.

Finally, using the BPMN-to-DEVS tool, the package was compiled run-time and

simulation was executed yielding the same result as of Figure 8.3. The Execute button

brings up the DEVSJAVA Simulation Viewer (Figure 8.5) which executes the

simulation.

 197

8.1.3 Message-Based Restricted NLP-based approach

In this approach the JCAS scenario in Figure 8.1 is expressed in message-based NLP

format as described in Section 4.3. The resulting NLP specification is shown in Figure

8.6 below.

Figure 8.6: Message-based Restricted NLP description of JCAS scenario

The DEVS models are created based on the methodology described in Section 4.3 leading

to the same simulation results as of Figure 8.3.

JTAC sends CASResourceSpec to AWACS
Having received CASResourceSpec from JTAC,
 AWACS sends CASResourceSpec to CAOC within 1 minute
Having received CASResourceSpec from AWACS,
 CAOC sends CASResources to JTAC within 1 minute
 and sends getReady to USMCAircraft within 1 minute
Having received getReady from CAOC,
 USMCAircraft sends requestTAC to JTAC within 100 minutes
Having sent CASResourceSpec to AWACS and
 Having received requestTAC from USMCAircraft,
 JTAC sends initateAttack to USMCAircraft within 10 minutes
Having sent requestTAC to JTAC and
 Having received initiateAttack from JTAC
 USMCAircraft sends sitBriefRequest to AWACS within 10 minutes
 and sends requestDeconflict to UAV within 10 minutes
 and sends Fire to external within 100 minutes
 and expects (Lat,Long) from UAV within 100 minutes
 and expects sitBrief from AWACS within 100 minutes

Having received requestDeconflict from USMCAircraft
 UAV sends (Lat,Long) to USMCAircraft within 1 minute
Having sent CASResourceSpec to CAOC and
 Having received sitBriefRequest from USMCAircraft
 AWACS sends sitBrief to USMCAircraft within 10 minutes
Having received initiateAttack from JTAC and
 Having received (Lat,Long) from UAV and
 USMCAircraft sends Fire to external
 Having received sitBrief from AWACS
 USMCAircraft sends Fire to external

 198

8.1.4 Automated test case generation for JCAS

As described in Section 7.3, observer models can be created for each of the entity models listed

constituting the JCAS coupled model. Figure 8.7. For the JCAS model we created the observer

for component CAOC. The CAOC model has the following state description as shown in Figure

8.8 below:

Figure 8.7: State-based specification of model CAOC

After generation of the DEVS model for CAOC from Figure 8.7 above, an observer

model with the state-machine shown in Figure 8.8b can be automatedly generated from

column 2 (incoming message) and column 6 (output message) pair. The basic operation

of CAOC Observer is to verify that CAOC performs its I/O operations i.e. on receiving

an input message it generates the prescribed output message. Both the input and output

message for COAC becomes the external input message for the CAOC Observer

component. In this case on receiving CASResourceSpec message it should produce

YouCanUseUSMCAircraft message. Figure 8.8b below provides the DEVS state-machine

for CAOC Observer.

 199

Figure 8.8: State-machine for CAOC Observer

If CAOC fails then ‘watchForError’ gets triggered, thereby producing an ErrorReport

message indicating that CAOC failed to produce the desired output message. A sample

timout of 100 seconds is provided as fail-safe time that may incorporate CAOC recycling

time in case of delays etc. If COAC produces output message YouCanUseUSMCAircraft,

the CAOC Observer receives it as an external input message and resets the clock as

CAOC performed its I/O pair correctly.

Similarly, observers for each of the DEVS models could be created automatedly.

8.1.5 Net-centric Execution of JCAS

Execution of JCAS DEVS models on net-centric SOA platform was done using the

SOADEVS tool. The client application as described in Section 4.3 was used to execute

the operation. Two servers were selected to demonstrate the concept (as shown in Figure

8.9). One server is located at ACIMS lab, University of Arizona and other server at

 200

Spain, University Computense de Madrid. Also shown in the figure (in the console

window) is the process of files being uploaded, compiled and the simulation-in-progress.

Figure 8.9: SOADEVS client running the JCAS model using Simulation services on two

hosts

Finally, when the simulation is over, the console displays the following output. The simulation

logs from both of the servers are categorically displayed. Figure 8.10 below shows the complete

console log for all the operations done using SOADEVS client.

Models assigned specifically to respective Server IP:
--Component Model: JCASNum1 --> 150.135.220.240:8080
--Component Model: USMCAircraft --> 150.135.220.240:8080
--Component Model: CAOCobserver --> 150.135.220.240:8080
--Component Model: UAV --> 150.135.218.205:8080
--Component Model: CAOC --> 150.135.218.205:8080
--Component Model: JTAC --> 150.135.218.205:8080
--Component Model: AWACS --> 150.135.218.205:8080

 201

Uploading in progress... please wait...
Initiating UPLOAD...
Uploading files to server 150.135.218.205:8080
Files uploaded.
Uploading files to server 150.135.220.240:8080
Files uploaded.

Compilation in progress....please wait....

Starting compilation at remote servers.....
Compiling project at 150.135.218.205:8080...
Project compiled.
Compiling project at 150.135.220.240:8080...
Project compiled.

Waiting to start SIMULATION....

Simulation in Progress....please wait...
Running simulation ...
11 iterations.
Simulators output:

150.135.218.205 output:
 JTAC sending message: << port: ImmediateCASOut value: CASResourcesSpec
>>
State at: JTAC is: waitForAssignment
 AWACS sending message: << port: requestImmediateCASOut value:
CASResourcesSpec >>
State at: AWACS is: doSurveillance
 CAOC sending message: << port: readyOrderOut value: getReady port:
YouCanUseUSMCAircraftOut value: CASResources >>
State at: CAOC is: passive
 JTAC sending message: << port: TACCommandOut value: initialAttack >>
State at: JTAC is: continueExecution
 UAV sending message: << port: targetLocationOut value: (Lat,Long) >>
State at: UAV is: passive
 AWACS sending message: << port: sitBriefOut value: sitBrief >>
State at: AWACS is: doSurveillance
 JTAC sending message: << port: TACCommandOut value: ceaseAttack >>
State at: JTAC is: passive

150.135.220.240 output:
 USMCAircraft sending message: << port: requestForTACOut value:
requestTAC >>
State at: USMCAircraft is: waitForTAC
 USMCAircraft sending message: << port: sitBriefRequestOut value:
sitBriefRequest port: deconflictRequestOut value: requestDeconflict >>
State at: USMCAircraft is: attack
 USMCAircraft sending message: << port: fireCommand value: fire >>
State at: USMCAircraft is: attack

SIMULATION over!

Figure 8.10: Simulation output at client’s application using SOADEVS client

 202

8.2 DoDAF-based Activity Scenario

8.2.1 Example: Implementation of an Activity Component

Consider an Activity as mentioned in Zinn [Zin04 pg 65] described in IDEF0 format

(Figure 8.11). This activity is governed by the doctrines specified in OV-6a, IDEF3

format, which are described in [43]. Figure 8.12 is a sample OV-5 diagram for “select

contractor” and Figure 8.13 is the OV-6a description in IDEF3 format where X represents

a XOR split and O represents an OR split. These are the critical decision making points

that impact the outcome of the Activity based on previous step. It is at this point, timing

needs to be specified so that ‘timeouts’ can occur without leading to any ambiguity. Zinn

acknowledged this problem in the process.

The information from these two figures is compiled manually to generate the pseudo

code in the following format. This manual process amounts to the integration of OV-5

and OV-6a into a single document. The pseudo code is provided below in Figure 12.

The graphical representation in Figure 8.11 is represented textually through the Popkin

System Architect as shown in Figure 8.14. Consequently Figure 8.13 and Figure 8.14

gives us the comprehensive information about the Activity, its purpose, its input-output

information thru ICOM3 lines, and pseudocode for operational rules (as defined in OV-

6a). Figure 8.11, 8.12 and 8.13 describe a general step approach to arrive at this

3 In IDEF0 diagrams, Inputs, Controls, Outputs and Mechanisms are collectively referred to as
ICOM arrows.

 203

pseudocode, which is then utilized by an agent based modeling software (e,g. SEAS) via

Tactical Programming Language (TPL). Once pseudo code has been made available, any

software developer who is versed with TPL or any other language can interpret it. This

process is then followed for the case study (for all the 11 Activities) considered in

[Zin04] Zinn. Zinn brought forward the information expressed in graphical format in OV-

5 diagrams and OV-6a doctrines in the form of psedocodes that are realizable into

software code. We utilize his efforts and demonstrate how this information can be used to

feed the integrated DEVS methodology and development of OV-8 and OV-9.

Figure 8.11: OV-5 diagram for
“select contractor” in IDEF0

notation (from [Zin04])

Figure 8.12: OV-6a diagram for “select
contractor” in IDEF3 notation, (from [Zin04])

Figure 8.13: Pseudo Code as per Zinn’s interpretation and integration procedure [Zin04]

Activity 1: Select Contractor

Description: The process used by the company to select the contractor for a new project
Inputs: Proposal: contains the cost, schedule, and technical information as proposed by the contractor
Outputs: Contract - the awarded contract
Controls:
 Policy: Company contracting policy
 Law: Federal, State and Local regulations

Pseudocode for Activity 1
Evaluate Proposal
IF (cost > budget) THEN
 Reject Proposal
ELSE
 (Accept Proposal for Core Contract) OR

(Accept Proposal for Options) OR
 ((Accept Proposal for Core Contract) AND (Accept Proposal for Options))

 204

8.2.2 Activity taken from Zinn as an example

Let us consider, the same example that is described in [Zin04]. Let the Activity that is

being modeled is defined as Activity 6: TCT-Determine Target Significance/Urgency.

There are about 11 Activities that are being evaluated and pseudo-code provided in

[Zin04]. Figure 8.14 below provides the Activity Model Report as generated by Popkin

System Architect.

Figure 8.14: Activity Report Model for Activity 6 generated thru Popkin System

Architect

This Activity Report is nothing but the interface descriptions for an Activity in OV-5

diagram. It tells us that Activity 6 receives input from which other Activities and sends

outputs to which Activities. It also provides us the information about the ‘control’

6 Operational Activity: TCT-Determine target significance/urgency (Track)
[Within OV-5 Diagram 'TCT-Level 1']

Glossary Text: Utilizing track data and other target information, C2 Warriors determine if the target/target set is threatening and/or fleeting, and
estimate target availability, i.e., how long the target will remain susceptible to attack.

From 2005 C2 Constellation 3.2.5.2 and CAOC-4.5.2.7
ICOM line: Air Track (J3.2)

Output: going to TCT-Validate target/target set (Target) as input
Glossary Text:

ICOM line: Current Intelligence - Dynamic Assessment/Target Status
Input: coming from <offpage>
Glossary Text:

ICOM line: Current Intelligence - Target Classification
Input: coming from TCT-Define target/target set (Fix) as output
Glossary Text:

ICOM line: Current Intelligence - Target Identification
Input: coming from <offpage>
Glossary Text:

ICOM line: line: Doctrine, Policy, LOAC, SROE, ROE
Control: coming from <offpage>
Glossary Text:

ICOM line: line: Dynamic Target Nomination
Output: going to <offpage>

Glossary Text:
ICOM line: line: Dynamic Targeting Execution Direction and Guidance

Control: coming from <offpage>
Glossary Text:

ICOM line: JMSNSTAT
Input: coming from <offpage>
Glossary Text:

ICOM line: Land (Ground) Point/Track (J3.5)
Output: going to TCT-Validate target/target set (Target) as input
Glossary Text:

ICOM line: Reattack Recommendation
Output: going to TCT-Nominate engagement option (Target) as input
Glossary Text:

ICOM line: TRKREP
Output: going to TCT-Validate target/target set (Target) as input

 205

interfaces that are needed to execute the doctrines and rules. Figure 8.15 depicts the

IDEF3 model that implements the OV-6a doctrines and rules for Activity 6.

Figure 8.15: IDEF3 representation of Activity 6 (“Conduct Dynamic Assessment of
Target” TCT 2005 Architecture, 2003: OV-6a) [Zin04]

The pseudocode for Activity 6 is provided in Figure 8.16 which is compiled manually

from the information contained in OV-6a. For complete description of the Activity 6,

refer to [Zin04]. Briefly, the context of Activity 6 in TCT architecture is immediately

after a target (or target set) is found and fixed. The upper half of Figure 8.15 shows an

XOR junction that indicates only one path be taken. The resulting “target update” is then

put thru 4 simultaneous analyses indicated by AND junction. This results (after integrated

 206

IF Significant Movement of target
Then Monitor Target/Target Status

Project Target Movement
Target Vector = ?

Else Monitor for Movement

Analyze Threat from Target (is the target closing on Friendlies or Fleeing?)
Analyze Dynamic Targeting Ex Direction and Guidance (does this agree with the commander’s
requirements?)
Determine target window of vulnerability (urgency)
Determine target significance – partly based on above findings

IF it is determined to be a TCT based on the above info
Then IF this is the first strike attempt on this target

Then Goto Activity 7 (Validate Target/Target set)
Else Goto Activity 8 (Nominate engagement option)

Else Pass target to ATO Planners
Monitor Target of Interest for Status Change

processing) into “Is the target time critical?” If it passes this TCT test it is again presented

with a decision-point “Is the initial attack on the target?” The answer to this question

results in two different modes of action, indicated by XOR junction. Zinn acknowledges

the fact that even though there is certain sequencing present, precise information about

the rules defined are left to imagination.

