
Modelling and simulation of dynamic structure

discrete-event systems

Ernesto Posse

School of Computer Science

McGill University

A thesis submitted to McGill University

in partial ful�lment of the requirements of the degree of

Doctor of Philosophy in Computer Science

Copyright c©Ernesto Posse, 2008

February, 2008

Abstract

Discrete-event modelling and simulation has become an established approach to the

description and study of complex dynamic systems. In recent years there has been

an increased interest in modelling complex systems whose structure changes over

time. Such systems are generally more di�cult to understand and analyze than

systems with a static structure. These challenges can be met by the development

of appropriate modelling formalisms based on a solid foundation and with suitable

supporting tools. In this thesis we explore an approach to modelling and simulation

of discrete-event systems based on process algebra.

The thesis consists of two parts. In the �rst part we study the so-called Discrete-

EVent System Speci�cation formalism (DEVS [60, 58, 59].) We develop an alternative

theoretical foundation for DEVS based on Structural Operational Semantics, focus-

ing on determinism and compositionality properties. We also develop supporting

tools for DEVS, in particular a visual modelling environment and code generator for

standard DEVS models as well as cellular DEVS systems.

In the second part we develop a modelling language named kiltera, based on process

algebras and incorporating elements from discrete-event modelling. This language,

based on the π-calculus [28, 27], allows us to describe and reason about timed,

mobile and distributed discrete-event systems in a single framework. We develop

a theoretical foundation based on Structural Operational Semantics and establish

fundamental properties concerning time-determinism, continuity, compositionality

and legitimacy. We build a simulator for the language which supports both sequential

and distributed execution of models, based on a variant of the Time Warp algorithm

[22]. Finally we apply this language to the modelling and simulation of tra�c.

Résumé

La modélisation et la simulation à événements discrets constituent une approche

bien établie pour la description et l'étude des systèmes dynamiques complexes. Ces

dernières années, il y a eu un regain d'intérêt pour la modélisation des systèmes

complexes à structure dynamique. Ces systèmes sont généralement plus di�ciles à

comprendre et à analyser que les systèmes ayant une structure statique. Cette analyse

et cette compréhension peuvent être développées à l'aide de formalismes de modéli-

sation fondés sur une base solide et des outils appropriés. Dans cette thèse, nous

explorons une approche de modélisation et de simulation des systèmes à événements

discrets fondée sur l'algèbre de processus.

Ce document se compose de deux parties. Dans la première partie, nous étudions ce

que l'on appelle le formalisme Discrete-EVent System Speci�cations (DEVS.) Nous

développons un autre fondement théorique pour DEVS fondée sur la sémantique

opérationnelle structurelle, en mettant l'accent sur les propriétés de déterminisme et

de compositionalité. Nous développons également des outils pour modélisateurs, en

particulier un environnement de modélisation visuelle et générateur de code pour les

modèles DEVS standards ainsi que des systèmes cellulaires DEVS.

Dans la deuxième partie, nous développons un langage de modélisation nommé kil-

tera, en nous fondant sur les algèbres de processus et en incorporant des éléments

de modélisation à événements discrets. Ce langage, en se fondant sur le π-calcul,

nous permet de décrire et de raisonner sur les systèmes mobiles, distribués et au

temps-réel, à événements discrets, dans un cadre conceptuel unique. Nous dévelop-

pons une base théorique fondée sur la sémantique opérationnelle structurelle et nous

établissons des propriétés fondamentales concernant le déterminisme-temps, la con-

tinuité, la compositionalité et la légitimité. Nous construisons un simulateur pour le

langage qui supporte à la fois l'exécution séquentielle et distribuée de modèles, en

utilisant une variante de l'algorithme Time Warp. En�n, nous appliquons ce langage

à la modélisation et à la simulation de circulation routière.

Acknowledgements

I would like to thank my supervisor Hans Vangheluwe for his guidance, his help

and his �nancial support thruoughout these years. I also like to thank the School

of Computer Science for providing an enriching research environment, for giving me

the opportunity to teach and for �nancial support. I would like to thank my friend

Alexandre Muzy for our numerous discussions and his collaboration, in particular

in the development of applications for kiltera. To former students of COMP-522

Modelling and Simulation, especially Alexandre Denault and Miriam Zia for testing

early versions of kiltera helping me improve it. To the administrative sta� for all their

help over the years. To our great system's sta�, particularly Andrew Bogecho and

Ron Simpson. To my friend William Renner, for our stimulating discussions, and his

ideas about languages. And special thanks to my familly, in particular to my mother,

Pilar Posada for her constant encouragement and support.

Contents

1 Introduction 1

2 Background 9

2.1 Discrete-event modelling: The DEVS formalism 9

2.2 Process Algebra . 12

2.2.1 CCS . 13

2.2.2 The π-calculus . 16

I DEVS: theory and tools 21

3 An operational semantics for DEVS 23

3.1 A Labelled Transition System for DEVS 23

3.1.1 Events and con�gurations . 24

3.1.2 Transitions for atomic components 25

3.1.3 Transitions for coupled components 25

3.1.4 Example . 27

3.2 Execution . 29

3.3 Input/Output behaviour . 30

3.4 Determinism . 31

3.5 Compositionality . 33

4 DEVS tools 39

4.1 A visual editor and code generator 39

4.1.1 PythonDEVS and the generated simulators 41

4.1.2 Meta-modelling . 42

4.1.3 Model transformation . 44

4.1.4 Code generation . 45

4.2 Modelling cellular systems . 46

4.2.1 Generating a generic cellular space 47

4.2.2 Transformation into a cellular DEVS model 50

ii CONTENTS

II kiltera: theory and tools 51

5 A modelling language: kiltera 53

5.1 Introduction . 53

5.1.1 Processes . 53

5.1.2 Distributed processes . 69

5.2 Extensions . 71

5.3 Examples . 78

5.3.1 Digital Circuits . 78

5.3.2 Adaptive server networks . 82

5.4 DEVS-like models in kiltera . 88

6 Semantics of kiltera 93

6.1 Time . 93

6.1.1 Timed-Labelled Transition Systems 94

6.2 The κλτ -calculus . 96

6.2.1 Syntax . 96

6.2.2 Operational Semantics . 99

6.3 Mapping kiltera onto the κλτ -calculus 114

7 Semantics of distributed kiltera 129

7.1 The Dκλτ -calculus . 129

7.1.1 Syntax . 129

7.1.2 Operational Semantics . 130

7.2 Mapping kiltera onto the Dκλτ -calculus 139

7.3 Embedding the Dκλτ -calculus into the κλτ -calculus 139

8 Properties of kiltera 143

8.1 Time determinacy and time continuity 143

8.2 Time-bisimulation . 144

8.3 Legitimacy . 149

9 Simulating kiltera models 155

9.1 Simulator organization . 156

9.1.1 Visitors: a generic kiltera processing framework 156

9.1.2 Translators . 158

CONTENTS iii

9.1.3 Simulator classes . 159

9.1.4 Event-schedulers . 161

9.1.5 Trace-handlers . 164

9.1.6 Name environments and values 165

9.2 Event-driven sequential execution . 168

9.2.1 The simulation algorithm . 169

9.2.2 Interaction: events and event-listeners 171

9.2.3 Deterministic simulation . 175

9.2.4 Real-time execution . 176

9.2.5 Advantages of event-scheduling 176

9.3 Distributed simulation . 177

9.3.1 Time-warp . 177

9.3.2 Communications infrastructure 188

10 Case study: tra�c 193

10.1 Overview . 193

10.1.1 General requirements and assumptions 194

10.1.2 Architecture . 195

10.1.3 The core model . 195

10.1.4 Conventions and implementation notes 197

10.2 Roads . 198

10.2.1 Road stretches . 200

10.2.2 Road segments . 200

10.3 Cars . 205

10.4 Buildings . 214

10.4.1 Connecting buildings and roads 215

10.4.2 Reaching a destination . 217

10.4.3 Residences and business buildings 219

10.5 Intersections . 220

10.5.1 Basic intersections . 220

10.5.2 Turning at intersections . 222

10.5.3 Other intersection types . 222

10.6 Tra�c lights . 225

10.6.1 Simple tra�c lights . 226

iv CONTENTS

10.6.2 Coordinator and composite tra�c lights 226

10.6.3 Intersections with tra�c lights 227

10.7 Quadrant entries and exits . 229

10.8 Experimental results . 231

10.9 Application of kiltera's theory . 233

11 Conclusions 237

11.1 Comparing DEVS and kiltera . 237

11.2 Comparing kiltera and process algebras 239

11.3 Summary of contributions . 241

11.4 Future work . 242

11.5 Final remarks . 243

A Basic de�nitions 245

A.1 Relations, functions, equivalence, partitions 245

A.2 Indexed sets and sequences . 250

A.3 Ordered sets and induction . 250

A.4 Signatures, terms, substitutions . 252

B Transition System Speci�cations 255

B.1 Labelled Transition Systems . 255

B.2 Simulation and Bisimulation . 257

B.3 Term-Deduction Systems . 263

B.4 Transition System Speci�cations . 266

B.5 Well-de�ned transition systems . 268

B.6 Bisimilarity as congruence . 269

C Compositionality 273

C.1 Kernels and canonical projections . 274

C.2 Contexts . 277

C.3 Congruence . 279

C.4 Compositionality as homomorphism 282

C.5 From compositionality to congruence 283

C.6 From congruence to compositionality 285

C.7 Summary . 285

CONTENTS v

D Proofs of DEVS properties 287

D.1 Execution . 287

D.2 Determinism . 287

D.3 Compositionality . 291

E Proofs of kiltera's properties 299

E.1 Structural congruence . 299

E.2 Derived rules . 299

E.3 Elementary timing properties . 300

E.4 Time determinacy . 301

E.5 Time continuity . 302

E.6 Time bisimulation . 305

E.7 Legitimacy . 316

Bibliography 323

vi CONTENTS

List of Figures

2.1 CCS operational semantics. 15

2.2 Structural congruence for the π-calculus. 17

2.3 π-calculus operational semantics. 17

3.1 A coupled component . 28

4.1 A coupled DEVS model. 40

4.2 Another coupled DEVS model. 41

4.3 Generated code for model A. 42

4.4 Generated code for model C. 43

4.5 The DEVS meta-model. 43

4.6 A typical code generation rule. 46

4.7 The process of generating a cellular DEVS model. 47

4.8 The cellular-spaces environment. 47

4.9 The cellular-DEVS environment. 48

4.10 Cellular-spaces meta-model. 48

4.11 Graph-grammar for cellular-space generation. 49

4.12 From generic to DEVS cellular spaces. 50

5.1 State-transition diagrams for a triggering process and a listener. . . . 54

5.2 External choice. 56

5.3 Sequential transitions. 56

5.4 A process de�nition. 57

5.5 Parallel composition. 58

5.6 Connected processes. 59

5.7 Hyper-edges: channels connecting multiple processes. 60

5.8 A simple loop. 60

5.9 Link mobility. 68

5.10 Link mobility. 68

5.11 Time consistency across sites. 70

5.12 Site names as �rst-class values. 72

viii LIST OF FIGURES

5.13 Logic gates. 78

5.14 Inverter model. 78

5.15 Or-gate model. 79

5.16 Half-adder. 80

5.17 Half-adder model. 80

5.18 Full-adder. 80

5.19 Full-adder model. 81

5.20 Ripple-carry adder. 81

5.21 Ripple-carry adder model. 81

5.22 Server nodes. 82

5.23 Node model. 83

5.24 Non-empty bu�ers. 83

5.25 Empty bu�ers. 84

5.26 Idle servers. 85

5.27 Dispatchers. 85

5.28 Asking for help. 86

5.29 Move handlers. 87

5.30 Job generators. 87

5.31 A coupled DEVS model. 91

6.1 Expressions. 96

6.2 Patterns. 97

6.3 Process terms. 97

6.4 Name substitution over process terms. 103

6.5 Axioms for structural congruence of processes. 106

6.6 Process transitions. 109

6.7 Process evolution. 110

6.8 Joining processes. 125

6.9 Lasting triggers in terms of transient triggers. 127

7.1 Network terms. 130

7.2 Axioms for structural congruence of distributed processes. 132

7.3 Network transitions. 135

7.4 Network evolution. 135

7.5 Mapping Dκλτ process terms to κλτ process terms. 141

LIST OF FIGURES ix

7.6 Mapping Dκλτ network terms to κλτ process terms. 141

8.1 Time bisimulation. 147

9.1 General simulator structure. 156

9.2 Generic kiltera processor structure. 157

9.3 kiltera AST nodes class diagram. 158

9.4 Visitor class hierarchy. 159

9.5 Translators. 160

9.6 Simulators and event schedulers. 160

9.7 Trace-handlers. 161

9.8 Simulator as observer and observable. 161

9.9 Clocks. 162

9.10 Event queue: list of time-slots. 163

9.11 Event-queue class diagram. 163

9.12 Trace-handlers. 165

9.13 Name environments. 166

9.14 Values. 166

9.15 An environment. 167

9.16 Simulation events. 168

9.17 Communication events. 171

9.18 Time-warp scheduler. 178

9.19 Moving a process to a remote site and ensuring delivery of inter-site

messages. 188

9.20 Communications infrastructure and the simulator. 189

9.21 Distributed simulators. 190

9.22 Clients . 191

9.23 Servers . 192

10.1 City generation and simulation tool-set. 196

10.2 City layout generator widget. 196

10.3 Link diagram. Solid lines represent static links, while dotted lines rep-

resent dynamic links. 197

10.4 Moving car between road segments. 199

10.5 A two-segment road stretch with a moving car. 199

x LIST OF FIGURES

10.6 Interface for road segments and road stretches. 200

10.7 Road stretch model. 200

10.8 Structure of a road segment with two cars in it. 201

10.9 Road segment model. 201

10.10Car receptor of a road segment. 202

10.11Manager of a road segment. 203

10.12Car handlers. 205

10.13Manager of a road segment. 205

10.14Car speci�cation. 206

10.15Car's life-cycle: modes diagram. 207

10.16Car start-up process. 207

10.17Car main loop. 208

10.18Waiting for an observation. 209

10.19Adapting the car's speed. 210

10.20Updating the speed when there are no cars ahead. 211

10.21Adapting speed with no cars ahead. (Image taken from [50].) 212

10.22Adapting speed with cars ahead. (Image taken from [50].) 212

10.23Updating the speed when there is a car ahead. 213

10.24Scheduling the car's departure. 213

10.25Stopping on red. 214

10.26Waiting for green. 215

10.27Building-road links. 215

10.28Road segments re�ned: exits. 216

10.29Merging streams. 217

10.30Forwarders. 217

10.31Revised road stretch. 218

10.32Scheduling a car's departure re�ned: reaching a destination. 219

10.33Business buildings. 220

10.34Basic intersection. 220

10.35Intersection car handlers. 221

10.36Turning at intersections. 223

10.37Composite intersections. 223

10.38Incomplete intersections. 224

10.39Rotations of basic intersections. 224

LIST OF FIGURES xi

10.40Rotations' internal links: rotated intersection in terms of a basic in-

tersection. 224

10.41Double intersections. 225

10.42Green mode of a tra�c light. 226

10.43Tra�c light coordinator. 227

10.44Composite tra�c light. 227

10.45Checking the tra�c light's state and answering queries. 228

10.46A tiny city. 229

10.47The main module for the city in Figure 10.46 230

10.48Quadrant exit nodes. 230

10.49Quadrant entry nodes. 230

10.50A small city. 231

10.51Sample trace for the small city model. 232

10.52Sample �ltered trace. 234

10.53Statistics gathered for the small city example. 235

xii LIST OF FIGURES

1
Introduction

Modelling is an activity common to all sciences and engineering disciplines. From

Physics to Biology to Economics, we build models to be able to understand the real

world, and in some cases, to control it. We use models to comprehend past events,

and to predict or ensure future behaviour. Scienti�c disciplines use models to explain

phenomena. Engineering disciplines also use models to design or control artifacts.

At its core, a model is a description of some entity or system. A model often describes

a system's structure and/or its behaviour. In order to compose such a description,

one needs a language or formalism in which to express models. Di�erent �elds rely

on di�erent languages, ranging from informal descriptions in natural language (e.g.

English, French, etc.) to formal descriptions in the language of mathematics.

There is a plethora of modelling languages with di�erent scopes and application

domains. Well-de�ned modelling languages greatly facilitate the design and analysis

of large models of complex systems. A modelling language, with a properly-de�ned

semantics ensures an unambiguous description of the system of interest, and supports

the analysis of the object of study. In particular, a formal semantics allows us to use

the tools of mathematics to reason about the systems of interest. Sometimes, however,

the complexity of a model is such that direct application of purely analytical tools is

impractical. In such cases, simulation becomes an indispensable tool to understand

the system being modelled. Nevertheless, simulation and analytical tools are not

mutually exclusive. They provide complementary approaches to our understanding

of the part of the world that we want to model.

A modelling formalism must be able to tackle the complexity of systems it intends to

model. Complexity can arise for di�erent reasons such as the size of the system or the

apparent or real lack of regularity in its behaviour. One such reason is the diversity in

a system's components. When the parts of a system are too dissimilar, it is unlikely

that we have a unique modelling language that can faithfully capture the nature of

all of its components. In that case it is often preferable to use di�erent modelling

formalisms for each part. Multi-formalism modelling has as objective the de�nition

of models which combine sub-models of di�erent formalisms. The main challenge is

2 CHAPTER 1. INTRODUCTION

to de�ne what is a coherent combination of models from di�erent formalisms. One

approach to this problem is model transformation. By choosing a �base� formalism

with su�cient expressive power and providing semantics-preserving translations from

other formalisms into the base formalism, we obtain a means to meaningfully combine

models from di�erent formalisms.

One question arises: what is an appropriate �base� formalism? It must be a formalism

rich enough and expressive enough to be able to capture the semantics of a wide

variety of languages, at least within a certain �world view.� But it also must be simple

enough so that analyzability is not compromised and for which we can build support

tools (modelling environments, simulators, model checkers, etc.) It has been proposed

[51] that discrete-event modelling formalisms, and in particular the Discrete EVent

System speci�cation formalism [60, 58, 59] could serve as a common denominator for

multi-formalism modelling of complex dynamic systems.

The DEVS formalism has many qualities that suggest it is a suitable candidate

for a base formalism. Based on Systems Theory, it adopts an event-oriented view

of dynamic systems where the timing of events plays a determinant role in system

behaviour, thus making it suitable to capture the timed behaviour of systems. Its

view of system behaviour in relation to time contrasts with both continuous-time

systems and discrete-time systems. The former are useful to describe continuous

changes in systems but are less useful to describe discrete state changes. Furthermore,

continuous-time systems cannot be directly simulated by digital computers. Rather

continuous-time models must be �rst discretized. On the other hand, discrete-time

systems can deal with discrete state changes, but by discretizing time, not only

accuracy is lost, but also modelling �delity and expressiveness as well as simulation

e�ciency are compromised. Modelling �delity and expressiveness are compromised

because it imposes an arti�ce on models which does not necessarily correspond with

the reality being modelled. It forces the modeller to adapt to the discrete nature of

time. Furthermore, simulation of discrete-time models wastes time whenever events

occur far apart as the simulator goes through many idle iterations. On the other

hand, discrete-event modelling, and the DEVS formalism in particular, represent

a reasonable compromise. Instead of imposing an arti�cial structure to the nature

of time and making state changes according to this arti�ce, state changes occur

according to events in the system. The result is a much more natural approach to

modelling, which furthermore, does not require idle iterations during simulation.

Another fundamental feature of DEVS which makes it an attractive choice, is its

approach to modular design where models are built by hierarchical composition.

Such modularity is essential to tackle system complexity.

Is DEVS the best possible �base� formalism for multi-formalism modelling? By no

means it is clear that DEVS is the most fundamental formalism. This is an open

3

question which we explore in this thesis.

One of the most fundamental limitations of the DEVS formalism is that it imposes a

�xed structure on its models. This is, the hierarchical composition of a model and the

connectivity of its components is �xed and does not change with time. But system

structure is not always static. In many �elds we �nd examples of systems whose

structure changes with time. In Telecommunications we have mobile phone networks.

In Chemistry and Biology, we can see anything from molecules to full ecosystems

as systems whose structure evolves over time. In Economics and Business Process

Modelling organizations and their processes evolve to adapt to changing markets.

A di�erent approach to modelling composite dynamic systems comes from concur-

rency theory. In the early days of computing the focus was on sequential compu-

tation, but with the advent of time-sharing systems on one hand, and parallel and

distributed systems on the other, concurrency attracted much attention. The design

of programming languages with concurrency features lead to the question of seman-

tics. In the late seventies and early eighties, new kinds of mathematical models of

concurrency were proposed. C.A.R. Hoare developed his calculus of Communicating

Sequential Processes [21, 47], or CSP for short, with a theory to reason about concur-

rent systems based on the study of traces of observable events. Simultaneously, Robin

Milner developed his Calculus of Communicating Systems [25, 26], or CCS for short.

Though similar to CSP, the theory of CCS nevertheless focuses on the operational

semantics of the language and in particular on the notion of behavioural equivalence.

Other proposals followed, most notoriously by Bergstra and Klop, who coined the

term process algebra. They de�ned the Algebra of Communicating Processes [8], or

ACP. Their approach focuses on equational reasoning of processes.1

While these developments have been regarded as foundations for the design of pro-

gramming languages focusing on concurrent software systems, their object of study

intersects with the more general Systems Theory. The central concept is that of a

process. A process is a system with some behaviour. Each of these languages de�ne

syntax to describe processes. The processes these languages study can be described

as automata: each term in the language represents an automaton. But unlike classic

Automata Theory, interaction between automata takes the center stage. Therefore,

process composition is an essential operation. Similarly, Systems Theory studies en-

tities with dynamic behaviour, and more speci�cally the composition of systems to

form larger systems.

In process algebras system structure is represented by composition of processes and

interconnection by shared events or communication channels. One process algebra,

the π-calculus [28, 27] was proposed to explicitly represent and reason about system

whose structure changes dynamically. In the π-calculus, not only processes can be

1For a brief history of Process Algebra see [2].

4 CHAPTER 1. INTRODUCTION

created and destroyed dynamically but the very network of communication channels

can change. This is achieved by making channels �rst-class values, so they can be

transmitted as messages between processes.

Is the π-calculus an appropriate choice as a base formalism for multi-formalism mod-

elling? The π-calculus, as most process algebras, abstracts away the notion of time.

But this goes against the criteria for a base formalism to be able to capture the

semantics of a wide variety of languages. While the π-calculus is very expressive, its

lack of an explicit notion of time imposes an unrealistic constraint in the kind of

systems we can model.

Some variants of the π-calculus which extend it with a notion of time have been

proposed (e.g., the stochastic π-calculus [39], the πRT -calculus [24], the timed-π [15],

and the TDπ-calculus [40].) Nevertheless, these variants present complications on

their own. Their choice of operators, while powerful, constitute a level of abstraction

which is hard to reconcile with realistic implementations.

Nevertheless, there is a case to be made for the ideas put forward by process algebras

in the search for a general base formalism. In this thesis, we take a step towards this

goal by proposing a new language called kiltera which draws from both discrete-

event modelling and process algebras. In this language, events and interaction take

the center stage and introduces some novel concepts such as the distinction between

transient and lasting event triggers.

As mentioned above, one of the indicators of complexity is size. A possible approach

to deal with this is to divide the problem into sub-problems which are as inde-

pendent of each other as possible. In computational terms, a loose interconnection

of components leads naturally to distributed modelling and simulation. Distributed

computation not only provides a means to take advantage of multiple computing

resources and tackle the problem of size but also provides a modelling world view

where concepts such as location of computation are meaningful. With this in mind,

kiltera adopts a distributed approach to modelling.

Semantics

The quest for a base formalism with a solid foundation requires us to address the

question of semantics. Whenever we de�ne a new language or formalism we must

de�ne its semantics. There are di�erent approaches to this problem. Since we are

interested in a rigorous mathematical understanding of modelling formalisms, we

need a formal semantics, i.e., a semantics which is rigorously de�ned using the tools

of mathematics.

The best known mathematical approaches to semantics are: translational, denota-

tional, operational, axiomatic, algebraic and categorical or functorial.

5

• A translational semantics, as the name suggests, provides meaning to a lan-

guage by translating its terms or models into another language whose semantics

are already de�ned.

• A denotational semantics maps terms or models in the language into some

abstract domain, independent of any implementation. The abstract domain

is typically a set of certain class of mathematical objects of interest which is

intended to capture some essential characteristics of the language. The set it-

self typically carries some structure (e.g. complete partial order, dI-domains,

metric space, etc.) which might be required to guarantee that terms are well

de�ned, and which can be used to establish properties that give some insight

into the nature of the language. Typically, denotational semantics are consid-

ered an abstract approach, as it intends to associate a term or model with an

abstract object, such as sets of traces, not necessarily related to a concrete

implementation.

• Operational semantics is concerned with describing how a term or model in the

language is �executed.� It takes the view that a term is something to be exe-

cuted, and specifying such execution involves specifying the steps to be taken

by the �executor,� i.e., a machine. The standard mathematical approach to op-

erational semantics is based on interpreting terms or models as state-transition

diagrams. Then the notion of execution is de�ned in terms of following paths

along such diagrams. This is generally considered the more concrete approach

to semantics, as it is intended to be closer to implementation than the other

approaches.

• The axiomatic approach is similar to some extent to the operational approach,

but it is generally intended for a particular kind of language. The meaning of a

term or model is given in terms of the state of the system before and after the

execution of the model. This usually takes the form of Hoare triples, specifying

axiomatically the set of pre-conditions and post-conditions for the execution

of each construct in the language. It is most often used to specify correctness

of programs with respect to a speci�cation of requirements.

• The algebraic approach de�nes a language in terms of algebraic concepts such

as signatures and sorted algebras. The meaning of terms and models is given

by equations which are to be satis�ed. These equations are taken to be axioms,

rather than derived, as is the case with other approaches. The meaning of

a term could be said to be its equivalence class, according to the equations.

This approach does not specify how to obtain such meaning or how to execute

models. Therefore it is considered an abstract approach.

• A categorical or functorial semantics is a generalization of denotational seman-

tics, where the elements of the interpretation are given in terms of Category

6 CHAPTER 1. INTRODUCTION

Theory: the source and targets of the map, i.e., the set of terms or models,

and the semantic domain, are taken to be categories in the formal sense, while

the map itself is a functor between categories. This approach allows the use

of Category Theory to reason about the language at a very high level of ab-

straction. Furthermore, it allows to use the categorical framework to establish

relationships with other languages, formalisms and mathematical theories in a

uniform manner. This is arguably the most abstract approach to semantics.

All of these approaches have advantages and disadvantages. Since we are interested in

languages which can be realistically implemented and for which we can build concrete

tools, we focus on the more concrete approaches, namely operational and transla-

tional semantics, and in particular Structural Operational Semantics, pioneered by

Plotkin [36]. Appendix B provides a summary of this approach.

Theory: behavioural equivalence, compositionality, legitimacy

One of the main advantages of a formal semantics is that we can use mathematical

techniques to develop a basic theory about the systems described by the language.

One of the most fundamental questions regarding a language is the question of equiv-

alence. What does it mean for two terms in the language to be equivalent? Unless we

are able to answer such question we cannot claim to have a well-de�ned meaning for

terms of the language. In the context of modelling of dynamic systems the question

becomes: when can we say that two systems behave in the same way? When are

two systems behaviourally equivalent? What is an appropriate notion of behavioural

equivalence? Any reasonable notion of behavioural equivalence must be such that

no observer or context should be able to distinguish between equivalent systems.

This allows us to replace a component by an equivalent one in a composite system

while preserving the behaviour of the composition. This is, if two systems behave

in the same way, then replacing one by the other in any context will not a�ect the

behaviour of the overall system, or in other words, that equivalence is preserved by

all contexts.

A behavioural equivalence which is has this property is often called an observational

equivalence since no observer (i.e., context) can distinguish between two equivalent

systems. If we de�ne a notion of equivalence between models or systems, but it

turns out that such de�nition is not preserved by all contexts, i.e., if two models

or systems are considered equivalent under such de�nition and yet, putting them in

some context results in di�erent behaviour for the overall system, then some observer

can distinguish between equivalent systems. Such notion of equivalence cannot be

used for reasoning about composite systems, and it would not deserve to be called a

behavioural or observational equivalence in the �rst place.

7

A semantics with an appropriate notion of behavioural equivalence is compositional.

Compositionality is not just a property of theoretical interest, but it is also of practi-

cal interest. Normally we are not interested in isolated systems, but rather in systems

within some context. Hence if we are comparing systems, compositionality becomes

a central issue. A behavioural equivalence which is compositional can be used as

the main criterion to establish whether a component in a composite system can be

replaced by another component without a�ecting the global behaviour. If it is not

compositional then whenever we replace a part by an equivalent one, the behaviour

of the overall system is not guaranteed to be preserved and thus it must be recom-

puted. This might prove impractical when using simulation or veri�cation tools on

large systems.

Compositionality is also closely related to predictability and reproducibility which

are fundamental properties of simulations. Suppose that we want to do some simula-

tion given some experimental frame. If behavioural equivalence is compositional and

we simulate some system in this experimental frame and then replace the system by

another which is behaviourally equivalent, then, from the point of view of the exper-

imental frame, we should obtain the same results. Furthermore, if we obtain di�erent

results for the two systems with respect to the same experimental frame, then we

must conclude that the systems indeed are not behaviourally equivalent. But if our

equivalence is not compositional, we can not guarantee such conclusions. For these

reasons, it is important to not only de�ne some notion of behavioural equivalence,

but also to ensure that it is compositional.

We investigate these issues in the context of DEVS and our proposed language.

Appendix C discusses the notion of compositionality in detail.

Another fundamental aspect to be addressed by a formal semantics of any timed

discrete-event system is the question of legitimacy. It is possible to de�ne models

where time does not progress beyond a certain point. This occurs whenever a system

attempts to perform an in�nite amount of actions in a �nite amount of time. Such

behaviour is unrealistic and undesirable. It is therefore essential to be able to deter-

mine when a model describes a legitimate system. In [60] this question was answered

for the DEVS formalism. In this thesis we address it in the context of kiltera.

Tools

In addition to a solid theoretical foundation, modelling formalisms must be prag-

matic if they are to have an impact and be useful in describing the real world. In

order to do this, the de�nition of modelling languages must be accompanied by suit-

able development tools. This includes modelling environments and simulators. The

development of such tools represents in itself a challenge, where techniques from

Software Engineering such as meta-modelling are useful.

8 CHAPTER 1. INTRODUCTION

We address these issues both in the context of DEVS and of kiltera. We look at

how to improve on modelling environments for DEVS and develop an extension

of DEVS to cellular systems. Here we �nd an application for meta-modelling and

model-transformation. In the context of kiltera we look into what is an e�cient way

to simulate models, including distributed models. This leads us into the realm of

distributed simulation, where we develop a variant of the Time-Warp algorithm [22]

speci�cally tailored to the model of interaction of kiltera.

Outline and summary of contributions

The thesis is divided into two parts.

The �rst part is concerned with DEVS, its theory and tools. The traditional theory

for DEVS is based on System Theoretic notions. In chapter 3, we take a look at

the foundations of DEVS from a di�erent perspective, namely that of Structural

Operational Semantics. This allows us to use bisimilarity, a notion of behavioural

equivalence from process algebra, to compare and reason about DEVS models. In

particular we establish two fundamental properties of this semantics: determinism

and compositionality.

In chapter 4 we develop tools for the DEVS formalism. In particular, we develop

a visual modelling environment and code generator, which abstracts programmatic

representations of DEVS models, as is usual in most existing DEVS environments.

We also extend this environment to deal with cellular systems, large arrays of DEVS

components.

In the second part of the thesis, we develop the kiltera language. We begin by pro-

viding an informal introduction to the language with some examples in chapter 5.

Then we develop its formal semantics in terms of Timed-Labelled Transition Systems

for the basic language (chapter 6) and for the distributed extension (chapter 7.) In

chapter 8 we study this semantics and infer some fundamental properties from it.

In particular, we establish the properties of time-determinism, time-continuity, le-

gitimacy, and what we call time-compositionality, a property which to the best of

our knowledge, has no equivalent in other comparable process algebras. In chapter

9 we address the question of simulating kiltera models and present a simulator that

provides both a sequential, event-scheduling simulation and distributed simulation.

In chapter 10 we develop a more realistic case study where we apply this language

to the problem of modelling tra�c. Finally, in chapter 11 we compare our language

with both the DEVS formalism and process algebras.

2
Background

In this chapter we review the formalisms which form the basis of this thesis: DEVS

and process algebras.

2.1 Discrete-event modelling: The DEVS formalism

A discrete-event system is one where all state changes are due exclusively to the

occurrence of events, and within any closed time interval the set of possible events is

discrete, i.e., countable. There are multiple approaches to the modelling and simu-

lation of discrete-events systems, amongst which we �nd the Discrete-EVent System

speci�cation formalism, or DEVS for short, de�ned by Zeigler [59, 58, 60].

In the so-called Classic DEVS formalism, systems or models are described as a col-

lection of one or more components. There are two types of components: atomic (or

behavioural) components and coupled (or structural) components. An atomic com-

ponent de�nes a simple system that has a state, accepts input, produces output,

and whose behaviour depends on external stimuli, the current state, and the time

the system has already spent in that state. A coupled component is basically a net-

work of components (atomic or coupled,) which communicate through unidirectional

synchronous1 channels (possibly with multicasting.) A component may have ports,

which play the role of channel connectors. In the sequel, we shall not explicitly re-

fer to ports, as the results do not change signi�cantly for systems where ports are

explicitly given.

In the sequel we use R for the set of real numbers, R+ for the set of positive real num-

bers (without 0), write R0 for R∪{0}, R∞ for R∪{∞}, and of course combinations

such as R+
0,∞ which stands for {x ∈ R : x ≥ 0} ∪ {∞}.

De�nition 2.1. (Atomic DEVS) An atomic DEVS component A is a tuple

(X,Y, S, s0, δ
ext, δint, τ, λ)

1Synchronous in the sense that the component sending a signal and the component receiving
the signal perform the state transition produced by communication at the same time. Hence we
are talking about synchronous communication and not about other uses of the term for describing
system behaviour such as �having a constant time-step.�

10 CHAPTER 2. BACKGROUND

where X is a set of input values, Y is a set of output values, S is a set of states, s0 ∈ S
is the initial state, δint : S → S is the internal transition function, τ : S → R+

0,∞ is the

time advance function, λ : S → Y]{⊥} is the output function, and δext : Q×X → S

is the external transition function, where Q
def
= {(s, e) : s ∈ S and 0 ≤ e ≤ τ(s)} is

the total state set.

Given such an atomic componentA, de�ne inset(A)
def
= X, outset(A)

def
= Y , states(A)

def
=

S and initial(A)
def
= s0.

Informally, an atomic DEVS works as follows: at any moment in time, the system is

in some state s ∈ S. If no external input is received, the system remains in this state

for an interval of time τ(s), from the time it arrived to this state. When this time has

past (if it is not ∞,) the system will produce output λ(s). An output ⊥ represents

the absence of output2. Then, the system will transition to the state δint(s), and
continue in the same way. However, if external input is received and the system has

been in state s for a duration e, where 0 6 e 6 τ(s), then the system will transition

to state δext((s, e), x) where x ∈ X is the value of the input. In this case, no output is

produced. Output is produced only when an internal transition takes place. If there

is a con�ict (i.e.� e = τ(s)) then the external transition takes precedence over the

internal transition.

Note that there are no terminal states, and that the system is reactive, in the sense

that whenever there is input the system will perform a transition, even if it means

ignoring its input. Also note that the future state is entirely determined by the

current state, the time spent in the state, and the input, if any.

De�nition 2.2. (Coupled DEVS) A coupled DEVS component B is a tuple

(X,Y,N,C, infl, Z, sel)

where X is a set of input values, Y is a set of output values, N is a set of unique

sub-component names or labels, including a special name �self�, C is a set of sub-

components (atomic or coupled) indexed by N , infl : N → 2N is the in�uencer

function, sel : 2N\{∅} → N is a select function, satisfying sel(S) ∈ S, and Z is a

family of transfer functions {Zi,j |i, j ∈ N}, such that

Zi,j : Yi → Xj if i, j ∈ N and i ∈ infl(j),
Zself,k : X → Xk if k ∈ N and self ∈ infl(k),

and Zk,self : Yk → Y if k ∈ N and k ∈ infl(self),

where for each i ∈ N , Xi and Yi are respectively the input and output sets of

sub-component Ci ∈ C.
2This is the null event in Zeigler's terminology.

2.1. DISCRETE-EVENT MODELLING: THE DEVS FORMALISM 11

Given such a coupled componentB, de�ne inset(B)
def
= X, outset(B)

def
= Y , names(B)

def
=

N , and parts(B)
def
= C.

In the previous de�nition, a coupled component is seen as a network of components C,

connected through �channels,� speci�ed by the in�uencer function infl and the family

of transfer functions Z. For a component named n, infl(n) is the set of components

whose output is an input of n. In this case, there is a function Zi,n : Yi → Xn for

each in�uencer i ∈ infl(n) which speci�es how the outputs of i are to be translated

into inputs of n. The overall coupled component may be an in�uencer to some of its

components. This is done by having the label self ∈ N , and the transfer functions

Zself,k. This represents the fact that input to the overall component is transmitted

to some sub-components. Similarly, some sub-components may be in�uencers of the

overall component. The corresponding transfer function is given by Zk,self . Notice

that a given component may be in�uencer of more than one component. Note also

that there cannot be direct �feed-through� from input to output.

Informally, a coupled component works as follows. We think of the component as

the parallel composition of the sub-components. This is, the sub-components run

concurrently and independently. When a sub-component generates output, this is

communicated synchronously to all its in�uencees (applying the appropriate transfer

functions.) This includes the overall component: if it receives external input, this

input is transmitted to the sub-components k for which self ∈ infl(k). Similarly, if

k ∈ infl(self) for some sub-component k, and k generates output, then the overall

coupled component generates output. The sub-components however are not truly

concurrent in the sense that if at some time t there are two or more sub-components

which are supposed to perform an internal transition, exactly one of them is selected

to perform the transition. The sub-component which does the transition is chosen by

the selection function sel. If imm ⊆ N is the subset of con�icting components, then

the component chosen is sel(imm). The set imm is called the imminent set. Note that

if none of the sub-components have an internal transition scheduled, the imminent

set is empty, and therefore the select function does not choose any component as it

is de�ned only for non-empty subsets of N .

The following is a useful de�nition.

De�nition 2.3. Let ADEV S denote the set of all atomic components, CDEV S the

set of all coupled components and DEV S = ADEV S ∪ CDEV S. If D ∈ CDEV S
we write descendants(D) for the set of all components, atomic or coupled that are

in D, at any level of nesting.

12 CHAPTER 2. BACKGROUND

Well-de�ned DEVS models: closure under coupling and legitimacy

Composing DEVS models by coupling is a purely structural operation, but we can

de�ne the meaning, i.e., behaviour, of a coupled component in terms of its sub-

components: for each coupled model we can de�ne an atomic model which describes

its behaviour. In other words, the set of DEVS models is, by de�nition, closed under

coupling. The intuition is that the set of states of the resulting atomic model is the

cross product of the total state sets of each sub-component, the transition functions

are given in terms of the transition functions of the sub-components, taking into

account the network of connections. Similarly, the time advance and output functions

depend on those of the sub-components. For full details see [60].

The de�nition of coupled models by means of closure under coupling implies a basic

structural restriction on the set of DEVS models: not all coupled DEVS models have

an associated atomic DEVS, in particular, a component (X,Y,N,C, infl, Z, sel) such
that there is an m ∈ N for which m ∈ infl(m), this is, a component with a direct

�self-loop,� is not well-de�ned. This is so because the resulting internal transition

relation is not a function. Nevertheless, indirect loops are allowed.

Another fundamental issue when dealing with discrete-event systems is that of le-

gitimacy. It is possible to de�ne DEVS systems for which time does not progress

beyond a certain point. One case is when the internal transition function contains

a cycle consisting exclusively of transitory states, i.e., states whose time-advance is

zero. In the absence of input, the behaviour of the system diverges whenever any

state in such a cycle is reached. Another case is the so-called zeno-behaviour, where

time advances locally but not globally: each state in a state-trajectory has a non-zero

time advance, but the limit of the total-time is �nite, for instance if the time advance

of each state is half of the time advance in the previous state in the sequence. Such

systems are not very useful and are considered illegitimate. The formal de�nition of

legitimacy and the necessary conditions for legitimacy can be found in [60].

These considerations carry to the framework we de�ne in what follows. We consider

well-de�ned DEVS models to be those which are legitimate and, in the case of coupled

models, have a well-de�ned atomic model as prescribed by closure under coupling.

2.2 Process Algebra

Process Algebra is an approach to the description of concurrent systems based on

algebraic methods. Systems are represented by terms in algebra. Equivalence between

terms is de�ned to capture equivalence of behaviour. Equations between terms are

established and use to reason about systems.

While traditional Systems Theory focused on continuous systems, process algebras

are intrinsically discrete. This meant that the de�nition of the semantics of these

2.2. PROCESS ALGEBRA 13

languages took a signi�cantly di�erent form from the descriptions in traditional

Systems Theory. Plotkin's Structural Operational Semantics [36], or SOS for short,

became the de facto standard to describe the computational meaning of process

algebras.

In the SOS approach, the behaviour of a process is obtained by de�ning for each

possible state of a process, the set of possible actions that the process can perform

or engage in. This is typically done by de�ning a labelled-transition system (see

de�nition B.1 in appendix B.)

A labelled-transition system, or LTS for short, can be thought of as an abstract

machine or automaton which consists of a set of states, and transitions between

states, where transitions are labelled by the actions that can make the machine go

from one state to another. In the context of language semantics it is common to take

states to be terms representing processes, and so transitions represent computational

steps that transform one term into another as a result of executing the action speci�ed

by the label on the transition. An execution, and therefore a behaviour, of a process

term is then a sequence of transitions beginning from the given process term.

An LTS is then a triple (S,L,→) where S is a set of states, L is a set of labels and

→⊆ S×L×S is a transition relation. To de�ne the operational semantics of a process

algebra, we de�ne an LTS where we take process terms to be states, and actions, to

be labels. A transition t
a→ t′ states that a process t becomes t′ by performing an

action a. In the SOS approach the transition relation → is de�ned inductively by

inference rules of the form:

p1 p2 · · · pn
c

where p1, p2, ..., pn are premises, and c is the conclusion. Such a rule can be read as

�if p1 and p2 and ... and pn, then c.� Premises and conclusions are either statements

of the form t
a→ t′ which specify the presence of a transition from t to t′ labelled

with action a, or predicates which specify additional conditions. Such set of rules is

called a transition system speci�cation, or TSS for short. A comprehensive review of

LTSs and TSSs is found in appendix B.

With a given set of rules de�ning operational semantics, we can see process terms

simply as syntax for interacting automata.

In the rest of this section we introduce two process algebras which form the basis of

kiltera: CCS and the π-calculus.

2.2.1 CCS

In CCS, a process is a system which may interact with its environment by means of

action synchronization. This is, each process can be seen as an automaton which may

14 CHAPTER 2. BACKGROUND

be willing to engage in certain actions, but the execution of an action is done only if

the environment o�ers a complementary action. If this is the case, both the process

and its environment perform a state-transition. Hence, actions are synchronizing

events.

The syntax of CCS is given by the following grammar in BNF, in which P are process

terms and α are actions:

P ::= 0 | α.P1 | P1 + P2 | P1 ‖ P2 | P1\L | P1[f] | A

α ::= x | x̄ | τ

In this grammar, x ranges over the set of all possible event or action names. A ranges

over the set of process names. L ranges over the set of non-τ actions. f ranges over

the set of functions from names to names.

The null process 0 represents deadlock, i.e., the stopped process. It cannot engage in

any action. A process α.P1 is called a pre�x process. It can only engage in action x,

if the environment provides the complementary x̄, or viceversa. A τ action is silent.

This is, it is an internal action which is not observable by other processes. In all

cases, once the action has been performed, and only then, the process continues as

P1. The process P1 + P2 is the choice process. It can engage in any actions that

P1 and P2 can engage in, but once an action is taken, the other alternatives are

discarded. In other words, it behaves like P1 if P1 performs the �rst action, or like

P2 if P2 performs the �rst action. The process P1 ‖ P2 is the parallel composition of

P1 and P2. It represents the concurrent execution of the two processes. Each of these

sub-processes can interact with each other or with third parties. The process P1\L
behaves like P1 but hides all actions in L from the environment. The process P1[f]
behaves like P1 but renames all observable actions according to the given function

f . Finally, a process name A behaves like P if there is a de�nition A
def
= P .

The operational semantics of CCS is de�ned by the rules shown in Figure 2.1.

The pre�x rule PREF simply states that a pre�x process can perform an action.

The rules for choice (LSUM and RSUM) show that either branch can engage in an

action. If the environment provides complementary actions for both branches, then

both of them can interact, and the choice becomes internal, and non-deterministic.

On the other hand, if the environment provides complementary actions for only one

branch, then that branch will be followed, and the choice is external (made by the

environment,) and deterministic.

The PAR rules describe the interleaving semantics of concurrency: if a process can

engage in an action, it can also engage in that action if accompanied by other pro-

2.2. PROCESS ALGEBRA 15

PREF α.P
α−→ P

LSUM
P

α−→ P ′

P +Q
α−→ P ′

RSUM
Q

α−→ Q′

P +Q
α−→ Q′

LPAR
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
RPAR

Q
α−→ Q′

P ‖ Q α−→ P ‖ Q′

COMM
P

x−→ P ′ Q
x̄−→ Q′

P ‖ Q τ−→ P ′ ‖ Q′

HIDE
P

α−→ P ′ α /∈ L
P\L α−→ P ′\L

REN
P

α−→ P ′

P [f]
f(α)−−−→ P ′[f]

NAME
A

def
= P P

α−→ P ′

A
α−→ P ′

Figure 2.1: CCS operational semantics.

cesses, and therefore, the combined actions of both processes may be interleaved.

The key rule is COMM. If a process can engage in an action, and another can engage

in its complementary action, then their composition can perform an interaction and

both can evolve. It has two direct consequences: �rst, it describes how processes

engage in interaction by synchronizing with their environment (i.e., other processes;)

second, it makes such communication into an internal action of a composition of two

processes, which implies that communication is two-way, rather than multi-way.

The rule for named processes is particularly useful, since it allows us to describe the

behaviour of recursive de�nitions, making CCS a Turing-complete language.

For all its simplicity and elegance, CCS nevertheless su�ers from some limitations.

First, interaction involves synchronization, but not exchange of information. This is

not really a problem, since a value-passing language can be de�ned in terms of CCS,

but only by allowing processes with in�nite branching. This is appropriate from the

purely theoretical point of view, but it is not realistic from the point of view of

implementation. A similar argument might be made about the lack of parametrized

process de�nitions. A second important issue is the nature of communication as

synchronization. This is a nice abstraction to have, but it is di�cult to implement

compared to asynchronous interaction, specially when considering the choice opera-

tor. The choice operator is powerful, but in some sense, it is too powerful. The syntax

allows models such as P + (Q ‖ R). Implementing this directly is not a trivial task.

On the other hand, a fundamental theorem, known as the expansion theorem, in the

theory of CCS, states that any process is equivalent to a process using only choice,

pre�x and recursion. But this amounts to �attening a CCS speci�cation, which is

not scalable. A �nal important limitation, specially from the point of view of this

16 CHAPTER 2. BACKGROUND

thesis, is that there is no explicit support for modelling structural changes other than

the creation of processes. This important limitation has been addressed by CCS's

successor: the π-calculus.

2.2.2 The π-calculus

The π-calculus [28, 27], also conceived by Milner, is CCS's successor. It extends

CCS by allowing link mobility, this is, the ability of a composite process to evolve

its network structure. This is achieved by making information exchange explicit so

that synchronization becomes message-passing over channels, and making channels

themselves �rst-class values, which can be sent as messages.

The syntax of the π-calculus is quite similar to that of CCS:

P ::= 0 | α.P1 | P1 + P2 | P1 ‖ P2 | νx.P1 | A(x1, ..., xn)

α ::= x(y) | x̄〈y〉 | τ

In this grammar, x, y range over the set of channel names, and A ranges over the set

of process names.

The �rst di�erence is in the actions α. An action x(y) represents an input action

over channel x. Hence, a process x(y).P expects input on x, and when a message

is received, it is bound to y, whose scope is P . An action x̄〈y〉 is an output action

on x. A process x̄〈y〉.P sends a message y through x and then behaves like P .

Communication, as in CCS, is synchronous: a sender of a message blocks until there

is some receiver ready to interact. Furthermore, interaction is also two-way, rather

than multi-way.

The process νx.P is analogous to P\{x} in CCS. It hides all actions in P involving x.

Hence P cannot interact through x with its environment; it can only use x internally.

Finally, the process A(x1, ..., xn) corresponds to process instantiation or invocation

of a parametrized process de�nition A(y1, ..., yn)
def
= P . In other words, A(x1, ..., xn)

behaves like P{y1/x1, ..., yn/xn}, this is, like P with all free occurrences of y1, ..., yn

replaced by x1, ..., xn respectively. This means that we can see a de�nition of the

form A(y1, ..., yn)
def
= P as a class of processes named A, whose instances have ports

y1, ..., yn. We can see the invocation A(x1, ..., xn) as instantiating this class, and

�hooking up� the channels x1, ..., xn to the ports y1, ..., yn.

To de�ne the operational semantics it is common to �rst de�ne a notion of structural

congruence, an equivalence relation between terms which identi�es them purely on

the basis of syntax. This is done so that syntactically equivalent processes are guar-

anteed to have the same behaviour. We de�ne ≡ to be such equivalence that is a

2.2. PROCESS ALGEBRA 17

P ≡ P ′ if P and P ′ are the same up to renaming of bound names

P ‖ 0 ≡ P

P ‖ Q ≡ Q ‖ P P +Q ≡ Q+ P

P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R P + (Q+R) ≡ (P +Q) +R

νx.0 ≡ 0 νx.νy.P ≡ νy.νx.P

P ‖ νx.Q ≡ νx.(P ‖ Q) if x /∈ fn(P)

Figure 2.2: Structural congruence for the π-calculus.

PREF α.P
α−→ P

LSUM
P

α−→ P ′

P +Q
α−→ P ′

RSUM
Q

α−→ Q′

P +Q
α−→ Q′

LPAR
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
RPAR

Q
α−→ Q′

P ‖ Q α−→ P ‖ Q′

COMM
P

x(y)−−→ P ′ Q
x̄〈z〉−−→ Q′

P ‖ Q τ−→ P ′{y/z} ‖ Q′

HIDE
P

α−→ P ′ x /∈ fn(α)

νx.P
α−→ νx.P ′

NAME
A(x1, ..., xn)

def
= P P{x1/y1, ..., xn/yn} α−→ P ′

A(y1, ..., yn) α−→ P ′

CONGR
P

α−→ P ′ P ≡ Q P ′ ≡ Q′

Q
α−→ Q′

Figure 2.3: π-calculus operational semantics.

congruence, i.e., preserved by all operators in the language3, and which satis�es the

axioms shown in Figure 2.2.

Here, fn(P) denotes the set of free names of P , i.e., the set of names of P which

are not bound by the ν operator or by an input action.

The last axiom of structural congruence is known as scope extrusion. It plays an

essential role in the semantics of mobility. Essentially it says that the scope of a

name can be extended as long as it does not capture any free names in its context.

If some name can become bound, we can simply rename the channel x whose scope

we want to extend, in Q by any name which is not free in P , before applying scope

extrusion.

The operational semantics of the π-calculus are shown in Figure 2.3.

In this de�nition, the notation P{x1/y1, ..., xn/yn} stands for P with all free occur-

3See section C.3 for a detailed de�nition and discussion of the notion of congruence.

18 CHAPTER 2. BACKGROUND

rences of the names x1, ..., xn substituted by y1, ..., yn respectively. Also, fn(α) de-

notes the free names of an action label: fn(x〈y〉) def
= {x, y}, fn(x(y))

def
= {x} and

fn(τ)
def
= ∅.

The rules for the π-calculus are very similar to those of CCS. The main di�erence

lies with the COMM and NAME rules. They both make explicit the substitution of

names. In the case of COMM, the receiver substitutes the message for the parameter

name of the input action in the remainder of the process. In the NAME rule, a named

process with given ports, will behave just like its body after making the appropriate

substitutions.

These small changes to the rules seem minor at �rst sight, but the resulting language

is more expressive in the sense that it now allows for the network of channels to

change dynamically. This is because there is no distinction between names used for

channels and those for messages: channels are �rst-class values which can be passed

as messages. To see how this works, consider the following de�nitions

A(x, y)
def
= x̄〈y〉.A′

B(x)
def
= x(w).νv.w̄〈v〉.B′

C(z)
def
= z(u).C ′

D
def
= νx.(B(x) ‖ νy.(A(x, y) ‖ C(y)))

In this example, D is a process consisting of three sub-processes connected through

channels x and y, but initially, y is known only by A and C, while x links A and B

only. By using scope extrusion, we can write D as:

νx.νy.(B(x) ‖ A(x, y) ‖ C(y))

Now, A and B can interact: A sends a message to B, namely, its own channel y. B

receives this and binds it to w. This is the result of applying the COMM rule:

νx.νy.(νv.ȳ〈v〉.B′ ‖ A′ ‖ C(y))

The result is that y now links B and C, so B can use it to send a value v to C.

This simple idea is quite powerful. It gives the π-calculus the power to model the

λ-calculus [5], making it Turing-complete, as well as general data-structures, Object-

Oriented programming, and higher-order process calculi [44] where it is possible to

send not just names but processes themselves. For more details on this, [27] is a good

reference.

While the expressiveness of π-calculus' constructs provide a powerful set of tools to

model mobile, communicating systems, there is a downside. The price for expressive

2.2. PROCESS ALGEBRA 19

power is often di�culty in implementation. In particular, synchronous communica-

tion and the closely related mixed-guarded choice.

While synchronous communication is a nice abstraction, it is often not realistic to as-

sume such operation as primitive, particularly in a distributed setting. Asynchronous

communication, where the sender of a message does not wait for acknowledgment of

reception, is simpler to implement, and it can be argued it is more intuitive.

There have been two approaches to bring asynchronous communication to the π-

calculus. The �rst is by explicitly modelling bu�ers as chains of processes representing

cells or slots of a bu�er. This approach is �ne from a theoretical point of view,

but it still assumes synchronicity as primitive, resulting in an arguably ine�cient

approach. The second alternative is by making asynchronicity primitive. This is

done by restricting the syntax, disallowing continuations to output actions. This is,

processes of the form x̄〈y〉.P are not allowed, and instead, output actions come alone:

x̄〈y〉. In other words, processes of the form x̄〈y〉.P are interpreted as x̄〈y〉 ‖ P . This
the approach of the so-called asynchronous π-calculus. The idea is that an output

action cannot serve as the guard of any process, it can wait inde�nitely to interact,

and other processes do not depend on when and whether such interaction occurs.

This results in a simpler language which turns out to have the same expressive power

as the original calculus [32].

The second issue is that of mixed-guarded choice. As with CCS, the choice operator

gives a great degree of freedom, allowing processes like P+(Q ‖ R). As in CCS, there
is an expansion theorem which allows us to express any choice as a sum · · ·+αi.Pi+· · ·
where each alternative is in pre�x form. If all the αi's are input actions, we talk of

an input-guarded choice. Similarly, if all the αi's are output actions, we talk of an

output-guarded choice. If the choice contains both input and output actions, it is

called mixed-guarded choice. A fundamental result in the theory of the π-calculus is

that there is no reasonable and uniform4 translation from the full π-calculus with

synchronous communication and mixed-guarded choice into the asynchronous π-

calculus without choice [34]. This result was later found to be too restrictive, as it

is possible to de�ne correct translations by relaxing the very stringent condition of

uniformity [32]. Nevertheless, such translations tend to be quite complicated. These

results highlight that implementing mixed-guarded choice is very di�cult.

4A reasonable translation is one which preserves observable actions on certain intended channels.
A uniform translation is one which preserves parallel composition.

20 CHAPTER 2. BACKGROUND

Part I

DEVS: theory and tools

3
An operational semantics for DEVS

Before focusing on systems with dynamic structure we begin by investigating the

DEVS formalism in more detail. In particular, we elaborate the theoretical framework

and describe some practical modelling tools.

In the theory of DEVS we propose an operational semantics for DEVS based on

Labelled-Transition Systems (see de�nition B.1,) and establish two fundamental prop-

erties of DEVS models de�ned this way: determinism and compositionality. By using

reasoning techniques from process algebra, we obtain a fresh look at the foundations

of the DEVS formalism.

On the applied side we develop some tools: the �rst one is an environment to con-

struct DEVS models visually and automatically generate code for an existing DEVS

simulator; the second is an environment to construct cellular DEVS models and

generate code.

We begin by providing an alternative view of the DEVS formalism in terms of

labelled-transition systems. This has several bene�ts:

• it allows us to reason about DEVS models using existing tools for labelled-

transition systems,

• it allows us to compare DEVS models with other formalisms described in terms

of labelled-transition systems, and

• it provides us with a more concrete speci�cation to be satis�ed by implemen-

tations of DEVS simulators which is independent of speci�c simulation algo-

rithms.

All proofs of statements in this chapter, related to the theoretical results, are found

in appendix D.

3.1 A Labelled Transition System for DEVS

To capture the intended behaviour of DEVS models, we associate a labelled-transition

system (see de�nition B.1,) to each given DEVS model. To do this we �rst need to

24 CHAPTER 3. AN OPERATIONAL SEMANTICS FOR DEVS

de�ne what are the labels and the states of such LTS.

3.1.1 Events and con�gurations

A given DEVS component determines an LTS where the labels are called events, and

the states are called con�gurations (to distinguish them from basic DEVS states.)

Assume that there is a set Values ranging over all possible values that could be sent

between components. The input and output sets of all DEVS components will be

subsets of Values.

De�nition 3.1. (Events) An event is a triple (k, t, v) where k ∈ {ext, int}, t ∈ R+
0

and v ∈ Values. We write ext(t, x) for (ext, t, x) and int(t, y) for (int, t, y). For a given
DEVS component C the values of an event are restricted to the respective input and

output sets. If the input set is X and the output set is Y , the set of events of C is

EvtsC
def
= {ext(t, x) : t ∈ R+

0 , x ∈ X} ∪ {int(t, y) : t ∈ R+
0 , y ∈ Y] {⊥}}. Given an

event α = (k, t, v) we de�ne type(α)
def
= k, time(α)

def
= t, and value(α)

def
= v.

Events of the form ext(t, x) are called external events, where t is the time when the

event occurs, and x is the input value1. Events of the form int(t, y) are called internal

events2, where t is the time when the event occurs, and y is the output value.

We can think of the operation of a DEVS component as an abstract machine whose

con�guration (global state) keeps track of the state of the component and the time

of the last transition. For a coupled component, the state is given by a set of con�g-

urations of each sub-component.

De�nition 3.2. (Con�gurations and coupled-states) Let A be an atomic com-

ponent. An A-con�guration is a pair (s, t) where s ∈ S and t ∈ R+
0 , with S

being the set of states of A. Let B = (X,Y,N,C, infl, Z, sel) be a coupled compo-

nent. A coupled-state of B is an N -indexed set of con�gurations (si, ti) such that

(si, ti) is a con�guration of a sub-component i ∈ N or in other words, a mapping

ρ : N → SN × R+
0 where ρ(i) = (si, ti). The set of coupled-states of B is denoted

SB. A B-con�guration is a pair (ρ, t) where ρ ∈ SB and t ∈ R+
0 . The set of all

possible con�gurations of a component (atomic or coupled) C is denoted ConfigsC .

If N = {n1, . . . , nk} is a set of component names, then ConfigsN denotes the set of

all con�gurations of all such components, i.e., ConfigsN
def
=

⋃
n∈N Configsn. Thus,

the set of states of a coupled component B is

SB = {ρ : N → ConfigsN | ∀n ∈ N.ρ(n) ∈ Configsn}

1For DEVS with ports, x is considered to be a pair (port, value).
2The terminology may be a bit confusing since an internal event is usually regarded as something

that is not observable by the external world, but in DEVS, output is generated only when an internal
transition occurs, therefore internal transitions have an associated output.

3.1. A LABELLED TRANSITION SYSTEM FOR DEVS 25

It is useful to visualize coupled-states and con�gurations as a tree. The structure

of the tree corresponds to the structure of the coupled component, and each node

is a con�guration, with the information corresponding to the (coupled) state, and

time-of-last-transition for that node. Thus, each node has the information for each

sub-component. Note that this de�nition is inductive. It is well-founded since the

nesting of coupled components is �nite.

3.1.2 Transitions for atomic components

Now we de�ne the set of possible transitions for a given DEVS model.

De�nition 3.3. (Atomic transitions) Let A = (X,Y, S, s0, δ
ext, δint, τ, λ) be any

atomic DEVS component. We de�ne an LTSM(A) = (ConfigsA,EvtsA,→A) where
→A⊆ ConfigsA × EvtsA ×ConfigsA is the smallest relation that satis�es the fol-

lowing rules for all A-con�gurations (s, t):

(i) Internal transitions

AIT
τ(s) 6=∞

(s, t)
int(t′,λ(s))−−−−−−→A (δint(s), t′)

where t′ = t+ τ(s)

(ii) External transitions

AET
t ≤ t′ ≤ t+ τ(s)

(s, t)
ext(t′,x)−−−−−→A (δext((s, t′ − t), x), t′)

Note that a given con�guration at a time t may have both an internal and external

transitions. This LTS does not resolve the con�ict between the two. This is addressed

by the execution semantics (see 3.2.) The transition relation→A should be regarded

as representing potential transitions and not actual transitions.

3.1.3 Transitions for coupled components

In order to de�ne the transitions for a coupled component in a given coupled state,

we need to de�ne precisely what is the set of imminent components in that state,

this is, the set of components that have an internal transition scheduled before any

other components. In order to do that we need to de�ne the notion of time-advance

for a coupled state. We now de�ne the coupled time-advance, the imminent set, and

the transitions for coupled states.3

3These de�nitions are mutually recursive: the coupled state transitions are given in terms of the
imminent set for the coupled state which is de�ned in terms of the coupled time-advance, which in
turn is de�ned in terms of the internal transitions of the sub-components. This de�nition is well-
founded because the time-advance for a coupled state depends only on the internal transitions of
the sub-components.

26 CHAPTER 3. AN OPERATIONAL SEMANTICS FOR DEVS

For a coupled component at a given state ρ a transition involves the transitions of

one or more sub-components. Thus, the time of the last transition for the whole

component is the time of the transition for the last sub-component to execute a

transition. Similarly, the time of the next transition for the coupled component will

be the minimal time of next internal event among its sub-components. This allows

us to de�ne the time advance of a coupled state.

De�nition 3.4. (Coupled time-advance) The time-advance of a coupled com-

ponent M at state ρ is

τM (ρ)
def
= nextM (ρ)− lastM (ρ)

where

lastM (ρ)
def
= max{ti | i ∈ N and ρ(i) = (si, ti)}

and

nextM (ρ)
def
= min{t | i ∈ N and ρ(i)

int(t,y)−−−−→}

Note that τM (ρ) =∞ if and only if τi(si) =∞ for all sub-components i ∈ N , where

ρ(i) = (si, ti).

At any moment in time several components may be enabled to perform a transition.

One of the components who has minimal time of next-transition will be selected to

perform the event.

De�nition 3.5. (Imminent set) The imminent set of a coupled component M

at a coupled state ρ is the set of components whose next internal event is scheduled

sooner than any other component:

immM (ρ)
def
= {i ∈ N | if ρ(i)

int(t,y)−−−−→ ρ′(i) then t = nextM (ρ)}

With this de�nition we can now de�ne transitions for a coupled component.

De�nition 3.6. (Coupled transitions) Let B = (X,Y,N,C, infl, Z, sel) be a

coupled component. We de�ne an LTS M(B) = (ConfigsB,EvtsB,→B) where

→B⊆ ConfigsB × EvtsB × ConfigsB is the smallest relation that satis�es the

following4 for all B-con�gurations (ρ, t), where ρ(n) = (sn, tn), ρ′(n) = (s′n, t
′
n) and

i∗
def
= sel(immB(ρ)):

(i) Internal transition (CIT): (ρ, t)
int(t′,y)−−−−−→B (ρ′, t′) if t ≤ t′, and

1. ρ(i∗)
int(t′,y∗)−−−−−→i∗ ρ

′(i∗),
4This de�nition is a TSS in the sense of de�nition B.30 but we do not write the rules using the

format
H

t
for readability.

3.1. A LABELLED TRANSITION SYSTEM FOR DEVS 27

2. for each n ∈ N such that i∗ ∈ infl(n) and n 6= self,

ρ(n)
ext(t′,xn)−−−−−−→n ρ

′(n)

where xn = Zi∗,n(y∗),

3. for all n ∈ N such that n 6= i∗ and i∗ 6∈ infl(n), ρ(n) = ρ′(n),

4. and y = Zi∗,self(y∗) if i∗ ∈ infl(self) or y =⊥ if i∗ 6∈ infl(self)

(ii) External transition (CET): (ρ, t)
ext(t′,x)−−−−−→B (ρ′, t′) if t ≤ t′, and

1. for each n ∈ N such that self ∈ infl(n), and xn 6=⊥.

ρ(n)
ext(t′,xn)−−−−−−→n ρ

′(n)

where xn
def
= Zself,n(x).

2. and for all n ∈ N such that self /∈ infl(n) or xn =⊥, where xn
def
=

Zself,n(x), ρ(n) = ρ′(n).

Note that a single transition of a coupled model might involve many single transitions

from the sub-components, in particular, one such step implies a propagation of events

amongst its sub-components. Also note that an internal transition is de�ned for a

coupled component in a particular con�guration (ρ, t) only if immB(ρ) 6= ∅. On the

other hand, external transitions are always de�ned.

3.1.4 Example

Consider the coupled component depicted in Figure 3.1. Let us illustrate how di�erent

events are involved in performing a single internal transition of the top-level coupled

component. Suppose that the the select functions are de�ned as follows:

selA({B}) = B

selA({E}) = E

selA({B,E}) = B

selB({C}) = C

selB({D}) = D

selB({C,D}) = C

Let ρG denote the state of any coupled model G so that ρG(M) = (sM , tM) ∈
ConfigsM denotes the current con�guration of each sub-component M of G.

Let tG denote the time of the last transition performed by any component G. Hence

(ρG, tG) ∈ ConfigsG.

28 CHAPTER 3. AN OPERATIONAL SEMANTICS FOR DEVS

Figure 3.1: A coupled component

Let ZGG1,G2
denote the transfer function of coupled component G from the sub-

component G1to sub-component G2.

Let us assume that the system is currently in a state ρA and the last transition

executed for the overall component took place at time tA. Now we want to know

what is the con�guration after performing an internal transition at time t with an

output yA.

Suppose that immA(ρA) = {B,E}. So i∗A = selA({B,E}) = B.

By the (CIT) rule, we have that (ρA, tA)
int(t,yA)−−−−−→A (ρ′A, t

′
A) with t′A = t if

1. ρA(i∗A)
int(t,y∗)−−−−−→i∗A

ρ′A(i∗A), in other words ρA(B)
int(t,yB)−−−−−→B ρ′A(B), or equiva-

lently (ρB, tB)
int(t,yB)−−−−−→ (ρ′B, t

′
B), and

2. ρA(E)
ext(t,xE)−−−−−→E ρ′A(E), or in other words (ρE , tE)

ext(t,xE)−−−−−→E (ρ′E , t
′
E) where

xE = ZAB,E(yB),

3. and yA = ZAB,self(yB)

Now, suppose that immB(ρB) = {C,D}. So i∗B = selB({C,D}) = C.

By the (CIT) rule again, we have that (ρB, tB)
int(t,yB)−−−−−→B (ρ′B, t

′
B) with t′B = t if

1. ρB(i∗B)
int(t,y∗)−−−−−→i∗B

ρ′B(i∗B), in other words ρB(C)
int(t,yC)−−−−−→C ρ′B(C), or equiva-

lently (ρC , tC)
int(t,yC)−−−−−→ (ρ′C , t

′
C), and

2. ρB(D)
ext(t,xD)−−−−−→D ρ′B(D), or in other words (ρD, tD)

ext(t,xD)−−−−−→D (ρ′D, t
′
D) where

xD = ZBC,D(yC), and

3. and yB = ZBC,self(yC)

Hence we see that an internal transition of the top-level component triggers a set of

internal and external transitions in its sub-components.

3.2. EXECUTION 29

3.2 Execution

Any LTS has an associated notion of execution and trace (de�nition B.3.) In this

section we re�ne this de�nition to the DEVS setting to accurately represent aspects

which are exclusive to DEVS.

De�nition 3.7. (Executions) A partial execution of a DEVS component M is

a (possibly in�nite) sequence

−→γ = 〈γ1, γ2, . . . 〉

where for each i ≥ 1, γi = (ψi, αi, ψ′i) such that each αi ∈ EvtsM and ψi, ψ
′
i ∈

ConfigM satisfying:

(i) ψi
αi−→M ψ′i

(ii) for all i ≥ 1, if γi = (ψi, αi, ψ′i) and γi+1 = (ψi+1, αi+1, ψ
′
i+1) then ψ′i = ψi+1

(iii) and there is no k ≥ 1 such that time(αk) = time(αk+1) and type(αk) = int

and type(αk+1) = ext.

We often write a partial execution −→γ starting in a con�guration ψ1 as

−→γ = ψ1
α1−→ ψ2

α2−→ . . .
αk−1−−−→ ψk

αk−→ . . .

If −→γ is a partial execution, we denote tr(−→γ)
def
= 〈α1, α2, . . . 〉 its sequence of events,

i.e., its trace .

If −→α = 〈α1, α2, . . . , αk−1〉 is a sequence of events, we write

ψ1

−→α=⇒ ψk

whenever there are con�gurations ψ2, ..., ψk−1 such that ψ1
α1−→ ψ2

α2−→ . . . ψk−1
αk−1−−−→

ψk is a partial execution.

We call −→γ a maximal internal execution if for all k ≥ 1, type(α) = int, and

either:

(i) −→γ is �nite and the last con�guration is some (sn, tn) where τM (sn) =∞, or

(ii) −→γ is in�nite and for all con�gurations (sk, tk) in −→γ , τM (sk) 6=∞

Note that the third item in the de�nition of partial execution forbids an internal

event to happen before an external event with the same time tag. This enforces the

traditional semantics of Classic DEVS were external transitions take precedence over

internal transitions in the case of con�ict.

30 CHAPTER 3. AN OPERATIONAL SEMANTICS FOR DEVS

Note also that we do not explicitly require the events of an execution to be ordered

with respect to time. This is not necessary, as it follows from the de�nition of the

LTS for DEVS, as the following shows.

De�nition 3.8. (Timed-ordered sequences)A sequence of events−→α = 〈α0, α1, . . . 〉
is called time-ordered if for each i, time(αi) ≤ time(αi+1). A partial execution −→γ
is time-ordered if its trace tr(−→γ) is time-ordered.

Proposition 3.9. All partial executions are time-ordered.

3.3 Input/Output behaviour

To complete the description of the semantics we need to describe how a DEVS

system will behave with respect to a sequence of input events. This behaviour has

two aspects: the state trajectory, this is, the internal sequence of con�gurations that a

system follows, and the sequence of outputs generated. The notion of partial execution

includes both. But the previous de�nition only tells us what is an execution, not what

is an execution given a sequence of events. Furthermore, sometimes we are interested

only in the observable behaviour of a DEVS system without making reference to

the internal changes of state. In other words, we are interested in knowing what are

the output sequences for a given input sequence. This is given by an input/output

relation5.We de�ne two possible such relations. One that ignores timing information,

and one that takes time into account.

First we de�ne what is an execution with respect to a sequence of input events.

De�nition 3.10. (Experiment) An input sequence is a timed-ordered sequence

of external events. An output sequence is a timed-ordered sequence of internal

events −→α = 〈α0, α1, . . . 〉 such that value(αi) 6=⊥ for each αi. The input sequence

projection −→α |in of an event sequence −→α is the sequence of only those events of
−→α that are external events, preserving the same order in which they appear in −→α .
Similarly, the output sequence projection −→α |out of−→α is its projection onto internal

events whose output value is not ⊥.

Given a DEVS component M , any con�guration ψ0 = (s0, t0) ∈ ConfigsM and a

(possibly in�nite) time-ordered sequence of external events
−→
β = 〈β0, β1, . . . 〉, where

time(β0) ≥ t0, an experiment is an execution −→γ starting at ψ0 such that tr(−→γ)|in =
−→
β .

Remark 3.11. Note that if −→γ is an experiment, it must be of the form

−→γ = ψ0

−→α0=⇒ ψ′0
β0−→ ψ1

−→α1=⇒ ψ′1
β1−→ ψ2

−→α2=⇒ · · ·
5Properly speaking, the input/output relation is not part of an operational semantics, but rather

it gives a denotational semantics to the formalism.

3.4. DETERMINISM 31

where each −→αi is a (possibly empty) sequence of internal events, −→γ is time-ordered,

and all βi occur in tr(−→γ) preserving the order in which they appeared in
−→
β .

Now we de�ne the input/output relations.

De�nition 3.12. (Input/Output relations) Given a DEVS component M , we

de�ne, for any ψ ∈ ConfigsM the timed input/output relation of M by:

tiorM (ψ)
def
= {(

−→
β ,−→α) | there is an experiment −→γ starting with ψ

such that tr(−→γ)|in =
−→
β and tr(−→γ)|out = −→α }

Correspondingly, the untimed input/output relation of M is de�ned by:

utiorM (ψ)
def
= {(value(

−→
β), value(−→α)) | (

−→
β ,−→α) ∈ tiorM (ψ)}

where, value(−→α)
def
= 〈value(α0), value(α1), . . . 〉 for any event sequence−→α = 〈α0, α1, . . . 〉.