Figure 8.16: Pseudocode for Activity 6 – based on IDEF3 diagram in Figure 8.15, taken
from [Zin04]

The next section demonstrates how the information in Figure 8.14 and Figure 8.16 is

transformed into DEVS component modeling framework. It also shows how OV-8 and

OV-9 gets populated. However, it must be realized that an “operational node” hasn’t been

defined with respect to the current example. Consequently, we will assume an entity

structure that will illustrate the concept.

 207

8.2.3 DEVS Interpretation of Activity 6

Based on the available information let us assume that dynamic target assessment happens

at a particular node. Assume that Activity 6 and its sub-activities are all happening at

TCT. Let’s call this Operational Node 1, with Id O1. This will comprise our OV-2

diagram containing only one Operational Node executing all the 11 activities [Zin04].

Again, a simple example has been considered to demonstrate the construction of the new

OV document, namely OV-8 and OV-9.

The following Table 8.3 assigns identification numbers to various activities

S.No. Activity Sub-Activity Internal-Activity ID
1 Activity 6 Dynamic Target Assessment A6
2. Monitor Target/

Target Status
 A6.1

3. Monitor for Movement A6.2
4. Project Target Movement A6.3
5. Analyze Threat from Target A6.4
6. Analyze Dynamic Target

Execution/Direction and Guidance
 A6.5

7. Determine Target Window of
Vulnerability (Urgency)

 A6.6

8. Determine Target Significance
(Value/Effect)

 A6.7

9. Nominate as Dynamic Target (NCT) A6.8
10. Pass Target to ATO Parameters A6.9
11. Pass Target to ATO Planners A6.10
12. Significant Movement

Yes/No
A6.11

13. Target Monitoring A6.12
14. Target Significance

Analysis
A6.13

15. Synthesize Results A6.14
16. TCT Determination

Yes/No
A6.15

17. Initial Attack Yes/No A6.16
18. Review Established

Target Lists
A6.17

19. Attack Decision A6.18

Table 8.3: Activity-ID mapping for OV-8 and OV-9

 208

Based on the IDEF3 diagram (graphical information for OV-6) in Figure 8.15, and our

constructed OV-2 in previous paragraph, we can construct our OV-8 document that lists

Activities and their logical interface information. We need such port information to be

able to create components. Such logical-port construction has been attempted in [Tel04]

where the focus was to create an SV executable model. Developing and specifying

Activity port-interfaces at this level is a logical step towards SV interface design as

tractability is ensured. The OV-8 document below does not address the performance issue

at OV level and its refined structure is presented in [Mit06b]. A sample OV-8 document

looks like the following Table 8.4:

S.No
.

Activity
ID
compone
nt

Connection
ID

Source
Activit
y

Input
Interface
Name
(Logical
Port)

Message
Descriptio
n /OIEs

Contai
ner
Op
Node

Source
document/
diagram

1 A6 O1
2. A6.1 CA6.1 A6.11 inSigMovY AMT/GMT

I

O1 Figure 12/OV-
6b,c

3. A6.2 CA6.2 A6.11 inSigMovN StaticTarget O1 Figure 12/OV-
6b,c

4. A6.3 CA6.3 A6.1 inTrkData TrackData O1 Figure 12/OV-
6b,c

5. A6.4 CA6.4 A6.13 inCurrInte Current
Intelligence

O1 Figure 12/OV-
6b,c

6. A6.5 CA6.5 A6.13 inDirGuid Direction
and
Guidance

O1 Figure 12/OV-
6b,c

7. A6.6 CA6.6 A6.13 inTarAnaly Target
Analysis

O1 Figure 12/OV-
6b,c

8. A6.7 CA6.7 A6.13 inTarAnaly Target
Analysis

O1 Figure 12/OV-
6b,c

9. A6.8 CA6.8 A6.14 inTctYes TCT Yes O1 Figure 12/OV-
6b,c

10. A6.9 CA6.9 A6.14 inTctNo TCT No O1 Figure 12/OV-
6b,c

11. A6.10 CA6.10 A6.9 inToiInfo TOI Info O1 Figure 12/OV-
6b,c

 209

12. A6.11 CA6.11 inIsSigMov Significant
Movement

O1 Figure 12/OV-
6b,c

13. A6.12 CA6.121 A6.2, inTargCoord Target
Coordinates

O1 Figure 12/OV-
6b,c

 CA6.122 A6.3 inTargVec Target
Vector

O1 Figure 12/OV-
6b,c

14. A6.13 CA6.13 A6.12 inTarUpdate Target
Update

O1 Figure 12/OV-
6b,c

15. A6.14 CA6.141 A6.4 inTarThreat Target
Threat

O1 Figure 12/OV-
6b,c

 CA6.142 A6.5 inDGCompl Direction
Guidance
Compliance

O1 Figure 12/OV-
6b,c

 CA6.143 A6.6 inTarUrg Target
Urgency

O1 Figure 12/OV-
6b,c

 CA6.144 A6.7 inTarSig Target
Significanc
e

O1 Figure 12/OV-
6b,c

16. A6.15 CA6.15 A6.14 inSigUrgRes Significanc
e/Urgency
Results

O1 Figure 12/OV-
6b,c

17. A6.16 CA6.16 A6.8 inTctNom TCT
Nomination

O1 Figure 12/OV-
6b,c

18. A6.17 CA6.17 A6.16 inFirstStr First Strike O1 Figure 12/OV-
6b,c

19. A6.18 CA6.18 A6.16 inReAtkRec Reattack
Recommen
dation

O1 Figure 12/OV-
6b,c

Table 8.4: Sample OV-8 document

Based on the information provide in Figure 8.15, we have constructed and identified the

interfaces that are being used by different activities to communicate. However, we have

not considered the information contained in Figure 8.17 that describes how Activity 6

communicates with other activities. We did not explore connectivity between other

destination activities just to keep the example in the needed perspective. However, the

procedure is essentially the same with more rows being added to the above table. To give

a glimpse on how this interconnected activities (as components) will perform in tandem;

notice the inports and outports of Activity 6 in Figure 8.17. The other Activities are

shown in the figure below don’t have any resemblance to the actual example in [Zin04].

 210

They are just meant for understanding. To understand how Activity 6 works internally

based on the different activities in Table 8.3, please look at Figure 8.15.

Figure 8.17: DEVS interrelationships of Activity 6 with other Activities.

The coupling relations shown in Figure 8.18 are generated in an automated manner from

the data presented in Table 8.4. Columns 2,3,4 and 5 provide sufficient information to

generate the following lines of code with simple string manipulations. Consequently, an

automated generation of DEVS model is realizable. Hence OV-8 document provides

sufficient information to develop a skeleton DEVS model that can make its entry into the

Model-repository. Let’s name the Model for Acitivity6 as MA6. The inner models are

identified in the same predictable manner as MA6.1, MA6.2…MA6.18.

ViewableAtomic a61 = new ViewableAtomic("A6.1");
add(a61);
ViewableAtomic a62 = new ViewableAtomic("A6.2");
add(a62);
…..
ViewableAtomic a611 = new ViewableAtomic("A6.11");
add(a611);
….
a611.addOutport("outSigMovY");

 211

a61.addInport("inSigMovY");
addCoupling(a611,"outSigMovY",a61,"inSigMovY");

a611.addOutport("outSigMovN");
a62.addInport("inSigMovN");
addCoupling(a611,"outSigMovN",a62, "inSigMovN");
…..

Figure 8.18: DEVS description of Activity 6 in relation to Table 6 Activity components.

The next task in line is the inclusion of pseudo code that contains the doctrines and rules

form OV-6a, described in Figure 8.16. Consider these 4 initial lines from Figure 8.16.

IF Significant Movement of target
Then Monitor Target/Target Status

Project Target Movement
Target Vector = ?

Else Monitor for Movement

This particular doctrine is to be implemented at A6.11 (refer Table 8.3). This has far

reaching advantages. By assigning doctrines and rules to specific Activity components,

 212

we are ensuring that each rule is formally implemented and is synchronized with other

rules that are ‘in operation’ at that instant of time. In a sense, which rules are compatible

and which can cause ‘deadlocks’ can be determined by execution of the above Activity6

DEVS model. The sample lines above are implemented in the deltext() function of

component A6.11. The deltint() function defines the natural course of the activity.

public void deltext(double e, messagex){
….
 for(int i=0; i<x.length; i++){
 if(messageOnPort(“inIsSigMov”){
 MessageTypeA msg = (MessageTypeA)x.getValOnPort(i,
“inIsSigMov”);
 If(msg.equals(“yes”))
 holdIn(0, “yesSigMov”);
 else

if(msg.equals(“no”))
 holdIn(0, “noSigMov”));
 }
…..
}
public message out(){
….
 if(phaseIs(“yesSigMov”)){
 m.add(makeContent(“outSigMovY”, new entity(“start”)));

 if(phaseIs(“noSigMov”))
 m.add(makeContent(“outSigMovN”, new entity(“start”)));
……
}

Similarly, all other Activities will receive inputs from other source Activities in their

deltext() functions that will contain the logic for implementation of doctrines. For

convenience purposes, the execution time of these doctrines is considered zero. Notice

the holdIn() function in the code above. However, this is an important place where we

can tune and implement the realistic time in issuing commands by human commanders.

For example, in a situation where the system is ‘waiting’ for a command from an

authority figure and decision has to arrive until a ‘time-out’ occurs. In addition, consider

that the activity component is executing certain process with respect to its deltint()

 213

function and is in certain ‘phase’ waiting for any external input from other activities. In

the situation of not receiving this input within allowable time-window, time-outs can very

effectively guide the simulation to its completion and prevent the wait-to-infinity

problem.

The OR split problem pointed out by Zinn in IDEF3 methodology has no effect in DEVS

methodology. This problem is resolved by making the &, X, and O constructs in IDEF3

methodology as ‘internal-activity’ components (Table 8.3). Once they are

componentized, time-outs can be implemented very easily that will completely eradicate

this problem. These components are very well documented in DEVS SimpArc package

Version 3.0. This solution also puts the focus back on the system-logic implementation

and test if the communication delays are significant enough that time-outs are occurring

frequently.

Finally, the last task is the description of OV-9 document. This document contains

information about the Activities happening inside an Operational Node and how the sub-

activities are mapped on to the components inside the Operational Node. For simplicity,

we are working on the assumption that there is only one Operational Node O1 in the

example. As there is no information present on what are its inner components are in

[Zin04], we will assume that there are, let’s say, 7 inner components that make up this

Node. Four of these seven components are associated with Activity6 and the other three

 214

components are associated with some other activities, not considered for illustration

purposes.

S.No. Operational

Node
Inner
Component
Entities

Component
Name

Associated
Models
added to
Repository

Hierarchical
Parent/Container

DEVS
Model
Type

1. O1 OCE1 TCT ME1 - Digraph
2. OCE1.1 Radar

Tracking
System

ME1.1 ME1 Atomic

3. OCE1.2 Significance
Analyzer

ME1.2 ME1 Atomic

4 OCE1.3 Urgency
Analyzer

ME1.3 ME1 Atomic

5 OCE1.4 Vigilance
Controller

ME1.4 ME1 Atomic

6. OCE1.5 Attack
Evaluator

ME1.5 ME1 Digraph

7. OCE1.6 Attack
Initiator

ME1.6 ME1.5 Atomic

8. OCE1.7 Attack
Terminator

ME1.6 ME1.5 Atomic

Table 8.5: Inner components within Operational Nodes and their mapping with

‘standardized’ DEVS models

The defined components are essentially COTS components with defined behavior. They

can even come from System View document SV-4. Consequently, each of them has their

‘models’ for simulation purposes specified in DEVS formalism. These models are

essentially Open-source models available to public thru a common repository and are

‘standardized’. The following table depicts the information assumed for construction of

OV-9. The inner components depicted in the table below are only for illustration

purposes.

 215

Having Table 8.5 as available resources for OV-9, we have enough information to

construct the Activity-entity mapping in Table 8.6. We identify and define port-interfaces

that need to be added to the entity component models so that they can be coupled to the

Activity components. Once OV-9 document is in place, the added interface information is

used to update the models defined during the construction of these two documents. We

saw in construction of OV-8 document that the resulting model is a stand-alone model

that is capable to execute the simulation in ‘capability’ mode, testing the OV-5 and OV-6

description of the system. A sample OV-9 document looks as following:

S.No. Operational

Node
Inner
Component
Entities

Component
Name

Activity
Component

Activity
Component
Name

Interface
description

OCE1

TCT

A6.1 Monitor
Target/Target
Status

monTarE

A6.2 Monitor for
Movement

monTarMovE

A6.3 Project Target
Movement

proTarMovE

A6.11 Significant
Movement
Yes/No

sigMovYesNoE

A6.12 Target
Monitoring

tarMonE

OCE1.1 Radar
Tracking
System

A6.10 Monitor Target
of Interest for
Status change

monTarInterE

A6.13 Target
Significance
Analysis

tarSigAnalyE

A6.4 Analyze threat
from Target

analyThrTarE

A6.5 Analyze
Dynamic
Target
Execution
Direction and
Guidance

analyEDGE

1.

O1

OCE1.2 Significance
Analyzer

A6.7 Determine detTarSigE

 216

Target
Significance

A6.14 Synthesize
Results

syncE

OCE1.3 Urgency
Analyzer

A6.6 Determine
Target
Window of
Vulnerability

detWinVulE

A6.15 TCT
Determination
Yes/No

tctDetYesNoE

A6.8 Nominate as
dynamic
Target

nomDynTarE

A6.9 Pass Target to
ATO Planners

passTarAtoE

OCE1.4 Vigilance
Controller

A6.16 Initial Attack
Yes/No

initAtckYesNoE

 A6.18 Attack
Decision

atckDecE

 A6.17 Review
established
Target Lists

revEstTarListsE

OCE1.5 Attack
Evaluator

A6.16 Initial Attack
Yes/No

initAtckYesNoE

OCE1.6 Attack
Initiator

OCE1.7 Attack
Terminator

Table 8.6: OV-9 description document mapping the Entity component inside Operational
Node O1 with the Activity Components defined in OV-8 with port-interfaces

OV-9 document aids in bringing the systems perspective to the design and how the

system’s components initiate the designated Activities. Assignment of an Activity to

appropriate component entity is a job of an experienced ‘designer’, as per the definition

of Designer in DoDAF document. This document ensures accountability that there is at

least one Component entity that is responsible for the execution of that particular

Activity. Notice that all the Activity Components addressed in the example have been

assigned at least one Operational Node inner component entity. After the creation of OV-

 217

9 document, the Interface information, in the last column, is used to update the

corresponding Activity and the Entity models in the Model Repository that were created

during the construction of OV-8. This is again an automated task with simple string

manipulation as described earlier, during the construction of OV-8 models.

Hence, during the creation of OV-8 and OV-9 we have populated the Model Repository

with Activity Models (MA6.1-MA6.18) and Operational Node’s inner component models

(ME1, ME1.1-ME1.6), have created an interface between these two aspects of DoDAF

design.

8.2.4 Synopsis

Looking Figure 4.18 in an Activity component perspective, we have our defined inputs

and outputs, and eventually the activity-ports. In the example above, we have defined the

interfaces of an Activity that could be subjected to component coupling and testing. The

coupling information can be integrated using OV-3 document, as described in Table 8.4.

The timing information is added using the OV-6b and OV-6c diagrams as we have

defined ‘components’, the effects of which have been highlighted in [Mit06a]. This

information, along with the pseudocode provided by Zinn, is integrated to develop the

DEVS model of the Activity in question. The pseudo code is very well directed to the

Activity that is best responsible to execute those ‘rules’. At this point the whole purpose

of creating OV-8, the rule-Activity mapping, is realized.

 218

OV-9 document deals with the mapping of the Activity components with the entity

components. Since Zinn [31] did not define internal components for any Operational

Node, we assumed certain inner components and mapped the Activities to these

components. Having ensured accountability for each of the Activities, another area that

OV-9 contributes to is System Design, Reuse and Composability. We have available with

us a document that contains information of the functionalities any particular component

can perform or participate in collective functionality. Consider the situation when two or

more inner components, from Systems perspective are thrown together to observe, if the

system is capable of performing ‘something’. This allows us to experiment with different

systems who are claiming to exhibit certain functionality. It allows us to test

interoperability.

Hence, the resulting integrated information from OV-3, OV-2 and OV-6 is converted to

the information in documents OV-8 and OV-9, with the addition of logical ports,

dedicated to the M&S area that are focused towards Operational Views.

8.3 Link-16 ATC-Gen Project at JITC

In this section, a testing approach to Link16 standards conformance is described. For

details see [Mak06]. The auto correlation experiment is conducted using the automated

test generation processes shown in Figure 8.19. The scenario was performed against the

Integrated Architecture Behavior Model (IABM) developed by the Joint SIAP System

Engineering Organization (JSSEO). The result of this scenario was verified by the ATC-

 219

Gen Test Driver and validated using JITC’s Simple J network packet monitoring tool.

Due to the classification of this system, the experimental results can not be shown. Thus,

the System under Test (SUT) test models are developed to allow the test driver to act as

the SUT and allow the experiment to be conducted.

Figure 8.19: Automated Testing

8.3.1 Auto Correlation Scenario

As MIL-STD 6016C stated, when a system receives a remote track from a remote system

that is within the correlation window of the local track, it initiates the tentative correlation

process. If a second track arrives within the local track correlation window, it shall be

correlated and held as common local track by transmitting a correlation request to the

remote system. If the local track number is greater than the remote track number, the

local system drops its own track and sends out a drop track notification; otherwise, the

remote system drops its track and sends out the notification. Figure 8.20 illustrates the

auto correlation process in the sequential diagram.

Minimal Testable
I/O Spec

Test Model
Generator

DEV-C++ Source
Codes

Test Driver SUT

 220

Figure 8.20: Auto Correlation Sequential Diagram

The test engineer follows the sequential diagram to construct the minimal testable pairs.

Furthermore, the test models are generated using the Test Model Generator. Figure 8.21

illustrates the minimal testable pairs for SUT and Test Driver.

Figure 8.21: Minimal Testable I/O pairs for Auto Correlation

8.3.2 Auto Correlation Experiment Setup & Results

The auto correlation scenario is created to demonstrate the correctness of the models

generated by the Test Model Generator. The models are implemented into the SUT and

Test Model Test Drivers and communicate via Simple J protocol as illustrated in Figure

J3.2 J3.2

J7.2 J7.0

Inputs to SUT
(Output from Test Driver)

Output from SUT
(Input to Test Driver)

 221

8.22. The transmissions and the receipt of the Simple J messages of the scenario are

captured by a Simple J network packet monitoring tool. The packet monitor captures and

decodes the Simple J messages, and the messages are saved into a log file. The log file is

analyzed and the data is verified to ensure that the scenario data is the intended behavior

of the Test Driver.

Figure 8.22 Test Drivers Setup Diagram

Successful Auto Correlation

In this scenario, the Test Drivers are communicated via Simple J protocol. The messages

setup in the correct sequence and auto correlation is induced. The SUT models and Test

Models are generated by the Test Model Generator, and implemented into the Test

Driver. The SUT TD has the track number of 03000, and the Test Model TD has the

track number of 00500. The two J3.2 track positions of the Test Model TD are exactly

the same as the SUT J3.2 track position. This causes the tracks to correlate and creates a

common local track with the track number of 00500. The SUT TD sends a correlation

request and drops the local track with the track number of 03000. Figure 8.23 illustrates

the outputs from the Test Model TD, and Figure 8.24 illustrates the results for the SUT

TD.

SUT
Test Driver

Test Model
Test Driver

IP Network

HLA or
SimpleJ

HLA or
SimpleJ

 222

Figure 8.23: Test Model Test Driver successful Auto Correlation scenario

Figure 8.24: SUT Test Driver successful Auto Correlation scenario

 223

8.3.3 Testing Status

ATC-Gen Test Driver was tested in both standalone and distributed environments. In the

standalone environment, it performed Link 16 testing against two Link-16 systems:

IABM and Air Defense System Integrator (ADSI). Recently, ATC-Gen Test Driver was

participated in a distributed live testing environment in JITC. Table 8.7 summaries the

results of the Link 16 functionalities against the systems. In recent developments, three

modes of testing have been developed: Active, Reactive and Passive. The Reactive mode

is developed at JITC by Dale Fulton and others. In this approach, the user interactively is

able to inject parameters to tune SUT to real system. This allows the capability to use the

same SUT model with different real-world implementations by dynamically tuning the

SUT model. The reactive mode of changing system parameters is similar to reactive-

manner of controlling model or simulator parameters discussed in Section 3.4.3.

Link 16 Systems

MIL-STD 6016C Functions

IABM ADSI Distributed
Environment

AutoCorrelation Y Y Y
Correlation Window Size N Y Y
Decorrelation Y Y Y
Track Management Y N N
Report Responsibility Y Y Y
Track Quality Y Y Y
Identity Different Resolution N Y Y

Table 8.7: Link 16 functionalities vs. Systems

 224

8.4 GENETSCOPE Project at JITC

SCOPE command is a highly automated, high-frequency (HF) communication system

that links U.S. Air Force (USAF) command and control (C2) functions with globally

deployed strategic and tactical airborne platforms. SCOPE command replaces existing

USAF high-power HF stations with a communication system featuring operational ease

of use, dependability, and seamless end-to-end connectivity comparable to commercial

telephone services. The network consists of fifteen worldwide HF stations (see Figure

8.25) interconnected through various military and commercial telecommunications media

(see Figure 8.26). It increases overall operational and mission capabilities while reducing

operation and maintenance costs.

Figure 8.25: Geographic locations of fixed

stations

Figure 8.26: Communication flow
diagram for SCOPE command

The HF radio equipment includes the Collin’s Spectrum DSP Receiver/Exciter, Model

RT-2200. The radios feature Automatic Link Establishment (ALE) and Link Quality

Analysis (LQA) capability and are adaptable to future ECCM waveforms FSK, MIL-

STD-188-110B, and STANAG 5066. The transmit subsystem includes 4-kW solid-state

 225

power amplifiers, a high-power transmit matrix, and a combination receive/multicoupler

antenna matrix. A typical SCOPE command station includes operator consoles (HFNC),

circuit switching equipment (DES, DSN, LCO), HF radios (ALEs), RF matrixes (RTs),

and antennas (RXs, TXs). A non-blocking digital electronic switch (DES) connects the

station to the local military and/or commercial telecommunication services. The switch

features unlimited conferencing, modular sizing, a digital switch network, a precedence

function, and capacity for up to 2,016 user lines.

SCOPE command uses a modular, open-system design to automatically manage and

control all network operations, including those at split-site stations. To achieve maximum

flexibility, the system uses commercially available standards-based software and a

multitasking operating system. This approach permits fourteen out of fifteen network

stations to operate “lights out” (unmanned) and to be economically controlled from a

central location. The control system also includes LAN software, servers, and routers to

support unlimited LAN/WAN.

The program includes a Systems Integration Lab (SIL) and test-bed facility located in

Rockwell Collins’s Texas facility. The SIL is used to predict the impact and risk that any

changes or upgrades will have on system performance, integrity, or costs before actual

implementation begins. The SIL includes a fully functional SCOPE command station for

performing baseline design verification, and interface compatibility and functional

verification tests.

 226

Joint Interoperability Test Command (JITC) is the only government agency that is

assigned the task to validate and authorize IT systems for military operations [CJC06].

The HF SCOPE command system has also been evaluated by JITC. In collaboration with

Dr. Eric Johnson, a simulator was developed in the C language around 1997 that was

validated and eventually used by both the government and the industry to conduct

experiments and run scenarios. The simulator was an exhaustive and comprehensive

effort with respect to the details it implemented and served its purpose well. However, in

today’s circumstances, the same simulator is obsolete due to the heterogeneous nature of

today’s network traffic, in which e-mail occupies a considerable percentage of traffic.

The simulator is now being upgraded at the ACIMS lab in order to make it more useful

for current demands. These demands stem from the possibility of expansion of the current

infrastructure of the SCOPE command. Questions arise such as how many stations need

be added to service a required workload. Also needing to be investigated are trade-offs

such as whether it is more economical to add more stations or increase the number of

internal radio levels within stations to meet the anticipated demands. Air traffic has

increased manifold since 1997, along with the computing technology. Consequently, the

transition effects need to be monitored more closely, and the overall system response

time4 needs to be documented. The significant parameters that have the most impact on

system performance have to be identified. To more easily address such questions, an

effort is being made to modularize Johnson’s 15K lines of code into a component-based

structure depicted in Figure 8.27. Once “componentized,” the components are made

4 Response time of a system is defined as the time taken by the system to display significant effect caused
by any update in the configuration parameters.

 227

DEVS compliant resulting in a DEVS-based simulation package to support the systems

engineering needs of the SCOPE command.5

Figure 8.27: System entity structure for SCOPE command system showing the fixed and

mobile (aircraft) stations

To study the effect of changes/upgrades introduced to the existing SCOPE command

system we built the Experimental frame, based on DEVS principles for our modular

DEVS-NETSIM simulation model, named GENETSCOPE [Gen06]. Figure 8.28 shows

the block architecture of the simulation model. The right-hand box is the system

phenomenon that contains the Automatic Link Establishment (ALE), STANAG 5066

protocols used for establishing links and exchanging data messages between mobile

stations and fixed stations. The left-hand box is the experimental frame that generates

various scenarios and parameters under study. The scenarios and parameters are fed into

the model and performance characteristics are obtained from it, which are then visualized

and analyzed in real time as per the extended MVC architecture described in Chapter 3.

5 A methodology using intermediate XML processing to automate much of the process of “componentizing”
legacy simulation code will be reported soon.