3.4 Determinism

If we consider the (untimed) input/output relation of DEVS systems, we realize

that, in general, these are not deterministic in the sense that given a particular

input sequence there is more than one possible output sequence. This is so because

the behaviour of a DEVS system is sensitive to the timing of the events. For example

consider the atomic DEVS N
def
= (X,Y, S, s0, δ

ext, δint, τ, λ) where:

• X def
= {1}

• Y def
= {yes, no}

• S def
= {s0, s1, s2}

• δext((s0, e), 1)
def
=

{
s1 if 0 < e ≤ 0.5
s2 if e > 0.5

• δext((si, e), 1)
def
= si for i ∈ {1, 2} and for any e ≥ 0

• δint(si)
def
= si for i ∈ {0, 1, 2}

• τ(si)
def
= 1 for i ∈ {0, 1, 2}

• λ(s0)
def
= no, λ(s1)

def
= no, and λ(s2)

def
= yes

The (untimed) input/output relation of such DEVS system would contain the pairs

(〈1, 1〉, 〈no, no〉) and (〈1, 1〉, 〈no, yes〉), thus we get di�erent outputs on the same

inputs.

However, when we take time into account, DEVS systems are deterministic as the

current state of the system is completely determined by its previous state, the input

32 CHAPTER 3. AN OPERATIONAL SEMANTICS FOR DEVS

(if any) and the time elapsed since the last transition or the time-advance. In other

words the output is completely determined by the timing of the input events. This

intuition, however, has not been proven formally. Zeigler's semantics of DEVS in

his hierarchy of system speci�cation forces this determinism by de�nition. But our

approach is based on LTSs, which in general are not deterministic. We must therefore

ensure that in this context, the semantics is indeed deterministic with respect to time.

What we need to prove is that given any sequence of input events, i.e., events which

carry their timing information, there is only one possible state-trajectory (execution)

and therefore only one possible output.

While intuitively this is correct, the fact that the system can have internal transitions

between external events complicates things. We therefore must �rst show that those

internal steps are deterministic.

Both internal and external determinism rely on the determinism of individual steps,

which is what the following lemma states.

Lemma 3.13. Let M be a DEVS system and ψ ∈ ConfigsM . Then for any event

α, if ψ
α−→ ψ′ and ψ

α−→ ψ′′ for some ψ′, ψ′′ ∈ ConfigsM then ψ′ = ψ′′.

This proves that for any given con�guration and event, there is only one possible

next state. Now, we show that in any con�guration there is only one possible internal

transition.

Lemma 3.14. Given a DEVS system M and any con�guration ψ ∈ ConfigsM , if

ψ
int(t′,y′)−−−−−→ ψ′ and ψ

int(t′′,y′′)−−−−−−→ ψ′′ for some ψ′, ψ′′ ∈ ConfigsM then t′ = t′′ and

y′ = y′′ (and ψ′ = ψ′′.)

In a DEVS system it is possible to de�ne the time-advance of a state to be in�nity. In

such a state there is no internal transition. We need to ensure that internal transitions

exist whenever possible.

Lemma 3.15. Let M be a DEVS system and ψ ∈ ConfigsM , with ψ = (s, t). If

τM (s) 6=∞ then there are ψ′ = (s′, t′) and y such that ψ
int(t′,y)−−−−−→ ψ′.

Having established the determinacy of individual transitions, and existence and

uniqueness of internal transitions, we now focus on sequences of internal events.

Lemma 3.16. Given a DEVS system M and any con�guration ψ0 ∈ ConfigsM ,

there is only one maximal internal execution

−→γ = ψ0
α0−→ ψ1

α1−→ ψ2
α2−→ · · ·

This shows us that from any given con�guration we get a unique full execution of

internal events. Naturally, if we choose a particular time to stop, the partial execution

must be unique. This is the statement of the following corollary.

3.5. COMPOSITIONALITY 33

Corollary 3.17. Given a DEVS system M , any con�guration ψ0 = (s0, t0) ∈
ConfigsM and any time t ≥ t0, there is only one (�nite) partial execution

ψ0
α0−→ ψ1

α1−→ ψ2
α2−→ · · ·ψn−1

αn−1−−−→ ψn

were all αi are internal events and t < tn + τM (sn) where ψn = (sn, tn).

Finally, we consider determinism with respect to a sequence of input events. The key

here is that these events come tagged with their time, thus determining uniquely the

next state in case of an input event, and that between these input events there is

only one possible execution of internal events.

Theorem 3.18. (Determinism) Given a DEVSM , any con�guration ψ0 = (s0, t0) ∈
ConfigsM and a (possibly in�nite) time-ordered sequence of external events 〈β0, β1, β2, . . . 〉,
where time(β0) ≥ t0, there is a unique execution (experiment)

ψ0

−→α0=⇒ ψ′0
β0−→ ψ1

−→α1=⇒ ψ′1
β1−→ ψ2

−→α2=⇒ · · ·

where each −→αi is a sequence of internal events.

The immediate consequence is that a sequence of input events uniquely determines

a sequence of output events, and therefore, any DEVS system computes a function

from input event sequences to output event sequences.

Corollary 3.19. (DEVS as functions) Given a DEVS M and any con�guration

ψ ∈ ConfigsM , the timed input/output relation tiorM (ψ) is a function from input

sequences to output sequences.

3.5 Compositionality

The next property is concerned with the equivalence of behaviour between DEVS

components. We address the question of what is an appropriate notion of behavioural

equivalence. Any reasonable notion of behavioural equivalence must be such that no

observer or context should be able to distinguish between equivalent systems. This

allows us to replace a component by an equivalent one in a composite system while

preserving the behaviour of the composition.

An equivalence relation which satis�es this property is one which is preserved by

arbitrary contexts. In other words, it is a congruence (see section C.3.) Here we

claim that strong bisimilarity (de�nition B.13) is such an equivalence relation. This

is an equivalence relation between labelled-transition systems, and therefore we can

use it to compare the LTS's of DEVS models as de�ned in section 3.1.

Here we prove that strong bisimilarity (-) is preserved by coupling. In order to

do this we need to de�ne generic DEVS components and contexts. Informally, a

34 CHAPTER 3. AN OPERATIONAL SEMANTICS FOR DEVS

DEVS context is a coupled DEVS with �holes� or �placeholders� for other DEVS

components. A generic component de�nes the minimal structure required by one

such placeholder. We distinguish between �elementary� contexts, i.e., contexts where

one of the immediate sub-components is generic, and �arbitrary� contexts, where the

placeholder is located at an arbitrary depth.

De�nition 3.20. (Elementary DEVS contexts) A generic component is a

pair (X,Y) where X is some set of inputs and Y is some set of outputs. Let Generic

denote the set of all generic components.

An elementary DEVS context D with placeholder η, denoted D〈η〉 is a tuple

(X,Y,N] {η}, C, infl, Z, sel) de�ned as a coupled DEVS, except that the sub-

component Cη is a generic component instead of a DEVS component. All other

sub-components are DEVS components.

A partial state of a DEVS context D〈η〉 is a function ρD〈η〉 : N → ConfigsN , that

maps every name except η, to a con�guration.

Suppose that A ∈ DEV S and D〈η〉 is an elementary context. We say that A is

compatible with D〈η〉 if Cη = (Xη, Yη) where Xη = inset(A) and Yη = outset(A).

Let D〈η〉 be some elementary context and A be some component compatible with

D〈η〉. Then D〈η → A〉 or simply D〈A〉 denotes the coupled DEVS component re-

sulting from replacing the placeholder Cη ∈ Generic by A. Formally, D〈η → A〉 def=
(X,Y,N ∪ {η}, C〈η → A〉, infl, Z, sel) where6

C〈η → A〉m
def
=

Cm if m 6= η

A otherwise

If ρD〈η〉 is a partial state of a DEVS elementary context D〈η〉, and (sA, tA) ∈
ConfigsA for some A ∈ DEV S, then ρD〈η → (sA, tA)〉 is a state of the coupled

component D〈A〉 de�ned by

ρD〈η → (sA, tA)〉(m)
def
=

(sA, tA) if m = η

ρD〈η〉(m) otherwise

We naturally extend the functions inset, outset, names, parts, and descendants to

contexts.

To compare two di�erent DEVS components they need to have the same input and

output sets. This allows us to de�ne bisimilarity between components.

De�nition 3.21. (Compatible DEVS components) If A,B ∈ DEV S are two

6Note that in this de�nition we do not change the name of the placeholder η when plugging in
A. There is no need to do so, and this allows us to retain the same infl, Z and sel functions.

3.5. COMPOSITIONALITY 35

components such that inset(A) = inset(B) and outset(A) = outset(B), we say

that A and B are mutually compatible . If A ∈ DEV S, we write A ↓ (sA, tA)
for some A-con�guration (sA, tA) to mean that A's current con�guration is (sA, tA).
Furthermore, A ↓ (sA, tA) is bisimilar to B ↓ (sB, tB), written A ↓ (sA, tA) - B ↓
(sB, tB) if (sA, tA) - (sB, tB) in the LTS given by A]B.

In order to prove compositionality of bisimulation we �rst need a lemma stating that

replacing a component by a bisimilar component does not change the imminent set

of a coupled component.

Lemma 3.22. Let D = (X,Y,N,C, infl, Z, sel) be a coupled DEVS. If ρ1 and ρ2

are two D-states such that there is an m0 ∈ N for which ρ1(m0) - ρ2(m0) and for

all m ∈ N such that m 6= m0, ρ1(m) = ρ2(m), then immD(ρ1) = immD(ρ2).

The heart of the compositionality property is given by the following theorem which

states that bisimilarity is preserved by elementary contexts.

Theorem 3.23. Let A and B be any mutually compatible DEVS components, and

let (sA, t) ∈ ConfigsA and (sB, t) ∈ ConfigsB be any con�gurations. Given any

elementary DEVS context C〈η〉 such that both A and B are compatible with C〈η〉,
and given any partial state ρC of C〈η〉, if

A ↓ (sA, t) - B ↓ (sB, t)

then

C〈A〉 ↓ (ρC〈η → (sA, t)〉, t′) - C〈B〉 ↓ (ρC〈η → (sB, t)〉, t′)

for any t′.

The previous theorem states compositionality with respect to elementary contexts.

Now we generalize this to arbitrary contexts, this is, contexts where the placeholder

occurs at any depth of nesting in the coupled component.

De�nition 3.24. (Arbitrary contexts) An arbitrary DEVS context D with

placeholder η, written D[η] is either an elementary context or a tuple of the form

(X,Y,N,C, infl, Z, sel) where all the elements are as before and there is exactly

one D′〈η〉 ∈ descendants(D[η]) such that D′〈η〉 is an elementary context. We call

Contexts the set of all arbitrary contexts.

Let D[η] be some arbitrary context and A be some component compatible with

D[η]. Then D[η → A] or simply D[A] denotes the coupled DEVS component re-

sulting from replacing the placeholder Cη ∈ Generic by A. Formally, if D[η] =

36 CHAPTER 3. AN OPERATIONAL SEMANTICS FOR DEVS

(X,Y,N,C, infl, Z, sel), then

D[η → A]
def
=

{
D〈η → A〉 if D is elementary

(X,Y,N ∪ {η}, C[η → A], infl, Z, sel) otherwise

with C[η → A] de�ned by

C[η → A]m
def
=

Cm if m 6= η′

B[η → A] otherwise

where η′ ∈ N such that Cη′ = B[η] for some arbitrary context B[η] 7.

If ρD[η] is a partial state of a DEVS arbitrary contextD[η] = (X,Y,N,C, infl, Z, sel),
and (sA, tA) ∈ ConfigsA for some A ∈ DEV S, then ρD[η → (s, t)] denotes a cou-

pled state of D[η → A] where the place-holder η is assigned the con�guration (s, t).
Formally,

ρD[η → (s, t)]
def
=

ρD〈η → (s, t)〉 if D is elementary

ρ̃D[η → (sA, tA)] otherwise

with ρ̃ de�ned by

ρ̃D[η → (s, t)](m)
def
=

ρ(m) if m 6= η′

(ρ′[η → (s, t)], t′) otherwise

where η′ ∈ N such that Cη′ = B[η] for some arbitrary context B[η], and ρ(η′) =
(ρ′, t′) for some ρ′ and t′.

It is straightforward to see that D[η → A] is indeed a coupled DEVS. From now

on we shall denote D[η → A] as D[A] since the contexts we consider have only one

placeholder.

Remark 3.25. Any non-elementary context D[η] can be described as the composition

of an elementary context D′〈η′〉 and an arbitrary context D′′[η]:

D[η] = D′〈η′ → D′′[η]〉

To generalize the previous theorem to arbitrary contexts we need the following

lemma, which essentially states that assigning a con�guration (s, t) to the place-

holder η of an arbitrary context D[η] = D′〈η′ → D′′[η]〉 is done by recursively

assigning the con�guration (s, t) in the sub-component η′ = D′′[η] which contains

7This is, η′ is the name of the sub-component which has the placeholder.

3.5. COMPOSITIONALITY 37

the place-holder η, and assigning the resulting con�guration to the place-holder η′

in the elementary context D′〈η′〉.

Lemma 3.26. Let A ∈ DEV S, D[η] ∈ Contexts. Then, for any s, t, t′, ρD,

ρD[η→A][η → (s, t)] = ρD[η→A]〈η′ → (ρ1, t
′)〉

where D[η] = D′〈η′ → D′′[η]〉 for some D′〈η′〉 and some D′′[η], and

ρ1 = ρD′′ [η → (s, t)]

With this lemma we can generalize theorem 3.23 to arbitrary contexts as follows.

Theorem 3.27. Let A and B be any mutually compatible DEVS components, and

let (sA, t) ∈ ConfigsA and (sB, t) ∈ ConfigsB be any con�gurations. Given any

arbitrary DEVS context C[η] such that both A and B are compatible with C[η], and
given any partial state ρC of C[η], if

A ↓ (sA, t) - B ↓ (sB, t)

then

C[A] ↓ (ρC [η → (sA, t)], t′) - C[B] ↓ (ρC [η → (sB, t)], t′)

for any t′ .

38 CHAPTER 3. AN OPERATIONAL SEMANTICS FOR DEVS

4
DEVS tools

Having expanded the theoretical foundations of DEVS we now turn our attention to

the realization of DEVS systems, and develop some tools that facilitate the modelling

and simulation of DEVS models.

There are many simulation frameworks de�ned for DEVS such as CD++[54], aDEVS

[33] or PythonDEVS [9], but they assume that the models are represented by data-

structures (objects) in the implementation language of the simulator. This is inad-

equate, as it assumes familiarity with the underlying programming language on the

part of the modeler. Furthermore it allows the modeler to bypass any restrictions of

the formalism, thus producing models that look like they were DEVS models, but

may not satisfy the requirements of the de�nition. This approach clearly breaks a

fundamental abstraction barrier between modelling and simulation.

To deal with this, the process of modelling DEVS systems must be separated from

the process of producing a suitable representation of the model that can be fed to

a simulator. We present in section 4.1 a tool that does just that [37]. It provides

an editor in which DEVS models are built visually, and from which simulation code

is generated. In section 4.2 we build on this tool and extend it to facilitate the

development of cellular DEVS systems, i.e., large arrays of DEVS models [38].

4.1 A visual editor and code generator

DEVS models can be described in terms of graphs. Coupled models have a very

evident graphical structure, more precisely that of a higraph. There are di�erent

variants of higraphs, but the simplest form consists of two graphs, or in this case, a

tree and a graph. The tree represents the containment relation between sub-models.

The graph represents the connectivity between the components (given by the in�u-

encer sets and the transfer functions.) This is not completely accurate, as we allow

the models to have ports. Thus, a coupled model is really an enriched higraph, as-

sociating with each hyper-edge, not only the sets of input components and output

components connected by it, but sets of port-component pairs.

An important subset of atomic DEVS models, namely �nite-state models, can also

40 CHAPTER 4. DEVS TOOLS

be described to some extent as a graphical structure. This structure can be seen as

that of a �nite-state automaton enriched with ports, two kinds of transition edges

(internal and external), and states labelled with their corresponding time-advance

and output. In this representation, external transition edges are also labelled with

a boolean expression which depends on its source state, some input ports, and the

special variable e which represents the time elapsed since the last transition.

Figure 4.1: A coupled DEVS model.

Such graphical structure calls for a graphical modelling environment, so that the

modeler can focus on the design of the system rather than its formalization. The

environment and an example of a DEVS model are shown in Figure 4.1.

In this tool, the user can create coupled or atomic DEVS models by clicking a button

on the interface's toolbar and then clicking in the canvas. The same applies for each

element that forms a DEVS model (states, ports, channels, and transitions.) Creating

channels between ports, or state transitions is done by using the mouse. If the link is

a state transition, the user is asked to select whether it is an internal or an external

transition. Specifying that a component is part of another (e.g., a sub-model, or a

port,) is also performed by mouse operations. Each graphical element which is not a

link, has a label with its name.

Ports are labelled as either input or output ports. Each state has two attributes

apart from its name. These are two �elds which may contain an arbitrary Python

script, to specify the time-advance and output for the state respectively. External

transitions between states also have an additional attribute which may contain some

Python script to specify whether the transition is enabled or not. This script has

as parameters the source state, the elapsed time, and the values at the input ports,

and it should return true or false. For example, if there is an external transition link

between two states s0 and s1, labelled with a condition such as e < 1.0 and x1 = 3,

4.1. A VISUAL EDITOR AND CODE GENERATOR 41

Figure 4.2: Another coupled DEVS model.

where e is a variable representing the elapsed-time since the last transition, and x1

is the name of some input port, then the external transition will take place if the

condition is true. All these attributes for ports, states and external transitions can

be speci�ed by clicking the appropriate object.

The GEN button is used to produce the Python code for the DEVS model on the

canvas. The generated code is a suitable representation of DEVS models that can be

used by the PythonDEVS framework, which is brie�y described below.

4.1.1 PythonDEVS and the generated simulators

The PythonDEVS Modelling and Simulation Package [9] provides an implementation

of the standard classic DEVS simulation algorithm as introduced in [60]. Python is an

interpreted, high-level, object-oriented programming language. The package consists

of two modules, the �rst of which (DEVS.py) provides a class architecture that allows

hierarchical classic-DEVS models to be easily de�ned by sub-classing the AtomicDEVS

and CoupledDEVS classes. The simulation engine (SE) itself is implemented in the

second module (Simulator.py). Based on the DEVS simulator described in [60], it

uses the same message-passing mechanism. Both the modelling architecture and the

SE are described in detail elsewhere (see [9], [60].)

The code generated by the tool described in the previous section follows the standard

approach for the implementation of DEVS models. Each model (atomic and coupled)

is compiled into a class, which is a subclass of AtomicDEVS or CoupledDEVS.

The simulation algorithm of PythonDEVS calls the methods in the generated classes

for the models, according to the operational semantics of DEVS. The subclasses

of AtomicDEVS implement the methods extTransition, intTransition, outputFnc

and timeAdvance (for δext, δint, λ, and τ respectively.) The subclasses of CoupledDEVS

specify the model's composition and connectivity, including the ports and sub-

models.

As an example, consider the model in Figure 4.2. In the atomic model A, there is

an external transition labelled evt from state s0 to state s1. This transition has as

condition the following script:

42 CHAPTER 4. DEVS TOOLS

class A(AtomicDEVS):

def __init__(self):

AtomicDEVS.__init__(self)

self.state = 's0'

self.elapsed = 0.0

self.i1 = self.addInPort()

self.i2 = self.addInPort()

self.o1 = self.addOutPort()

self.o2 = self.addOutPort()

def extTransition(self):

s = self.state

e = self.elapsed

i1 = self.peek(self.i1)

i2 = self.peek(self.i2)

if s == 's0':

def guard1_condition(e, i1, i2):

if e < 1.0:

if i1 == 'a' and i2 == 0 or i1 == 'b'

or i2 > 0: return 1

else: return 0

elif e < 2.0: return i2 >= 1

else: return 0

if guard1_condition(e, i1, i2):

return 's1'

Figure 4.3: Generated code for model A.

if e < 1.0:

if i1 == 'a' and i2 == 0 or i1 == 'b'

or i2 > 0: return 1

else: return 0

elif e < 2.0: return i2 >= 1

else: return 0

where 0 stands for false and 1 for true, following Python's convention. Then, an

excerpt of the code generated for A is shown in Figure 4.3.

The code generated for the coupled model C, is shown in Figure 4.4.

4.1.2 Meta-modelling

Having described the tool, we turn our attention to how meta-modelling is used

to create the DEVS visual modelling environment and how graph-transformation is

used to generate custom simulators.

4.1. A VISUAL EDITOR AND CODE GENERATOR 43

from A_devs_model.A import *

class C(CoupledDEVS):

def __init__(self):

CoupledDEVS.__init__(self)

self.p0 = self.addInPort()

self.p1 = self.addOutPort()

self.p2 = self.addOutPort()

self.A = self.addSubModel(A())

self.connectPorts(self.A.o1, self.p1)

self.connectPorts(self.p0, self.A.i1)

self.connectPorts(self.A.o2, self.p2)

self.connectPorts(self.p0, self.A.i2)

Figure 4.4: Generated code for model C.

Meta-modelling refers to the de�nition or description of modelling languages or for-

malisms by means of models. A meta-model is a structure that describes a class of

models in a formalism or language. For instance, an Entity-Relationship diagram can

be used to describe the set of possible DEVS models. This meta-model is shown in

Figure 4.5.

Figure 4.5: The DEVS meta-model.

The modelling and simulation of complex systems requires the use of possibly many

di�erent formalisms to describe them or their components. A meta-modelling tool

allows the user to design such di�erent formalisms by creating meta-models for them

and generate, from these meta-models, tools for manipulating models in the corre-

44 CHAPTER 4. DEVS TOOLS

sponding formalisms. The DEVS modelling environment was created using AToM3

[23], a meta-modelling environment.

In AToM3 models (and meta-models) are plain graphs. The graphical description

of DEVS models requires higraphs as mentioned above. Since a higraph consists of

two graphs over the same set of nodes (a tree representing containment and a graph

representing connectivity,) the meta-model from Figure 4.5 can correctly describe

the class of higraphs corresponding to hierarchical DEVS models. There is nonethe-

less one practical di�culty: AToM3's visual primitives only provide support for the

manipulation of plane graphs, not higraphs. This di�culty is resolved by associating

which each node, actions that can be triggered by GUI events1. For instance, when

a coupled model is connected to a sub-model to represent a containment relation, an

action is triggered which changes the physical shape of the coupled model to enclose

the sub-model.

4.1.3 Model transformation

In order to generate code from the graphical representation described above we need

a mechanism to manipulate graphical structures. A natural approach to manipulate

graphical structures, such as our representation of DEVS models, is graph transfor-

mation. Graph transformation extends the idea of term rewriting to arbitrary graphs.

The theory behind graph transformation has been thoroughly studied (see for ex-

ample [11],) but there are still relatively few practical software tools that support it.

AToM3 is one such tool.

The central notion in graph transformation is that of a graph-grammar. A graph-

grammar is a collection of productions or rules specifying how a (sub)graph of a

so-called host graph can be replaced by another (sub)graph.

Some graph-grammars are enriched by associating with each rule, some additional

conditions and actions. These can be used to model side-e�ects.

Informally, the semantics of a graph-grammar is as follows. We start from a host graph

and a graph-grammar. A direct derivation is the result of matching some sub-graph

of the host graph to the left-hand side of some rule in the grammar, checking if the

additional condition is true, and if so, replacing that sub-graph by the corresponding

right-hand side of the rule, and perform any additional actions associated with the

rule. Some graph-rewriting systems associate priorities to the rules, so that if more

than one rule matches the host graph, the priorities act as tie-breakers. An execution

is a sequence of direct derivations. 2

Graph transformation has been used for many di�erent applications, such as spec-

1This is a feature supported by AToM3.
2This informal de�nition, as implemented in AToM3, is most closely related to the so-called SPO

approach to graph-transformation ([43], [12]).

4.1. A VISUAL EDITOR AND CODE GENERATOR 45

ifying the operational semantics of graphical languages, and specifying formalism

translations [13].

4.1.4 Code generation

We use graph transformation to generate simulators from DEVS models represented

graphically. Code generation can be understood in terms of model transformation

where the original representation is the source formalism and the language of the

generated code is the target formalism. While it is theoretically possible to provide a

purely graphical translation from a formalism such as DEVS into a real programming

language such as Python, it is not a very practical approach, since it would require

de�ning a meta-model for the target language. Real programming languages have

too many constructs and special cases to make this approach worthwhile in practice.

However, we can still have a graph-transformation approach since rules in a graph-

grammar can have associated actions encoding side-e�ects. In our approach we use

the graphical nature of the source formalism to traverse and annotate the model

which is being translated, while the rule actions generate the associated code.

To apply a graph-grammar in order to generate code we must introduce some ex-

tensions to the meta-model. In particular we need some �pointers� or �markers� to

traverse the DEVS model and mark which sub-models have already been processed.

There are two equivalent approaches to this: 1) use a graphical pointer, or 2) use

an attribute in the nodes to represent the fact that a node has already been visited.

Our graph-grammar uses the second approach.

Another issue in the code generation scheme is that for a given model node we might

require access to several of its neighbour nodes to generate its code. For instance,

when generating code for any model we need to know which are the node's ports, or

when generating code for a coupled model we need to know which are its sub-models.

None of these situations can be handled by a single rewriting rule, since the left-hand

side of a rule always has a �xed number of nodes, but we need to apply the rule of

interest for an arbitrary number of neighbours. One possible solution is to create a

special �collecting� node, and have a rule that adds the neighbours to a list in this

collecting node. This rule, when applied, marks each neighbour as visited so that

it is not added twice. The rule also should have a priority higher than that of the

actual code generation of the model of interest, since code generation should happen

only after all the relevant neighbour's information has been collected.

The code generation rules themselves do not perform any important rewriting aside

from getting rid of annotations such as the collecting nodes mentioned above. The

code generation is performed by the actions, which can access the annotations.

An example of the code generation rule of a coupled model, showing the collecting

nodes is depicted in Figure 4.6. The collecting nodes (S and P) each contain a list

46 CHAPTER 4. DEVS TOOLS

Figure 4.6: A typical code generation rule.

of the names of the sub-model nodes and port nodes respectively. The rule simply

deletes the annotations (the collecting nodes,) and its action is to call an external

function passing it the model and the relevant annotations. The action is executed

before the graph rewriting takes place. The rule also marks the model's node as

visited so that it will not be applied again to that node.

4.2 Modelling cellular systems

An interesting application of the DEVS formalism is the modelling of cellular sys-

tems. Cellular systems are generalizations of Cellular Automata [53]. A cellular sys-

tem consists of a spatial arrangement of interacting sub-systems called cells. Local

interactions and behaviours of sub-systems leads to global behaviour due to their

in�uence on the state of neighbouring sub-systems. Typically the sub-systems are

arranged in a grid or lattice structure, sometimes called the cellular space, which

de�nes the neighbourhood of each cell in a uniform manner.

In classical cellular automata, each cell is a �nite-state automaton. In cellular sys-

tems, a cell can be a more complicated entity. In this section we consider cellular

systems in which cells are DEVS models. Cellular DEVS systems are useful for mod-

elling complex phenomena such as �re-spreading [30, 31].

Here we describe a modelling environment that enables the user to describe the

structure and behaviour of a cellular DEVS system and generate simulation code for

the PythonDEVS simulator discussed in the previous section.

There are two aspects that need to be speci�ed for a cellular system: the behaviour

of individual cells and the topology of the cellular space. The speci�cation of be-

haviour is done by means of the environment described in the previous section. The

speci�cation of spatial structure is done by means of graph-transformation (see sec-

tion 4.1.3.) Graph-transformation is used to �grow� a generic cellular space structure

which is then used as a template for the actual cellular DEVS system. The transfor-

mation from this generic cellular space into the cellular DEVS system is performed

by another graph-transformation. Once the cellular DEVS model is obtained, code is

generated using the scheme described in the previous section. This process is depicted

in Figure 4.7.

4.2. MODELLING CELLULAR SYSTEMS 47

Figure 4.7: The process of generating a cellular DEVS model.

Figure 4.8: The cellular-spaces environment.

By using graph-transformation to generate the cellular space's topology we avoid

hard-coding its structure. By changing the rules of the graph-grammar, we obtain

di�erent topologies.

Figures 4.8 and 4.9 show respectively a screen-shot of the environment once a generic

cellular space has been generated and once the cellular DEVS space has been pro-

duced.

In the remainder of this section we look into how graph-transformation is used to

generate the generic cell space, and how it is transformed into a cellular DEVS model.

4.2.1 Generating a generic cellular space

A generic cellular space is a lattice whose nodes represent generic cells and where

edges represent neighbourhood relationships. In order to represent generic cellular

48 CHAPTER 4. DEVS TOOLS

Figure 4.9: The cellular-DEVS environment.

Figure 4.10: Cellular-spaces meta-model.

spaces we build a meta-model. In this section we show how to generate simple rect-

angular spaces with a Von Neumann neighbourhood.

An Entity-Relationship meta-model for cellular spaces like the one depicted in Figure

4.8 is shown in Figure 4.10.

In this meta-model we have an entity to represent cells as well as neighbourhood

relations. In addition to these, there is a �generator� node which is used as the

starting point of the space generation process, and which speci�es the dimensions of

the generated space (M rows, N columns.) It comes with two relations ��rst� and

�last,� used as pointers during the generation process.

Figure 4.11 shows the graph-grammar that generates the desired space. The intuition

behind this graph-grammar is to generate the cell-space by constructing one row at a

time from the bottom-up, and each row is built cell-by-cell from left (West) to right

(East).

4.2. MODELLING CELLULAR SYSTEMS 49

(a) FC rule (b) ACFR rule

(c) NR rule (d) ACR rule

Figure 4.11: Graph-grammar for cellular-space generation.

The generator node is labeled �m/M ;n/N � whereM and N are the dimensions. The

m and n represent counters to keep track of how many rows are left to create (m)

and how many cells are left to create in the current row (n).

In these rules, the arrow labeled F acts as a pointer to the �rst cell in the current

column being generated, and the arrow labeled L is a pointer to the last cell generated

in the current row.

The �rst rule is FC (First Cell). This rule is responsible for creating the �rst cell. It

adds the cell and sets the F and L arrows to this new cell. Each new cell is given its

own new label.

The second rule, ACFR (Add Cell First Row) takes care of creating the �rst row. It

requires that m = M − 1 to ensure this is the �rst row, and that n > 0 to ensure

this is not the last column. It adds a new cell to the right of the one pointed by L

(the last added) and decrements the column counter by 1.

The third rule is NR (New Row). It requires m > 0 so that there are more rows to

add, and requires that n = 0 so that there are no more cells to add in the current

row. It then creates a new cell adding the n and s arrows, and moves both F and L

arrows to point to this new cell. It also sets n back to N − 1 and decrements m by

1 to start the next row.

The last rule is ACR (Add Cell in Row). It is responsible for the generation of inner-

cells. It requires that n > 0 (as well as the given LHS structure be present) ensuring

there are cells to add in this row. It then decrements n by 1 (leaving m unchanged.)

During graph rewriting cells are labeled with their absolute position (x, y) which

50 CHAPTER 4. DEVS TOOLS

(a) CDI rule (b) CEW rule

(c) CNS rule (d) DGC rule

Figure 4.12: From generic to DEVS cellular spaces.

could be used by other graph-grammars to process cells with respect to their actual

position. Strictly speaking (x, y) is not necessary for this generation process.

4.2.2 Transformation into a cellular DEVS model

After generating a generic cellular space, another graph-grammar is used to transform

it into a cellular DEVS system. This transformation creates an instance of a given

DEVS model built with the tool from section 4.1 for each cell, and automatically

builds the coupled DEVS model with the appropriate connections between cells which

mirror those of the generic space. Such a grammar is shown in Figure 4.12.

This grammar consists of four rules: CDI, CEW, CNS and DGC.

The �rs rule, CDI (Create DEVS Instance,) creates a new instance of the given

DEVS model and associates it to a cell, but only if the cell does not already have

an associated DEVS model. The second rule, CEW (Create East-West connections,)

links neighbouring DEVS on the same row. The third rule, CNS (Create North-South

connections,) is analogous. The last rule, DGC (Delete Generic Cells,) removes any

generic cell which has no connections left. This is necessary so that the resulting

graph is a valid coupled DEVS model.

This grammar is executed until no rules are applicable. Once �nished, simulation

code is generated as described in section 4.1.

Part II

kiltera: theory and tools

5
A modelling language: kiltera

In this chapter we look at a di�erent approach to model discrete-event systems which

supports systems with dynamic structure. We introduce a language called kiltera,

based on the π-calculus with support for discrete-event modelling and distribution.

A kiltera system consists of a collection of components called processes. Processes

execute concurrently and interact via events, or equivalently by sending messages

through named channels. The occurrence of an event happens at a point in time,

and this may in�uence process behaviour. For example, a process may choose to

delay the execution of some action, or it may impose a time limit on the occurrence

of an event before deciding to take an alternative course of action.

Processes may be distributed over a network of sites. Each process is located in some

site and its behaviour may depend on its location. Processes can send other processes

to a di�erent site. Communication between processes in di�erent sites is transparent,

i.e., it is done in the same way as local communication.

In this chapter we start by introducing the kiltera language informally. Then, in

section 5.2 we present some extensions to the core language.

5.1 Introduction

In this section we introduce kiltera informally. We start by looking at basic processes

and later we present processes distributed over a network.

5.1.1 Processes

A process is a component that has behaviour. This behaviour may involve either

internal actions known to the process alone, or external actions which represent

interaction with its environment . The environment of a process can also be a process.

Termination

The simplest process is the process which terminates and does nothing else. This is

written

54 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

(a) Trigger (b) Listener

Figure 5.1: State-transition diagrams for a triggering process and a listener.

done

Process interaction: events

A process interacts with other processes in its environment via events. A process can

trigger events and can react to events. An event named u is triggered by

trigger u

A process may listen to the occurrence of this event as follows:

when u ->

P

where P is the continuation, i.e., the rest of the process. Alternately, we can say that

P is the new state of the process, once u occurs.

Visually we can represent a triggering process and a listener process with the state-

transition diagrams as shown in Figure 5.1.

If there are multiple processes listening to an event, only one of the listeners reacts

to the event and the rest keep waiting for another occurrence of that event. This is

known as unicasting . The choice of which listener reacts is non-deterministic: any of

the listeners may be selected.

There is an alternative to unicasting, called multicasting . In this case, all of the

processes listening to a triggered event will react, so there is no choice. This is

achieved by

trigger all u

Events may carry information with them. This done by attaching this information

to the trigger:

5.1. INTRODUCTION 55

trigger u with "some data"

Data values that can be sent with an event include the boolean constants true and

false, numeric constants, string constants (enclosed in double quotes,) tuples of

values, or, as will be described later, events themselves and site-names.

A listener may bind any received message to a variable:

when u with x ->

print x

Furthermore, the listener may specify a pattern of data which must be matched by

the input for the process to react. For example, if a process triggers event u with the

associated data being a tuple ("age",27) as follows:

trigger u with ("age", 27)

then, the following listener will react and print 27:

when u with ("age", n) ->

print n

but the following will not react to the event:

when u with ("edad", n) ->

print n

because the tuple ("age",27) does not match the pattern ("edad",n).

A listener process may listen to more than one event, providing a choice of behaviours.

For example, the following listens for events a and b.

when a ->

P

| b ->

Q

56 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

Figure 5.2: External choice.

Figure 5.3: Sequential transitions.

If event a is triggered, the process becomes P and the other branch is discarded.

Dually, if b is triggered, Q is executed and the other branch is discarded. Alternately,

we can say that P is the new state of the process if event a occurs, or Q is the new

state if b occurs.

Such behaviour allows us to represent external choice. It is external because the

behaviour of the process depends on the events provided by the environment. This

process can be visualized by the state-transition diagram in Figure 5.2.

Communication between processes by triggering events is asynchronous in the sense

that a process triggering an event does not need to wait for a listener to consume

the event. For example, the following process

trigger a ->

trigger b ->

done

which can also be written as

trigger a

trigger b

done

is a process that triggers event a and then it triggers b without waiting for other

processes to react to a. This process is pictured in Figure 5.3.

It is possible to see events as channels which connect processes. From such a view-

point, triggering an event corresponds to sending a message through a channel, which

is written

5.1. INTRODUCTION 57

Figure 5.4: A process de�nition.

send "message" to u

and listening corresponds to a process waiting to receive a message:

receive x from u ->

P

Events (or channels) are bidirectional in the sense that a process that triggers an

event might also listen to that event, and viceversa. For example, it is possible to

write

when u with x ->

trigger u with x+1

Process structure

The set of events in which a process may participate, either triggering or listening are

its interface. It is often convenient to give a process a name and de�ne its interface

explicitly so that it can be treated as a modular unit. This is achieved by a process

de�nition, which has the form:

process A[x1,...,xn]:

P

Such declaration de�nes a class of processes named A with interface x1, x2, ..., xn and

body P. This means that any instance of this de�nition will interact only through

events in its interface, and will execute P. Alternately we can think of these interface

events as ports. Any instance of such a process class will have channels �hooked-up�

to these ports. This can be visualized as shown in Figure 5.4.

A process de�nition is instantiated by �invoking� it with the names of events that

will be used to interact with it, i.e., the channels to connect to the process's ports.

For example:

A[u1,...,un]

58 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

Figure 5.5: Parallel composition.

will create an instance of A, using events u1, u2, ..., un in place of x1, x2, ..., xn when

executing its body P, or in other words, connecting the channels u1, u2, ..., un to the

ports x1, x2, ..., xn.

A process de�nition is valid within some scope. The scope of such de�nition is spec-

i�ed immediately after the declaration, as follows:

process A[x1,...,xn]:

P

in

A[u1,...,un]

Processes are components which execute concurrently. To create a process which is

the composition of two or more processes, the parallel composition operator is used:

par

P1

P2

...

Pn

This can be seen as a component made of sub-components as shown in Figure 5.5.

In order for processes to interact we need to be able to declare events or channels

that connect them. This is done using the syntax:

event a in

P

or equivalently

channel a in

P

These constructs create a new event (or channel) named a whose scope is process P,

this is, initially1 only sub-processes within P can interact through a. An alternative

1The scope of an event may change, as explained below in the section on link mobility.

5.1. INTRODUCTION 59

Figure 5.6: Connected processes.

view of these constructs is that they hide the name a from P's environment, and

hence they serve as a mechanism for abstraction or encapsulation.

These constructs are powerful enough to describe the structure of composite systems.

Consider for instance a system consisting of two sub-components �producer� and

�consumer� which are connected through a channel z as shown in Figure 5.6.

Such a system is speci�ed as follows:

process Producer[x]:

P

process Consumer[y]:

Q

in

event z in

par

Producer[z]

Consumer[z]

where P and Q specify the behaviour of the producer and the consumer respectively.

For example:

process Producer[x]:

trigger x with "product"

done

process Consumer[y]:

when y with data ->

print data

done

in

event z in

par

Producer[z]

Consumer[z]

60 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

Figure 5.7: Hyper-edges: channels connecting multiple processes.

Figure 5.8: A simple loop.

Channels can connect more than two processes, as depicted in Figure 5.7. This is

written as follows:

process Producer[x]:

P

process Consumer[y]:

Q

in

event z in

par

Producer[z]

Consumer[z]

Consumer[z]

Only when more than two processes are connected by a channel does the di�erence

between unicasting and multicasting have a meaning.

Recursion

The body of a process de�nition may contain references to the process de�nition

itself. This allows us to model loops. For example, consider the state-transition dia-

gram in Figure 5.8.

This loop can be modelled by the following:

5.1. INTRODUCTION 61

process P[a,b]:

trigger a

when b ->

P[a,b]

Recursion plays a role in describing process replication. Consider the following:

process A[y]:

P

process B[x,y]:

par

A[y]

B[x,y]

Here, process B creates an instance of A and in parallel creates an instance of itself.

This results in an in�nite number of A instances. This is useful to model a resource

with unlimited availability.

Recursion also plays a role in de�ning the semantics of the �indexed� form of kiltera's

operators (see section 5.2 on these extensions.)

State variables

Sometimes it is useful for a process to keep track of some state variables. In kiltera, a

process de�nition can declare such variables immediately after the ports, as follows:

process A[x1,...,xn](s1,...,sm):

P

where x1, x2, ..., xn are the ports and s1, s2, ..., sn are the state variables.

As an example, consider this process, which represents a server that keeps track of

the number of requests it has received:

process Server[request, query, response](count):

when request ->

Server[request, query, response](count+1)

| query ->

trigger response with count

Server[request, query, response](count)

In this example, the Server process can receive either a request or a query. If it

receives a request, it goes back to its initial state (by �becoming� an instance of

itself,) but with the count state variable incremented by 1. If it receives a query,

it sends the count through the response port and returns to its initial state with

count unchanged.

62 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

Left-parallel

The parallel operator introduced above represents the composition of two processes

which are executed concurrently. This operator does not impose any order in the

execution of actions from the component processes. However, sometimes it is useful

to ensure that the �rst action of a composite process is preformed by a particular

sub-component. This is achieved in kiltera by the left-parallel operator:

lpar

P1

P2

...

Pn

The �rst action of this process is the �rst action of P1. After that, P1 proceeds in

parallel with the left-parallel composition of P2, ..., Pn, whose �rst action will be that

of P2, etc.

The �rst action of P1 may be an interaction with P2.

Non-determinism

A process may exhibit non-determinism in several ways. The �rst case, as mentioned

above, is when there is an event triggered by unicasting, and there are multiple

listeners to such event, as in the following:

par

when a ->

P

when a ->

Q

trigger a

In this example, there are two sub-processes listening to event a, and then a third

process triggers a. The result is that either P or Q will be executed, but the choice is

non-deterministic.

A second possibility for non-determinism is when a process listens to two (or more)

di�erent events, and its environment provides both events:

5.1. INTRODUCTION 63

par

when a ->

P

| b ->

Q

trigger a

trigger b

The �rst process listens to both a and b, while its environment triggers both. As in the

previous example, either P or Q will be executed, and the choice is non-deterministic.

Time

The constructs introduced thus far allow us to describe a wide range of dynamic

interacting systems, but in order to have a true discrete-event formalism we need to

include a notion of time. In kiltera, every action or event occurs at some point in time.

Time �ows continuously, but since actions and events occur only at speci�c points

in time, state changes are discrete: the state of a process remains constant between

events. This means that while time �ows continuously, computation only happens

when events occur. This can be exploited by an implementation of the language, as

is shown in chapter 9.

There are three fundamental operations that take time into account:

• Delay: delaying the execution of a process or scheduling and event

• Timeout: imposing a time-limit on the occurrence of an event, and

• Determining the elapsed time: assigning to a variable the amount of time a

process has spent waiting for an event.

The �rst is written

wait E ->

P

or

wait E

P

which evaluates the expression E yielding some value t, and then starts P after an

amount of time t. It is also possible to schedule events:

schedule a after E

which is shorthand for

64 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

wait E ->

trigger a

Timeouts are associated with listeners. For instance

when a ->

P

timeout E ->

Q

will wait for an event a for an amount of time equal to the value of E. If the event

occurs before this amount of time, the process's new state is P and Q is discarded. If

the event does not occur in this amount of time, the listener is discarded and Q is

executed, at that time.

The third construct, determining the �elapsed time,� is also associated to listeners.

Each alternative branch of a listener can be annotated with an after clause as follows:

when u after e ->

P

where u is some event name, and e is some variable which may occur in P. The

scope of e is P . This construct declares a variable (e) which, once u is triggered, is

bound to the time elapsed between the listener beginning and the occurrence of the

event. This e�ectively allows us to measure the passage of time, and determine the

behaviour of the process based on this elapsed time, since P may decide what to do

depending on e's value.

For example, the following:

par

wait 1.0 ->

when a with x after e ->

print (x,e)

done

schedule a with "phi" after 1.618

will print (phi,0.618) at time +1.618 relative to the time it begins.

Now consider a more elaborate example:

5.1. INTRODUCTION 65

par

when a with x ->

print x

done

when b after e ->

schedule a with true after 2.0 - e

done

timeout 2.0 ->

trigger a with false

done

schedule b after random(0.0,3.0)

Here the expression random(0.0,3.0) returns a random real number between 0.0

and 3.0 drawn from a uniform distribution. If this number is smaller than 2.0, the

process prints true at time +2.0 (with respect to the start time of this process.) If

it is larger or equal to 2.0, it prints false, also at time +2.0.

The above constructs turn out to be enough to capture the core of discrete-event

systems as modelled in the DEVS formalism. For details about how such systems

can be described with these constructs, see section 5.4.

Transient vs. lasting triggers

The introduction of time gives rise to some questions: what happens if a process

triggers an event and there are no listeners at the time of the triggering, but there

may be some listeners later? Does the triggered event �linger� until there is some

listener ready to interact, or is it lost and discarded? Should one of these alternatives

be preferrable to the other? There does not seem to be a clear reason to prefer one

of these alternatives. This suggests that there could be two kinds of triggers: triggers

which are lost when there are no listeners, and triggers that stay alive until some

process reacts to them.

The triggers introduced before are of the �rst kind. We call them transient or

ephemeral triggers. The second kind are called lasting triggers, and we write them

as follows:

trigger lasting a with E

for the unicasting variant, or

trigger all lasting a with E

for the multicasting variant.

As an example, consider this:

66 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

par

wait 3.0 ->

when a ->

print 1

trigger a

Since, at time +0.0 there are no processes listening for a, the process does not print

anything. It simply blocks waiting inde�nitely for a to occur, while the trigger is lost.

On the other hand, the following prints 1 at time +3.0:

par

wait 3.0 ->

when a ->

print 1

trigger lasting a

Variable structure

It is possible to describe several di�erent structural changes in kiltera with the con-

structs already de�ned.

First, process instantiation could be interpreted as a way of �becoming� another

process. Consider for instance:

process A[x]:

P

process B[x]:

Q

process C[x,a,b]:

when a ->

A[x]

| b ->

B[x]

Here, if C receives an a signal, it becomes and instance of A, and if it receives a b

signal, it becomes a B instance. This pattern is useful to model di�erent modes of

operation.

Second, we can interpret process instantiation and parallel composition as the cre-

ation and spawning of new processes. Recall the example of replication

5.1. INTRODUCTION 67

process A[y]:

P

process B[x,y]:

par

A[y]

B[x,y]

This creates instances of A inde�nitely. We can modify this example to model a

controlled replication mechanism, which creates new instances of A whenever an

event new occurs:

process A[y]:

P

process B[new,y]:

when new ->

par

A[y]

B[new,y]

Third, process elimination may be done by either timeout or voluntary ending. This

can also be controlled with events, as in the following example:

process Server[request, answer, stop]:

when request with data ->

trigger answer with response(data)

Server[request, answer, stop]

| stop ->

done

Here, the server may receive requests through its request port, or it may receive a

signal through its stop port, which causes it to terminate.

A fourth form of structural change is more fundamental: link or channel mobility .

This is when the topology of the network of communications between processes

changes dynamically. This is achieved by making events (or channels) �rst-class val-

ues that can be passed around as messages, in the style of the π-calculus.

Consider for instance the system depicted in Figure 5.9 (a). This system is imple-

mented by the speci�cation in Figure 5.10.

Initially, the event or channel y is known only by A and C, but A sends this channel

to B through its port x. Once B gets this message, it binds it to w, which e�ectively

becomes a new port of B, and now y links together the three processes, as shown in

Figure 5.9 (b).

68 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

(a) (b)

Figure 5.9: Link mobility.

process A[x,y]:

trigger x with y

...

process B[x]:

when x with w ->

trigger w with "data"

...

process C[z]:

when z with u ->

...

in

event x in

par

B[x]

event y in

par

A[x,y]

C[y]

Figure 5.10: Link mobility.

5.1. INTRODUCTION 69

This example also highlights that such structural changes may involve a change in

the interface of a process. In this case, process B acquiring a new port.

5.1.2 Distributed processes

The collection of processes of a kiltera system may be distributed over a network

of sites. It may be desirable to distribute a system for di�erent reasons. From the

modelling point of view, one may want have a topological notion of space and make

processes located, this is, associate a process to a location (i.e., a site.) This allows us

to describe �regions� of computational activity, for example, to model geographical

regions. From the implementation point of view, it may also be desirable to distribute

processes, as it allows us to take advantage of computational resources, especially to

simulate models with a state space too large to �t in a single computer's memory.

For these reasons, kiltera provides a framework for distributing processes over a net-

work.

Sites and remote execution

A kiltera network consists of a set of sites. Each process executes in a site. Every site

has a name, which can be used to identify the location where a process is in. Site

names are declared with the syntax:

sites A,B,... in

P

This construct means that these sites are known by process P. 2

It is possible to start processes in some given site:

move Q[x1,...,xn] to y

where Q is some process de�nition, and y is a site name. This creates a new instance

of Q in site y.

Remote interaction

When starting a remote process Q with channels x1,...,xn, interaction through these

channels is the same regardless of the site it goes to. This is, Q's de�nition can use

triggers and listeners to communicate with remote processes, exactly in the same

way as if they where in the same site. For example,

2These names are symbolic names. Associating symbolic names with physical addresses is
implementation-dependent.

70 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

process P[u]:

wait 7.5

trigger u with "data"

...

process Q[u,v]:

wait 3.0

when u with x ->

trigger v

...

in

sites A, B in

event u,v in

par

move P[u] to A

move Q[u,v] to B

Figure 5.11: Time consistency across sites.

process P[u]:

trigger u with "data"

...

process Q[u]:

when u with x ->

...

in

sites A, B in

event z in

par

move P[z] to A

move Q[z] to B

Channels used for communication across sites are called d-channels.

Global behaviour

Distributed processes may execute at di�erent rates depending on the sites they

execute, but the global behaviour, i.e., the behaviour of the entire system, must

respect causality of events and have a consistent time-line. Consider for example the

speci�cation shown in Figure 5.11.

In this example, processes P and Q execute in remote sites, which may run at di�erent

rates, but the global time-line must be such that the triggering of u by P occurs at

time +7.5, followed, at that same time, by the reception of this event by Q and the

subsequent triggering of v. The triggering of u is the direct cause of Q's reaction and

therefore the global trace of events must re�ect such ordering of events.

5.2. EXTENSIONS 71

Note that it is not strictly required for time to be real, physical time. It can be

logical or virtual time. That is an issue of implementation. All that is required by the

language is that the global trace be consistent with respect to causality relationships.

The actual mechanism used to guarantee consistency (conservative or optimistic

algorithms) is not part of the de�nition of the language either. Any such mechanism

is acceptable. In chapter 9 we discuss such implementations, and present an optimistic

algorithm based on virtual time.

Site-dependent behaviour

A process's behaviour can be made dependent on its location, using the following

constructs:

where x in

P

and

at l then

P

else

Q

The �rst, binds the name x to the site where the process is executing. The second

compares the process's site name with l, and if they are the same, P is executed,

otherwise Q is executed.

Site names are �rst-class values, and therefore can be passed around as messages.

This allows processes to become aware of sites they previously did not know, as

shown in Figure 5.12.

Here, site A is known initially only by P3 which sends P1 to execute there, but P3

passes this site's name to P4 which then sends P2 there.

5.2 Extensions

The constructs introduced thus far comprise the core of kiltera, but in order to make

the language more practical, we extend it with the following additional constructs:

• function de�nitions

• conditionals

• sequence comprehension, sequence patterns and indices

• local name declarations

72 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

process P1[x]:

...

process P2[x]:

...

process P3[x,z]:

sites A in

trigger x with A

move P1[z] to A

process P4[x,z]:

when x with s ->

move P2[z] to s

in

event x,z in

par

P3[x,z]

P4[x,z]

Figure 5.12: Site names as �rst-class values.

• event/channel arrays

• process arrays (indexed parallel composition)

• sequential composition, sequential loops (indexed sequential composition)

These constructs are not part of kiltera's core as they can be de�ned in terms of

the previous constructs (see chapter 6, section 6.3,) but it is useful to describe them

explicitly.

Function de�nitions

To de�ne a function we use the following syntax:

function f(x1,...,xn):

E

where f is the function's name, x1,...,xn are the parameters, and E is an expression

which depends on the parameters. We also make functions �rst-class values so that

they can be transmitted as messages like any other value.

Conditionals

A basic construct common in most languages is the conditional:

if E then

P

else

Q

5.2. EXTENSIONS 73

where E is a boolean expression, and P and Q are processes. The meaning of this

construct is to evaluate E, and if the value is true then execute P, otherwise, execute

Q.

The �else� clause of a conditional is optional. Hence,

if E then

P

is equivalent to

if E then

P

else

done

This if-then-else construct introduced is a conditional process, but conditionals are

also useful in expressions, specially when de�ning functions. Hence we extend the

syntax of expressions to include:

if E1 then E2 else E3

A more general form of the conditional construct, which uses pattern-matching is

the match construct:

match E with

F1 ->

P1

| F2 ->

P2

...

| Fn ->

Pn

The meaning of this construct is to evaluate the expression E and match its value

against each pattern F1, F2, ..., Fn. If a pattern Fimatches, the corresponding process

Pi is executed. If no pattern matches, the whole process terminates.

Sequence comprehension, sequence patterns, and indices

kiltera's core includes tuples as the basic mechanism to build data structures. A tuple

is nothing more than a sequence of values. In order to generate large sequences,

kiltera includes a syntactic construct called sequence comprehension which is written

as follows:

74 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

(E1 for F in E2 if E3)

where F is a pattern, E1 is any expression that may have variables in common with

F, E2 is an expression that yields a sequence (i.e., tuple,) E3 is an optional boolean

expression that may also have variables from F. The meaning of this expression is

the sequence of values of E1 for each F that matches an element of the sequence E2

such that E3 is true. Hence, a sequence comprehension builds a sequence of values

by �ltering a given sequence according to some pattern and optional conditions.

For example, given a function range(n,m) that returns the sequence of integers i

such that n ≤ i < m,

(2 * x for x in range(1,100) if x * x < 50)

returns the sequence (2, 4, 6, 8, 10, 12, 14).

The core of kiltera includes a tuple pattern which can be used to match sequences.

Such pattern has the form (F1,F2,...,Fn) where each Fi is a pattern. This means

that the pattern speci�es a pattern for each item in the sequence. This, however, is

not always practical, specially when dealing with long sequences. For this reason we

introduce a sequence pattern, commonly found in functional languages:

(F;F1)

This pattern matches successfully against any non-empty sequence. The �rst item of

the sequence is matched against F, and the remainder is matched against F1. As an

example, we can use this to de�ne a process which sends each item of a list that is

tagged �visible:�

process P[out](list):

match list with

() ->

done

| (("visible",val);remainder) ->

trigger out with val

P[out](remainder)

| (x;remainder) ->

P[out](remainder)

Another useful construct found in most languages is indexed-access to items in a

sequence. To access the i-th element of a sequence s we write

s[i]

5.2. EXTENSIONS 75

Local name declarations

It is often useful to give a name to an expression so we can refer to it multiple times

in some scope. This is done in kiltera by writing:

let x = E in

P

where x is a name for the value of E and whose scope is process P. To declare multiple

names simultaneously:

let x1 = E1

and x2 = E2

...

and xn = En

in

P

Event/channel arrays

Since events/channels are �rst-class values, we can form sequences of events. This is

useful to model large systems. We introduce the syntax:

event array s[E] in

P

or

channel array s[E] in

P

In these, s is a name, E is any expression that evaluates to a positive integer and P

is the scope of the declared channels.

Process arrays

Suppose we want to create n instances of a process, where n is a parameter, not

known a priori, possibly a large number. The par operator only let us write a �xed

and known number of processes. However, as demonstrated with replication, it can

be used to generate a large number of processes when used in conjunction with

recursion. Hence we can write a process that generates n instances of a process P as

follows:

76 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

process P[...]:

...

process CreateN[...](n):

if n = 0 then

done

else

par

P[...]

CreateN[...](n-1)

To avoid having to explicitly write such de�nitions, we introduce a construct called

process array, or indexed-parallel, which allows us to create a concurrent process

for each item in a sequence that matches certain pattern. With this construct, the

example would be written as

process P[...]:

...

process CreateN[...](n):

par

P[...]

for i in range(1,n)

In general, this construct has the form:

par

P

for F in E

where P is a process term, F is a pattern and E is an expression whose value must be

a sequence.

The meaning of this construct is to create a concurrent instance of P for each item

of the sequence speci�ed by E that matches the pattern F. P may have names that

appear in F. In such case, each instance of P will have its free names bound according

to the result of matching F with the corresponding item in E. For example

par

trigger u with x ->

trigger v with y ->

done

for (x,"yes",(y,v)) in ((1,"yes",(9,a)),(2,"yes",(8,b)),

(4,"no",(6,c)),(3,"yes",(7,c)))

is equivalent to the following:

5.2. EXTENSIONS 77

par

trigger u with 1 ->

trigger a with 9 ->

done

trigger u with 2 ->

trigger b with 8 ->

done

trigger u with 3 ->

trigger c with 7 ->

done

Fixed sequential composition

A familiar construct found in all imperative languages is sequential composition. In

the context of a system of dynamic processes we want to be able to specify that one

process should begin when another has �nished. In kiltera, we allow the description

of such sequential composition using the following syntax:

seq

P1

P2

...

Pn

Since each process may itself contain a parallel sub-processes, sequential composition

corresponds to the concurrent programing notion of �joining� processes. Consider the

following example:

seq

par

P1

P2

P3

In this example, P3 will begin only after the parallel composition of P1 and P2 has

terminated, this is, after both P1 and P2 have �nished.

Sequential loops

The equivalent of loops in imperative languages is the indexed-sequence, or sequential

loop. This construct is analogous to the indexed-parallel construct introduced above.

The general syntax is

78 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

(a) Inverter (b) And-gate (c) Or-gate

Figure 5.13: Logic gates.

process Not[inp, out](delay, si, so):

when inp with value ->

let new_si = value

and new_so = not value in

seq

if new_so != so then

schedule all out with new_so after delay

done

Not[inp, out](delay, new_si, new_so)

Figure 5.14: Inverter model.

seq

P

for F in E

Its meaning is analogous to indexed-parallel: An instance of P is executed for each

item of the sequence speci�ed by E that matches the pattern F, but, unlike indexed-

parallel, each process starts only after the previous one has �nished.

5.3 Examples

In this section we present some examples that illustrate di�erent features of kiltera.

5.3.1 Digital Circuits

A typical application of discrete-event simulation is the modelling of digital circuits

of logic gates. kiltera provides a natural means to model such circuits. The following

example illustrates many of the capabilities of kiltera, particularly in regards to com-

ponent modularity, timed behaviour, and scalability. To see this we will �rst show

how to model the three basic logic gates: inverters (not), and-gates and or-gates.

Digital circuits are networks of these gates connected by wires. Wires transmit sig-

nals which can have two possible values 0 or 1. Each gate has a di�erent e�ect on

the output wire depending on the signals on its input wires. Such output takes e�ect

after a certain given delay.

An inverter, like the one in Figure 5.13 (a), has only one input and invert. This can

be represented by the model shown in Figure 5.14. An inverter has two ports: inp

(for input) and out (for output.) It also has three state variables: delay, si (current

5.3. EXAMPLES 79

process Or[in1, in2, out](delay, si1, si2, so):

when in1 with value ->

let new_si1 = value

and new_so = value or si2 in

seq

if new_so != so then

wait delay

trigger all out with new_so

done

Or[in1, in2, out](delay, new_si1, si2, new_so)

| in2 with value ->

let new_si2 = value

and new_so = value or si1 in

seq

if new_so != so then

wait delay

trigger all out with new_so

done

Or[in1, in2, out](delay, si1, new_si2, new_so)

Figure 5.15: Or-gate model.

input signal) and so (current output signal.) When the inverter receives a new input

event with value value, it computes the new value of its output, and if it is di�erent

from the current output signal, it schedules an output event after the gate's delay.

Note that the output trigger is a multicast, since a signal sent through a wire must

be received by all components connected to that wire. After this, it goes back to

waiting for input events with the updated input and output signals. Note that this

means that if new input is received, it may override any previous input.

An Or-gate can be modelled in a similar fashion, as show in Figure 5.15. This is

analogous to the inverter, but has to take into account two input ports instead of

one. An input event can come from any of the two ports. Whichever that port is,

the process computes the new value for the output signal and schedules an output

event after the required delay for the gate. If there are input events on both gates at

the same time, the reaction and state update will proceed in any order, i.e., any of

the two inputs will update the output �rst.

The description for the And-gate is analogous.

With these basic processes for gates we can model more complex circuits. Take for

instance the half-adder circuit depicted in Figure 5.16, which adds two bits and

produces a carry value. The corresponding kiltera model is shown in Figure 5.17,

providing some arbitrary initial state values.

With this de�nition we can build a full-adder, shown in Figure 5.18, a circuit that

80 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

Figure 5.16: Half-adder.

process HalfAdder[in1, in2, sum, carry]:

channel a, b in

par

Or[in1, in2, a](0.4, 0, 0, 0)

And[in1, in2, carry](0.3, 0, 0, 0)

Not[carry,b](0.1, 0, 1)

And[a, b, sum](0.3, 0, 1, 0)

Figure 5.17: Half-adder model.

Figure 5.18: Full-adder.

5.3. EXAMPLES 81

process FullAdder[in1, in2, c_in, sum, c_out]:

channel a, b, c in

par

HalfAdder[in2, c_in, a, b]

HalfAdder[in1, a, sum, c]

Or[c, b, c_out]

Figure 5.19: Full-adder model.

Figure 5.20: Ripple-carry adder.

adds three bits and produces a carry value. Its speci�cation is shown in Figure 5.19.

By interconnecting full-adders we obtain a ripple-carry adder : this circuit adds two

n-bit numbers numbers, for some n. A 3-bit ripple-carry adder is depicted in Figure

5.20. Its speci�cation is shown in Figure 5.21.

We see here that input ports in a process de�nition can be arrays of channels (or

events.) The ports aa, bb, and sum are actually channel arrays. In this example, the

channel array h is the collection of channels that transmit the carry out of a full

adder to the carry in of the next in the sequence.

process RippleCarryAdder[aa, bb, c_in, sum, c_out]:

let size = len(aa) in

channel array h[size-1] in

par

FullAdder[aa[0], bb[0], c_in, sum[0], h[0]]

par

FullAdder[aa[i], bb[i], h[i-1], sum[i], h[i]]

for i in range(1, size-1)

FullAdder[aa[size-1], bb[size-1], h[size-2], \

sum[size-1], c_out]

Figure 5.21: Ripple-carry adder model.

82 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

Figure 5.22: Server nodes.

5.3.2 Adaptive server networks

In this section we look at an example which better highlights the capabilities of

kiltera to model systems with a changing structure. We look at the problem of dis-

tributing tasks among a group of servers.

In this example we model a system consisting of a set of nodes, each of which has a

number of servers that will perform tasks assigned to them. Each node receives job

requests from the outside and assigns each of them to one of its servers. If all servers

are busy, a node asks some other node for help, and if the other node has some idle

server, it �moves� it to the requesting node. If job requests continue to arrive, all

servers are busy and a neighbouring node cannot provide a spare server, then jobs

are queued until some servers becomes free.

Nodes In order to distribute tasks and handle other nodes' requests, a node has,

in addition to its servers, a bu�er for jobs, a job dispatcher and a �move-handler.�

Figure 5.22 shows the structure of a node3. The speci�cation for nodes is shown in

Figure 5.23.

A node has an input port, an output port, a port used to send requests to other

nodes for help (ask,) a port where such requests are received (mov,) and a port to

link with a �statistics manager� which will keep track of statistics for the system. The

parameter busyt is the maximum time the node will wait before asking another node

for help. The parameter n is the number of servers in this node. Note that all servers

share a pair of links (b and c) with the dispatcher (and the move-handler.) The link

b is used by the dispatcher and move-handler to send messages to the servers, and

the reply comes through link c. The dispatcher uses the ask link to send requests

3For simplicity the Figure shows the links b and c as one.

5.3. EXAMPLES 83

process Node[input, output, ask, mov, stats](busyt, n):

channel a, b, c in

par

Buffer[input, a]

Dispatcher[a, output, b, c, ask, stats](0, busyt)

MoveHandler[mov, b]

par

Server[b, c, output]

for i in range(n)

Figure 5.23: Node model.

process NonEmptyBuffer[put,get](data):

when

put with item ->

NonEmptyBuffer[put,get](append(item,data))

| get ->

match data with

(first;()) ->

trigger get with first

EmptyBuffer[put,get](0)

| (first;rest) ->

trigger get with first

NonEmptyBuffer[put,get](rest)

Figure 5.24: Non-empty bu�ers.

for servers to other nodes when required, and the move-handler takes care of such

requests coming from the mov link.

Bu�ers A bu�er has two ports: put and get. The put port is used to enter new

items into the bu�er, and the get port is used to retrieve them. A bu�er can be

in two modes: empty or non-empty. The speci�cation in Figure 5.24 describes the

behaviour of a non-empty bu�er.

It has a state variable data, which holds a list of items. If it receives an item in its put

port, then it simply appends this item to the data list, and remains in non-empty

mode. If it receives a request on its get port, it sends the �rst item of data through

that same port, and it becomes an empty bu�er if it was the last item in the list, or

it continues as a non-empty bu�er otherwise.

The behaviour of an empty bu�er is speci�ed in Figure 5.25.

An empty bu�er has a state variable reqs to keep track of the number of �get�

requests it has received. If it receives a request on its get port, it simply increases

this number. On the other hand, if it receives a new item through its put port, then

it sends it out directly through its get port if there where any pending requests, and

84 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

process EmptyBuffer[put,get](reqs):

when

put with item ->

if reqs > 0 then

trigger get with item

EmptyBuffer[put,get](reqs-1)

else

Buffer[inp,out](append(item,list))

| get ->

EmptyBuffer[put,get](reqs+1)

Figure 5.25: Empty bu�ers.

remains empty, with one less pending request. If there where no pending requests, it

becomes a non-empty bu�er, appending the item to the list.

Finally, the bu�er itself is initialized as an empty bu�er:

process Buffer[put,get]:

EmptyBuffer[put,get](0)

Servers Each server has three ports: from_dispatcher, where it receives messages

from the dispatcher or the move-handler; to_dispatcher, where it sends replies; and

output, where it produces the �nished jobs. A server can be in one of two modes:

idle or processing. When idle, a server waits for messages. Messages are either jobs or

�move� requests. If a message arrives with a job, it changes to the processing mode.

If a move request arrives, it comes with links to the requesting node's dispatcher and

output. In this case the server remains idle but becomes connected to the channels

received. Since the only way to observe and interact with a process is through its

ports, from the point of view of the dispatchers the server behaves as if it moved

to the requesting node. The speci�cation of servers in idle mode is shown in Figure

5.26.

In processing mode, the server will remain busy, without accepting any messages for

an amount of time associated with the task. When this time is due, the server sends

a �done� message to the output port and returns to idle mode. This is shown below.

process ServerProcessing[from_dispatcher, to_dispatcher,

output](id,size):

wait size

send ("done",id) to output

ServerIdle[from_dispatcher, to_dispatcher, output]

5.3. EXAMPLES 85

process ServerIdle[from_dispatcher, to_dispatcher, output]:

when

from_dispatcher with ("job", id, t0, size) ->

send "ack" to to_dispatcher

ServerProcessing[from_dispatcher, to_dispatcher,

output](id,size)

| from_dispatcher with ("move", new_from_disp,

new_to_disp, new_out) ->

send "ready" to new_to_disp

ServerIdle[new_from_disp, new_to_disp, new_out]

Figure 5.26: Idle servers.

process Dispatcher[queue, out, to_servers, from_servers,

other, stats](time, busyt, helpt):

send "get" to queue

when queue with ("job", id, t0, size) after e1 ->

let t1 = time + e1

and job = ("job", id, t0, size)

in

seq

send job to to_servers

when from_servers with "ack" after e2 ->

let t2 = t1 + e2 in

send t2 - t0 to stats

Dispatcher[queue, out, to_servers, from_servers,

other, stats](t2, busyt)

timeout busyt ->

AskingForHelp[queue, out, to_servers, from_servers,

other, stats](job, t0, t1, busyt):

Figure 5.27: Dispatchers.

Finally, a server is initialized in idle mode:

process Server[from_dispatcher, to_dispatcher, output]:

ServerIdle[from_dispatcher, to_dispatcher, output]

Dispatchers The speci�cation of dispatchers is shown in Figure 5.27. A dispatcher

has a port to link to the bu�er (queue,) an output port (output,) a pair of �server

links� to connect with all the servers (to_servers and from_servers,) a port to

send requests to other nodes (other,) and one for linking with the statistics manager

(stats.) Its parameters are the current time (time,) and the maximum time before

asking another node for help (busyt.)

A dispatcher asks the bu�er it it has any jobs, and when one arrives the dispatcher

86 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

process AskingForHelp[queue, out, to_servers, from_servers,

other, stats](job, t0, t1, busyt):

send ("req", from_servers, to_servers, out) to other

when from_servers with "ready" after e2 ->

seq

send job to to_servers

when from_servers with "ack" after e3 ->

let t2 = t1 + e2 + e3 in

send t2 - t0 to stats

Dispatcher[queue, out, to_servers, from_servers,

other, stats](t2, busyt)

timeout busyt ->

AskingForHelp[queue, out, to_servers, from_servers,

other, stats](job, t0, t1+busyt, busyt)

Figure 5.28: Asking for help.

attempts to send the job through the to_servers link. If one of the servers accepts

the job, the dispatcher sends a message to the statistics manager and goes back to

waiting for more jobs. If after a certain amount of time (busyt) none of the associated

servers takes the job, it goes to the �asking for help� mode. The speci�cation of this

mode is shown in Figure 5.28.

To ask for help, the process sends a request to some other node, passing along its

server's links and output channel. Then it waits for some server to be ready. If no

server is immediately ready, jobs will begin to queue in the bu�er. Once some server

has responded as being ready, the dispatcher sends the job to the to_servers link

again. Once the job is taken, it sends a message to the statistics manager and goes

back to waiting for more jobs. If, however, after a certain amount of time (busyt)

none of the other nodes has provided a new server, a new request is sent out.

Move-handlers This is the component in charge of handling requests for free servers

from other nodes. It has two ports: one where moving requests are expected from

other nodes (other,) and one used to forward requests to the servers (to_servers.)

When it receives a request, together with the other node's channels, it sends a �move�

message through the to_servers channel. Then it goes back to listening for requests.

The speci�cation for this component is shown in Figure 5.29.

Generators Generator processes produce jobs to be performed by the servers. A

generator process has parameters specifying the delay between generated jobs (uni-

formly distributed over the interval [g0, g1)) and the size of the generated jobs (also

uniformly distributed over the interval [s0, s1),) the number of jobs so far (counter)
and the current time (time.) The generated jobs are tagged with an id, the time of

creation and their size. The speci�cation for generators is shown in Figure 5.30.

5.3. EXAMPLES 87

process MoveHandler[other, to_servers]:

when other with ("req", other_from_disp,

other_to_disp, other_out) ->

trigger to_servers with ("move", other_from_disp,

other_to_disp, other_out)

MoveHandler[other, server_link]

Figure 5.29: Move handlers.

process Generator[out](g0,g1,s0,s1,counter,time):

let d = random(g0,g1)

and size = random(s0,s1)

in

wait d

trigger ("job", counter, time+d, size) to out

Generator[out](g0,g1,s0,s1,counter+1,time+d)

Figure 5.30: Job generators.

Statistics manager The statistics manager simply receives the waiting times from

di�erent nodes and keeps track of its average.

process StatsManager[stats](counter, sum, avg):

print ("stats", counter, sum, avg)

when stats with t ->

StatsManager[stats](counter+1, sum+t, (sum+t)/(counter+1))

Consumer The consumer process is the receiver of jobs performed by servers. It

simply acts as a sink of events.

process Consumer[inp]:

when inp ->

Consumer[inp]

The network A network with two nodes is shown below.

88 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

process Network[]:

channel gen, stats, sink, a, b in

par

StatsManager[stats](0, 0.0, 0.0)

Generator[gen](1.0, 2.0, 1.0, 3.0, 0, 0.0)

Node[gen, sink, a, b, stats](4.0,100)

Node[gen, sink, b, a, stats](4.0,100)

Consumer[sink]

This network can be modi�ed so that nodes run in di�erent sites:

process Network[]:

dchannel gen, stats, sink, a, b in

sites A, B in

par

StatsManager[stats](0, 0.0, 0.0)

Generator[gen](1.0, 2.0, 1.0, 3.0, 0, 0.0)

move Node[gen, sink, a, b, stats](4.0,100) to A

move Node[gen, sink, b, a, stats](4.0,100) to B

Consumer[sink]

5.4 DEVS-like models in kiltera

In order to see how kiltera models discrete-event systems, it is helpful to see how it

can be used to describe DEVS-like systems. To do this we will consider �rst how to

hard-code speci�c DEVS models. Then we will see how we can describe them in a

more generic way.

Hard-coding DEVS models

Consider a simple discrete-event system such as a processor : a processor is a system

which takes jobs as input events and after a certain amount of time produces an

outcome depending on the job. For simplicity let us consider non-queuing processors

for the time being. This is, if jobs arrive at a higher rate than they are processed,

then the new jobs are lost.

A DEVS model of such non-queuing processor is a tuple (X,Y, S, δext, δint, λ, τ)
where:

5.4. DEVS-LIKE MODELS IN KILTERA 89

X
def
= Jobs

Y
def
= Outcome

S
def
= {(passive, t) | t ∈ R+

0 }
]{(active, t, j) | t ∈ R+

0 & j ∈ Data}
δext(((passive, t), e), (d, x))

def
= (active, d, x)

δext(((active, t, y), e), (d, x))
def
= (active, t− e, y)

δint(s)
def
= (passive,∞)

λ((passive, t))
def
= ⊥

λ((active, t, y))
def
= response(y)

τ((passive, t))
def
= t

τ((active, t, y))
def
= t

In this de�nition, Jobs
def
= {(d, x) | d ∈ R+

0 &x ∈ Data} is a set whose elements

are pairs (d, x) representing jobs with d being the amount of time it takes to com-

plete the job and x is any data required to complete the job. Outcomes is the

set of possible outputs resulting from performing a job. The set of states S con-

sists of pairs (passive, t) or triples (active, t, j) where the �rst item represents the

processor's current mode of operation (passive or active,) t represents the amount

of time left until the next internal transition, and j represents the current job.

response : Data → Outcomes is some function that maps the job's data to its

outcome. The external transition function δext speci�es the reaction to an exter-

nal event (d, x) as follows: when the system is in a passive state, the new state is

(active, d, x) meaning that it becomes active, the next internal transition is scheduled

after an amount of time d, and the job's input data is x. When it is in an active

state, any new job is ignored (no queuing,) it remains active, with the same job,

and with the next internal transition scheduled after t− e where t was the time-to-

next-transition at the time of the last transition. This is done in order to preserve

the original time scheduled for the end of the current job. The internal transition

function simply returns the system to the passive mode, while the output function

λ produces the output of the current job. The time-advance function τ returns the

second item of the state so that it e�ectively encodes the time-to-next-transition as

desired.