 228

Figure 8.28: GENETSCOPE simulation architecture for SCOPE command

8.4.1 SCOPE Command and DoDAF

Certainly, a system like SCOPE command qualifies to be represented as a DoDAF

specification. Though not provided in this paper, all three views, viz., Operational,

System, and Technical, can be developed. The documents are fairly easy to construct as

the system is not in the design phase but is a live system with working standards and

people managing the system for as long as twenty years. The physics of the HF

communication is still the same, and the radio equipment has set standards that have not

been revised that often. What is new in the system is the incorporation of new standards,

for example, the STANAG 5066 data-exchange protocol that modulates the modem rates

and reliable data delivery across the HF messaging system. This is being added to

provide the capability to send e-mail messages through the HF system. The other major

thing that has changed is the increased intensity of traffic, demanding upgrades to the

 229

existing system. For illustration purposes, suppose that we had the DoDAF description of

SCOPE as well as all the details on how the system would be constructed and its

functionality implemented. Remaining solely within the DoDAF, there still would not be

any means to analyze or experiment with the projected system. As stressed earlier, the

DoDAF does not provide for any M&S capability to support the system design process. It

only provides a means to build a system on the presumption that analysis has already

been done, a “design” is available, and the system is ready to be deployed. The purpose

of the DoDAF in this case is nothing more than a documenting procedure.

The methodology presented in this paper takes the DoDAF as a front-end documentation

procedure that aids M&S and design objectives. With respect to Figure 4, the central

theme of the paper, we present sample OV-8 and OV-9 documents to illustrate how the

experimental frame is developed from the DoDAF terminology.

Although the current DoDAF views are insufficient to provide the M&S for the purpose

of enhancing and recommending upgrades to the existing SCOPE system, the DEVS

approach readily provides the needed tools. Going back to the basic DEVS M&S

components (see Figure 3.1), the legacy SCOPE simulation model was transformed by

the base high resolution model. The Experimental frame is constructed over this existing

system along with various other additions that would control and direct the possible

upgrades. This component is responsible to provide environmental conditions, workload

generation, performance analysis, system evolution and control, and achievement of

 230

steady state. The other advantage of this separation is the construction of a DEVS lumped

model in which various details of the base model are abstracted and lumped together.

Whereas the base model is oriented to technical components, the lumped model directly

addresses system level issues and supports faster simulation runs to answer these

questions. As always, the question arises as to how close these results match with the

detailed model. The lumped model is preferred if it is able to perform to the same level of

accuracy and helps answer the questions raised by the SCOPE command designers. The

comparison of a lumped model with a base model is only possible if the underlying M&S

formalism supports modular construction of the three components, viz., model, simulator,

and Experimental frame [11]. Figure 8.29 summarizes the general idea.

Figure 8.29: DEVS M&S and the existing SCOPE command system

 231

Sample OV-8 and OV-9 Documents

Let’s consider two activities out of many activities that are a part of any HF radio

communication, i.e., sounding and listening. Sounding is defined as the process by which

different stations (refer to Figure 8.27) periodically send broadcast messages at different

frequencies so that other stations know who else is available on the HF radio sky.

Listening is defined as the process by which these stations identify and hear RF tones and

go through a demodulation process to decode and decipher the incoming transmission.

S.
No.

Activity Sub-activity Internal Activity ID

1 Sounding A1
2. Prepare Call A1.1
3. Send Call A1.2
4. Send Transmission A1.3
5. Listening A2
6. Receive Transmission A2.1
7. Evaluate Signal A2.2
8. Decode Signal A2.3
9. Report Message A2.4

Table 8.8: Activity 4ID mapping for OV-8 and OV-9

Table 8.8 describes the initial process that is done to populate the OV-8 document. It

assigns various IDs to different Activities and sub-activities that are then used as

reference tokens and automation processes, as described in [Mit06a]. Figure 8.30 depicts

the OV-5 for activity sounding. Activity listening will have a similar Operational View

depiction. Table 8.9 presents a sample OV-8 document with refined structure (see Table

3) showing the significant parameter set for sounding and listening activities. It should be

well stressed here that documention and aggregation of this information with the

 232

corresponding activity helps find faults in testing the “feasibility” of the system [Mit06a]

when M&S is employed.

Figure 8.30: OV-5 for activity sounding

S.
No.

Activity
ID
Compo
nent

Signify-cant
Para-meter

Connec
tion ID

Source
Activity

Input
Interface
Name

Message
Descript-
ion

Contai
ner Op.
Node

Source
Docum
ent/
Diagra
m

1 A1 Station
2. A1.1 Sounding-

interval,
duration

CA1.1 Ax
(hypoth
etical)

inSta Send sound

Station Figure
5.29/
OV-5

3. A1.2 Message
size,
frame count

CA1.2 A1.1 inAle Send
frame (s)

Station Figure
5.29/
OV-5

4. A1.3 Duration CA1.3 A1.2 inRt Add
transmission

Station Figure
5.29/
OV-5

5. A2
6. A2.1 Duration CA2.1 Ay

(hypoth
etical)

inRt Receive
transmission

Station Figure x

7. A2.2 Station to-
station SNR

CA2.2 A2.1 inAle SNR Station Figure x

8. A2.3 Received
frames,
valid
frames,
duration

CA2.3 A2.2 inAle Incoming
sound

Station Figure x

9. A2.4 None CA2.4 A2.3 inHfnc Heard
station X

Station Figure x

Table 8.9: Sample OV-8 document

A1.1
Prepare

Call

A1.2
Send Call

A1.3
Send

Transmissio

A1 Sounding

Send
Sound

Send
Frame

Add
Transmission

 233

Having constructed the OV-8 document, let us construct the OV-9 documents according

to the proposed structure in [Mit06a]. Table 8.10 presents the components that lie within

the Operational Node station and their assigned IDs for automation purposes. For more

details, refer to [Mit06a]. It is worth stressing here that this information comes readily

from the SES of the existing SCOPE command system, as shown in Figure 8.27. The

inner components within the station Operational Node are clearly defined in Figure 8.27.

S.
No.

Operational
Node

Inner
Component
Entities

Component
Name

Associated
Models
Added to
Repository

Hierarchical
Parent/Container

DEVS
Model
Type

1. O1 OCE1 Station ME1 - Digraph
2. OCE1.1 HFNC ME1.1 ME1 Atomic
3. OCE1.2 ALE ME1.2 ME1 Atomic

4 OCE1.3 RT ME1.3 ME1 Atomic
5 OCE1.4 TX ME1.4 ME1 Atomic
6. OCE1.5 RX ME1.5 ME1 Atomic
7. OCE1.6 PA ME1.6 ME1 Atomic

Table 8.10: Inner components within operational nodes and their mapping with

“standardized” DEVS models

S.
No.

Operational
Node

Inner
Component
Entities

Component
Name

Activity
Component

Activity
Component
Name

Interface
Description

OCE1

TCT

Ax Time To Sound tts OCE1.1 HFNC
A2.4 Report Message repMsg
A1.1 Prepare Call prepCall
A1.2 Send Call sendCall
A2.2 Evaluate Signal evalSig

OCE1.2 ALE

A2.3 Decode Signal decSig
A1.3 Send

Transmission
sendTransm OCE1.3 RT

A2.1 Receive
Transmission

recvTransm

1.

O1

OCE1.4 TX A1.3 Send
Transmission

putTransm

 234

OCE1.5 RX A2.1 Receive
Transmission

getTransm

OCE1.6 PA None None None
Table 8.11: Sample OV-9 Document

Hence, during the creation of OV-8 and OV-9 we have populated the model repository

with Activity models (MA6.1–MA6.18) and Operational node’s inner components

models (ME1, ME1.1–ME1.6) and have created an interface between these two aspects

of DoDAF design. In the subsequent sections, we shall see how these enhanced OV-8 and

OV-9 documents prove to be advantageous in defining the DEVS Experimental frame

parameters and hierarchical GUI developments or code development of the simulation

model.

8.4.2 SCOPE Architecture Implementation Using Enhanced MVC

Figure 8.31 shows the simulation architecture for GENETSCOPE [Gen06] using the

concepts laid out in the paper. With reference to Figure 5.27, the ionosphere model used

in the architecture is ICEPAC data. It is worth stressing that the initial NETSIM model

written in C language has this database tightly coupled with the model. In our present

implementation, we made it modular so that it can be replaced by any other database that

could provide the channel propagation values through the ionosphere, e.g., VOACAP. In

the current implementation, there is no ICEPAC database included but the complete

ICEPAC software that is executed at run time. This is one of the biggest advantages in

separating ICEPAC from the model itself. The ICEPAC software is configured through

the Experimental frame parameters and is made available for real-time execution as an

independent thread for different stations that are active in the running DEVS model. The

 235

real-time execution of ICEPAC software involves creation of a dynamic ICEPAC

configuration file that contains information about the two stations, their geographical

locations in latitude and longitude, the Sun Spot Number (SSN), and the time of year,

month, and day. This implementation allows us to get the ionospheric SNR values for any

location at any time of the year (for SSN) unlike the earlier implementation (NETSIM-

SC) where we were limited to only a handful SSN values (10, 70, 100, and 130) with

locations specified in five-degree increments. This has the added benefit of using the

exact location of any mobile station rather than using projections within the implemented

grid as in the earlier NETSIM-SC. The DEVS layer comprises both models as well as the

DEVS simulation environment. The Experimental frame layer also contains the controls

required to modify/update the model as well as a simulator as per enhanced MVC. The

simulation visualization is modular in construction and reflects the updates in the

Experimental frame layer and the DEVS layer. See Figure 8.31.

Figure 8.31: Simulation architecture for the SCOPE command network

The above architecture is shown below in various screen shots taken from the developed

GENETSCOPE (beta version). Figure 8.32 shows the Experimental frame and various

DEVS Entity coupled
Model

DEVS Atmosphere
Model

Key Transmitter()

Listen()

Experimental Frame
&

Scenario Generation

Simulation
Visualization

&
Run-time Control

ICEPAC_DATA
access

Net configuration Simulation
Real-time Propagation
based on station
position updates

DEVS
Modeling

Layer

ICEPAC
Configuration

 236

parameters (along with their default values) used in scenario configuration. The

parameters shown in bold below are the parameters that have been identified as

significant parameters in OV-8 (see Table 8.9, in shaded cells). Similarly, other

parameters too come from an elaborate OV-8 document of the SCOPE command. These

significant parameters find their way in various configurable parameters all through the

model configuration settings as shown in Figures 8.32-34, and the simulation model finds

its design through the SES (see Figure 8.27) or the corresponding OV-9 document (see

Table 8.11). The total parameter set is comprised of:

1. Number of fixed stations,

2. Number of levels inside a fixed station,

3. Number of mobile stations (aircrafts),

4. Messages per hour,

5. Data message size,

6. Voice call duration,

7. Ground stations sounding interval, and

8. SNR threshold for a received signal.

 237

Figure 8.32: Experimental frame for GENETSCOPE

Once the experimental frame parameters are configured, these parameters are channeled

down to the individual components. The top-level design parameters then bound the other

internal component parametric settings. For example, Figure 8.33shows a typical

configuration of the ground station Sigonella. The left column in Figure 8.33 shows all

the fourteen ground stations, and the individual details about each station can be seen by

pressing the Lookup button. Figure 8.33 also shows the message traffic that is transmitted

by this station. Notice that the Experimental frame settings are shown as the traffic

stream originated from this station. Similarly, a mobile station configuration panel is

shown in Figure 8.34. The user can select any specific mobile aircrafts bounded by the

Set up values

 238

number of mobile stations specified in the Experimental frame. The next figure, 8.35,

basically lets the user enter call-signs to these mobile stations and invites the user to enter

aircraft-specific details like message traffic, flight path (see Figure 8.36), radio

parameters, and channel frequencies being used. Other internal details of station

configuration can be seen in the GENETSCOPE software user’s manual [Gen06]. The

purpose of showing GUI snapshots in Figures 8.33-36 is to illustrate how top-down

design parameters (from OV-8) can be taken down to the component level (through both

OV-8 and OV-9). The other important aspect of this process is that during simulation

run-time, if the Experimental frame parameters are changed to study any particular

parameter, that change is channeled across the whole system model configuration using

“interrupts,” thereby exploiting the discrete event simulation methodology. The update of

any Experimental frame parameter is taken by the simulation model as an “external”

event.

 239

Figure 8.33: Ground station configuration screen for Naval Air Station Sigonella

The last piece of information being fed through the Experimental frame is the ICEPAC

setting, based on the Sun Spot Number (SSN). Once the system model is configured

through the Experimental frame settings, the user is directed toward the simulation setup.

Figure 8.37 shows the final setup screen after which the user then moves on to the run-

time simulation screen (see Figure 8.38) to execute the simulation. When the user clicks

the Write Files button in Figure 8.37, it results in writing up of the detailed configuration

file for repository purposes.

 240

Figure 8.34: Mobile station configuration screen where the total count is bounded by the

Experimental frame

Figure 8.35: Callsign entry for a

mobile station

Figure 8.36: Flight path of mobile aircraft

and other details

2. The selected Aircraft is “C130”, and
the number of “C5” is “two”

3. If all the numbers of aircraft has been selected, n push
“Enter Details” to enter specific details.

 241

Figure 8.37: Experimental frame and ICEPAC data configuration through selection of

SSN

Figure 8.38 shows the simulation clock as it happens in real time and the obtained

statistics. The above snapshots complete the architectural components specified in Figure

8.31. Figure 8.38 has the functionalities that are described earlier in the paper: e.g., run-

time configuration updating and simulation control. It has four buttons at the top of the

screen, viz.:

1. Run Abstract Model (using lumped parameters),

2. Run Detailed Model (using detailed parametric settings),

3. Pause (to interrupt the simulation),

4. Terminate (to end the simulation).

 242

Figure 8.38: Run-time simulation visualization screen for rapid feedback

The Pause button is of special interest here, as the user can interrupt the running

simulation (manual reactive control described in Chapter 4) and change the Experimental

frame or system configuration settings while the simulation is in action. Once the

parameters have been updated, the user can resume the simulation and can see the impact

of that update on the above “active” simulation visualization screen. One such example

may be the two obtained values of total transmissions and total sounds heard. If the

number of sounds heard is not up to the mark (with respect to a validated real-world

scenario), the user may change sound-interval time or any other parameter that would

impact this number, or may conclude that the model is not “performing” correctly. The

 243

rapid impact of any such parameter can be studied by pausing the simulation and

changing it and then observing the effects in the simulation pane.

The DEVS layer in Figure 8.31 is implemented in the following manner. The simulation

engine running behind uses the following code.

NetsimSC net = new NetsimSC(createdConfigFile, debugOption);
tCoord = new TunableCoordinator(net);
tCoord.initialize();
tCoord.setTimeScale(0.0001);
tCoord.simulate(Integer.MAX_VALUE);

The model configuration is written into a configuration file that is used to create the

DEVS digraph model, with automated coupling using the system SES shown in Figure

8.27. The DEVS model is then passed on to the TunableCoordinator derived from DEVS

RTcoordinator class. The TunableCoordinator is initialized and is then directed to

simulate for a maximum number of iterations, which means that simulation will proceed

indefinitely (in logical sense). The Pause button executes the following line.

 tCoord.interrupt();

After the simulation is paused and updates are made, the simulation is restarted by simply

calling the coordinator to “simulate.”

tCoord.simulate(Integer.MAX_VALUE);

The simulation core functionality provided by the DEVS simulation protocol facilitates

interrupting the coordinator and makes real-time parametric and component structures at

run time as described in sections 6 and 7 earlier.

 244

Figure 8.38 contains a very limited set of aggregated information. However, run-time

graphs and projections can be very well aligned with this visualization to see patterns and

the direction in which the simulation is proceeding. Logs are generated for each

simulation run. This visualization pane shows the important information of the

Experimental frame (in red) and the run-time information from the system model (in

blue), which, needless to say, is according to the enhanced MVC (through the

development of appropriate interfaces between these layers). The View layer (see Figure

3.2) in the current example shows only the model and the Experimental frame control

visualization. The Experimental frame control is controller B in Figure 3.2, i.e.,

parameters that “control” the model. The lowest layer, i.e., controller A in the enhanced

MVC process, is not the focus of the GENETSCOPE project and consequently not

illustrated here. Its implementation is illustrated in the work [Nut05].

8.4.3 Implications of the Example Above and NR-KPP

Having laid out the framework to conduct and design the experiments, the next item on

the agenda is to identify the measures of effectiveness (MoEs) that eventually will be

considered in making recommendations for any update or modification needed in the

current SCOPE command infrastructure. Since the SCOPE command is a deployed

system, we were given various statistical reports by JITC [JITC] in order to determine

these MoEs. The point of this exercise is to provide sufficient analysis through simulation

of the modeled system so that the impact of any particular infrastructural change intended

 245

in the system can be observed on these MoEs. Some of the MoEs that were identified are

as follows:

1. Longest time taken by any e-mail on HF network,

2. Number of e-mails sent and number of e-mails actually delivered,

3. Average message transmission time at any station per hour,

4. Messages attempted versus messages received per hour,

5. Bandwidth usage at Central Network Command Station (CNCS6),

6. Number of planes in “good” signal to noise ratio (SNR) range per hour.

The parameters that are to be set in order to recommend any upgrades in the current

infrastructure can be listed as follows:

1. Average number of daily flights,

2. Minimum number of messages attempted by any station,

3. Number of fixed stations participating in any mission scenario,

4. Number of active levels within a fixed station,

5. Minimum and maximum message size in KB,

6. Minimum and maximum duration of a phone call (VOICE message),

7. Minimum data rate by any ALE radio-modem.

As can been seen clearly, there is not a one-to-one mapping between MoEs and

experimentation parameters. The MoEs tell us about the effectiveness of any mission that

would be executed. They are holistic measures that tell about the fitness, capacities, and

6 CNCS is the gateway for any land-based network (SIPRNET or NIPRNET) to be connected to the SCOPE
command HF network. All e-mails are routed through CNCS.

 246

limitations of the system. M&S is the preferred means for assessing the impact of

parameters on MoEs, with the goal of determining the most significant parameters. A

simulation execution environment can help this investigation through a rapid feedback

cycle where the analyst can change parameter values on the fly and quickly assess their

impact on holistic measures. These MoEs impact evaluations very well and become part

of the result set as mentioned in Chapter 3, while the parameters identified become part

of the Experimental frame layer as shown in Figure 8.31.

Similarly, for any DoDAF architecture, the MoEs are also specialized for that particular

architecture. Considering the breadth of the SCOPE command system, some of the MoEs

mentioned above also apply to any net-centric architecture. Within the DoD, JITC has the

sole responsibility of certifying the Information Technology (IT) and National Security

Systems (NSS) for interoperability purposes [Buc04]. The major T&E problem identified

today by JITC is how to verify that a solution provided by any architecture is data

integrated and net centric in operation. The traditional T&E approaches are optimized to

verify performance and effectiveness of point solutions, but new criteria are needed to

reflect the realities of systems operating within networked systems. Such criteria are just

beginning to emerge and are not yet matured for immediate and widespread use of T&E

[Buc04].

The NR-KPP assesses net-readiness information assurance (IA) requirements, and end-

to-end operational effectiveness of that exchange with respect to the COIs mentioned

 247

earlier. Description of Key Interface Profile (KIP) with relation to this scenario is beyond

the scope of this paper. The major object underlying NR-KPPs is to identify verifiable

performance parameters and associated metrics required to evaluate timely, accurate, and

complete exchange and use of information to satisfy the information needs for a given

capability [Buc04].

 248

CHAPTER 9: DISCUSSION

This chapter discusses the DUNIP process with current state of the art in model-based

engineering processes. Two paradigms have been chosen: MDA and SCR. MDA or

Model-Driven Architecture is philosophy as put forward by Object Modeling Group

(OMG) that comprises of many standards like UML, XMI, Meta-Object Facility (MOF)

and others. SCR is the Software Cost Reduction methodology developed at Naval

Research Laboratory to develop models based on requirements specified in tabular

format.

9.1 MDA and DUNIP

DUNIP is built on the paradigm of Model-Based Engineering, or Model-Driven

Architecture (MDA). However, the scope of DUNIP goes beyond the MDA objectives.

Potential concerns with the current MDA state of art include:

• MDA approach is underpinned by a variety of technical standards, some of which

are yet to be specified (e.g. executable UML)

• Tools developed my many vendors are not interoperable

• MDA approach is considered too-idealistic lacking iterative nature of Software

Engineering process

• MDA practice requires skilled practitioners and design requires engineering

discipline not commonly available to code developers.

 249

Further, MDA does not have any underlying Systems theory and groups like INCOSE7

are working with OMG to adapt UML to systems engineering. Testing is included only as

an extension of UML, known as executable UML [Mel02], for which there is no current

standard. Consequently, there is no testing framework that binds executable UML and

simulation-based testing.

Despite these shortcomings, MDA has been adopted by Joint Single Integrated Air

Picture (SIAP) Systems Engineering Organization (JSSEO) and various

recommendations have come forth to enhance the MDA process. JSSEO is applying

MDA approach toward development of aerospace Command and Control (C2)

capabilities, for which a single integrated air picture is foundational. The data-driven

nature of C2 System of Systems (SoS) means that powerful MDA concepts adapt well to

collaborative SoS challenges.

Current DoD enterprise-level approaches for managing SoS interoperability, like the Net

Centric Operations and Warfare Reference Model (NCOW/RM), DoD Architecture

Framework (DoDAF) and the Joint Technical Architecture (JTA), simply do not have the

technical strength to deal with the extremely complex engineering challenges [Jac04]. We

proposed enhanced DoDAF [Mit06a] to provide DEVS-based Model engineering. MDA

as implemented by industry and adapted by JSSEO, does have the requisite technical

power, but requires innovative engineering practices.

7 International Council on Systems Engineering

 250

Realizing the importance of MDA concepts and the executable profile of UML, the basic

objective of which is to simulate the model, JSSEO is indirectly looking at the Modeling

& Simulation domain as applicable to SoS engineering. The following table brings out

the shortcomings of MDA in its current state and the capabilities provided by DEVS

technology and in turn, DUNIP process.

Desired M&S Capability MDA DUNIP
Need for executable
architectures using M&S

Yes, although not
a standard yet

Yes, underlying DEVS theory

Applicable to GIG SOA Not reported yet Yes
Interoperability and cross-
platform M&S using
GIG/SOA

-- Yes, DEVSML and SOADEVS
provides cross-platform M&S using
Simulation Web Services

Automated test generation
and deployment in
distributed simulation

-- Yes, based on formal Systems
theory and test-models
autogeneration at various levels of
System specifications

Test artifact continuity
and traceability through
phases of system
development

To some extent,
model becomes
the application
itself

Yes

Real time observation and
control of test
environment

-- Dynamic Model Reconfiguration
and run-time simulation control
integral to DEVS M&S. Enhanced
MVC framework is designed to
provide this capability

Table 9.1: Comparison of MDA and DUNIP

MDA as applied to Integration of Process-Driven SOA Models

In an independent study [Zdu02], Model Driven Software Development (MDSD) was

applied to the integration of process-driven SOA models. UML2 was used as the basis

towards integration. Their approach is based on the notion of domain-specific languages

 251

(DSL) for modeling various types of models. Once DSL has been identified, its meta-

model is created that represents this particular modeling domain. Meta-models are

defined in terms of meta-meta-model. In UML, this is the meta object facility (MOF).

They created a meta-meta-model that would define both the UML2 meta-model and their

selected DSL extensions. The whole objective is to find a common ground and a way to

express the relationship between a meta-model and the implementation code. This kind of

capability where a single meta-meta-model can be used to integrate two different DSLs

towards a common model allowing specific constraints of each meta-model is very much

needed in SOA domain as multiple tools and standards exist preventing such integration.

To integrate two models with different DSLs, the models are first decomposed at the

meta-model level, required information extracted and supplemented (on the basis of

meta-meta-model), which results in an integrated model.

In our DUNIP process, such collaboration comes naturally due to the proposed DEVS

atomic and coupled Document Type Definitions (DTDs) that specify any DEVS model in

any domain specific language implementations. The underlying DEVS Modeling

Language (DEVSML) meta-model that defines these atomic and coupled DTDs is used

for validating any DEVS model. The current DEVSML implementation has successfully

integrated two DSL implementations (GenDEVS-ACIMS and xDEVS-Spain) on

common DEVSML atomic and coupled DTDs.

 252

9.2 DUNIP and SCR

Software Cost Reduction (SCR) method allows development of formal requirements

using a tabular notation. The SCR toolset includes an editor for building the

specifications, a consistency checker for testing the specifications for consistency with

formal requirements model, a simulator for symbolically executing the specifications and

a verifier for checking that the specifications satisfy selected applications properties

[Heit95]. SCR has been used to define requirements for embedded systems as well as

software systems. SCR is more exhaustive and complete in terms of model checking and

consistency checking. It is at a higher order of resolution where state variables can be a

part of the specification definition.

In DUNIP, although it is based on DEVS, the state-variables are not considered in the

automated DEVS model generation as described in Chapter 4. Our current work falls in

the category of a subset of DEVS specifications, where only message passing between

the components is considered. The motivation of this research effort stems from the need

of absence of an M&S framework for Net-centric systems collaborating over the GIG.

The systems are at a much higher level of abstractions than any embedded system where

state-variable bear much importance and criticalities. The current version of DUNIP

addresses the need of these abstract systems. Inclusion of state-variables, more like on the

lines of SCR will be included in future, to develop more sophisticated models.

 253

CHAPTER 10: CONCLUSIONS AND FUTURE WORK

This research effort has provided contribution towards development of an integrated

solution for the problem of executable models from user specified system requirements in

structured English format. The solution is made available as a prototype called DUNIP

which is an acronym for DEVS Unified Process. It added capabilities of enhanced MVC

framework, DEVS Modeling Language and SOADEVS to the existing DEVS framework

to make it net-centric capable.

The enhanced MVC complements the basic DEVS framework components, viz., the

Experimental frame, the model, and the simulator. The integration of these two

frameworks results in a well constructed control panel that provides a more

comprehensive feature set and controls to calibrate the model and configure the

simulation. The recent advances in DEVS technology, like variable structure modeling,

real-time simulation tuning with rapid feedback, and model/simulator calibration, have

been described; they help in the analysis and study of fast-changing network scenarios.