We can represent this DEVS model in di�erent ways in kiltera. In general, the when-

timeout construct is enough to capture the meaning of δext, δint and τ , as could be

seen in the following code, representing the same processor.

90 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

process Processor[input,output](state):

match state with

("passive",t) ->

when input with (d,x) after e ->

Processor[input,output](("active",d,x))

timeout t ->

Processor[input,output](("passive",infinity))

| ("active",t,y) ->

when input with (d,x) after e ->

Processor[input,output](("active",t-e,x))

timeout t ->

trigger all output with response(y)

Processor[input,output](("passive",infinity))

This example shows how pattern-matching can be used to separate each �mode�

of operation in its own branch (which could be encapsulated in a separate process

de�nition,) and each such mode consists of a listener with the form:

when input with x after e ->

<new-state-of-external-transition>

timeout <time-advance> ->

trigger all output with <y>

<new-state-of-internal-transition>

So the when construct speci�es the external transition, the after clause provides the

elapsed time since the last transition, the timeout gives the time-advance and the

body of the timeout describes the output (trigger all) and the new state from the

internal transition. The output must be multicasting to adhere to the semantics of

DEVS models.

Coupled models are built by using the structuring constructs. For example, suppose

we have two processor components connected in line, as shown in Figure 5.31. We

can couple them as follows:

process Processor[input,output](state):

...

process Pair[input,output](initial_states)

channel hidden in

par

Processor[input,hidden](initial_states[0])

Processor[hidden,output](initial_states[1])

5.4. DEVS-LIKE MODELS IN KILTERA 91

Figure 5.31: A coupled DEVS model.

Generic DEVS models

The pattern described above can be generalized to represent any atomic DEVS model

as follows:

function delta_ext(s, e, x):

...

function delta_int(s):

...

function lambda(s):

...

function tau(s):

...

process Atomic[inp, outp](state):

when inp with x after e ->

Atomic[inp, outp](delta_ext(state, e, x))

timeout tau(state) ->

trigger all outp with lambda(state)

Atomic[inp, outp](delta_int(state))

The core of the behavioural speci�cation of a DEVS model is thus captured by

listener processes with an associated timeout, while structure is captured by compo-

sition operators. We can therefore identify DEVS models with those kiltera models

that follow the above pattern. This highlights the contrast between DEVS and kil-

tera, as arbitrary kiltera models are not restricted to this pattern, a richer set of

combinations is possible. This includes the forms of dynamic structure introduced in

earlier sections.

This illustrates the expressive power and modelling capabilities of kiltera with respect

to DEVS. In DEVS, components cannot create other components, and components

92 CHAPTER 5. A MODELLING LANGUAGE: KILTERA

cannot be eliminated. Links between components are �xed and a component cannot

change its behaviour. Contrast this with the following:

process DSAtomic[inp, outp](model, state):

match model with

(delta_int, delta_ext, tau, lambda) ->

when inp with x after e ->

DSAtomic[inp, outp](delta_ext(state, e, x))

timeout tau(state) ->

trigger all outp with lambda(state)

DSAtomic[inp, outp](model, delta_int(state))

Since a DEVS model can be represented as a tuple of kiltera functions, we can make

such tuple part of the state of a model. The result is a form of dynamic-structure

DEVS similar to the re�exive approach of Dynamic DEVS [49], where an external

event may result in a state with a di�erent DEVS model and therefore a di�erent

behaviour. In e�ect, the component �replaces� its behaviour.

6
Semantics of kiltera

In this chapter we formally de�ne the kiltera language, its syntax and semantics. We

formalize the semantics by de�ning a core language called the κλτ -calculus using the

Structural Operational Semantics approach [36], and then mapping kiltera speci�ca-

tions into this language. Then, in chapter 7, we extend the κλτ -calculus to de�ne

the Dκλτ -calculus, which provides the semantics for distributed processes. Based on

these semantics, we develop a basic theory of kiltera models, covering some funda-

mental properties, in chapter 8. All proofs of statements in chapters 6, 7 and 8 are

found in appendix E.

6.1 Time

Time plays a central role in kiltera, since the language is intended to model, sim-

ulate and reason about the timing behaviour of dynamic systems. The underlying

computational model makes the following assumptions:

Instantaneous actions: Actions, and in particular interaction by events, is treated

as instantaneous, i.e., actions do not take an amount of time by themselves. The

only relevant timing aspect of an action, is the point in time when it occurs, not its

duration. It is possible to model durative actions by events occurring at the point in

time when it begins and when it ends. This assumption implies that execution can

be seen as the interleaving of instantaneous actions and the passage of time.

Newtonian time: Time �ows with respect to a unique, global clock. This means

that every event occurs at some point in time relative to the same point of reference,

and therefore it can be assigned a unique time-stamp. Hence, the behaviour of a

system can be seen as a time-line of events. It is possible to establish causality

relationships between events of interacting components, and this determines the order

of events in such a time-line. Furthermore, events can be compared in relation to when

they occur. Note that the existence of a global clock does not mean that all processes

have to run synchronized or that they have access to the global time. This condition

is weaker: it only requires that causality be respected and that any time-line be

consistent.

94 CHAPTER 6. SEMANTICS OF KILTERA

Continuous time-base: Time is represented by the non-negative real numbers.

There is no minimal �time-step,� and therefore, no minimal delay between actions

taking place at di�erent times.

Virtual/real time: The passage of time does not need to correspond exactly with

physical, wall-clock time. The notion of time described here, may be �virtual,� this

is, the observable trace of events may be simulated and generated independently of

a real, physical clock.

Discrete-events: Within any closed time-interval, the set of events is discrete. Ac-

tions and events are the only way for a system to undergo changes of state. Therefore,

a system's state is constant between two consecutive events. This implies that once

all actions scheduled at particular time t are performed, the system can start exe-

cuting actions scheduled at time t′ > t if there are no actions are scheduled between

t and t′.

Maximal progress: All actions that are scheduled to execute at some point in time

and that can be completed, are performed before time advances. Note that this does

not imply that the system always progresses: it is possible for a system to stall and

�get stuck� in time, if the process diverges at some point in time, or if it presents the

so-called Zeno behaviour . Such behaviour is not desirable, but it is possible.

6.1.1 Timed-Labelled Transition Systems

To de�ne a semantics of a language for dynamic systems is to de�ne the behaviour

of each model (i.e., process term.) To de�ne the operational semantics is to specify

the behaviour of a model in terms of how the system it represents brings about

such behaviour, or in other words, how it is �executed.� A widely accepted method

to specify this is by de�ning for each possible model in a given state, the set of

possible actions that it can perform or engage in. This is typically done by de�ning

a labelled-transition system (see de�nition B.1 in appendix B.)

A labelled-transition system, or LTS for short, can be thought of as an abstract

machine which consists of a set of states, and transitions between states, where

transitions are labelled by the actions that can make the machine go from one state

to another. In the context of language semantics it is common to take states to be

terms, and so transitions represent computational steps that transform one term into

another as a result of executing the action speci�ed by the label on the transition.

An execution, and therefore a behaviour, of a term is then a sequence of transitions

beginning from the given term.

An LTS is then a triple (S,L,→) where S is a set of states, L is a set of labels

and →⊆ S × L × S is a transition relation. To de�ne the operational semantics of

kiltera processes, we will de�ne an LTS where states are process terms, and actions

are labels. A transition t
a→ t′ states that a process t becomes t′ by performing an

6.1. TIME 95

action a. In order to de�ne the transition relation →, we follow the approach of

Structural Operational Semantics [36], where this relation is de�ned inductively by

inference rules of the form:

p1 p2 · · · pn
c

where p1, p2, ..., pn are premises, and c is the conclusion. Such rule can be read as �if

p1 and p2 and ... and pn, then c.� Premises and conclusions are either statements of

the form t
a→ t′ which specify the presence of a transition from t to t′ labelled with

action a, or predicates which specify additional conditions. Such set of rules is called

a transition system speci�cation, or TSS for short. A comprehensive review of LTSs

and TSSs is found in appendix B.

In a language that has a notion of time, processes can evolve in two di�erent ways: by

performing actions, or by the passage of time. In some languages, actions may take

an amount of time, but it is a useful abstraction to separate evolution over time from

transitions due to actions. In in section 6.1 we assume that actions are instantaneous.

Therefore, in addition to action transitions
a→, we de�ne an evolution relation

d
 ,

which describes how a process evolves with the passage of time. A statement of the

form t
d
 t′ indicates that the process speci�ed by t becomes t′ after an amount

of time d. A transition system with these two relations is called a timed labelled-

transition system.

De�nition 6.1. (Timed Labelled-Transition Systems)A timed labelled-transition

system , or TLTS for short, is a tuple (S,L,→,) where S is a set of states, L is

a set of labels, →⊆ S × L × S is a transition relation and ⊆ S × R+
0 × S is an

evolution relation. We write s
a→ s′ for (s, a, s′) ∈→ and s

d
 s′ for (s, d, s′) ∈ . We

write s
a→ to mean that ∃s′ ∈ S. s a→ s′.

So to de�ne the semantics of kiltera, we de�ne a TLTS where both the transition and

evolution relations are de�ned by inference rules.

In order to reason about timed labelled-transition systems, we can take advantage

of our knowledge of LTSs, since a TLTS can be seen as an LTS, as shown by the

following construction.

De�nition 6.2. (LTS of a TLTS) Let M = (S,L,→,) be a TLTS. The LTS of

M is a tupleM&
def
= (S,L&,→&) where L&

def
= {(act, a) | a ∈ L}]{(pass, d) | d ∈ R+

0 }
and →& is de�ned by

s
(act,a)−−−−→ &s

′ ⇐⇒ s
a−→ s′

s
(pass,d)−−−−→ &s

′ ⇐⇒ s
d
 s′

With this construction, we can apply the results described in appendix B about LTSs

to the TLTS which de�nes the semantics of kiltera.

96 CHAPTER 6. SEMANTICS OF KILTERA

E ::= ∅ null
| T true
| F false
| n numeric constant
| “s” string constant
| x variable
| opE unary expression
| E1 opE2 binary expression
| f(E1, ..., En) function application
| 〈E1, ..., En〉 tuple or sequence

Figure 6.1: Expressions.

6.2 The κλτ-calculus

To de�ne the semantics of kiltera we propose a small language which contains the

core of kiltera, and then we show how to map kiltera speci�cations into this language.

We call this language the κλτ -calculus.

The κλτ -calculus de�nes the central concepts of communication events, event triggers

and listeners, time-related operations, composition and process instantiation.

6.2.1 Syntax

In this section we will de�ne the set P of all process terms, and E the set of expressions
which occur in process terms.

Notation 6.3. We call N the set of all possible names, Ne ⊆ N the set of possible

event names, Np ⊆ N the set of possible process names and Nv ⊆ N the set of

expression variables.

We start with the syntax for expressions.

De�nition 6.4. (Expressions) The set E of expressions is de�ned by the BNF in

Figure 6.1. In this BNF, E,Ei range over E , n ranges over R, s ranges over the set of
all character strings, x and f range over N , and op ranges over the standard arith-

metic operators {−,+, ∗, /}, the relational operators {=, <,>} or boolean operators

{¬,∨,∧}.

A function de�nition is an equation of the form

f(x1, ..., xn)
def
= E

where E is an expression.

We de�ne the notion of pattern, used in listener processes as a useful mechanism to

extract information from data.

6.2. THE κλτ -CALCULUS 97

F ::= ∅ null
| T true
| F false
| n numeric constant
| “s” string constant
| x variable/name
| 〈F1, ..., Fn〉 tuple

Figure 6.2: Patterns.

P ::=
√

done
| T trigger
| ∆E → P delay
| νx.P new/hide
| P1 ‖ P2 parallel
| P1TP2 left parallel
|

∑
i∈I Gi → Pi listener/choice

| A(x1, ..., xn) process instance/invocation

T ::= x↑E transient trigger
| x↑∗E transient multicast trigger

G ::= x?Fδt input guard

Figure 6.3: Process terms.

De�nition 6.5. (Patterns) The set F of patterns is de�ned by the BNF in Figure

6.2. In this BNF, F, Fi range over F , n ranges over R, s ranges over the set of all

character strings, and x range over N .

Now we de�ne the syntax of process terms.

De�nition 6.6. (Process terms) The set P of terms representing κλτ processes

is de�ned by the BNF in Figure 6.3. In this BNF, P, Pi, ... range over P, and E,Ei
range over E , t, ti, x, xi, y, ... range over N , and A,B, ... range over Np. Let I denote
any index set {1, ..., n} for some n ∈ N, and i ranges over I.

A process de�nition is an equation of the form:

A(x1, ..., xn)
def
= P

where A is a name, and P is a process term.

Notation 6.7. Sometimes we write process instantiations of the form A(x1, ..., xn) as
A(~x) where ~x = x1, ..., xn. Similarly, we write A(~x)

def
= P for A(x1, ..., xn)

def
= P .

The simplest process is
√
. This process terminates and cannot interact with others.

98 CHAPTER 6. SEMANTICS OF KILTERA

Trigger processes T are output processes. The process x ↑ E triggers an event x and

associates this event with the value of expression E. Alternatively, one can say that

it sends the message E through channel x. This is a transient trigger , this is, if there

are no listeners, i.e., processes ready to interact via x, at the current time, then the

event is discarded. In any case, the trigger is �consumed� in the current time.

A trigger x ↑ E performs communication by unicasting. The process x ↑∗ E is the

multicasting variant of x ↑ E, so the message is delivered to all relevant listeners.

In trigger processes, the expression E is optional: x ↑ means x ↑∅, and x ↑∗ means

x↑∗∅.

Note that there is no term of the form T → P for a trigger T . In practice we do

allow such terms, but they are just syntactic sugar for a term TTP . This is because
communication is asynchronous, so the process T → P can trigger the event and

its continuation P can proceed without waiting for another process to react to the

event.

The process ∆E → P delays the execution of process P by an amount of time t, the

value of the expression E. This can also be thought of as scheduling a process some

time in the future.

The process νx.P hides the name x from the environment, so that it is private to P .

Alternatively, νx.P can be seen as the creation of a new name, i.e., a new event or

channel, whose scope is P .

There are two parallel composition operators: normal parallel and left-parallel. The

process P1 ‖ P2 is the normal parallel composition of P1 and P2. This is, the two pro-

cesses execute concurrently and may interact with each other or their environment.

The process P1TP2 is like P1 ‖ P2, but ensures that P1 performs the �rst action1.

The process
∑

i∈I Gi → Pi is a receiver or listener , consisting of a list of alterna-

tive input guarded processes Gi → Pi. Each input guard Gi is of the form xi?Fiδti.
This process listens to all channels or events xi, and when xi is triggered, the corre-

sponding process Pi is executed and the alternatives are discarded. A listener process

represents, thus, a process in a state with external choice. Before Pi is executed, ti

is assigned the elapsed time this is, the time the process remained blocked waiting

for an event to occur. Furthermore, if the event xi was triggered with some value v,

this value is matched against the pattern Fi, resulting in the binding of its variables

by the corresponding values of v. The scope of these bindings is Pi. The su�xes

Fi and δti are optional: a guarded term x? → P is short for x?yδz → P for some

dummy variables y and z not occurring in P . We also write a process
∑
Gi → Pi as

G1 → P1 + · · ·+Gn → Pn for I = {1, ..., n}.

1This operator is similar to the left-merge operator of ACP [2, 3, 16] but not identical. While
both operators require P1 to have priority in its �rst action, left-merge precludes P1 and P2 from
interacting with each other. Our left-parallel operator, on the other hand, allows such interaction.

6.2. THE κλτ -CALCULUS 99

Precedence Operator(s)

1 νx.,∆E →, G→
2 +,Σi∈I
3 T
4 ‖

Table 6.1: Operator precedence.

The process A(y1, ..., yn) executes a process de�ned by A(x1, ..., xn)
def
= P , where the

names x1, ..., xn are substituted in the body P by the events or channels y1, ..., yn. A

process de�nition A(x1, ..., xn)
def
= P can be thought of as de�ning a class of processes

named A with ports x1, ..., xn. A process invocation is the creation of a new instance

of this class where the ports are �hooked-up� to some external channels y1, ..., yn.

Note that there is no special syntax for state variables. From the semantics point of

view, both ports and state variables are simply parameters in a process de�nition.

6.2.2 Operational Semantics

The operational semantics we present de�nes a the mathematical object: a timed-

labelled transition system (see section 6.1.1.) This object is de�ned inductively by

using inference rules, as described in appendix B. We begin by giving some prelimi-

nary de�nitions of basic concepts such as values, actions, substitution and pattern-

matching. We then de�ne a notion of syntactic equivalence between process terms.

Then we de�ne the transitions and evolution of terms. We conclude this subsection

with some derived rules.

Values

Processes manipulate data values. A value can be a basic constant or a tuple of

values. A basic constant is an event or site name, a boolean, a real number, a string,

or the null constant.

De�nition 6.8. (Values) The set V of all possible values is de�ned as

V def
= B ∪ {〈V1, ..., Vn〉 | ∀i ∈ {1, ..., n}. Vi ∈ V}

where

B def
= Ne ∪ {∅,T,F} ∪ R ∪ Str

is the set of basic constants. Here Str denotes the set of all character strings.

Actions and action terms

A process can perform three basic types of actions: output actions, input actions,

and silent or internal actions. The �rst two are explicitly denoted in the language by

100 CHAPTER 6. SEMANTICS OF KILTERA

terms which we call action terms.

De�nition 6.9. (Action terms) An output action term is a term of the form

x↑E or x↑∗E, where x ∈ N ,and E ∈ E . An input action term , is a term of the

form x?Fδt, where x, t ∈ N and F ∈ F . We let T, Ti range over output action terms

and G,Gi range over input action terms.

An action term is simply the syntax used to represent an action. Action terms may

have expressions with free variables. On the other hand, when an action is realized,

all free variables must have been bound to speci�c values. These actual actions are

de�ned as follows.

De�nition 6.10. (Actions) An output action is a pair of the form x!V or x!∗V
where x ∈ N , and V ∈ V. An input action is a pair of the form x?V where

x ∈ N , and V ∈ V. A silent or internal action is a constant τ . The set of all

output actions is denoted Ao. The set of all input actions is denoted Ai. The set of
external actions is Ae

def
= Ao∪Ai. The set of all actions is denoted A

def
= Ae∪{τ}.

Names

Names play a fundamental role in the language as they can represent events, ports,

sites or variables. De�nition A.29 says that terms may have variables, but these are

meta-variables, this is, they are stand-ins for other terms, rather than names within

the language. Actual names in N are constant symbols in κλτ 's signature, since they

have no sub-terms.

Names in κλτ may be free or bound. The new operator and input guards bind names.

Here we de�ne formally the sets of free and bound names for a given expression,

action and process term.

De�nition 6.11. (Variables of an expression) The set of variables of an

expression E, denoted n(E) is de�ned as follows:

n(c)
def
= ∅ if c ∈ B\N

n(x)
def
= {x} if x ∈ N

n(opE)
def
= n(E)

n(E1 opE2)
def
= n(E1) ∪ n(E2)

n(f(E1, ..., En))
def
= n(E1) ∪ · · · ∪ n(En)

n(〈E1, ..., En〉)
def
= n(E1) ∪ · · · ∪ n(En)

De�nition 6.12. (Variables of a pattern) The set of variables of a pattern

6.2. THE κλτ -CALCULUS 101

F , denoted n(F) is de�ned as follows:

n(c)
def
= ∅ if c ∈ B\N

n(x)
def
= {x} if x ∈ N

n(〈F1, ..., Fn〉)
def
= n(F1) ∪ · · · ∪ n(Fn)

De�nition 6.13. (Names of a value) The set of names of a value V ∈ V denoted

n(V) is de�ned as follows:

n(c)
def
= ∅ if c ∈ B\N

n(x)
def
= {x} if x ∈ Ne

n(〈V1, ..., Vn〉)
def
= n(V1) ∪ · · · ∪ n(Vn)

De�nition 6.14. (Names of an action term) The set of free names of an

action term α, written fn(α) is de�ned as:

fn(x↑E)
def
= {x} ∪ n(E)

fn(x↑∗E)
def
= {x} ∪ n(E)

fn(x?Fδt)
def
= {x}

The set of bound names of an action term α, written bn(α) is de�ned as:

bn(x↑E)
def
= ∅

bn(x↑∗E)
def
= ∅

bn(x?Fδt)
def
= n(F) ∪ {t}

De�nition 6.15. (Names of an action) The set of free names of an action

α, written fn(α) is de�ned as:

fn(x!V)
def
= {x} ∪ n(V)

fn(x!∗V)
def
= {x} ∪ n(V)

fn(x?V)
def
= {x}

fn(τ)
def
= ∅

102 CHAPTER 6. SEMANTICS OF KILTERA

The set of bound names of an action α, written bn(α) is de�ned as:

bn(x!V)
def
= ∅

bn(x!∗V)
def
= ∅

bn(x?V)
def
= n(V)

bn(τ)
def
= ∅

De�nition 6.16. (Names of a process) The set of free names of a process P ,

written fn(P) is de�ned as follows:

fn(
√

)
def
= ∅

fn(∆E → P)
def
= n(E) ∪ fn(P)

fn(νx.P)
def
= fn(P)\{x}

fn(P1 ‖ P2)
def
= fn(P1) ∪ fn(P2)

fn(P1TP2)
def
= fn(P1) ∪ fn(P2)

fn(
∑

i∈I Gi → Pi)
def
=

⋃
i∈I((fn(Gi) ∪ fn(Pi))\bn(Gi))

fn(A(x1, ..., xn))
def
= {x1, ..., xn}

The set of bound names of a process P , written bn(P) is de�ned as follows:

bn(
√

)
def
= ∅

bn(∆E → P)
def
= bn(P)

bn(νx.P)
def
= bn(P) ∪ {x}

bn(P1 ‖ P2)
def
= bn(P1) ∪ bn(P2)

bn(P1TP2)
def
= bn(P1) ∪ bn(P2)

bn(
∑

i∈I Gi → Pi)
def
=

⋃
i∈I(bn(Gi) ∪ bn(Pi))

bn(A(x1, ..., xn))
def
= ∅

Substitutions

Since names play a fundamental role in the language, substitution of names is an

essential operation. De�nition A.33 introduces the general notion of substitution over

the terms of a signature. However such de�nition describes how to replace meta-

variables rather than names in the language itself. In this section we describe how

names in the language can be replaced by expressions or values.

As in any language with free and bound names we have to be careful when de�ning

substitution of names. When substituting a name by an expression E in some term

P , a free name in E may be captured, this is, it may become bound by its new context

6.2. THE κλτ -CALCULUS 103

σ(
√

)
def
=

√

σ(x↑E)
def
= σ(x)↑σ(E)

σ(x↑∗E)
def
= σ(x)↑∗σ(E)

σ(∆E → P)
def
= ∆σ(E)→ σ(P)

σ(νx.P)
def
= νx′.σ(P{x/x′})

where x′ /∈ fn(P), x′ /∈ src(σ)
and ∀V ∈ trg(σ). x′ /∈ n(V)

σ(P1 ‖ P2)
def
= σ(P1) ‖ σ(P2)

σ(P1TP2)
def
= σ(P1)Tσ(P2)

σ(Σi∈IGi → Pi)
def
= Σi∈Iσg(Gi → Pi)

σg(x?Fδt→ P)
def
= σ(x)?σ′(F)δσ′(t)→ σ(σ′(P))

where σ′(y)
def
= y′ for each y ∈ n(F) ∪ {t} with

y′ /∈ src(σ) ∪ fn(P) and ∀V ∈ trg(σ). y′ /∈ n(V)

σ(A(x1, ..., xn))
def
= A(σ(x1), ..., σ(xn))

Figure 6.4: Name substitution over process terms.

P , resulting in a term which is not equivalent to the original. Therefore, when we

substitute an expression for a name we must rename the bound variables of P that

may capture free variables of E. The following de�nition takes care of this.

De�nition 6.17. (Substitution of names) A (name) substitution is a function

σ : N → V. We write {x1/V1, ..., xn/Vn} for the substitution σ where σ(x1) = V1,

..., σ(xn) = Vn and σ(z) = z for all z 6∈ {x1, . . . , xn}. In this case we say that

each xi is a source of σ and each Vi is a target of σ. A pair xi/Vi is called an

association . The set of all sources is src(σ)
def
= {x1, . . . , xn} and the set of all

targets is trg(σ)
def
= {V1, ..., Vn}. If all Vi ∈ trg(σ) are names, i.e., Vi ∈ N , we say

that σ is a renaming .

Substitution is extended to processes as a function σ : P → P as shown in Figure

6.423. We write Pσ for σ(P) denoting the process where all free occurrences of

each x ∈ src(σ) have been substituted by σ(x). We denote S the set of all name

substitutions.

Notation 6.18. Sometimes we write {~x/~V } for a substitution {x1/V1, ..., xn/Vn} with
the understanding that ~x = x1, ..., xn and ~V = V1, ..., Vn.

2The side conditions in this de�nition are to ensure that free variables are not captured.
3Notice that the case of a listener process depends on an auxiliary function σg de�ned only for

input-guarded processes of the form x?Fδt→ P . This is to simplify the de�nition.

104 CHAPTER 6. SEMANTICS OF KILTERA

Terms can be identi�ed by renaming bound variables, according to the following

de�nition.

De�nition 6.19. (Alpha conversion) Let ≡α⊆ P×P be the smallest congruence

over process terms which satis�es the following:

(i)
x′ /∈ fn(P)

νx.P ≡α νx′.P{x/x′}

(ii) Σi∈Ixi?Fiδti → Pi ≡α Σi∈Ixi?σi(Fi)δσi(ti) → σi(Pi) where σi(y)
def
= y′ for

each y ∈ n(Fi) ∪ {ti} with y′ /∈ fn(Pi)

Expression evaluation

An output action sends the value of an expression, once all its variables have been

substituted by values. This is formally de�ned as follows:

De�nition 6.20. (Expression evaluation) Let eval : E → V be de�ned as

eval(k)
def
= k if k ∈ V

f(x1, ..., xn)
def
= E eval(E1) = v1 · · · eval(En) = vn

eval(f(E1, ..., En))
def
= eval(E{x1/v1, ..., xn/vn})

eval(〈E1, ..., En〉+ 〈E′1, ..., E′m〉)
def
= 〈eval(E1), ..., eval(En), eval(E′1), ..., eval(E′m)〉

Operators are treated in the same way as functions.

Note that this de�nition does not evaluate variables in an expression and therefore

does not require a �variable environment� to evaluate expressions. This is because

evaluation will occur only once variables have been substituted by concrete values.

Pattern matching

Pattern-matching is a very useful mechanism to extract information and make deci-

sions.

When a listener receives an event x with an associated value v, an input guard x?F
will be enabled if the value v matches the pattern F . If such match is successful,

the result is a substitution, where all variables of F are associated the corresponding

values of v.

Intuitively the idea is this: a pattern is a kind of expression with free variables (but

no operators or function calls) and a datum is a value. A datum is said to �match� a

6.2. THE κλτ -CALCULUS 105

pattern if it has the same structure, and all the corresponding constants agree. For

instance the datum 〈5, 〈1.4142,T〉, 〈∅, 1.618〉〉 matches the pattern 〈5, 〈1.4142, x〉, y〉
but it does not match a pattern such as 〈5, 〈1.4142, x〉,F〉. If a datum matches a

pattern, it yields a substitution mapping each free variable in the pattern with the

corresponding piece of data occurring in the datum. In the previous example, for the

successful match, the resulting substitution is {x/T, y/〈∅,1.618〉}.

A variable may occur more than once in the pattern. If this is the case, all oc-

currences of the variable must match the same data. For example, consider the

pattern 〈2, z, 〈F, z〉〉. The datum 〈2, 〈T, 1.4142〉, 〈F, 〈T, 1.4142〉〉〉 matches this pat-

tern and the resulting substitution is {z/〈T,1.4142〉}. On the other hand, the datum

〈2, 〈T, 1.4142〉, 〈F, 〈T, 3〉〉〉 does not match the same pattern.

Pattern matching is formally de�ned by a function match which takes as input a

pattern, a datum (i.e., a concrete value) and a substitution and returns either a new

substitution which extends the original substitution with the appropriate bindings,

or an empty substitution if the datum does not match the pattern. The substitution

provided as input is used to ensure that all occurrences of a variable in a tuple match

the same data.

De�nition 6.21. (Pattern matching) Let match : F × V × S → S be a function

de�ned as:

match(F, V, σ)
def
=

σ if F = V and V ∈ B

or F ∈ src(σ) and σ(F) = V

σ ∪ {F/V } if F ∈ N and F 6∈ src(σ)

σn if F = 〈F1, ..., Fn〉 and V = 〈V1, ..., Vn〉,

where ∀i ∈ {1, ..., n}, σi
def
= match(Fi, Vi, σi−1)

and σ0
def
= σ

∅ otherwise

The �rst case returns the given substitution when the pattern is a basic constant

identical to the datum or it is a variable whose associated value in the substitution is

identical to the datum. The second case returns the given substitution extended with

a new association, binding the pattern to the datum when the pattern is a variable

not in the given substitution. The third case matches tuples: each item in the tuple

datum is matched against the corresponding item in the pattern tuple from left to

right. The result is the substitution yielded by the last match. The last case returns

the empty substitution when there is a mismatch, since all other cases have failed.

106 CHAPTER 6. SEMANTICS OF KILTERA

RN
P ≡α P ′

P ≡ P ′
PI P ‖

√
≡ P

PC P1 ‖ P2 ≡ P2 ‖ P1

PA P1 ‖ (P2 ‖ P3) ≡ (P1 ‖ P2) ‖ P3

LIr PT
√
≡ P

LIl
√

TP ≡ P

CC G1 → P1 +G2 → P2 ≡ G2 → P2 +G1 → P1

CA G1 → P1 + (G2 → P2 +G3 → P3) ≡ (G1 → P1 +G2 → P2) +G3 → P3

NT νx.
√
≡
√

NS νx.νy.P ≡ νy.νx.P

PSEN
x /∈ fn(P)

P ‖ νx.Q ≡ νx.(P ‖ Q)

LSENr
x /∈ fn(P)

PTνx.Q ≡ νx.(PTQ)

LSENl
x /∈ fn(P)

νx.QTP ≡ νx.(QTP)

PD
A(x1, ..., xn)

def
= P

A(y1, ..., yn) ≡ P{x1/y1, ..., xn/yn}

Figure 6.5: Axioms for structural congruence of processes.

Structural congruence

Any well-de�ned semantics must ensure that processes which are syntactically equiv-

alent should behave in the same way. What do we mean exactly when we say that two

processes are syntactically equivalent? To answer this question, we need to de�ne an

equivalence relation on processes which identi�es them based purely on their syntac-

tic structure. In this section we de�ne such an equivalence relation, called structural

congruence. It is a congruence relation4 since we require it to be preserved by any

context.

De�nition 6.22. (Structural congruence over process terms) The relation

≡⊆ P×P is de�ned to be the smallest congruence over P which satis�es the axioms

shown in Figure 6.5.

Note that since ≡ is de�ned to be a congruence relation, in addition to these axioms,

it satis�es those of an equivalence relation and of a congruence: it is preserved by all

contexts in the language.

4See appendix C, in particular de�nitions C.15, C.16 and C.18.

6.2. THE κλτ -CALCULUS 107

The �rst axiom, RN (ReName), simply states that two processes are congruent if one

can be obtained from the other by renaming only bound names. The second, PI (Par-

allel Identity) simply states that a terminated process has no e�ect when composed

with other processes. PC (Parallel Commutativity) states that parallel composition

is commutative, and therefore order does not matter. PA (Parallel Associativity)

states associativity of parallel composition. Both LI (Left-parallel Identity) are anal-

ogous to PI. Note that there are no commutativity or associativity axioms for T. CC
and CA state commutativity and associativity of listener processes. Associativity and

commutativity of ‖ and + allows us to drop the brackets and reorder and regroup pro-

cesses. NT (New Termination) states that scope does not a�ect a terminated process,

while NS (New Swap) allows us to reorder contiguous declarations, and unambigu-

ously write νx1, x2..., xn.P for νx1.νx2.....νxn.P . PSEN (Parallel Scope Extrusion

New), and LSEN (Left-parallel Scope Extrusion New) state that we can extend the

scope of a name beyond its original process in a way that does not capture (binds)

any free names in the context. These are crucial axioms for mobility of channels.

The condition for these rules is to avoid the capture of free variables in P or Q, so

x could be any name not in these processes or x if it is not free in P . If x is free in

P , we can rename it in Q and then apply scope extrusion. PD (Process De�nition)

simply states that a process de�nition is nothing but a named parametrized process.

From this de�nition we obtain some useful properties:

Proposition 6.23. If x /∈ fn(P) then νx.P ≡ P .

Another very useful property is that every process can be rewritten in a canonical

normal form.

De�nition 6.24. (Canonical normal form) A process P is said to be in canon-

ical normal form if it is of the form

νx1, ..., xn.(P1 ‖ · · · ‖ Pk)

where each Pi is either a trigger, a listener, a left-parallel composition, or a process

instantiation.

Proposition 6.25. Every process is structurally congruent to a process in canonical

normal form.

Having de�ned structural congruence, we can de�ne the transitions and evolution of

processes in such a way that structurally congruent processes have the same transi-

tions and evolution.

Process transitions and evolution

Now we de�ne the timed-labelled transition system for κλτ .

108 CHAPTER 6. SEMANTICS OF KILTERA

De�nition 6.26. (Process transitions and evolution) The TLTS for κλτ pro-

cesses is a tuple (P,A,→,) where A is the set of transition labels described below,

the relation →⊆ P × A × P is the transition relation given by the inference rules

in table 6.6 and ⊆ P × R+
0 × P is the evolution relation de�ned in table 6.7. The

elements of A are actions of the form τ (silent action), x!v (trigger), x!∗v (multicast
trigger) or x?v (reception), where v is a constant or a name. We let η range over A.
We write P

η−→ P ′ for (P, η, P ′) ∈ → and P
d
 P ′ for (P, d, P ′) ∈ .

We impose an additional constraint on the TLTS (P,A,→,), to guarantee maximal

progress:

if P
τ−→ then P 6d

In the remainder of this section we explain these rules in more detail.

Termination There are no transition rules for the termination process
√
, only

evolution (axiom TSTOP). This is because
√

cannot engage in any action, it can

only passively remain terminated with the passage of time.

Triggering events The TRIG axioms de�ne the behaviour of transient triggers.

Their ∗ variants correspond to multicasting. Transient triggers perform an output

action x!v (or x!∗v for multicasting) and then terminate. Transient triggers auto-

matically become
√

with the passage of any positive amount of time, and therefore

they are ephemeral: they have an e�ect only at the time instant in which they are

executed.

Listening to events The CHOICE rule describes the behaviour of a listener. It says

that it can perform any input action that matches an alternative of the listener. For

an input action to match an alternative, its event must correspond to that of the

corresponding alternative, and the value of the message must match the pattern of

the alternative. In the case of a successful match, the corresponding substitution is

extended with the assignment of 0 to the corresponding elapsed-time variable. This

is to model the occurrence of an event at the current time.

The corresponding rule for evolution of a listener TCHOICE shows that with the pas-

sage of an amount of time d, the elapsed-time variables of each branch are increased

by d.

Note that a listener may have more than one possible transition. The actual transition

taken depends on the context, i.e., on what events are provided by the environment.

But even knowing what events are available in the environment does not necessarily

specify a unique transition. It may be that more than one alternative matches events

from the environment. In this case, the behaviour is non-deterministic. The listener

can take any of those transitions.

6.2. THE κλτ -CALCULUS 109

TRIG x↑E x!eval(E)−−−−−−→
√

TRIG∗ x↑∗E x!∗eval(E)−−−−−−→
√

NEW
P

η−→ P ′ x 6∈ fn(η)

νx.P
η−→ νx.P ′

NEW!
P

x!v−−→ P ′

νx.P
τ−→ νx.P ′

NEW∗
P

x!∗v−−→ P ′

νx.P
τ−→ νx.P ′

DELAY
eval(E) = 0

∆E → P
τ−→ P

CHOICE
σ 6= ∅∑

i∈I Gi → Pi
xi?v−−→ Pi(σ ∪ {ti/0})

where Gi = xi?Fiδti
and σ = match(Fi, v, ∅)

PARτ
P

τ−→ P ′

P ‖ Q τ−→ P ′ ‖ Q
PAR?

P
x?v−−→ P ′ Q 6x!∗v−−→

P ‖ Q x?v−−→ P ′ ‖ Q

PAR!
P

x!v−−→ P ′

P ‖ Q x!v−−→ P ′ ‖ Q
PAR∗

P
x!∗v−−→ P ′ Q 6x?v−−→

P ‖ Q x!∗v−−→ P ′ ‖ Q

COMM
P

x!v−−→ P ′ Q
x?v−−→ Q′

P ‖ Q τ−→ P ′ ‖ Q′
COMM∗

P
x!∗v−−→ P ′ Q

x?v−−→ Q′

P ‖ Q x!∗v−−→ P ′ ‖ Q′

LPARτ
P

τ−→ P ′

PTQ τ−→ P ′TQ
LPAR?

P
x?v−−→ P ′ Q 6x!∗v−−→

PTQ x?v−−→ P ′TQ

LPAR!
P

x!v−−→ P ′

PTQ x!v−−→ P ′TQ
LPAR∗

P
x!∗v−−→ P ′ Q 6x?v−−→

PTQ x!∗v−−→ P ′TQ

LCOMM
P

x?v−−→ P ′ Q
x!v−−→ Q′

PTQ τ−→ P ′TQ′
LCOMM∗

P
x?v−−→ P ′ Q

x!∗v−−→ Q′

PTQ x!∗v−−→ P ′TQ′

CNGR
P

η−→ P ′ P ≡ Q P ′ ≡ Q′

Q
η−→ Q′

Figure 6.6: Process transitions.

110 CHAPTER 6. SEMANTICS OF KILTERA

TSTOP
√ d

√

TTRIG
d > 0

x↑E d

√ TTRIG∗

d > 0

x↑∗E d

√

TTRIG0 x↑E 0
 x↑E TTRIG0

∗ x↑∗E 0
 x↑∗E

TNEW
P

d
 P ′

νx.P
d
 νx.P ′

TCHOICE
∑

i∈I Gi → Pi
d

∑
i∈I Gi → P ′i where Gi = xi?Eiδti,

and P ′i = Pi{ti/ti+d}

TDELAY
0 6 d 6 eval(E)

∆E → P
d
 ∆(E − d)→ P

TPAR
P

d
 P ′ Q

d
 Q′

P ‖ Q d
 P ′ ‖ Q′

TLPAR
P

d
 P ′ Q

d
 Q′

PTQ d
 P ′TQ′

TINST A(x1, ..., xn) 0
 A(x1, ..., xn)

TCNGR
P

d
 P ′ P ≡ Q P ′ ≡ Q′

Q
d
 Q′

Figure 6.7: Process evolution.

6.2. THE κλτ -CALCULUS 111

Creating/hiding events The NEW rules describe the behaviour of the ν operator.

They state that any action on a name declared by ν is hidden from its environment,

while other actions are visible. Hence, the observable transitions of a process νx.P

are only those transitions which do not involve x. Of course, internally, P can have

transitions involving x, but only output transitions or internal interactions, and they

will not be observable by the context. This is modelled by the rules NEW! and NEW∗

which transform an output into a silent action. This highlights the autonomous

nature of output actions. Consider for example, x ↑‖ y ↑. It has two transitions:

x ↑‖ y ↑ x!−→
√
‖ y ↑ and x ↑‖ y ↑ y!−→ x ↑‖

√
, but the process νx.(x ↑‖ y ↑) has

the transitions νx.(x ↑‖ y ↑) τ−→ νx.(
√
‖ y ↑) and νx.(x ↑‖ y ↑) y!−→ νx.(x ↑‖

√
).

Similarly, in x↑∗‖ x?→ y↑, there is an interaction involving x, namely the transition

x ↑∗‖ x? → y ↑ x!∗−−→
√
‖ y ↑, but when enclosed by the new operator, this transition

becomes silent: νx.(x↑∗‖ x?→ y↑) τ−→ νx.
√
‖ y↑).

Delaying processes The DELAY rule speci�es that once a process's waiting time

has reached 0, it can continue with its execution. The TDELAY rule says that after

the passage of an amount of time d, the process's waiting time is reduced by d.

Parallel composition There are several rules for parallel and left-parallel composi-

tion. The PAR rules describe how processes that do not interact can advance con-

currently with their environment, while the COMM rules describe the interaction of

processes.

The PARτ and PAR! rules state that a process that performs a silent transition or a

unicasting output may do so independently and concurrently with its environment.

The PAR? says that a process performing an input action can do so independently

of its environment, as long as the environment is not attempting to multicast on the

same channel, since a multicast would require the process to participate in the inter-

action. The PAR∗ rule is analogous. It says that a process attempting to multicast

can do so if no other concurrent process is ready to accept input on the relevant

channel.

Note that these rules appear to be asymmetrical, but the symmetric rules also hold.

See proposition 6.28.

The COMM rule states that a pair of processes interact if one can perform a uni-

casting output action and the other can perform an input on the same channel,

matching the output's data. The result is a silent transition, since this is unicasting

communication: there are only two participants to this interaction.

By contrast, the COMM∗ rule describes interaction in the multicasting case. In this

case, one process is capable of performing a multicast action and the other is capable

of performing input on the same channel, matching the transmitted data. But, unlike

the COMM rule, the result is not a silent action, but a multicasting output action,

112 CHAPTER 6. SEMANTICS OF KILTERA

which is visible by other concurrent processes (unless explicitly hidden by ν.)

The variants that begin with L are for left-parallel composition, and are analogous

to the previous rules, the only di�erence being that they are not symmetrical since

left-parallel is not a commutative operator.

The TPAR and TLPAR rules say that the parallel composition of a pair of processes

advances over time by the evolution of each sub-process over the same amount of

time.

Other rules The rule CNGR states that structurally congruent processes have the

same transitions. This allows us to obtain some useful derived rules, as shown below.

In particular, we obtain the symmetric rules for parallel composition, as well as

a rule for process instantiation, which states that a process instantiation has the

same transitions as the body of the corresponding process de�nition with its ports

and state variables substituted by the values provided by the instantiation. In other

words, a process instantiation is analogous to invoking a function.

Derived rules

Here we show a few useful derived rules. The �rst one describes process instantiation.

Proposition 6.27. For any P, P ′, η,

INST
A(x1, ..., xn)

def
= P P{x1/y1, ..., xn/yn}

η−→ P ′

A(y1, ..., yn)
η−→ P ′

The rules for parallel composition given in Figure 6.6 seem to lack symmetry, as they

describe the transition of the �rst process. Nevertheless, symmetry is recovered via

congruence, as the following shows.

Proposition 6.28. For any P, P ′, Q,

PARrτ
Q

τ−→ Q′

P ‖ Q τ−→ P ‖ Q′
PARr?

Q
x?v−−→ Q′ P 6x!∗v−−→

P ‖ Q x?v−−→ P ‖ Q′

PARr!
Q

x!v−−→ Q′

P ‖ Q x!v−−→ P ‖ Q′
PARr∗

Q
x!∗v−−→ Q′ P 6x?v−−→

P ‖ Q x!∗v−−→ P ‖ Q′

Examples

To illustrate the operational semantics, let us look at a few examples.

Delay and interaction First, consider the following process:

νx.(∆3→ x↑2 ‖ x?zδt→ y↑〈z, t〉)

6.2. THE κλτ -CALCULUS 113

This process consists of two components which share an event x. The �rst component

schedules a trigger at time 3 relative to the beginning of this process. The second

component listens to this event, and when it occurs, it binds the message to the

variable z, the waiting time to t, and then triggers an event y with the pair 〈z, t〉.

At �rst, this process can only let time pass, for 3 time units. The following derivation

shows how this evolution is obtained.

−
TDELAY

∆3→ x↑2
3
 ∆0→ x↑2

−
TCHOICE

x?zδt→ y↑〈z, t〉 3
 x?zδt→ y↑〈z, t+ 3〉

TPAR

∆3→ x↑2 ‖ x?zδt→ y↑〈z, t〉 3
 ∆0→ x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉

TNEW

νx.(∆3→ x↑2 ‖ x?zδt→ y↑〈z, t〉) 3
 νx.(∆0→ x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉)

Now the left process has a 0 delay, which results in a silent transition:

eval(0) = 0
DELAY

∆0→ x↑2
τ−→ x↑2

PARτ

∆0→ x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉 τ−→ x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉
NEW

νx.(∆0→ x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉) τ−→ νx.(x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉)

Then we have that the two processes can interact:

−
TRIG

x↑2
x!2−−→
√

−
CHOICE

x?zδt→ y↑〈z, t+ 3〉 x?2−−→ y↑〈2, 0 + 3〉
COMM

x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉 τ−→
√
‖ y↑〈2, 0 + 3〉

√
‖ y↑〈2, 0 + 3〉 ≡ y↑〈2, 0 + 3〉

CNGR

x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉 τ−→ y↑〈2, 0 + 3〉
NEW

νx.(x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉) τ−→ νx.(y↑〈2, 0 + 3〉)

And by proposition 6.23 we know that νx.y↑〈2, 0 + 3〉 ≡ y↑〈2, 0 + 3〉. So by putting

all together, we get the following execution:

νx.(∆3→ x↑2 ‖ x?zδt→ y↑〈z, t〉) 3
 νx.(∆0→ x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉)
τ−→ νx.(x↑2 ‖ x?zδt→ y↑〈z, t+ 3〉)
τ−→ νx.y↑〈2, 0 + 3〉)

≡ y↑〈2, 0 + 3〉
y!〈2,3〉−−−−→

√

114 CHAPTER 6. SEMANTICS OF KILTERA

Multicasting Now consider the following:

A
def
= u↑∗ 2

B
def
= u?x→ B′

C
def
= u?y → C ′

D
def
= u?z → D′

E
def
= νu.(A ‖ B ‖ C)

F
def
= D ‖ E

Here we have a process A which multicasts an event u, but only B and C react to

it. We have the following transition:

F
τ−→ D ‖ νu.(B′{x/2} ‖ C ′{y/2})

which is derived as follows:

−
TRIG∗

A
u↑∗2−−−→

√
−

CHOICE

B
u?2−−→ B′{x/2}

COMM∗

A ‖ B u!∗2−−−→
√
‖ B′{x/2} ≡ B′{x/2}

−
CHOICE

C
u?2−−→ C′{y/2}

COMM∗

A ‖ B ‖ C u!∗2−−−→ B′{x/2} ‖ C′{y/2}
NEW∗

E
τ−→ νu.(B′{x/2} ‖ C′{y/2})

PAR
r
τ

F ≡ D ‖ E τ−→ D ‖ νu.(B′{x/2} ‖ C′{y/2})

Note that the COMM∗ rule propagates the output action, so that it can be listened

by the environment, but the NEW∗ transforms it into a silent action, thus limiting

the scope of its e�ect. This is the reason why D does not receive the message: D's

channel u is not the same as that of E (and A, B and C.)

6.3 Mapping kiltera onto the κλτ-calculus

We now describe how kiltera models are interpreted as κλτ terms. First we look at

how to interpret the core constructs, and then we describe additional constructs in

terms of these.

This is shown in table 6.2. This table shows how the basic constructs of kiltera are

mapped into κλτ terms. A can be seen from this table, κλτ faithfully captures the

core constructs.

Process de�nitions of the form

process A[x1,...,xn]:

P

6.3. MAPPING KILTERA ONTO THE κλτ -CALCULUS 115

kiltera syntax κλτ syntax

done
√

trigger x x↑

trigger x with E x↑E

trigger all x x↑∗

trigger all x with E x↑∗E

wait E ->

P

∆E → P

event x in

P

νx.P

par

P1

P2

...

Pn

P1 ‖ P2 ‖ · · · ‖ Pn

lpar

P1

P2

...

Pn

P1T(P2T(· · · TPn)...))

when x1 with F1 after t1 ->

P1

| x2 with F2 after t2 ->

...

| xn with Fn after tn ->

Pn

x1?F1δt1 → P1 + · · ·+ xn?Fnδtn → Pn

A[x1,...,xn] A(x1, ..., xn)

Table 6.2: Mapping kiltera into κλτ terms.

116 CHAPTER 6. SEMANTICS OF KILTERA

kiltera alternative syntax kiltera basic syntax

send null to x trigger x

send E to x trigger x with E

send null to all x trigger all x

send E to all x trigger all x with E

wait E

P

wait E ->

P

channel x in

P

event x in

P

events x1, x2, ... , xn in

P

event x1 in

event x2 in

...

event xn in

P

channels x1, x2, ..., xn in

P

event x1 in

event x2 in

...

event xn in

P

receive y from x ->

P

when x with y ->

P

Table 6.3: Syntactic sugar for kiltera.

are mapped into

A(x1, ..., xn)
def
= P

Process de�nitions with state variables like this:

process A[x1,...,xn](s1,...,sm):

P

are mapped into

A(x1, ..., xn, s1, ..., sm)
def
= P

In table 6.3 shows some alternative syntax.

In section 5.2 of chapter 5 we introduced some constructs that aim to make kiltera a

more practical language. These constructs can all be de�ned in terms of the core

constructs, therefore they are not included in the core. In fact constructs such as

6.3. MAPPING KILTERA ONTO THE κλτ -CALCULUS 117

constants and data structures (tuples) included in the core can be encoded by a

subset of the core. This is because kiltera has the π-calculus's expressiveness, which

in turn is Turing-complete, as the λ-calculus can be encoded in it. Nevertheless, any

practical language must include constants and basic data-structuring mechanisms as

primitives for e�ciency.

In the remainder of this section we will present these constructs and how they are

encoded in terms of kiltera's core.

Timeout

Timeouts are associated to listeners, and have the syntax:

when x1 with F1 after t1 ->

P1

| x2 with F2 after t2 ->

...

| xn with Fn after tn ->

Pn

timeout E ->

Q

We will write this in mathematical notation as

(Σi∈IGi → Pi)
E
. Q

We de�ne this term by combining a listener with a delay as follows:

(Σi∈IGi → Pi)
E
. Q

def
= νs.((Σi∈I′Gi → Pi)T∆E → s↑)

where I ′
def
= I ∪ {m}, Gm

def
= s? and Pm

def
= Q.

The idea of this translation is to add a new event s to represent the timeout, and a

new input guard s→ Q to the listener: once E time has passed, s will be triggered,

so the listener then has a transition to Q. For example

(a?x→ P1 + b?→ P2)
3
. Q

will be encoded as

νs.((a?x→ P1 + b?→ P2 + s?→ Q)T∆3→ s↑)

118 CHAPTER 6. SEMANTICS OF KILTERA

The timeout operator could be chosen as a primitive instead of delay. A delay

∆E → P

is equivalent to
√ E
. P

Basic conditional: if-then-else

Conditional processes have the following syntax:

if E then

P

else

Q

where E is a boolean expression, and P and Q are processes. The meaning of this

construct is to evaluate E, and if the value is true then execute P , otherwise, execute

Q.

In mathematical notation we write it as

if E then P else Q

We also allow a variant without the else clause:

if E then P

which is syntactic sugar for:

if E then P else
√

The operational semantics of conditionals can be captured by adding the following

inference rules to the de�nition of kiltera's TLTS:

CONDT
eval(E) = T

if E then P else Q
τ−→ P

and

CONDF
eval(E) = F

if E then P else Q
τ−→ Q

Alternatively, we can encode conditionals using the existing constructs as follows.

We de�ne the conditional construct as follows:

6.3. MAPPING KILTERA ONTO THE κλτ -CALCULUS 119

if E then P else Q
def
= νcheck.((check?T→ P + check?F→ Q)Tcheck!E)

With this de�nition, it easy to check, using the existing rules, that if eval(E) = T,

then

if E then P else Q
τ−→ P

and if eval(E) = F then

if E then P else Q
τ−→ Q

The proof for the true case is as follows:

check?T→ P + check?F→ Q
check?T−−−−−→ P

check!E
check!eval(E)−−−−−−−−→

√

check!E check!T−−−−−→
√

(check?T→ P + check?F→ Q)Tcheck!E τ−→ PT
√
≡ P

νcheck.((check?T→ P + check?F→ Q)Tcheck!E) τ−→ νcheck.P ≡ P
if E then P else Q

τ−→ P

The if-then-else construct introduced is a conditional process, but conditionals are

also useful in expressions, specially when de�ning functions. Hence we extend the

syntax of expressions to include

if E1 then E2 else E3

where all Ei are expressions, with the obvious semantics for evaluation:

eval(E1) = T

eval(if E1 then E2 else E3)
def
= eval(E2)

and

eval(E1) = F

eval(if E1 then E2 else E3)
def
= eval(E3)

Match

Using a similar approach we can de�ne a construct to perform pattern matching on

expressions:

120 CHAPTER 6. SEMANTICS OF KILTERA

match E with

F1 ->

P1

| F2 ->

P2

...

| Fn ->

Pn

The meaning of this construct is to evaluate the expression E and match its value

against each pattern F1, F2, ..., Fn. If a pattern Fi matches, the corresponding process

Pi is executed. If no pattern matches, the whole process terminates.

We can write it in mathematical notation as:

match E : F1 → P1| · · · |Fn → Pn

We can describe its semantics by adding the following rules:

MTCH
σ 6= ∅

match E : F1 → P1| · · · |Fn → Pn
τ−→ Piσ

where σ = match(Fi, eval(E), ∅)

and

MISMTCH
∀i ∈ {1, ..., n}. σi = ∅

match E : F1 → P1| · · · |Fn → Pn
τ−→
√ where σi = match(Fi, eval(E), ∅)

As with basic conditionals, we can de�ne this construct in terms of the core language

instead of adding these rules.

match E : F1 → P1| · · · |Fn → Pn
def
=

νm.((m?F1 → P1 + · · ·+m?Fn → Pn +m?x→
√

)Tm↑E)

The last case of the listener is guaranteed to execute if no other pattern matches the

value of E, since a variable x matches any value.

Note that the basic if-then-else conditional can easily be speci�ed in terms of the

match construct:

if E then P else Q

6.3. MAPPING KILTERA ONTO THE κλτ -CALCULUS 121

is equivalent to

match E : T→ P |F→ Q

Sequence comprehension, sequence patterns, and indices

kiltera's core includes tuples as the basic mechanism to build data structures. A tuple

is nothing more than a sequence of values. In order to generate large sequences,

kiltera includes a syntactic construct called sequence comprehension which is written

as follows:

(E1 for F in E2 if E3)

and in mathematical notation:

〈E1 |F ∈ E2 &E3〉

where F is a pattern E1 is any expression that may have variables in common with

F , E2 is an expression that yields a sequence (i.e., tuple,), E3 is an optional boolean

expression that may also have variables from F . The meaning of this expression is

the sequence of values of E1 for each F that matches an element of the sequence E2

such that E3 is true. Hence, a sequence comprehension builds a sequence of values

by �ltering a given sequence according to some pattern and optional conditions.

The core of kiltera includes a tuple pattern which can be used to match sequences.

Such pattern has the form 〈F1, F2, ..., Fn〉 where each Fi is a pattern. This means

that the pattern speci�es a pattern for each item in the sequence. This, however, is

not always practical, specially when dealing with long sequences. For this reason we

introduce a sequence pattern, commonly found in functional languages:

〈F ;F ′〉

This pattern matches successfully against any non-empty sequence. The �rst item of

the sequence is matched against F , and the remainder is matched against F ′. More

formally, we extend the match function (section 6.2.2,) with the following case:

match(〈F ;F ′〉, (V1, V2, ..., Vn), σ)
def
= match(F ′, (V2, ..., Vn),match(F, V1, σ))

Another useful construct found in most languages is indexed-access to items in a

sequence. To access the i-th element of a sequence s we write

s[i]

and in mathematical notation:

122 CHAPTER 6. SEMANTICS OF KILTERA

si

This can easily be described in terms of the existing constructs for expressions. For

instance:

si
def
= match 〈i, s〉 : 〈0, 〈x;x′〉〉 → x | 〈n, 〈x;x′〉〉 → x′n−1

Local name declarations

Local name declarations have the following syntax:

let x = E in

P

where x is a name for the value of E and whose scope is process P . To declare

multiple names simultaneously:

let x1 = E1

and x2 = E2

...

and xn = En

in

P

In mathematical notation:

let x1 = E1, ..., xn = En in P

Formally we can de�ne its semantics by adding the following rule:

LET
P{x1/eval(E1), ..., xn/eval(En)} η−→ P ′

let x1 = E1, ..., xn = Enin P
η−→ P ′

This construct can also be encoded in the core language since the λ-calculus can be

encoded in the π-calculus. We omit the details here since they are outside the scope

of this thesis, but we refer to the reader to [28] for details on such encodings.

Event/channel arrays

Since events/channels are �rst-class values, we can form sequences of events. This is

useful to model large systems. We introduce the syntax:

event array s[E] in

P

or

6.3. MAPPING KILTERA ONTO THE κλτ -CALCULUS 123

channel array s[E] in

P

In these, s is a name, E is any expression that evaluates to a positive integer and P

is the scope of the declared channels. The meaning of these is simply a sequence of

events with the given length, this is:

νa1, ..., an.let s = 〈a1, ..., an〉 in P

Process arrays

In general, this construct has the form:

par

P

for F in E

where P is a process term, F is a pattern and E is an expression whose value must

be a sequence. In mathematical notation:∏
F∈E

P

The meaning of this construct is to create a concurrent instance of P for each item

of the sequence speci�ed by E that matches the pattern F . P may have names that

appear in F . In such case, each instance of P will have its free names bound according

to the result of matching F with the corresponding item in E.

The meaning of this operator can be readily de�ned in terms of the rest as follows:

∏
F∈〈〉 P

def
=
√∏

F∈〈E1,E2,...,En〉 P
def
= Pσ ‖

∏
F∈〈E2,...,En〉 P if σ 6= ∅ where σ = match(F,E1, ∅)∏

F∈〈E1,E2,...,En〉 P
def
=

∏
F∈〈E2,...,En〉 P otherwise

Fixed sequential composition

Sequential composition has the following syntax:

seq

P1

P2

...

Pn

In mathematical notation:

P1;P2; · · · ;Pn

124 CHAPTER 6. SEMANTICS OF KILTERA

where ; is a binary, non-commutative, associative operator with
√

as identity.

The meaning of

P ;Q

is that P is executed, and if it terminates successfully, then Q is executed.

We can formally de�ne its semantics by adding a new construct to the language, a

constant • to represent a stopped process, adding
√

to the set of action labels, and

adding the following rules:
√ √
−→ •

to represent that a terminated process stops,

P
√
−→ P ′

P ;Q τ−→ Q

which represents that if the �rst process in a sequential composition terminates, then

the second process begins, and

P
η−→ P ′

P ;Q
η−→ P ′;Q

where η 6=
√

which represents that the �rst process performs actions while it has not terminated.

It turns out that sequential composition can be encoded with the core constructs.

This encoding needs to take into account that the �rst process may consist of several

parallel sub-processes. Therefore it is necessary to determine when a parallel compo-

sition terminates, so that the sequential composition can continue. This corresponds

to the concurrent programming notion of joining processes.

In order to de�ne sequential composition we de�ne �rst an auxiliary function join

which given a process P and an event name x, it returns the process that behaves

like P and when it �nishes, it triggers x. This function is shown in Figure 6.8. In

this de�nition, the notation x! represents a lasting trigger of event x. The de�nition

of lasting triggers in terms of the core κλτ calculus is described at the end of this

chapter.

Now we can de�ne ; as follows:

P ;Q
def
= νg.(join(P, g) ‖ g?→ Q)

Since the de�nition of join guarantees that g, the goahead event, will �re only after

P terminates, this correctly encodes the semantics of sequential execution.

6.3. MAPPING KILTERA ONTO THE κλτ -CALCULUS 125

join(
√
, x)

def
= x↑

join(T, x)
def
= TTx!

join(∆E → P, x)
def
= ∆E → join(P, x)

join(νy.P, x)
def
= νy.join(P, x)

if y 6= x

join(νx.P, x)
def
= νx′.join(P{x/x′}, x)

where x′ /∈ fn(P)

join(P1 ‖ P2, x)
def
=

νx1.νx2.((x1?→ x2?→ x↑)T(join(P1, x1) ‖ join(P2, x2)))
where x1, x2 /∈ {x} ∪ fn(P1) ∪ fn(P2)

join(P1TP2, x)
def
=

νx1.νx2.((x1?→ x2?→ x↑)T(join(P1, x1)Tjoin(P2, x2)))
where x1, x2 /∈ {x} ∪ fn(P1) ∪ fn(P2)

join(Σi∈IGi → Pi, x)
def
= Σi∈IGi → join(Pi, x)

join(A(x1, ..., xn))
def
= join(P{y1/x1, ..., yn/xn}, x)

where A(y1, ..., yn)
def
= P

Figure 6.8: Joining processes.

Sequential loops: indexed-sequence

The equivalent of loops in imperative languages is the indexed-sequence, or sequential

loop. This construct is analogous to the indexed-parallel construct introduced above.

The general syntax is

seq

P

for F in E

or in mathematical notation: ∐
F∈E

P

Its meaning is analogous to indexed-parallel: An instance of P is executed for each

item of the sequence speci�ed by E that matches the pattern F , but, unlike indexed-

parallel, each process starts only after the previous one has �nished. Formally,

∐
F∈〈〉 P

def
=
√∐

F∈〈E1,E2,...,En〉 P
def
= Pσ;

∐
F∈〈E2,...,En〉 P if σ 6= ∅ where σ = match(F,E1, ∅)∐

F∈〈E1,E2,...,En〉 P
def
=

∐
F∈〈E2,...,En〉 P otherwise

126 CHAPTER 6. SEMANTICS OF KILTERA

Lasting triggers

More interestingly, lasting triggers can be expressed by the subset of the language

with only transient triggers. To describe this, we will introduce the following syntax

to represent lasting triggers:

x!E

which will be the notation for

trigger lasting x with E

Similarly, we will write

x!∗E

for the multicasting variant

trigger all lasting x with E

We call Pl
def
= P ∪ {x!E, x!∗E} and de�ne a translation J·K : Pl → P as shown in

Figure 6.9.

The idea behind this translation is to de�ne, for each event, a Registry process to

�match� triggers and listeners of that event. For each event x, the Registry handles

three events: xt, xl and xg. The event xt represents that there is a lasting trigger on

x ready to �re. Dually, the event xl represents that there is a listener on x ready to

react. The event xg is a signal meaning that a lasting trigger can go ahead and �re.

A listener of events {xi}i∈I registers itself with each xi's Registry (by triggering the

xli events) so that each xi's Registry knows there is some listener for xi available.

Similarly, a lasting trigger x!E also registers itself with x's Registry (by triggering

the xt event) and then waits for a �go ahead� signal (xg) from the Registry.

The Registry process works as follows: for each listener, it waits for a trigger and

when it gets a trigger's notice, it gives the lasting trigger the go ahead; dually, for

every lasting trigger, it waits for a listener, and when it gets a listener's notice, it

gives the lasting trigger the go ahead. However, since there might be many processes

listening or triggering an event, the Registry may receive notices from more listeners

while waiting for triggers, and it may receive notices from more triggers while it is

waiting for listeners. Therefore, theRegistry keeps track of the di�erence (n) between

available listeners and available triggers. If there are more listeners than triggers, and

it receives a listener notice (xl,) it simply increments n, but if it receives a trigger

notice (xt,) it can give some trigger the go ahead (xg) and decrease n. Dually, if there

are less listeners than triggers, and a trigger notice arrives, it decreases n, but if it is

6.3. MAPPING KILTERA ONTO THE κλτ -CALCULUS 127

J
√

K def
=

√

Jx↑EK def
= x↑E

Jx↑∗EK def
= x↑∗E

Jx!EK def
= xt ↑‖ xg?→ x↑E

Jx!∗EK def
= xt ↑‖ xg?→ x↑∗E

J∆E → P K def
= ∆E → JP K

Jνx.P K def
= νx, xt, xl, xg.(Registry(xt, xl, xg, 0) ‖ JP K)

where xt, xl, xg /∈ fn(P)

JP1 ‖ P1K
def
= JP1K ‖ JP1K

JP1TP1K
def
= JP1KTJP1K

J
∑

i∈I Gi → PiK
def
= (

∏
i∈I x

l
i ↑); (

∑
i∈I Gi → JPiK)

where Gi = xi?Fiδti
JA(x1, ..., xn)K def

= A(x1, ..., xn)

Registry(xt, xl, xg, n)
def
= if n > 0 then

xl?→ Registry(xt, xl, xg, n+ 1)
+xt?→ (xg ↑‖ Registry(xt, xl, xg, n− 1))

else if n < 0 then
xl?→ (xg ↑‖ Registry(xt, xl, xg, n+ 1))

+xt?→ Registry(xt, xl, xg, n− 1)
else

xl?→ Registry(xt, xl, xg, 1)
+xt?→ Registry(xt, xl, xg,−1)

Figure 6.9: Lasting triggers in terms of transient triggers.

128 CHAPTER 6. SEMANTICS OF KILTERA

a listener notice that arrives, it can give some trigger the go ahead. When n = 0, it
waits for any notice, and if it receives a listener notice, then it goes to the �rst state,

but if it receives a trigger notice, it goes to the second.

To understand this translation it is useful to see it in action. Consider the following

typical case, where a lasting trigger is preformed before the corresponding listener:

T
def
= x!v

L
def
= x?yδt→ P

Q
def
= νx.(T ‖ ∆d→ L)

So we have:

JT K def
= xt ↑‖ xg?→ x↑v

JLK def
= xl ↑; (x?yδt→ JP K)

JQK def
= νx, xt, xl, xg.(R(xt, xl, xg, 0) ‖ JT K ‖ ∆d→ JLK)

where R is the Registry. In the following, let R> denote the �rst case of the

Registry where n > 0, let R< denote the second case where n < 0 and R= the

third case where n = 0, i.e., R(..., n) = if n > 0 then R>(..., n) else if n <

0 then R<(..., n) else R=(..., n). Then we have the following execution:

JQK τ−→ νx, xt, xl, xg.(R=(xt, xl, xg, 0) ‖ JT K ‖ ∆d→ JLK) (1)
τ−→ νx, xt, xl, xg.(R(xt, xl, xg,−1) ‖ xg?→ x↑v ‖ ∆d→ JLK) (2)
τ−→ νx, xt, xl, xg.(R<(xt, xl, xg,−1) ‖ xg?→ x↑v ‖ ∆d→ JLK) (3)
d
 νx, xt, xl, xg.(R<(xt, xl, xg,−1) ‖ xg?→ x↑v ‖ ∆0→ JLK) (4)
τ−→ νx, xt, xl, xg.(R<(xt, xl, xg,−1) ‖ xg?→ x↑v ‖ JLK) (5)
τ−→ νx, xt, xl, xg.(xg ↑‖ R(xt, xl, xg, 0) ‖ xg?→ x↑v ‖ x?yδt→ JP K) (6)
τ−→ νx, xt, xl, xg.(R(xt, xl, xg, 0) ‖ x↑v ‖ x?yδt→ JP K) (7)
τ−→ νx, xt, xl, xg.(R(xt, xl, xg, 0) ‖ JP K{y/v, t/0}) (8)

The transition from (1) to (2) is the result of the lasting trigger registering with the

Registry, as a result, it waits for the go ahead signal, and the Registry goes to the

R< mode, waiting for listeners (line (3)). Line (4) represents the passage of time.

The transition from (5) to (6) is due to the listener registering itself, which allows

the Registry to trigger the go ahead event (xg). As a result, the lasting trigger is

�nally able to trigger the original event x↑v (line (7).)

7
Semantics of distributed kiltera

In this chapter we extend the κλτ -calculus de�ned in chapter 6 to account for the

distributed features of kiltera. All proofs of statements in this chapter are found in

appendix E.

7.1 The Dκλτ-calculus

We de�ne an extension of the κλτ -calculus by adding new constructs and evolution

transitions.

7.1.1 Syntax

Notation 7.1. We call Ns the set of all possible site name names. To simplify the

de�nitions, we rede�ne the set Ne ⊆ N the set of possible event names to contain

also site names, i.e., Ns ⊆ Ne.

First, we extend the syntax of process terms to include constructs for querying the

process's site name and for sending process instances to remote sites.

De�nition 7.2. (Extended process terms) Let P ′ be the set of all process terms

including all terms in P (de�nition 6.6) as well as all terms of the form

ϑx.P

and

A(x1, ..., xn) y y

where P ∈ P ′.

Notation 7.3. Sometimes we write A(~x) y y for A(x1, ..., xn) y y where ~x =
x1, ..., xn.

The process ϑx.P binds x to the process's site name. The process A(~x) y y sends a

new instance A(~x) to site y.

We now de�ne network terms. Network terms are not terms in the kiltera syntax

per se, but rather they are formal terms which we use to de�ne the meaning of a

130 CHAPTER 7. SEMANTICS OF DISTRIBUTED KILTERA

N ::= ⊥ done
| k[P] site
| $x.N scope
| N1 oN2 composition

Figure 7.1: Network terms.

collection of processes distributed over a network.

De�nition 7.4. (Network terms) The setW of terms representingDκλτ networks

is de�ned by the BNF in Figure 7.1. In this BNF, N,Ni, ... range over W, k ranges

over Ns, x ranges over Ne, and P ranges over P ′.

A network term ⊥ represents a stopped network. A network term k[P] represents
a process P located in the site named k. The term $x.N represents a network N

which has a private site x or a private d-channel x, i.e., a channel or event which

can be used for inter-site communication. A network term N1 o N2 represents the

composition of the two sub-networks N1 and N2.

We assume that $ has higher precedence than o.

7.1.2 Operational Semantics

As with the κλτ -calculus, we �rst provide some preliminary de�nitions. Most of

these simply extend those in section 6.2.2 to account for the new operators. Then

we proceed to de�ne structural congruence, transitions and evolution.

Values, actions, names, substitutions, expression evaluation, pattern-matching

The set of values in Dκλτ is the same as the set V de�ned for κλτ (de�nition 6.8,)

including the set of site-names Ns. This is immediate, since we de�ned Ns to be

included in Ne. This implies that the de�nitions for variables of an expression or

pattern, names of a value, names of an action and names of an action term, are

exactly the same as those given in section 6.2.2. Expression evaluation and pattern

matching are also de�ned as before. Nevertheless, we need to extend the de�nitions

of names of a process term and substitution, to account for the new syntax.

Names

De�nition 7.5. (Names of a process) The set of free names of a process P ,

written fn(P) is de�ned by extending de�nition 6.16 with the following:

fn(ϑx.P)
def
= fn(P)\{x}

fn(A(x1, ..., xn) y y)
def
= {x1, ..., xn} ∪ y

The set of bound names of a process P , written bn(P) is de�ned by extending

7.1. THE Dκλτ -CALCULUS 131

de�nition 6.16 with the following:

bn(ϑx.P)
def
= bn(P) ∪ {x}

bn(A(x1, ..., xn) y y)
def
= ∅

And now we de�ne the corresponding notions for network terms.

De�nition 7.6. (Names of a network term) The set of free names of a

network term N , written fn(N) is de�ned as follows:

fn(⊥)
def
= ∅

fn(x[P])
def
= {x} ∪ fn(P)

fn($x.N)
def
= fn(N)\{x}

fn(N1 oN2)
def
= fn(N1) ∪ fn(N2)

The set of bound names of a network term N , written bn(N) is de�ned as

follows:

bn(⊥)
def
= ∅

bn(x[P])
def
= bn(P)

bn($x.N)
def
= bn(N) ∪ {x}

bn(N1 oN2)
def
= bn(N1) ∪ bn(N2)

Substitution

De�nition 7.7. (Substitution of names) A substitution over P ′ is de�ned by

extending de�nition 6.17 with the following:

σ(ϑx.P)
def
= ϑx′.σ(P{x/x′})

where x′ /∈ fn(P), x′ /∈ src(σ)
and ∀V ∈ trg(σ). x′ /∈ n(V)

σ(A(x1, ..., xn) y y)
def
= A(σ(x1), ..., σ(xn)) y σ(y)

A substitution over network terms in W is de�ned as follows:

σ(⊥)
def
= ⊥

σ(x[P])
def
= σ(x)[σ(P)]

σ($x.N)
def
= $x′.σ(N{x/x′}) where x′ /∈ fn(N), x′ /∈ src(σ)

and ∀V ∈ trg(σ). x′ /∈ n(V)

σ(N1 oN2)
def
= σ(N1) o σ(N2)

We also need to adapt the notion of renaming bound names.

132 CHAPTER 7. SEMANTICS OF DISTRIBUTED KILTERA

RN
N ≡′α N ′

N ≡ N ′
NI N o ⊥ ≡ N

NC N oM ≡M oN

NA N o (M oK) ≡ (N oM) oK

NT $x.⊥ ≡ ⊥

NS $x.$y.N ≡ $y.$x.N

NSE
x /∈ fn(N)

N o$x.M ≡ $x.(N oM)

NST x[
√

] ≡ ⊥

NSS x[P] o x[Q] ≡ x[P ‖ Q]

NDC x[νy.P] ≡ $y.x[P] where y 6= x

NPC
P ≡ P ′

x[P] ≡ x[P ′]

Figure 7.2: Axioms for structural congruence of distributed processes.

De�nition 7.8. (Alpha conversion) Let ≡α⊆ P ′×P ′ be the smallest congruence

over process terms which, in addition to the axioms of de�nition 6.19, satis�es the

following:

x′ /∈ fn(P)
ϑx.P ≡α ϑx′.P{x/x′}

We extend this de�nition to network terms as follows: de�ne ≡′α⊆ W ×W to be the

smallest congruence over network terms which satis�es the following:

(i)
x′ /∈ fn(N)

$x.N ≡′α $x′.N{x/x′}

(ii)
P ≡α P ′

x[P] ≡′α x[P ′]

Structural congruence

As done in κλτ , we begin by de�ning a structural congruence relation on the set W
of network transitions.

De�nition 7.9. (Structural congruence over network terms) The relation

≡⊆ W × W is de�ned to be the smallest congruence over W which satis�es the

axioms shown in Figure 7.2.

Notation 7.10. We use the same symbol ≡ for congruence between networks without

risk of confusion, as it should be clear from the context whether we are relating

process terms or network terms.

7.1. THE Dκλτ -CALCULUS 133

Axioms RN, NI, NC, NA, NT, NS, and NSE, are analogous to those for process term

congruence. In particular, associativity and commutativity of o allows us to drop the

brackets and reorder and regroup processes. Similarly, commutativity of $ allows us

to write $x1, x2, ..., xn.P for $x1.$x2.....$xn.P .

Axiom NST (Network Site Termination) states that a site with no active processes is

considered a stopped site. Axiom NSS (Network Same Site) states that two processes

on a site are nothing but the parallel composition of those processes in the site.

Axiom NDC (Network DChannel) states that event/channel names can be seen as d-

channels, i.e., as channels to communicate across sites. Finally, axiom NPC (Network

Process Congruence) states that congruent processes remain congruent when they

are in the same site.

Congruence over network terms satis�es properties similar to those for process terms:

Proposition 7.11. If x /∈ fn(N) then $x.N ≡ N .

De�nition 7.12. (Canonical normal form for network terms) A network term

N is said to be in canonical normal form if it is of the form

$x1, ..., xn.(y1[P1] o · · · o yk[Pk])

where each Pi is in canonical normal form.

Proposition 7.13. Every network term is structurally congruent to a network term

in canonical normal form.

Distributed process transitions and evolution

We �rst extend process transitions and evolution for the new terms. We do this by

de�ning a transition relation
η−→
k,l

which is labelled not only by actions η, but also by

two site names k and l. The idea is that a transition P
η−→
k,l

P ′ represents a process

P in site k engaging in an action η and resulting in a process P ′ in site l.

De�nition 7.14. (Distributed process transitions and evolution) Given the

TLTS for κλτ process terms (P,A,→,), we de�ne the TLTS for Dκλτ process

terms as the tuple (P ′,A′,→′, ′) where A′ def= A×Ns×Ns, the transition relation

→′⊆ P ′ × A′ × P ′ and the evolution relation ′⊆ P ′ × A′ × P ′ are given by the

inference rules below. We write P
η−→
k,l

P ′ is notation for (P, (η, k, l), P ′) ∈→′, and

P
d
 P ′ for (P, d, P ′) ∈ ′. The transition relation satis�es:

(i) INSITE
P

η−→ P ′

P
η−−→
k,k

P ′
for every P ∈ P

134 CHAPTER 7. SEMANTICS OF DISTRIBUTED KILTERA

(ii) HERE ϑx.P
τ−−→
k,k

P{x/k}

(iii) MOVE A(x1, ..., xn) y l
τ−→
k,l

A(x1, ..., xn)

and evolution satis�es:

(i) TINSITE ⊆ ′

(ii) THERE ϑx.P
d
 ϑx.P

(iii) TMOVE A(x1, ..., xn) y l
0
 A(x1, ..., xn) y l

The INSITE rule simply states that →⊆→′. In other words, a process's standard

transitions are preserved when the process does not move. The rule HERE assigns

the site's name to the variable x, and continues in the same site. The MOVE rule,

states that a process A(~x) y l results in a process A(~x) at site l.

The TINSITE rule simply states that evolution of processes in P remains the same in

the extended calculus. The THERE rule, allows a process ϑx.P to delay inde�nitely.

On the other hand, the TMOVE rule states that a process A(~x) y l is urgent: it has

to be executed at that time instance.

With this de�nition we can now de�ne the behaviour of a collection of processes

distributed over a network.

Notation 7.15. We will write → for →′ and for ′, as it should be clear from the

context whether we are dealing with processes in P or in P ′.

De�nition 7.16. (Network transitions and evolution) The TLTS for Dκλτ

network terms is a tuple (W,A,→,) where A is the set of transition labels de-

scribed below, the relation →⊆ W ×A ×W is the transition relation given by the

inference rules in table 7.3 and ⊆ W×R+
0 ×W is the evolution relation de�ned in

table 7.4. The elements of A are actions of the form τ (silent action), x!v (trigger),

x!∗v (multicast trigger) or x?v (reception), where v is a constant or a name. We let η

range over A. We write N
η−→ N ′ for (N, η,N ′) ∈ → and N

d
 N ′ for (N, d,N ′) ∈ .

Notation 7.17. As with congruence, we use the same symbols→ and for transitions

and evolution between networks without risk of confusion, as it should be clear from

the context whether we are relating process terms or network terms.

The WSITE rule describes how process transitions are embedded in network term

transitions. Note that if k = l then this rule simply states that a process in some

site evolves within that site, but if k 6= l then the process moves from one site to

another.

The rest of the rules mirror those of the basic calculus. In particular note that the

rules for parallel composition and communication are analogous. This is intentional,

7.1. THE Dκλτ -CALCULUS 135

WSITE

P
η−→
k,l

P ′

k[P]
η−→ l[P ′]

WNEW1
N

η−→ N ′ x 6∈ fn(η)

$x.N
η−→ $x.N ′

WNEW2
N

η−→ N ′ x ∈ fn(η)

$x.N
τ−→ $x.N ′

WPARτ
N

τ−→ N ′

N oM τ−→ N ′ oM
WPAR?

N
x?v−−→ N ′ M 6x!∗v−−→

N oM x?v−−→ N ′ oM

WPAR!
N

x!v−−→ N ′

N oM x!v−−→ N ′ oM
WPAR∗

N
x!∗v−−→ N ′ M 6x?v−−→

N oM x!∗v−−→ N ′ oM

WCOMM
N

x!v−−→ N ′ M
x?v−−→M ′

N oM τ−→ N ′ oM ′
WCOMM∗

N
x!∗v−−→ N ′ M

x?v−−→M ′

N oM x!∗v−−→ N ′ oM ′

WCNGR
N

η−→ N ′ N ≡M N ′ ≡M ′

M
η−→M ′

Figure 7.3: Network transitions.

TWSTOP ⊥ d
 ⊥ TINSITE

P
d
 P ′

k[P] d
 k[P ′]

TWNEW
N

d
 N ′

$x.N
d
 $x.N ′

TWPAR
N

d
 N ′ M

d
 M ′

N oM d
 N ′ oM ′

TWCNGR
N

d
 N ′ N ≡M N ′ ≡M ′

M
d
 M ′

Figure 7.4: Network evolution.

136 CHAPTER 7. SEMANTICS OF DISTRIBUTED KILTERA

to make distributed processing transparent, in particular communication between

processes in di�erent sites.

Examples

Moving processes The MOVE rule states that a process instantiation is created

in a target site. It is easier to understand this rule with an example. Consider the

following network process

$y, z.(y[νx.(A(x) y z ‖ P)] o z[Q])

We have a process A which is linked to a local channel x in site y. This process is

then sent to execute in site z. Observe that we can obtain the following derivation:

−
MOVE

A(x) y z
τ−−→
y,z

A(x)

WSITE

y[A(x) y z]
τ−→ z[A(x)]

WPARτ

y[A(x) y z] o y[P] o z[Q]
τ−→ z[A(x)] o y[P] o z[Q]

WNEW1

$x, y, z.(y[A(x) y z] o y[P] o z[Q])
τ−→ $x, y, z.(z[A(x)] o y[P] o z[Q])

This allows us to obtain the following execution:

$y, z.(y[νx.(A(x) y z ‖ P)] o z[Q])
≡ $y, z.($x.y[A(x) y z ‖ P] o z[Q]) by NDC

≡ $x, y, z.(y[A(x) y z ‖ P] o z[Q]) by NSE

≡ $x, y, z.(y[A(x) y z] o y[P] o z[Q]) by NSS
τ−→ $x, y, z.(z[A(x)] o y[P] o z[Q]) by MOVE and WSITE

≡ $x, y, z.(y[P] o z[A(x)] o z[Q]) by NC

≡ $x, y, z.(y[P] o z[A(x) ‖ Q]) by NSS

This example shows how the local channel x �stretches� to become a d-channel that

can be used for communication across sites.

Spawning new sites The move operator combined with the new operator allows

us to create new sites and send processes there. This is because site names and

event names are treated in the same way. To represent this, the axioms of structural

congruence are critical. Consider for example this network term:

k[P ‖ νl, x.A(x) y l]

Here we have initially only one site (k), but its process creates a local site name l (in

the same way it creates a local event name x.) Using scope extrusion we can bring

7.1. THE Dκλτ -CALCULUS 137

these names to the outermost position:

k[νl, x.(P ‖ A(x) y l)]

Then, using the NDC axiom from structural congruence over network terms, we can

make l and x into network names (site names or d-channels:)

$l, x.k[P ‖ A(x) y l]

which of course is equivalent to

$l, x.(k[P] ‖ k[A(x) y l])

Now, as in the previous example, using MOVE and WSITE we obtain

$l, x.(k[P] ‖ l[A(x)])

Note that if P ≡
√

then we have the following transition:

k[νl, x.A(x) y l] τ−→ $l, x.(l[A(x)])

≡ $l.l[νx.A(x)]

This represents the process migrating to another site.

Communication across sites Having seen how sites can be spawned and processes

can be sent there, we now look at how inter-site communication takes place. We

have already seen that in the basic calculus, communication is achieved as in the

following:

νx.(x↑2 ‖ x?y → Q) τ−→ νx.Q{y/2}

This is obtained from the transitions:

x↑2 x!2−−→
√

and

x?y → Q
x?2−−→ Q{y/2}

and then using the COMM rule.

Using the INSITE rule we also have, for any sites k and l:

x↑2 x!2−−→
k,k

√

138 CHAPTER 7. SEMANTICS OF DISTRIBUTED KILTERA

and

x?y → Q
x?2−−→
l,l

Q{y/2}

respectively. From this, using the WSITE rule we obtain:

k[x↑2] x!2−−→ k[
√

] ≡ ⊥

and

l[x?y → Q] x?2−−→ l[Q{y/2}]

So we can now apply the WCOMM rule and obtain:

k[x↑2] o l[x?y → Q] τ−→ ⊥ o l[Q{y/2}] ≡ l[Q{y/2}]

This illustrates that communication across sites is the same as within a site.

Site name transmission Since site names are �rst-class values, we can transmit

them in the same way as we do with any other value. This allows processes to

become aware of sites they did not know. Consider the following de�nitions:

P (y)
def
= ...

Q(y)
def
= ...

P ′(x, y)
def
= νb.(x↑b ‖ P (y) y b)

Q′(x, y)
def
= x?s→ Q(y) y s

Here, P ′ is a process which creates a name b and transmits this name through its x

port. Simultaneously, it treats b as a site name, and sends an instance of P to this

site. Since b is created by P ′, initially only P ′ knows this site. On the other hand,

process Q′ does not know initially about b. Instead, it waits for a message through

its x port, and when it receives it, it treats it as a site name. Then it can use it to

send an instance of Q to that site. To see how these processes behave, put them in

parallel in some site a:

a[νx, y.(P ′(x, y) ‖ Q′(x, y))]

First we can expand the body of both de�nitions and obtain:

a[νx, y.(νb.(x↑b ‖ P (y) y b) ‖ x?s→ Q(y) y s)]

Now, we can use scope extrusion to bring the νb in P ′ to the outermost position:

a[νx, y, b.(x↑b ‖ P (y) y b ‖ x?s→ Q(y) y s)]

7.2. MAPPING KILTERA ONTO THE Dκλτ -CALCULUS 139

kiltera syntax Dκλτ syntax

sites k in

P

νk.P

where x in

P

ϑx.P

move A[x1,...,xn] to k A(x1, ..., xn) y k

Table 7.1: Mapping kiltera into Dκλτ terms.

Then, P ′ and Q′ can interact via x:

a[νx, y, b.(P (y) y b ‖ Q(y) y b)]

which can be written as

$x, y, b.(a[P (y) y b] o a[Q(y) y b])

and each sub-process can then move to b:

$x, y, b.(b[P (y)] o b[Q(y)])

which is the same as

$b.b[νx, y.(P (y) ‖ Q(y))]

7.2 Mapping kiltera onto the Dκλτ-calculus

In this section we extend the mapping of section 6.3 to account for the constructs

related to distributed processes. The additional elements in this mapping are shown

in table 7.1.

A full kiltera speci�cation P is mapped into a network term k[P] where k is a fresh

name.

7.3 Embedding the Dκλτ-calculus into the κλτ-calculus

An interesting aspect of these languages is that it is possible to emulate the extended

language in the basic language. This highlights the expressive power of the core κλτ -

calculus. To do this we de�ne the following maps:

• transdef , which translates process de�nitions,

• runin : P ′ × Ns → P, which translates distributed processes (terms in the

extended language,) into basic process terms. runin(P, l) represents running

the process P at site l.

140 CHAPTER 7. SEMANTICS OF DISTRIBUTED KILTERA

• transnet : W → P, which translates network terms into basic process terms,

and

The �rst two depend on the third. The general idea is that for any name which can

be used as a site, we create a process which will act as a �site handler.� The role of

the site handler is simply to accept new processes and give them a go-ahead signal.

Translating de�nitions

We begin by translating de�nitions:

transdef(A(~x)
def
= P)

def
= (Â(~x, l)

def
= runin(P, l))

For each de�nition named A, we create a new de�nition Â with an extra parameter,

representing the site where the instance its to be executed. The body of the new

de�nition uses the runin translation, which executes the process in the site given by

the additional parameter.

Translating distributed process terms

Before de�ning runin, we need the following auxiliary de�nition:

Site(ks)
def
= ks?g → g↑‖ Site(ks)

This process represents a site-manager. It uses the name ks as a link to the site.

This will be used by processes to ask for permission to run there. When the site-

manager receives such request, it comes with an event g, provided by the requesting

process. This represents the go-ahead event, and the site-manager simply triggers it

and continues to wait for more requests.

The translation of terms in the extended language to terms in the basic language is

de�ned in Figure 7.5. This function is homomorphic for all operators, except νx.P ,

A(~x), ϑx.P and A(~x) y k.

For each name introduced by νx, we create an additional name xs which is used to

ask the site x for permission to run there. If x is not used as a site name, then xs

will be ignored. This declaration also introduces a site-manager process Site(xs).

A process instantiation A(~x) is translated into an instantiation of the process Â(~x, l)
for the de�nitions introduced by transdef .

Translating ϑx.P simply entails replacing every free occurrence of x by the site where

the process is running.

Finally, the translation of A(~x) y k creates a new event g which is used to ask the

site k for permission to run there. This is done by sending a message through the

7.3. EMBEDDING THE Dκλτ -CALCULUS INTO THE κλτ -CALCULUS 141

runin(
√
, l)

def
=
√

runin(T, l)
def
= T

runin(∆E → P, l)
def
= ∆E → runin(P, l)

runin(νx.P, l)
def
= νx, xs.(Site(xs) ‖ runin(P, l))

runin(P1 ‖ P2, l)
def
= runin(P1, l) ‖ runin(P2, l)

runin(P1TP2, l)
def
= runin(P1, l)Trunin(P2, l)

runin(Σi∈IGi → Pi, l)
def
= Σi∈IGi → runin(Pi, l)

runin(A(~x), l)
def
= Â(~x, l)

runin(ϑx.P, l)
def
= runin(P{x/l}, l)

runin(A(~x) y k, l)
def
= νg.(ks ↑g ‖ g?→ runin(A(~x), k)

Figure 7.5: Mapping Dκλτ process terms to κλτ process terms.

transnet(⊥)
def
=
√

transnet(k[P])
def
= runin(P, k)

transnet($x.N)
def
= νx, xs.(Site(xs) ‖ transnet(N))

transnet(N1 oN2)
def
= transnet(N1) ‖ transnet(N2)

Figure 7.6: Mapping Dκλτ network terms to κλτ process terms.

ks channel to k's site-manager, and then waiting for the go-ahead. Once received, it

proceeds according to the translation of A(~x) ran in k.

Translating network terms

The translation of network terms into process terms is shown in Figure 7.6.

In this de�nition it is worth noting that translating $x.N mirrors the translation

of νx.P . This highlights the equivalent nature of names in distributed and non-

distributed processes.

An example

To understand this translation it is useful to look at an example at work. Consider

the following de�nition in the extended language:

A(x)
def
= ϑy.if x = y then P else Q

142 CHAPTER 7. SEMANTICS OF DISTRIBUTED KILTERA

Its translation is

Â(x, l)
def
= runin(ϑy.if x = y then P else Q, l)

which we simplify to

Â(x, l)
def
= if x = l then runin(P{y/l}, l) else runin(Q{y/l}, l)

Note that with this de�nition we have the following transition:

Â(l, l) τ−→ runin(P{y/l}, l)

Now consider the following network term:

B
def
= $k, l.(k[A(l) y l] o l[R])

Then, its translation transnet(B) is

νk, ks, l, ls.(Site(ks) ‖ Site(ls) ‖ runin(A(l) y l, k) ‖ runin(R, l))

We can expand this to:

νk, ks, l, ls.(Site(ks) ‖ Site(ls) ‖ νg.(ls ↑g ‖ g?→ runin(A(l), l) ‖ runin(R, l))

and since Site(ls) = ls?g → g↑‖ Site(ls), the term can evolve into

νk, ks, l, ls.(Site(ks) ‖ νg.(g↑‖ Site(ls) ‖ g?→ runin(A(l), l)) ‖ runin(R, l))

so the site manager for ls gives the go-ahead, and we obtain

νk, ks, l, ls.(Site(ks) ‖ Site(ls) ‖ runin(A(l), l) ‖ runin(R, l))

which we can expand to

νk, ks, l, ls.(Site(ks) ‖ Site(ls) ‖ Â(l, l) ‖ runin(R, l))

and this makes a transition to

νk, ks, l, ls.(Site(ks) ‖ Site(ls) ‖ runin(P{y/l}, l) ‖ runin(R, l))

8
Properties of kiltera

We now look at some fundamental properties that can be derived from the opera-

tional semantics of kiltera. These provide an insight into the structure of the TLTS

de�ned by the semantics, and some con�rm the basic intuitions behind the timed,

computational model, while others give us tools to build correct systems. More specif-

ically we are interested in properties related to the timing characteristics of processes.

Proofs for these properties are found in appendix E.

The �rst property states that a process can always �evolve� onto itself when no time

passes:

Theorem 8.1. For any P ∈ P, P 0
 P .

The same holds for network processes.

Theorem 8.2. For any N ∈ W, N
0
 N .

8.1 Time determinacy and time continuity

Time determinacy

If a process evolves for a given amount of time, the resulting state of the process

should be uniquely determined by this amount of time. This property is known as

time determinacy , and it holds for κλτ processes:

Theorem 8.3. For any P, P ′, P ′′ ∈ P, d ∈ R+
0 , if P

d
 P ′ and P

d
 P ′′, then

P ′ ≡ P ′′.

Time determinacy also holds for the Dκλτ calculus:

Theorem 8.4. For any N,N ′, N ′′ ∈ W, d ∈ R+
0 , if N

d
 N ′ and N

d
 N ′′, then

N ′ ≡ N ′′.

Satisfying time determinacy is a property that makes kiltera suitable for simulation,

where predictability and repeatability of experiments is often required.

144 CHAPTER 8. PROPERTIES OF KILTERA

Time continuity

The following property con�rms the continuous nature of time as being continuous.

It comprises two dual properties: time additivity and time interpolation. By time

additivity we mean that when a system evolves an amount of time d and then evolves

an additional amount of time d′, then the resulting state is the same as evolving d+d′

time units. Time interpolation, is the converse: if a system evolves over a period of

time, then the system is in some state at all intermediate times in such period.

Theorem 8.5. For any P, P ′ ∈ P, d, d′ ∈ R+
0 , P

d+d′
 P ′ if and only if there is a P ′′

such that P
d
 P ′′ and P ′′

d′
 P ′.

This holds for network terms as well.

Theorem 8.6. For any N,N ′ ∈ N , d, d′ ∈ R+
0 , N

d+d′
 N ′ if and only if there is a

N ′′ such that N
d
 N ′′ and N ′′

d′
 N ′.

8.2 Time-bisimulation

We now consider the question of when do processes have equivalent behaviour.

In section 6.1.1 we saw that any timed-labelled transition system can be seen as a

normal labelled transition system where we distinguish between two kinds of labels,

those which represent actions and those which represent the passage of time. But we

have a notion of equivalence between states of an LTS: bisimilarity (see de�nition

B.13.)

Is bisimilarity a good choice for equivalence between processes? As described in

appendix C, a good equivalence relation should be a congruence, i.e. it should

be preserved by the language's operators, in order to guarantee compositionality.

Unfortunately, basic bisimilarity is not preserved by listeners. Consider the following

de�nitions:

P
def
= if x = y then a↑ else b↑

Q
def
= ∆0→ b↑

These two processes are bisimilar, since x is not the same name as y, P , in isolation

has the following execution: P
τ−→ b ↑ b!−→

√
. On the other hand, Q matches this

execution with Q
τ−→ b↑ b!−→

√
. Nevertheless, when we put P in context, its behaviour

might be di�erent. Consider the context

C[·] def= (u↑x ‖ u?y → ·)

Then, we have that

C[P] τ−→ a↑ a!−→
√

8.2. TIME-BISIMULATION 145

but

C[Q] τ−→ b↑ 6a!−→

hence C[P] is not bisimilar to C[Q].

In the context of the π-calculus, this can be solved by a di�erent notion of bisimu-

lation which requires transitions to be matched for all possible substitutions of free

names. This notion is called open bisimulation [45].

Although open bisimilarity is a congruence for the π-calculus, it is a stringent equiv-

alence in the context of timed systems. Consider for instance the following terms:

A
def
= (a?→ P)

3
. Q

B
def
= (a?→ P)

5
. Q

These two systems are not bisimilar. To see this, recall the de�nition of timeout. We

can expand these to

A
def
= νs.((a?→ P + s?→ Q) ‖ ∆3→ s↑)

B
def
= νs.((a?→ P + s?→ Q) ‖ ∆5→ s↑)

Then we see that A has the following execution:

A
3
 νs.((a?→ P + s?→ Q) ‖ ∆0→ s↑)
τ−→ νs.((a?→ P + s?→ Q) ‖ s↑)
τ−→ Q

but this cannot be matched by B:

B
3
 νs.((a?→ P + s?→ Q) ‖ ∆2→ s↑) 6τ−→

Hence, A and B are not bisimilar (open or otherwise.) Nevertheless, before time +3,

both A and B have exactly the same transitions (a?) and evolutions. We would like

to consider such processes as equivalent up to time +3.

We capture such relation with variant of bisimulation which we call open time-

bisimulation1, de�ned as follows.

De�nition 8.7. (Open time-bisimulation) Let S be a set of terms in some lan-

guage for which there is a notion of substitution de�ned, where substitutions are

functions in S → S. Let (S,L,→,) a TLTS over S. A relation R ⊆ S × R+
0 × S,

is called an open time-bisimulation if for all t ∈ R+
0 , if (P, t,Q) ∈ R then:

1We propose open time-bisimulation, combining Shneider's time-bisimulation from [46] with
Sangiorgi's open bisimulation [45].

146 CHAPTER 8. PROPERTIES OF KILTERA

(i) For any substitution σ : S → S:
∀α ∈ L.∀P ′ ∈ P. Pσ α−→ P ′ ⇒ ∃Q′ ∈ P. Qσ α−→ Q′ ∧ (P ′, t, Q′) ∈ R

(ii) For any substitution σ : S → S:
∀α ∈ L.∀Q′ ∈ P. Qσ α−→ Q′ ⇒ ∃P ′ ∈ P. Pσ α−→ P ′ ∧ (P ′, t, Q′) ∈ R

(iii) For any substitution σ : S → S and any d ∈ R+
0 such that d < t:

∀P ′ ∈ P. Pσ d
 P ′ ⇒ ∃Q′ ∈ P. Qσ d

 Q′ ∧ (P ′, t− d,Q′) ∈ R

(iv) For any substitution σ : S → S and any d ∈ R+
0 such that d < t:

∀Q′ ∈ P. Qσ d
 Q′ ⇒ ∃P ′ ∈ P. Pσ d

 P ′ ∧ (P ′, t− d,Q′) ∈ R

Let

-∂ def= {(P, u,Q) ∈ S × R+
0 × S |

∃R.R is an open time-bisimulation& (P, u,Q) ∈ R}

We write P -∂
u Q for (P, u,Q) ∈-∂ and say that P and Q are open time-bisimilar

up to u. If P -∂
u Q, we call u the time-limit of the bisimulation . For any given

t ∈ R+
0 , -∂

t
def
= {(P,Q) ∈ S × S | (P, t,Q) ∈-∂}.

This de�nition is applicable to any TLTS for which states are terms in a language

with an appropriate notion of substitution. In our context we will assume that S is

P, the set of κλτ process terms, and the TLTS is that given in de�nition 6.26.

First notice that this de�nition quanti�es over substitutions σ. This is to ensure

listener processes are identi�ed whenever possible. Also notice, that the �rst two

items are the same as for standard (untimed) open bisimulation, if we ignore t. It is

the second two items which make a di�erence in the de�nition.

Now, let us revisit the processes A
def
= (a? → P)

3
. Q and B

def
= (a? → P)

5
. Q. We

have that A -∂
3 B, as the two processes have the same transitions and evolution up

to any time strictly less than 3. Figure 8.1 illustrates this: any state at time d < 3,
both A and B have an a? transition which leads them to P , and any process P is

bisimilar with itself up to any time. Note that bisimilarity up to t does not include

bisimilarity at time t: After exactly 3 time units A has a τ transition, but B does

not.

Open time-bisimulation satis�es the following properties for any TLTS.

Proposition 8.8. For any TLTS M = (S,L,→,),

(i) For any t ∈ R+
0 , -∂

t is an equivalence relation.

(ii) -∂ is an open time-bisimulation.

8.2. TIME-BISIMULATION 147

A

d
�� �O
�O
�O

R3 B

d
�� �O
�O
�O

(a?→ P)
3−d
. Q

a?

��

R3−d (a?→ P)
5−d
. Q

a?

��
P R3−d P

Figure 8.1: Time bisimulation.

(iii) -∂ is the largest open time-bisimulation.

As with standard bisimilarity, we can prove that two states (terms) P and Q are

bisimilar up to t, by �nding some open time-bisimulation R such that (P, t,Q) ∈ R.
But an alternative approach is to show that the pair (P,Q) satis�es the transfer

properties for -∂
t , which is de�ned as follows:

De�nition 8.9. Let -∂T⊆ S×R+
0 ×S be a relation de�ned as follows: (P, t,Q) ∈-∂T

if and only if

(i) For any substitution σ : S → S:
∀α ∈ L.∀P ′ ∈ P. Pσ α−→ P ′ ⇒ ∃Q′ ∈ P. Qσ α−→ Q′ ∧ P ′ -∂

t Q
′

(ii) For any substitution σ : S → S:
∀α ∈ L.∀Q′ ∈ P. Qσ α−→ Q′ ⇒ ∃P ′ ∈ P. Pσ α−→ P ′ ∧ P ′ -∂

t Q
′

(iii) For any substitution σ : S → S and any d ∈ R+
0 such that d < t:

∀P ′ ∈ P. Pσ d
 P ′ ⇒ ∃Q′ ∈ P. Qσ d

 Q′ ∧ P ′ -∂
t−d Q

′

(iv) For any substitution σ : S → S and any d ∈ R+
0 such that d < t:

∀Q′ ∈ P. Qσ d
 Q′ ⇒ ∃P ′ ∈ P. Pσ d

 P ′ ∧ P ′ -∂
t−d Q

′

We write P -∂T
t Q for (P, t,Q) ∈-∂T.

Proposition 8.10. -∂T = -∂.

This means that in order to prove that P -∂
t Q, one can prove P -∂T

t Q, i.e. that

the four conditions of de�nition 8.9 are satis�ed.

Now we look at some properties that are satis�ed by timed-labelled transition systems

in general (not just that for κλτ .) First, if two processes are bisimilar up to a given

time t, then they are bisimilar up to any time below that.

Proposition 8.11. For any TLTS M = (S,L,→,), and any t ∈ R+
0 ,

if P -∂
t Q then for any u 6 t, P -∂

u Q

148 CHAPTER 8. PROPERTIES OF KILTERA

An immediate consequence of this is the following.

Proposition 8.12. For any TLTS M = (S,L,→,),

if P1 -∂
t P2 and P2 -∂

u P3 then P1 -∂
min{t,u} P3

The next property states that open time-bisimilarity is closed under arbitrary sub-

stitutions.

Lemma 8.13. For any substitution σ, and any t ∈ R+
0 ,

if P -∂
t Q then Pσ -∂

t Qσ

The remaining properties concern κλτ process speci�cally.

Time compositionality

A good notion of behavioural equivalence is one which satis�es the property that

whenever two processes are identi�ed, no observer or context can distinguish between

them. Such a property is satis�ed by an equivalence relation which is preserved by all

combinators or operators of the language, in other words, by a congruence relation.

This relation turns out to be closely related to the notion of compositionality (see

appendix C.) In this section, we show that open time-bisimilarity provides us with

a good notion of equivalence, but rather than simply be preserved by the language's

operators, it is preserved according to its time-limit. Collectively, we refer to these

properties as time compositionality.

Open time-bisimulation is preserved by delay, modulo the amount of delay, this is,

a delay increases the amount of time up to which two processes are bisimilar.

Theorem 8.14. For any P1, P2 ∈ P, and any t ∈ R+
0 ,

if P1 -∂
t P2 then ∆E → P1 -∂

t+e ∆E → P2

where e = eval(E).

Open time-bisimilarity is also preserved by parallel composition:

Theorem 8.15. Let P1, P2 ∈ P. For any Q ∈ P,

if P1 -∂
t P2 then P1 ‖ Q -∂

t P2 ‖ Q

This has an immediate consequence: bisimilarity of parallel processes is up to the

smallest bisimilarity time limit.

8.3. LEGITIMACY 149

Corollary 8.16. Let P1, P
′
1, P2, P

′
2 ∈ P.

if P1 -∂
t P

′
1 and P2 -∂

u P
′
2 then P1 ‖ P2 -∂

min{t,u} P
′
1 ‖ P ′2

Open time-bisimilarity is preserved by listener processes.

Theorem 8.17. Let P1 = {P1i ∈ P}i∈I and P2 = {P2i ∈ P}i∈I be two families of

process terms which di�er in at most one term, i.e. such that P1i = P2i for all i 6= k

for some k ∈ I,

if P1k -∂
t P2k then Σi∈IGi → P1i -∂

t Σi∈IGi → P2i

This has the following immediate consequence:

Corollary 8.18. Let P1 = {P1i ∈ P}i∈I and P2 = {P2i ∈ P}i∈I be two families of

process terms,

if for each i ∈ I, P1i -∂
ti P2i then Σi∈IGi → P1i -∂

min{ti|i∈I} Σi∈IGi → P2i

Hiding also preserves open time-bisimilarity:

Theorem 8.19. Let P1, P2 ∈ P. If P1 -∂
t P2 then νx.P1 -∂

t νx.P2.

8.3 Legitimacy

Consider the following process:

L(x)
def
= νu.((u?→ L(x)) ‖ u↑)

This process triggers a local event u which enables it to recursively call itself. In other

words, it performs an internal action (the interaction on u) and loops inde�nitely.

This means that it has an in�nite execution of internal actions:

L(x) τ−→ L(x) τ−→ L(x) τ−→ · · ·

There is a problem with such system: time never advances. Even if we put this system

in some context, it remains �stuck.� Consider for instance:

y↑‖ ∆3→ L(x)

Such system would reach time +3.0 and then diverge. This kind of execution is called

instantaneous divergence, since the system diverges at a single instance in time.

150 CHAPTER 8. PROPERTIES OF KILTERA

There are systems that, even though they are not instantaneous divergent, do exhibit

undesirable behaviour. Consider the following:

Z(x)
def
= νu.((u?→ Z ′(x)) ‖ u↑)

Z ′(x)
def
= ∆x→ Z(x/2)

This also produces an in�nite execution:

Z(1) τ−→ Z ′(1) 1
 Z(1/2) τ−→ Z ′(1/2)

1/2
 Z(1/4) τ−→ Z ′(1/4)

1/4
 · · ·

While in this execution time advances, it never progresses beyond 2. This sort of

execution is known as Zeno behaviour .

Instantaneous divergence and Zeno behaviour have something in common: a process

which is able to perform an in�nite number of actions in a �nite amount of time.

Those behaviours are not realistic, and we should avoid them. This gives rise to a

fundamental question: how can we know if a system will behave in a way that time

always progresses? In other words, we want to know what are the su�cient conditions

for a system to have properly de�ned timed behaviour.

A system which can only perform a �nite amount of actions in a �nite amount of

time is called legitimate. We now formalize this notion, and establish a su�cient

condition for legitimacy.

Form and duration of executions

As described by de�nition B.3, an execution of an LTS has the form

s0
a0−→ s1

a1−→ s2
a2−→ · · ·

where each si is a state and each ai is an action. In de�nition 6.2 we saw that any

TLTS can be seen as an LTS where labels are of the form (act, a) or (pass, d) to

represent actions and passage of time respectively. This means that an execution on

a TLTS is the interleaving of transitions
ηi−→ with evolutions or delays

dj
 . But by

theorem 8.5 we know that any two consecutive evolutions P
d
 P ′

d′
 P ′′ imply an

evolution P
d+d′
 P ′′. On the other hand theorem 8.1 says that P

0
 P for any P ,

and therefore, any pair of consecutive transitions P
η−→ P ′

η′−→ P ′′ is equivalent to

P
η−→ P ′

0
 P ′

η′−→ P ′′. These two aspects imply that every in�nite κλτ execution can

be written in the form

P0
d0 P ′0

η0−→ P1
d1 P ′1

η1−→ P2
d2 P ′2

η2−→ · · ·

8.3. LEGITIMACY 151

If an execution is �nite, then it can be written in the form

P0
d0 P ′0

η0−→ P1
d1 P ′1

η1−→ P2
d2 P ′2

η2−→ · · · dn−1
 P ′n−1

ηn−1−−−→ Pn

In any case, we can see each execution as a sequence of evolutions followed by tran-

sitions. This suggests an alternative notation for executions:

De�nition 8.20. (Coalesced LTS of a TLTS) Given a TLTS M = (S,L,→,),
the coalesced LTS of M , is the LTS M̂ = (S,L, →̂), where the relation →̂ ⊆
S × (R+

0 × L)× S is de�ned as follows:

(P, (d, η), Q) ∈ →̂ i� ∃P ′ ∈ P. P d
 P ′

η−→ Q

We write P
(d,η)−−−→ Q for (P, (d, η), Q) ∈ →̂.

Given an execution

γ = P0
d0 P ′0

η0−→ P1
d1 P ′1

η1−→ P2
d2 P ′2

η2−→ · · ·

of M , its coalesced execution in M̂ is

γ̂
def
= P0

(d0,η0)−−−−→ P1
(d1,η1)−−−−→ P2

(d2,η2)−−−−→ · · ·

With this de�nition, we can write executions in the simpli�ed (coalesced) form.

De�nition 8.21. (Duration, length and action trace of an execution) The

duration of a �nite execution

γ̂ = P0
(d0,η0)−−−−→ P1

(d1,η1)−−−−→ P2
(d2,η2)−−−−→ · · · (dn−1,ηn−1)−−−−−−−→ Pn

is de�ned as duration(γ̂)
def
= Σn

i=0di, and its length is len(γ̂)
def
= n. Its action trace

is the sequence acttrace(γ̂) = 〈η0, η1, η2, .., ηn−1〉.

The duration of an in�nite execution

γ̂ = P0
(d0,η0)−−−−→ P1

(d1,η1)−−−−→ P2
(d2,η2)−−−−→ · · ·

is de�ned as duration(γ)
def
= Σ∞i=0di, and its length is len(γ̂)

def
= ∞. Its action

trace is the in�nite sequence acttrace(γ̂) = 〈η0, η1, η2, ..〉.

Remark 8.22. Note that acttrace(γ̂) consists of action labels η ∈ L, whereas tr(γ̂)
consists of pairs (d, η) ∈ R+

0 ×L, and tr(γ) consists of elements in L&
def
= {(act, η) | η ∈

L}] {(pass, d) | d ∈ R+
0 }.

Proposition 8.23. If len(γ̂) <∞ then duration(γ̂) <∞.

152 CHAPTER 8. PROPERTIES OF KILTERA

The converse is not true, as the example process Z(1) before shows.

We can now de�ne legitimacy formally:

De�nition 8.24. (Legitimacy) A legitimate execution is an execution γ which

is �nite, or is in�nite and duration(γ̂) = ∞. A legitimate process is a process P

such that all its executions are legitimate.

Proposition 8.25. If γ̂ is legitimate and duration(γ̂) <∞ then len(γ̂) <∞.

Every �nite execution is legitimate, so illegitimacy occurs only in in�nite executions.

In κλτ , the only way to obtain an in�nite execution is by recursively invoking some

process de�nition(s). This means that we have to look at the time delays between

recursive invocations.

Minimum delay for invocation and well-timed de�nitions

Suppose we have some process de�nition A(~x)
def
= Q, and we have a process P which

may invoke this de�nition. Since this invocation may occur anywhere inside P , some

amount of time may pass from the beginning of P until A is actually invoked. This

amount of time may depend on P itself or its environment, if the invocation is inside

a listener. We de�ne a function mdA which gives the minimum delay before any

invocation of A in a process.

De�nition 8.26. (Minimum delay for invocation) Let A(~x)
def
= Q be some

process de�nition. De�ne mdA : P → R+
0 ∪ {∞} as follows:

mdA(
√

)
def
= ∞

mdA(T)
def
= ∞

mdA(∆E → P)
def
= eval(E) +mdA(P)

mdA(νx.P)
def
= mdA(P)

mdA(P1 ‖ P2)
def
= min{mdA(P1),mdA(P2)}

mdA(P1TP2)
def
= min{mdA(P1),mdA(P2)}

mdA(Σi∈IGi → Pi)
def
= min{mdA(Pi) | i ∈ I}

mdA(A(~y))
def
= 0

mdA(B(~y))
def
= mdA(Q′{~x/~y}) where B 6= A and B(~x)

def
= Q′

We say that P is t-guarded for A, if t 6 mdA(P).

Using this notion we can de�ne what it means for a process de�nition to have proper

time behaviour.

De�nition 8.27. (Well-timed de�nition) A de�nition A(~x)
def
= P with ~x =

x1, ..., xn, is said to be well-timed if there is a b ∈ R+
0 such that b > 0 and for all

~V = V1, ..., Vn, where each Vi ∈ V, mdA(P{~x/~V }) > b.

8.3. LEGITIMACY 153

This de�nition states that there must be a strictly positive lower bound on the

minimal delay before any possible instantiation of A in its body. Notice that this

includes any indirect invocation of A, by de�nition of minimal delay.

We will need the following, which states that transitions and evolutions are preserved

by substitution.

Proposition 8.28. For any P, P ′ ∈ P, d ∈ R+
0 , η ∈ A, and any substitution σ,

(i) if P
η−→ P ′ then Pσ

σ(η)−−→ P ′σ

(ii) if P
d
 P ′ then Pσ

d
 P ′σ

This proposition allows us to conclude that legitimacy is preserved by substitutions.

Lemma 8.29. Let P ∈ P, and σ any substitution. If P is legitimate, so is Pσ.

This leads us to the main result:

Theorem 8.30. (Su�cient conditions for legitimacy) Let D be a �nite set

of process de�nitions and P a process which invokes only de�nitions in D. If all

de�nitions in D are well-timed then P is legitimate.

Examples

Let us revisit the examples at the beginning of this section. First, we saw that the

de�nition

L(x)
def
= νu.((u?→ L(x)) ‖ u↑)

leads to a divergent execution:

γ̂ = L(y)
(0,τ)−−−→ L(y)

(0,τ)−−−→ L(y)
(0,τ)−−−→ · · ·

which is illegitimate, since len(γ̂) = ∞ but duration(γ̂) = 0. In this case, we have

that the problem is that the de�nition of L is not well-timed: the minimum delay

before any recursive invocation of L is mdL(P{x/y}) = 0 for any y, where P =
νu.((u? → L(x)) ‖ u↑), and therefore there is no b > 0 such that mdL(P{x/y}) > b

for any y.

Now consider the following variant of Z

Z(n)
def
= νu.((u?→ Z ′(n)) ‖ u↑)

Z ′(n)
def
= ∆2−n → Z(n+ 1)

This also produces an in�nite execution γ̂1:

154 CHAPTER 8. PROPERTIES OF KILTERA

Z(1)
(0,τ)−−−→ Z ′(1)

(1/2,τ)−−−−→ Z(2)
(0,τ)−−−→ Z ′(2)

(1/4,τ)−−−−→ · · ·

Again, we have that len(γ̂1) = ∞ but duration(γ̂1) = Σ∞i=0
1/2i = 2, so it is il-

legitimate. In this case, we can check that mdZ(P{n/y}) = 2−y for any y where

P = νu.((u? → Z ′(n)) ‖ u ↑). But there is no b > 0 such that b 6 2−y for all y.

Hence, the de�nition of Z is not well-timed.

On the other hand, consider the following variation:

B(n)
def
= νu.((u?→ B′(n)) ‖ u↑)

B′(n)
def
= ∆(1 + 2−n)→ B(n+ 1)

In this case, we have the execution γ̂2

B(1)
(0,τ)−−−→ B′(1)

(1+1/2,τ)−−−−−→ B(2)
(0,τ)−−−→ B′(2)

(1+1/4,τ)−−−−−→ · · ·

So duration(γ̂2) = Σ∞i=0(1+1/2i) =∞, and therefore it is a legitimate execution. This

is because mdZ(P{n/y}) = 1 + 2−y for any y where P = νu.((u? → B′(n)) ‖ u ↑).
But there is a b > 0 such that b 6 1 + 2−y for all y, namely b = 1, and so B has a

well-timed de�nition.

Legitimacy and time-bisimulation

We introduced the notion of time-bisimilarity as a means to compare the behaviour

of processes up to a given time. How is time-bisimilarity related to legitimacy? Nat-

urally, if two processes are equivalent, their evolution over time must be equivalent,

and therefore, they should both be legitimate or both illegitimate. We prove this

statement formally. First, we need the following lemma.

Lemma 8.31. Let P,Q ∈ P. If P -∂
t Q and γP is an execution beginning with P

such that duration(γ̂P) < t, then there is an execution γQ, starting at Q, such that

acttrace(γ̂P) = acttrace(γ̂Q), len(γ̂P) = len(γ̂Q) and duration(γ̂P) = duration(γ̂Q).

From this, the result follows: open-time-bisimilarity preserves legitimacy (and ille-

gitimacy.)

Theorem 8.32. Let P,Q ∈ P. If P -∂
t Q for all t ∈ R+

0 then P is legitimate if and

only if Q is legitimate.

9
Simulating kiltera models

In this chapter we address the question of how to simulate kiltera models. The opera-

tional semantics of kiltera presented in chapters 6 and 7, as any operational semantics,

is �close� to an actual implementation. In a sense, it can be considered �executable� if

we interpret the rules as a logic program. In fact, any term deduction can be seen as

a kind of logic program. Alternatively, from a given TSS, one can de�ne an algorithm

that for each state produces the set of possible next states, and based on this we can

obtain an implementation of the language.

These approaches to implementation of an operational semantics are, nevertheless,

impractical and ine�cient. The �rst approach amounts to �nding a derivation tree

for each step to be taken, which implies backtracking whenever one derivation does

not work. The second may avoid backtracking, but it still generates all possible

states. Furthermore, both approaches sidestep the question of how time is to be

treated, which is essential in a discrete-event language. While these approaches may

be useful or even necessary for automatic theorem proving and model checking, they

are unrealistic for the purpose of actual simulation and execution, especially when

the systems modelled have a large state space.

Since our goal is to develop a language which can be used for modelling, simulating

and possibly executing in real-time complex real-world systems, rather than model

checking, we focus on a more realistic implementation. The model checking approach

and the simulation/execution approach have a fundamental di�erence: in the former,

one is interested in generating all possible executions in order to check a property.

In the latter, generating one execution is su�cient. The problem becomes, how to

obtain a single execution in an e�cient and deterministic manner.

Any kiltera implementation has to deal with two main aspects: time and distribution.

With respect to time, there are many questions to be addressed: is time to be treated

as real or virtual? How are processes to satisfy the assumptions of the time model,

such as consistency with respect to the global clock? Any execution produced must

be such that its trace, i.e., its time-line of events, respects causality relationships and

re�ects the timing of events as speci�ed in the model being executed. This can be

156 CHAPTER 9. SIMULATING KILTERA MODELS

Figure 9.1: General simulator structure.

achieved in di�erent ways, but one of the simplest approaches is event-scheduling.

This approach has many advantages. It is e�cient, it can be easily integrated with

other event-scheduling simulators, it allows us to simulate with either virtual or real

time, etc. This is the approach that we follow.

With respect to distribution, the �rst question to answer is whether distribution is to

be emulated or real. For the purpose of simulation, simple emulation, along the lines

of the embedding described in section 7.3, is enough. But such an approach is not

scalable to models with very large state spaces. When modeling systems with very

large state spaces it is better to partition the model in a way that the components

are as independent as possible so that they can be simulated in a truly distributed

fashion. Furthermore, if the language is to be used for actual execution and not just

simulation, then distribution must be real rather than emulated. For these reasons

we build a truly distributed implementation of kiltera.

In this chapter we present an implementation of kiltera which supports both sequen-

tial simulation and distributed simulation.

Before describing the simulation process itself, we begin by presenting the general

structure of our simulator, and those aspects which are shared by both single-machine

simulation and distributed simulation.

9.1 Simulator organization

Any typical simulator takes as input a model as well as a set of initial conditions,

parameters and an input segment , this is, an input signal or a sequence of inputs,

and produces an output trace. Our simulator takes as input a kiltera model, and

parameters in the form of an external initialization script. The general structure of

our simulator is depicted in Figure 9.1.

This �gure depicts the general �ow of data: the model's source text is passed to a

parser which generates the corresponding Abstract Syntax Tree, or AST for short,

which is taken by the simulator. This, in turn, produces a trace of events, which is

saved into a �le if the user so desires.

9.1.1 Visitors: a generic kiltera processing framework

This simulator is actually part of the generic kiltera processor, which provides a

framework for di�erent tools that manipulate kiltera models. The structure of the

9.1. SIMULATOR ORGANIZATION 157

Figure 9.2: Generic kiltera processor structure.

kiltera processor is shown in Figure 9.2.

This �gure shows that the AST is processed by a processor, which consists of a se-

ries of visitor objects, of which the simulator is one example. Each visitor processes

or transforms the AST to be processed by the next one in the sequence. The last

visitor in the sequence is a simulator visitor, of which there are two from which to

chose: a single-machine simulator described in section 9.2, and a distributed simu-

lator described in section 9.3. Before the simulator visitor is executed, a number of

other visitors are applied to the AST, performing di�erent translations. In our imple-

mentation, these visitors include translators which transform the source's AST from

kiltera into the subset of the language without sequential composition and without

lasting triggers (according to the translations de�ned in section 6.3.)

Other visitors included in the current implementation include a pretty printer and

an AST printer. Other potential visitors could be tools for static analysis, model

checking, etc.

These visitor objects are instances of classes de�ned according to the well-known

Visitor Pattern [17]. This pattern is used to represent operations or processes on

objects with certain structure, by de�ning such operations in their own separate

classes known as visitors, without modifying the classes of objects which are to be

processed. The classes of objects to be �visited� must provide an accept method

which has as parameter the visitor. This method then simply invokes the relevant

operation on the visitor, passing as argument a reference to the instance being visited.

This process is also known as �double-dispatch.� In the kiltera framework, visited

objects are nodes of an AST. We see a portion of the class diagram for AST nodes

in Figure 9.3. Each class represents a speci�c construct in the language. These AST

classes follow the Composite Pattern [17]. Attributes in these classes represent the

sub-terms of the corresponding construct1, which may include other process terms.

1Some details are not shown explicitly, such as the structure of the list of alternatives of a
listener, which represent each branch of the listener, with a guard and a process. Furthermore,

158 CHAPTER 9. SIMULATING KILTERA MODELS

Figure 9.3: kiltera AST nodes class diagram.

The accept method of each such class invokes the corresponding visit method of

the given visitor.

Visitors are members of the class hierarchy shown in Figure 9.4. So, for exam-

ple, invoking the accept method on a given instance obj of the Parallel class

with an instance sim of the BasicSimulator class as parameter, results in invoking

the visit_parallel method of sim, passing as arguments the instance obj of the

Parallel class and any additional arguments required by the BasicSimulator class.

The visit_parallel method, in turn, can invoke the accept method of any of its

sub-terms, which are instances of AST nodes.

Each visitor class also implements a generic execute method which receives as pa-

rameter an AST node, i.e., an instance of the Process class, and invokes the accept

method of such instance, passing the visitor itself as argument. This method is used

by the main procedure depicted in Figure 9.2, where it is fed the root of the AST.

Organizing the kiltera processor by means of the Visitor Pattern has several ad-

vantages: it makes a clean separation between the abstract syntax of the language

and the operations applied on terms; it facilitates adding new operations without

the need to modify the abstract syntax; and it groups all code relevant to a single

operation in a single class.

9.1.2 Translators

As described above, before the simulator executes the AST, it is translated into the

subset of the language without sequential composition and without lasting triggers

(according to the translations de�ned in section 6.3.) Figure 9.5 shows the class

some constructs are uni�ed, such as unicasting and multicasting triggers. These are di�erentiated
by a �ag in the Trigger class.

9.1. SIMULATOR ORGANIZATION 159

Figure 9.4: Visitor class hierarchy.

diagram for translators.

The base class Translator implements an identity map, i.e., it returns the AST

unchanged. The UniformTranslator implements an homomorphic translation of all

constructs in the language. It is used as the base class for other translations in order to

supply a default translation which recursively applies itself over any given term. Sub-

classes of UniformTranslator override only the visit methods for constructs which

have a non-strictly homomorphic translation. The SeqEliminator implements the

translation which eliminates sequential composition as described in section 6.3. The

LastingTriggerEliminator performs the analogous translation for lasting triggers,

as speci�ed in section 6.3. This is applied after elimination of sequential composition,

since the latter uses lasting triggers.

9.1.3 Simulator classes

As described above, simulators are visitors to the AST and therefore simulator classes

are subclasses of Visitor. Nevertheless, Figure 9.4 does not show all the parents and

associations of the simulator classes. There is a Simulator class which is a super-

class of the BasicSimulator and the TimeWarpSimulator classes for single-machine

and distributed simulation respectively, as shown in Figure 9.6.

In this hierarchy, most of the visit methods for simulators are exactly the same

for single-machine and distributed simulation, and thus de�ned in the Simulator

super-class. Only the visit methods concerning network operators such as move, or

160 CHAPTER 9. SIMULATING KILTERA MODELS

Figure 9.5: Translators.

Figure 9.6: Simulators and event schedulers.

9.1. SIMULATOR ORGANIZATION 161

Figure 9.7: Trace-handlers.

Figure 9.8: Simulator as observer and observable.

where are overridden by the subclasses. The main di�erence between the concrete

simulators is in the event-scheduler associated with the simulator instance2. As Figure

9.6 shows, each simulator has an associated event scheduler.

A simulator also has an associated trace-handler which is in charge of registering,

merging and saving events produced by the simulator. Furthermore, like event-

schedulers, trace-handlers are speci�c for single-machine and distributed simulators,

as shown in Figure 9.7.

The relationship between the simulators and the trace-handlers as well as between

the simulators and the event-schedulers is characterized by the Observer Pattern [17].

Figure 9.8 shows these relations. A simulator is an observer of the event-scheduler

and is, in its own right, observed by the trace-handler. Whenever the event-scheduler

performs a signi�cant action, it noti�es the simulator, which in turn noti�es the

trace-handler so that it records the necessary updates to the trace.

9.1.4 Event-schedulers

At the heart of the simulators we have the event-schedulers. An event-scheduler

has an associated clock, which can be virtual or physical, as shown in Figure 9.9.

2The other di�erence is in additional methods needed by the distributed version, required to
setup the communications infrastructure as described in section 9.3.

162 CHAPTER 9. SIMULATING KILTERA MODELS

Figure 9.9: Clocks.

With a physical clock, the execution of the event-scheduler proceeds according to

the system's clock. With a virtual clock, time advances according to how the virtual

clock de�nes its delay operation.

An event-scheduler has a queue of simulation events3. Simulation events have a time-

stamp (its time attribute,) representing the time when the event must be executed,

a subject (its subject attribute,) representing the action to perform, and optional

arguments (its args attribute,) typically, a pointer to a name environment, as de-

scribed below in subsection 9.1.6.

Since multiple simulation events may be scheduled to be executed at the same time,

the event queue is organized into a structure that helps it deal with such a situation

e�ciently. Instead of being simply a queue of events, it is a sorted list of time-slots,

which contain all events to be executed at a speci�c point in time. A time-slot has a

time and a pair of event lists with the same time-stamp. One list contains only trigger

events, and the other list contains only non-trigger events. This is because trigger

events are executed after non-trigger events4. This structure is depicted in Figure

9.10. Events within a list in a time-slot are sorted by priority (lower number means

higher priority.) This priority is assigned to events when they are entered into the

queue. The class diagram for the event-queue is shown in Figure 9.11. This diagram

shows some of the basic operations for event-schedulers, time-slots and events.

The main operation for events is call. This operation executes the subject action

with the arguments given. Typically, this subject action is the accept method of an

AST node.

Time-slot operations are mainly basic operations to inspect or modify its lists of

events. Of particular importance is the pop_first method, which removes and re-

turns the �rst event in the time-slot, depending on whether it is a trigger or non-

trigger. Algorithm 1 shows the procedure of this operation.

To support scheduling, event-schedulers include operations to enter events into the

3Simulation events are not the same as communication events in the language itself. More on
this in section 9.2.

4See section 9.2 for a more detailed discussion.

9.1. SIMULATOR ORGANIZATION 163

Figure 9.10: Event queue: list of time-slots.

Figure 9.11: Event-queue class diagram.

Algorithm 1 Popping the �rst event of a time-slot.

1: if non-triggers list is empty then
2: return �rst item of triggers list
3: else
4: return �rst item of non-triggers list
5: end if

164 CHAPTER 9. SIMULATING KILTERA MODELS

queue. The subset shown in Figure 9.11 are those which enter an event given a

delay relative to the current time of the event-scheduler, but there are also methods

to enter events with a given absolute time. These operations can be described as

follows; assuming the current simulation time is t:

• enter(delay, pri, subject, args): creates an event (t′, subject, args) where
t′ = t+ delay, and adds it at position pri of the time-slot at time t′.

• enter_first(delay, subject, args): creates an event (t′, subject, args) where
t′ = t+ delay, and adds it at the beginning of the time-slot at time t′.

• enter_last(delay, subject, args): creates an event (t′, subject, args) where
t′ = t+ delay, and adds it at the end of the time-slot at time t′.

• enter_rand(delay, subject, args): creates an event (t′, subject, args) where
t′ = t+ delay, and inserts it at a random position within the time-slot at time

t′.

• enter_from(delay, subject, args, index): creates an event (t′, subject, args)
where t′ = t + delay, and inserts it at a random position within the time-slot

at time t′, from index.

There are also methods to inspect and modify the queue.

The run method of event-schedulers is the heart of the simulation engine as it con-

tains the main-loop. The speci�c algorithm is implemented by the subclasses, and

described in subsection 9.2.1 below.

9.1.5 Trace-handlers

The trace-handler classes are in charge of collecting events generated by the simulator

and saving them into a �le whenever required. Figure 9.12 shows the trace handling

classes in more detail.

A trace-handler has an associated list of trace entries, which hold an event with its

time-stamp, and can be compared with respect to this time-stamp. Trace entries are

added by the notify method. Trace-handlers assume that these entries are entered

in order with respect to the time-stamp, so the list is sorted. A trace handler also

provides methods to initialize it (e.g., open a trace �le,) �nalize (e.g., save the trace

to a �le,) format a trace entry according to some given format (e.g., XML,) write an

entry into the trace �le, and �ush the current trace entry list into the �le.

While the BasicTraceHandler class does not include any additional functionality,

the TimeWarpTraceHandler class adds methods to deal with dynamic changes to the

trace. In particular, it provides a method to backtrack to a given time (removing

all entries with a time-stamp greater or equal to the given time, implemented in the

backtrack method,) to commit a (sub)list of entries into a �le (the commit method,)

9.1. SIMULATOR ORGANIZATION 165

Figure 9.12: Trace-handlers.

and to collect fossils, this is, to commit events up to a given time and then removing

them (the collect_fossils method.)

There is an additional trace-handler called GlobalTWTraceHandler, used by the dis-

tributed simulator, and whose role is to collect the traces of each site and merge them

to produce a unique, global trace. Its add method, adds a new trace to its collection

of traces, and its flush method, saves the merged trace into a �le. For performance,

the merging of traces is done in the flush method rather than the add method.

Trace entries contain information about a simulation event, including the absolute

time since the beginning of the simulation, what action was performed (e.g., a trigger,

or a listener's reaction,) and its location, this is, the site where it occurred and the

process class that performed it.

9.1.6 Name environments and values

Declaring events/channels, ports and local variables introduces names. The seman-

tics of listeners uses name substitution to represent input. While this is �ne for a

theoretical treatment, it is not practical for an actual implementation, as it may

introduce many redundant terms, and it might require extensive use of renaming

to avoid binding con�icts. For this reason, names are stored and handled by name

environments, similar to those found in most programming languages.

Figure 9.13 shows the class diagram for environments. An environment has a frame

(its frame attribute,) which is a table associating names to values. The class diagram

in Figure 9.14 shows the family of possible values5. An environment also has a refer-

ence to its parent environment (its parent attribute,) a list of its child environments

(its children attribute,) and a list of referent objects (its referents attribute,) i.e.,

5The hierarchy of values follows the Composite Pattern.

166 CHAPTER 9. SIMULATING KILTERA MODELS

Figure 9.13: Name environments.

Figure 9.14: Values.

objects which have references to it.

From the point of view of a single process, the environment can be seen as a stack, as

in most programming languages, but since there can be multiple processes executing,

the environment as a whole has a tree structure, where sub-processes are executed

with respect to environments which are branches of the environment in which their

parent process is executed. Branches, however, are not introduced by simply spawn-

ing a process with the par construct, but rather they are introduced by operators

which bind names: declaration of new events/channels (event x in P,) process in-

stantiation (A[x1,...,xn],) listeners, once interaction occurs (when a with x -> P,)

local name declarations (let x=E in P,) and process de�nitions (process A[x1,...,xn]: P in Q.)

Consider for instance the following:

9.1. SIMULATOR ORGANIZATION 167

Figure 9.15: An environment.

process A[x]:

trigger x

done

process B[y]:

when y ->

print "y"

done

in

event x in

par

A[x]

B[x]

After the parallel instances of A and B are created, the environment looks like the one

in Figure 9.15. In this �gure, for simplicity, the frames are shown directly inside their

environment objects, and the parent-child relations are shown without direction. The

body of A will be executed with respect to environment 3, and the body of B will

be executed with respect to environment 4. All these environments exist while these

process instances are executing. Note that the x in environment 3 is not the same as

that in environment 2, although they both point to the same event object. This is

because the x of environment 2 is the one introduced by event x in ..., whereas

that of environment 3 is a port of A whose scope is the body of A. Also note that

both x and y point to the same communication event. This allows separate processes

to interact via this event object.

When a process executes in an environment, any name references are resolved by

168 CHAPTER 9. SIMULATING KILTERA MODELS

Figure 9.16: Simulation events.

looking in its current environment. If the name is not in the current environment's

frame, it is recursively looked up in the environment's parent, until the root node is

reached.

9.2 Event-driven sequential execution

The event-oriented nature of communication suggests an event-driven implementa-

tion, where time plays a central role. This naturally leads to execution by event-

scheduling, which forms the core of our implementation.

In an event-scheduling simulator, events have a time-stamp which determines when

the event is to be executed. Events are placed in a queue sorted by time, and then

processed in this order.

kiltera's communication events, however, are not executable. They are simply objects

used for interaction between processes, rather than activities to be performed at a

given time. Therefore, communication events are not the events entered into the

event-scheduler's queue. Instead, the execution of a construct in the language can

be seen as an executable event. We call these events simulation events to distinguish

them from communication events in the language itself.

Each simulation-event has a time-stamp, a priority , a subject (i.e., the construct to

be executed,) and possibly additional information such as the name environment

in which the construct is to be executed. Figure 9.16 shows the class diagram for

simulation events and its relationship to processes and environments. Note that the

subject attribute of a SimEvent object is associated with an instance of a (sub-

class of) Process, and its args attribute is associated with an Environment, whose

referents attribute include an association to the SimEvent object.

Executing a SimEvent object is done by invoking its call method. This method ex-

ecutes the accept method of the Process instance, passing as parameters two refer-

ences: a reference to the simulator object (i.e., the visitor, as explained in subsections

9.1.1 and 9.1.3,) and a reference to the environment associated to the SimEvent. This

results in the execution of the appropriate visit method in the Simulator class, re-

ceiving as argument the environment.

9.2. EVENT-DRIVEN SEQUENTIAL EXECUTION 169

9.2.1 The simulation algorithm

Execution proceeds by taking the simulation-event with smallest time-stamp from

the event queue and performing the action speci�ed by its subject, removing this

simulation-event from the list, and repeating until the list is empty. Hence, there are

no idle periods, as opposed to discrete-time simulation.

As described above in subsection 9.1.4, the data-structure used to represent the event

queue is a list of time-slots. Switching between real-time and virtual-time execution

becomes simply a matter of using the system's clock, or a �virtual� clock to advance

between time-slots.

The main simulation algorithm, implemented in the run method of the BasicScheduler

class (see Figure 9.11,) is shown in algorithm 2.

Algorithm 2 Basic event-scheduling.

1: Q := the event queue
2: while Q is not empty do
3: now := clock's current time
4: timeslot := �rst item of Q
5: if now < timeslot's time then
6: advance clock's time by (timeslot's time − now)
7: else
8: while timeslot is not empty do
9: e := pop �rst event from timeslot
10: execute e
11: end while
12: remove timeslot from Q
13: end if
14: end while

As mentioned above, executing a simulation event is done by invoking its call

method. The execution of a simulation event may have di�erent e�ects such as mod-

ifying the state (i.e., the environment,) triggering some communication event, or

scheduling new simulation events.

Delaying processes Executing a simulation event whose subject is

wait E ->

P

will result in scheduling a simulation event with subject P after a delay d where d is

the result of evaluating E.

Spawning parallel processes Executing

170 CHAPTER 9. SIMULATING KILTERA MODELS

par

P1

P2

...

Pn

schedules simulation events with subjects P1, P2, ..., Pn in the current time-slot. Their

associated priorities are assigned at random so they can appear in any order in the

current time-slot, and therefore, the processes actions will be interleaved, as expected

by the semantics of ‖. This contrasts with lpar, where the events are scheduled in

the order in which they appear, guaranteeing that they have priorities according to

this order, as required by the semantics of T.

Process de�nitions A set of process de�nitions

process A1[x1,...,xn]:

P1

process A2[x1,...,xm]:

P2

...

process Ak[x1,...,xp]:

Pk

in

Q

creates a LatentProcess object for each de�nition. This object contains a reference

to the process de�nition and a reference to the environment in which this declaration

takes place6. Then a new environment is created, with a binding for each process

de�nition, associating its name to its LatentProcess instance. Then Q is executed

with respect to this new environment.7

Process instantiation Executing

A[x1,...,xn]

looks up the current environment for the LatentProcess instance associated to A.

A new environment is created on top of the LatentProcess's environment, binding

6This is analogous to closures or thunks in functional languages.
7Note that this is actually more than what is required by the semantics of κλτ : it allows for

process de�nitions inside other process de�nitions, with a notion of lexical scoping as found in most
functional languages.

9.2. EVENT-DRIVEN SEQUENTIAL EXECUTION 171

Figure 9.17: Communication events.

each parameter of A with the values of x1, x2, ..., xn. Then the body of A (found in

the LatentProcess instance,) is executed with respect to this new environment.

9.2.2 Interaction: events and event-listeners

The implementation of communication is based on the notion of event-listeners. A

communication event is an object, an instance of the KltEvent class, a subclass of

Value, as shown in Figure 9.14. A communication event has an associated list of

listeners, as shown in Figure 9.17. It follows the Observer Pattern [17].

Event listeners are instances of the WhenCallback class. There is an instance of this

class created for each alternative branch of a listener term. An instance of this class

has the following attributes:

• event: a reference to the event to which the callback is associated,

• pattern: the pattern to be matched by any input,

• elapsed: the name of the elapsed time variable, if any,

• target: a reference to the AST node of the process to be executed,

• env: a reference to the environment in which the target process is to be exe-

cuted,

• time_start: an attribute recording the time of creation, i.e., the time when

the listener starts waiting for its event,

• other_branches: a list of pairs of events and their corresponding callbacks,

one for each branch in the listener.

• event_scheduler: a reference to the event scheduler, used to access the current

simulation time as well as to schedule the execution of the target, when the

callback is �red.

Creating events Executing

172 CHAPTER 9. SIMULATING KILTERA MODELS

events x1, x2, ... , xn in

P

creates a new KltEvent object with name xi for each declared event. It also creates

a new environment with these bindings. The new environment's parent is the current

environment. Then process P is executed in this new environment.

Executing listeners To understand how listeners are executed, we �rst look at the

simplest case, a process listening to only one event:

when x ->

P

Executing this creates an instance of WhenCallback with x as its event, P as its

target, the current environment as env, and the event-scheduler's current time as its

time_start. Then it registers this callback as an observer of x.

Now we look at the general case, a listener with alternatives. Executing

when x1 with F1 after t1 ->

P1

| x2 with F2 after t2 ->

...

| xn with Fn after tn ->

Pn

results in the creation of a WhenCallback instance for each branch. The callback

for a branch xi with Fi after ti -> Pi has xi as its event, Pi as its target, the

current environment as env, the event-scheduler's current time as its time_start,

Fi as its pattern, ti as its elapsed time variable, and its other_branches attribute

is assigned a reference to the list [(x1,L1), (x2,L2),...,(xn,Ln)]where each Li

is the WhenCallback instance for xi. Then, each callback is registered with its cor-

responding event.

Executing triggers Executing

trigger x

chooses one of x's event-listeners (a WhenCallback instance,) if any, removes it from

the list, and executes it (by calling its notify method.) If the trigger has an argu-

ment, as in

9.2. EVENT-DRIVEN SEQUENTIAL EXECUTION 173

trigger x with E

the expression is evaluated and passed to the callback as argument, to be matched

against its pattern. If there is no argument, the null constant is passed.

Algorithm 3 shows the procedure of executing a unicasting transient trigger. This

algorithm attempts to execute any listener callback associated to the event (if any.)

Since the event's message must successfully match the pattern of a callback for its

target to proceed, the algorithm may have to try several listeners before succeeding.

Therefore, the algorithm proceeds by removing one callback at random at a time,

and trying to execute it. Thus, it temporarily eliminates unsuccessful callbacks. Nev-

ertheless, all such unsuccessfully tried callbacks must be re-registered as listeners of

the event for future triggers. For this reason, the algorithm keeps a list of these

unsuccessful callbacks R, which are reentered into the event's listener's list once all

alternatives have been exhausted or some callback succeeds.

Algorithm 3 Triggering an event (unicasting.)

Require: the list L of listener callbacks for the event
1: if there are callbacks then
2: R := an empty list
3: repeat
4: e := any callback from L chosen at random
5: remove e from L
6: success := execute e
7: if not success then
8: append e to R
9: end if
10: until some callback succeeds or there are no callbacks left in L
11: append all callbacks in R to L
12: end if

Algorithm 4 shows the corresponding operation for multicasting triggers. The only

di�erence is that all successful callbacks are executed.

Algorithm 5 shows the procedure executed by the WhenCallback instance. This al-

gorithm �rst attempts to match the data message with its pattern. If successful, all

other callbacks for this listener are withdrawn from their respective events, since this

branch is now committed. Then the elapsed time since the listener began is com-

puted. A new environment is created with a frame containing bindings for the elapsed

time variable and all variables in the pattern, with the associated values which re-

sulted from pattern-matching. Finally the target process is scheduled to execute in

the current time-slot with respect to this new environment. If pattern-matching was

unsuccessful, it simply returns false.

174 CHAPTER 9. SIMULATING KILTERA MODELS

Algorithm 4 Triggering an event (multicasting.)

Require: the list L of listener callbacks for the event
1: if there are callbacks then
2: R := an empty list
3: for all callbacks e in L do
4: remove e from L
5: success := execute e
6: if not success then
7: append e to R
8: end if
9: end for
10: append all callbacks in R to L
11: end if

Algorithm 5 Executing a listener callback.

Require: v: the data value associated with the event
1: x := the event triggered
2: F := the callback's pattern
3: e := the callback's elapsed-time variable
4: P := the callback's target process
5: ts := the callback's starting time
6: env := the callback's environment
7: L := the callback's other-branches' list
8: σ := match(F, v, ∅)
9: if σ is not empty then
10: for all (xi, Li) in L do
11: withdraw Li from xi's list of listeners
12: end for
13: now := current time (from the event-scheduler)
14: w := now − ts
15: env′ := new environment with env as parent
16: add a binding (e, w) to env′

17: for all associations (y, V) in σ do
18: add a binding (y, V) to env′

19: end for
20: schedule a new simulation event at time now with P as subject and env′ as

argument
21: return true
22: else
23: return false
24: end if

9.2. EVENT-DRIVEN SEQUENTIAL EXECUTION 175

Processing triggers after non-triggers As mentioned above, a time-slot consists

of two event lists: trigger events and non-trigger events. Algorithm 1 ensures that

popping the �rst event from a time-slot returns the �rst non-trigger event if there are

any, or the �rst trigger event otherwise. As a consequence, algorithm 2 guarantees

that non-trigger events are processed before trigger events in a time-slot, and if

a trigger event results in adding a non-trigger event to the time-slot, this will be

processed before the remaining trigger events.

The reason for processing triggers after non-trigger events is the following. Consider

the following process:

par

trigger a

when a ->

P

In this process, a trigger and a listener are scheduled to be executed at the same time.

Therefore there will be simulation events for both in the same time-slot. Imagine that

there was no distinction between triggers and non-triggers in the time-slot. If the

listener is entered into the time-slot before the trigger, then the simulation will yield

the expected behaviour. However, if the trigger is executed before the listener, there

would be no interaction, since the listener has not registered itself with the event

a, and therefore the trigger is lost. But the semantics of transient triggers is that

they disappear when there is a strictly positive passage of time. Furthermore, the

condition of maximal progress requires all possible interactions to be executed before

time can advance. Therefore, all non-trigger processes, and listeners in particular,

must be executed before any triggers in a given time-slot, to ensure that any possible

interactions will take place.

9.2.3 Deterministic simulation

The semantics of kiltera is such that it is possible to write models with non-deterministic

behaviour, for example, as described in section 5.1.1, by triggering an event which

has several listeners, or by a process listening to two or more events provided by the

environment.

While the ability to describe non-deterministic behaviour is useful from the modelling

point of view, in the context of simulation, determinism is often required, since

reproducibility of experiments is expected of simulators. Whenever we simulate a

model, given the same initial conditions, parameters and inputs, we expect to observe

the same outputs.

We can preserve the expressiveness of non-determinism at the modelling level and

obtain strictly deterministic simulations by making the seed number of the pseudo-

176 CHAPTER 9. SIMULATING KILTERA MODELS

random number generator a parameter of the simulator. The pseudo-random number

generator is used when scheduling processes and selecting callbacks. Thus, making

the seed number a parameter of the simulator (and event-scheduler,) gives us the

property of reproducibility of experiments, as feeding the simulator the same seed

number yields the same schedules.

9.2.4 Real-time execution

In so-called synchronous languages such as Lustre, Esterel and Signal, time is dis-

crete, so execution proceeds synchronously with respect to a global clock. This is,

with every �tick� of the clock, actions are performed. This has a drawback: if there

are no actions to be executed during a long time interval, many CPU cycles will be

wasted as the simulator or interpreter iterates through each idle clock tick.

If we are interested in purely analytical simulation, such an approach is very ine�-

cient. In analytical simulation we are only concerned with obtaining an output trace,

a time-line of events, and therefore, the actual physical duration of the simulation

is irrelevant. The event-scheduling approach described above provides an e�cient

approach to simulation, where there are no idle periods. Once all events scheduled

at one time are performed, computation proceeds directly to the next time when

activity must take place.

Nevertheless, sometimes we do want real-time execution, for example, for animation,

interactive simulation, or control of a physical system. Algorithm 2 can actually be

used for real-time execution. Recall from section 9.1.4 that an event-scheduler has

an associated clock, which can be virtual or physical, as shown in Figure 9.9. In a

physical clock, the operation of �advancing� an amount of time (line 6 in algorithm

2,) consists of making the simulator sleep for the required amount of time. Therefore,

with a physical clock, the execution of the event-scheduler proceeds in real-time.

9.2.5 Advantages of event-scheduling

Event-scheduling has many advantages as a mechanism for the execution of kiltera.

First, there is only a single thread of execution, despite the fact that it is a concurrent

language. Executing a simulation-event whose subject is the parallel composition of

two processes P1 and P2, will simply schedule simulation-events for P1 and P2 in

the current time-slot, after the current event, but before any events with a strictly

larger time-tag. By avoiding the creation of threads we avoid the typical thread

synchronization issues, and we gain in performance, since no time is spent creating

threads and switching contexts.

Another positive side-e�ect of this event-scheduling approach is the treatment of

recursive process de�nitions. A naive implementation leads to stack-over�ow errors

depending on the language of implementation. To deal with this, the traditional ap-

9.3. DISTRIBUTED SIMULATION 177

proach is to apply some transformation to the source program, such as tail-recursion

elimination, which requires the existence of explicit looping constructs in the lan-

guage or in an intermediate language. By using the event-scheduling approach we

avoid this problem altogether: invoking a recursive de�nition simply schedules the

body of the process to be executed later in the same time-slot. This is, we add a new

entry to the queue, rather than to a stack, since we do not need to �remember� the

point where the recursive call happened: in kiltera, all recursions are tail-recursions.