The first major advantage of incorporating these technologies is the study and

visualization of the “transition” effects when the model configuration is modified in a

running simulation. Various methods of controlling simulation execution were explored

as well as ways in which they can be used in different scenarios. The second major

advantage of this enhanced MVC framework is the capability to reach the desired

mission effectiveness or performance benchmarks in an active simulation. With variable

 254

structure capability, along with setting the bounds of any result parameter, the system can

be observed to arrive at the corresponding “steady state.” This methodology also aids in

determining the most significant parameters for any complex system for which

theoretical analysis is not feasible. These parameters are discussed with respect to the

Net-Ready Key Performance Parameter (NR-KPP) set, in relation to DoDAF, and the

advantages of identification of these parameters during the operational view design phase

are emphasized.

We have addressed the problem of model interoperability with a novel approach of

developing DEVSML as the transformation medium towards composability and dynamic

scenario construction. The composed coupled models are then validated using the

proposed universal atomic and coupled DTDs. The simulators validated at the server’s

end are maintained centrally such that the efforts of the community can be brought

together through the standardized processes. Other advantage of using DEVSML as the

communication medium gives the coder the independence to concentrate on the behavior

of the component in their native languages (C++ and Java). In addition, it gives them the

capability to share and integrate their models with that of other remote models and get

that integrated validated model back in their own language. It also gives models the

capability to get simulated with various simulator implementations that are stored at

Server. This information is stored in meta-data that is contained in every model.

Currently, this capability is meant only for Java but efforts are in progress to develop the

corresponding methodology in C++ and will be reported in future. The research also

 255

proposes modification in DEVS formalism towards making them Service capable such

that model continuity can be exploited towards deploying any DEVS component as a

Service.

We addressed the problem of net-centricity with the development of SOADEVS, which

is the SOA implementation of DEVS simulation engine so that models can be executed

remotely as well as in a distributed manner using Simulation as a Service within SOA

framework. The SOADEVS framework provides the capability to send models to a

remote location, run the simulation from other computer and partition the hierarchical

network over a set of server farms that host Simulation service.

The integration of enhanced MVC, DEVSML and SOADEVS along with the automated

model generation from multifarious modes of requirement specifications resulted in a

unifying framework called DUNIP. Figure 6.1 is reproduced again to summary the

contribution of DUNIP.

This research effort has described various elements of DEVS Unified Process. With the

developed DEVS Unified Process we now have the capability to:

1. Transform various forms of requirement specifications to DEVS models in an

automated manner.

2. Generate automated Tester models from DEVS models to verify the Input/Output

behavior of any DEVS component.

 256

3. Transform any DEVS model to a Platform Independent Model (PIM) using

DEVSML for model and library reuse and sharing leading to collaborated

development

4. Simulate any valid DEVSML using the SOADEVS architecture exploiting the

transparent simulator paradigm for model interoperability execution (for models

implemented in disparate languages e.g. Java and C++)

5. Transform any DEVSML model to a Service component in SOA

Figure 10.1: The Complete DEVS Unified Process

XML-Based Data Extraction towards DEVS
Elements RReeaall--ttiimmee

eexxeeccuuttiioonn

DEVS
Behavior

Requirements
at lower levels

levels of
System

Specification

DEVS Model
Structures at

higher levels of
System

Specification

Verification and

Validation

Simulation
Execution

SOADEVS

Test Models/
Federations

Models
To

Services

Experimental
Frames

System
Theory

State-
based
Specs

Message-Based
Scenario

Specs with
Restricted

NLP

DEVSML
Platform

Independent
Models

Platform Specific
Models

Transparent Simulators

BPMN/BPEL
Based

Scenario
Specs

DoDAF
based

Scenario
Specs

 257

Further, the problem of DoDAF in making it executable is looked into sufficient detail.

Although the current DoDAF specification provides an extensive methodology for

system architectural development, it is deficient in several related dimensions – absence

of integrated modeling and simulation support, especially for model-continuity

throughout the development process, and lack of associated testing support. To

overcome these deficiencies, we described an approach to support specification of

DoDAF architectures within a development environment based on DEVS-based

modeling and simulation. The result is an enhanced system lifecycle development process

that includes model-continuity based development and testing in an integral manner.

We have also introduced two new Operational Views OV-8 and OV-9 to address the

additional information that is needed to make the DoDAF M&S compatible. We have

also demonstrated the process to create OV-8 and OV-9 from the existing Operational

Views. OV-8 contains the information about the Activity Component structure and how

different Activities are interfaced with each other using the specified logical interfaces.

OV-9 contains information about the constituent components inside an Operational Node

and its corresponding DEVS model structure along with their mapping to the Activity

components in OV-8. Together OV-8 and OV-9 provide a means to correlate Activity

Components with accountable entities in an Operational node using logical interfaces. It

is after the transformation of OV-8 and OV-9 into DEVS models that rules assigned to

specific Activity or Entity components makes OV-8,9 server their complete purpose.

 258

Automation using XML and simulation-tuning are important concepts that can be well

executed and performed under current DEVS technology.

We also discussed the applicability of Modeling and Simulation for DoDAF and how this

research effort is aligned with DoDAF architectures. We also demonstrate how DUNIP

as a whole is used in various active projects at JITC including the GENETSCOPE and

ATC-Gen project.

10.1 Future Work

The present research work has the following scope for future development:

• Towards standardization of DEVS formalism

The DEVSML framework developed the atomic and coupled DTDs as meta-

models towards collaborative DEVS model development. They are proposed with

an idea towards their standardization where the DEVS community can come to a

common ground for model reuse and repository management.

• Enhancement of DoDAF towards development of ‘executable’ architectures

DoDAF Operational View was enhanced towards creation of two new views OV-

8 and OV-9 which augment the information contained in OV-2,3,5,6. These new

OVs are dedicated to the application of Modeling and Simulation domain towards

creation of executable architecture from DoDAF OV specifications. Efforts are

needed to include them in the next version of DoDAF specifications.

 259

• A Prototype solution with underlying formal systems theory applied in whole or

in-part to active projects at JITC.

Many aspects of DUNIP have been applied independently to projects like ATC-

Gen and GENETSCOPE, however, not as per say. Efforts in future would be

directed in the framework of DUNIP development process.

• Refine the DUNIP process

A Prototype was demonstrated as a final outcome of this research effort. More

features like, validation, consistency checking, etc. should be added to develop it

as a COTS product.

• Inclusion of more requirement specifications formats

The current research effort described four formats to specify abstract requirement

scenarios. The resulting DEVS models are at a higher level of abstraction. More

formats could be included that utilize the full power of DEVS formalism and

address criteria like elapsed time and state-variables.

• Performance evaluation of distributed SOADEVS protocol

The SOADEVS protocol required tailoring of DEVS simulation protocol for SOA

domain. Performance evaluation of this version is required to compare it with

 260

performance of DEVS protocol with current implementations like DEVS/RMI,

DEVS/CORBA etc.

• Make it easier for other DEVS groups to participate in DEVSML and SOADEVS

development by registering their simulators

DEVSML is developed as a framework for collaborative model development and

portable model specifications resulting from net-centric collaboration using XML

middleware. Remote simulation is one capability that is also provided by

DEVSML. Various simulator versions from different groups should be gathered

and worked upon towards standardized DTDs for an efficient model-sharing

system. Currently, two simulator implementations, viz. GenDEVS-ACIMS and

xDEVS-Spain have been used to provide proof of concept. Better design of

website offering DEVSML service should be designed that would facilitate

various groups to submit their simulator implementations.

• Make prototype tool as an Educational aide

The demonstrated prototype should be enhanced for teaching DEVS-based

Modeling and Simulation courses. Various manuals and GUI enhancements

would be added that facilitate learning and future development.

 261

REFERENCES

Chapter 1

[ACI06] ACIMS software site:
http://www.acims.arizona.edu/SOFTWARE/software.shtml Last accessed Nov 2006

[Car05] Carstairs, D.J., “Wanted: A New Test Approach for Military Net-Centric Operations”, Guest
Editorial, ITEA Journal, Volume 26, Number 3, October 2005

[Cho01] Cho, Y., B.P. Zeigler, H.S. Sarjoughian, Design and Implementation of Distributed Real-

Time DEVS/CORBA, IEEE Sys. Man. Cyber. Conf., Tucson, Oct. 2001.

[CJC04] Chairman, JCS Instruction 3170.01D “Joint Capabilities Integration and Development

System,” 12 March 2004.

[CJC06] Chairman, JCS Instruction 6212.01D “Interoperability and Supportability of Information
 Technology and National Security Systems,” March 8, 2006

[Dod03a] DoDAF Working Group , DoD Architecture Framework Ver. 1.0 Vol. III: Deskbook, DoD,

Aug. 2003.

[Dod03b] DOD Instruction 5000.2 “Operation of the Defense Acquisition System,” 12 May 2003.

[Gen06] GENETSCOPE(Beta Version) Software User’s Manual, available from ACIMS center,

University of Arizona.

[Hux04] X. Hu, and B.P. Zeigler, “ Model Continuity in the Design of Dynamic Distributed Real-Time

Systems”, accepted by IEEE Transactions On Systems, Man And Cybernetics— Part A:
Systems And Humans

[Mak06] E Mak, S Mittal, MH Hwang, “Automating Link-16 Testing using DEVS and XML”,

submitted to Journal of Defense Modeling and Simulation

[Pra05] “A Survey of Automated Test Case Generation”

[Sar00] Sarjoughian, H.S., B.P. Zeigler, "DEVS and HLA: Complimentary Paradigms for M&S?"

Transactions of the SCS, (17), 4, pp. 187-197, 2000

[Wai01] Wainer, G., Giambiasi, N., Timed Cell-DEVS: modeling and simulation of cell-spaces”.

Invited paper for the book Discrete Event Modeling & Simulation: Enabling Future
Technologies, Springer-Verlag 2001

[Weg02] Wegmann, A., “Strengthening MDA by Drawing from the Living Systems Theory”,

Workshop in Software Model Engineering, 2002

[Zei00] Zeigler, B., Kim, T., Praehofer, H., Theory of Modeling and Simulation: Integrating Discrete

Event and Continuous Complex Dynamic Systems. Academic Press, 2000

 262

[Zha05] Zhang, M., Zeigler, B.P., Hammonds, P., DEVS/RMI-An Auto-Adaptive and Reconfigurable
Distributed Simulation Environment for Engineering Studies, ITEA Journal, July 2005

Chapter 2

[Neb06] C Nebut, F Fleurey, YL Traon, J Jezequel, “Automatic Test Generation: A Use Case Driven

Approach”, IEEE Transactions on Software Engineering, 32(3), March 2006

 [Utt06] M Utting, A Pretshner, B Legeard, “A Taxonomy of Model-based Testing”, Working paper
April 2006, University of Waikato, Hamilton, New Zealand ISSN 1170-487X

[Mak06] E Mak, S Mittal, MH Hwang, “Automating Link-16 Testing using DEVS and XML”,

submitted to Journal of Defense Modeling and Simulation

[Pra05] “A Survey of Automated Test Case Generation”

[Tor05] R. Torkar, “A Literature Study of Software Testing and the Automated Aspects Thereof”. S-

CORE Scientific Report, University of Troliihattan/Uddevalla, Sweden, techreport.tex, Rev.
95, 2005-05-10 @ 08:24:27Z

[Zei05a] BP Zeigler, D Fulton, P Hammonds, J Nutaro, "Framework for M&S-Based System

Development and Testing in Net-centric Environment,", ITEA Journal, November 2005

[Zei05b] BP Zeigler, S Mittal, “Enhancing DoDAF with DEVS-Based System Life-cycle Process”,

IEEE International Conference on Systems, Man and Cybernetics, Hawaii, October 2005

[Jur04] N Juristo, AM Morano, S Vegas, “Reviewing 25 Years of Testing Technique Experiments”,

Empirical Software Engineering, Vol 9, 7-44, Kluwer Academic Publishers, Netherlands

[Off04] J. Offutt, A. Abdurazik, A. Baldini, “A Controlled Experiment Evaluation of Test Cases

Generated from UML Diagram”, 2004

[Sal04] A.M. Salem, L. Subramaniam, “Utlizing UML use cases for testing Requierements”,

International Conference on Software Eningeering research and Practice (SERP) 2004.

[Off03] J. Offutt, S. Liu, A. Abdurazik, P. Ammann, “Generating Test data from State Based

Specifications”, The Journal of Software Testing, Verfication and Reliability, 13(1):25-53.

[Sin03] A Sinha, CS Smidts, A Moran, “Enhanced Testing of Domain Specific Applications by

Automatic Extraction of Axioms from Functional Specifications”, In Proceedings of the 14th
International Symposium on Software Reliability Engineering, pages 181-190, 2003

[Sit03] RO Sinnott, “Architecting Specification for Test Case Generation”, In Proceedings of the 1st

International Conference on Software Engineering and Formal Methods, pages 24-32, 2003

[Tot03] A. Toth, D. Varro, A. Pararicca, “Model Level Automatic Test Generation for UML State-

charts”, Sixth IEEE workshop on Design and Diagnostics of Electronic Circuits and System,
(DDECS 2003)

 263

[Bau02] B Baudry, F Fleurey, JM Jzquel, YLTraon, “Genes and Bacteria for Automated Test Cases
Optimization in the .NET Environment”, IN Proceedings of the 13th International Symposium
on Software Reliability Engineering, Pages 195-206, 2002

[Bri02] L Briand, Y Labiche, “A UML-Based Approach to System Testing”, Journal of Software and

Systems Modeling, pp 10-42, 2002

[Bas02] F Basanieri, A Bertolino, E Marchetti, “The Cow_Suite Approach to Planning and Deriving

Test suites in UML Projects”, Proceedings of Fifth International Conference on UML: Model
Engineering Languages, Concepts, and Tools, pp. 383-397, 2002

[Cur02] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana, "Unraveling the
 Web services web: an introduction to SOAP, WSDL, and UDDI," IEEE Internet Computing,
 vol. 6, no. 2, pp. 86-93, March-April 2002.