This simulation approach also implies that even though it is possible to write a

speci�cation that deadlocks, the actual execution does not deadlock. Deadlock can

be �observed� by looking at the event trace produced by the simulator, in the sense

that the deadlock processes will not leave any events in the trace after the deadlock

occurs.

9.3 Distributed simulation

As mentioned at the beginning of this chapter, distributed kiltera could be emulated

according to the embedding presented in section 7.3 of chapter 7, but in order to

deal with very large models, or to support real execution, a truly distributed imple-

mentation is required.

The problem of simulating a distributed system with a global clock is how to execute

processes in a fashion that respects causality and therefore the ordering of simulation

events w.r.t. their global time-stamp. In the context of distributed simulation there

are two types of solutions to this problem: pessimistic and optimistic simulation. The

former is characterized by a conservative approach with processes blocking whenever

synchronization is required. In the latter, processes execute without blocking, and

rollback whenever there is a causality con�ict. Using event-scheduling at the core of

the sequential simulator leads naturally to an optimistic distributed implementation:

Time-warp [22].

9.3.1 Time-warp

Time-warp is a well-known optimistic algorithm used extensively in distributed sim-

ulation of discrete-event systems. This forms the core of the distributed simulation

of kiltera. A time-warp system consists of a number of logical-processes (i.e., simula-

tors,) each of which executes an event-scheduling algorithm. Time-warp is optimistic

in the sense that no process blocks waiting for messages to arrive, but instead each

process executes as many events as possible, and rollback is performed whenever

necessary. When a simulation-event arrives from another process it is dealt with de-

pending on its time-stamp. If the newly arrived event has a time-stamp in the past

relative to the receiver's local clock, the process rolls back to a state before the time

of the con�icting event. When a kiltera process triggers an event which has remote

178 CHAPTER 9. SIMULATING KILTERA MODELS

Figure 9.18: Time-warp scheduler.

listeners, a message with this event is sent, tagged with the current time of the simu-

lator triggering it. The receiver may or may not rollback depending on its own local

time, but in any case, causality and time-order relationships of events are respected.

The rollback process undoes any changes of state, and sends anti-messages for ev-

ery message sent during the roll-backed period. An anti-message cancels an original

message when it arrives at its destination. Anti-messages can themselves cause roll-

backs, but the algorithm guarantees that the global virtual time, or GVT for short

(the minimum time among all processes and messages in transit) progresses.

There is also a global controller , a special process which is used to compute the global

virtual time. This allows processes to free memory by removing events, states and

messages which have a time-stamp older then the global virtual time. kiltera's im-

plementation, also uses a global controller to detect termination, collect local event-

traces and merge them into a global event-trace.

We adapt the time-warp algorithm to execute kiltera models.

The time-warp scheduler

The TimeWarpScheduler class implements the time-warp algorithm. Figure 9.18

shows the class diagram for this, and related classes. This class inherits all attributes

and methods from BasicScheduler, in particular the queue of time-slots. In addition

to these, it has an external input bu�er, which holds simulation events received from

other simulators, a list of sent messages, i.e., simulation events destined to remote

sites, and a history list, which stores saved states that will be recovered in the case

of a rollback.

Simulation events are instances of the TWSimEvent class. They inherit all attributes

from the SimEvent class. In addition to these inherited attributes, they are tagged

as being either positive or negative (the flag attribute.) Negative events are �anti-

messages,� which cancel out positive events. Anti-messages are sent by the simulator

whenever it rolls back and needs to �undo� any positive message previously sent to a

9.3. DISTRIBUTED SIMULATION 179

remote site. Anti-messages carry exactly the same information as their corresponding

positive message, in particular its time-stamp and identi�er. The only di�erence is a

�ag marking it as a negative event.

Simulation events also have a gen_time attribute, recording the local time when the

event was generated, in addition to the time attribute which records the time when

the event is to be executed8. For example, if an event with subject wait 3.5 -> trigger a

is executed at time 4.0, then a new event will be created with subject trigger a,

time 7.5, and generation time 4.0.

The other additional attribute of simulation events is destination. The value of this

attribute is either LOCAL for events meant to be executed locally, i.e., in the same

simulator, or a tuple (REMOTE, delivery, dchannel), where delivery is either ALL

(for multicasting) or ANY (for unicasting,) and dchannel is the name of the d-channel

through which the message is being sent.

The simulation algorithm

The simulation proceeds according to algorithm 6, which is implemented by the run

method of the TimeWarpScheduler class.

On the surface, the time-warp algorithm looks very much like algorithm 2. But there

are several di�erences.

The �rst di�erence has to do with executing triggers. Whenever we trigger a commu-

nication event which is a d-channel , i.e., a channel connected to remote processes,

we create a negative copy of this trigger event, save it to the sent messages list and

then send it to its destination. Since events are executed in order with respect to the

time-stamp, the sent messages list is sorted by generation time, and contains only

anti-messages. Only simulation events with a trigger as subject are sent as messages

to other simulators.

The second di�erence is that unlike the algorithm for sequential simulation, the

time-warp algorithm does not remove simulation events or time-slots immediately

after they have been processed, since a rollback might be necessary when external

events arrive. For this reason, instead of �popping� the �rst time-slot from the queue,

and the �rst event from the time-slot, this algorithm obtains the next unprocessed

time-slot, and event within the time-slot.

As with the sequential algorithm, extracting the next event from the time-slot must

take into account whether there are non-trigger events available, only trigger events

or none. But, since events are not removed from the time-slot, we must keep track

of the position of the last event processed, and produce the next event accordingly.

This is achieved by de�ning a next method on TimeSlot instances which performs

8In Je�erson's terminology [22], the generation time corresponds to the send time and the time
attribute corresponds to the reception time.

180 CHAPTER 9. SIMULATING KILTERA MODELS

Algorithm 6 Time-warp main loop.

Require: Q: the event queue
1: running := true
2: while running do
3: if there are unprocessed timeslots in Q then
4: now := clock's current time
5: timeslot := next element of Q
6: if now < timeslot's time then
7: advance clock's time by (timeslot's time − now)
8: else
9: while running and there are unprocessed events in timeslot and not rolled

back do
10: running := perform pre-event checks
11: if running and not rolled back then
12: e := next event of timeslot
13: if e is a positive event then
14: execute e
15: end if
16: end if
17: end while
18: end if
19: else
20: running := process end of queue
21: end if
22: end while

9.3. DISTRIBUTED SIMULATION 181

algorithm 7.

Algorithm 7 Obtaining the next event of a time-slot.

Require: i : index of last non-trigger event returned
Require: j : index of last trigger event returned
1: if i+ 1 < length of non-trigger list then
2: increment i by 1
3: return i-th item of non-trigger list
4: else if j + 1 < length of trigger list then
5: increment j by 1
6: return j-th item of trigger list
7: else
8: return no more unprocessed events
9: end if

Another main di�erence with algorithm 2 is that before events are processed, some

checks are performed. These are shown in algorithm 8. The �rst check is to see if

there is a stop request from the global controller. The second is to ensure the state

saving criteria is satis�ed. There are di�erent possible criteria. The simplest one is

to always save the state before an event, but one may choose to save the state less

frequently. The state contains the current time, the current time-slot and event, and

a copy of the environment tree. The next check is to test whether new external events

have arrived. If so, they are processed according to the algorithm described below.

This may result in either scheduling events in the future (including the current time-

slot,) or in rolling back to some previous time. The last pre-event check concerns the

computation of the GVT. If the global controller is trying to compute the GVT, it

will send a message to all simulators, which will report their own local virtual time

(the minimum among their local clock and the time-stamp of all unacknowledged

sent messages,) and then �pause� their normal processing, waiting for the global

controller to send the actual GVT. Once the simulator has received the GVT, it can

perform fossil collection, this is, the process of removing all events with a time-stamp

older than the GVT, from the queue, the sent-messages list and the history list, thus

freeing up memory. Removing such events is safe because no message in transit can

cause a rollback to a time older than the GVT, as the GVT is smaller than the time

of all such messages.

After these checks are performed, the event is executed, but only if it is a positive

event. If a negative event is in the queue, it is because there was a positive event

sent before by some process which then rolled back and sent a negative message to

cancel it, but for di�erent reasons such as network latency, the negative event arrived

before the positive one. Therefore, the algorithm simply keeps the negative message

in the queue, ready to cancel the positive message when it arrives.

When all available time-slots in the queue have been processed, algorithm 9 is exe-

182 CHAPTER 9. SIMULATING KILTERA MODELS

Algorithm 8 Pre-event checks.

1: if received stop message from global controller then
2: return false
3: else
4: if save state criteria is true then
5: save state to history
6: end if
7: if external input bu�er has events and input criteria is true then
8: take external events
9: end if
10: if global controller sent START-GVT message then
11: now := current local time
12: m := timestamp of oldest unacknowledged message sent
13: send min(now,m) to global controller
14: wait for GVT from global controller
15: collect fossils
16: end if
17: return true
18: end if

cuted. Even if there are no more time-slots in the queue, it is still possible that the

simulator receives more external events from other processes, so it checks for such

events. This algorithm also implements a basic form of distributed termination de-

tection, by sending a message to the global controller saying that it is idle, if there are

no events pending and no unacknowledged messages sent, and then it goes to sleep

for a certain amount of time. When the global controller receives an idle message

from all simulators, it broadcasts a stop signal.

Algorithm 9 Process end-of-queue.

1: if received stop message from global controller then
2: return false
3: else if external input bu�er has events then
4: send active message to global controller
5: take external events
6: return true
7: else if there are no unacknowledged messages sent then
8: send idle message to global controller
9: end if
10: sleep for some �xed time or until woken up by a message
11: return true

Taking external events At the heart of the time-warp algorithm we �nd the process

that deals with external events. Whenever there are events in the external input

bu�er, they are processed each according to the actions shown in table 9.1. In this

table, if an event e is a positive message, e− denotes its anti-message, and if it is a

9.3. DISTRIBUTED SIMULATION 183

If e is positive:

e's time-stamp 6 now e's time-stamp > now

e− /∈ Q rollback; then enter e+ into Q enter e+ into Q

e− ∈ Q cancel e− cancel e−

If e is negative:

e's time-stamp 6 now e's time-stamp > now

e+ /∈ Q enter e− into Q enter e− into Q

e+ ∈ Q rollback; then cancel e+ cancel e+

Table 9.1: Actions for taking an external event e.

negative message, e+ denotes its corresponding positive message. Also, Q denotes the

event queue, and now the scheduler's current time. The di�erent courses of action

depend on e's time-stamp and whether its opposite event is already in Q or not.

We see that a normal positive event in the future, will be scheduled, if its anti-

message is not in the queue, but if it is in the past, the algorithm will rollback to

some time smaller than the event's time-stamp, to ensure that the trigger event has

its intended e�ect so that all causality relationships are respected. If an anti-message

is already in the queue when the positive message arrives, it will be canceled and the

newly arrived message ignored, independently of its time-stamp.

Negative events are treated in a dual manner. If its corresponding positive message

is already in the queue and its time-stamp is in the future, then the positive event

will be removed, so it will never be executed. If its time-stamp is in the past, the

algorithm will rollback to sometime before the event's time-stamp and then cancel

the positive message. The rollback is necessary to undo any e�ects that the positive

event may have had. If the positive message is not in the queue, then the negative

message will simply be entered into the queue, to await for the positive message to

arrive, which will then be canceled, according to the �rst table.

The external input bu�er is kept sorted by the time-stamp of events so that the

oldest event is processed �rst. This guarantees that if there are several external

events pending, at most one of them will cause a rollback.

Rollback The rollback procedure is shown in algorithm 10. This algorithm receives

as input the time t to which it is going to go back. The �rst step is to restore the state

to time t from the history list. This resets the clock to t, recovers the appropriate

time-slot and event indices, and reestablishes the name environment. The next step

is to update all events so that they point to the newly restored environment. This is

done by traversing the restored environment, which contains pointers to its referents.

This is necessary because simulation events store a reference to the environment

where their subject is to be executed, and since the saved state contains a copy of

184 CHAPTER 9. SIMULATING KILTERA MODELS

the environment, rather than the original, the references need to be reset to that

copy. After restoring the state, an anti-message is sent for each message sent with a

generation time after than t. Finally, all those anti-messages are removed, as well as

all saved states newer than t.

Algorithm 10 Rollback.

Require: t: some time less than the current local time
1: restore state to time t
2: update environment references in all referents of the restored environment
3: for all anti-messages in the sent-messages list with generation time newer than t
do

4: if anti-message destination is LOCAL then
5: take anti-message event
6: else
7: send anti-message to remote location(s)
8: end if
9: end for
10: remove all anti-messages with generation time newer than t
11: remove all saved states with time newer than t

Global control

The global controller is in charge of computing the global virtual time, keeping track

of all simulators launched, detecting termination, ordering simulators to stop if the

user wants to interrupt execution, collecting local traces and merging them into a

unique global trace.

The global controller periodically starts the process of computing the GVT. The

frequency of such computation is a parameter. The �rst step is to broadcast to all

simulators a START_GVT message which causes them to pause their processing and

return their local virtual time. Once all simulators have responded, the minimum of

all such values is the GVT, and it is broadcast to all simulators, which then perform

fossil collection.

As described in algorithm 9, whenever a simulator is idle, i.e., when it does not

have any pending events to execute and no unacknowledged messages, it informs the

global controller. When the global controller has received such noti�cation from all

simulators, it is not possible for any of them to reactivate, since all messages have

been acknowledged. Hence, termination is detected and the global controller broad-

casts a STOP message to all simulators which then break out of the main simulation

loop.

Partial trace collection is done when computing the GVT. Once the global controller

has broadcast the GVT, each simulator noti�es its trace-handler to report the trace

up to the GVT to the global controller. When termination is detected there is a �nal

9.3. DISTRIBUTED SIMULATION 185

collection of traces as well.

Extending time-warp

So far we have described an adaptation of the original time-warp algorithm from [22]

to the kiltera context, but the nature of the language requires us to extend Je�erson's

algorithm. In particular, the original algorithm makes certain assumptions which do

not hold in the context of kiltera.

First, the original time-warp algorithm assumes that communication is two-way

(rather than multi-way.) In kiltera, by contrast, multiple processes may share a

d-channel, and therefore communication may be by multi-casting, i.e., multi-way

communication.

Second, it assumes that processes know the exact destination of their messages. In

kiltera this may not be the case: whenever a process sends a message by triggering

an event, there may be several processes that could receive it. If communication is

by unicasting, any of the connected processes may get the message. Hence, when

a process sends a message, it only knows the name of the d-channel to which it is

being sent, and whether it is by unicasting or multicasting, but it does not know

the �nal destination. Knowledge of the �nal destination is however critical for time-

warp, since anti-messages must go to the same place as their corresponding original

message.

Finally, the original algorithm assumes that logical processes are present all the

time. In kiltera, by contrast, new simulators may be added dynamically in remote

sites, whenever we move processes. This results in some important issues regarding

simulator initialization, since moving a process and starting a new simulator is time-

consuming, messages sent to a new, remote process could be lost.

In the remainder of this subsection we extend the time-warp mechanism to deal with

these issues.

Message transmission through d-channels Each d-channel has an associated d-

channel manager, which handles communication of events through the d-channel9.

D-channel managers handle two kinds of messages: normal messages (positive and

negative events,) and acknowledgment messages. The latter are required for the pur-

pose of termination detection.

Every pair of positive and negative messages is assigned a unique global identi�er.

The simplest way of doing this, without the need to communicate with the global

controller, is to construct such identi�er by concatenating the site's location, the

simulator process id, and the value of some counter within the simulator. A positive

9As explained below in section 9.3.2, d-channel managers are implemented by a component called
a d-channel server, which serves as manager for all d-channels declared in a module.

186 CHAPTER 9. SIMULATING KILTERA MODELS

and a negative message have the same id, to facilitate event look-up.

The d-channel manager keeps a list of previous (normal) messages sent through it.

This allows it to route anti-messages to the appropriate destination. Whenever a

message is sent through a d-channel, the d-channel manager deals with it depending

on whether it is a normal message or an acknowledgment. If it is a normal message,

it is processed according to algorithm 11. If it is an acknowledgment, it is processed

according to algorithm 12.

Algorithm 11 Routing a normal message.

Require: evt: the message (a trigger simulation event)
Require: the list of previous messages for this d-channel
1: if evt's id is not in previous messages then
2: if evt's destination is ANY then
3: choose any of the connected processes as destination
4: set evt's destination to be the chosen process
5: send evt to chosen process
6: else if evt's destination is ALL then
7: set evt's destination to be a list of all currently connected processes without

the sender
8: send evt to all connected processes
9: end if
10: record the sender process in evt
11: record evt in the previous messages list, preserving timestamp order
12: else
13: record the sender process in evt
14: send evt to previous destination(s)
15: end if

When routing a normal message, the algorithm records the destination in the message

itself, which can be a particular process chosen at random in the case of unicasting,

or, in the case of multicasting, a list of all processes currently connected (which

could change later.) This updated message is then saved in the previous messages

list. When an anti-message arrives, it has the same id as the original message, so

the algorithm can determine if its positive message was previously sent, and if so,

it contains the destination(s) of the original message, so that it can send the anti-

message there. In any case, the event message is also tagged with the sender process

so that acknowledgments can be routed.

Acknowledging a message depends on whether the original message was a unicasting

or multicasting trigger. If the original was unicasting, then the acknowledgment

is sent directly to the original sender, which was recorded in the event stored in

the previous messages list. On the other hand, if the original was multicasting, the

acknowledgment is forwarded to the original sender only when all the processes to

which the message was sent, reply with an acknowledgment. This way, the original

9.3. DISTRIBUTED SIMULATION 187

Algorithm 12 Routing an acknowledgment message.

Require: id: the id of the message being ackowledged
Require: the list of previous messages for this d-channel
1: Let evt be the message with the given id from the previous message list
2: if all of evt's destinations have replied with an acknowledgement then
3: send acknowledgement to evt's original sender
4: end if

sender receives only one acknowledgment.

Moving processes When executing a simulation event whose subject is

move A[u1,...,un] to l

a connection is established with the target site l. The source for the process A is

transmitted to that site, along with all required information, including information

required to contact the appropriate d-channel managers (i.e., those for channels u1,

..., un,) and the global controller, the current local time, to be used as initial time in

the new simulator, and any additional options.

Once the remote site has received the process source and all additional initialization

information, a new simulator begins executing it.

Before the process is sent, a message is sent to the global controller saying that there

is a new simulator about to start. This way the global controller can keep track of

all simulators executing.

Given that sending a process to a remote location and starting a new simulator is

a time-consuming activity, messages to the new process may be lost. To avoid this,

the newly created simulator establishes a connection with the appropriate d-channel

managers. These in turn, send back all pending messages to the new simulator.

Pending messages are all messages except for unicast triggers which have already

been sent to some other process. Consider for example the speci�cation shown in

Figure 9.19.

When the move is executed, a new remote simulator is launched in site A, where it

executes P, with initial time +2.0. When the trigger of u is executed at time 7.0, the

remote simulator executing P in site A might not be ready. The d-channel manager

for u does not �nd any other connected processes so it only saves the message in

its previous messages list. When the simulator executing P in A is ready, it informs

u's manager which then sends it the message containing the trigger of u, from the

previous messages list. Then the simulator executing P takes in the message and

processes it normally, resulting in the expected behaviour.

188 CHAPTER 9. SIMULATING KILTERA MODELS

process P[u]:

wait 4.0 ->

when u with x ->

print x

in

site A in

dchannel u in

par

wait 2.0 ->

move P[u] to A

wait 7.0 ->

trigger u with "data"

Figure 9.19: Moving a process to a remote site and ensuring delivery of inter-site
messages.

9.3.2 Communications infrastructure

In this section we describe the communications infrastructure required to implement

the time-warp algorithm of the previous section.

Modules and components

To support distribution, a kiltera speci�cation is divided into modules, i.e., �les con-

taining a single named process (which may have locally declared, named processes.)

A module is the minimal �movable� unit, but indistinguishable from normal process

de�nitions in any other way.

The communication infrastructure of a single simulator consists of three basic com-

ponents: a �d-channel server,� a �d-channel client,� and a �global control client.� If

the module being executed is the main module (i.e., the starting point of execu-

tion,) then, in addition to these components, the infrastructure includes the �global

controller.� Figure 9.20 shows the class diagram for a simulator describing these

components.

The core components are the d-channel server and client. The role of the d-channel

server is to manage all d-channels created by a module. It acts as a router for messages

transmitted through the channels it handles, as described in section 9.3.1. A d-

channel client provides the interface to send and receive messages through d-channels,

by communicating with the corresponding d-channel server.

When a new module is sent to a remote location, the parent (i.e., the process ex-

ecuting the move,) sends the address of its d-channel server to the newly spawned

simulator. The latter then uses its d-channel client to send messages to other mod-

ules via its parent's d-channel server, as well as to receive messages. For example, in

the following simple system:

9.3. DISTRIBUTED SIMULATION 189

Figure 9.20: Communications infrastructure and the simulator.

module P:

sites A,B in

dchannel z in

par

move Q[z] to A

move R[z] to B

module Q[z]:

trigger z

done

module R[z]:

when z ->

...

The simulator executing module P has a d-channel server which serves as z's manager.

This simulator establishes a connection with sites A and B and sends modules Q and

R to those locations. The �child� remote simulators executing Q and R have d-channel

clients. This structure is shown in Figure 9.21. When Q triggers a non-local event

(z,) a message is sent through its d-channel client to P's d-channel server, which then

routes the message to R's d-channel client. This, in turn, puts the message in the

external input bu�er associated with R's event-scheduler. Then R's event-scheduler

grabs and processes the message.

In order to support channel mobility, a simulator may have more than one d-channel

client. When a d-channel object is received, it brings the address of the d-channel

server that handles it, so that a new client can be added in the simulator that received

the d-channel.

The other main component is the �global control client.� This component receives

commands from the global controller, to compute the GVT, to terminate execution,

and to transmit local event traces which are merged by the global controller.

Daemons

To execute in distributed mode, the user provides a �le mapping each logical site to

a physical location (an IP address.) Each physical site runs a daemon process whose

sole job is to receive modules and start simulator processes that execute them. When

190 CHAPTER 9. SIMULATING KILTERA MODELS

Figure 9.21: Distributed simulators.

a module is sent to a remote location, a connection is established with the daemon

running in the corresponding site. The module and some administrative information

is transmitted, and the daemon executes it. The remote simulator then sets up its

own infrastructure to communicate with other modules. Once the simulator has done

this setup, it executes the time-warp event-scheduler.

Starting up a new module simulator is a relatively expensive operation, as it involves

the establishment of a connection with a remote daemon, the transmission of a mod-

ule, the start of a process and the initialization of the new module's communication

infrastructure.

Sending a module to a remote site involves the creation of a temporary client which

establishes a connection with the corresponding remote daemon and transmits the

module, the current local time (to be used as initial time in the remote simulator,)

the address of the sender's d-channel server and global controller, and any additional

options, such as tracing options.

Client-Server/Peer-to-peer architecture

The components of the communication infrastructure are organized in a client-server

architecture. But because each simulator has both clients and servers, as depicted in

Figure 9.20, this organization could also be seen as a kind of peer-to-peer architecture.

In fact, clients and servers play roles not ascribed to them in traditional client-server

architectures. Servers receive requests from clients, but, unlike typical client-server

architectures, servers may send messages to clients which have not made a request.

For example, when a message is sent by a simulator, the message is transmitted from

one of its d-channel clients to the appropriate d-channel server, which then routes

the message to its destination, which did not made a request to the d-channel server.

9.3. DISTRIBUTED SIMULATION 191

Figure 9.22: Clients

Another example is when the global controller decides to initiate the computation

of the GVT and broadcasts a message. For this reason, clients must be prepared to

receive messages from their server at all times. Therefore, clients act as a bidirectional

network interface for the simulator.

All the components are implemented using sockets for network communication but

these operations are hidden by an abstraction layer.

When the simulator initializes its communications infrastructure, it has received as

parameters the addresses for all relevant servers. These are used by its clients to

establish communication links with those servers.

Clients The class diagram for clients is shown in Figure 9.22. A generic Client

provides means to send messages to the server to which it is connected (its send

method,) as well as to receive messages from the server (its receive method.) The

client's execute method is meant to be overridden by a subclass, providing the

client's logic.

A LoopingClient is a client which loops waiting for messages from the server. When-

ever a message arrives from the server it is placed into a queue. Each message in the

queue is processed by its process_message method, which is meant to be imple-

mented by a subclass. The queue is necessary for bu�ering, as messages may arrive

faster than they are processed. A LoopingClient executes the initialize method

before its main loop in order to perform any initialization protocol required by the

client. Similarly, when the loop ends (if it ends,) the finalize method is executed.

Both of these methods are meant to be implemented by a subclass.

The DChannelClient class is a LoopingClient, where its process_messagesmethod

is in charge of dealing with normal and acknowledgment messages. Whenever a nor-

192 CHAPTER 9. SIMULATING KILTERA MODELS

Figure 9.23: Servers

mal message arrives, it sends back an acknowledgment, and puts the new message in

the scheduler's external input bu�er. When an acknowledgment arrives, it removes

the corresponding message from the list of unacknowledged messages. This class also

provides the interface for sending normal and acknowledgment messages.

The GlobalControlClient is the client in charge of communications with the global

controller. Its process_messages method deals with instructions from the global

controller such as messages related to the computation of the GVT, and orders to

stop the simulator. It also provides the means to report partial traces to the global

controller.

Servers Figure 9.23 depicts the classes for servers. A Server executes a passive loop

waiting for clients to connect. Each time a client connects, a new thread is created

executing the main loop of a ClientHandler instance. A ClientHandler is a kind of

LoopingClient whose role is to deal with messages from a particular Client. The

methods that process messages, initialize and �nalize the client handler are provided

by any subclass of Server.

The DChannelServer receives messages (normal and acknowledgments) and routes

them accordingly. It is also in charge of sending pending messages to any newly

connected DChannelClient.

The GlobalController, in addition to its message-handling role, also implements

a loop which periodically broadcasts a message to compute the GVT. It also keeps

track of all simulators. Whenever a simulator executes a move action it informs the

global controller. Similarly, a simulator informs the global controller when it is idle

or active, so that when all simulators are inactive, the global controller broadcasts a

termination signal.

10
Case study: tra�c

In this chapter we develop a more realistic case study of the use of kiltera as a mod-

elling language for discrete-event systems with dynamic structure. Our application

domain is vehicle tra�c. In this domain we are interested in modelling the �ow of

tra�c over road networks and gathering statistics such as the average transit time

from one area to another.

There are two main approaches to discrete-event modelling of tra�c networks: active

resource and active entity. In the former, static elements such as road segments,

bridges, etc., are active, in the sense that they are modelled by components which

describe the dynamic behaviour of the system, while vehicles are passive, i.e. they are

modelled by data manipulated by the active components. In the latter, the emphasis

is on entities, so the behaviour of vehicles is modelled explicitly, and thus they are

active components, while resources remain passive, and are manipulated by entities.

In this chapter, we develop a model in which both resources and entities are active:

cars have a �life of their own,� performing activities like looking ahead and turning

at intersections, while road segments and intersections act as �containers� where the

cars are located.

In this model mobility plays a central role: a car is linked to the road segment in which

it is located, so moving from one road segment to the next is done by transmitting

these links between adjacent road segments.

Distribution also plays a fundamental role in modelling large tra�c networks. Sites

represent neighbourhoods or cities.

10.1 Overview

The objective of our tra�c model is to describe tra�c �ow through the network of

roads of a city.1 Ideally, in any modelling task, one would like the model to capture as

accurately and realistically as possible the domain of interest. In practice, however,

models are built as abstractions of the system or real-world entity or phenomenon.

There are several reasons for doing this, of which the most important are: 1) to

1Parts of our model are based on [50].

194 CHAPTER 10. CASE STUDY: TRAFFIC

hide irrelevant details and focus only on those aspects of the system in which we

are interested, and 2) to simplify and make the implementation of the model feasi-

ble by avoiding the capture of unnecessary features. For these very reasons we use

abstraction in our modelling of tra�c. Nevertheless, the modular design allows the

re�nement of the model to better capture di�erent aspects of the problem.

In this section we sketch the general requirements which describe the central assump-

tions and abstractions made by our model. Then, we describe the general architecture

of the model and the tool-set developed to implement it. We also provide a descrip-

tion of the core elements of the model.

10.1.1 General requirements and assumptions

The purpose of the model is to be able to determine statistics such as average transit

time between areas and average speed. With this in mind we need to model two

things: the structure of a city as a network of roads, and the dynamic behaviour of

cars in relation to the timing of departure and arrival events.

The network of roads contains two basic elements: road stretches and intersections.

In addition to these, a city has two kinds of buildings: residential and business. Each

of these buildings is �attached� to a road stretch and has a particular address. Each

residential building has one or more cars which are associated with a particular work

destination. The work destination is a business building elsewhere in the city. We

are interested in modelling tra�c during �morning rush hour,� when residents head

to their jobs.

Each intersection has an assigned location with coordinates (x, y) in an underlying

grid. This is used to assign addresses to buildings. Each road stretch can be identi�ed

by a triple (x, y, d) where (x, y) is the location of the intersection from which the

road leaves, and d is one of n, s, e or w for �north,� �south,� �east,� or �west,� denoting

the direction of the road. A building's address is a tuple (x, y, d, n) where (x, y, d) is
the road stretch and n is the number within the road stretch. Cars use addresses to

plan their trip from their homes to their jobs.

A road stretch represents a single lane with a unique direction. To represent multi-

lane roads and two-way roads, road stretches are composed. Our model will not

describe multi-lane roads. Intersections connect at most four two-way road stretches.

A road stretch is divided into one or more road segments of some given length. At

any point in time, a car is located at a road segment.

Cars move at a particular speed, but this can change according to multiple factors,

including the presence of cars ahead, the speed limit of the road, tra�c lights, as

well as the car's own characteristics (maximum and preferred speed.) The car's speed

determines the timing of movement from segment to segment. Whenever a car enters

10.1. OVERVIEW 195

a road segment, it looks ahead to see if there are cars in front in order to adapt its

speed and avoid collision. We assume that if a collision occurs, it blocks the road

inde�nitely. When a car looks ahead, the observation may arrive after some delay,

to represent di�erent visibility conditions on the road. This delay will have an e�ect

on the timing of speed change. We abstract the size of cars, assuming only that

road-segments are only large enough to contain a single car.2

10.1.2 Architecture

The tra�c model consists of a core model with speci�cations of the basic elements

mentioned above (road stretches, intersections, tra�c lights, cars, etc.) and a com-

posite model which links them all together, to form a city layout. This composite

model can be divided into quadrants, i.e. regions to be simulated in separate sites.

We can think of quadrants as neighbourhoods.

We developed a tool-set to automatically generate a simple city layout and the cor-

responding kiltera composite model. Figure 10.1 shows the general architecture of

this tool-set. The work-�ow is as follows: a city layout generator takes as input the

model for the core elements (cars, roads, etc.) and a set of layout parameters (size of

the city, road length, etc.) and produces two outputs: 1) a composite kiltera model,

which consists of one or more modules (one for each quadrant, and a main module

to launch them,) and 2) a data structure encoding the map of the city (as a serial-

ized Python object.) This �map� is accessed by the �city map manager,� a Python

module imported by the kiltera modules and used during simulation-time to perform

path-�nding. The composite model is then passed to the kiltera simulator with some

additional simulation parameters, and this produces a trace for each quadrant and

a global trace for the entire model.

Figure 10.2 shows a snapshot of the city layout generator widget with the map of an

automatically generated layout. Nodes represent intersections and arrows represent

roads with their corresponding directions. This model is divided into six quadrants

(three horizontal by two vertical, separated by black lines.)

10.1.3 The core model

Figure 10.3 shows the link diagram3 depicting the classes of processes representing

the core elements and their links. Static links are shown by solid lines, while dynamic

links are shown by dotted lines. Links represent di�erent but similar relationships

such as:

• being in: a car is in a building, or a car is in a particular road stretch or

2This is, a road segment is larger than a car, but small enough that if a second car enters the
segment it will not be able to stop before colliding.

3This is akin to a UML communication diagram, but technically not the same, as kiltera processes
are not classes in the UML sense.

196 CHAPTER 10. CASE STUDY: TRAFFIC

Figure 10.1: City generation and simulation tool-set.

Figure 10.2: City layout generator widget.

10.1. OVERVIEW 197

Figure 10.3: Link diagram. Solid lines represent static links, while dotted lines rep-
resent dynamic links.

intersection.

• being next to: a residence is next to a road, a road is next to (connected to) an

intersection, etc.

• being part of : a tra�c light is part of an intersection.

The main role of mobility in this model is to capture the dynamic links between the

car and its location. Thus, the movement of a car is represented by moving its link

between adjacent elements (from road to road, road to intersection, etc.) Hence, the

dynamic links are those which represent the �being in� relationship.

This �gure also shows two elements quadrant entry and quadrant exit. These are

entities which are introduced to handle the movement of a car from one quadrant to

another. They will be explained further in section 10.7.

In the kiltera model, links correspond to one or more channel or event and are used

to communicate messages between the corresponding processes. For example, cars

send a message to the road segment in which they are located to inquire if there

are cars ahead. Road segments transmit such messages between them. Tra�c lights

indicate their change of state through those channels as well.

10.1.4 Conventions and implementation notes

A key feature of any realistic language implementation is its ability to be combined or

integrated in one way or another with other languages and tools. Our implementation

of the kiltera simulator provides such ability by allowing to import arbitrary Python

modules into kiltera models. We use this ability to access the automatically generated

city map, and �nd destinations and paths within the map.

We also make use of several built-in functions such as len which returns the length

198 CHAPTER 10. CASE STUDY: TRAFFIC

of a list or tuple, abs which returns the absolute value of its argument, and rand

which returns a pseudo-random number within the interval determined by its two

arguments.

In the remainder we will use ellipsis in a recursive process instantiation P[...] to

denote the instantiation with the same ports as the de�nition in which it occurs. Ad-

ditionally, long lines in the speci�cation are partitioned with the backslash character

\.

10.2 Roads

We begin our description of the model by looking at roads. A car is linked to a road

segment. Cars and segments are modelled by processes, and therefore, car movement

is modelled by transmitting car links between adjacent road segments, as depicted

in Figure 10.4.

The time it takes a car to traverse a segment depends on several factors: the length

of the segments, the car's speed, and whether there are cars ahead or a red tra�c

light. When a car moves it needs to look ahead to see if there are cars in front, so

that it can adapt its speed accordingly. To do this, the car sends a query to the

road segment in which it is currently located. When the road segment receives this

query, it forwards it to the next segment in the road stretch, which then answers4

after some observation delay. This observation delay is used to model the degree of

visibility on the road.

Figure 10.5 shows the structure of a road stretch with two segments and a car moving

between them. Cars are connected by two channels to a road segment in order to

send queries and receive answers. Adjacent road segments are connected by channels

to transmit queries and the cars themselves.

Figure 10.6 shows the interface for both road segments and road stretches. This

interface consists of the following ports:

• car_in: where cars come into the road segment.

• car_out: where cars come out of the segment.

• q_recv: where queries to the road segment come from the previous segment in

the sequence.

• q_send: where queries to the next road segment in the sequence are sent.

• q_rans: where the response to a query to the next segment is received.

• q_sans: where the answer to queries from the previous segment are sent.

4The query could be propagated several segments ahead, but we simplify the model by assuming
that this operation looks only one segment ahead.

10.2. ROADS 199

(a)

(b)

Figure 10.4: Moving car between road segments.

(a)

(b)

Figure 10.5: A two-segment road stretch with a moving car.

200 CHAPTER 10. CASE STUDY: TRAFFIC

Figure 10.6: Interface for road segments and road stretches.

process RoadStretch[car_in, car_out, q_recv, q_sans, \

q_send, q_rans] (location, parameters):

match (location, parameters) with

((x,y,d), (N, length, v_max, observ_delay)) ->

channel array car_trans[N-1], query[N-1], ans[N-1] in

par

RoadSegment[car_in, car_trans[0], q_recv, query[0], \

ans[0], q_sans]

(("road",(x,y),d,0), \

length, v_max, observ_delay)

par

RoadSegment[car_trans[i-1], car_trans[i], query[i-1],

query[i], ans[i], ans[i-1]] \

(("road",(x,y),d,i), \

length, v_max, observ_delay)

for i in range(1,N-1)

RoadSegment[car_trans[N-2], car_out, query[N-2], \

q_send, q_rans, ans[N-2]] \

(("road",(x,y),d,N-1), \

length, v_max, observ_delay)

Figure 10.7: Road stretch model.

10.2.1 Road stretches

The speci�cation of road stretches as a composition of road segments is shown in

Figure 10.7. This speci�cation is parametrized by a location (as described in section

10.1) and parameters which determine the number of segments N which make up the

road stretch, as well as the length of each segment (length,) the speed limit (v_max)

and the observation delay associated with the segments (observ_delay.) The internal

car_trans, query and ans channels connect consecutive segments. They transmit

cars, queries and answers respectively. Note that this speci�cation does not show the

links to cars, since these are dynamic.

10.2.2 Road segments

Road segments have two roles: they act as containers for cars, and they forward car

queries to the segments ahead. Figure 10.8 shows the internal structure of a road

segment model when two cars are in it. It contains the following components:

• CarReceptor: handles incoming cars and detects collisions. It creates a CarHandler

10.2. ROADS 201

Figure 10.8: Structure of a road segment with two cars in it.

process RoadSegment[car_in, car_out, q_recv, q_send, \

q_rans, q_sans] \

(location, length, v_max, observ_delay):

event ask_is_empty, ans_is_empty, add_car, remove_car, \

departure, out_control in

par

Valve[departure, car_out, out_control, remove_car]

CarReceptor[car_in, ask_is_empty, ans_is_empty, add_car, \

out_control, q_rans, q_send, departure] \

(location, length, v_max)

Manager[q_recv, q_sans, ask_is_empty, ans_is_empty, \

add_car, remove_car]([], length, observ_delay)

Figure 10.9: Road segment model.

for each car that arrives.

• Manager: keeps a list of cars in this segment, or more precisely, a list of car

links. It also handles queries from the previous segment.

• Valve: it allows or disallows the departure of a car to the next road seg-

ment. Normally it is open, allowing cars to move freely, but it is closed by

the CarReceptor whenever there is a collision. This provides a mechanism to

cancel previously scheduled car departures.

• CarHandler: forwards queries from its associated car to the next segment. It

also handles a car's request to move to the next segment.

The speci�cation is shown in Figure 10.9. The ports q_send, q_rans and departure

in the CarReceptor instance are simply used by this process to create the CarHandler

with these ports, whenever a car arrives.

202 CHAPTER 10. CASE STUDY: TRAFFIC

process CarReceptor[car_in, ask_is_empty, ans_is_empty, add_car, \

out_control, q_rans, q_send, departure] \

(location, length, v_max):

when

car_in with (to_car, from_car) ->

par

trigger ask_is_empty.

when

ans_is_empty with true ->

trigger add_car with (to_car, from_car)

par

CarHandler[to_car, from_car, \

q_rans, q_send, departure] \

(location, length, v_max)

CarReceptor[...]

| ans_is_empty with false ->

trigger add_car with (to_car, from_car)

trigger out_control with "close"

CarReceptor[...]

Figure 10.10: Car receptor of a road segment.

The CarReceptor component

The CarReceptor process de�nition is shown in Figure 10.10. This de�nition makes

an assumption that whenever there are two cars in a segment, they collide5.

The CarReceptor listens to the car_in port for incoming cars. When a car arrives,

in the form of a pair of channels (to_car, from_car), it asks the Manager if the

segment is currently empty or not. If it is empty, it tells the Manager to add the car

to the list, and creates a new ClientHandler for the newly arrived car. Otherwise,

it adds the car, which causes all cars in the segment to stop, and closes the valve, so

that the cars in the collision cannot leave.

The Manager component

The Manager process de�nition is shown in Figure 10.11. The Manager has a state

variable which contains a list of the cars in the segment. When it is asked if it is

empty on the ask_is_empty port, it answers true or false on the ans_is_empty

port depending on the length of the car list.

When it receives a car through the add_car port, it adds it to the list. If the list is

non-empty, it sends a message to all cars telling them that they crashed.

When a car leaves the segment, the Manager receives a request to remove a car from

the Valve. As a result, the Manager deletes the car from the list. Furthermore, if

5This speci�cation can be re�ned to generalize the model and lift this restriction.

10.2. ROADS 203

process Manager[q_recv, q_sans, ask_is_empty, ans_is_empty, \

add_car, remove_car] \

(cars_present, length, obs_delay):

when

ask_is_empty ->

trigger ans_is_empty with len(cars_present) = 0

Manager[...](cars_present, length, obs_delay)

| add_car with car ->

if len(cars_present) = 0 then

Manager[...]([car;cars_present], length, obs_delay)

else

par

par

trigger to_car with "crash".

for (to_car, from_car) in [car;cars_present]

Manager[...]([car;cars_present], length, obs_delay)

| remove_car with car ->

par

if len(cars_present) <= 1 then

trigger all q_sans with ("green", 0.0).

Manager[...](delete_car(car,cars_present), length, obs_delay)

| q_recv ->

match cars_present with

[] ->

par

schedule all q_sans with ("green", 0.0) \

after obs_delay.

Manager[...](cars_present, length, obs_delay)

| [(to_car, from_car);rest] ->

trigger to_car with "get status, speed"

when from_car with ("status, speed", status, v) ->

let t_until_dep = div(length, v)

in

par

schedule all q_sans with (signal(status), \

t_until_dep) \

after obs_delay.

Manager[...](cars_present, length, obs_delay)

Figure 10.11: Manager of a road segment.

204 CHAPTER 10. CASE STUDY: TRAFFIC

there is no crash, it propagates a signal ("green",0.0) through its q_sans port to

the previous segment to inform any cars waiting behind that the car left the segment

so that they can continue.

When the Manager receives a query from the previous segment through its q_recv

port, it answers on port q_sans a pair (signal,t) where signal is either green or

red and t is a positive real number or infinity. If the segment is empty, or there is

a moving car in the segment, signal is green, which tells cars behind that they can

continue. If there is a stopped car in the segment, signal is red. The variable t is the

time until departure, i.e., an approximation of the time it will take the current car in

the segment to leave, if there is one. It will be 0.0 if there is no car in the segment,

and infinity if there is a stopped car. If there is a car in the segment, the Manager

asks it for its status (moving or stopped) and its speed, to compute the answer. The

signal is obtained by the following function:

function signal(car_status):

if car_status = "stopped" then

"red"

else

"green"

The answer is sent after a delay obs_delay to represent a delay of observation due

to visibility. This answer is sent to all potential receivers as there may be multiple

cars behind looking ahead.

The CarHandler component

The CarHandler process de�nition is shown in Figure 10.12. This process starts by

sending an "entered" message to the car, informing it of its location, the length and

speed limit of the segment. Then it becomes HandleCarMessages. When it receives

a "look ahead" request from the car, it forwards it to the next segment through the

q_send port. When the answer arrives through the q_rans port, it forwards it to the

car. Note that messages can come through q_rans even if there was no car in the

segment making the request. This is because if there is a car in the next segment,

when it moves out, it propagates back a message ("green",0.0) as it leaves (when

the Manager of the next segment receives a remove_car.) This also occurs if there is

a tra�c light ahead which changes from red to green.

Finally, when a car is ready to leave the segment, it sends it a �move� order. When

the CarHandler receives such order, it sends the car links to the departure channel,

which, if not blocked by the Valve, will leave for the next segment. In this case, the

CarHandler terminates.

10.3. CARS 205

process CarHandler[to_car, from_car, q_rans, q_send, departure] \

(location, length, v_max):

trigger to_car with ("entered", location, length, v_max)

HandleCarMessages[to_car, from_car, q_rans, q_send, departure]

process HandleCarMessages[to_car, from_car, q_rans, q_send, \

departure]:

when

from_car with ("look ahead", anything) ->

trigger q_send

HandleCarMessages[...]

| q_rans with observation ->

trigger to_car with observation

HandleCarMessages[...]

| from_car with "move" ->

trigger departure with (to_car, from_car)

done

Figure 10.12: Car handlers.

process Valve[input, output, control, remove]:

when

input with entity ->

trigger remove with entity

trigger output with entity

Valve[input, output, control, remove]

| control with "close" ->

done

Figure 10.13: Manager of a road segment.

The Valve component

The Valve process de�nition is shown in Figure 10.13. Whenever an open valve

receives a car through its input port, it tells the Manager to remove it from the

car list and sends the car through the segment's car_out port to the next segment.

When the valve receives a �close� request on its control port, it simply closes by

terminating. This means that whenever there is a collision, a road segment becomes

permanently blocked.6

10.3 Cars

We now turn our attention to cars. The speci�cation of cars is shown in Figure

10.14. Its interface consists of a pair of ports from_seg and to_seg used to ex-

change messages with its current location (road segment, building, etc.) It has two

state variables: an identi�er id and variable state_or_parameters which contains

6To model the reopening of roads, the valve process would also handle �open� requests, and
instead of terminating, it would simply switch between �open� and �closed� modes.

206 CHAPTER 10. CASE STUDY: TRAFFIC

process Car[from_seg, to_seg](id, state_or_parameters):

if state_or_parameters[0] = "starting" then

StartUp[from_seg, to_seg](state_or_parameters[1])

else

CarMainLoop[from_seg, to_seg](state_or_parameters)

Figure 10.14: Car speci�cation.

either start-up parameters (described below,) or the state proper, a 10-tuple whose

components are:

• status: either "moving" or "stopped".

• v: the car's current speed.

• v_pref: the car's preferred speed.

• dv_pos_max: the car's maximum speed increase in a road segment.

• dv_neg_max: the car's maximum speed decrease in a road segment.

• start_del: amount of delay before the car starts moving when it is stopped.

• dep_time: the car's departure time from its residence.

• distance: the distance covered from the car's residence.

• rem_path: the remaining path to reach the car's destination, as a list of �di-

rections� prescribing which way to turn at each intersection as follows: "L" for

left, "R" for right, and "S" for straight.

• destination: the address of the business building which is the car's work

destination.

The behaviour of cars is summarized by the diagram in Figure 10.15 which shows the

modes that the car goes through during its life-cycle. We now describe these modes.

Start-up

When the car is created, its state_or_parameters variable is given initialization

parameters, including the departure time and location, and ranges from which to

initialize the remaining state variables. Figure 10.16 shows the speci�cation for the

start up process. This process simply creates the car's initial state from these pa-

rameters. In particular, it invokes the external Python functions get_destination

and find_path from the city_map_manager module which has access to the map

produced by the city layout generator. The get_destination function returns the

address of the business building assigned to the car by the city generator. The

find_path returns a path between two given addresses as a list of directions "L",

"R" and "S" as explained above. The path-�nding algorithm used is A* [19] with

10.3. CARS 207

Figure 10.15: Car's life-cycle: modes diagram.

process StartUp[from_seg, to_seg](car_parameters):

match car_parameters with

(dep_time, location, (v_init_range, v_pref_range, dv_pos_range, \

dv_neg_range, start_del_range)) ->

let dest = get_destination(id)

in

let v = rand(v_init_range[0], v_init_range[1])

and v_pref = rand(v_pref_range[0], v_pref_range[1])

and dv_pos_max = rand(dv_pos_range[0], dv_pos_range[1])

and dv_neg_max = rand(dv_neg_range[0], dv_neg_range[1])

and start_del = rand(start_del_range[0], start_del_range[1])

and distance = 0.0

and rem_path = find_path(location, dest)

in

let state = ("stopped", v, v_pref, dv_pos_max, dv_neg_max, \

start_del, dep_time, distance, rem_path, dest)

in

par

schedule to_seg with "ready" after 0.01.

when from_seg with ("go", location, length, v_max) ->

trigger to_seg with ("look ahead", "S")

WaitForObservation[from_seg, to_seg] \

(state, location, length, v_max)

Figure 10.16: Car start-up process.

208 CHAPTER 10. CASE STUDY: TRAFFIC

process CarMainLoop[from_seg, to_seg](state):

when

from_seg with ("entered", location, length, v_max) ->

trigger to_seg with ("look ahead", get_direction(state))

WaitForObservation[from_seg, to_seg] \

(state, location, length, v_max)

| from_seg with "crash" ->

CarMainLoop[...](stop_car(state))

| from_seg with "get status, speed" ->

trigger to_seg with ("status, speed", state[0], state[1])

CarMainLoop[...](state)

| from_seg with "snapshot" ->

trigger to_seg with (id, state)

CarMainLoop[...](state)

| from_seg with "leave quadrant" ->

done

Figure 10.17: Car main loop.

euclidean distance to the destination as heuristic.7

After assigning the values to the initial state variables it tells the residence that it is

ready to leave. When the residence answers with a go ahead message ("go") it sends

a look ahead query and goes into the WaitForObservation mode, explained below.

Car main loop

The CarMainLoop process shown in Figure 10.17 describes how a car reacts to mes-

sages from the road segment (or building or intersection) in which it is located.

When the car enters a road segment (or intersection,) it receives an message tagged

"entered" from the segment which comes with the location, length and speed limit

for the segment (see Figure 10.12.) Then, the car sends a look ahead query to the

road segment (or intersection.) The query has an additional argument specifying

where to look: "L" for left, "R" for right, and "S" for straight. If the car is in a

road stretch rather than an intersection, it will always look straight ahead. Hence,

this direction argument is only used by intersections (see section 10.5.) The auxiliary

function get_direction extracts the appropriate direction from the path component

of the car's state. After sending the query, the car goes into the WaitForObservation

mode, explained below.

The car may receive a message from the road segment inquiring about its current

status and speed (which would have been the result of a car behind looking ahead,

see the case q_recv in Figure 10.11.) The car extracts this information from its state

7While the model �xes the path to the destination when the car is created, it is straightforward
to re�ne the model so that the path is recomputed whenever a road-block is detected.

10.3. CARS 209

process WaitForObservation[from_seg, to_seg] \

(state, location, length, v_max):

let traversal_time = div(length, car_speed(state))

in

when

from_seg with ("green", t_no_coll) after elapsed ->

if t_no_coll = 0.0 then

AdaptSpeed[from_seg, to_seg] \

(state, location, length, v_max, elapsed, \

update_speed_no_car_ahead, 0.0)

else

AdaptSpeed[from_seg, to_seg] \

(state, location, length, v_max, elapsed, \

update_speed_car_ahead, t_no_coll)

| from_seg with ("red", anything) after elapsed ->

StopOnRed[from_seg, to_seg] \

(state, location, length, elapsed)

| from_seg with "crash" ->

CarMainLoop[from_seg, to_seg](stop_car(state))

| from_seg with "get status, speed" ->

trigger to_seg with ("status, speed", state[0], state[1])

WaitForObservation[...](state, location, length, v_max)

timeout traversal_time ->

let new_state = update_departing_car(state, 0.0, length)

in

trigger to_seg with "move"

CarMainLoop[from_seg, to_seg](new_state)

Figure 10.18: Waiting for an observation.

and sends it back to the road segment where it is received by the Manager directly,

which in turn, forwards it back to the previous segment.

When the car receives a "crash" message from the segment, it sets its speed to 0.0

and changes its status to "stopped" (this is done by the auxiliary function stop_car.)

The car may also receive a "snapshot" request, in which case it sends back its current

state. This is used when the car is leaving a quadrant, as explained in section 10.7.

It may also receive a "leave quadrant" order, which simply causes the process to

terminate.

Waiting for an observation

Once the car has entered a segment and sends a look ahead query, it waits for the

answer. This is speci�ed in Figure 10.18. The car schedules a departure from the

segment after traversal_time which is the length of the segment over its current

speed (the timeout clause of the listener.) If the segment does not respond to the

query, the car will leave at that time by sending a "move" to the road segment

210 CHAPTER 10. CASE STUDY: TRAFFIC

process AdaptSpeed[from_seg, to_seg] \

(state, location, length, v_max, elapsed, \

compute_new_speed, t_no_coll):

match state with

(status, v_old, v_pref, dv_pos_max, dv_neg_max, start_del, \

dep_time, distance, rem_path, destination) ->

let remaining_x = length - elapsed * v_old

in

let v_new = compute_new_speed(v_old, v_pref, v_max, \

dv_pos_max, dv_neg_max, \

remaining_x, t_no_coll)

in

let new_state = update_departing_car(state, v_new \

- v_old, length)

and t_until_dep = div(remaining_x, v_new)

in

ScheduleDeparture[from_seg, to_seg] \

(new_state, location, t_until_dep)

Figure 10.19: Adapting the car's speed.

which in turn will send the car's links to the next segment (see Figure 10.12.) The

update_departing_car auxiliary function simply adds the length of the segment to

the total distance travelled.

If the car receives an answer to the query before the traversal_time timeout, the

message will determine how the car will adapt its speed. If the answer is ("green",0.0)

it means there is no car ahead, and thus, the car can increase its speed (depending

on the speed limit and maximum speed increase allowed.) If it is ("green",t) where

t is a positive number or infinity, it means there is a car ahead, and thus the car

must adapt its speed accordingly, possibly by slowing down, or stopping altogether.

The value t is the minimum time the car must stay in the current road segment to

avoid a collision. In either case, the car goes to the AdaptSpeed mode, but in the �rst

case, the auxiliary function update_speed_no_car_ahead will be used, whereas in

the second case, update_speed_car_ahead will be used to compute the new speed

and schedule the car's departure accordingly. We explain these functions below.

If the query's answer is ("red",t), it means that either there is a red tra�c light or

a stopped car ahead. In any case, the car must stop. This is done by the StopOnRed

process.

In this mode, the car can also receive "crash" and "get status, speed" messages,

which are dealt with in the same manner as in the main loop.

Adapting the car's speed

Figure 10.19 shows the process of adapting the car's speed. This process receives as

10.3. CARS 211

function update_speed_no_car_ahead(v, v_pref, v_max, \

dv_pos_max, dv_neg_max, \

remaining_x, t_no_coll):

let v1 = min(v_pref, v_max)

in

if v <= v1 then

v + min(v1 - v, dv_pos_max)

else

v - min(v - v1, dv_neg_max)

Figure 10.20: Updating the speed when there are no cars ahead.

parameters elapsed which is the time it took to look ahead, i.e., the observation

delay of the next segment, t_no_coll, the minimum time the car must stay in the cur-

rent road segment to avoid a collision, and compute_new_speed which is the function

that determines how the car adapts its speed. It is either update_speed_no_car_ahead

or update_speed_car_ahead. When the car receives the observation it has been in

the segment for an amount of time elapsed at a speed v_old, and therefore it covered

a distance of elapsed * v_old during this time. Hence the remaining distance in

the segment remaining_x is length - elapsed * v_old. This is used to compute

the new speed v_new according to compute_new_speed as explained below. This, in

turn, is used to obtain the time until departure t_until_dep and schedule the car's

departure from the segment accordingly.

We now consider the two possible cases: whether there is a car ahead or not.

In the the case when there is no car ahead, the car would like to go at its preferred

speed v_pref, but it cannot exceed the speed limit v_max so it will attempt to set

its speed to min(v_pref, v_max). However, the car may not be able to increase

(or decrease) its speed enough due to its acceleration, represented in our model

by dv_pos_max (dv_neg_max resp.) Hence the compute_new_speed function will be

the function shown in Figure 10.20, where v is the car's current speed. This case

is depicted in Figure 10.21. The left-hand side of the �gure describes the situation

when the car can increase its speed, thus resulting in a shorter time of departure

t_until_dep, while the right-hand side represents the situation when the car must

decrease its speed (for example due to the segment's speed limit.)

The case when there is a car ahead is depicted in Figure 10.22. In this case, in addition

to the preferred speed and the speed limit, the car has to take into account the speed

of the car in front, and in particular the minimum time the car must remain in this

segment to avoid a collision (t_no_coll,) which was given by the response to the look

ahead query. The car's target speed is min(v_pref, v_max), which will make the car

leave the segment at a time remaining_x / min(v_pref, v_max). But this might

be too early and result in a collision. Thus, the appropriate time to leave the segment

212 CHAPTER 10. CASE STUDY: TRAFFIC

Figure 10.21: Adapting speed with no cars ahead. (Image taken from [50].)

Figure 10.22: Adapting speed with cars ahead. (Image taken from [50].)

10.3. CARS 213

function update_speed_car_ahead(v, v_pref, v_max, \

dv_pos_max, dv_neg_max, \

remaining_x, t_no_coll):

let v1 = div(remaining_x, max(t_no_coll, \

div(remaining_x, \

min(v_pref, v_max))))

in

if v <= v1 then

v + min(v1 - v, dv_pos_max)

else

v - min(v - v1, dv_neg_max)

Figure 10.23: Updating the speed when there is a car ahead.

process ScheduleDeparture[from_seg, to_seg] \

(state, location, t_until_dep):

par

schedule to_seg with "move" after t_until_dep.

CarMainLoop[from_seg, to_seg](state)

Figure 10.24: Scheduling the car's departure.

must be the maximum between this and t_no_coll. Therefore, the updated speed

should be remaining_x / max(t_no_col, remaining_x / min(v_pref, v_max)).

Furthermore, as in the previous case, the new speed will be constrained by the

maximum speed increase (or decrease) allowed. Figure 10.23 shows the function that

will be used for compute_new_speed. Note that collisions are still possible, as the

car may not be able to decelerate enough.

Once the new speed v_new is computed, the time until departure t_until_dep is

simply remaining_x / v_new, and the car goes into the ScheduleDeparture mode.

Scheduling the car's departure

The process of scheduling the car's departure from the segment is shown in Figure

10.24. This simple schedules a "move" message to the road segment at the computed

time until departure, and goes back to the main loop. We will revisit this mode when

we introduce buildings and intersections.

Stop on red

When a car sees a stopped car ahead or a red tra�c light it attempts to stop. Ideally it

will stop in time, but it may be unable to do so due to its speed and maximum deceler-

ation dv_neg_max. Hence the car's new speed will be v_old - min(v_old, dv_neg_max).

If the new speed is 0.0, the car's status is updated to "stopped" and it goes into the

WaitForGreen mode. Otherwise, it will schedule a departure according to the new

speed. The speci�cation for this process is shown in Figure 10.25.

214 CHAPTER 10. CASE STUDY: TRAFFIC

process StopOnRed[from_seg, to_seg] \

(state, location, length, elapsed):

match state with

(status, v_old, v_pref, dv_pos_max, dv_neg_max, start_del, \

dep_time, distance, rem_path, destination) ->

let v_new = v_old - min(v_old, dv_neg_max)

in

if v_new = 0.0 then

let new_state = ("stopped", v_new, v_pref, dv_pos_max, \

dv_neg_max, start_del, dep_time, \

distance, rem_path, destination)

in

WaitForGreen[from_seg, to_seg] \

(new_state, location, length)

else

let new_state = update_departing_car(state, -0.01, length)

and t_until_dep = div(elapsed * v_old, v_new)

in

par

ScheduleDeparture[from_seg, to_seg] \

(new_state, location, t_until_dep)

CarMainLoop[from_seg, to_seg](new_state)

Figure 10.25: Stopping on red.

Waiting for green

In this mode, the car passively waits for a "green" signal from the segment in front.

Such signal will be propagated by the next segment whenever the car in front leaves

the segment (see the remove_car case of the Manager in Figure 10.11,) or whenever

there is a tra�c light in front which changes from red to green. When the green

signal arrives, a departure is scheduled after a small delay start_del. This models

the reaction time of the car's driver. This speci�cation is shown in Figure 10.26. In

this mode, the car may be hit by another car coming from the previous segment,

and therefore it may receive a "crash" message from the road segment. It may also

receive a query for its status and speed, when a car behind is looking ahead.

10.4 Buildings

We now describe the models of buildings, how they are linked to the other compo-

nents and how other components (cars and roads) interact with buildings.

As mentioned in the overview, we have two kinds of buildings: residential and busi-

ness. The main di�erence between the two, from the point of view of our model,

is that the former act as �car generators� while the latter act as �car receptors� or

�collectors.� But aside from these roles, they are very similar.

10.4. BUILDINGS 215

process WaitForGreen[from_seg, to_seg](state, location, length):

when

from_seg with ("green", 0.0) ->

let new_state = update_departing_car(state, 0.01, length)

and start_del = state[5]

in

ScheduleDeparture[from_seg, to_seg] \

(new_state, location, start_del)

| from_seg with "crash" ->

CarMainLoop[from_seg, to_seg](stop_car(state))

| from_seg with "get status, speed" ->

trigger to_segment with ("status, speed", state[0], state[1])

WaitForGreen[from_seg, to_seg](state, location, length)

Figure 10.26: Waiting for green.

Figure 10.27: Building-road links.

We need to address the following issues: 1) how are buildings linked to roads? 2) how

do cars know when they have reached their destination and how they exit the road

and go into a building? To answer them we will need to re�ne our models for cars

and roads.

10.4.1 Connecting buildings and roads

In order to allow cars to go from buildings to roads and vice-versa we need to �hook-

up� buildings and roads. In particular, buildings need to have an exit port hooked

up to a corresponding entry port in the road, and dually, they need an entry port

hooked up to a corresponding exit port in the road. Furthermore, a car in a building

must be able to look at the road before going in. Therefore, buildings need a q_send

port to send queries and a q_rans port to receive the answers. Figure 10.27 shows

the links between a building and a road stretch with these ports. Note that the

links are between a building and a road stretch. We need to re�ne the RoadStretch

speci�cation to account for these new ports, as well as the RoadSegment model.

216 CHAPTER 10. CASE STUDY: TRAFFIC

process RoadSegment[car_in, car_out, car_exit, q_recv, q_send, \

q_rans, q_sans] \

(location, length, v_max, observ_delay):

event ask_is_empty, ans_is_empty, add_car, remove_car, \

departure, out_control, exit in

par

Valve[departure, car_out, out_control, remove_car]

Valve[exit, car_exit, out_control, remove_car]

CarReceptor[car_in, ask_is_empty, ans_is_empty, add_car, \

out_control, q_rans, q_send, departure, exit] \

(location, length, v_max)

Manager[q_recv, q_sans, ask_is_empty, ans_is_empty, \

add_car, remove_car]([], length, observ_delay)

Figure 10.28: Road segments re�ned: exits.

Re�ning RoadSegment

First, we add a car_exit port to RoadSegment. When the car wants to exit the road

segment, it will send a message tagged "exit" to its CarHandler which will then

attempt to send the car through its internal channel exit, via a Valve, to car_exit

(just as the Valve associated to car_out.) Therefore we add the following alternative

to the listener of HandleCarMessages (Figure 10.12:)

| from_car with "exit" ->

trigger exit with (to_car, from_car)

done

This new RoadSegment speci�cation is shown in Figure 10.28.

Re�ning RoadStretches

When a car wants to leave a building, it has to look ahead by sending a query to the

road segment in front of the building. Hence the road segment may receive queries

both from the building and the previous segment. Similarly, a road segment may

receive a car coming from a building or from the previous segment. This means that

there may be multiple simultaneous inputs on the q_recv and car_in ports of a

road segment. In order to deal with such simultaneous input messages, we introduce

two special components marked M on Figure 10.27. These components are �merge�

processes as de�ned in Figure 10.29. An instance of Merge has two input ports and

whenever it receives input on one of its ports, it forwards it and returns to its initial

state. 8

We also introduce a component labelled F, which is a �forwarder� instance (see Figure

8Note that this is not a fair merge, but in this model this is not an issue, since it is not possible
for two cars to arrive at the merge on the same input port at exactly the same time.

10.4. BUILDINGS 217

process Merge[in1, in2, out]:

when

in1 with data ->

lpar

Merge[in1, in2, out]

trigger out with data.

| in2 with data ->

lpar

Merge[in1, in2, out]

trigger out with data.

Figure 10.29: Merging streams.

process Forwarder[inp, out]:

when inp with data ->

trigger output with data

Forwarder[inp,out]

Figure 10.30: Forwarders.

10.30.) This process is not strictly necessary, but if we do not introduce it, then the

�answer� channel from a road segment to the previous segment would be the same as

the �answer� channel to the building, which means that it would be external to the

RoadStretch, violating the model's encapsulation9. So for the sake of modularity

and encapsulation, we make the �answer� channel internal to the road stretch and

the forwarder simply listens to this channel and sends the messages out. The revised

RoadStretch model includes the appropriate Merge and Forwarder instances. This

is shown in Figure 10.31.

10.4.2 Reaching a destination

Buildings have assigned addresses, which are used for the purpose of path �nding.

A car must be able to detect when it has reached its destination. Let us recall that

the destination's address, as a tuple (x, y, d, n) is part of the car's state. Since a

building's address is the same as the location assigned to the road segment to which

it is connected, a car can determine if it has reached it's destination by looking at the

segment's location. If the car's destination matches the segment's location, then the

car can exit on that road segment, after the appropriate amount of time. Hence, we

re�ne the ScheduleDeparture mode of cars (see Figure 10.24,) by the speci�cation

shown in Figure 10.32. This speci�cation shows that if the car's location is a road,

it is matched against the destination, and if they are the same, the car schedules an

"exit" request on the segment. Otherwise, it schedules a "move" request, to continue

9A third process would be able to send �false� answers through the exposed channel.

218 CHAPTER 10. CASE STUDY: TRAFFIC

process RoadStretch[car_in, car_out, q_recv, q_sans, q_send, \

q_rans, entries, exits, q_recv_bs, q_sans_bs] \

(location, parameters):

match (location, parameters) with

((x,y,d), (N, length, v_max, obs_delay)) ->

channel array car_mi[N-1], car_mo[N], query_mi[N-1], \

query_mo[N], ans[N-1] in

par

Merge[car_in, entries[0], car_mo[0]]

Merge[q_recv, q_recv_bs[0], query_mo[0]]

RoadSegment[car_mo[0], car_mi[0], exits[0], \

query_mo[0], query_mi[0], ans[0], q_sans] \

(("road",(x,y),d,0),length,v_max,obs_delay)

Forwarder[q_sans, q_sans_bs[0]]

par

par

Merge[car_mi[i-1], entries[i], car_mo[i]]

Merge[query_mi[i-1], q_recv_bs[i], query_mo[i]]

RoadSegment[car_mo[i], car_mi[i], exits[i], \

query_mo[i], query_mi[i], ans[i], ans[i-1]] \

(("road",(x,y),d,i), length,v_max,obs_delay)

Forwarder[ans[i-1], q_sans_bs[i]]

for i in range(1,N-1)

Merge[car_mi[N-2], entries[N-1], car_mo[N-1]]

Merge[query_mi[N-2], q_recv_bs[N-1], query_mo[N-1]]

RoadSegment[car_mo[N-1], car_out, exits[N-1], \

query_mo[N-1], q_send, q_rans, ans[N-2]] \

(("road",(x,y),d,N-1),length,v_max,obs_delay)

Forwarder[ans[N-2], q_sans_bs[N-1]]

Figure 10.31: Revised road stretch.

10.4. BUILDINGS 219

process ScheduleDeparture[from_seg, to_seg] \

(state, location, t_until_dep):

match location with

("road",(x,y),d,n) ->

let destination = state[9]

in

match destination with

((x,y),d,n) ->

par

schedule to_seg with "exit" after t_until_dep.

CarMainLoop[from_seg, to_seg](state)

| something_else ->

par

schedule to_seg with "move" after t_until_dep.

CarMainLoop[from_seg, to_seg](state)

| ("residence",(x,y),d,n) ->

par

schedule to_seg with "move" after t_until_dep.

CarMainLoop[from_seg, to_seg](state)

Figure 10.32: Scheduling a car's departure re�ned: reaching a destination.

to the next segment. The de�nition also shows that if the car is in a residence, it

simply schedules a "move" request.

10.4.3 Residences and business buildings

A residence is a simple car generator. Once a car has been created, it needs to look

ahead to the road before exiting the building. Therefore, a Residence process has

a car handler like those of RoadSegment components (see Figure 10.12,) to forward

queries to the road segment. The core of its speci�cation is the following:

event to_car, from_car in

par

Car[to_car, from_car](id, ("starting", params))

when from_car with "ready" ->

CarHandler[to_car, from_car]

This creates the car links and the instance of the Car process and waits for the car

to be ready to create the car handler. The only di�erence between a residence's car

handler and those of road segments is that the �rst action of the residence's car

handler is to send a message tagged with "go" to the car.

Business buildings act as receptors. Figure 10.33 shows their de�nition. They keep

track of time to mark an arrival. They ask each car for a snapshot of its state to

obtain the distance travelled by the car. These can be used to compute di�erent

220 CHAPTER 10. CASE STUDY: TRAFFIC

process BussinessBuilding[exit, entry, q_send, q_rans] \

(global_time, location):

when entry with (to_car, from_car) after elapsed ->

let arrival_time = global_time + elapsed

in

trigger to_car with "snapshot"

when from_car with snapshot ->

event car_arrived in

trigger car_arrived with (snapshot, arrival_time)

BussinessBuilding[exit, entry, q_send, q_rans] \

(arrival_time, location)

Figure 10.33: Business buildings.

(a) Tra�c �ow (b) Process interface

Figure 10.34: Basic intersection.

statistics. Statistics are computed by inspecting the event trace produced by the

simulator for car_arrived events.

10.5 Intersections

Intersections are where road stretches meet. Figure 10.34(a) shows a basic intersec-

tion (BI) with four road stretches connected and their corresponding direction of

tra�c �ow. All intersections in our model will be based on this basic intersection.

10.5.1 Basic intersections

A basic intersection is essentially a road segment with two inputs and two outputs

for cars. 10.34(b) shows the interface of the model for basic intersections. It has the

same components: a CarReceptor, a Manager, two output Valve components and a

CarHandler for each car in the intersection.

The main di�erence is in the car handler component. Figure 10.35 shows the spec-

i�cation for intersection car handlers. The comming_from parameter of this process

records the direction (n for north or w for west,) where the car is coming from10,

10Intersections where tra�c �ow comes from either east or south are modelled as �rotations� of

10.5. INTERSECTIONS 221

process InterHandleCarMessages[to_car, from_car, q_rans_from_s, \

q_rans_from_e, q_send_to_s, q_send_to_e, \

departure_s, departure_e] (comming_from):

when

from_car with ("look ahead", going_to) ->

match (comming_from, going_to) with

("n", "S") ->

trigger q_send_to_s

InterHandleCarMessages[...]

| ("n", "L") ->

trigger q_send_to_e

InterHandleCarMessages[...]

| ("w", "S") ->

trigger q_send_to_e

InterHandleCarMessages[...]

| ("w", "R") ->

trigger q_send_to_s

InterHandleCarMessages[...]

| from_car with ("move", turn) ->

match (comming_from, turn) with

("n", "S") ->

trigger departure_s with (to_car, from_car)

done

| ("n", "L") ->

trigger departure_e with (to_car, from_car)

done

| ("w", "S") ->

trigger departure_e with (to_car, from_car)

done

| ("w", "R") ->

trigger departure_s with (to_car, from_car)

done

| q_rans_from_s with observation ->

trigger to_car with observation

InterHandleCarMessages[...]

| q_rans_from_e with observation ->

trigger to_car with observation

InterHandleCarMessages[...]

Figure 10.35: Intersection car handlers.

222 CHAPTER 10. CASE STUDY: TRAFFIC

and is initialized by the intersection's car receptor, as described below. When a car

is on an intersection, it looks in the direction where it wants to go, and sends the

car handler a message ("look ahead",d) where d is the direction where it wants

to look. The target direction is one of the following: L for left, R for right, or S for

straight. Based on this direction and the direction where the car is coming from,

the car handler sends the query in the appropriate direction. Similarly, when the car

wants to move, it sends a message ("move",d) where d is as before. The car handler

then sends the car links to the appropriate departure port.

The car receptor component can receive a car on either the car_in_from_n and

car_in_from_w. Hence its structure is as follows:

process InterCarReceptor[...]:

when

car_in_from_n with (to_car, from_car) ->

... InterCarHandler[...]("n") ...

| car_in_from_w with (to_car, from_car) ->

... InterCarHandler[...]("w") ...

Each branch of this speci�cation is analogous to the road segment's car receptor

(Figure 10.10) but starts the corresponding intersection's car handlers with the ap-

propriate parameter according to the direction where the car is coming from.

The intersection's manager component is analogous to the road segment's manager

(Figure 10.11.) The main di�erence is that it handles queries coming from both north

(on the q_recv_from_n port) or west (on the q_recv_from_w.) The other di�erence

is that on a remove_car event, it sends a ("green",0.0) message to north and west.

10.5.2 Turning at intersections

We need to re�ne the car speci�cation to turn at intersections according to the car's

assigned path. In particular we re�ne the ScheduleDeparture component (Figure

10.32,) as shown in Figure 10.36. This speci�cation adds an branch to the match for

the case when the car's location is an intersection. In such case, it uses the auxiliary

functions get_direction and take_first_dir which extract the �rst item of the

path (one of L, R or S) and schedules a "move" message to the car handler with this

direction.

10.5.3 Other intersection types

As mentioned before, di�erent types of intersection are built from the basic intersec-

tions described above. We consider di�erent variations on the intersections, as shown

in Figures 10.37, 10.38 and 10.39:

this basic intersection. See section 10.5.3.

10.5. INTERSECTIONS 223

process ScheduleDeparture[from_seg, to_seg] \

(state, location, t_until_dep):

match location with

("road",(x,y),d,n) ->

...

| ("intersection",(x,y)) ->

let dir = get_direction(state)

and updated_state = take_first_dir(state)

in

par

schedule to_segment with ("move", dir) after t_until_dep.

CarMainLoop[...](updated_state)

| ("residence",(x,y),d,n) ->

...

Figure 10.36: Turning at intersections.

Figure 10.37: Composite intersections.

• Composite: intersections where one or more connected roads are two-way, i.e.,

a pair of road stretches with opposite directions,

• Incomplete: intersections with less than two incoming and/or two outgoing

road stretches, including incomplete-composite intersections,

• Rotations: same as any other intersection, but rotated with respect to the

�north� direction of the map, resulting in tra�c �ow from di�erent directions.

This includes rotations of incomplete and composite intersections, yielding all

possible combinations.

Rotations are achieved by wrapping the basic intersection with a new interface, and

making the appropriate connections, as shown in Figure 10.40. This is implemented

with the following pattern (excluding the query ports for readability:)

process Intersection_ne_sw[from_n, from_e, to_s, to_w]:

BasicIntersection[from_e, from_n, to_w, to_s]

Incomplete intersections are constructed by wrapping the intersection with an in-

terface that hides the ports from the appropriate direction. For example, the �rst

224 CHAPTER 10. CASE STUDY: TRAFFIC

Figure 10.38: Incomplete intersections.

Figure 10.39: Rotations of basic intersections.

Figure 10.40: Rotations' internal links: rotated intersection in terms of a basic inter-
section.

10.6. TRAFFIC LIGHTS 225

Figure 10.41: Double intersections.

intersection in Figure 10.38 is speci�ed as follows (excluding the query ports for

readability:)

process Intersection_w_se[form_w, to_s, to_e]:

event from_n in

Intersection_nw_se[from_n, from_w, to_s, to_e]

Finally, a composite intersection is formed by connecting rotations of the basic in-

tersection. Consider the double intersection in Figure 10.41. In this case, B is the

same as A, but rotated 90 degrees counter-clockwise. Such intersection is speci�ed

as follows (excluding the query ports for readability:)

process DoubleIntersection[from_n, from_s, from_w, \

to_n, to_s, to_e]:

event hidden in

par

Intersection_nw_se[from_n, from_w, to_s, hidden]

Intersection_sw_ne[from_s, hidden, to_n, to_e]

10.6 Tra�c lights

In order to control tra�c �ow on intersections we introduce models of tra�c lights. A

basic intersection can be extended with a pair of tra�c lights, one for each incoming

direction. A tra�c light should be able to answer queries about its state ("green",

"yellow, or "red",) whenever a car looks ahead to the intersection that contains

the tra�c light. Whenever the tra�c light becomes "green" it should send a signal

to any cars waiting in the corresponding road stretch. Furthermore, the two tra�c

lights in the intersection should be coordinated so that they are not in "green" at

the same time. For this reason we introduce a Coordinator process to synchronize

tra�c lights. The composition of a Coordinator and two tra�c lights is called a

CompositeTrafficLight.

226 CHAPTER 10. CASE STUDY: TRAFFIC

process Green[coordinator, control, query, answer]:

trigger all control with "green"

InGreen[coordinator, control, query, answer]

process InGreen[coordinator, control, query, answer]:

when

coordinator with "yellow" ->

Yellow[coordinator, control, query, answer]

| query ->

trigger answer with "green"

InGreen[coordinator, control, query, answer]

Figure 10.42: Green mode of a tra�c light.

10.6.1 Simple tra�c lights

A simple tra�c light's interface consists of the following ports:

• coordinator: where it receives the signal to change colour from the coordina-

tor.

• control: where it broadcasts its state (colour)

• query: where it receives queries

• answer: where it answers queries

A tra�c light's speci�cation consists of a process for each state (Green, Yellow and

Red, and the following which sets up the tra�c light's initial state:

process TrafficLight[coordinator, control, query, answer](initial):

match initial with

"green" ->

Green[coordinator, control, query, answer]

| "red" ->

Red[coordinator, control, query, answer]

Figure 10.42 shows the speci�cation for the Green mode. The speci�cations for

Yellow and Red are analogous. When the tra�c light enters the Green mode it

broadcasts a signal through its control mode so any process waiting for this change

is woken up. Then the tra�c light goes into the InGreen mode where it waits for

queries and the message from the coordinator instructing the tra�c light to change

colours.

10.6.2 Coordinator and composite tra�c lights

The model of coordinators is shown in Figure 10.43. The coordinator has two ports:

one for each tra�c light. It is also parametrized by the expected delays for each

10.6. TRAFFIC LIGHTS 227

process Coordinator[semaphore1, semaphore2] \

(delay_green, delay_yellow):

trigger semaphore1 with "green"

wait delay_green

trigger semaphore1 with "yellow"

wait delay_yellow

trigger semaphore1 with "red"

Coordinator[semaphore2, semaphore1] \

(delay_green, delay_yellow)

Figure 10.43: Tra�c light coordinator.

process CompositeTrafficLight[control1, query1, answer1, \

control2, query2, answer2] \

(delay_green, delay_yellow):

event sem1, sem2 in

par

Coordinator[sem1, sem2](delay_green, delay_yellow)

TrafficLight[sem1, control1, query1, answer1]("red")

TrafficLight[sem2, control2, query2, answer2]("red")

Figure 10.44: Composite tra�c light.

colour. Note that only the delay for green and yellow are speci�ed, as the delay for

red on one tra�c light must equal the time the other tra�c light spends in green

and yellow. The coordinator triggers the appropriate events for changing the state

of the tra�c light hooked up to the �rst port. After it tells the �rst tra�c light to

go to red, it loops back to the initial state but with its two ports switched, so the

second tra�c light becomes green and proceeds in the same manner.

The speci�cation for composite tra�c lights is shown in Figure 10.44. Its interface

provides control and query ports for both tra�c lights in it. Both tra�c lights are

initialized to red, but the coordinator tells the �rst tra�c light to go to green right

away. In general we could modify this model to allow tra�c lights to be initialized to

a di�erent setting and even allowing tra�c lights to be reset. Tra�c engineers can

use this to study and optimize tra�c �ow.

10.6.3 Intersections with tra�c lights

Now that we have tra�c lights all that remains is to connect them to intersections.

There are several ways of doing this, but perhaps the simplest is to re�ne the model

for basic intersections. This re�nement consists of two changes: 1) we add an instance

of CompositeTrafficLight to the intersection and 2) we modify the Manager's re-

sponse to a query. To do this, we introduce channels to interact with the tra�c lights:

sem_n_control, sem_n_query, sem_n_answer for the tra�c light on the north side

of the intersection, and sem_w_control, sem_w_query, sem_w_answer for the tra�c

228 CHAPTER 10. CASE STUDY: TRAFFIC

process CheckTrafficLight[sem_query, sem_answer, q_sans] \

(cars_present, length, obs_delay):

par

trigger sem_query.

when

sem_answer with "red" ->

par

schedule q_sans with ("red", infinity) after obs_delay.

Manager[...](cars_present)

| sem_answer with green_or_yellow ->

match cars_present with

[] ->

par

schedule q_sans with ("green", 0.0) after obs_delay.

Manager[...](cars_present)

| [(to_car, from_car);rest] ->

trigger to_car with "get status, speed"

when from_car with ("status, speed", status, v) ->

let t_until_dep = div(length, v)

in

par

schedule q_sans with (signal(status), t_until_dep) \

after obs_delay.

Manager[...](cars_present)

Figure 10.45: Checking the tra�c light's state and answering queries.

light on the west side of the intersection. We then introduce an auxiliary process to

check the tra�c light and answer queries on a given set of ports. This is shown in

Figure 10.45. This process queries the appropriate tra�c light, and if its status is

red it schedules a message tagged "red" after the intersection's observation delay.

If it is green or yellow, it checks for cars present in the intersection and returns the

time until departure, as explained in section 10.2.2.

We integrate the CheckTrafficLight process into the Manager for the segment, by

rede�ning the listener's branches that deal with queries as follows:

process Manager[...](cars_present):

when

...

| q_recv_from_n ->

CheckTrafficLight[sem_n_query, sem_n_answer, q_sans_to_n] \

(cars_present)

| q_recv_from_w ->

CheckTrafficLight[sem_w_query, sem_w_answer, q_sans_to_w] \

(cars_present)

10.7. QUADRANT ENTRIES AND EXITS 229

Figure 10.46: A tiny city.

Tra�c lights send their current state whenever they change to red or green through

their control port. This message should be propagated to the appropriate road seg-

ment. But since segments accept messages with the form (signal, t), the message

sent by the tra�c light through its control port is put in this format before it is sent

out through the appropriate q_sans port.

10.7 Quadrant entries and exits

The model of a city can be divided in areas called quadrants which can represent

di�erent regions or neighbourhoods. By associating each quadrant with a di�erent

site, we can take advantage of distributed simulation. But this leads to a problem.

How do entities from di�erent quadrants interact? How are roads from di�erent

quadrants connected and how do cars move from one quadrant to another?

Each quadrant is de�ned as a separate module whose interface consists of ports

of entry and exit for the road segments and intersections on the �border� of the

quadrant, as well as the associated query channels. These modules are launched and

connected by a �main� module. For example, the city shown in Figure 10.46 with

four intersections on two quadrants generates three modules: one for each quadrant,

with its roads, intersections and buildings, and the �main� module shown in Figure

10.47.

In principle, since interaction across sites is the same as in-site interaction, whenever

a car crosses the border from one quadrant to another, we can send the car's links

to the target quadrant. While this approach would yield the expected behaviour, it

is both unappealing and impractical. Unappealing because the car's process remains

in the original site, which goes against the intuition of a car's links determining its

location. Impractical because it would require excessive inter-site communication,

since all query messages would transit from the car's process site (where it was

created) and the site of its location in the city.

A more realistic approach is to provide a mechanism for process migration across

230 CHAPTER 10. CASE STUDY: TRAFFIC

module A:

sites A_quadrant_1_0, A_quadrant_0_0

dchannel quad_2_2_w, query_inter_2_2_w, ans_from_inter_2_2_w, \

quad_1_1_e, query_inter_1_1_e, ans_from_inter_1_1_e in

par

move A_quadrant_1_0[quad_1_1_e, query_inter_1_1_e, \

ans_from_inter_1_1_e, quad_2_2_w, \

query_inter_2_2_w, ans_from_inter_2_2_w] \

to A_quadrant_1_0

move A_quadrant_0_0[quad_2_2_w, query_inter_2_2_w, \

ans_from_inter_2_2_w, quad_1_1_e, \

query_inter_1_1_e, ans_from_inter_1_1_e] \

to A_quadrant_0_0

Figure 10.47: The main module for the city in Figure 10.46

process QuadrantExit[car_in, car_out]:

when car_in with (to_car, from_car) ->

trigger to_car with "snapshot"

when from_car with data ->

trigger to_car with "leave quadrant"

trigger car_out with data

QuadrantExit[car_in, car_out]

Figure 10.48: Quadrant exit nodes.

sites. To this end we introduce two classes of processes which serve just this purpose.

These are quadrant entry and quadrant exit processes. Every incoming road has an

instance of a quadrant entry is connected to it. Similarly, every outgoing road has a

quadrant exit connected to it. The role of a quadrant exit is to capture a snapshot of a

car's state and transmit such state to the other quadrant, instead of the car's links.

On the other end, when a quadrant entry receives such a state, it �reconstructs�

the car by creating a new Car instance, initialized with the state received. The

speci�cation of quadrant exit and entry processes are shown in Figures 10.48 and

10.49 respectively. Note that when a car exits, the QuadrantExit process asks it for

a snapshot of its state and sends the car a signal "leave quadrant" which causes

process QuadrantEntry[car_in, car_out]:

when car_in with (id, state) ->

event new_car_1, new_car_2 in

lpar

Car[new_car_1, new_car_2](id, state)

trigger car_out with (new_car_1, new_car_2) ->

QuadrantEntry[car_in, car_out]

Figure 10.49: Quadrant entry nodes.

10.8. EXPERIMENTAL RESULTS 231

Figure 10.50: A small city.

the car process in the current site to terminate (see Figure 10.17.) This is required,

since otherwise we would be left with car duplicates in di�erent sites.

10.8 Experimental results

The tra�c model developed in this chapter has been applied to automatically gen-

erated city layouts of di�erent sizes and shapes. To illustrate the simulation of the

model we show in this section the execution of a city generated with a layout as

shown in Figure 10.46. Figure 10.50 depicts the same city in more detail, showing

the work destinations of each residence, automatically assigned by the layout genera-

tor. In this model, each road stretch consists of only two road segments, and therefore

two buildings attached to them. Residences are marked with R and business build-

ings are marked with B. Arrows on the roads depict road directions. Dotted arrows

depict the �work address� associated to each residence, i.e., the destination of the

corresponding car.

kiltera's simulator can produce traces in a variety of formats including XML, which

is useful for post-processing by external tools. Figure 10.51 shows an excerpt for a

trace produced from this model, in tabular format. This excerpt shows a car which

originated from a residence with address ((1, 1), e, 0) leaving quadrant (0, 0), entering
quadrant (1, 0) into the intersection at (2, 1), looking towards the left on that inter-

section, and �nally turning left and leaving the intersection into segment ((2, 1), n, 0)
a short time later.11

Post-processing the event trace12 is useful for extracting information about the ex-

ecution and gather statistics. Figure 10.52 shows an excerpt of a trace �ltered and

11This trace shows several �elds for each event: time is the virtual time; location is the name of
the process de�nition that executed the event; action is either trigger or reaction (for a listener;)
port is the port within the process where the event was sent (in the case of a trigger action,) or
received (in the case of a reaction;) event is the name of the event outside the process triggering or
reacting; data is any message associated with the event; site is the site name; and id is an identi�er
for the simulator in a given site where the event occurred.
The location is a fully quali�ed name, as the implementation supports nested process de�nitions,

where the �rst item is the module name.
12The simulator can also be given initialization and �nalization Python scripts. The �nalization

script is given the event trace as a Python object. This is useful to be able to process the trace
without the need to parse it from an XML �le.

232 CHAPTER 10. CASE STUDY: TRAFFIC

+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
+
-
-
-
-
-
+

|
t
i
m
e

|
l
o
c
a
t
i
o
n

|
a
c
t
i
o
n

|
p
o
r
t

|
e
v
e
n
t

|
d
a
t
a

|
p
o
s
i
t
i
o
n

|
s
i
t
e
|
i
d

|

+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
+
-
-
-
-
-
+
-
-
-
-
-
+

.
.
.

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
0
_
0
.
Q
u
a
d
r
a
n
t
E
x
i
t

|
r
e
a
c
t
i
o
n
|
c
a
r
_
i
n

|
r
o
a
d
_
o
u
t
_
1
|
[
'
k
e
v
t
2
4
3
_
c
a
r
1
'
,
'
k
e
v
t
2
4
4
_
c
a
r
2
'
]

|
(
7
5
4
,
7
)

|
A
_
q
u
a
|
2

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
0
_
0
.
Q
u
a
d
r
a
n
t
E
x
i
t

|
t
r
i
g
g
e
r

|
t
o
_
c
a
r

|
c
a
r
1

|
s
n
a
p
s
h
o
t

|
(
7
5
5
,
4
)

|
A
_
q
u
a
|
2

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
0
_
0
.
C
a
r
.
C
a
r
M
a
i
n
L
o
o
p

|
r
e
a
c
t
i
o
n
|
f
r
o
m
_
s
e
g
m
e
|
c
a
r
1

|
s
n
a
p
s
h
o
t

|
(
1
4
1
,
6
)

|
A
_
q
u
a
|
2

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
0
_
0
.
C
a
r
.
C
a
r
M
a
i
n
L
o
o
p

|
t
r
i
g
g
e
r

|
t
o
_
s
e
g
m
e
n
t
|
c
a
r
2

|
[
[
[
1
,
1
]
,
'
e
'
,
0
]
,

[
'
m
o
v
i
n
g
'
,
1
9
.
4
4
4
4
4
4
0
0
0
0
0
0
|
(
1
4
2
,
8
)

|
A
_
q
u
a
|
2

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
0
_
0
.
Q
u
a
d
r
a
n
t
E
x
i
t

|
r
e
a
c
t
i
o
n
|
f
r
o
m
_
c
a
r

|
c
a
r
2

|
[
[
[
1
,
1
]
,
'
e
'
,
0
]
,
[
'
m
o
v
i
n
g
'
,
1
9
.
4
4
4
4
4
4
0
0
0
0
0
0
|
(
7
5
6
,
9
)

|
A
_
q
u
a
|
2

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
0
_
0
.
Q
u
a
d
r
a
n
t
E
x
i
t

|
t
r
i
g
g
e
r

|
t
o
_
c
a
r

|
c
a
r
1

|
l
e
a
v
e
q
u
a
d
r
a
n
t

|
(
7
5
8
,
6
)

|
A
_
q
u
a
|
2

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
0
_
0
.
C
a
r
.
C
a
r
M
a
i
n
L
o
o
p

|
r
e
a
c
t
i
o
n
|
f
r
o
m
_
s
e
g
m
e
|
c
a
r
1

|
l
e
a
v
e
q
u
a
d
r
a
n
t

|
(
1
4
4
,
6
)

|
A
_
q
u
a
|
2

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
0
_
0
.
Q
u
a
d
r
a
n
t
E
x
i
t

|
t
r
i
g
g
e
r

|
c
a
r
_
o
u
t

|
q
u
a
d
_
1
_
1
_
e
|
[
[
[
1
,
1
]
,
'
e
'
,
0
]
,

[
'
m
o
v
i
n
g
'
,
1
9
.
4
4
4
4
4
4
0
0
0
0
0
0
|
(
7
5
9
,
6
)

|
A
_
q
u
a
|
2

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
Q
u
a
d
r
a
n
t
E
n
t
r
y

|
r
e
a
c
t
i
o
n
|
c
a
r
_
i
n

|
q
u
a
d
_
1
_
1
_
e
|
[
[
[
1
,
1
]
,
'
e
'
,
0
]
,
[
'
m
o
v
i
n
g
'
,
1
9
.
4
4
4
4
4
4
0
0
0
0
0
0
|
(
7
4
2
,
7
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
Q
u
a
d
r
a
n
t
E
n
t
r
y

|
t
r
i
g
g
e
r

|
c
a
r
_
o
u
t

|
r
o
a
d
_
o
u
t
_
1
|
[
'
k
e
v
t
2
4
7
_
n
e
w
_
c
a
r
_
1
'
,
'
k
e
v
t
2
4
8
_
n
e
w
_
c
a
r
_
2
'
]

|
(
7
4
7
,
8
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
C
a
r
R
|
r
e
a
c
t
i
o
n
|
c
a
r
_
i
n
_
f
r
o
|
r
o
a
d
_
o
u
t
_
1
|
[
'
k
e
v
t
2
4
7
_
n
e
w
_
c
a
r
_
1
'
,
'
k
e
v
t
2
4
8
_
n
e
w
_
c
a
r
_
2
'
]

|
(
5
9
7
,
8
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
A
c
c
e
|
t
r
i
g
g
e
r

|
a
s
k
_
i
s
_
e
m
p
|
a
s
k
_
i
s
_
e
m
p
|
N
o
n
e

|
(
6
0
5
,
8
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
M
a
n
a
|
r
e
a
c
t
i
o
n
|
a
s
k
_
i
s
_
e
m
p
|
a
s
k
_
i
s
_
e
m
p
|
N
o
n
e

|
(
6
7
8
,
8
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
M
a
n
a
|
t
r
i
g
g
e
r

|
a
n
s
w
e
r
_
i
s
_
|
a
n
s
w
e
r
_
i
s
_
|
T
r
u
e

|
(
6
7
9
,
1
0
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
A
c
c
e
|
r
e
a
c
t
i
o
n
|
a
n
s
w
e
r
_
i
s
_
|
a
n
s
w
e
r
_
i
s
_
|
T
r
u
e

|
(
6
0
7
,
1
0
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
A
c
c
e
|
t
r
i
g
g
e
r

|
a
d
d
_
c
a
r

|
a
d
d
_
c
a
r

|
[
'
k
e
v
t
2
4
7
_
n
e
w
_
c
a
r
_
1
'
,
'
k
e
v
t
2
4
8
_
n
e
w
_
c
a
r
_
2
'
]

|
(
6
0
9
,
1
2
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
M
a
n
a
|
r
e
a
c
t
i
o
n
|
a
d
d
_
c
a
r

|
a
d
d
_
c
a
r

|
[
'
k
e
v
t
2
4
7
_
n
e
w
_
c
a
r
_
1
'
,
'
k
e
v
t
2
4
8
_
n
e
w
_
c
a
r
_
2
'
]

|
(
6
6
3
,
8
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
C
a
r
H
|
t
r
i
g
g
e
r

|
t
o
_
c
a
r

|
n
e
w
_
c
a
r
_
1
|
[
'
e
n
t
e
r
e
d
'
,

[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
1
]
]
,
1
0
.
0
,
1
|
(
6
5
8
,
8
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
C
a
r
.
C
a
r
M
a
i
n
L
o
o
p

|
r
e
a
c
t
i
o
n
|
f
r
o
m
_
s
e
g
m
e
|
n
e
w
_
c
a
r
_
1
|
[
'
e
n
t
e
r
e
d
'
,
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
1
]
]
,
1
0
.
0
,
1
|
(
1
3
1
,
6
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
C
a
r
.
C
a
r
M
a
i
n
L
o
o
p

|
t
r
i
g
g
e
r

|
t
o
_
s
e
g
m
e
n
t
|
n
e
w
_
c
a
r
_
2
|
[
'
l
o
o
k
a
h
e
a
d
'
,
'
L
'
]

|
(
1
3
3
,
8
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
C
a
r
H
|
r
e
a
c
t
i
o
n
|
f
r
o
m
_
c
a
r

|
n
e
w
_
c
a
r
_
2
|
[
'
l
o
o
k
a
h
e
a
d
'
,
'
L
'
]

|
(
6
2
3
,
1
0
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
C
a
r
H
|
t
r
i
g
g
e
r

|
q
_
s
e
n
d
_
t
o
_
|
q
u
e
r
y
_
r
o
a
d
|
N
o
n
e

|
(
6
2
9
,
1
6
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
M
e
r
g
e

|
r
e
a
c
t
i
o
n
|
i
n
1

|
q
u
e
r
y
_
r
o
a
d
|
N
o
n
e

|
(
3
9
9
,
4
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
M
e
r
g
e

|
t
r
i
g
g
e
r

|
o
u
t

|
q
u
e
r
y
_
m
o
0
|
N
o
n
e

|
(
4
0
2
,
8
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
2
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
R
o
a
d
S
e
g
m
e
n
t
.
M
a
n
a
g
e
r

|
r
e
a
c
t
i
o
n
|
q
_
r
e
c
v

|
q
u
e
r
y
_
m
o
0
|
N
o
n
e

|
(
3
6
0
,
8
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
4
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
R
o
a
d
S
e
g
m
e
n
t
.
M
a
n
a
g
e
r

|
t
r
i
g
g
e
r

|
q
_
s
a
n
s

|
a
n
s
w
e
r
_
f
r
o
|
[
'
g
r
e
e
n
'
,
0
.
0
]

|
(
3
6
4
,
1
6
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
4
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
F
o
r
w
a
r
d
e
r

|
r
e
a
c
t
i
o
n
|
i
n
p

|
a
n
s
w
e
r
_
f
r
o
|
[
'
g
r
e
e
n
'
,
0
.
0
]

|
(
4
1
0
,
7
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
4
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
C
a
r
H
|
r
e
a
c
t
i
o
n
|
q
_
r
a
n
s
_
f
r
o
|
a
n
s
w
e
r
_
f
r
o
|
[
'
g
r
e
e
n
'
,
0
.
0
]

|
(
6
5
4
,
1
0
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
4
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
C
a
r
H
|
t
r
i
g
g
e
r

|
t
o
_
c
a
r

|
n
e
w
_
c
a
r
_
1
|
[
'
g
r
e
e
n
'
,
0
.
0
]

|
(
6
5
5
,
1
2
)

|
A
_
q
u
a
|
1

|

|
1
4
.
7
4
9
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
C
a
r
.
W
a
i
t
F
o
r
O
b
s
e
r
v
a
t
i
o
n

|
r
e
a
c
t
i
o
n
|
f
r
o
m
_
s
e
g
m
e
|
n
e
w
_
c
a
r
_
1
|
[
'
g
r
e
e
n
'
,
0
.
0
]

|
(
1
5
3
,
8
)

|
A
_
q
u
a
|
1

|

.
.
.

|
1
5
.
2
4
3
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
C
a
r
.
S
c
h
e
d
u
l
e
D
e
p
a
r
t
u
r
e

|
t
r
i
g
g
e
r

|
t
o
_
s
e
g
m
e
n
t
|
n
e
w
_
c
a
r
_
2
|
[
'
m
o
v
e
'
,
'
L
'
]

|
(
2
1
7
,
1
2
)

|
A
_
q
u
a
|
1

|

|
1
5
.
2
4
3
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
C
a
r
H
|
r
e
a
c
t
i
o
n
|
f
r
o
m
_
c
a
r

|
n
e
w
_
c
a
r
_
2
|
[
'
m
o
v
e
'
,
'
L
'
]

|
(
6
3
7
,
1
0
)

|
A
_
q
u
a
|
1

|

|
1
5
.
2
4
3
|
A
_
q
u
a
d
r
a
n
t
_
1
_
0
.
B
a
s
i
c
S
e
m
I
n
t
e
r
s
e
c
t
i
o
n
.
C
a
r
H
|
t
r
i
g
g
e
r

|
d
e
p
a
r
t
u
r
e
_
|
d
e
p
a
r
t
u
r
e
_
|
[
'
k
e
v
t
2
4
7
_
n
e
w
_
c
a
r
_
1
'
,
'
k
e
v
t
2
4
8
_
n
e
w
_
c
a
r
_
2
'
]

|
(
6
4
3
,
1
6
)

|
A
_
q
u
a
|
1

|

F
igu

re
10.51:

S
am

p
le
trace

for
th
e
sm

all
city

m
o
d
el.

10.9. APPLICATION OF KILTERA'S THEORY 233

with an alternative format, extracting relevant information about cars movements.

Figure 10.53 shows some statistics computed from �ltering a trace for this exam-

ple. It shows the basic simulation parameters, a table showing for each car the total

distance travelled, the total travel time, the average speed, and deviation from its

average speed. It also shows various minima and maxima as well as the corresponding

distributions.

10.9 Application of kiltera's theory

We conclude this chapter with a short discussion to illustrate the application of the

properties established in chapter 8 in the context of this case study.

First, we can use the notion of open time-bisimilarity to establish the equivalence

between alternative implementations of di�erent parts of the model. Take for instance

cars, and in particular the WaitForObservation mode. In this mode, a car waits for

an answer to a look ahead query it sent to the segment in front. But it also schedules

a departure from the segment as a timeout, in case there is no answer. This timeout is

the time it would normally take the car to traverse the segment without any changes

in speed. Now, if we consider an alternative implementation for such mode which

does not schedule a departure on a timeout, we can see that such alternative would

be bisimilar to the original, up to the traversal time. This is because they would

have exactly the same transitions at any time before the timeout. This implies, by

the congruential properties of open time-bisimilarity, that we could use the simpli�ed

model in place of the original, if we can guarantee that the context (the road segment)

will always send an answer. This would result in a simpler overall speci�cation which

is easier to understand and analyze.

Second, by establishing the well-timedness of the de�nitions in this model, we can

conclude it is legitimate, by virtue of Theorem 8.30. Take for instance the car model.

Since every execution of the car model has to go through the ScheduleDeparture

mode, the speci�cation for cars is well-timed if the time until departure is positive. If

we assume that the car's speed is �nite, then its time until departure is indeed pos-

itive and therefore the car speci�cation is legitimate. If we look at the CarReceptor

component of a road segment, we cannot establish its well-timedness directly, but we

can still guarantee legitimacy by observing that between recursive invocations there

must be a car arrival and since no two cars can arrive simultaneously, there must be

a non-zero delay between such invocations and therefore the composition of cars and

road segments is legitimate.

234 CHAPTER 10. CASE STUDY: TRAFFIC

t
i
m
e
=
1
3
.
6
9
1
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,

0
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
0
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
0
.
0
0
,

2
4
.
6
7
,

1
3
.
8
6
,
1
0
0
.
0
0
,

4
.
7
5
,
1
3
.
4
6
1
,

2
.
0
0
0
,

t
i
m
e
=
1
3
.
7
1
1
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,
0
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
0
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
4
.
6
7
,

1
3
.
8
6
,
1
0
0
.
0
0
,

4
.
7
5
,
1
3
.
4
6
1
,
1
2
.
0
0
0
,

t
i
m
e
=
1
4
.
2
1
5
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,

0
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
1
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
4
.
6
7
,

1
3
.
8
6
,
1
0
0
.
0
0
,

4
.
7
5
,
1
3
.
4
6
1
,
1
2
.
0
0
0
,

t
i
m
e
=
1
4
.
2
3
5
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,
0
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
1
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
4
.
6
7
,

1
3
.
8
6
,
1
0
0
.
0
0
,

4
.
7
5
,
1
3
.
4
6
1
,
2
2
.
0
0
0
,

t
i
m
e
=
1
4
.
7
2
9
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,

0
]
;

l
o
c

=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
4
.
6
7
,

1
3
.
8
6
,

1
0
0
.
0
0
,

4
.
7
5
,
1
3
.
4
6
1
,
2
2
.
0
0
0
,

t
i
m
e
=
1
4
.
7
4
9
;
t
u
r
n
i
n
g
L

-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,
0
]
;
l
o
c
=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
4
.
6
7
,

1
3
.
8
6
,
1
0
0
.
0
0
,

4
.
7
5
,
1
3
.
4
6
1
,
3
2
.
0
0
0
,

t
i
m
e
=
1
4
.
8
2
1
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

0
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
1
,
2
]
,
'
s
'
,
0
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
0
.
0
0
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,

2
.
0
0
0
,

t
i
m
e
=
1
4
.
8
4
1
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
0
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
1
,
2
]
,
'
s
'
,
0
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
1
2
.
0
0
0
,

t
i
m
e
=
1
5
.
2
4
3
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,

0
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
2
,
1
]
,
'
n
'
,
0
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
4
.
6
7
,

1
3
.
8
6
,
1
0
0
.
0
0
,

4
.
7
5
,
1
3
.
4
6
1
,
3
2
.
0
0
0
,

t
i
m
e
=
1
5
.
2
6
3
;
e
x
i
t
e
d

-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,
0
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
2
,
1
]
,
'
n
'
,
0
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
4
.
6
7
,

1
3
.
8
6
,

1
0
0
.
0
0
,

4
.
7
5
,
1
3
.
4
6
1
,
4
2
.
0
0
0
,

t
i
m
e
=
1
5
.
3
4
5
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

0
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
1
,
2
]
,
'
s
'
,
1
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
1
2
.
0
0
0
,

t
i
m
e
=
1
5
.
3
6
5
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
0
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
1
,
2
]
,
'
s
'
,
1
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
2
2
.
0
0
0
,

t
i
m
e
=
1
5
.
7
5
8
;
a
r
r
i
v
e
d

-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,
0
]
;
t
o
a
=

1
5
.
7
5
8
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
4
.
6
7
,

1
3
.
8
6
,
1
0
0
.
0
0
,

4
.
7
5
,
1
3
.
4
6
1
,
4
2
.
0
0
0
,
[
]
,
[
[
2
,
1
]
,
'
n

t
i
m
e
=
1
5
.
8
6
0
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

0
]
;

l
o
c

=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
1
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,

1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
2
2
.
0
0
0
,

t
i
m
e
=
1
5
.
8
8
0
;
t
u
r
n
i
n
g
L

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
0
]
;
l
o
c
=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
1
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
3
2
.
0
0
0
,

t
i
m
e
=
1
6
.
3
7
4
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

0
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
0
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
3
2
.
0
0
0
,

t
i
m
e
=
1
6
.
3
9
4
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
0
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
0
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
4
2
.
0
0
0
,

t
i
m
e
=
1
6
.
8
8
8
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

0
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
1
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
4
2
.
0
0
0
,

t
i
m
e
=
1
6
.
9
0
8
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
0
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
1
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
5
2
.
0
0
0
,

t
i
m
e
=
1
7
.
4
0
2
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

0
]
;

l
o
c

=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,

1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
5
2
.
0
0
0
,

t
i
m
e
=
1
7
.
4
2
2
;
t
u
r
n
i
n
g
L

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
0
]
;
l
o
c
=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
6
2
.
0
0
0
,

t
i
m
e
=
1
7
.
9
1
7
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

0
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
2
,
1
]
,
'
n
'
,
0
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
6
2
.
0
0
0
,

t
i
m
e
=
1
7
.
9
3
7
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
0
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
2
,
1
]
,
'
n
'
,
0
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
7
2
.
0
0
0
,

t
i
m
e
=
1
8
.
2
0
1
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

1
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
1
,
2
]
,
'
s
'
,
1
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
0
.
0
0
,

2
3
.
0
2
,

2
7
.
7
0
,
1
0
0
.
0
0
,

4
.
4
0
,
1
7
.
9
7
1
,

2
.
0
0
0
,

t
i
m
e
=
1
8
.
2
2
1
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
1
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
1
,
2
]
,
'
s
'
,
1
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
3
.
0
2
,

2
7
.
7
0
,
1
0
0
.
0
0
,

4
.
4
0
,
1
7
.
9
7
1
,
1
2
.
0
0
0
,

t
i
m
e
=
1
8
.
3
9
4
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,

1
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
1
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
0
.
0
0
,

1
9
.
1
1
,

1
1
.
9
9
,
1
0
0
.
0
0
,

4
.
2
0
,
1
8
.
1
6
4
,

2
.
0
0
0
,

t
i
m
e
=
1
8
.
4
1
4
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,
1
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
1
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
1
1
,

1
9
.
1
1
,

1
1
.
9
9
,
1
0
0
.
0
0
,

4
.
2
0
,
1
8
.
1
6
4
,
1
2
.
0
0
0
,

t
i
m
e
=
1
8
.
4
3
1
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

0
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
2
,
1
]
,
'
n
'
,
1
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
7
2
.
0
0
0
,

t
i
m
e
=
1
8
.
4
5
1
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
0
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
2
,
1
]
,
'
n
'
,
1
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
8
2
.
0
0
0
,

t
i
m
e
=
1
8
.
7
2
5
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

1
]
;

l
o
c

=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
1
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
3
.
0
2
,

2
7
.
7
0
,

1
0
0
.
0
0
,

4
.
4
0
,
1
7
.
9
7
1
,
1
2
.
0
0
0
,

t
i
m
e
=
1
8
.
7
4
5
;
t
u
r
n
i
n
g
L

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
1
]
;
l
o
c
=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
1
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
3
.
0
2
,

2
7
.
7
0
,
1
0
0
.
0
0
,

4
.
4
0
,
1
7
.
9
7
1
,
2
2
.
0
0
0
,

t
i
m
e
=
1
8
.
9
2
7
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,

1
]
;

l
o
c

=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
1
1
,

1
9
.
1
1
,

1
1
.
9
9
,

1
0
0
.
0
0
,

4
.
2
0
,
1
8
.
1
6
4
,
1
2
.
0
0
0
,

t
i
m
e
=
1
8
.
9
4
5
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

0
]
;

l
o
c

=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
2
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,

1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
8
2
.
0
0
0
,

t
i
m
e
=
1
8
.
9
4
7
;
t
u
r
n
i
n
g
L

-
-
c
a
r
=
[
[
1
,
1
]
,
'
e
'
,
1
]
;
l
o
c
=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
1
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
1
1
,

1
9
.
1
1
,

1
1
.
9
9
,
1
0
0
.
0
0
,

4
.
2
0
,
1
8
.
1
6
4
,
2
2
.
0
0
0
,

t
i
m
e
=
1
8
.
9
6
5
;
t
u
r
n
i
n
g
L

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
0
]
;
l
o
c
=
[
'
i
n
t
e
r
s
e
c
t
i
o
n
'
,
[
2
,
2
]
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
0
.
8
8
,

2
4
.
9
0
,
1
0
0
.
0
0
,

2
.
8
7
,
1
4
.
5
9
1
,
9
2
.
0
0
0
,

t
i
m
e
=
1
9
.
2
3
9
;
e
n
t
e
r
e
d
s
e
g
-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,

1
]
;

l
o
c

=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
0
]
;
s
t
a
t
e
=
(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
3
.
0
2
,

2
7
.
7
0
,
1
0
0
.
0
0
,

4
.
4
0
,
1
7
.
9
7
1
,
2
2
.
0
0
0
,

t
i
m
e
=
1
9
.
2
5
9
;
m
o
v
i
n
g
o
n

-
-
c
a
r
=
[
[
1
,
2
]
,
'
s
'
,
1
]
;
l
o
c
=
[
'
r
o
a
d
'
,
[
1
,
1
]
,
'
e
'
,
0
]
;
s
t
a
t
e
=

(
m
o
v
i
n
g
,

1
9
.
4
4
,

2
3
.
0
2
,

2
7
.
7
0
,
1
0
0
.
0
0
,

4
.
4
0
,
1
7
.
9
7
1
,
3
2
.
0
0
0
,

F
igu

re
10.52:

S
am

p
le
�
ltered

trace.

10.9. APPLICATION OF KILTERA'S THEORY 235

Segment parameters

- Number of segments (N) = 2

- Segment length = 10.0

- Maximum speed = 19.4444444444

- Observation delay = 0.02

Car paremeters:

- Initial velocity range = (0.0027777777777777779, 0.02777777777777778)

- Preferred velocity range = (13.888888888888889, 27.777777777777779)

- Acceleration range = (0.0, 80.0)

- Decceleration range = (100.0, 100.0)

- Start delay range = (0.01, 5.0)

Generator parameters:

- Number of cars (M) = 1

- Inter-arrival time range = (10.0, 20.0)

Semaphore parameters:

- Semaphore green delay = 30.0

- Semaphore yellow delay = 3.0

Car id |Distance travelled|Transit time|Avg.pref. speed|Avg.pref. speed deviation

------------------+------------------+------------+---------------+-------------------------

[[1, 1], 'e', 0] | 42.00 | 2.297 | 18.286 | -6.383

[[1, 1], 'e', 1] | 32.00 | 1.809 | 17.688 | -1.425

[[1, 2], 's', 0] | 112.00 | 5.897 | 18.993 | -1.882

[[1, 2], 's', 1] | 62.00 | 3.325 | 18.645 | -4.377

Average transit time = 3.3320409889

Minimum transit time = 1.80915453247

Maximum transit time = 5.89683380628

Minimum average preferred speed = 17.6878201533

Maximum average preferred speed = 18.9932434387

Minimum average preferred speed deviation = -6.38327665755

Maximum average preferred speed deviation = -1.42496761642

Transit time

< 1.0 : 0

< 2.0 : 1

< 3.0 : 1

< 4.0 : 1

< 5.0 : 0

< 6.0 : 1

< 7.0 : 0

Average speed

< 17.7 : 1

< 17.9 : 0

< 18.1 : 0

< 18.3 : 1

< 18.5 : 0

< 18.7 : 1

< 18.9 : 0

< 19.1 : 1

Average preferred speed deviation

< -6.0 : 1

< -5.0 : 0

< -4.0 : 1

< -3.0 : 0

< -2.0 : 0

< -1.0 : 2

< 0.0 : 0

Figure 10.53: Statistics gathered for the small city example.

236 CHAPTER 10. CASE STUDY: TRAFFIC

11
Conclusions

The purpose of this thesis has been to explore di�erent approaches to modelling,

analysis and simulation of complex discrete-event systems, and in particular, systems

with an evolving structure. Our quest for a solid foundation lead us to investigate

the DEVS formalism, an approach based on Systems Theory, from a theoretical and

practical perspective. As the limitations of this approach, which we discuss in more

detail below, become evident, a di�erent take on discrete-event dynamic structure

systems acquires relevance. This lead us to the development of a modelling language,

kiltera, based on process algebra.

11.1 Comparing DEVS and kiltera

While the DEVS approach enjoys some desired characteristics for the modelling and

design of discrete-event systems, such as modular speci�cations, it has some impor-

tant limitations which have practical implications. The DEVS formalism focuses on

concepts of state and state-transitions, and enforces certain speci�cation constraints

which are not always appropriate and lead to awkward speci�cations that often do

not easily match the system being modelled (e.g., every state must have a time-

advance, an output, internal and external transitions.) This re�ected in a low level

of abstraction and non-intuitive and extremely verbose models.

The approach to interaction in DEVS as synchronous multi-casting, while useful for

many applications, is restrictive, when asynchronous or unicasting communication

may be more appropriate. Another inconvenience of DEVS is the lack of ports in

models. There are two approaches to modelling ports in DEVS by giving input and

output sets an appropriate port structure. In the �rst approach, messages are of

the form (p, x) where p is a port name and x is the transmitted value. The second

approach is to make all messages have the form of a tuple (x1, ..., xn) where each xi
corresponds to input on port i. But both approaches are limiting. The �rst approach

prevents the simultaneous occurrence of events on two di�erent ports, violating the

principle that a system cannot prevent its environment from producing events. The

second requires input on all ports whenever input is expected. Neither approach is

238 CHAPTER 11. CONCLUSIONS

natural from a modelling point of view.

Another aspect of DEVS which can be limiting in certain applications is its deter-

ministic nature. For many applications, determinism is a desired quality, but this is

not always the case. The process of modelling involves the stepwise development of

models by re�nement. During early stages of this process, it is undesirable to de�ne

all details and commit to speci�c behaviours. Sometimes it is preferable to leave

certain decisions open. Furthermore, modelling non-deterministic systems is partic-

ularly useful whenever we are modelling both a system and its environment. In such

context, it is often desirable to observe the behaviour of the system with respect

to an environment whose behaviour is uncertain. In DEVS, we can only emulate

non-deterministic behaviour by an explicit encoding of the state of a pseudo-random

number generator within the state of the model. But such approach breaks a fun-

damental abstraction barrier and thus is a clear violation of the separation between

modelling and implementation.

Perhaps the most important limitation of DEVS from the point of view of this thesis,

is that it provides no direct support for modelling systems whose structure evolves

over time. The DEVS answer to this problem is the so-called DS-DEVS formal-

ism [6, 7]. Such formalism is nevertheless problematic. On the one hand, it inherits

the aforementioned limitations. On the other, it introduces complications of its own

both at the theoretical and the practical levels. The most fundamental property

of DS-DEVS is its closure under coupling with respect to DEVS. This means that

each DS-DEVS can be seen as a DEVS model. But this embedding results in a

DEVS model that encodes all possible structures, which are activated whenever the

structure is supposed to change. Such system is therefore limited to a theoretical

construction, with no hopes for formal veri�cation approaches such as model check-

ing, or realization in terms of existing DEVS simulators. From a modelling point of

view, its approach is also limiting. Change in structure is described by providing a

special model called the �executive� whose states have models associated. This is an

extremely centralized approach. Take for instance the adaptive server model from

section 5.3.2. To describe the movement of a server from one node to another, a DS-

DEVS model requires a central executive who controls all nodes involved, and receives

the commands to change structure. This contrasts with the kiltera model, where such

decisions are autonomously taken by each node, without a central organizer. Thus,

the DS-DEVS approach emphasizes centralized control, while kiltera supports both

centralized and decentralized control.

How does kiltera simulation compare with DEVS simulation? The standard approach

to simulate a DEVS model is based on a hierarchy of simulators which mimics the

hierarchical structure of the DEVS model being simulated. Simulators for coupled

components are called coordinators. Each coordinator has its own event queue and

11.2. COMPARING KILTERA AND PROCESS ALGEBRAS 239

handles communication among its sub-components as well as external interaction.

Each input message is multicast down to each relevant sub-component, and each

output from a sub-component connected to an output port is collected and passed

upwards in the hierarchy. A message from a component A inside a coupled model

C to a �sibling� B also in C is sent from A's simulator to C's coordinator which

then routs it down to B's simulator. This means that sending a message from one

component to another involves a possibly complex routing of the message through

the tree structure. This has one immediate consequence: coordinators are bottlenecks

for message passing.

Some alternative simulation schemes have been proposed which attempt to alleviate

such bottlenecks, but typically they rely on complex algorithms and pre-computing

routes, which is ine�cient in a dynamic structure setting.

In the approach of our kiltera simulator there is no such problem. A process sends

a message by triggering an event, which in turn activates a listener to such event.

There is no routing whatsoever. The only look-up operation involved is in obtaining

the event object from its name in the current name environment.

Not only is this approach simpler and does away with routing, but, unlike the DEVS

alternatives, it is also applicable to systems with changing structure.

11.2 Comparing kiltera and process algebras

Process algebras [2, 42, 20] such as CSP [21, 42, 47], CCS [25, 26] and ACP [8] have

become a well-established approach to modelling and reasoning about concurrent

systems. They provide an e�ective means to describe and analyze system behaviour.

Nevertheless, these �classical� process algebras abstract away the notion of time, and

therefore they are not suitable to model and reason about temporal properties of

dynamic systems. This has lead to the de�nition of a number of process calculi which

extend the existing models with an explicit notion of time and some appropriate

constructs (e.g. [3, 4, 14, 29, 47, 55].) Unfortunately, these process algebras do not

deal directly with the issue of dynamic structure or spatial distribution.

Perhaps the most renowned process algebra that deals with dynamic structure is the

π-calculus [28]. In the π-calculus one can describe structural changes by modifying

the network of communication channels between processes. However, as the classical

process algebras, it includes neither a notion of time nor spatial distribution.

There have been very few process algebras which extend the π-calculus with an

explicit notion of time. One of the best known is the stochastic π-calculus [39],

but others have been proposed as well, such as the πRT -calculus [24], the timed-

π [15], and the TDπ-calculus [40]. These calculi allow the description of delayable

actions (in some cases probabilistically.) Yet, the ability to delay a process is by

240 CHAPTER 11. CONCLUSIONS

no means the only useful operation involving time. In the context of time-sensitive,

discrete-event systems, state transitions depend on the amount of time a system

spends waiting for events to occur. Therefore the ability to measure the passage

of time, and the ability to change behaviour if an action has not been performed

within some time-constraint are fundamental operations. Of the calculi mentioned

above, only πRT and TDπ provide a notion of timeout. None include a mechanism to

observe duration of actions within the language (i.e. as a construct.) One can argue

that these operations can be emulated by means of other primitive constructs, but

such encodings require the non-deterministic choice operator (+), which is di�cult

to implement in practice [32]. Moreover, some of these algebras assume the natural

numbers as the time base, and model the passage of time by �clock-ticks,� which leads

to an awkward and ine�cient approximation of real-time behaviour. Furthermore,

to the best of our knowledge, only the stochastic π-calculus has been implemented,

and there is no distributed implementation for any of these.

With respect to distribution, some extensions to the π-calculus have been proposed,

such as the Dπ [41] and TDπ [40], as well as related process algebras such as the

Ambient-calculus [10]. Of these, only the TDπ considers time. These algebras focus

on resource access control, locality of communication, hierarchical domains and site

failure. This means that routing of messages to remote locations must be explicit,

and communication across a network is not transparent.

In this thesis we have proposed a real, well-founded language and a working im-

plementation to address these issues. The language combines time, mobility and

distribution in a single framework. In this language, �events� and �channels� are

synonymous. Sending a message through a channel is the same as triggering an

event. Receiving a message through a channel is the same as reacting to an event.

Events can carry information, including events themselves, achieving the same ef-

fect as name-passing in the π-calculus. A triggered event can be consumed by all

processes listening to it (multicasting) or by one of them (unicasting,) chosen non-

deterministically. Furthermore, event triggers can be transient or lasting. Transient

triggers are urgent actions (i.e. non-delayable) but they do not require synchroniza-

tion. This is, if a process performs a transient trigger and there is no listener for that

event at the time of the triggering, then the action has no e�ect, in the present or

future. On the other hand, a lasting trigger is a delayable asynchronous action. This

is, a process which performs a lasting trigger when there are no listeners for that

event, will not block waiting to synchronize, but if some other process listens to that

event some time later, it will react to the triggered event. In other words, lasting

triggers are �remembered� until someone is able to react to them. To the best of our

knowledge, there is no equivalent notion in comparable process algebras.

11.3. SUMMARY OF CONTRIBUTIONS 241

11.3 Summary of contributions

This thesis contributes to both the �eld of discrete-event modelling and simulation

in general and to that of process algebra in particular.

Contributions to DEVS

• Theory

• A formalization of the semantics of DEVS as a structural operational

semantics, which allows the use of techniques from the theory of transition

system speci�cations to reason about systems.

• The establishment of fundamental properties of this formalization, in

particular:

• Determinism, and

• Compositionality with strong bisimilarity as a congruence

• Practice

• A graphical modelling environment for DEVS with automatic code gen-

eration

• A modelling environment for cellular DEVS systems

Contributions to process algebra

• Theory

• Introduction of a di�erentiation between transient and lasting event trig-

gers, and an embedding of the latter in terms of the former.

• The embedding of many common constructs and operators into a mini-

malistic language core.

• The combination of unicasting and multicasting interaction.

• The introduction of distribution with transparent cross-site interaction.

• The establishment of well known fundamental properties:

• Time-determinism

• Time-continuity

• Su�cient conditions for legitimacy

• The introduction and establishment of a property to which we refer as

time-compositionality.

242 CHAPTER 11. CONCLUSIONS

• Practice

• The application of event-scheduling simulation to the execution of process

algebras.

• The application of distributed discrete-event simulation to the execution

of distributed process algebra, based on an extension of the Time-Warp

algorithm which allows the dynamic creation and destruction of logical

processes (simulators), as well as handling of unicasting and multi-casting

communication and dynamic link mobility.

11.4 Future work

The development of this thesis opens the way for multiple avenues of research. We

have identi�ed the following topics as lines of research to follow:

• Language features

• A type system: Type systems provide a very useful mechanism to struc-

ture data handled by a language, and greatly reduce debugging. The main

question is: what is a suitable type system for a language like kiltera?

• On-the-�y process migration: While we have provided an approach to

dynamic process migration across sites in the tra�c case study, a desir-

able feature would be to make such operation generic, and independent

of the speci�c process involved. This raises many questions: what can be

moved and what cannot be moved? When a process is moved between

sites, what should move with it? Does a movable process need to carry

part of its context?

• Re�nement/inheritance: Modelling is an activity that proceeds by steps.

A model is re�ned in di�erent stages from a generic speci�cation into

an executable implementation. Language support for re�nement is highly

desirable. A notion akin to inheritance as known in Object-Oriented Pro-

gramming, could be very useful in this context. However, inheritance in

the style of OOP is not directly applicable in this context. What, then,

could be a notion of process inheritance or process re�nement?

• Theory

• Modal real-time logic: modal logics provide a useful framework for rea-

soning about systems. What could be a useful logic for reasoning about

kiltera processes? Can an existing logic be directly applied, or is a new

logic required?

11.5. FINAL REMARKS 243

• Weak open-time bisimilarity: as is the case with its untimed cousin, open-

time bisimilarity is too strong for certain applications. Namely, it is sen-

sitive to internal steps. Can this notion be weakened to yield a more

intuitive equivalence that nevertheless, retains the time-compositionality

properties?

• Denotational semantics and full-abstraction: Is there a more abstract,

denotational model for kiltera which matches its operational semantics?

• Tools

• Code generation/Virtual Machine: Can we develop a more e�cient im-

plementation of kiltera? Can we de�ne an abstract low-level machine for

it?

• Model checking: Are there e�cient algorithms that allow us to check

properties of kiltera models without the need for simulation?

• Visual modelling environment: We have presented a visual notation for

kiltera processes, albeit in an informal manner. Can we de�ne this nota-

tion mode precisely and build modelling tools that facilitate the modelling

process?

• Improved global-controller and memory management: Can we improve

the simulation algorithms to gain in performance?

11.5 Final remarks

We have studied the DEVS formalism from a fresh perspective. We have proposed

a language, kiltera which presents several advantages over DEVS both in modelling

and simulation, and introduces some novelty into the theory and practice of process

algebra. Its formal semantics and associated theory provide a solid foundation which

combined with practical tools show the language's feasibility as a serious language

for modelling, analysis and simulation of complex systems, and a step in the right

direction in the search for a �base� formalism to serve as a common denominator for

multi-formalism modelling.

244 CHAPTER 11. CONCLUSIONS

A
Basic de�nitions

This appendix provides a reference for some standard de�nitions and basic prop-

erties. Section A.1 deals with relations, functions, equivalence relations, partitions

and quotient sets. Section A.4 presents basic concepts from universal algebra such

as signatures, terms and substitutions.

A.1 Relations, functions, equivalence, partitions

De�nition A.1. (Relations and functions)Given two setsA andB, the cartesian-

product of A and B is the set A × B def
= {(a, b)|a ∈ A, b ∈ B}. If n ∈ N, we write

An to denote A×A× · · ·×A, n times. A binary relation over a pair of sets A and

B is a subset of A× B. If R ⊆ A× B is a binary relation, we sometimes write aRb

for (a, b) ∈ R and a 6Rb for (a, b) /∈ R. Given two binary relations R1 ⊆ A × B and

R2 ⊆ B × C, the composition of R1 and R2 is a binary relation R2 ◦ R1 ⊆ A× C
de�ned as R2◦R1

def
= {(a, c) ∈ A×C | ∃b ∈ B. (a, b) ∈ R1 ∧ (b, c) ∈ R2}. If R ⊆ A×B

is a binary relation, the inverse of R, denoted R−1 is a binary relation R−1 ⊆ B×A
such that bR−1a if and only if aRb; i.e. R−1 def

= {(b, a) ∈ B ×A | (a, b) ∈ R}.

A binary relation R ⊆ A×A is called a total relation if ∀a, a′ ∈ A. aRa′ ∨ a′Ra. A
binary relationR ⊆ A×B is called a serial relation if ∀a ∈ A. ∃b ∈ B. aRb. A binary

relation R ⊆ A×B is called a functional relation or partial function from A to B

if ∀a ∈ A. ∀b, b′ ∈ B. aRb ∧ aRb′ ⇒ b = b′. We write f : A ⇀ B to mean that f is a

partial function from A to B. In such case, we write f(a) = b to mean (a, b) ∈ f , and
b is called the image of a. Given a partial function f : A ⇀ B, the set dom(f) ⊆ A,
called the domain of f , is de�ned as dom(f)

def
= {a ∈ A | ∃b ∈ B. f(a) = b} and

the set ran(f) ⊆ B, called the range of f , is de�ned as ran(f)
def
= {b ∈ B | ∃a ∈

A. f(a) = b}. A function or mapping from A to B is a binary relation f ⊆ A×B
which is functional and serial, i.e. a partial function such that dom(f) = A. We

write f : A → B to mean that f is a function from A to B. We write A → B for

the set of all functions from A to B. A function f : A → B is called injective or

one-to-one if ∀a, a′ ∈ A. f(a) = f(a′) ⇒ a = a′. It is called surjective or onto if

∀b ∈ B. ∃a ∈ A. f(a) = b, this is, if ran(f) = B. A function is bijective if it is both

246 APPENDIX A. BASIC DEFINITIONS

injective and surjective.

Notation A.2. Relation/function composition R2 ◦R1 is also written R1;R2 or even

R1R2.

Other familiar de�nitions follow.

De�nition A.3. (Equivalence relations and partitions) A binary relation R ⊆
A×A is called re�exive if ∀a ∈ A. aRa. It is called irre�exive if ∀a ∈ A. a6Ra. It is
called symmetric if ∀a, a′ ∈ A. aRa′ ⇒ a′Ra. It is called antisymmetric if ∀a, a′ ∈
A. aRa′ ∧ a′Ra ⇒ a = a′. It is called transitive if ∀a, a′, a′′. aRa′ ∧ a′Ra′′ ⇒ aRa′′.

An equivalence relation over a set A is a binary relation R ⊆ A × A which is

re�exive, symmetric and transitive. If R ⊆ A × A is an equivalence relation, and

aRa′ then we say that a and a′ are R-equivalent.

Given a set A, and an equivalence relation R over A, the equivalence class of an

element a ∈ A, denoted [a]R is the set of all R-equivalent elements of a. This is

[a]R
def
= {a′ ∈ A | aRa′}

The quotient set of A over R, denoted A/R is the set of all equivalence classes of

elements of A with respect to R. This is

A/R
def
= {[a]R | a ∈ A}

Given a set A, the power set of A, denoted P(A), is the set of all subsets of A. This
is

P(A)
def
= {B |B ⊆ A}

Given a set A, a partition of A is set of subsets of A, such that no two subsets

intersect (i.e. , have no elements in common,) and the union of all the subsets is

the original set A. This is, T ⊆ P(A) is a partition of A if ∀B,B′ ∈ T.B 6= B′ ⇒
B ∩B′ = ∅ and ∪T = A, i.e. , ∪B∈TB = A.

The following properties follow immediately from these de�nitions.

Proposition A.4. Given a set A, and an equivalence relation R over A,

(i) ∀a ∈ A. a ∈ [a]R.

(ii) ∀a, a′ ∈ A. a = a′ ⇒ aRa′.

(iii) ∀a, a′ ∈ A. aRa′ ⇔ [a]R = [a′]R.

Proof. (i) For any a ∈ A, aRa by re�exivity of R. Therefore a ∈ [a]R by de�nition

of equivalence class.

A.1. RELATIONS, FUNCTIONS, EQUIVALENCE, PARTITIONS 247

(ii) For any a ∈ A, aRa by re�exivity of R. So for any a′ ∈ A such that a = a′, we

have that aRa′.

(iii) (⇒) Take any a, a′ ∈ A such that aRa′. We claim that [a]R ⊆ [a′]R and that

[a′]R ⊆ [a]R. For the �rst part, take any x ∈ [a]R. Then aRx by de�nition of equiv-

alence class. Since R is an equivalence relation, it must be symmetric and therefore

it must be that xRa. Since R is an equivalence relation, it must also be transitive,

hence from xRa and aRa′ we must conclude that xRa′. Therefore, by symmetry of

R, a′Rx. So, by de�nition of equivalence class, x ∈ [a′]R. So we have proven that

∀x ∈ A.x ∈ [a]R ⇒ x ∈ [a′]R, which is the same as saying that [a]R ⊆ [a′]R. By the

same argument we obtain that [a′]R ⊆ [a]R, and therefore, [a]R = [a′]R.

(⇐) Take any a, a′ ∈ A such that [a]R = [a′]R. By (i), a ∈ [a]R, therefore a ∈ [a′]R,
so a′Ra, which by symmetry implies that aRa′.

Every equivalence relation over a set A automatically induces a partition ofA, namely

the quotient set A/R.

Proposition A.5. Given a set A, and an equivalence relation R over A, the quotient

A/R is a partition of A.

Proof. First we show that A/R ⊆ P(A). Then we show that di�erent sets in A/R

do not intersect, and �nally we show that their union is A itself.

1. By de�nition of quotient set, each element of A/R is an equivalence class [a]R. But
each equivalence class is a set of elements a ∈ A. Hence, for each a ∈ A, [a]R ⊆ A,

this is, ∀[a]R ∈ A/R. [a]R ∈ P(A) and therefore A/R ⊆ P(A).

2. Take two sets B,B′ ∈ A/R such that B 6= B′. Since A/R is the set of all equivalence

classes, B and B′ must be the equivalence class of some elements a, a′ ∈ A. This is,
B = [a]R and B′ = [a′]R for some a, a′ ∈ A. Suppose that B ∩ B′ 6= ∅. Then there

must be some x ∈ A such that x ∈ B and x ∈ B′. Hence x ∈ [a]R and x ∈ [a′]R.
Therefore, aRx and a′Rx, which implies that xRa′ by symmetry. Hence we conclude

that aRa′ by transitivity. But this implies, by proposition A.4 (iii), that [a]R = [a′]R,
this is, that B = B′. But this contradicts our assumption that B 6= B′. So it must

be the case that B ∩B′ = ∅.

3. For the last part we show that ∪(A/R) = A by showing that ∪(A/R) ⊆ A and

that A ⊆ ∪(A/R). The �rst part follows from the fact that each element B ∈ A/R is

an equivalence class over A, so its elements are elements of A and therefore, B ⊆ A.
Hence the union of all such sets B is made up of elements exclusively from A, this

is ∪B∈A/RB ⊆ A, by de�nition of union (if all the sets B in a family of subsets are

subsets of some set A, then the union of all the sets in the family is a subset of

A.) The second part follows from the fact that for each element a ∈ A, there is an

248 APPENDIX A. BASIC DEFINITIONS

equivalence class [a]R ∈ A/R, since A/R is the set of all such equivalence classes.

Therefore, if a ∈ A is in some equivalence class B = [a]R, it must be in the union of

all such equivalence classes ∪B∈A/RB, by de�nition of union; this is, a ∈ ∪B∈A/RB,
and therefore A ⊆ ∪B∈A/RB.

The previous proposition showed that if we start from an equivalence, we automati-

cally obtain a partition. The dual is also true. From a partition we can generate an

equivalence. Every partition P of a set A induces an equivalence relation R over A

such that P = A/R, as follows:

De�nition A.6. (Equivalence of a partition) Given a set A and a partition P

of A, de�ne a binary relation ∼P⊆ A×A as follows:

∼P
def
= {(a, a′) ∈ A×A | ∃B ∈ P. a ∈ B ∧ a′ ∈ B}

in other words, a ∼P a′ if and only if a and a′ are in the same subset B of the

partition.

Proposition A.7. Given a set A and a partition P of A, the binary relation ∼P is

an equivalence relation.

Proof. First we show re�exivity. Take any a ∈ A. Since P is a partition there must

be a subset B ∈ P , such that a ∈ B. Hence a ∼P a.

Now we show symmetry. Let a, a′ ∈ A be a pair of elements such that a ∼P a′. Hence
there is a B ∈ P such that a ∈ B and a′ ∈ B. But this is the same as saying that

there is a B ∈ P such that a′ ∈ B and a ∈ B, which means that a′ ∼P a.

Finally we show transitivity. Let a, a′, a′′ ∈ A be such that a ∼P a′ and a′ ∼P a′′.

Hence there is a B1 ∈ P such that a ∈ B1and a
′ ∈ B1, and also, there is a B2 ∈ P

such that a′ ∈ B2 and a′′ ∈ B2. But since P is a partition, if B1 6= B2, then

B1 ∩ B2 = ∅. But since a′ ∈ B1 and a′ ∈ B2 then B1 ∩ B2 6= ∅. Therefore B1 = B2.

So there is a set B ∈ P , namely B = B1 = B2, such that a ∈ B and a′′ ∈ B. Hence
a ∼P a′′.

Lemma A.8. Given a set A and a partition P of A,

(i) ∀a, a′ ∈ A.∀B ∈ P. a ∼P a′ ⇒ (a ∈ B ⇔ a′ ∈ B)

(ii) ∀B ∈ P.∀a ∈ B.B = [a]∼P

Proof. (i) This is a restatement of the de�nition of ∼P , for if a ∼P a′ then there is

a B ∈ P such that a ∈ B and a′ ∈ B. But since P is a partition, neither a not a′

A.1. RELATIONS, FUNCTIONS, EQUIVALENCE, PARTITIONS 249

can be members of any other set B′ ∈ P , for if a ∈ B and a′ ∈ B′ with B′ 6= B then

a′ ∈ B ∩ B′ which would imply that B ∩ B′ 6= ∅, contradicting the fact that P is a

partition.

(ii) Take any B ∈ P and any a ∈ B. We show that B ⊆ [a]∼P and [a]∼P ⊆ B. For

the �rst part take any a′ ∈ B. Hence, by de�nition of ∼P , a ∼P a′, which means

that a′ ∈ [a]∼P by de�nition of equivalence class. Hence B ⊆ [a]∼P . For the second
part, take any a′ ∈ [a]∼P . Hence a ∼P a′, so there is a B′ ∈ P such that a ∈ B′ and
a′ ∈ B′. But since P is a partition, and a ∈ B, it must be that B′ = B, because

otherwise B ∩ B′ 6= ∅ would be a contradiction. So a′ ∈ B, as required. Therefore
[a]∼P ⊆ B.

Proposition A.9. Given a set A and a partition P of A, the equivalence relation

∼P satis�es P = A/ ∼P .

Proof. We show that P ⊆ A/ ∼P and A/ ∼P⊆ P . For the �rst part, take any B ∈ P .
Since P is a partition of A, every element a of B is an element of A. Furthermore,

by lemma A.8 (ii), B = [a]∼P , but [a]∼P ∈ A/ ∼P by de�nition of quotient set, so

B ∈ A/ ∼P . For the second part, take any equivalence class [a]∼P ∈ A/ ∼P . We

know that a ∈ [a]∼P by proposition A.4 (i). Furthermore a ∈ A, and since P is a

partition of A, there must be some B ∈ P such that a ∈ B. But by lemma A.8 (ii),

B = [a]∼P , so we have that [a]∼P ∈ P .

De�nition A.10. (Closure) Given a binary relation R ⊆ A × A, its re�exive

closure , denoted R is a binary relation R ⊆ A×A given as

R
def
= R ∪ {(a, a) | a ∈ A and ∃a′ ∈ A. (a, a′) ∈ R}

The symmetric closure of R, denoted R↔ is a binary relation R↔ ⊆ A×A given

as

R↔
def
= R ∪R−1

The transitive closure of R, denoted R+ is a binary relation R+ ⊆ A×A given as

R+ def
=

⋃
n∈N\{1}

Rn

The Kleene closure of R, denoted R∗is a binary relation R∗ ⊆ A×A given as

R∗
def
=

⋃
n∈N

Rn

250 APPENDIX A. BASIC DEFINITIONS

A.2 Indexed sets and sequences

De�nition A.11. (Indexed sets) Let I be a set (of indices.) An I-indexed set

over some set A is a triple (I, A, ι) where ι : I → A is the index function of A. If

x ∈ A, i ∈ I and ι(i) = x, we say that i is the index of x.

Notation A.12. If (I,X, ι) is an indexed set, we drop I and ι if they are clear from

the context. If x ∈ A, i ∈ I and ι(i) = x, we write x as xi.

De�nition A.13. (Sequences) The Kleene closure of a set A, written A∗ is

de�ned as

A∗
def
=

⋃
n∈N

An

A sequence over A is an element of A∗. Alternatively, a �nite sequence s, is an

I-indexed set over A, where I = {i ∈ N | ∃n ∈ N. i 6 n}. In such case, the length of

s, denoted |s| is n+ 1. An in�nite sequence s, is an N-indexed set over A. In such

case |s| def= ∞. If s is a sequence, we write s as 〈s0, s1, s2, ...〉. Sometimes we take the

index set to start from 1.

Notation A.14. We use the notation −→s for sequences.

A.3 Ordered sets and induction

Notation A.15. We use N to denote the set of natural numbers {0, 1, 2, ...}.

De�nition A.16. (Order relations) A preorder relation over a set A is a binary

relation R ⊆ A×A which is re�exive and transitive. A partial order relation over

a set A is an antisymmetric preorder relation over A. A total order relation is a

partial order which is total. A preordered set or simply preorder is a pair (A,R)
such that R is a preorder relation over A. Similarly, a partially ordered set or

poset is a pair (A,R) such that R is a partial order relation over A. A total order

is a pair (A,R) such that R is a total order relation over A.

Notation A.17. Usually we denote an order relation with a symbol such as ≤, 6, �,
v, etc. Their inverses are denoted ≥, >, �, v, etc. Their irre�exive variants are <,
≺, @ and >, �, A respectively. When (A,R) is an ordered set and R is clear from

the context, we drop it.

Remark A.18. The set of natural numbers N forms a total order, where the standard

order relation 6 is de�ned such that ∀n ∈ N. n 6 n+ 1, and ¬∃n ∈ N. n < 0.

De�nition A.19. (Minimal and maximal elements) Let (A,v) be a preorder,

and let B ⊆ A. An element m ∈ B is called minimal in B if ¬∃a ∈ B. a v m.

Similarly m is maximal if ¬∃a ∈ B.m v a. An element m is called minimum or

bottom of B, if ∀a ∈ B.m v a. It is calledmaximum or top of B, if ∀a ∈ B. a v m.

A.3. ORDERED SETS AND INDUCTION 251

Remark A.20. The bottom element of a preorder, if it exists, is unique. The top

element of a preorder, if it exists is unique. On the other hand, it is possible for a

set to have more than one minimal (resp. maximal) element.

Notation A.21. The bottom element of a set is usually denoted ⊥, and the top

element, >.

De�nition A.22. (Chains) Let (A,v) be a poset. An ascending chain is a se-

quence of elements 〈a0, a1, a2, ...〉 with each ai ∈ A, such that ∀i. ai v ai+1. A

strictly ascending chain is an ascending chain such that ∀i. ai @ ai+1. A descend-

ing chain is a sequence 〈a0, a1, a2, ...〉 where ∀i. ai w ai+1. A strictly descending

chain is a descending chain such that ∀i. ai A ai+1.

De�nition A.23. (Well-founded order) We call a poset (A,v) well-founded if

every non-empty set B ⊆ A has a minimal element in B.

Proposition A.24. A poset is well-founded if and only if there are no in�nite strictly

descending chains in it.

Proof. (⇒) Let (A,v) be a well-founded poset. Suppose there is an in�nite strictly

descending chain. a0 A a1 A a2 A · · · . Then the set {a0, a1, a2, ...} has no minimal

element, which is a contradiction. (⇐) Let (A,v) be a poset. If there are no in�nite
strictly descending chains, then any subset of A must have a minimal, otherwise

we could build an in�nite descending chain, contradicting the hypothesis. Therefore

(A,v) must be well-founded.

The previous de�nitions allow us to formulate the well-known �principle of induction,�

which gives as a very powerful technique to prove properties of all the elements in

a given set. There are several alternative de�nitions of this principle. Here we adopt

the one from [35].

De�nition A.25. (Induction) Let S = (A,v) be a poset. We say that the prin-

ciple of induction holds for S if for any predicate P we have

∀x ∈ A.(∀y ∈ A.(y @ x⇒ P (y))⇒ P (x))⇒ ∀z ∈ A.P (z)

Theorem A.26. Let S = (A,v) be a poset. The principle of induction holds for S

if and only if S is a well-founded order.

Proof. See [35].

Hence, we can use induction for proving properties of a set as long as we have a

suitable partial order over the set which is well-founded.

252 APPENDIX A. BASIC DEFINITIONS

A.4 Signatures, terms, substitutions

We provide some common de�nitions from universal algebra and algebraic speci�-

cation. See, for instance [57]. In this section we assume there is an in�nite set V of

(meta)-variables.

De�nition A.27. (Sorted sets) Let S be a set (of sorts.) An S-sorted set over

some set A is a triple (S,A, ς) where ς : A→ S is the sort function of A. If x ∈ A,
w ∈ S and ς(x) = w, we say that w is the sort of x.

De�nition A.28. (Signatures) A signature Σ is a tuple (S, F, ς) where:

• S is a set of sorts,

• F is a set of function symbols (also called operators or combinators,) not in

V .

• (S, F, ς) is an S∗ × S-sorted set over F .

If f ∈ F , we write f : s1 × · · · × sn → s to mean that ς(f) = ((s1, ..., sn), s). We

write sorts(Σ) for S, ops(Σ) for F , and ar(f) for n where f : s1 × · · · × sn → s.

ar : F → N is called the rank or arity function. If ar(f) = 0 for some f ∈ F , then
f is called a constant symbol . We write (F, ς) for a single-sorted signature, where

S is understood from the context.

De�nition A.29. (Terms) Let Σ = (S, F, ς) be a signature and (S,W, ς ′) an S-

sorted set of variables, where W ⊆ V . For every sort s ∈ S, the set of s-terms over

W , written Ts(Σ,W) is the smallest set which contains:

• Every x ∈W such that ς ′(x) = s,

• Every f(t1, ..., tn) where f : s1 × · · · × sn → s ∈ F , and for each i ∈ {1, ..., n},
ti ∈ Tsi(Σ,W).

A term is t is called a Σ-term if there is a sort s ∈ S, such that t ∈ Ts(Σ,W). The set
of all Σ-terms over W is T (Σ,W)

def
= ∪s∈STs(Σ,W). The set T (Σ, ∅) is abbreviated

as T(Σ), and the set T (Σ, V) is abbreviated as T (Σ). Similarly, for a speci�c sort s,

Ts(Σ, ∅) is written Ts(Σ) and Ts(Σ, V) is written Ts(Σ). The elements of T(Σ) are

called closed or ground terms, and the elements of T (Σ) are called open terms.

The set of (free) variables of an open term t written vars(t) is de�ned as follows:

vars(x)
def
= {x} if x ∈W

vars(f(t1, ..., tn))
def
= vars(t1) ∪ · · · ∪ vars(tn)

A.4. SIGNATURES, TERMS, SUBSTITUTIONS 253

Remark A.30. For all t ∈ T(Σ), vars(t) = ∅.

A signature can be thought of as a description of abstract syntax, where sorts are

syntactic categories and function symbols are combinators. In fact every BNF gram-

mar determines a signature and vice-versa. For example, consider the following BNF:

(assume a set of names N , and let x be any name in N)

P ::= 0 |A→ P | P + P A ::= in(x) | out(x)

This BNF de�nes (inductively) the following sets:

A def
= {in(x) |x ∈ N} ∪ {out(x) |x ∈ N}

P def
= {0} ∪ {a→ p | a ∈ A, p ∈ P} ∪ {p1 + p2 | p1, p2 ∈ P}

But these sets are nothing other than the set of closed terms of a signature Σ =
(S, F, ς) where

S
def
= {A,P}

F
def
= {in(x)}x∈N ∪ {out(x)}x∈N ∪ {0, · → ·, ·+ ·}

ς
def
= {in(x) : 〈〉 → A}x∈N ∪ {out(x) : 〈〉 → A}x∈N
∪{0 : 〈〉 → P, · → · : A× P → P, ·+ · : P × P → P}

So, A = TA(Σ) and P = TP (Σ).

De�nition A.31. (Sub-terms) Let Σ = (S, F, ς) be a signature. Given a term

t ∈ T (Σ) of the form f(t1, ..., tn), we say that each ti is an immediate sub-term

of t, and write this as ti ≺ t. We say that t′ is a sub-term of t, written t′ ≺+ t, if it

is an immediate sub-term of t, or it is a sub-term of some immediate sub-term of t.

Remark A.32. ≺ and ≺+ are antisymmetric.≺+ is a transitive relation and it is the

transitive closure of ≺. Similarly, �+ is the transitive closure of �. Hence �+ is

a partial order and (T (Σ),�+) is a poset. Furthermore, it is a well-founded order.

This allows us to use the principle of induction on the structure of a term, as a proof

technique. This is called structural induction .

De�nition A.33. (Substitution) Let Σ = (F, ς) be a signature. A signature σ is

a mapping in V → T (Σ). We write {x1/y1, ..., xn/yn} for the substitution σ such that

σ(x1) = y1,, σ(xn) = yn and for every z /∈ {x1, ..., xn}, σ(z) = z. In this case, the

domain of σ is dom(σ)
def
= {x1, ..., xn} and its range is ran(σ)

def
= {y1, ..., yn}.