[Leg02] B Legeard, F Peureux, M Utting, “Automated Boundary Testing form Z and B”, Proc. Conf.

Formal Methods, Europe, 2002

[Rie02] M Riebisch, I Philippow, M Gotze, “UML-Based Statistical Test-case Generation”, Proc. of

International Conference on Net.ObjectDays, Vol. 2591, pp. 394-411, 2002

[Sri02] J Srinivasan, N Leveson, “Automated Testing from Specifications”, IN Proceedings of the

21st Digital Avionics Systems Conference, Volume 1, pages 6A2-1—6A2-8, 2002

[Wil02] C.E. Williams, “Software Testing and UML”, International Symposium on Software

Reliability Engineering (ISSRE’99), Boca, Raton, November 1999

[Lin01] JC Lin, PL Yeh, “Automatic Test Data Generation for Path Testing using GAs”, Information

Sciences: An International Journal, 131(1-4):47-64, 2001

[Pas01] I Parissis, J Vassy, “Strategies for Automated Specification-Based Testing of Synchronous

Software”, In Proceedings of the 16th IEEE International Conference on Automated Software
Engineering, pages 364-367, 2001

[Rot01] G Rothermel, RJ Untch, C Chu, “Prioritizing Test Cases for Regression Testing”, IEEE

Transactions on Software Engineering, 17(10):929-948, 2001

[Tah01] L Tahat, B Vaysbur, B Koreland, A Bader, “Requirement-based Automated Black-box Test

Generation”, Proc. of 25th Annual International Computer Software and Applications
Conference, 2001

[Fro00] P Frohlich, J Link, “Automated Test Case Generation from Dynamic Models”, Proc. 14th

European Conference on Object Oriented Programming, 2000

[Lut00] P Lutsky, “Information Extraction from Documents for Automating Software Testing”,

Artificial Intelligence in Engineering, 14(1):63-69, 2000

[Off00] J. Offutt, A. Abdurazik, “Using UML Collaboration Diagrams for Static checking and Test

generation”, Third International Conference on UML, York, UK, October 2000

[Whi00] JA Whittaker, “What is Software Testing? And Why it is so Hard?”, IEEE Software, January

2000

 264

[Kim99] Y Kim, H Honh, S Cho, D Bae, S Cha, “Test Cases Generation from UML State Diagrams”,
IEEE Proc. Software, 146(4); 187-192, Aug 1999

[Off99a] J. Offutt, A. Abdurazik, “Generating Test cases from UML Specification”, Second

International Conference on the Unified Modeling Language (UML99), pp. 416-429, Fort
Collins, CO, October 1999

[Off99b] AJ Offut, S Liu, “Generating Test Data from SOFL Specifications”, Journal of Systems and

Software, 49(1):49-62, 1999

[Par99] RP Pargas, MJ Harrold, RR Peck, “Test Data Generation using Genetic Algorithms”,

Software Testing, Verification and Reliability, 9(4):263-282, 1999

[Rys99] J Ryser, M Glinz, “A Secnario-Based Approach to Validating and Testing Software Systems

using Statecharts”, Proc. 12th International Conference on Software and Systems Engineering
and their Applications”, Dec. 1999

[Sou99] D D’Souza and A Wills, “Interaction Models: Uses, Case Actions, and Collaborations”,

Objects, Components, and Frameworks with UML: The Catalysis Approach”, Addison-
Wesley, 1999

[Rys98] J Ryser, S Berner, M Glinz, “On the State of the Art in Requirement-Based Validation and

Test of Software”, technical report, Inst. Fur Informatic, Univ. of Zurich, 1998

[Coc97] A Cockburn, “Structuring Use cases with Goals”, Journal of Object Oriented Programming,

pp. 35-40, 56-62, Sept./Oct., Nov./Dec., 1997

[Mic97] CC Michael, G McGraw, M Schatz, CC Walton, “Genetic Algorithms for Dynamic Test Data

Generation”, In Proceedings of the 12th IEEE International Conference on Automated
Software Engineering, pages 307-308, 1997

[Eic96] NS Eickelmann, DJ Richardson, “An Evaluation of Software Test Architectures”,

Proceedings of 18th IEEE International Conference on Software Engineering, 1996

[Jon96] BF Jones, H Sthamer, DE Eyres, “Automatic Structural Testing Using Genetic Algorithm”,

Software Engineering Journal, 11(5):299-306, 1996

[Avr95] A Avritzer, EJ Weyuker, “The Automatic Generation of Load Test Suites and the Assessment

of the Resulting Software”, IEEE Transactions on Software Engineering, 21(9):705-716, 1995

[Dic93] J Dick, A Faivre, “Automating the Generation and Sequencing of Test Cases from

Modelbased Specifications”, Proceedings of International Symposium on Formal Methods,
Europe, 1993

[Mey92] B Meyer, “Applying Design by Contract”, Computer, 25(10):40-51, Oct 1992

[Ber91] G Bernot, MC Gaudeland, B Marre, “Software Testing Based on Formal Specifications: A

theory and a Tool”, Software Engineering Journal, 6(6):387-405, 1991

[Mye78] G.J. Myers, “The Art of Software Testing”, John Wiley and Sons, New York, NY, USA, 1978

[Mar] M.E.Vieira, M.S. Dias, D.J. Richardson, “Object-Oriented Specification-Based Testing Using

UML Statechart Diagrams”, University of California

 265

[Har] J. Hartmann, M. Viera, H. Foster, A. Ruder, “UML Based Test Generation and Execution”,

[Zei00] Zeigler, B., Kim, T., Praehofer, H., Theory of Modeling and Simulation: Integrating Discrete

Event and Continuous Complex Dynamic Systems. Academic Press, 2000

[Fuj99] Fujimoto, R.M., Parallel and Distribution Simulation Systems, Wiley, 1999

[Seo04] Seo, C., Park, S., Kim, B., Cheon, S., Zeigler, B.P., Implementation of Distributed High-

performance DEVS Simulation Framework in the Grid Computing Environment, Advanced
Simulation Technologies conference (ASTC), Arlington, VA, 2004

[Che04] Cheon, S., Seo, C., Park, S., Zeigler, B.P., Design and Implementation of Distributed DEVS

Simulation in a Peer to Peer Networked System, Advanced Simulation Technologies
Conference, Arlington, VA, 2004

[Zha05] Zhang, M., Zeigler, B.P., Hammonds, P., DEVS/RMI-An Auto-Adaptive and Reconfigurable

Distributed Simulation Environment for Engineering Studies, ITEA Journal, July 2005

[Kim04] Kim, K., Kang, W., CORBA-Based, Multi-threaded Distributed Simulation of Hierarchical

DEVS Models: Transforming Model Structure into a Non-hierarchical One, International
Conference on Computational Science and Its Applications, ICCSA, Italy 2004

[Van01] Vangheluwe, H., Bolduc, L., Posse, E. DEVS Standardization: some thoughts, Winter

Simulation Conference 2001

[Jan06] Janousek, V., Polasek, P., Slavicek, P., Towards DEVS Meta Language, In ISC Proceedings,

Zwinjnaarde, BE 2006, p 69-73 ISBN-90-77381-26-0

[Fis02] Fishwick, P., XML Based Modeling and Simulation Using XML for Simulation Modeling,

Proceedings of the 34th conf erence on Winter Simulation; exploring new frontiers, pg. 616-
622, 2002

[Lar02] Lara, J., Vangheluwe, H., AToM3 as a Meta-CASE environment (DFD to SC), 4th

International Conference on Enterprise Information Systems 2002

[Bad04] Badros, G. JavaML: a Markup Language for Java Source Code, Proceedings of the 9th

International World Wide Web Conference on Computer Networks: the international journal
of computer and telecommunication networking, pages 159-177

[Mar06] Martin, JLR, Mittal, S., Pena, MAL, Cruz, JM., A W3C XML Schema for DEVS Scenarios,

DEVS Symposium 2007

[Yun02] Yung-Hsim, W., Yao-Chung, L., A Modeling and Simulation Example Using DEVSW, 2002

[ACI06] ACIMS software site:

 http://www.acims.arizona.edu/SOFTWARE/software.shtml Last accessed Nov 2006

Chapter 3

[ACI06] http://www.acims.arizona.edu/SOFTWARE/software.shtml, last accessed Sep., 2006

 266

[Bro98] Brown, A.W., and K. C.Wallnau. 1998. The current state of CBSE. IEEE Software 15 (5): 37-

46.

[Bus98] Buss, A., Jackson, L. “Distributed Simulation Modeling: A Comparison of CORBA, HLA,

and RMI”. Proceedings of the 1998 Winter Simulation Conference. 1998.

[Che90] Chean, M., and L. A. B. Fortes. 1990.A taxonomy of reconfigurable techniques for fault-

tolerant processor arrays. IEEE Computer 23 (1): 55-69

[Che02] Chen, X. 2002. Dependence management for dynamic reconfiguration of component-based

distributed systems. In Proceedings of the 17th IEEE International Conference on Automated
Software Engineering, pp. 279-84.

[CJC06] Chairman, JCS Instruction 6212.01D “Interoperability and Supportability of Information

Technology and National Security Systems,” March 6, 2006. Available from
http://jitc.fhu.disa.mil/jitc_dri/pdfs/6212_01.pdf

[Cho01] Cho, Y., B.P. Zeigler, H.S. Sarjoughian, Design and Implementation of Distributed Real-

Time DEVS/CORBA, IEEE Sys. Man. Cyber. Conf., Tucson, Oct. 2001.

[Dic05] Department of Defense Interoperability Communications Exercise (DICE) 2005, available at:
 jitc.fhu.disa.mil/dice_conf/2005/initial/downloads..., last accessed Oct 2005

[Dod03a] DoDAF Deskbook

[Gen06] GENETSCOPE(Beta Version) Software User’s Manual, available from ACIMS center,

[Hux03] X. Hu, B. P. Zeigler, S. Mittal, “Dynamic Configuration in DEVS Component-based

Modeling and Simulation”, SIMULATION: Transactions of the Society of Modeling and
Simulation International, November 2003

[Hux05] X. Hu, and B.P. Zeigler, “ Model Continuity in the Design of Dynamic Distributed Real-Time

Systems”, accepted by IEEE Transactions On Systems, Man And Cybernetics— Part A:
Systems And Humans

[Kim90] T.G. Kim, C. Lee, E.R. Christensen, B.P. Zeigler, “System entity structuring and model base

management”, IEEE Transactions on Systems, Man and Cybernetics, Volume 20, Issue 5,
Sept-Oct., 1990

[Mit03d] S. Mittal, B. P. Zeigler, “Modeling/Simulation Architectures for Autonomous Computing”,

Autonomic Computing Workshop: The Next Era of Computing, January 2003

[Mit04c] Mittal, S., B. P. Zeigler, Phillip Hammonds, Mahesh Veena, “Network Simulation

Environment for Evaluating and Benchmarking HLA/RTI Experiments”, JITC Report, Fort
Huachuca, December 2004.

[Mit06a] Mittal.S., Mak, E. Nutaro, J.J., “DEVS-Based Dynamic Modeling & Simulation

Reconfiguration using Enhanced DoDAF Design Process”, special issue on DoDAF, Journal
of Defense Modeling and Simulation, Dec 2006

[Mit05b] Mittal, S., B. P. Zeigler, “Dynamic Simulation Control with Queue Visualization”, Summer

Computer Simulation Conference SCSC'05, Philadelphia, July 2005

 267

[Mit07e] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVSML: Automating DEVS Simulation over

SOA using Transparent Simulators”, DEVS Syposium, 2007

[Nut05] J. Nutaro, P. Hammonds, “Combining the Model/View/Control Design Pattern with the

DEVS Formalism to Achieve Rigor and Reusability in Distributed Simulation”, Journal of
Defense Modeling and Simulation, May 2005

[Sar01a] Sarjoughian, H., Cellier, F.E., Editors, Discrete Event Modeling and Simulation

Technologies: A Tapestry of Systems and AI-Based Theories and Methodologies, Spring-
Verlag, NY, 2001.

[Sar01b] H. Sarjoughian, B. Zeigler, and S. Hall, “A Layered Modeling and Simulation Architecture

for Agent-Based System Development”, Proceedings of the IEEE 89 (2); 201-213, 2001

[Tol03] A. Tolk, S. Solick, “Using the C4ISR Architecture Framework as a Tool to Facilitate V&V

for Simulation Systems within the Military Application Domain”, Simulation Interoperability
Workshop, Spring 2003

[Uhr93] Uhrmacher, A. M. 1993. Variable structure models: Autonomy and control—Answers from

two different modeling approaches. In Proceedings on AI, Simulation, and Planning in High
Autonomy Systems, pp. 133-9.