A substitution σ is extended to terms as a mapping σ̄ : T (Σ) → T (Σ) de�ned as

follows:

254 APPENDIX A. BASIC DEFINITIONS

σ̄(x)
def
= σ(x) if x ∈ V

σ̄(f(t1, ..., tn))
def
= f(σ̄(t1), ..., σ̄(tn)) if f ∈ F, and t1, ..., tn ∈ T (Σ)

Typically we will write σ for σ̄. If t is a term and σ a substitution, we write tσ for

σ(t).

Remark A.34. Given any substitution σ, if t ∈ T(Σ) or t ∈ T (Σ) and vars(t) ∩
dom(σ) = ∅ then tσ = t.

B
Transition System Speci�cations

This appendix describes the fundamentals of Structural Operational Semantics (SOS)

[36]. This approach is based on de�ning the operational semantics of a language or

formalism in terms of a Labelled Transition System, a very general kind of dynamic

system. Such de�nition is done by means of a set of rules, known as a Term Deduction

System.

We begin by introducing labelled transition systems, and the associated notions of

simulation and bisimulation as a means to compare the behaviour of transition sys-

tems. Then we focus on how to specify labelled transition systems by using terms

from a signature to represent states, and de�ning the transitions with a term deduc-

tion system.

This approach of using term deduction systems as a means to specify operational

semantics, and transition systems in general, gives us three big advantages. First,

a term deduction system provides us with a formal speci�cation which can be used

as the requirements to be satis�ed by any implementation of the language whose

semantics we are de�ning. Second, it gives as a tool to prove what are the possible

behaviours of a system, and more generally prove properties satis�ed by a system

or by all terms in the language. In particular it leads to two (closely related) proof

techniques, known as rule induction and induction on derivations. And third, if the

rules satisfy certain format requirements, it allows us to conclude, thanks to some

meta-theorems, that bisimilarity is a congruence, and therefore, bisimilarity-based

semantics are compositional (by the arguments of appendix C.) This in turn has

both theoretical and practical bene�ts.

The de�nitions in this appendix come mostly from [26], [56], [1] and [16].

B.1 Labelled Transition Systems

Labelled Transition Systems are a kind of dynamic system similar, but not identical

to non-deterministic automata [48].

De�nition B.1. (Labelled Transition Systems) A labelled transition system ,

or LTS for short, is a triple (S,L,→) where S is a set of states, L is a set of labels

256 APPENDIX B. TRANSITION SYSTEM SPECIFICATIONS

and →⊆ S × L × S is a transition relation. We write s
a→ s′ for (s, a, s′) ∈→. We

write s
a→ to mean that ∃s′ ∈ S. s a→ s′. Alternatively, an LTS is a triple (S,L, T)

where T is a family of binary relations { a→⊆ S × S | a ∈ L}. A tuple (S,L,→, s0) is
an LTS with a distinguished initial state s0 ∈ S.

A transition s
a→ s′ can be interpreted in di�erent ways depending on what is being

represented by the LTS. Labels can represent input events, and so a transition s
a→ s′

would mean that if the system is in state s and the input event a occurs, then the

system can jump to state s′. It does not necessarily mean that the system must

jump to state s′, as there may be several di�erent a transitions from s. A label

may also represent actions that the system may be ready to perform in a given

state. The action may be autonomous or internal, if it is up to the system itself to

perform it, or it may be external if it requires interaction with the environment. If

there are several possible actions in a state, there is a choice. This choice is external

if it is determined by the environment; the action occurs only if the environment

is also ready to interact. The choice may be internal, if the system decides which

action to take, independently from the environment. In some applications, labels

may represent elements other than events or actions. They may contain contextual

information, such as variable environments, conditions, etc.

The two alternative characterizations of LTS, as a ternary transition relation →⊆
S × L × S and as a family of binary transition relations T = { a→⊆ S × S | a ∈ L}
are equivalent. To see this, note that we can obtain → from T by de�ning →def

=
{(s, a, s′) | (s, s′) ∈ a→}. Similarly we can obtain T from → by de�ning T

def
= { a→⊆

S × S | a ∈ L} where each a→def
= {(s, s′) | (s, a, s′) ∈→}.

Given two LTSs, we can combine them by taking the disjoint union of their states

and transitions.

De�nition B.2. (Combination of LTSs) LetM = (S,L,→) andM ′ = (S′, L′,→′

) be two LTSs. Then, the disjoint union ofM andM ′ is de�ned as the LTSM]M ′ def=
(S] S′, L] L′,→] →′).1

We can now de�ne the notions of execution and traces of an LTS.

De�nition B.3. (Execution and traces) Given an LTS (S,L,→), an execution
is a sequence of transitions γ = 〈γ0, γ1, γ2, ...〉 such that for each i = {0, 1, 2, ...},
γi = (si, ai, s′i) ∈→, and s′i = si+1. We write γ as

s0
a0−→ s1

a1−→ s2
a2−→ · · ·

We call the sequence ~a = 〈a0, a1, a2, ...〉 the trace of γ, and write tr(γ) = ~a. For any

1The symbol] sands for disjoint union of sets.

B.2. SIMULATION AND BISIMULATION 257

states s, s′ ∈ S and sequence ~a = 〈a0, a1, a2, ..., an−1〉, we write

s
~a=⇒ s′

if there is an execution γ = 〈γ0, γ1, γ2, ..., γn〉 with trace ~a, where s0 = s and s′n = s′.

We write s
~a=⇒ to mean that s

~a=⇒ s′ for some s′, if ~a is �nite.

This de�nitions are extended in the natural way to in�nite traces and executions.

We de�ne traces(s) to be the set of all traces for executions beginning in state s;

i.e.

traces(s)
def
= {~a | s ~a=⇒}

B.2 Simulation and Bisimulation

This section addresses the issue of what does it mean for one LTS (or state) to

simulate another, and what does it mean for two LTSs (or states) to have equivalent

behaviour. These concepts are formalized with the notions of simulation, two-way

simulation, bisimulation, and trace equivalence.

Now we present the notion of simulation. First we introduce the idea of simulation

between states of an LTS, and then we de�ne simulation between two LTSs.

Informally a simulation is a relation between states such that all transitions of the

simulated side are matched by the simulating side.

De�nition B.4. (Simulation) Let M = (S,L,→) be an LTS. A binary relation

R ⊆ S × S is called a simulation if for all p, q ∈ S, if pRq then for every a ∈ L,
and for every p′ ∈ S such that p

a−→ p′, there is a q′ ∈ S such that q
a−→ q′ and p′Rq′.

We say that R satis�es the transfer property for (p, q).

We say that q simulates p, written p �M q if there is a simulation R such that pRq.

The relation �M is called similarity. We omit the subscript if it is clear from the

context.

Given two LTSs M = (S,L,→, p0) and M ′ = (S′, L′,→′, q0) with initial states

p0 ∈ S and q0 ∈ S′ respectively, we say that M ′ simulates M , written M � M ′ if

p0 �M]M ′ q0.

This de�nition says that the following diagram commutes for all p, q, p′, q′ ∈ S and

a ∈ L.

p R //

a
��

q

a
��

p′
R // q′

Hence simulation can be characterized as follows.

258 APPENDIX B. TRANSITION SYSTEM SPECIFICATIONS

Proposition B.5. Let (S,L,→) be an LTS. A binary relation R ⊆ S × S is a

simulation if and only if for each a ∈ L, R−1; a→⊆ a→;R−1.

Proof.

(⇒) Assume that R is a simulation. Take any a ∈ L and any (q, p′) ∈ R−1; a→. So

by de�nition of composition, there is a p ∈ S such that qR−1p and p
a→ p′. Since

qR−1p, we have that pRq. Therefore, there must be a q′ ∈ S such that q
a→ q′ with

p′Rq′, because R is a simulation. This implies that q
a→ q′ and q′R−1p′, or in other

words (q, p′) ∈ a→;R−1.

(⇐) Assume that for each a ∈ L, R−1; a→⊆ a→;R−1. We show that R is a simulation.

Take any p, q ∈ S such that pRq. Suppose that p
a→ p′ for some a ∈ L and p′ ∈ S.

Since pRq, we have that qR−1p, and since p
a→ p′, we conclude that (q, p′) ∈ R−1; a→.

Hence (q, p′) ∈ a→;R−1 by our assumption. But this is stating that there is a q′ ∈ S
such that q

a→ q′ and q′R−1p′, which is the same as saying that p′Rq′. Therefore, R

satis�es all the conditions for being a simulation.

The following statements are basic properties of similarity.

Proposition B.6. For any LTS M = (S,L,→),

(i) �M is a preorder.

(ii) �M is a simulation.

(iii) �M is the largest simulation, in particular �M= ∪{R |R is a simulation}

Proof. Let M = (S,L,→) be an LTS.

(i) Similarity is re�exive because there is a simulation R such that pRp for any p ∈ S.
Namely, R = {(p, p) | p ∈ S}. This is a simulation because any p can match its own

transitions.

For transitivity, suppose that p � q and q � r. Then there are simulations R1 and

R2 such that pR1q and qR2r. We claim that their composition R
def
= R1;R2 is a

simulation and that pRr. Since R = {(x, y) | ∃z ∈ S. xR1z& zR2y} we conclude that
pRr, since there is a q such that pR1q and qR2r. It now su�ces to show that R is

indeed a simulation. Take any (x, y) ∈ R and suppose that x
a→ x′. Since (x, y) ∈ R,

then there is a z such that xR1z and zR2y. Since R1 is a simulation, there must be a

z′ such that z
a→ z′ and (x′, z′) ∈ R1. Then, since R2 is a simulation, there must be a

y′ such that y
a→ y′ and (z′, y′) ∈ R2. Furthermore, (x′, y′) ∈ R because (x′, z′) ∈ R1

and (z′, y′) ∈ R2, thus R satis�es all requirements of a simulation.

We have shown that �M is both re�exive and transitive. Hence it is a preorder.

B.2. SIMULATION AND BISIMULATION 259

(ii) Take any p, q ∈ S. Assume that p � q and p
a→ p′ for some p′. By de�nition of

similarity, there is a simulation R such that pRq, and since p
a→ p′, then there is a q′

such that q
a→ q′ and p′Rq′. Since p′ and q′ are related by a simulation, then p′ � q′,

and so � satis�es the conditions of a simulation.

(iii) By de�nition of similarity, any pair (p, q) ∈� if and only if there is a simulation

R such that (p, q) ∈ R. But this is the same as stating that (p, q) ∈ Ψ where

Ψ = ∪{R |R is a simulation} because if there is a simulation that contains (p, q),
then it certainly is in the union of all simulations, and if (p, q) is in the union of

all simulations, then there must be a simulation that contains it. Hence �= Ψ so

Ψ is a simulation. It is the largest simulation because, by de�nition, it contains all

simulations.

Since � is a simulation, it satis�es the transfer property, so we know that whenever

we establish that p � q, then any action by p is mimicked by q, leading to states p′

and q′ respectively, where p′ � q′. Now, suppose that given two states p and q, we

want to establish that p � q. One way is to �nd a simulation R such that pRq. But

there is another way to prove this, namely that whenever the transfer property for

(p, q) is satis�ed by � , then p � q.

De�nition B.7. Let M = (S,L,→) be an LTS. We de�ne a relation �T⊆ S×S as

follows. For any p, q ∈ S, p �T q if and only if for every a ∈ L, and for every p′ ∈ S
such that p

a−→ p′, there is a q′ ∈ S such that q
a−→ q′ and p′ � q′.

In other words p �T q if � satis�es the transfer property for (p, q).

Proposition B.8. �T =�. In other words, for any p, q, p � q if and only if for

every a ∈ L, and for every p′ ∈ S such that p
a−→ p′, there is a q′ ∈ S such that q

a−→ q′

and p′ � q′.

Proof. We need to show that 1) �⊆�T and 2) �T⊆�. 1) Saying that �⊆�T is

the same as saying that p � q implies p �T q for any p, q. But this follows directly

from the fact that � is a simulation (proposition B.6, (ii).) 2) To show that �T⊆�,
we claim that if p �T q then p � q. Assume that p �T q. To show that p � q, it is

enough to show that �T is a simulation. Suppose that x �T y and that x
a−→ x′ for

some a and x′. Then, by de�nition of �T, there is a y′ ∈ S such that y
a−→ y′ and

x′ � y′. Since �⊆�T by 1), we have that x′ �T y′, thus �T satis�es the conditions of

simulation. This means that there is a simulation R such that pRq, namely, R =�T,

since p �T q. Hence p � q.

260 APPENDIX B. TRANSITION SYSTEM SPECIFICATIONS

This proposition, gives us a co-inductive proof technique for showing that two states

are similar: by establishing p �T q we can conclude that p � q.

The following property says that similarity is a �ner relation than trace inclusion,

this is, if an LTS (or state) simulates another, then its set of possible traces must

contain all traces of the simulated LTS (or state.)

Theorem B.9. Given any LTS (S,L,→), if p � q then traces(p) ⊆ traces(q).

Proof. Let ~a = 〈a0, a1, a2, ...〉 ∈ traces(p). This means that p
~a=⇒, this is, there is an

execution

γ = p0
a0−→ p1

a1−→ p2
a2−→ · · ·

where p0 = p and tr(γ) = ~a. Our goal is to show that ~a is in traces(q), so we

construct an execution which begins at q as follows. Let q0 = q. Since p0
a0−→ p1

and p0 � q0 then there is a q1 ∈ S such that q0
a0−→ q1 and p1 � q1. Likewise, since

p1
a1−→ p2 and p1 � q1 then there is a q2 ∈ S such that q1

a1−→ q2 and p2 � q2. So,

iterating this way we obtain that for each i ∈ {0, 1, 2, ...}, there is a qi+1 ∈ S such

that qi
ai−→ qi+1 with pi+1 � qi+1. Therefore we have an execution

γ′ = q0
a0−→ q1

a1−→ q2
a2−→ · · ·

where q0 = q and tr(γ′) = ~a. Hence q
~a=⇒ and so ~a ∈ traces(q).

Now that we have de�ned simulation and traces, we can address the issue of when

two states are equivalent. The traces function induces an equivalence ker(traces)
(see def. C.1) where states are considered equivalent if they have the same set of

traces: (p, q) ∈ ker(traces)⇐⇒ traces(p) = traces(q).

De�nition B.10. (Trace equivalence) LetM = (S,L,→) be an LTS, and p, q ∈ S
two states. We say that p and q are trace-equivalent , written p $M q if and only

if traces(p) = traces(q). Equivalently, $M= ker(traces).2 We omit the subscript if

it is clear from the context.

Given two LTSsM = (S,L,→, p0) andM ′ = (S′, L′,→′, q0) with initial states p0 ∈ S
and q0 ∈ S′ respectively, we say that they are trace-equivalent, written M $ M ′ if

p0 $M]M ′ q0.

Similarity also induces an equivalence. Since similarity is a preorder we can obtain

an equivalence relation between states by taking its symmetric closure �↔. (see def.
A.10) We call this two-way similarity.

2See def. C.1

B.2. SIMULATION AND BISIMULATION 261

De�nition B.11. (Two-way similarity) LetM = (S,L,→) be an LTS, and p, q ∈
S two states. We say that p and q are two-way similar , written p �M q if and

only if p � q and q � p. Equivalenty, �M
def
=�↔M . We omit the subscript if it is clear

from the context.

Given two LTSsM = (S,L,→, p0) andM ′ = (S′, L′,→′, q0) with initial states p0 ∈ S
and q0 ∈ S′ respectively, we say that they are two-way similar, written M � M ′ if

p0 �M]M ′ q0.

Two-way similarity implies trace-equivalence, as shown by the following.

Proposition B.12. Let M = (S,L,→) be an LTS. Then, �M ⊆$M , this is, for any

p, q ∈ S, if p �M q then p $M q.

Proof. Suppose that p � q. Hence, p � q and q � p. So, by theorem B.9, traces(p) ⊆
traces(q) and traces(q) ⊆ traces(p). This is, traces(p) = traces(q), and so p $ q.

There is a �ner grained equivalence called bisimilarity, which is very useful. It is

a more discriminating equivalence: less states are considered equivalent than under

two-way similarity and trace-equivalence.

De�nition B.13. (Bisimulation) LetM = (S,L,→) be an LTS. A binary relation

R ⊆ S × S is called a bisimulation if for all p, q ∈ S, if pRq then for every a ∈ L,
implies:

(i) for every p′ ∈ S such that p
a−→ p′, there is a q′ ∈ S such that q

a−→ q′ and p′Rq′,

and

(ii) for every q′ ∈ S such that q
a−→ q′, there is a p′ ∈ S such that p

a−→ p′ and p′Rq′.

We say that p and q are bisimilar , written p -M q if there is a simulation R such

that pRq. The relation -M is called bisimilarity. We omit the subscript if it is clear

from the context.

Given two LTSsM = (S,L,→, p0) andM ′ = (S′, L′,→′, q0) with initial states p0 ∈ S
and q0 ∈ S′ respectively, we say that M and M ′ are bisimilar, written M - M ′ if

p0 -M]M ′ q0.

Note that it is not necessary for two-way similar processes to be bisimilar: for a pair

of processes p and q to be bisimilar the simulation from p to q must be the inverse

of the simulation from q to p. This is not required by two-way simulation.

Proposition B.14. A relation R is a bisimulation if and only if both R and R−1

are simulations.

262 APPENDIX B. TRANSITION SYSTEM SPECIFICATIONS

Proof.

(⇒) Assume R to be a bisimulation. It must also be a simulation, as item (i) in

de�nition B.13 is exactly the same as the conditions for being a simulation. Now we

need to show that R−1 must also be a simulation. Suppose qR−1p and q
a→ q′ for

some a and q′. Since qR−1p we have that pRq, and since R is a bisimulation, by item

(ii) of de�nition B.13 we have that there is a p′ such that p
a→ p′ with p′Rq′, which is

the same as q′R−1p′. But this is exactly what is required for R−1 to be a simulation.

(⇐) Assume that R and R−1 are simulations. Take any p, q such that pRq. Since R

is a simulation, item (i) in de�nition B.13 is satis�ed, so we only need to check item

(ii). This is obtained as follows: suppose that q
a→ q′ for some q′. Since pRq, we have

that qR−1p, and since R−1 is a simulation, we conclude that there must be a p′ such

that p
a→ p′ with q′R−1p′, this is, p′Rq′. Hence item (ii) is also satis�ed.

Propositions B.5 and B.14 provide us with yet another characterization of bisimula-

tion.

Proposition B.15. Let (S,L,→) be an LTS. A binary relation R ⊆ S × S is a

bisimulation if and only if for each a ∈ L, R−1; a→⊆ a→;R−1 and R; a→⊆ a→;R.

Proof. By proposition B.14, R is a simulation, so R−1; a→⊆ a→;R−1 by proposition

B.5. But R−1 is also a simulation, and so (R−1)−1; a→⊆ a→; (R−1)−1, which is the

same as saying R; a→⊆ a→;R.

We have seen that it is not necessary for two-way similar processes to be bisimilar,

but all bisimilar processes are two-way similar, and therefore trace-equivalent, as the

following shows.

Theorem B.16. Let M = (S,L,→) be an LTS. Then, -M ⊆�M ⊆$M , in other

words, for all p, q ∈ S, if p -M q then p �M q and p $M q, this is, traces(p) =
traces(q).

Proof. Since p - q, by proposition B.14, there is a simulation R such that pRq

and R−1 is also a simulation. Since pRq for some simulation, we have that p � q.

By de�nition of inverse relation, pRq implies qR−1p, and since R−1 is a simulation,

q � p, therefore p � q. That p $ q follows from proposition B.12.

The following statements are basic properties of bisimilarity, analogous to those of

similarity.

Proposition B.17. For any LTS M = (S,L,→),

(i) -M is an equivalence relation.

B.3. TERM-DEDUCTION SYSTEMS 263

(ii) -M is a bisimulation.

(iii) -M is the largest bisimulation, in particular -M= ∪{R |R is a bisimulation}

Proof.

(i) Re�exivity and transitivity are obtained as shown in item (i) of proposition B.6.

Symmetry is obtained as follows. Suppose that p - q and let R be a bisimulation

such that pRq. Hence, by proposition B.14, R and R−1 are simulations. But this is

the same as saying that (R−1)−1 and R−1 are simulations, and therefore R−1 is a

bisimulation. Furthermore, since pRq, we have that qR−1p, so there is a bisimulation,

namely R−1 such that qR−1p, and so q - p.

(ii) This obtained as in item (ii) of proposition B.6.

(iii) This obtained as in item (iii) of proposition B.6.

The proof technique provided by proposition B.8 also holds for bisimilarity.

De�nition B.18. Let M = (S,L,→) be an LTS. We de�ne a relation -T⊆ S × S
as follows. For any p, q ∈ S, p -T q if and only if for every a ∈ L, then:

(i) for every p′ ∈ S such that p
a−→ p′, there is a q′ ∈ S such that q

a−→ q′ and p′ - q′,

and

(ii) for every q′ ∈ S such that q
a−→ q′, there is a p′ ∈ S such that p

a−→ p′ and p′ - q′.

Proposition B.19. -T=-. In other words, for any p, q, p - q if and only if for

every a ∈ L:

(i) for every p′ ∈ S such that p
a−→ p′, there is a q′ ∈ S such that q

a−→ q′ and p′ - q′,

and

(ii) for every q′ ∈ S such that q
a−→ q′, there is a p′ ∈ S such that p

a−→ p′ and p′ - q′.

Proof. Analogous to the proof of proposition B.8.

B.3 Term-Deduction Systems

This section focuses on how to de�ne or specify a labelled transition system. The

heart of an LTS is its transition relation. A relation is a set, and sets can be de�ned

in many ways, but one particularly useful approach is to de�ne a set in an inductive

or recursive fashion: elements of the set are de�ned in terms of elements that are

already in the set. Relations, and transition relations can also be de�ned this way. It

264 APPENDIX B. TRANSITION SYSTEM SPECIFICATIONS

is common to present such de�nitions as a set of inference rules, which specify how

an element is in the set (relation) if other elements are in the set. Furthermore, these

inference rules may have additional conditions. Such set of rules is a term-deduction

system, which we now formally de�ne.

De�nition B.20. (Term deduction system) A term deduction system , or

TDS for short, over a signature Σ, is a tuple (Σ,Φ) where Φ is a set of inference

rules of the form
H

t

where H = {ti}i∈I ⊆ T (Σ) is a set of terms which we call premises, and t ∈ T (Σ)
is a term called the conclusion . A rule of the form

∅
t

is called an axiom , and it is commonly written simply as t if no confusion arises.

Typically, the rules of a TDS have variables since they are meant to be generic. A

concrete proof of a term requires us to use instances of these generic rules.

De�nition B.21. (Rule instance) Let (Σ,Φ) be a TDS, and φ = H
t ∈ Φ be some

rule with H = {ti}i∈I . A pair of the form

H ′

t′

where H ′ = {t′i}i∈I ⊆ T (Σ) and t′ ∈ T (Σ), is called a rule instance of φ if there is

a substitution σ : V → T (Σ) such that for each t′i ∈ H ′, t′i = σ(ti), and t′ = σ(t).

Remark B.22. Notice that a rule instance is not necessarily made of closed terms.

Notation B.23. A rule or rule instance of the form

{t1, t2, ..., tn}
t

is typically written
t1 t2 ... tn

t

The notation
(t1 and · · · and tn) or (t′1 and · · · and t′n)

t

is shorthand for a pair of rules

t1 t2 ... tn
t

and
t′1 t′2 ... t′n

t

B.3. TERM-DEDUCTION SYSTEMS 265

The notation
t1 t2 ... tn

t and t′

is shorthand for a pair of rules

t1 t2 ... tn
t

and
t1 t2 ... tn

t′

With this we can formally de�ne the concept of proof or derivation in a TDS.

Informally, a derivation is a tree where the nodes are terms, which are obtained from

the parents by rule instances.

De�nition B.24. (Derivation) Let K = (Σ,Φ) be a TDS and t ∈ T (Σ) be some

term. A K-derivation of t is either:

• a rule instance ∅t of some axiom ∅
t′ ∈ Φ, or

• a pair {d1,...,dn}t where {t1,...,tn}t is a rule instance of some rule
{t′1,...,t′n}

t′ ∈ Φ, and for

each i ∈ {1, ..., n}, di is a K-derivation of ti.

We write d `K t to mean that d is a K-derivation of t. We say that t is derived

or provable from K, written `K t, if d `K t for some derivation d. We omit the

subscript whenK is clear from the context. We call D(K) the set of allK-derivations.

The set of all derived terms of K is derived(K)
def
= {t | `K t}.

Given two derivations d and d′, we say that d′ is an immediate sub-derivation of

d, written d′ ≺1 d if d is of the form D
t and d′ ∈ D. We write ≺ for the transitive

closure of ≺1, i.e. ≺=≺+
1 . We say that d′ is a sub-derivation of d if d′ ≺ d.

Remark B.25. ≺ is antisymmetric and transitive, and its re�exive closure � is a

well-founded order because every descending chain must end in some axiom instance.

Therefore the principle of induction holds for D(K). This is known as induction

on derivations.

A derivation as presented in the previous de�nition is a tree where the root is the

proven statement and the leaves are axioms. Each node in this tree is obtained from

its �parent� nodes by applying some rule.

Given a TDS we can obtain derived rules, this is, rules that are not in the given set of

rules but can be reconstructed by a derivation using existing (primitive or derived)

rules. In this case the leaves of the proof tree are either axioms or premises of the

new derived rule. We formalize this as follows.

De�nition B.26. (Derived rules) Let K = (Σ,Φ) be a TDS. Suppose that H =
{ti}i∈I ⊆ T (Σ) is a set of terms, and t ∈ T (Σ) is a term. A K-derivation of Ht is

a tree with root t and where each node is either:

• a leaf t′ ∈ H,

266 APPENDIX B. TRANSITION SYSTEM SPECIFICATIONS

• a leaf t′ ∈ T (Σ) where there is a rule instance ∅t′ of some axiom in Φ, or

• an inner node t′ ∈ T (Σ) with parents {t1, ..., tn} ⊆ T (Σ) where {t1,...,tn}t′ is a rule

instance of some rule in Φ.

We write d `K H
t to mean that d is a K-derivation of Ht . We say that Ht is a derived

rule of K, written `K H
t , if d `K

H
t for some derivation d. We omit the subscript

when K is clear from the context. We denote derrules(K)
def
= {Ht | `K

H
t } the set

of all derived rules of K.

Given a TDSK = (Σ,Φ), the closure ofK is a TDS K̂
def
= (Σ, Φ̂) with Φ̂

def
=

⋃
i∈ω Φi

where

Φ0
def
= Φ

Φi
def
= Φi−1 ∪ derrules(Ki−1)

and each Ki
def
= (Σ,Φi) for each i ∈ ω.

Remark B.27. Derivations as de�ned by de�nition B.24 are a speci�c case of de�ni-

tion B.26, namely, `K t if `K ∅
t .

The idea of the closure of a TDS is that we can build proofs using not only the

original set of rules Φ, but also all derived rules Φ̂. Hence we will use the following
convention.

Notation B.28. Unless explicitly mentioned, the notation d `K H
t and `K H

t will

stand for d `K̂
H
t and `K̂

H
t respectively.

B.4 Transition System Speci�cations

Section B.3 introduced general Term Deduction Systems as an inductive means to

de�ne sets (of terms.) Since we are concerned with the speci�cation of transition

systems we formally de�ne a particular class of term deduction systems, by restricting

the form which premises and conclusions can take. Basically we allow only terms

which represent transition formulas or predicates. Furthermore, we will consider the

possibility of having negative terms as well, which as the name suggest, require the

absence of a transition, or the negation of a predicate. We call such a restricted TDS

a Transition System Speci�cation, or TSS for short.

The transition formulas are formed from terms from a given signature. The intention

is to use terms of this underlying signature to represent states of a transition system.

Based on this signature, we de�ne a signature of formulas, which are either transition

formulas or predicates (positive or negative.)

De�nition B.29. (TSS formulas) Let Σ = ({E}, F, ς) be some single-sorted sig-

nature and L some set of labels. A positive (tss) formula over Σ and L is a term

B.4. TRANSITION SYSTEM SPECIFICATIONS 267

of the form:

• t a→ t′, or

• P (t) (also written Pt or tP)

where t, t′ ∈ T (Σ), a ∈ L, and P is some predicate over terms.

A negative (tss) formula over Σ and L is a term of the form:

• t 6 a→t′, or

• ¬P (t) (also written ¬Pt or t¬P)

where t, t′ ∈ T (Σ), a ∈ L, and P is some predicate over terms.

More precisely, the set of all positive formulas over Σ and L is the set of terms

PF(Σ, L) of the signature Σ+
L = (S+

L , F
+
L , ς

+
L) where:

• S+
L

def
= {E,F+

1 , F
+
2 }

• F+
L

def
= F ∪ {· a→ ·}a∈L ∪ {P (·) |P is a predicate}

• ς+
L

def
= ς ∪ {· a→ · : E × E → F+

1 }a∈L ∪ {P (·) : E → F+
2 |P is a predicate}

where E is the single sort of Σ. Hence PF(Σ, L)
def
= TF+

1
(Σ+

L) ∪ TF+
2

(Σ+
L).

Analogously, the set of all negative formulas over Σ and L is the set of terms

NF(Σ, L) of the signature Σ−L = (S−L , F
−
L , ς

−
L) where:

• S−L
def
= {E,F−1 , F

−
2 }

• F−L
def
= F ∪ {·6 a→·}a∈L ∪ {¬P (·) |P is a predicate}

• ς−L
def
= ς ∪ {·6 a→· : E × E → F−1 }a∈L ∪ {¬P (·) : E → F−2 |P is a predicate}

where E is the single sort of Σ. Hence NF(Σ, L)
def
= TF−1 (Σ−L) ∪ TF−2 (Σ−L).

The set of all formulas over Σ and L is the set F(Σ, L)
def
= PF(Σ, L)∪NF(Σ, L),

which is the set of terms of the combined signature Σϕ
L = (S+

L ∪S
−
L , F

+
L ∪F

−
L , ς

+
L ∪ς

−
L).

Given a substitution σ : V → T (Σ), we extend it to include formulas as σϕ : V →
T (Σϕ

L) as expected:

σϕ(t a→ t′)
def
= σ(t)

σ(a)−−→ σ(t′)

σϕ(Pt)
def
= Pσ(t)

σϕ(t 6 a→t′) def
= σ(t) 6σ(a)−−→ σ(t′)

σϕ(¬Pt) def
= ¬Pσ(t)

Typically we omit the superscript ϕ for substitutions over formulas.

268 APPENDIX B. TRANSITION SYSTEM SPECIFICATIONS

De�nition B.30. (Transition System Speci�cation) A transition system

speci�cation over a signature Σ and labels in L, or TSS for short, is a tuple (Σ, L,Φ)
where (Σϕ

L,Φ) is a TDS, this is, a term deduction system where the premises and

conclusions of its rules are formulas.

B.5 Well-de�ned transition systems

In this section we consider the question of when does a TSS uniquely specify an LTS,

and what is such LTS.

When the TSS contains only positive formulas, the answer is simple. There is a well-

de�ned LTS, namely one which contains as transitions those that can be derived by

the TSS. Formally,

De�nition B.31. (LTS speci�ed by a positive TSS) Let Σ be a signature, L

a set of labels, and K = (Σ, L,Φ) a TSS over Σ and L with only positive formulas.

Then, the LTS speci�ed by K is an LTS lts(K)
def
= (T(Σ), L,→) where the states

are closed terms over Σ, L is the set of transition labels, and the transition relation

→ is de�ned as follows: →def
= {(t, a, t′) ∈ T(Σ)× L× T(Σ) | t a→ t′ ∈ derived(K)}.

When the TSS in question has negative premises, the problem is not so simple as

it is possible for the TSS to be ambiguous or contradictory, and therefore it is not

always clear which LTS is de�ned by the TSS, or if the TSS de�nes an LTS at all.

For example, a TSS with a rule like the following:

p 6 a→
p

a→ p′

is contradictory, as the transition p
a→ p′ must be present if it is not. Furthermore, a

TSS with the following rules is ambiguous:

p 6 a→p′

p
b→ p′

p 6 b→p′

p
a→ p′

This is ambiguous, because it could derive either p
a→ p′ or p

b→ p′, but not both, so

there are two possible LTSs, and it is not clear which one would be preferable.

If we allow negative premises, what are the conditions for the TSS to uniquely deter-

mine an LTS? There is one simple criterion which can be used to determine whether

such a TSS is well-de�ned called strati�cation (see [18] for details.) Informally, a

strati�cation is an assignment of a numerical value3 to each possible instance of a

3An ordinal number rather than just a natural number, since conclusions of rules with negative

B.6. BISIMILARITY AS CONGRUENCE 269

formula in such a way that it is increased by all rules, and in particular it is strictly

increased from a negative premise to the conclusion of a rule. It can be thought of

as a measure of the complexity of formulas.

De�nition B.32. (Strati�cation) A strati�cation for a TSS K = (Σ, L,Φ) is a
function ξ : T(Σϕ

L) → α where α is an ordinal, which satis�es the following for all

rules H
θ ∈ Φ, all closed substitutions σ, and all θi ∈ H:

• ξ(σ(θi)) ≤ ξ(σ(θ)) if θi is a positive formula,

• ξ(σ(t a→ t′)) < ξ(σ(θ)) for all t′ ∈ T(Σ), if θi is a negative formula t 6 a→, and

• ξ(σ(Pt)) < ξ(σ(θ)) if θi is a negative formula ¬Pt

We say that K is strati�ed if there is a strati�cation for it.

When we have a strati�cation ξ, we can construct an LTS as follows: �rst, add a

transition for every formula θ with ξ(θ) = 0 that can be derived using rules with

only positive premises. Now, we know all the formulas θ with ξ(θ) = 0 which are

transitions, but this means that we also know which formulas θ′ with ξ(θ′) = 0 are

not transitions. Hence we can now derive all formulas θ with ξ(θ) = 1, i.e. which

depend on one negative condition, and which can be added to the LTS. We continue

to iterate this way until we can no longer add any new transitions. (For a formal

de�nition of this construction see [18].)

The LTS built in such way has two important properties: �rst, if there are no negative

premises, it is exactly the same as the LTS given in de�nition B.31. Second, the

resulting LTS is independent of the actual strati�cation function. Any strati�cation

will yield the same LTS. (For proof of these statements see [18].)

Theorem B.33. A TSS K has a well-de�ned LTS lts(K) if there is a strati�cation

for K.

Proof. See [18].

B.6 Bisimilarity as congruence

In section B.1 we introduced labelled transition systems, and bisimilarity was in-

troduced in section B.2 as a fundamental equivalence relation between them. In

section B.4 transition system speci�cations were presented as a particular kind of

term deduction systems (section B.3) which can be used to de�ne labelled transition

systems, and in section B.5 we established some criteria to ensure that a TSS de�nes

a consistent and unambiguous LTS.

premises may depend on an in�nite number of premise instances. Ordinal numbers are used since
the goal of this approach is to order formulae instances to generate the LTS.

270 APPENDIX B. TRANSITION SYSTEM SPECIFICATIONS

In this section we show that some important properties of an LTS speci�ed by a TSS

can be inferred exclusively from the format of the rules in the TSS. We focus on one

property in particular: bisimilarity as congruence. We will see that if all the rules

in a TSS satisfy a format called the panth format [52], then bisimilarity among the

states of the generated LTS is a congruence, i.e. it is preserved by all operators of

the underlying signature.

De�nition B.34. (The panth format) Let K = (Σ, A,Φ) be a TSS. A rule in Φ
is said to be in panth format if it has the form H

θ where each premise θi ∈ H is

either a negative formula or a positive formula of the form tj
aj→ yj where ti ∈ T (Σ)

and Y
def
= {yj ∈ V }j∈J is a set of distinct variables (i.e. for all j 6= j′, yj 6= yj′ ,) and

the conclusion θ has one of the following forms:

• f(x1, ..., xn) a→ t, for some function symbol f , label a ∈ A, term t ∈ T (Σ), and
X ∩ Y = ∅ where X def

= {x1, ..., xn}

• x a→ t, for some label a ∈ A, term t ∈ T (Σ), and X ∩ Y = ∅ where X def
= {x}

• Pf(x1, ..., xn), for some function symbol f , and X ∩Y = ∅ where X def
= {x1, ..., xn}

• Px, with X ∩ Y = ∅ where X def
= {x}

Any variable occurring in the rule which is not in X ∪ Y is called free . A rule with

no free variables is called pure . K is in the panth format if all its rules are in panth

format.

Since the rules of the TSS may involve predicates, we consider a variation of bisimi-

larity which equates states based not only on their capability to match each other's

actions but also on whether they satisfy the same predicates.

De�nition B.35. (Bisimilarity with predicates) Let M = (S,L,→) be an LTS

and Ω a set of predicates. A binary relation R ⊆ S × S is called a (strong) bisim-

ulation if for all p, q ∈ S, if pRq then

(i) for every a ∈ L, p′ ∈ S such that p
a−→ p′, there is a q′ ∈ S such that q

a−→ q′ and

p′Rq′, and

(ii) for every a ∈ L, q′ ∈ S such that q
a−→ q′, there is a p′ ∈ S such that p

a−→ p′ and

p′Rq′, and

(iii) for every predicate P ∈ Ω, Pp if and only if Pq

We say that p and q are bisimilar , written p -M q if there is a simulation R such

that pRq. The relation -M is called bisimilarity . We omit the subscript if it is clear

from the context.

B.6. BISIMILARITY AS CONGRUENCE 271

With these de�nitions we obtain the main property of bisimilarity for transition

systems speci�ed by a TSS:

Theorem B.36. Let K = (Σ, L,Φ) be a TSS. If K is strati�ed and in panth format,

then strong bisimilarity is a congruence for all function symbols in Σ.

Proof. See [52].

The conclusion is that the LTS generated by a TSS in panth format has a compo-

sitional semantics. As shown in appendix C, compositionality and congruence are

essentially the same thing. In particular, whenever we have an equivalence relation

among terms of a signature, we automatically obtain a semantic domain, namely

the set of equivalence classes, and a semantic mapping: the meaning of each term is

the set of terms equivalent to it. When the equivalence is a congruence, this map-

ping is compositional. Hence we have a natural semantic domain for LTSs: the set of

bisimilarity-equivalence classes. Since bisimilarity is a congruence, the corresponding

semantic mapping is compositional: the meaning (bisimilarity class) of a term is a

function of the meaning of its sub-terms.

272 APPENDIX B. TRANSITION SYSTEM SPECIFICATIONS

C
Compositionality

When discussing the semantics of a language, the term �compositionality� is used

frequently. It is common to hear that a given semantics is �compositional,� and this

is meant to be a good property of the semantics. In a sense, compositionality of a

semantics can be seen as one of the most important indicators of what is a �good�

semantics. But what exactly is �compositionality�? Compositionality is a property of

meaning, which informally can be stated as follows:

�The meaning of the whole is determined by the meaning of its parts.�

This notion also appears in other contexts beyond the semantics of programming

languages. For example, when we talk about dynamic systems, where we could de-

scribe a system as compositional if its behaviour is determined by the behaviour of

its constituent parts.

Compositionality is closely related to the notion of equivalence. Often we are in-

terested in answering the question of whether two entities (terms, models, systems,

etc.) are equivalent. We can de�ne equivalence in many ways. But not all notions of

equivalence are good. We are not interested only in comparing isolated entities or

systems, but comparing them with respect to some context. A good notion of equiva-

lence should satisfy the following property: if we consider two entities as �equivalent�

then replacing one by the other in any context, should not change the meaning of

the whole, in other words the equivalence must be preserved by all contexts, this is,

it must be a congruence. This is of paramount importance when discussing the be-

haviour of dynamic systems: if we have two dynamic systems and there is an observer

(i.e. a context) that is able to distinguish between the two, then the two systems

must behave di�erently. But if the equivalence in question is not a congruence, it will

be unable to di�erentiate between the two systems, and systems deemed �equivalent�

would be perceived as behaving di�erently by some observer.

Whenever we de�ne the meaning of something, such meaning induces a notion of

equivalence: two entities (terms, models, systems, etc.) are equivalent if they have

the same meaning. It turns out that this natural equivalence induced by meaning is

274 APPENDIX C. COMPOSITIONALITY

a congruence if and only if the meaning map is compositional. Dually, every notion

of equivalence which is a congruence automatically yields a compositional meaning:

the meaning of a term is given by the set of all terms that are equivalent to it. Hence,

congruence is a su�cient and necessary condition for compositionality.

This close relationship between compositionality and congruence highlights the fact

that a good equivalence plays a fundamental role in de�ning the semantics of a

language: unless you can tell when two terms are equivalent, you can not claim to

have a well-de�ned meaning for these terms.

This appendix proves formally this close relationship between compositionality and

congruence. All notation, de�nitions and theorems in this appendix depend only on

those given in appendix A.

C.1 Kernels and canonical projections

We mentioned at the beginning that whenever we de�ne the meaning of something,

such meaning induces a notion of equivalence: two entities (terms, models, systems,

etc.) are equivalent if they have the same meaning. This is generalized to any kind

of function as follows.

Every function induces an equivalence relation which equates elements of the domain

which have the same image. This equivalence is known as the kernel of the function.

De�nition C.1. (Kernel of a function) Given a pair of sets A and B, and a

function f : A→ B, the kernel of f is a binary relation ker(f) ⊆ A×A given by

ker(f)
def
= {(a, a′) ∈ A×A | f(a) = f(a′)}

Proposition C.2. Given a pair of sets A and B, and a function f : A → B, the

kernel ker(f) is an equivalence relation over A.

Proof. First we show re�exivity. Take any a ∈ A. Since f is a function, for any

b, b′ ∈ B such that (a, b) ∈ f and (a, b′) ∈ f we have that b = b′. This is, f(a) = b

and f(a) = b′, so f(a) = f(a), and therefore (a, a) ∈ ker(f).

Second we show symmetry. Take any a, a′ ∈ A such that (a, a′) ∈ ker(f). Then
f(a) = f(a′). But this is the same as saying f(a′) = f(a), and so (a′, a) ∈ ker(f).

Finally we show transitivity. Take any a, a′, a′′ ∈ A such that (a, a′) ∈ ker(f) and

(a′, a′′) ∈ ker(f). Then f(a) = f(a′) and f(a′) = f(a′′). Hence f(a) = f(a′′), and so

(a, a′′) ∈ ker(f).

Since the kernel of a function is an equivalence relation, then we can partition the

domain of the function by taking the quotient set with respect to the kernel: if A is

a set and f : A→ B is a function, we have a partition A/ker(f), such that for any

C.1. KERNELS AND CANONICAL PROJECTIONS 275

D ∈ A/ker(f), a, a′ ∈ D if and only if (a, a′) ∈ ker(f), this is, any pair of elements

a, a′ are in the same subset of the partition if and only if f(a) = f(a′).

We have seen how a function induces an equivalence relation. The dual is also true.

Any equivalence relation induces a function.

De�nition C.3. (Canonical projection) Given a set A and an equivalence rela-

tion R over A, the function πR : A→ A/R de�ned as

πR(a)
def
= [a]R

is called the canonical projection map of R.1

Proposition C.4. The canonical projection map of any equivalence relation is sur-

jective.

Proof. Let A be the domain of the canonical projection map π and R the equivalence

relation. Then, every element of A/R is an equivalence class [a]R for some a ∈ A.
but for all a′ ∈ [a]R, πR(a′) = [a′]R, and since a ∈ [a]R, with πR(a) = [a]R, we have
that there is an a ∈ A such that πR(a) = [a]R, as required.

Since the canonical projection map of an equivalence relation R is a function πR,

and we determined that every function f induces an equivalence relation ker(f), it
is natural to ask what is the relation between the original equivalence R, and the

induced equivalence ker(πR). The following establishes the relation.

Proposition C.5. Given any equivalence relation R ⊆ A×A, ker(πR) = R.

Proof. Take any pair of elements a, a′ ∈ A such that (a, a′) ∈ ker(πR). Hence, by
de�nition of kernel, πR(a) = πR(a′), and so, by de�nition of canonical projection,

[a]R = [a′]R, which by proposition A.4 (iii) implies (a, a′) ∈ R. Hence ker(πR) ⊆ R.
By the dual argument we have that R ⊆ ker(πR).

Given a function f : A → B, we have seen that we automatically obtain an

equivalence relation ker(f). With this equivalent relation we can form the parti-

tion A/ker(f) of A, and this induces a corresponding canonical projection πker(f) :
A→ A/ker(f). In general, this canonical projection is not the same as the original

function f , because in general B 6= A/ker(f), but it is natural to ask what is the

relation between the two. This relation is now made precise by the following univeral

property.

1See de�nition A.3 for notation.

276 APPENDIX C. COMPOSITIONALITY

Theorem C.6. (Universality of canonical projections) Given any set A, and

any function f : A→ B for any set B, there is a unique function f] : A/ker(f)→ B

such that f = f] ◦ πker(f).

Diagrammatically we say that the following diagram commutes:

A
πker(f) //

f
((QQQQQQQQQQQQQQQQ A/ker(f)

f]

��
B

Proof. De�ne the relation f] ⊆ A/ker(f)×B as follows:

f]
def
= {(D, b) ∈ A/ker(f)×B | ∃a ∈ A.D = [a]ker(f) ∧ b = f(a)}

In other words, given an equivalence class D ∈ A/ker(f) we pick any element a ∈ A
which is in this equivalence class D = [a]ker(f) and apply to it the function f , yielding

b = f(a).

First we have to ensure that this is a well-de�ned function f] : A/ker(f) → B.

That it is total follows from the fact that for any equivalence class D ∈ A/ker(f)
we can pick an element a ∈ D, and since f is a function, f(a) exists, therefore

(D, f(a)) ∈ f]. That it is functional is obtained as follows. Suppose (D, b) ∈ f] and
(D, b′) ∈ f]. Then, there is an a ∈ A such that D = [a]ker(f) and b = f(a), and
also there is an a′ ∈ A such that D = [a′]ker(f) and b

′ = f(a′). But this means that

[a]ker(f) = [a′]ker(f), and therefore (a, a′) ∈ ker(f), by proposition A.4 (iii). This

in turn implies that f(a) = f(a′) by de�nition of kernel, and therefore b = b′, as

required.

Since we have proven that f] is indeed a function, we can write, for any a ∈ A,

f]([a]ker(f)) = f(a)

But by de�nition of canonical projection, πker(f)(a) = [a]ker(f), and so, for any a ∈ A
we have that

f] ◦ πker(f)(a) = f](πker(f)(a)) by de�nition of function composition

= f]([a]ker(f)) by de�nition of canonical projection

= f(a) by de�nition of f]

So we have that f] ◦ πker(f) = f .

Finally we prove that f] is unique, i.e. it is the only function with such property. For

suppose that there is some other function g : A/ker(f)→ B such that f = g◦πker(f).

Then for any a ∈ A, g ◦ πker(f)(a) = f(a), and so g(πker(f)(a)) = f(a), which is to

C.2. CONTEXTS 277

say that g([a]ker(f)) = f(a) for any equivalence class [a]ker(f). But this is exactly the

same as f], i.e. , for all [a]ker(f) ∈ A/ker(f), g([a]ker(f)) = f]([a]ker(f)). Therefore
g = f], so f] is unique.

We saw how given a function f : A → B, we obtain a canonical projection πker(f) :
A→ A/ker(f), which in general is not the same as the original function f , because

in general B 6= A/ker(f). However, this canonical projection πker(f) is a function

and therefore it induces an equivalence ker(πker(f)). The following establishes the

relation with the original kernel ker(f).

Proposition C.7. Given any function f : A→ B, ker(f) = ker(πker(f))

Proof. It follows directly from propositions C.2 and C.5, but here we give a direct

proof. Take any a, a′ ∈ A. We know, by proposition A.4 (iii) that (a, a′) ∈ ker(f)
if and only if [a]ker(f) = [a′]ker(f), which is the same as saying that πker(f)(a) =
πker(f)(a′), which in turn is the same as saying that (a, a′) ∈ ker(πker(f)). So ∀a, a′ ∈
A. (a, a′) ∈ ker(f)⇔ (a, a′) ∈ ker(πker(f)).

C.2 Contexts

In order to de�ne formally compositionality and congruence, we must make precise

what we mean by �context.� The notion of context is based on that of signatures and

terms (see section A.4.)

Informally, a �context� is a term with a �hole� or �placeholder� [·], where we can �plug-
in� some term to form a well-formed term. The set of possible contexts is determined

by the original syntax. For example, consider the following syntax:

P ::= 0 | a.P |P + P

This corresponds to a signature Σ = (S, F, ς) where S = {P}, F = {0, a.−,− + −}
and ς = {0 : 〈〉 → P, a.− : P → P,− + − : P × P → P}. This determines a set of

possible contexts given by the following syntax:

C ::= [·] | a.C | P + C | C + P

Technically we could de�ne a context as an open term, where variables are place-

holders, and �plugging-in� is simply substitution. But having several variables leads

to some technical complications, and these �multi-hole contexts� are not necessary

for the purpose of this thesis. Therefore, it is enough for us to consider a context as

an open term with a distinguished variable, denoted [·], to represent the placeholder.

278 APPENDIX C. COMPOSITIONALITY

De�nition C.8. (Contexts) Let Σ = (F, ς) be a signature. The set C(Σ) of (ar-
bitrary) contexts over Σ is the least set satisfying:

• [·] ∈ C(Σ)

• for each f ∈ F , if w ∈ C(Σ) and t1, ..., ti−1, ti+1, ..., tn ∈ T(Σ), then f(t1, ..., ti−1, w, ti+1, ..., tn) ∈
C(Σ)

An elementary context is a context of the form f(t1, ..., ti−1, [·], ti+1, ..., tn).

Notation C.9. Sometimes we write a context w as w[·] to emphasize that it is a

context, and if it is an elementary context, we write it as w〈·〉.

De�nition C.10. (Term plug-in) Let Σ = (F, ς) be a signature. Given a term

t ∈ T (Σ) and a context w ∈ C(Σ), the term w[t] resulting from plugging-in t into w,

is de�ned as follows:

w[t]
def
=

t if w = [·]

f(t1, ..., ti−1, w
′[t], ti+1, ..., tn) if w = f(t1, ..., ti−1, w

′, ti+1, ..., tn)

for any f ∈ F, any t1, ..., tn ∈ T (Σ)

and some w′ ∈ C(Σ)

It is also possible to plug-in a context inside another context. This is called a com-

position of contexts.

De�nition C.11. (Context composition) Let Σ = (F, ς) be a signature. Given

two a contexts w,w′ ∈ C(Σ), the context composition w′[w], also written w′ ◦ w,
resulting from plugging-in w into w′, is a context de�ned as follows:

w′[w]
def
=

w if w′ = [·]

f(t1, ..., ti−1, w
′′[w], ti+1, ..., tn) if w′ = f(t1, ..., ti−1, w

′′, ti+1, ..., tn)

for any f ∈ F, any t1, ..., tn ∈ T (Σ)

and some w′′ ∈ C(Σ)

Remark C.12. Every non-elementary context w[·] can be seen as the composition of

an elementary context w′′〈·〉 and a context w′[·]: w = w′′ ◦ w′, or w[·] = w′′〈w′[·]〉.

De�nition C.13. (Inner context) Given a pair of contexts w,w′ ∈ C(Σ), we say
that w′ is the immediate inner context of w, written w′ ≺ w, if there is an

elementary context w′′ ∈ C(Σ) such that w = w′′ ◦ w′. We say that w′ is a strict

inner context of w, written w′ ≺+ w, if there is a context w′′ ∈ C(Σ) such that

w′′ 6= [·] and w = w′′ ◦ w′. The re�exive closure of the relation ≺⊆ C(Σ) × C(Σ) is

written �, and the re�exive closure of ≺+⊆ C(Σ)× C(Σ) is written �+.

C.3. CONGRUENCE 279

Remark C.14. ≺ and ≺+ are antisymmetric.≺+ is a transitive relation and it is the

transitive closure of ≺. Similarly, �+ is the transitive closure of �. Hence �+ is a

partial order and (C(Σ),�+) is a poset. Furthermore, it is a well-founded order. This

allows us to use the principle of induction on the structure of a context, as a proof

technique.

C.3 Congruence

A congruence is an equivalence relation that is preserved by arbitrary contexts, and

therefore di�erentiates elements whenever there is some context that can distinguish

between them. Now we formalize the notion of congruence in terms of terms and

contexts. In the literature it is common to �nd alternative de�nitions of congruence.

Here we show three of those and prove them to be equivalent. We start with what

we call 1-congruence, which essentially says that equivalence is preserved when we

replace one sub-term by an equivalent one.

De�nition C.15. (Elementary 1-congruence) Let Σ = (F, ς) be a signature and
R an equivalence relation over T(Σ). We call R an elementary 1-congruence if

for all function symbols f ∈ F and for all closed terms ti ∈ T(Σ) (where 1 6 i 6 n

with n = ar(f)), and for all closed terms u, v ∈ T(Σ),

if uRv then f(t1, ..., ti−1, u, ti+1, ..., tn)Rf(t1, ..., ti−1, v, ti+1, ..., tn)

One can view an elementary congruence as an equivalence relation which is closed

under elementary contexts. Now, we introduce n-congruence, an equivalence which

is preserved when we replace all sub-terms by equivalent ones.

De�nition C.16. (Elementary n-congruence) Let Σ = (F, ς) be a signature and
R an equivalence relation over T(Σ). We call R an elementary n-congruence if

for all function symbols f ∈ F ,

if for all ti, t′i ∈ T(Σ), tiRt′i (where 1 6 i 6 n with n = ar(f)),

then f(t1, ..., tn)Rf(t′1, ..., t
′
n)

These previous de�nitions are equivalent, as shown in the next proposition.

Proposition C.17. Any equivalence relation is an elementary 1-congruence if and

only if it is an elementary n-congruence.

Proof. Let Σ = (F, ς) be a signature, and R ⊆ T(Σ)×T(Σ) an equivalence relation.

(⇒) First we show that if R is an elementary 1-congruence, it is an elementary n-

congruence. Take any f ∈ F , take any set of closed terms {ti ∈ T(Σ)}i∈I and any

280 APPENDIX C. COMPOSITIONALITY

set of closed terms {t′i ∈ T(Σ)}i∈I , where I = {1, ..., n} with n = ar(f), such that

for each i ∈ I, tiRt′i. We have that

f(t1, t2, ..., tn)Rf(t′1, t2, ..., tn)

since t1Rt
′
1 and R is an elementary 1-congruence. Then, we have that

f(t′1, t2, t3, ..., tn)Rf(t′1, t
′
2, t3, ..., tn)

since t2Rt
′
2. So, by iterating, we have that for each i ∈ I,

f(t′1, ..., t
′
i−1, ti, ti+1..., tn)Rf(t′1, ..., t

′
i−1, t

′
i, ti+1..., tn)

since tiRt
′
i. Therefore, by transitivity of R,

f(t1, t2, ..., tn)Rf(t′1, t
′
2..., t

′
n)

(⇐) Now we show that if R is an elementary n-congruence, it is an elementary 1-
congruence. Take any f ∈ F , take any set of closed terms {ti ∈ T(Σ)}i∈I where I =
{1, ..., k− 1, k+ 1, ..., n} with n = ar(f), for some k 6 n, and take any pair of closed

terms u, v ∈ T(Σ) such that uRv. Since R is re�exive, we have that ∀i ∈ I. tiRti, and
since uRv, we have that ∀I ∪ {k}.tiRt′i, where tk

def
= u, t′k

def
= v, and ∀i ∈ I.t′i

def
= ti.

Therefore, by n-congruence,

f(t1, ..., tk−1, tk, tk+1, ..., tn)Rf(t′1, ..., t
′
k−1, t

′
k, t
′
k+1, ..., t

′
n)

but this is the same as

f(t1, ..., tk−1, u, tk+1, ..., tn)Rf(t1, ..., tk−1, v, tk+1, ..., tn)

The previous proposition allows us to use elementary 1-congruence and elementary

n-congruence interchangeably. Hence we can simply talk about �elementary congru-

ence.� We can generalize congruence from elementary to arbitrary contexts as follows.

De�nition C.18. (General congruence) Let Σ = (F, ς) be a signature and R an

equivalence relation over T(Σ). We call R a general congruence if for all contexts

w ∈ C(Σ), and for all closed terms u, v ∈ T(Σ),

if uRv then w[u]Rw[v]

C.3. CONGRUENCE 281

Hence, a general congruence is an equivalence closed under arbitrary contexts. Now

we show that the two notions of congruence are in fact the same, hence we shall,

hereafter, refer to them simply as �congruence.�

Proposition C.19. Any equivalence relation is a general congruence if and only if

it is an elementary congruence.

Proof. Let Σ = (F, ς) be a signature, and R ⊆ T(Σ)×T(Σ) an equivalence relation.

(⇒) First we show that if R is a general congruence, it is also an elementary congru-

ence. Since R is assumed to be a general congruence, then, for any closed terms u, v,

uRv imply w[u]Rw[v] for all contexts w. But elementary contexts are contexts, hence

for all elementary contexts w, w〈u〉Rw〈v〉, which by de�nition of elementary context

and term plug-in is the same as saying that for any f ∈ F , and any t1, ..., tn ∈ T(Σ),

f(t1, ..., ti−1, u, ti+1, .., tn)Rf(t1, ..., ti−1, v, ti+1, .., tn)

But this is the same as saying that R is an elementary 1-congruence, and by propo-

sition C.17, it is also an elementary n-congruence.

(⇐) Now we show that if R is an elementary congruence, it is also a general con-

gruence. We proceed by induction on the structure of the context. Without loss of

generality, let R be an elementary 1-congruence2. Let w ∈ C(Σ) be an arbitrary

context. Assume that for all strict inner contexts w′ ≺+ w, the following induction

hypothesis holds, for all closed terms u, v ∈ T(Σ),

uRv implies w′[u]Rw′[v]

Then, this holds for all immediate inner contexts w′ ≺ w. So we have to prove that

for any a, b ∈ T(Σ), aRb implies w[a]Rw[b].

Let a, b ∈ T(Σ) be any closed terms such that aRb. We proceed by cases according

to the structure of the context w.

Case 1: w is of the form [·]. Then there are no strict inner contexts, w[a] = a and

w[b] = b by de�nition of term plug-in. But aRb, therefore w[a]Rw[b].

Case 2: w is of the form f(t1, ..., ti−1, w
′, ti+1, ..., tn) for some f ∈ F , some t1, ..., tn ∈

T(Σ) and some w′ ∈ C(Σ), with w′ ≺ w. So, by de�nition of term plug-in,

w[a] = f(t1, ..., ti−1, w
′[a], ti+1, ..., tn) and w[b] = f(t1, ..., ti−1, w

′[b], ti+1, ..., tn).
But since w′ ≺ w, and aRb, by induction hypothesis, w′[a]Rw′[b]. Hence,

f(t1, ..., ti−1, w
′[a], ti+1, ..., tn)Rf(t1, ..., ti−1, w

′[b], ti+1, ..., tn)

2By proposition C.17 it is also an elementary n-congruence.

282 APPENDIX C. COMPOSITIONALITY

since R is an elementary congruence, and so w[a]Rw[b].

Hence, to show that an equivalence is a general congruence, it su�ces to show that

it is an elementary congruence, and so we can refer to them simply as �congruence."

C.4 Compositionality as homomorphism

As mentioned in the beginning, a semantics is compositional when the meaning of

a composite is determined by the meaning of its parts. This can be formalized as a

kind of homomorphism between a set representing the syntax of the language, and

a set representing its semantic domain.

In general we could say that a semantic domain is simply a set. Here we provide a

general de�nition for multi-sorted signatures, where, to de�ne a semantic domain, we

associate a set with each sort, and the semantic domain is the collection of these sets.

Then, for each sort we de�ne a semantic map to be a map from terms of that sort

to the corresponding domain set. The complete semantic map is then the collection

of these sort-maps.

De�nition C.20. (Semantic domain, semantic map) Let Σ = (S, F, ς) be some

signature. A semantic domain for Σ is a family of sets D = {Ds}s∈S . A semantic

map is a family of mapsm = {ms : Ts(Σ)→ Ds}s∈S . We write D̂ for ∪D = ∪s∈SDs,

and m̂ for the function ∪m = ∪s∈Sms. Note that m̂ : T(Σ)→ D̂.

The notion of homomorphic semantic map characterizes compositionality.

De�nition C.21. (Semantic homomorphism) Let Σ = (S, F, ς) be some signa-

ture, letD = {Ds}s∈S be some semantic domain, and letm = {ms : Ts(Σ)→ Ds}s∈S
be some semantic map. For any function symbol f ∈ F , with f : s1 × · · · × sn → s,

we say that m is f -homomorphic if there is a function φf : Ds1 × · · · ×Dsn → Ds

such that for all closed terms t1 ∈ Ts1(Σ), ..., tn ∈ Tsn(Σ), ms(f(t1, ..., tn)) =
φf (ms1(t1), ...,msn(tn)).

We say that m is homomorphic if it is f -homomorphic for all f ∈ F .

This de�nition says that a semantic map (m) is homomorphic, if the meaning of any

composite term f(t1, ..., tn) is uniquely determined by a function (φf) of the meaning

of its sub-terms t1, ..., tn. This is exactly what compositionality is.

Remark C.22. We can simplify the de�nition to a �sortless" form as follows: m is

f -homomorphic if there is a φ̂f : D̂ × · · · × D̂ → D̂ such that m̂(f(t1, ..., tn)) =
φ̂f (m̂(t1), ..., m̂(tn)).

C.5. FROM COMPOSITIONALITY TO CONGRUENCE 283

C.5 From compositionality to congruence

Now we are ready to establish formally the link between compositionality and con-

gruence. This section shows how, given a semantic map m, m is compositional if and

only if the equivalence induced by m is a congruence.

In section C.1 we saw how a map m induces an equivalence relation ker(m̂) which

identi�es elements of the domain of m which have the same image. We �rst show

that if m is compositional, then ker(m̂) must be a congruence.

Theorem C.23. Let Σ = (S, F, ς) be a signature, D = {Ds}s∈S some semantic

domain, and m = {ms : Ts(Σ)→ Ds}s∈S some semantic map. If m is homomorphic

then ker(m̂) is a congruence.

Proof. Assume m to be homomorphic. Pick any f ∈ F . So m is f -homomorphic.

Therefore there is a function φ̂f such that m̂(f(t1, ..., tn)) = φ̂f (m̂(t1), ..., m̂(tn)) for
all closed terms t1, ..., tn. Take any set of closed terms {ai ∈ T(Σ)}i∈I and any set of

closed terms {bi ∈ T(Σ)}i∈I , where I = {1, ..., n} with n = ar(f), such that for each

i ∈ I, (ai, bi) ∈ ker(m̂). Therefore, by de�nition of kernel, m̂(ai) = m̂(bi) for each

i ∈ I. Then we have that

m̂(f(a1, ..., an)) = φ̂f (m̂(a1), ..., m̂(an)) since m is f -homomorphic

= φ̂f (m̂(b1), ..., m̂(bn))
= m̂(f(b1, ..., bn)) since m is f -homomorphic

Hence we conclude that (f(a1, ..., an), f(b1, ..., bn)) ∈ ker(m̂), and therefore ker(m̂)
is a congruence.

Now that we have seen how the compositionality of m implies that ker(m̂) is a

congruence, we show the dual: that if ker(m̂) is a congruence, then m must be

compositional. In order to do that we need an auxiliary de�nition and lemmas.

Given the map m̂ we have that ker(m̂) is an equivalence relation (proposition C.2)

and therefore we can partition the set of terms T(Σ) with respect to this equivalence,

by taking the quotient T(Σ)/ker(m̂), so each class in the partition consists of the

terms which have the same meaning. The following de�nes, for a given function

symbol, a function over this quotient set, mapping equivalent classes of terms to the

equivalence class of the corresponding composite term.

De�nition C.24. Let Σ = (S, F, ς) be a signature, let R ⊆ T(Σ) × T(Σ) be some

equivalence relation, and f : s1× · · · × sn → s ∈ F some function symbol. We de�ne

a relation ΓfR ⊆ (T(Σ)/R)n × T(Σ)/R as follows:

ΓfR
def
= {(([t1]R, ..., [tn]R), [f(t1, ..., tn)]R) | t1 ∈ Ts1(Σ), ..., tn ∈ Tsn(Σ)}

284 APPENDIX C. COMPOSITIONALITY

Lemma C.25. If R is a congruence, then ΓfR is a function.

Proof. Take any set of closed terms {ai ∈ T(Σ)}i∈I and any set of closed terms

{bi ∈ T(Σ)}i∈I , where I = {1, ..., n} with n = ar(f). Let ã
def
= ([a1]R, ..., [an]R) and

b̃
def
= ([b1]R, ..., [bn]R). We claim that if ã = b̃ and (ã, y) ∈ ΓfR and (b̃, y′) ∈ ΓfR then

y = y′. Since ã = b̃, then [ai]R = [bi]R for each i ∈ I. Hence aiRbi by proposition

A.4 (iii). Since R is a congruence, we have f(a1, ..., an)Rf(b1, ..., bn). Therefore,
[f(a1, ..., an)]R = [f(b1, ..., bn)]R. Since (ã, y) ∈ ΓfR, y = [f(a1, ..., an)]R and similarly,

since (b̃, y′) ∈ ΓfR, y
′ = [f(b1, ..., bn)]R, and so y = y′ as required. This shows that Γ

is a partial function. That it is serial follows from the de�nition, since its domain is

de�ned for all terms, and so it covers all equivalence classes.

This lemma allows us to use function notation for ΓfR.

Lemma C.26. If R is a congruence, ΓfR(πR(t1), ..., πR(tn)) = πR(f(t1, ..., tn))

Proof. This is just a rephrasing of the de�nition of ΓfR in terms of the canonical

projection function πR (de�nition C.3.)

Theorem C.27. Let Σ = (S, F, ς) be a signature, D = {Ds}s∈S some semantic

domain, and m = {ms : Ts(Σ) → Ds}s∈S some semantic map. If ker(m̂) is a

congruence then m is homomorphic.

Proof. Assume ker(m̂) is a congruence. Hence, by universality of canonical projec-

tions (theorem C.6,) there is a unique function m̂] : T(Σ)/ker(m̂)→ D̂ which makes

the following diagram commute:

T(Σ)
πker(m̂) //

m̂
))RRRRRRRRRRRRRRRRRR T(Σ)/ker(m̂)

m̂]

��
D̂

This is, m̂ = m̂] ◦ πker(m̂), this is, for every t ∈ T(Σ)

m̂(t) = m̂]([t]ker(m̂)) (C.1)

Now, for any f : s1 × · · · × sn → s ∈ F , de�ne a function φf : Ds1 × · · · ×Dsn → Ds

by composing m̂] with Γfker(m̂) as follows:

φf
def
= {((d1, ..., dn), d) | d = m̂](Γfker(m̂)([t1]ker(m̂), ..., [tn]ker(m̂)))

where each ti is any term such that m(ti) = di}

C.6. FROM CONGRUENCE TO COMPOSITIONALITY 285

Since ker(m̂) is a congruence, Γfker(m̂) is a function (by lemma C.25,) and so φf is a

function. We now can check that this satis�es the homomorphism condition:

m̂(f(t1, ..., tn)) = m̂]([f(t1, ..., tn)]ker(m̂)) by eq. (C.1)

= m̂](πker(m̂)(f(t1, ..., tn))) by def. C.3

= m̂](Γf (πker(m̂)(t1), ..., πker(m̂)(tn))) by lemma C.26

= m̂](Γf ([t1]ker(m̂), ..., [tn]ker(m̂))) by def. C.3

= φf (m(t1), ...,m(tn)) by de�nition of φf

Hence, m̂ is an f -homomorphism for any f ∈ F , and so it is an homomorphism.

C.6 From congruence to compositionality

In section C.5 we started with a semantic map m, from which we obtained an equiv-

alence ker(m̂) and then showed that stating that m is compositional is the same as

stating that ker(m̂) is a congruence. Now we look at a di�erent situation. We start

with some equivalence relation R, from which we get the canonical projection πR

and we show that stating that R is a congruence is the same as stating that πR is

compositional.

Theorem C.28. Let Σ = (S, F, ς) be a signature and R ⊆ T(Σ) × T(Σ) a con-

gruence over closed terms. Then the canonical projection πR : T(Σ) → T(Σ)/R is

homomorphic.

Proof. This is actually a restatement of lemma C.25. For πR to be homomorphic,

there must be, for every f ∈ F , a function φf such that for any set of terms t1, ..., tn ∈
T(Σ), πf (f(t1, ..., tn)) = φf (πR(t1), ..., πR(tn)). Take φf to be ΓRf as de�ned in def.

C.24. Then the homomorphism condition is the result of lemma C.25.

Now we show the dual statement.

Theorem C.29. Let Σ = (S, F, ς) be a signature and R ⊆ T(Σ)× T(Σ) an equiva-

lence over closed terms. If the canonical projection πR : T(Σ) → T(Σ)/R is homo-

morphic, then R is a congruence.

Proof. Assume πR is homomorphic. Then, by theorem C.23, ker(πR) is a congruence,
but R = ker(πR) according to proposition C.5, so R is a congruence.

C.7 Summary

We saw how functions and equivalence relations are intimately related to one an-

other. We saw how a function induces an equivalence relation and how an equiva-

lence relation gives rise to a function. Furthermore, we saw that compositional maps

286 APPENDIX C. COMPOSITIONALITY

correspond to congruence relations and viceversa. This implies that we have two

alternative and equivalent ways to approach the semantics of a language: we can

start by de�ning a �domain� and a map between the set of terms in the language

and this domain, or we can start by de�ning an equivalence relation, in particular

a congruence, between terms. Each approach induces a corresponding view of the

semantics in terms of the other approach, and therefore we can choose whichever

is the most convenient or apt to describe the language or to tackle the problem of

proving certain properties of the language.

D
Proofs of DEVS properties

D.1 Execution

Proposition 3.9. All partial executions are time-ordered.

Proof. This is immediate from the de�nitions. Note that if α ∈ EvtsM , and ψ,ψ′ ∈
ConfigsM with ψ = (s, t) and ψ′ = (s′, t′), then ψ α−→ ψ′ implies that time(α) = t′

and t ≤ t′, as de�nitions 3.3 and 3.6 require. Hence, for any consecutive pair of events
ψ

α−→ ψ′
α′−→ ψ′′ with ψ′ = (s′, t′) and ψ′′ = (s′′, t′′), we have that time(α) = t′ ≤ t′′ =

time(α′). Then, if −→γ is a partial execution with trace −→α = 〈α0, α1, . . . 〉, we obtain
by induction that for each i, time(αi) ≤ time(αi+1).

D.2 Determinism

Lemma 3.13. Let M be a DEVS system and ψ ∈ ConfigsM . Then for any event

α, if ψ
α−→ ψ′ and ψ

α−→ ψ′′ for some ψ′, ψ′′ ∈ ConfigsM then ψ′ = ψ′′.

Proof. We prove this by induction on the structure of M .

The base case is when M is an atomic DEVS M = (X,Y, S, s0, δ
ext, δint, τ, λ). Then

the statement of the lemma holds as it follows directly from de�nition 3.3, because,

assuming ψ = (s, t), ψ′ = (s′, t′) and ψ′′ = (s′′, t′′), if α is an internal transition,

int(t1, y) then t′ = t′′ = t1, and s
′ = s′′ = δint(s), and if α is an external transition,

ext(t1, x) then t′ = t′′ = t1 and s′ = s′′ = δext((s, t1 − t), x), hence in either case,

ψ′ = ψ′′.

Now for the inductive step, M = (X,Y,N,C, infl, Z, sel) is a coupled DEVS, and

we assume that the statement holds for all sub-components in C. Let ψ = (s, t),
ψ′ = (s′, t′) and ψ′′ = (s′′, t′′).

First we consider the case where α = int(t1, y). Then the imminent component is

i∗ = sel(imm(s)), and we have that:

a) s(i∗)
int(t1,y∗)−−−−−→i∗ s

′(i∗) and s(i∗)
int(t1,y∗)−−−−−→i∗ s

′′(i∗), from which we conclude, by the

induction hypothesis, that s′(i∗) = s′′(i∗).

288 APPENDIX D. PROOFS OF DEVS PROPERTIES

b) for each n ∈ N such that i∗ ∈ infl(n) and n 6= self, s(n)
ext(t1,xn)−−−−−−→n s

′(n) and

s(n)
ext(t1,xn)−−−−−−→n s

′′(n) where xn = Zi∗,n(y∗), from which we conclude by the induction

hypothesis that s′(n) = s′′(n).

c) for all n ∈ N such that n 6= i∗ and i∗ 6∈ infl(n), s(n) = s′(n) and s(n) = s′′(n),
so s′(n) = s′′(n)

Therefore, for all sub-components n ∈ N , s′(n) = s′′(n), and t′ = t′′, so ψ′ = ψ′′ if α

is an internal event.

Now we consider the case where α = ext(t1, x). We have that:

a) for each n ∈ N such that self ∈ infl(n) and xn 6=⊥, s(n)
ext(t1,xn)−−−−−−→n s

′(n) and

s(n)
ext(t1,xn)−−−−−−→n s

′′(n), where xn
def
= Zself,n(x), so again by induction hypothesis,

s′(n) = s′′(n).

b) and for all n ∈ N such that self /∈ infl(n) or xn =⊥, where xn
def
= Zself,n(x),

s(n) = s′(n) and s(n) = s′′(n), so s′(n) = s′′(n).

Therefore, for all sub-components n ∈ N , s′(n) = s′′(n), and t′ = t′′, so ψ′ = ψ′′ if α

is an external event.

Lemma 3.14. Given a DEVS system M and any con�guration ψ ∈ ConfigsM , if

ψ
int(t′,y′)−−−−−→ ψ′ and ψ

int(t′′,y′′)−−−−−−→ ψ′′ for some ψ′, ψ′′ ∈ ConfigsM then t′ = t′′ and

y′ = y′′ (and ψ′ = ψ′′.)

Proof. We prove this by induction on the structure of M .

The base case is when M is an atomic DEVS M = (X,Y, S, s0, δ
ext, δint, τ, λ). Then

the statement of the lemma holds as it follows directly from de�nition 3.3, because,

assuming ψ = (s, t), ψ′ = (s′, t′1) and ψ′′ = (s′′, t′′1), then from the �rst transition

we have that s′ = δint(s), t′1 = t′ = t + τ(s) and y′ = λ(s), and from the second

transition we have that s′′ = δint(s), t′′1 = t′′ = t + τ(s) and y′′ = λ(s). Therefore,
ψ′ = ψ′′, t′ = t′′ and y′ = y′′.