[Zei00] B. P Zeigler, H. Praehofer, T. G. Kim, “Theory of Modeling and Simulation”, Academic

Press, 2000University of Arizona. [Zei03] Zeigler, B.P., DEVS Today: Recent
Advances in Discrete Event-based Information Technology, MASCOTS Conference, 2003

[Zei05] B. P. Zeigler, D. Fulton, P. Hammonds, J. Nutaro, "Framework for M&S-Based System

Development and Testing in Net-centric Environment,” , ITEA Journal, Volume 26, Number
3, October 2005

[Zei85] Zeigler, B. P., and R. G. Reynolds. 1985. Towards a theory of adaptive computer

architectures. In Proceedings of the 5th International Conference on Distributed Computing
Systems, pp. 468-75.

[Zei93] Zeigler, B. P., and A. Louri. 1993.A simulation environment for intelligent machine

architecture. Journal of Parallel and Distributed Computing 18:77-88.

Chapter 4

[bpm] Business Process Modeling Notation (BPMN) www.bpmn.org

[bpel] Business Process Execution Language (BPEL) http://en.wikipedia.org/wiki/BPEL

[omg] Object Modeling Group (OMG) www.omg.org

[rat] IBM Rational Software www.rational.com

[spa] Enterprise Architect http://www.sparxsystems.com.au/

[vis] Microsoft Visio: http://office.microsoft.com/en-us/visio/default.aspx

 268

[Atk04] K. Atkinson, “Modeling and Simulation Foundation for Capabilities Based Planning”,

Simulation Interoperability Workshop Spring 2004

[CJC04] Chairman, JCS Instruction 3170.01D “Joint Capabilities Integration and Development

System,” 12 March 2004.

[CJC06] Chairman, JCS Instruction 6212.01D “Interoperability and Supportability of Information

Technology and National Security Systems,” March 8, 2006

[Dan04] F. Dandashi, H. Ang., C. Bashioum, “Tailoring DoDAF to Support a Service Oriented

Architecture”, White paper, Mitre Corp, December 2004

[Dod03a] DoDAF Working Group , DoD Architecture Framework Ver. 1.0 Vol. III: Deskbook, DoD,

Aug. 2003.

[Dod03b] DOD Instruction 5000.2 “Operation of the Defense Acquisition System,” 12 May 2003.

[Dod04c] DoD Architecture Framework Working Group 2004, DOD Architecture Framework Ver. 1.0

Volume 1 Definitions and Guidelines, 9 February 2004, Washington, D.C.

[Dod05c] DoD Metadata Registry and Clearinghouse,
 http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal/, last accessed Jan 9, 2005

[Hux04] X. Hu, and B.P. Zeigler, “ Model Continuity in the Design of Dynamic Distributed Real-Time

Systems”, accepted by IEEE Transactions On Systems, Man And Cybernetics— Part A:
Systems And Humans

[Lee05] J. Lee, M. Choi, J. Jang. Y, Park, J. Jang,, B. Ko, “The Integrated Executable Architecture

Model Development by Congruent Process, Methods and Tools”, The Future of C2, 10th
International Command and Control Research and Technology Sysmposium

[Mit06a] Saurabh Mittal, “Extending DoDAF with Bifurcated Model-continuity Based Life-cycle

Methodology,” Journal of Defense Modeling and Simulation, Vol.3, No. 2., 2006.

[Ros04] J.D. Rosen, J.L. Parenti, J. Hamilton, “The Domain of Interoperability in the US Department

of Defense”, Chapter 2, Joint Command and Control Interoperability: Cutting the Guardian
Knot”. Available at: http://www.eng.auburn.edu/users/hamilton/security/spawar/ .

[Sar01] Discrete Event Modeling and Simulation Technologies: A Tapestry of Systems and AI-Based

Theories and Methodologies Editors: Hessam S. Sarjoughian , François E. Cellier, Spring-
Verlag, NY, 2001.

[Tel04] C. Kobryn, C. Sibbald, “Modeling DoDAF Compliant Architectures: The Telelogic Approach

for complying with DoD Architectural Framework”, White paper, October 2004.

[Wad02] L.W Wagenhals, S. Haider, A.H.Levis, “Synthesizing Executable Models of Object Oriented

Architectures”, Workshop on Formal Methods Applied to Defense Systems, Adelaide,
Australia, June 2002

[Zei00] B. P Zeigler, H. Praehofer, T. G. Kim, “Theory of Modeling and Simulation”, Academic

Press, 2000

 269

[Zei03] B. P.Zeigler, DEVS Today: Recent Advances in Discrete Event-based Information
Technology, MASCOTS Conference, 2003

[Zei05a] B.P. Zeigler, S. Mittal, “Enhancing DoDAF with DEVS-Based System Life-cycle Process”,

IEEE International Conference on Systems, Man and Cybernetics, Hawaii, October 2005

[Zei05b] B. P. Zeigler, D. Fulton, P. Hammonds, J. Nutoro, "Framework for M&S-Based System

Development and Testing in Net-centric Environment,", ITEA Journal, November 2005

Chapter 5

[Mit06b] Saurabh Mittal, Eddie Mak, and James Nutaro, “DEVS-Based Dynamic Model
Reconfiguration and Simulation Control in the Enhanced DoDAF Design Process,” Journal of
Defense Modeling and Simulation, Vol.3, No. 4., 2006.

[Mak06] Eddie Mak, “Automated Testing using XML and DEVS,” http://www.acims.arizona.edu, last

accessed June 30, 2006

[Nap97] Technology for the United States Navy and Marine Corps, 2000-2035 Becoming a 21st-

Century Force: Volume 9: Modeling and Simulation (1997), National Academy Press.

[Nap02] Modeling and Simulation in Manufacturing and Defense Acquisition: Pathways to Success

(2002), National Academy Press.

[Nut05] James Nutaro, Phil Hammonds, “Combining the Model/View/Control Design Pattern with the

DEVS Formalism to Achieve Rigor and Reusability in Distributed Simulation,” Journal of
Defense Modeling and Simulation: Applications, Methodology, Technology, pp. 19-28, Vol.
1, No. 1, 2005

[Zei05] B.P. Zeigler, D. Fulton, P. Hammonds, J. Nutaro, “Framework for M&S-Based System

Development and Testing in Net-centric Environment,” ITEA Journal of Test and Evaluation,
Vol. 26, No. 3, 2005.

Chapter 6

[ACI06] ACIMS software site:

http://www.acims.arizona.edu/SOFTWARE/software.shtml Last accessed Nov 2006

[Bad05] Badros, G. JavaML: a Markup Language for Java Source Code, Proceedings of the 9th

International World Wide Web Conference on Computer Networks: the international journal
of computer and telecommunication networking, pages 159-177

[Cho01] Cho, Y., B.P. Zeigler, H.S. Sarjoughian, Design and Implementation of Distributed Real-

Time DEVS/CORBA, IEEE Sys. Man. Cyber. Conf., Tucson, Oct. 2001.

[DML] DEVSML – A Web Service Demonstration http://150.135.218.205:8080/devsml/

[Hux03] Hu X., A Simulation Based Software Development Methodology for Distributed Real-time

Systems, PhD Dissertation, Fall 2003

 270

[Jan06] Janousek, V., Polasek, P., Slavicek, P., Towards DEVS Meta Language, In ISC Proceedings,

Zwinjnaarde, BE 2006, p 69-73 ISBN-90-77381-26-0

[Mit06a] Mittal.S., Mak, E. Nutaro, J.J., “DEVS-Based Dynamic Modeling & Simulation

Reconfiguration using Enhanced DoDAF Design Process”, special issue on DoDAF, Journal

[Mit07e] Mittal, S., Risco-Martin, J.L., Zeigler, B.P. “DEVSML: Automating DEVS Simulation over

SOA using Transparent Simulators”, DEVS Syposium, 2007

[OPML] OOPML: http://xml.coverpages.org/oopml.html

[OXML] o:XML: www.o-xml.org

[Sar00] Sarjoughian, H.S., B.P. Zeigler, "DEVS and HLA: Complimentary Paradigms for M&S?"

Transactions of the SCS, (17), 4, pp. 187-197, 2000

[Sun] http://java.sun.com/developer/technicalArticles/WebServices/soa/

[Wai01] Wainer, G., Giambiasi, N., Timed Cell-DEVS: modeling and simulation of cell-spaces”.

Invited paper for the book Discrete Event Modeling & Simulation: Enabling Future
Technologies, Springer-Verlag 2001

[WSD] WSDL http://www.w3.org/TR/wsdl

[XML] XML: http://www.w3.org/XML/

[Zei00] Zeigler, B., Kim, T., Praehofer, H., Theory of Modeling and Simulation: Integrating Discrete

Event and Continuous Complex Dynamic Systems. Academic Press, 2000of Defense
Modeling and Simulation, Dec 2006

[Zha05] Zhang, M., Zeigler, B.P., Hammonds, P., DEVS/RMI-An Auto-Adaptive and Reconfigurable

Distributed Simulation Environment for Engineering Studies, ITEA Journal, July 2005

Chapter 7

[ACI06] ACIMS software site:
http://www.acims.arizona.edu/SOFTWARE/software.shtml Last accessed Nov 2006

[Atk04] K. Atkinson, “Modeling and Simulation Foundation for Capabilities Based Planning”,

Simulation Interoperability Workshop Spring 2004

[Car05] Carstairs, D.J., “Wanted: A New Test Approach for Military Net-Centric Operations”, Guest

Editorial, ITEA Journal, Volume 26, Number 3, October 2005

[CJC04] Chairman, JCS Instruction 3170.01D “Joint Capabilities Integration and Development

System,” 12 March 2004.

[CJC06] Chairman, JCS Instruction 6212.01D “Interoperability and Supportability of Information

Technology and National Security Systems,” March 8, 2006

 271

[DML] DEVSML – A Web Service Demonstration http://150.135.218.205:8080/devsml/

[Dod03a] DoDAF Working Group , DoD Architecture Framework Ver. 1.0 Vol. III: Deskbook, DoD,

Aug. 2003.

[Dod03b] DOD Instruction 5000.2 “Operation of the Defense Acquisition System,” 12 May 2003.

[Dun07] DUNIP: A Prototype Demonstration http://www.acims.arizona.edu/dunip/dunip.avi

[Hux04] X. Hu, and B.P. Zeigler, “ Model Continuity in the Design of Dynamic Distributed Real-Time

Systems”, accepted by IEEE Transactions On Systems, Man And Cybernetics— Part A:
Systems And Humans

[Weg02] Wegmann, A., “Strengthening MDA by Drawing from the Living Systems Theory”,

Workshop in Software Model Engineering, 2002

[xDEVS] XDEVS web page: http://itis.cesfelipesegundo.com/~jlrisco/xdevs.html

Chapter 8

[Buc04] J.B. Buchheister, “Net-centric Test & Evaluation”, Command and Control Research and
Technology Symposium: The Power of Information Age Concepts and Technologies, 2004,
available at: www.dodccrp.org/events/2004/CCRTS_San_Diego/CD/papers/208.pdf, last
accessed October 2005

[CJC06] Chairman, JCS Instruction 6212.01D “Interoperability and Supportability of Information

Technology and National Security Systems,” March 8, 2006

[Gen06] GENETSCOPE(Beta Version) Software User’s Manual, available from ACIMS center,

University of Arizona.

[JITC] JITC reports for SCOPE command for year 2005, JITC, latest data as of Oct 2005.

[Nut05] James Nutaro, Phil Hammonds, “Combining the Model/View/Control Design Pattern with the

DEVS Formalism to Achieve Rigor and Reusability in Distributed Simulation,” Journal of
Defense Modeling and Simulation: Applications, Methodology, Technology, pp. 19-28, Vol.
1, No. 1, 2005

[Mak06] Eddie Mak, “Automated Testing using XML and DEVS,” http://www.acims.arizona.edu, last

accessed June 30, 2006

[Mit06a] Saurabh Mittal, “Extending DoDAF with Bifurcated Model-continuity Based Life-cycle

Methodology,” Journal of Defense Modeling and Simulation, Vol.3, No. 2., 2006.

[Mit06b] Mittal.S., Mak, E. Nutaro, J.J., “DEVS-Based Dynamic Modeling & Simulation

Reconfiguration using Enhanced DoDAF Design Process”, special issue on DoDAF, Journal
of Defense Modeling and Simulation, Dec 2006

[Tel04] C. Kobryn, C. Sibbald, “Modeling DoDAF Compliant Architectures: The Telelogic Approach

for complying with DoD Architectural Framework”, White paper, October 2004.

 272

[Zin04] A. W. Zinn, “The Use of Integrated Architectures to support Agent Based Simulation: An
Initial Investigation”, MS Thesis, AFIT/GSE/ENY/04-M01, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 2004

Chapter 9

[Zdu02] Zdun, U., Dustdar, S. (2007). Model-Driven Integration of Process-Driven SOA Models.
International Journal of Business Process Integration and Management, Inderscience,
forthcoming.

[Hiet95] Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B., SCR: A Toolset for Specifying and

Analyzing Requirements. Proceedings of the Tenth Annual Conference on Computer
Assurance (COMPASS '95), Gaithersburg, MD, June 25-29, 1995, pp. 109-122