Now for the inductive step, M = (X,Y,N,C, infl, Z, sel) is a coupled DEVS, and

we assume that the statement holds for all sub-components in C. Let ψ = (s, t),
ψ′ = (s′, t′1) and ψ′′ = (s′′, t′′1). Let the imminent component be i∗ = sel(imm(s)).

Since we are considering internal transitions, we have that:

a) s(i∗)
int(t′,y∗1)
−−−−−→i∗ s

′(i∗) and s(i∗)
int(t′′,y∗2)
−−−−−−→i∗ s

′′(i∗), from which we conclude, by the

induction hypothesis, that s′(i∗) = s′′(i∗), and t′ = t′′, as well as y∗1 = y∗2.

b) for each n ∈ N such that i∗ ∈ infl(n) and n 6= self, we have that s(n)
ext(t′,x′n)−−−−−−→n s

′(n)

and s(n)
ext(t′′,x′′n)−−−−−−→n s

′′(n) where x′n = Zi∗,n(y∗1) and x′′n = Zi∗,n(y∗2). But y∗1 = y∗2 and

t′ = t′′ by a) above. Therefore x′n = x′′n, so by lemma 3.13 we obtain s′(n) = s′′(n).

c) for all n ∈ N such that n 6= i∗ and i∗ 6∈ infl(n), s(n) = s′(n) and s(n) = s′′(n),

D.2. DETERMINISM 289

so s′(n) = s′′(n),

d) and y′ = Zi∗,self(y∗1) and y′′ = Zi∗,self(y∗2) if i∗ ∈ infl(self) or y′ = y′′ =⊥ if

i∗ 6∈ infl(self). In any case y′ = y′′.

Therefore, for all sub-components n ∈ N , s′(n) = s′′(n), and t′ = t′′, so ψ′ = ψ′′,

and y′ = y′′.

Lemma 3.15. Let M be a DEVS system and ψ ∈ ConfigsM , with ψ = (s, t). If

τM (s) 6=∞ then there are ψ′ = (s′, t′) and y such that ψ
int(t′,y)−−−−−→ ψ′.

Proof. By induction on the structure of M .

The base case is when M is an atomic DEVS M = (X,Y, S, s0, δ
ext, δint, τ, λ). Then

the statement of the lemma holds as it follows directly from de�nition 3.3, because,

τM = τ , s′ = δint(s), t′ = t+ τ(s) and y = λ(s).

For the inductive step, M = (X,Y,N,C, infl, Z, sel) is a coupled DEVS, and we

assume that the statement holds for all sub-components in C. Since we assume

that τM (s) 6= ∞, then immM (s) 6= ∅ and therefore the imminent component i∗ =
sel(imm(s)) is well de�ned. Then,

a) since i∗ is the imminent component, τi∗(si∗) = τM (s) 6=∞, where s(i∗) = (si∗ , ti∗).

Hence, by induction hypothesis, there are ψ′i∗ , t
′ and y∗ such that s(i∗)

int(t′,y∗)−−−−−→i∗ ψ
′
i∗ .

De�ne s′(i∗)
def
= ψ′i∗ .

b) for each n ∈ N such that i∗ ∈ infl(n) and n 6= self, there is a transition

s(n)
ext(t,xn)−−−−−→n ψ

′
n where xn = Zi∗,n(y∗) for some ψ′n, because external transitions

always exist and by induction hypothesis, y∗ exists. De�ne s′(n)
def
= ψ′n.

c) for all n ∈ N such that n 6= i∗ and i∗ 6∈ infl(n), de�ne s′(n)
def
= s(n),

d) and y = Zi∗,self(y∗) if i∗ ∈ infl(self) or y =⊥ if i∗ 6∈ infl(self), in either case, y is

well de�ned (since by induction hypothesis, y∗ exists.)

Therefore, s′ is well de�ned, and we can conclude that (s, t)
int(t′,y)−−−−−→ (s′, t′) as re-

quired.

Lemma 3.16. Given a DEVS system M and any con�guration ψ0 ∈ ConfigsM ,

there is only one maximal internal execution

−→γ = ψ0
α0−→ ψ1

α1−→ ψ2
α2−→ · · ·

Proof. The proof has two parts: existence and uniqueness.

First we prove existence. Given ψ0 = (s0, t0), if τM (s0) 6= ∞, there are, by lemma

3.15, α1 = int(t1, y1) and ψ1 such that ψ0
α1−→ ψ1. We can apply the same argument

to ψ1 and repeat. If for some ψn = (sn, tn) we have that τM (sn) =∞, then we have

290 APPENDIX D. PROOFS OF DEVS PROPERTIES

a �nite sequence where ψn is the last con�guration. Otherwise, we can always use

lemma 3.15, yielding an in�nite sequence.

Now we prove uniqueness. This follows from lemma 3.13 by induction on the length

of the sequence.

Suppose there are two maximal internal executions γ = ψ0
α0−→ ψ1

α1−→ ψ2
α2−→ · · ·

and γ′ = ψ0
α′0−→ ψ′1

α′1−→ ψ′2
α′2−→ · · · of only internal events. We show that for each

i ≥ 0, ψi = ψ′i and αi = α′i.

Base case: i = 0. In this case, both sequences start with ψ0. From lemma 3.14 we

get that α0 = α′0, and from lemma 3.13 we get that ψ1 = ψ′1.

Inductive step: i > 0. Assume that for every 0 < j < i, ψj = ψ′j and αj = α′j . So,

ψi−1 = ψ′i−1 and αi−1 = α′i−1. Then by lemma 3.13 we have that ψi = ψ′i and by

lemma 3.14 we get that αi = α′i.

Corollary 3.17. Given a DEVS system M , any con�guration ψ0 = (s0, t0) ∈
ConfigsM and any time t ≥ t0, there is only one (�nite) partial execution

ψ0
α0−→ ψ1

α1−→ ψ2
α2−→ · · ·ψn−1

αn−1−−−→ ψn

were all αi are internal events and t < tn + τM (sn) where ψn = (sn, tn).

Proof. This follows immediately from lemma 3.16, by �cutting" the maximal internal

execution. Let −→γ be the unique maximal internal execution determined by ψ0, given

by lemma 3.16. Then −→γ is either �nite or in�nite. If it is �nite, let ψm = (sm, tm)
be the last con�guration. Then we have two cases: either t ≤ tm or t > tm. In the

�rst case, there must be some k < m and ψk = (sk, tk) and ψk+1 = (sk+1, tk+1)
in −→γ such that tk ≤ t < tk+1, since the sequence is ordered by time. Then take

n to be k. Since all αi are internal, tk+1 = tk + τM (sk), so t < tn + τM (sn). In
the second case, t > tm, and since ψm is the last con�guration, τM (sn) = ∞ and

therefore t < tn + τM (sn). Then take n to be m itself. If −→γ is in�nite, then we can

also �cut it": there must be some ψk = (sk, tk) and ψk+1 = (sk+1, tk+1) in −→γ such

that tk ≤ t < tk+1 = tk + τM (sk), so we take n to be k as well.

Theorem 3.18. (Determinism) Given a DEVSM , any con�guration ψ0 = (s0, t0) ∈
ConfigsM and a (possibly in�nite) time-ordered sequence of external events 〈β0, β1, β2, . . . 〉,
where time(β0) ≥ t0, there is a unique execution (experiment)

ψ0

−→α0=⇒ ψ′0
β0−→ ψ1

−→α1=⇒ ψ′1
β1−→ ψ2

−→α2=⇒ · · ·

where each −→αi is a sequence of internal events.

D.3. COMPOSITIONALITY 291

Proof. By corollary 3.17, there is a unique �nite partial execution of internal events

ψ0

−→α0=⇒ ψ′0 = (s′0, t
′
0) where time(β0) < t′0 + τM (s′0). Then by lemma 3.13, there is a

unique ψ1 such that ψ′0
β0−→ ψ1. We can apply the same argument to each ψi, thus

obtaining a unique execution.

Corollary 3.19. (DEVS as functions) Given a DEVS M and any con�guration

ψ ∈ ConfigsM , the timed input/output relation tiorM (ψ) is a function from input

sequences to output sequences.

Proof. Given any sequence of external events
−→
β , by theorem 3.18, there is a unique

execution −→γ with tr(−→γ)|in =
−→
β . Therefore, for any external event sequence

−→
β ,

there is a unique internal event sequence, namely tr(−→γ)|out, with (
−→
β , tr(−→γ)|out) ∈

tiorM (
−→
ψ).

D.3 Compositionality

Lemma 3.22. Let D = (X,Y,N,C, infl, Z, sel) be a coupled DEVS. If ρ1 and ρ2

are two D-states such that there is an m0 ∈ N for which ρ1(m0) ∼ ρ2(m0) and for

all m ∈ N such that m 6= m0, ρ1(m) = ρ2(m), then immD(ρ1) = immD(ρ2).

Proof. We prove immD(ρ1) ⊆ immD(ρ2). Assume that m ∈ immD(ρ1). Hence, if

ρ1(m)
int(t,y)−−−−→ then t = min{t′ | ρ1(m)

int(t′,y)−−−−−→}. Suppose that ρ2(m)
int(d,y)−−−−→. We

have two cases: whether m = m0 or m 6= m0.

Case 1: m = m0. Since ρ2(m)
int(d,y)−−−−→, then ρ1(m)

int(d,y)−−−−→ because ρ1(m) ∼ ρ2(m)

by assumption. Therefore d = min{t′ | ρ1(m)
int(t′,y)−−−−−→} because m ∈ immD(ρ1).

We claim that d = min{t′ | ρ2(m′)
int(t′,y)−−−−−→}. Take anym′ such that ρ2(m′)

int(t′,y′)−−−−−→.

We have two sub-cases:

Sub-case 1.1: m′ = m. Then t′ = d (because it's the same transition.)

Sub-case 1.2:m′ 6= m. Then ρ1(m′) = ρ2(m′) by assumption. Therefore ρ1(m′)
int(t′,y′)−−−−−→,

hence d ≤ t′ because d = min{t′ | ρ1(m)
int(t′,y′)−−−−−→}.

In both sub-cases we have that d ≤ t′. Therefore we have that for all m′ and t′,

if ρ2(m′)
int(t′,y′)−−−−−→ then d ≤ t′. In other words, d = min{t′ | ρ2(m′)

int(t′,y)−−−−−→} as
required.

Case 2: m 6= m0. Again, since ρ2(m)
int(d,y)−−−−→ we have that ρ1(m)

int(d,y)−−−−→ because

ρ1(m) = ρ2(m) by assumption. Therefore d = min{t′ | ρ1(m)
int(t′,y)−−−−−→} because

m ∈ immD(ρ1). We claim that d = min{t′ | ρ2(m′)
int(t′,y)−−−−−→}. Take any m′ such

that ρ2(m′)
int(t′,y)−−−−−→. We have two sub-cases:

292 APPENDIX D. PROOFS OF DEVS PROPERTIES

Sub-case 2.1:m′ 6= m0. Then ρ1(m′) = ρ2(m′) by assumption. Therefore ρ1(m′)
int(t′,y)−−−−−→,

hence d ≤ t′ because d = min{t′ | ρ1(m)
int(t′,y)−−−−−→}. (This is analogous to sub-case

1.2.)

Sub-case 2.2:m′ = m0. Then ρ1(m′) ∼ ρ2(m′) by assumption. Therefore ρ1(m′)
int(t′,y)−−−−−→,

and so d ≤ t′ because d = min{t′ | ρ1(m)
int(t′,y)−−−−−→}.

Hence in all cases, d ≤ t′. Therefore we have that for all m′ and t′, if ρ2(m′)
int(t′,y)−−−−−→

then d ≤ t′. In other words, d = min{t′ | ρ2(m′)
int(t′,y)−−−−−→}. So we have proven that

if ρ2(m)
int(d,y)−−−−→ then d = min{t′ | ρ2(m′)

int(t′,y)−−−−−→}. But this is saying that m ∈
immD(ρ2).

The proof for immD(ρ1) ⊆ immD(ρ2) is the exact dual.

Theorem 3.23. Let A and B be any mutually compatible DEVS components, and

let (sA, t) ∈ ConfigsA and (sB, t) ∈ ConfigsB be any con�gurations. Given any

elementary DEVS context C〈η〉 such that both A and B are compatible with C〈η〉,
and given any partial state ρC of C〈η〉, if

A ↓ (sA, t) ∼ B ↓ (sB, t)

then

C〈A〉 ↓ (ρC〈η → (sA, t)〉, t′) ∼ C〈B〉 ↓ (ρC〈η → (sB, t)〉, t′)

for any t′.

Proof. We prove that if (sA, t) ∼ (sB, t) in A]B then for all t′, (ρC〈η → (sA, t)〉, t′) ∼
(ρC〈η → (sB, t)〉, t′) in C〈A〉] C〈B〉.

Let N denote the set of names of components of C〈η〉. Consider the following set:

S
def
= {((ρ1, t

′), (ρ2, t
′)) | ρ1(η) ∼ ρ2(η) and ∀m 6= η.ρ1(m) = ρ2(m)}

We claim that S is a bisimulation and from this, the conclusion follows because

((ρC〈η → (sA, t)〉, t′), (ρC〈η → (sB, t)〉, t′)) ∈ S. This follows from the following:

1) ρC〈η → (sA, t)〉(η) ∼ ρC〈η → (sB, t)〉(η) since by de�nition of partial state

substitution ρC〈η → (sA, t)〉(η) = (sA, t) and ρC〈η → (sB, t)〉(η) = (sB, t) and by

assumption (sA, t) ∼ (sB, t)

2) for allm 6= η, ρC〈η → (sA, t)〉(m) = ρC〈η〉(m) = ρC〈η → (sB, t)〉(m) by de�nition
of partial state substitution.

Hence for any t′, ((ρC〈η → (sA, t)〉, t′), (ρC〈η → (sB, t)〉, t′)) ∈ S, by de�nition of S

and since S is a bisimulation, (ρC〈η → (sA, t)〉, t′) ∼ (ρC〈η → (sB, t)〉, t′).

D.3. COMPOSITIONALITY 293

Now we prove that S is indeed a bisimulation. Let ((ρ1, t), (ρ2, t)) ∈ S. Therefore

ρ1(η) ∼ ρ2(η) and for all m 6= η, ρ1(m) = ρ2(m). Suppose that

(ρ1, t)
α−→ (ρ′1, t

′
1) (D.1)

with time(α) = t0 and value(α) = v. We need to �nd a con�guration (ρ′2, t
′
2) such

that (ρ2, t)
α−→ (ρ′2, t

′
2) and ((ρ′1, t

′
1), (ρ′2, t

′
2)) ∈ S. We proceed by case analysis on the

type of the transition α. There are two cases: either the transition is external or it

is internal.

Case 1: type(α) = ext. We know that transition (D.1) must have been obtained only

if t′1 = t0 and:

a) for every m ∈ N with self ∈ infl(m) and xm 6=⊥, ρ1(m)
ext(t0,xm)−−−−−−→m ρ′1(m) where

xm = Zself,m(v), and

b) for every m ∈ N with self /∈ infl(m) or xm 6=⊥, ρ′1(m) = ρ1(m).

Here we have two sub-cases to consider, whether there is a connection from C〈η〉's
input to the placeholder η or not.

Sub-case 1.1: self ∈ infl(η). First let us consider all m ∈ N such that self ∈ infl(m)
and xm 6=⊥. For m 6= η we know that ρ1(m) = ρ2(m). Therefore by a)

ρ2(m)
ext(t0,xm)−−−−−−→m ρ′1(m) (D.2)

On the other hand, for m = η we know what ρ1(m) ∼ ρ2(m) by assumption. Hence,

by a) there must be a B-con�guration r such that

ρ2(m)
ext(t0,xm)−−−−−−→m r (D.3)

and such that ρ′1(m) ∼ r. So from (D.2) and (D.3) we have that:

a') for all m ∈ N with self ∈ infl(m) and xm 6=⊥, ρ2(m)
ext(t0,xm)−−−−−−→m ρ′2(m) where

xm = Zself,m(v), and

ρ′2(m)
def
=

r if m = η

ρ′1(m) otherwise

Now let us consider all m ∈ N such that self 6∈ infl(m) or xm =⊥. For all such m
we know that ρ1(m) = ρ2(m), since η is not in this group. Hence, by b) we conclude

that

b') for every m ∈ N with self /∈ infl(m) or xm 6=⊥, ρ′2(m) = ρ2(m), where ρ′2 is the

same as in a').

From a') and b') we deduce that (ρ2, t)
α−→ (ρ′2, t

′
2) where t′2

def
= t0 = t′1 by (CET).

Since ρ′1(η) ∼ ρ′2(η) and ρ′1(m) = ρ′2(m) for all m 6= η (by de�nition of ρ′2,) we

294 APPENDIX D. PROOFS OF DEVS PROPERTIES

conclude that ((ρ′1, t
′
1), (ρ′2, t

′
2)) ∈ S as required.

Sub-case 1.2: self 6∈ infl(η). We claim that the con�guration (ρ′2, t
′
2) is the con�gu-

ration we need, where t′2
def
= t0 = t′1 and

ρ′2(m)
def
=

ρ′1(m) if m 6= η

ρ2(m) otherwise

Now, from a), the fact that for all m 6= η, ρ1(m) = ρ2(m), and self 6∈ infl(η) we can
conclude that

a') for every m ∈ N with self ∈ infl(m) and xm 6=⊥, ρ2(m)
ext(t0,xm)−−−−−−→m ρ′2(m) where

xm = Zself,m(v), where ρ′2(m) = ρ′1(m).

On the other hand, from b), the fact that for all m 6= η, ρ1(m) = ρ2(m), and
self 6∈ infl(η) we have that for all m 6= η, ρ′2(m) = ρ′1(m) by de�nition of ρ′2, so

ρ′2(m) = ρ1(m) by b), and therefore ρ′2(m) = ρ2(m). For η we have that ρ′2(η) = ρ2(η)
by de�nition of ρ′2. Hence we conclude

b') for every m ∈ N with self /∈ infl(m) or xm 6=⊥, ρ′2(m) = ρ2(m).

From a') and b') we conclude that (ρ2, t)
α−→ (ρ′2, t

′
2) by (CET). Since ρ′1(η) = ρ1(η)

and ρ′2(η) = ρ2(η), we know that ρ′1(η) ∼ ρ′2(η) by our assumption that ρ1(η) ∼
ρ2(η). Furthermore, by de�nition, ρ′2(m) = ρ′1(m) for all m 6= η. This means that

((ρ′1, t
′
1), (ρ′2, t

′
2)) ∈ S as required, since t′2 = t′1.

The proof of the other direction of the bisimulation is symmetric.

Case 2: type(α) = int. We know that transition (D.1) must have been obtained only

if t′1 = t0 and:

a) ρ1(i∗)
int(t0,y∗)−−−−−→i∗ ρ

′
1(i∗),

b) for each m ∈ N such that i∗ ∈ infl(m) and m 6= self, ρ1(m)
ext(t0,xm)−−−−−−→m ρ′1(m)

where xm = Zi∗,m(y∗),

c) for all m ∈ N such that m 6= i∗ and i∗ 6∈ infl(m), ρ1(m) = ρ′1(m),

d) and v = Zi∗,self(y∗) if i∗ ∈ infl(self) or v =⊥ if i∗ 6∈ infl(self)

where i∗ = sel(imm(ρ1)). First we need to make sure that imm(ρ2) = imm(ρ1), but
this follows from lemma 3.22 since for all m 6= η, ρ1(m) = ρ2(m) and ρ1(η) ∼ ρ2(η).
Hence we have that i∗ = sel(imm(ρ2)).

We then have three sub-cases to consider: whether the placeholder is the component

selected, or if not, whether there is a connection from the selected component to the

placeholder or not.

Sub-case 2.1: i∗ = η.

In this sub-case, we have that because of our assumption that ρ1(η) ∼ ρ2(η), a)

D.3. COMPOSITIONALITY 295

implies there must be some B-con�guration r such that

ρ2(i∗)
int(t0,y∗)−−−−−→i∗ r (D.4)

and ρ′1(i∗) ∼ r.

Now, for all m ∈ N such that i∗ ∈ infl(m) and m 6= self, we know that m 6=
η (since self loops are not allowed) so ρ1(m) = ρ2(m). This implies, by b), that

ρ2(m)
ext(t0,xm)−−−−−−→m ρ′1(m) where xm = Zi∗,m(y∗).

So by de�ning

ρ′2(m)
def
=

r if m = η

ρ′1(m) otherwise

we conclude:

a') ρ2(i∗)
int(t0,y∗)−−−−−→i∗ ρ

′
2(i∗), (from a))

b') for all m ∈ N such that i∗ ∈ infl(m) and m 6= self, ρ2(m)
ext(t0,xm)−−−−−−→m ρ′2(m),

(from b))

c') for all m ∈ N such that m 6= i∗ and i∗ 6∈ infl(m), ρ′2(m) = ρ2(m), (from c)) and

d') v = Zi∗,self(y∗) if i∗ ∈ infl(self) or v =⊥ if i∗ 6∈ infl(self)

Hence, by (CET) we conclude that (ρ2, t)
α−→ (ρ′2, t

′
2), where t′2

def
= t0 = t′1. Since

ρ′1(η) ∼ ρ′2(η) and for all m 6= η, ρ′1(m) = ρ′2(m), we obtain that ((ρ′1, t
′
1), (ρ′2, t

′
2)) ∈

S, as required.

Sub-case 2.2: i∗ 6= η and i∗ ∈ infl(η).

Since i∗ 6= η, we know then that ρ1(i∗) = ρ2(i∗) and therefore we conclude from a)

a') ρ2(i∗)
int(t0,y∗)−−−−−→i∗ ρ

′
2(i∗) where ρ′2(i∗)

def
= ρ′1(i∗).

Now we consider all m ∈ N such that i∗ ∈ infl(m) and m 6= self. We know that η is

in this group, so let us consider �rst the rest, i.e. all m 6= η such that i∗ ∈ infl(m)

and m 6= self. By b) and knowing that ρ1(m) = ρ2(m) we obtain ρ2(m)
ext(t0,xm)−−−−−−→m

ρ′2(m), where ρ′2(m)
def
= ρ′1(m). As for η we know that ρ1(η) ∼ ρ2(η) so b) implies

that there is a B-con�guration r such that ρ2(η)
ext(t0,xη)−−−−−−→η r and ρ

′
1(η) ∼ r. Hence

by de�ning1

ρ′2(m)
def
=

r if m = η

ρ′1(m) otherwise

we obtain

b') for all m ∈ N such that i∗ ∈ infl(m) and m 6= self, ρ2(m)
ext(t0,xm)−−−−−−→m ρ′2(m),

(from b))

1Note that this de�nition of ρ′2 encompasses the case of i∗ from a').

296 APPENDIX D. PROOFS OF DEVS PROPERTIES

As for the rest of the components, that is, all m ∈ N such that m 6= i∗ and i∗ 6∈
infl(m), since m 6= η we have ρ1(m) = ρ2(m), and therefore by c), we get ρ′2(m) =
ρ2(m), where ρ′2 is the same as in a') and b'). Summarizing, we have

c') for m ∈ N such that m 6= i∗ and i∗ 6∈ infl(m), ρ′2(m) = ρ2(m).

From a'), b'), c') and d) we conclude by (CET) that (ρ2, t)
α−→ (ρ′2, t

′
2), where t′2

def
=

t0 = t′1. Since ρ
′
1(η) ∼ ρ′2(η) and for all m 6= η, ρ′1(m) = ρ′2(m), we obtain that

((ρ′1, t
′
1), (ρ′2, t

′
2)) ∈ S, as required.

Sub-case 2.3: i∗ 6= η and i∗ 6∈ infl(η). We claim that the con�guration (ρ′2, t
′
2) is the

con�guration we need, where t′2
def
= t0 = t′1 and

ρ′2(m)
def
=

ρ′1(m) if m 6= η

ρ2(m) otherwise

Then by this de�nition and a) we have

a') ρ2(i∗)
int(t0,y∗)−−−−−→i∗ ρ

′
2(i∗)

Then, by b) and the fact that for all m 6= η, ρ1(m) = ρ2(m), we have

b') for all m ∈ N such that i∗ ∈ infl(m) and m 6= self, ρ2(m)
ext(t0,xm)−−−−−−→m ρ′2(m),

As for the rest of the components, that is, all m ∈ N such that m 6= i∗ and i∗ 6∈
infl(m), we have that η is in this group. For all thosem 6= η, we have ρ1(m) = ρ2(m).
By the de�nition of ρ′2 we have ρ′2(m) = ρ′1(m), which by c) implies ρ′2(m) = ρ1(m)
and therefore ρ′2(m) = ρ2(m). As for η, we have ρ′2(η) = ρ2(η) by de�nition of ρ2. In

any case we conclude

c') for m ∈ N such that m 6= i∗ and i∗ 6∈ infl(m), ρ′2(m) = ρ2(m).

Now, from a'), b'), c') and d) we obtain by (CET) that (ρ2, t)
α−→ (ρ′2, t

′
2), where t′2

def
=

t0 = t′1. Since ρ
′
1(η) = ρ1(η) (by c)) and ρ′2(η) = ρ2(η) (by c')), and the assumption

that ρ1(η) ∼ ρ2(η), we have that ρ′1(η) ∼ ρ′2(η). This, and the fact that for all

m 6= η, ρ′1(m) = ρ′2(m) (by de�nition of ρ′2,) we obtain that ((ρ′1, t
′
1), (ρ′2, t

′
2)) ∈ S,

as required.

The other direction of the bisimulation is symmetric.

Lemma 3.26. Let A ∈ DEV S, D[η] ∈ Contexts. Then, for any s, t, t′, ρD,

ρD[η→A][η → (s, t)] = ρD[η→A]〈η′ → (ρ1, t
′)〉

where D[η] = D′〈η′ → D′′[η]〉 for some D′〈η′〉 and some D′′[η], and

ρ1 = ρD′′ [η → (s, t)]

D.3. COMPOSITIONALITY 297

Proof. We show that for all m ∈ names(D) = names(D′), ρD[η → (s, t)](m) =
ρD〈η′ → (ρ1, t

′)〉(m). We have to consider two cases, whether m 6= η′ and whether

m = η′.

Case 1: m 6= η′. In this case we have that by de�nition of elementary partial state

substitution

ρD[η→A]〈η′ → (ρ1, t
′)〉(m) = ρD[η→A]〈η′〉(m)

and by de�nition of arbitrary partial state substitution

ρD[η→A][η → (s, t)](m) = ρD[η→A]〈η′〉(m)

hence the two agree on m.

Case 2: m = η′. In this case we have that by de�nition of elementary partial state

substitution

ρD[η→A]〈η′ → (ρ1, t
′)〉(m) = (ρ1, t

′) (D.5)

and by de�nition of arbitrary partial state substitution

ρD[η→A][η → (s, t)](m) = ρ̃D[η→A][η → (s, t)](m)

= (ρ′[η → (s, t)], t′)

where ρD[η→A](η′) = (ρ′, t′) with ρ′ being an arbitrary partial state for D′′[η].
But ρ′[η → (s, t)] = ρ1, hence by D.5 we have that

ρD[η→A][η → (s, t)](η′) = ρD[η→A]〈η′ → (ρ1, t
′)〉(η′)

as required.

Theorem 3.27. Let A and B be any mutually compatible DEVS components, and

let (sA, t) ∈ ConfigsA and (sB, t) ∈ ConfigsB be any con�gurations. Given any

arbitrary DEVS context C[η] such that both A and B are compatible with C[η], and
given any partial state ρC of C[η], if

A ↓ (sA, t) ∼ B ↓ (sB, t)

then

C[A] ↓ (ρC [η → (sA, t)], t′) ∼ C[B] ↓ (ρC [η → (sB, t)], t′)

for any t′ .

298 APPENDIX D. PROOFS OF DEVS PROPERTIES

Proof. As before, we prove that if (sA, t) ∼ (sB, t) inA]B then (ρC [η → (sA, t)], t′) ∼
(ρC [η → (sB, t)], t′) in C[A]] C[B] for any t′ .

We proceed by induction on the structure of C[η], or the depth d of the placeholder
η.

The base case is when C[η] is really an elementary context, this is, when d = 1. But
this is exactly what is proven by theorem 3.23.

For the inductive step we have d > 1. In this case, the context C[η] can be seen as

the composition of an elementary context C ′〈η′〉 and an arbitrary context C ′′[η] of
depth d′ = d − 1, this is, C[η] = C ′〈η′ → C ′′[η]〉 for some name η′. Hence, for any

DEVS component A, plugging it into C[η] is C[η → A] = C ′〈η′ → C ′′[η → A]〉.
Since d′ < d, by induction hypothesis we have that for any sA, sB, t, t

′

(ρC′′[η→A][η → (sA, t)], t′) ∼ (ρC′′[η→B][η → (sB, t)], t′)

so by theorem 3.23 we have that for any t′, t′′

(ρC[η→A]〈η′ → (ρ1, t
′)〉, t′′) ∼ (ρC[η→B]〈η′ → (ρ2, t

′)〉, t′′) (D.6)

where ρ1
def
= ρC′′[η→A][η → (sA, t)] and ρ2

def
= ρC′′[η→B][η → (sB, t)].

But by lemma 3.26 we have that

ρC[η→A]〈η′ → (ρ1, t
′)〉 = ρC[η→A][η → (sA, t)]

and

ρC[η→B]〈η′ → (ρ2, t
′)〉 = ρC[η→B][η → (sB, t)]

so by D.6 we conclude that

ρC[η→A][η → (sA, t)] ∼ ρC[η→B][η → (sB, t)]

as required.

E
Proofs of kiltera's properties

E.1 Structural congruence

Proposition 6.23. If x /∈ fn(P) then νx.P ≡ P .

Proof.

P ≡ P ‖
√

by PI
≡ P ‖ νx.

√
by NT and congruence

≡ νx.(P ‖
√

) by proposition ??

≡ νx.P by PI and congruence

Proposition 6.25. Every process is structurally congruent to a process in canonical

normal form.

Proof. By using scope extrusion we can bring out any νx which is not inside a listener

to the outermost, performing any necessary renamings.

E.2 Derived rules

Proposition 6.27. For any P, P ′, η,

INST
A(x1, ..., xn)

def
= P P{x1/y1, ..., xn/yn}

η−→ P ′

A(y1, ..., yn)
η−→ P ′

Proof. The following is a derivation of INST:

A(x1, ..., xn)
def
= P

CDEF
A(y1, ..., yn) ≡ P{x1/y1, ..., xn/yn} P ′ ≡ P ′ P{x1/y1, ..., xn/yn}

η−→ P ′
CNGR

A(y1, ..., yn)
η−→ P ′

300 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

Proposition 6.28. For any P, P ′, Q,

PARrτ
Q

τ−→ Q′

P ‖ Q τ−→ P ‖ Q′
PARr?

Q
x?v−−→ Q′ P 6x!∗v−−→

P ‖ Q x?v−−→ P ‖ Q′

PARr!
Q

x!v−−→ Q′

P ‖ Q x!v−−→ P ‖ Q′
PARr∗

Q
x!∗v−−→ Q′ P 6x?v−−→

P ‖ Q x!∗v−−→ P ‖ Q′

Proof. The following is a derivation of PARrτ :

Q
τ−→ Q′

PARτ
Q ‖ P τ−→ Q′ ‖ P Q ‖ P ≡ P ‖ Q Q′ ‖ P ≡ P ‖ Q′

CNGR
P ‖ Q τ−→ P ‖ Q′

The derived rules for PARr?, PAR
r
! and PARr∗ are obtained analogously, making use

of CNGR.

E.3 Elementary timing properties

Theorem 8.1. For any P ∈ P, P 0
 P .

Proof. By induction on the structure of P .

Case 1: P ≡
√

or P ≡ x ↑E or P ≡ x ↑∗ E. For each of these cases there is an

axiom P
0
 P .

Case 2: P ≡ ∆E → P1. Then, by TDELAY, ∆E → P1
0
 ∆(E − 0) → P1. This

is, P
0
 P .

Case 3: P ≡ νx.P1. Assume the statement holds for the sub-term P1. So P1
0
 P1.

Then, by TNEW, νx.P1
0
 νx.P1, i.e. P

0
 P .

Case 4: P ≡ P1 ‖ P2. Assume the statement holds for the sub-terms P1 and P2.

Then P1
0
 P1 and P2

0
 P2. So by TPAR, P1 ‖ P2

0
 P1 ‖ P2, i.e. P

0
 P .

Case 5: P ≡ P1TP2. Analogous to case 4.

Case 6: P ≡ Σi∈IGi → Pi. By TCHOICE, P
0
 Σi∈IGi → P ′i where Gi = xi?Fiδti

and P ′i ≡ Pi{ti/ti+0}. Hence each P ′i ≡ Pi, so P
0
 P .

Case 7: P ≡ A(x1, ..., xn). The TINST axiom states that P
0
 P .

Theorem 8.2. For any N ∈ W, N
0
 N .

E.4. TIME DETERMINACY 301

Proof. By induction on the structure of N .

Case 1: N ≡ ⊥. The statement follows from the TWSTOP axiom.

Case 2: N ≡ x[P]. By theorem 8.1 we know that P
0
 P . Hence, by TINSITE we

have x[P] 0
 x[P], i.e. N

0
 N .

Case 3: N ≡ $x.N1. Assume the statement holds for the sub-term N1. Then N1
0

N1. Hence, by TWNEW, $x.N1
0
 $x.N1, i.e. N

0
 N .

Case 4: N ≡ N1 o N2. Assume the statement holds for the sub-terms N1 and N2.

Then N1
0
 N1 and N2

0
 N2. So, by TWPAR, N1 oN2

0
 N1 oN2, i.e. N

0
 N .

E.4 Time determinacy

Theorem 8.3. For any P, P ′, P ′′ ∈ P, d ∈ R+
0 , if P

d
 P ′ and P

d
 P ′′, then

P ′ ≡ P ′′.

Proof. By induction on the structure of P .

Case 1: P ≡
√

or P ≡ x ↑E or P ≡ x ↑∗E. For each of these cases there is only

one rule whose left-hand side matches P , so the corresponding right-hand side is

uniquely determined.

Case 2: P ≡ ∆E → P ′. Same as case 1.

Case 3: P ≡ νx.P1. Assume that the statement holds for P1 (which is a sub-term

of P :) if P1
d
 P ′1 and P1

d
 P ′′1 then P ′1 ≡ P ′′1 . Suppose that P

d
 P ′ and

P
d
 P ′′. Each of these must be the conclusion of the TNEW rule. Therefore

P ′ ≡ νx.P ′1 for some P ′1 such that P1
d
 P ′1. Similarly P ′′ ≡ νx.P ′′1 for some P ′′1

such that P1
d
 P ′′1 . Hence, by induction hypothesis, P ′1 ≡ P ′′1 , and since ≡ is a

congruence, νx.P ′1 ≡ νx.P ′′1 , this is P ′ ≡ P ′′ are required.

Case 4: P ≡ P1 ‖ P2. Assume that the statement holds for each sub-term P1 and

P2. Suppose that P
d
 P ′ and P

d
 P ′′. Each case must be the conclusion of

TPAR. Therefore, P ′ ≡ P ′1 ‖ P ′2 for some P ′1 such that P1
d
 P ′1 and some P ′2

such that P2
d
 P ′2. Similarly, since P

d
 P ′′, we have that P ′′ ≡ P ′′1 ‖ P ′′2 for

some P ′′1 such that P1
d
 P ′′1 and some P ′2 such that P2

d
 P ′′2 . Hence, by our

induction hypothesis, we conclude that P ′1 ≡ P ′′1 and P ′2 ≡ P ′′2 . And since ≡ is a

congruence, we have that P ′1 ‖ P ′2 ≡ P ′′1 ‖ P ′′2 . This is, P ′ ≡ P ′′ as required.

Case 5: P ≡ P1TP2. This is analogous to case 4.

302 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

Case 6: P ≡ Σi∈IGi → Pi. As with case 1, there is only one axiom for this process

term, and so the conclusion is uniquely determined.

Case 7: P ≡ A(x1, ..., xn). This case is like case 1.

Theorem 8.4. For any N,N ′, N ′′ ∈ W, d ∈ R+
0 , if N

d
 N ′ and N

d
 N ′′, then

N ′ ≡ N ′′.

Proof. By induction on the structure of N .

Case 1: N ≡ ⊥. Then only the axiom TWSTOP is applicable, so N ′ ≡ ⊥ ≡ N ′′.

Case 2: N ≡ x[P]. Suppose that N
d
 N ′ and N

d
 N ′′. Each case must be

the conclusion of the rule TINSITE. Therefore, N ′ ≡ x[P ′] for some P ′ where

P
d
 P ′. Similarly, N ′′ ≡ x[P ′′] for some P ′′ such that P

d
 P ′′. Hence, by

theorem 8.3, P ′ ≡ P ′′, which by network congruence implies that x[P ′] ≡ x[P ′′],
i.e. N ′ ≡ N ′′.

Case 3: N ≡ $x.N1. Assume that the statement holds for N1 (which is a sub-term

of N :) if N1
d
 N ′1 and N1

d
 N ′′1 then N ′1 ≡ N ′′1 . Suppose that N

d
 N ′ and

N
d
 N ′′. Each of these must be the conclusion of the TWNEW rule. Therefore

N ′ ≡ νx.N ′1 for some N ′1 such that N1
d
 N ′1. Similarly N ′′ ≡ νx.N ′′1 for some

N ′′1 such that N1
d
 N ′′1 . Hence, by induction hypothesis, N ′1 ≡ N ′′1 , and since ≡

is a congruence, $x.N ′1 ≡ $x.N ′′1 , this is N ′ ≡ N ′′ are required.

Case 4: N ≡ N1 oN2. Assume that the statement holds for each sub-term N1 and

N2. Suppose that N
d
 N ′ and N

d
 N ′′. Each case must be the conclusion of

TWPAR. Therefore, N ′ ≡ N ′1 oN ′2 for some N ′1 such that N1
d
 N ′1 and some N ′2

such that N2
d
 N ′2. Similarly, since N

d
 N ′′, we have that N ′′ ≡ N ′′1 o N ′′2 for

some N ′′1 such that N1
d
 N ′′1 and some N ′2 such that N2

d
 N ′′2 . Hence, by our

induction hypothesis, we conclude that N ′1 ≡ N ′′1 and N ′2 ≡ N ′′2 . And since ≡ is

a congruence, we have that N ′1 oN ′2 ≡ N ′′1 oN ′′2 . This is, N ′ ≡ N ′′ as required.

E.5 Time continuity

Theorem 8.5. For any P, P ′ ∈ P, d, d′ ∈ R+
0 , P

d+d′
 P ′ if and only if there is a P ′′

such that P
d
 P ′′ and P ′′

d′
 P ′.

Proof. By induction on the structure of P .

E.5. TIME CONTINUITY 303

Case 1: P ≡
√
. (⇐) Assume there is a P ′′ such that P

d
 P ′′ and P ′′

d′
 P ′. Then

P ′′ ≡
√

and P ′ ≡
√
. So, by TSTOP, P

d+d′
 P ′. (⇒) Dually, whenever P

d+d′
 P ′,

it is possible to �nd a P ′′, namely P ′′ ≡
√
, such that P

d
 P ′′ and P ′′

d′
 P ′.

Case 2: P ≡ x ↑E. (⇐) Assume there is a P ′′ such that P
d
 P ′′ and P ′′

d′
 P ′.

Then either a) d > 0 and P ′′ ≡
√

or b) d = 0 and P ′′ ≡ x ↑ E. In case a) it

must be that P ′ ≡
√

as well, and since d > 0, d + d′ > 0. Hence P d+d′
 P ′ by

TTRIG. In case b) we have two possibilities: either d′ > 0 and P ′ ≡
√

or d′ = 0
and P ′ ≡ x↑E. In the �rst case, d+ d′ > 0 and so P

d+d′
 P ′ by TTRIG. In the

second case d+ d′ = 0 and so P
d+d′
 P ′ by TTRIG0. (⇒) Suppose P

d+d′
 P ′. We

have two cases: either a) d + d′ > 0 or b) d + d′ = 0. In case a) it must be the

case that P ′ ≡
√
. If d > 0 then we de�ne P ′′ ≡

√
, and it follows that P

d
 P ′′

and P ′′
d′
 P ′. If d = 0 it must be that d′ > 0. In this case we de�ne P ′′ ≡ x↑E,

and so it follows that P
d
 P ′′ and P ′′

d′
 P ′. For case b) it must be the case

that both d = 0 and d′ = 0, and furthermore, P ′ ≡ P . We de�ne P ′′ ≡ P , and it

follows that P
d
 P ′′ and P ′′

d′
 P ′.

Case 3: P ≡ x↑∗E. Analogous to case 2.

Case 4: P ≡ ∆E → P1. (⇐) Assume there is a P ′′ such that P
d
 P ′′ and P ′′

d′

P ′. Then P ′′ ≡ ∆(E − d) → P1 where 0 6 d 6 eval(E). Therefore, P ′ ≡
∆((E − d) − d′) → P1 where 0 6 d′ 6 eval(E − d). But this means that P ′ ≡
∆(E− (d+ d′))→ P1 and 0 6 d+ d′ 6 eval(E), so by TDELAY, P

d+d′
 P ′. (⇒)

Suppose P
d+d′
 P ′. Then, it must be the case that P ′ ≡ ∆(E − (d + d′)) → P1

with 0 6 d + d′ 6 eval(E). De�ne P ′′ ≡ ∆(E − d) → P1. Then P
d
 P ′′ and

P ′′
d′
 P ′.

Case 5: P ≡ νx.P1. Assume the statement is true for the sub-term P1. (⇐) Suppose

there is a P ′′ such that P
d
 P ′′ and P ′′

d′
 P ′. Then P ′′ ≡ νx.P ′′1 for some P ′′1

such that P1
d
 P ′′1 . Hence it must be that P ′ ≡ νx.P ′1 for some P ′1 such that

P ′′1
d′
 P ′1. This implies that P1

d+d′
 P ′1 by the induction hypothesis, and this

in turn implies that νx.P1
d+d′
 νx.P ′′1 by TNEW, in other words, P

d+d′
 P ′.

(⇒) Suppose P
d+d′
 P ′. Then, P ′ ≡ νx.P ′1 for some P ′1 with P1

d+d′
 P ′1. So, by

induction hypothesis, there is a P ′′1 such that P1
d
 P ′′1 and P ′′1

d′
 P ′1. De�ne

P ′′ ≡ νx.P ′′1 . It follows that P
d
 P ′′ and P ′′

d′
 P ′ by TNEW.

Case 6: P ≡ P1 ‖ P2. Assume the statement is true for the sub-terms P1 and P2.

(⇐) Suppose there is a P ′′ such that P
d
 P ′′ and P ′′

d′
 P ′. Then P ′′ ≡ P ′′1 ‖ P ′′2

for some P ′′1 and P ′′2 where P1
d
 P ′′1 and P2

d
 P ′′2 . Hence, it is also the case that

P ′ ≡ P ′1 ‖ P ′2 for some P ′1 and P ′2 where P ′′1
d′
 P ′1 and P ′′2

d′
 P ′2. We conclude,

by induction hypothesis, that P1
d+d′
 P ′1 and P2

d+d′
 P ′2. So, by TPAR, we have

that P1 ‖ P2
d+d′
 P ′1 ‖ P ′2, this is, P

d+d′
 P ′. (⇒) Suppose P

d+d′
 P ′. Then, P ′ ≡

304 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

P ′1 ‖ P ′2 for some P ′1 and P ′2 where P1
d+d′
 P ′1 and P2

d+d′
 P ′2. So, by induction

hypothesis, there are P ′′1 and P ′′2 such that P1
d
 P ′′1

d′
 P ′1 and P2

d
 P ′′2

d′
 P ′2.

Therefore, by using TPAR, we obtain that P1 ‖ P2
d
 P ′′1 ‖ P ′′2

d′
 P ′1 ‖ P ′2. This

is, P
d
 P ′′ and P ′′

d′
 P ′, where P ′′ ≡ P ′′1 ‖ P ′′2 .

Case 7: P ≡ P1TP2. Analogous to case 6.

Case 8: P ≡ Σi∈IGi → Pi, where for each i ∈ I, Gi is of the form xi?Fiδti. (⇐)

Suppose there is a P ′′ such that P
d
 P ′′ and P ′′

d′
 P ′. Then P ′′ ≡ Σi∈IGi → P ′′i

where P ′′i ≡ Pi{ti/ti+d}. Hence, P ′ ≡ Σi∈IGi → P ′i where P ′i ≡ P ′′i {ti/ti+d′}.
So we have that P ′i ≡ Pi{ti/ti+d}{ti/ti+d′} ≡ Pi{ti/ti+(d+d′)} by composition of

substitutions. Hence, P
d+d′
 P ′ by TCHOICE. (⇐) Suppose P

d+d′
 P ′. So P ′ ≡

Σi∈IGi → P ′i with P
′
i ≡ Pi{ti/ti+(d+d′)}. De�ne P ′′ ≡ Σi∈IGi → P ′′i with P ′′i ≡

Pi{ti/ti+d}. Hence, P ′′i {ti/ti+d′} ≡ Pi{ti/ti+d}{ti/ti+d′} ≡ Pi{ti/ti+(d+d′)} ≡ P ′i . So,

by TCHOICE, P ′′
d′
 P ′ and by de�nition of P ′′ and TCHOICE, we also have

that P
d
 P ′′, as required.

Case 9: P ≡ A(x1, ..., xn). In this case, P has only a 0-time evolution, so the

statement holds with P ′ ≡ P ′′ ≡ P .

Theorem 8.6. For any N,N ′ ∈ N , d, d′ ∈ R+
0 , N

d+d′
 N ′ if and only if there is a

N ′′ such that N
d
 N ′′ and N ′′

d′
 N ′.

Proof. By structural induction.

Case 1: N ≡ ⊥. (⇐) Assume there is a N ′′ such that N
d
 N ′′ and N ′′

d′
 N ′.

Then N ′′ ≡ ⊥ and N ′ ≡ ⊥. So, by TSTOP, N
d+d′
 N ′. (⇒) Dually, whenever

N
d+d′
 N ′, it is possible to �nd a N ′′, namely N ′′ ≡ ⊥, such that N

d
 N ′′ and

N ′′
d′
 N ′.

Case 2: N ≡ x[P]. (⇐) Assume there is a N ′′ such that N
d
 N ′′ and N ′′

d′
 N ′.

Then N ′′ ≡ x[P ′′] and N ′ ≡ x[P ′] for some P ′, P ′′ such that P
d
 P ′′ and

P ′′
d′
 P ′. Hence, by theorem 8.5, P

d+d′
 P ′, and so, by TINSITE, x[P] d+d′

 x[P ′],
i.e. N

d+d′
 N ′. (⇒) Assume that N

d+d′
 N ′. Then it must be that N ′ ≡ x[P ′]

for some P ′ such that P
d+d′
 P ′. Then, by theorem 8.5, there must be a P ′′ such

that P
d
 P ′′ and P ′′

d′
 P ′. De�ne N ′′ ≡ x[P ′′]. It follows that N d

 N ′′ and

N ′′
d′
 N ′, by TINSITE.

Case 3: N ≡ $x.N1. Assume the statement is true for the sub-term N1. (⇐)

Suppose there is a N ′′ such that N
d
 N ′′ and N ′′

d′
 N ′. Then N ′′ ≡ $x.N ′′1 for

some N ′′1 such that N1
d
 N ′′1 . Hence it must be that N

′ ≡ $x.N ′1 for some N ′1

E.6. TIME BISIMULATION 305

such that N ′′1
d′
 N ′1. This implies that N1

d+d′
 N ′1 by the induction hypothesis,

and this in turn implies that $x.N1
d+d′
 $x.N ′′1 by TWNEW, in other words,

N
d+d′
 N ′. (⇒) Suppose N

d+d′
 N ′. Then, N ′ ≡ $x.N ′1 for some N ′1 with

N1
d+d′
 N ′1. So, by induction hypothesis, there is a N ′′1 such that N1

d
 N ′′1 and

N ′′1
d′
 N ′1. De�ne N

′′ ≡ $x.N ′′1 . It follows that N
d
 N ′′ and N ′′

d′
 N ′ by

TWNEW.

Case 4: N ≡ N1 oN2. Assume the statement is true for the sub-terms N1 and N2.

(⇐) Suppose there is a N ′′ such that N
d
 N ′′ and N ′′

d′
 N ′. Then N ′′ ≡ N ′′1 oN ′′2

for someN ′′1 andN ′′2 whereN1
d
 N ′′1 andN2

d
 N ′′2 . Hence, it is also the case that

N ′ ≡ N ′1 oN ′2 for some N ′1 and N ′2 where N ′′1
d′
 N ′1 and N ′′2

d′
 N ′2. We conclude,

by induction hypothesis, that N1
d+d′
 N ′1 and N2

d+d′
 N ′2. So, by TWPAR, we

have that N1 o N2
d+d′
 N ′1 o N ′2, this is, N

d+d′
 N ′. (⇒) Suppose N

d+d′
 N ′.

Then, N ′ ≡ N ′1 o N ′2 for some N ′1 and N ′2 where N1
d+d′
 N ′1 and N2

d+d′
 N ′2.

So, by induction hypothesis, there are N ′′1 and N ′′2 such that N1
d
 N ′′1

d′
 N ′1

and N2
d
 N ′′2

d′
 N ′2. Therefore, by using TWPAR, we obtain that N1 o N2

d

N ′′1 oN ′′2
d′
 N ′1 oN ′2. This is, N

d
 N ′′ and N ′′

d′
 N ′, where N ′′ ≡ N ′′1 oN ′′2 .

E.6 Time bisimulation

Proposition 8.8. For any TLTS M = (S,L,→,),

(i) For any t ∈ R+
0 , -∂

t is an equivalence relation.

(ii) -∂ is a time-bisimulation.

(iii) -∂ is the largest time-bisimulation.

Proof. This is analogous to the proof of proposition B.17. We only show the second,

for illustration. Assume that P -∂
t Q, i.e. that (P, t,Q) ∈-∂ . By de�nition of -∂ ,

there must be an open timed-bisimulation R such that (P, t,Q) ∈ R. We now check

that -∂ satis�es the four conditions of open timed-bisimulation.

(i) Suppose that Pσ
α−→ P ′ for some σ, α and P ′. Then, Qσ

α−→ Q′ and (P ′, t, Q′) ∈ R,
since R is an open timed-bisimulation. But since there is an open timed-bisimulation

that contains (P ′, t, Q′), then P ′ -∂
t Q

′.

(ii) This is analogous to the previous item.

(iii) Suppose that d < t and Pσ
d
 P ′. Then Qσ

d
 Q′ and (P ′, t− d,Q′) ∈ R, since

R is an open timed-bisimulation. But since there is an open timed-bisimulation that

contains (P ′, t− d,Q′), then P ′ -∂
t−d Q

′.

306 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

(iv) This is analogous to the previous item.

Proposition 8.10. -∂T = -∂.

Proof. We prove that -∂ ⊆-∂T and -∂T⊆-∂ .

1. To show that -∂ ⊆-∂T, assume that P -∂
t Q. Then conditions i) to iv) of de�nition

8.9 are satis�ed since -∂ is an open time-bisimulation. Hence P -∂T
t Q.

2. To show that -∂T⊆-∂ it is enough to prove that -∂T is an open time-bisimulation,

since -∂ is contains all open timed-bisimulations. Assume P -∂T
t Q. We check each

of the four conditions for open time-bisimulation.

(i) Suppose Pσ
α−→ P ′. Then, Qσ

α−→ Q′ and P ′ -∂
t Q′, but -∂ ⊆-∂T, so

P ′ -∂T
t Q′.

(ii) This is the dual of the previous item.

(iii) Suppose d < t and Pσ
d
 P ′. Then Qσ

d
 Q′ and P ′ -∂

t−d Q
′, but -∂ ⊆

-∂T, so P ′ -∂T
t−d Q

′.

(iv) This is the dual of the previous item.

Proposition 8.11. For any TLTS M = (S,L,→,), and any t, u ∈ R+
0 , if P -∂

t Q

then for any u 6 t, P -∂
u Q.

Proof. Pick any t ∈ R+
0 . Consider the following relation: R

def
=

⋃
06z6tRz where

Rz
def
= {(P, u,Q) ∈ P × R+

0 × P |u 6 z and P -∂
z Q}

We claim that R is an open timed-bisimulation. To see this, take any (P, u,Q) ∈ R.
Then there must be a z ∈ R+

0 such that z 6 t and (P, u,Q) ∈ Rz. Hence u 6 z and

P -∂
z Q. Now we check the four conditions of open timed-bisimulation:

(i) Suppose that Pσ
α−→ P ′ for some σ, α and P ′. Since P -∂

z Q we conclude that

Qσ
α−→ Q′ for some Q′ and P ′ -∂

z Q
′. Since u 6 z and P ′ -∂

z Q
′ hold, we conclude

that (P ′, u,Q′) ∈ Rz and therefore (P ′, u,Q′) ∈ R.

(ii) Analogous to the previous item.

E.6. TIME BISIMULATION 307

(iii) Suppose that d < u and Pσ
d
 P ′ for some σ and P ′. Since u 6 z we have that

d < z, and since P -∂
z Q we conclude that Qσ

d
 Q′ for some Q′ and P ′ -∂

z−d Q
′.

Since u 6 z, we have that u − d 6 z − d, and since P ′ -∂
z−d Q

′, we obtain that

(P ′, u − d,Q′) ∈ Rz−d, but d < u 6 z so 0 < z − d and z 6 t which means that

z − d 6 t, so 0 6 z − d 6 t which implies that (P ′, u− d,Q′) ∈ R.

So we conclude that R is indeed an open timed-bisimulation. Suppose that P -∂
t Q

and u 6 t. Then (P, u,Q) ∈ Rt, which means that (P, u,Q) ∈ R. In other words,

P -∂
u Q.

Proposition 8.12. For any TLTS M = (S,L,→,), if P1 -∂
t P2 and P2 -∂

u P3

then P1 -∂
m P3 where m = min{t, u}.

Proof. Clearlym 6 t andm 6 u. Hence, by proposition 8.11, we have that P1 -∂
m P2

and P2 -∂
m P3, which by transitivity implies P1 -∂

m P3.

Time compositionality

Lemma 8.13. Let σ be any substitution. If P -∂
t Q then Pσ -∂

t Qσ.

Proof. Let R =
⋃
t∈R+

0
Rt with Rt

def
= {(Pσ, t,Qσ) |P -∂

t Q}. We claim that R is an

open time-bisimulation. Assume that (Pσ, t,Qσ) ∈ R. Then (Pσ, t,Qσ) ∈ Rt and so

P -∂
t Q. Now we consider the four conditions of open time-bisimulation:

(i) Suppose Pσ
α−→ P ′. Since P -∂

t Q, we have that Qσ
α−→ Q′ and P ′ -∂

t Q
′. But this

implies that (P ′σ′, t, Q′σ′) ∈ Rt for any σ′, in particular, for σ′ = id, the identity

substitution. Therefore (P ′, t, Q′) ∈ Rt, since P ′σ′ ≡ P ′ and Q′σ′ ≡ Q′ for σ′ = id.

So we have that (P ′, t, Q′) ∈ R.

(ii) This is the dual of the previous case.

(iii) Suppose d < t and Pσ
d
 P ′. Since P -∂

t Q, we have that Qσ
d
 Q′ and

P ′ -∂
t−d Q

′. But this implies that (P ′σ′, t−d,Q′σ′) ∈ Rt−d for some σ′, in particular

for σ′ = id, the identity substitution. Therefore (P ′, t−d,Q′) ∈ Rt−d, and so (P ′, t−
d,Q′) ∈ R.

(iv) This is the dual of the previous case.

We conclude that R is an open time-bisimulation. So if P -∂
t Q then (Pσ, t,Qσ) ∈

Rt, and therefore (Pσ, t,Qσ) ∈ R, i.e. Pσ -∂
t Qσ.

Theorem 8.14. For any P1, P2 ∈ P, and any t ∈ R+
0 , if P1 -∂

t P2 then ∆E →
P1 -∂

t+e ∆E → P2 where e = eval(E).

308 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

Proof. Let R =
⋃
u∈R+

0
Ru with Ru

def
= R′u ∪R′′u where

R′u
def
= {(∆E → P1, u,∆E → P2) |P1 -∂

u−e P2 & e = eval(E) 6 u}

and

R′′u
def
= {(P, u,Q) |P -∂

u Q}

We �rst claim that R is an open time-bisimulation. Suppose that (Q1, u,Q2) ∈ R.
Then (Q1, u,Q2) ∈ Ru. Hence either (Q1, u,Q2) ∈ R′u or (Q1, u,Q2) ∈ R′′u.

Case 1: (Q1, u,Q2) ∈ R′u. Then Qi
def
= ∆E → Pi for i ∈ {1, 2} and P1 -∂

u−e P2 with

e = eval(E) 6 u. Now we check the four conditions for open time-bisimulation:

(i) Suppose Q1σ
η−→ Q′1. This transition could be derived only by the DELAY

rule. Hence, η = τ , e = eval(Eσ) = 0 and Q′1 ≡ P1σ. Since e = 0, this tran-
sition can be matched, using DELAY, by Q2σ

η−→ Q′2 where Q′2 ≡ P2σ. But

P1 -∂
u−e P2 and -∂

t is closed under substitution (lemma 8.13,) therefore,

Q′1 -∂
u−e Q

′
2, but e = 0, so Q′1 -∂

u Q
′
2, which implies that (Q′1, u,Q

′
2) ∈ R′′u

and therefore (Q′1, u,Q
′
2) ∈ R.

(ii) This is the dual of the previous item.

(iii) Suppose d < u and Q1σ
d
 Q′1. This evolution could be derived only

by the TDELAY rule. Hence Q′1 ≡ ∆(E − d)σ → P1σ. Let e
′ = eval((E −

d)σ) = e − d where e = eval(Eσ). This can be matched by Q2σ
d
 Q′2

where Q′2 ≡ ∆(E− d)σ → P2σ. We know that P1 -∂
u−e P2, and since -∂

t is

closed under substitution (lemma 8.13,) we have that P1σ -∂
u−e P2σ. But

note that e = e′+d, so u− e = u− e′−d = (u−d)− e′. Furthermore, since

e 6 u we have that e′ 6 u− d. Also note that, by de�nition,

R′u−d = {(∆E′ → P ′1, u− d,∆E′ → P ′2) |

P ′1 -∂
(u−d)−e′ P

′
2 & e′ = eval(E′) 6 u− d}

Hence, by taking P ′1 ≡ P1σ, P
′
2 ≡ P2σ and E′ = (E − d)σ we have that

(Q′1, u− d,Q′2) ∈ R′u−d and therefore (Q′1, u− d,Q′2) ∈ Ru−d, and (Q′1, u−
d,Q′2) ∈ R as required.

(iv) This is the dual of the previous item.

Case 2: (Q1, u,Q2) ∈ R′′u. Then Q1 -∂
u Q2. We check the four conditions for open

time-bisimulation:

E.6. TIME BISIMULATION 309

(i) SupposeQ1σ
η−→ Q′1. ThenQ2σ

η−→ Q′2 andQ
′
1 -∂

u Q
′
2, hence (Q′1, u,Q

′
2) ∈

R′′u and so (Q′1, u,Q
′
2) ∈ R.

(ii) This is the dual of the previous item.

(iii) Suppose d < u and Q1σ
d
 Q′1. Then Q2σ

d
 Q′2 and Q′1 -∂

u−d Q
′
2,

hence (Q′1, u− d,Q′2) ∈ R′′u−d and so (Q′1, u− d,Q′2) ∈ R.

(iv) This is the dual of the previous item.

We conclude that R is indeed an open time-bisimulation. Now, suppose that P1 -∂
t

P2. Then we have that (∆E → P1, t+ e,∆E → P2) ∈ R′t+e, where e = eval(E), and
so (∆E → P1, t + e,∆E → P2) ∈ R, which means that ∆E → P1 -∂

t+e ∆E → P2,

as required.

Theorem 8.15. Let P1, P2 ∈ P. If P1 -∂
t P2 then P1 ‖ Q -∂

t P2 ‖ Q for any Q ∈ P.

Proof. Let R
def
=

⋃
t∈R+

0
Rt where

Rt
def
= {(P1 ‖ Q, t, P2 ‖ Q) |P1 -∂

t P2}

We claim that R is an open time-bisimulation. From this the result follows directly.

Suppose (P1 ‖ Q, t, P2 ‖ Q) ∈ R. So (P1 ‖ Q, t, P2 ‖ Q) ∈ Rt. Hence P1 -∂
t P2

by de�nition of Rt. Now we proceed to check each of the four conditions of time-

bisimulation:

i) Suppose that (P1 ‖ Q)σ
η−→ X. We need to show that there is a Y such that

(P2 ‖ Q)σ
η−→ Y with (X, t, Y) ∈ R. Note that (P1 ‖ Q)σ ≡ P1σ ‖ Qσ by de�nition

of substitution. We proceed by considering the possible cases of how this transition

was derived:

Case 1: The transition was derived by rule PARτ : η = τ

P1σ
τ−→ P ′1

P1σ ‖ Qσ
τ−→ X ≡ P ′1 ‖ Qσ

so it must be the case that P1σ
τ−→ P ′1, but we know that P1 -∂

t P2, which by

closure under substitutions (lemma 8.13) implies P1σ -∂
t P2σ. Hence P2σ

τ−→ P ′2
and P ′1 -∂

t P
′
2. So by applying PARτ , we have that P2σ ‖ Qσ

τ−→ Y ≡ P ′2 ‖ Qσ,
and since P ′1 -∂

t P
′
2, we have that (P ′1 ‖ Qσ, t, P ′2 ‖ Qσ) ∈ Rt, i.e. (X, t, Y) ∈ Rt

and so (X, t, Y) ∈ R.

310 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

Case 2: The transition was derived by rule PARrτ : η = τ

Qσ
τ−→ Q′

P1σ ‖ Qσ
τ−→ X ≡ P1σ ‖ Q′

so it must be that Qσ
τ−→ Q′, which implies, by PARrτ that P2σ ‖ Qσ

τ−→ Y ≡
P2σ ‖ Q′. But we know that P1 -∂

t P2, which by closure under substitution

(lemma 8.13) implies P1σ -∂
t P2σ hence (P1σ ‖ Q′, t, P2σ ‖ Q′) ∈ Rt, i.e.

(X, t, Y) ∈ Rt and so (X, t, Y) ∈ R.

Case 3: The transition was derived by rule PAR!: η = x!v

P1σ
x!v−−→ P ′1

P1σ ‖ Qσ
x!v−−→ X ≡ P ′1 ‖ Qσ

so it must be the case that P1σ
x!v−−→ P ′1, but we know that P1 -∂

t P2, so by

closure under substitution (lemma 8.13) P1σ -∂
t P2σ. Hence P2σ

x!v−−→ P ′2 and

P ′1 -∂
t P

′
2. So by applying PAR!, we have that P2σ ‖ Qσ

x!v−−→ Y ≡ P ′2 ‖ Qσ, and
since P ′1 -∂

t P
′
2, we have that (P ′1 ‖ Qσ, t, P ′2 ‖ Qσ) ∈ Rt, i.e. (X, t, Y) ∈ Rt and

so (X, t, Y) ∈ R.

Case 4: The transition was derived by rule PARr! : η = x!v

Qσ
x!v−−→ Q′

P1σ ‖ Qσ
x!v−−→ X ≡ P1σ ‖ Q′

so it must be that Qσ
x!v−−→ Q′, which implies, by PARr! that P2σ ‖ Qσ

x!v−−→ Y ≡
P2σ ‖ Q′. But we know that P1 -∂

t P2, so by closure under substitution (lemma

8.13) P1σ -∂
t P2σ. Hence (P1σ ‖ Q′, t, P2σ ‖ Q′) ∈ Rt, i.e. (X, t, Y) ∈ Rt and so

(X, t, Y) ∈ R.

Case 5: The transition was derived by rule PAR?: η = x?v

P1σ
x?v−−→ P ′1 Qσ 6x!∗v−−→

P1σ ‖ Qσ
x?v−−→ X ≡ P ′1 ‖ Qσ

so it must be the case that P1σ
x?v−−→ P ′1 and Qσ 6

x!∗v−−→ . Since P1 -∂
t P2, by closure

under substitution (lemma 8.13) P1σ -∂
t P2σ. Hence we have that P2σ

x?v−−→ P ′2
with P ′1 -∂

t P
′
2. Hence by PAR?, we have that P2σ ‖ Qσ

x?v−−→ Y ≡ P ′2 ‖ Qσ, and
since P ′1 -∂

t P
′
2 we conclude that (P ′1 ‖ Qσ, t, P ′2 ‖ Qσ) ∈ Rt, i.e. (X, t, Y) ∈ Rt

and so (X, t, Y) ∈ R.

E.6. TIME BISIMULATION 311

Case 6: The transition was derived by rule PARr?: η = x?v

Qσ
x?v−−→ Q′ P1σ 6

x!∗v−−→

P1σ ‖ Qσ
x?v−−→ X ≡ P1σ ‖ Q′

so it must be that Qσ
x?v−−→ Q′ and P1σ 6

x!∗v−−→ . But since P1 -∂
t P2, by closure

under substitution (lemma 8.13) P1σ -∂
t P2σ. But this means that P2σ 6

x!∗v−−→
because otherwise P1σ would have to match any x!∗v transition of P2σ, con-

tradicting the fact that P1σ does not have any x!∗v transitions. Therefore we

can apply PARr? and obtain P2σ ‖ Qσ
x?v−−→ Y ≡ P2σ ‖ Q′. But we know that

P1σ -∂
t P2σ, hence (P1σ ‖ Q′, t, P2σ ‖ Q′) ∈ Rt, i.e. (X, t, Y) ∈ Rt and so

(X, t, Y) ∈ R.

Case 7: The transition was derived by rule PAR∗: η = x!∗v

P1σ
x!∗v−−→ P ′1 Qσ 6x?v−−→

P1σ ‖ Qσ
x!∗v−−→ X ≡ P ′1 ‖ Qσ

so it must be the case that P1σ
x!∗v−−→ P ′1 and Qσ 6

x?v−−→ . Since P1 -∂
t P2, by closure

under substitution (lemma 8.13) P1σ -∂
t P2σ. So we have that P2σ

x!∗v−−→ P ′2 with

P ′1 -∂
t P ′2. By PAR∗, we have that P2σ ‖ Qσ

x!∗v−−→ Y ≡ P ′2 ‖ Qσ, and since

P ′1 -∂
t P

′
2 we conclude that (P ′1 ‖ Qσ, t, P ′2 ‖ Qσ) ∈ Rt, i.e. (X, t, Y) ∈ Rt and

so (X, t, Y) ∈ R.

Case 8: The transition was derived by rule PARr∗: η = x!∗v

Qσ
x!∗v−−→ Q′ P1σ 6

x?v−−→

P1σ ‖ Qσ
x!∗v−−→ X ≡ P1σ ‖ Q′

so it must be that Qσ
x!∗v−−→ Q′ and P1σ 6

x?v−−→ . But since P1 -∂
t P2, by closure

under substitution (lemma 8.13) P1σ -∂
t P2σ. So it must be the case that P2σ 6

x?v−−→ because otherwise P1σ would have to match any x?v transition of P2σ,

contradicting the fact that P1σ does not have any x?v transitions. Therefore we

can apply PARr∗ and obtain P2σ ‖ Qσ
x!∗v−−→ Y ≡ P2σ ‖ Q′. But we know that

P1σ -∂
t P2σ, hence (P1σ ‖ Q′, t, P2σ ‖ Q′) ∈ Rt, i.e. (X, t, Y) ∈ Rt and so

(X, t, Y) ∈ R.

Case 9: The transition was derived by rule COMM: η = τ

P1σ
x!v−−→ P ′1 Qσ

x?v−−→ Q′

P1σ ‖ Qσ
τ−→ X ≡ P ′1 ‖ Q′

312 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

so P1σ
x!v−−→ P ′1 and Qσ

x?v−−→ Q′. Since P1 -∂
t P2, by closure under substitution

(lemma 8.13) P1σ -∂
t P2σ. So we have that P2σ

x!v−−→ P ′2 and P
′
1 -∂

t P
′
2. Hence, by

COMM, we have P2σ ‖ Qσ
τ−→ Y ≡ P ′2 ‖ Q′, and since P ′1 -∂

t P
′
2, we have that

(P ′1 ‖ Q′, t, P ′2 ‖ Q′) ∈ Rt, i.e. (X, t, Y) ∈ Rt and so (X, t, Y) ∈ R. The proof for
the case that P1

x?v−−→ P ′1 and Q
x!v−−→ Q′ is the exact dual.

Case 10: The transition was derived by rule COMM∗: η = x!∗v

P1σ
x!∗v−−→ P ′1 Qσ

x?v−−→ Q′

P1σ ‖ Qσ
x!∗v−−→ X ≡ P ′1 ‖ Q′

so P1σ
x!∗v−−→ P ′1 and Qσ

x?v−−→ Q′. Since P1 -∂
t P2, by closure under substitution

(lemma 8.13) P1σ -∂
t P2σ. So we have that P2σ

x!∗v−−→ P ′2 and P ′1 -∂
t P

′
2. Hence,

by COMM∗, we have P2σ ‖ Qσ
x!∗v−−→ Y ≡ P ′2 ‖ Q′, and since P ′1 -∂

t P
′
2, we have

that (P ′1 ‖ Q′, t, P ′2 ‖ Q′) ∈ Rt, i.e. (X, t, Y) ∈ Rt and so (X, t, Y) ∈ R. The

proof for the case that P1
x?v−−→ P ′1 and Q

x!∗v−−→ Q′ is the exact dual.

Now we consider the other conditions of the de�nition of open time-bisimulation:

ii) Suppose that (P2 ‖ Q)σ ≡ P2σ ‖ Qσ
η−→ Y . We need to show that there is as X

such that P1σ ‖ Qσ
η−→ X with (X, t, Y) ∈ R. Proving this is symmetric to i).

iii) Suppose d < t and (P1 ‖ Q)σ ≡ P1σ ‖ Qσ
d
 X. We need to show that there

is a Y such that (P2 ‖ Q)σ ≡ P2σ ‖ Qσ
d
 Y and (X, t − d, Y) ∈ R. As before, we

proceed by considering the possible cases of how this evolution was derived. But this

could have been derived only by TPAR:

P1σ
d
 P ′1 Qσ

d
 Q′

P1σ ‖ Qσ
d
 X ≡ P ′1 ‖ Q′

so it must be that P1σ
d
 P ′1 and Qσ

d
 Q′. But since P1 -∂

t P2 by closure under

substitution (lemma 8.13) P1σ -∂
t P2σ. So P2σ

d
 P ′2 and P ′1 -∂

t−d P
′
2. By TPAR,

we obtain P2σ ‖ Qσ
d
 Y ≡ P ′2 ‖ Q′, and since P ′1 -∂

t−d P
′
2, we conclude that

(P ′1 ‖ Q′, t− d, P ′2 ‖ Q′) ∈ Rt−d, i.e. (X, t− d, Y) ∈ Rt−d and so (X, t− d, Y) ∈ R.

iv) Suppose d < t and (P2 ‖ Q)σ ≡ P2σ ‖ Qσ
d
 Y . We need to show that there is

an X such that (P1 ‖ Q)σ ≡ P1σ ‖ Qσ
d
 X and (X, t − d, Y) ∈ R. Proving this is

symmetric to iii).

Corollary 8.16. Let P1, P
′
1, P2, P

′
2 ∈ P. If P1 -∂

t P
′
1 and P2 -∂

u P
′
2 then P1 ‖ P2 -∂

m

P ′1 ‖ P ′2 where m = min{t, u}.

Proof. Since P1 -∂
t P

′
1 , we have that P1 ‖ P2 -∂

t P
′
1 ‖ P2 by lemma 8.15. Also, since

P2 -∂
u P

′
2, by the same argument we obtain that P ′1 ‖ P2 -∂

u P
′
1 ‖ P ′2. Hence, by

E.6. TIME BISIMULATION 313

proposition 8.12, we have P1 ‖ P2 -∂
m P ′1 ‖ P ′2 where m = min{t, u}.

Theorem 8.17. Let P1 = {P1i ∈ P}i∈I and P2 = {P2i ∈ P}i∈I be two families of

process terms which di�er in at most one term, i.e. such that P1i = P2i for all i 6= k

with for some k ∈ I, if P1k -∂
t P2k then Σi∈IGi → P1i -∂

t Σi∈IGi → P2i.

Proof. Let R =
⋃
u∈R+

0
Ru with Ru

def
= R′u ∪R′′u where

R′u
def
= {(Σi∈IGi → P1i, u,Σi∈IGi → P2i) |P1k -∂

u P2k & ∀i 6= k. P1i = P2i}

and

R′′u
def
= {(P, u,Q) |P -∂

u Q}

We �rst claim that R is an open time-bisimulation. Suppose that (Q1, u,Q2) ∈ R.
Then (Q1, u,Q2) ∈ Ru. Hence either (Q1, u,Q2) ∈ R′u or (Q1, u,Q2) ∈ R′′u.

Case 1: (Q1, u,Q2) ∈ R′u. Then Q1 ≡ Σi∈IGi → P1i and Q2 ≡ Σi∈IGi → P2i, and

for some k ∈ I, P1k -∂
u P2k and ∀i 6= k. P1i = P2i. Note that Q1σ ≡ Σi∈IGiσ →

P1iσ and Q2σ ≡ Σi∈IGiσ → P2iσ. We now check the four conditions of open

time-bisimulation:1

(i) SupposeQ1σ
η−→ Q′1. This transition could be derived only by the CHOICE

rule. Hence η = σ(xj?v) for some j ∈ I with σ′ 6= ∅ for σ′ = match(Fjσ, v, ∅)
where Gj = xj?Fjδtj . Furthermore, Then Q′1 ≡ P1jσσ

′′ where σ′′
def
=

σ′∪{tj/0}. Since the guards are the same for Q1 and Q2, this transition can

be matched by Q2σ
η−→ Q′2, with Q

′
2 ≡ P2jσσ

′′. There are two possibilities:

either j = k or j 6= k.

Sub-case 1 : j = k. We know that P1k -∂
u P2k so by closure under substitu-

tion (lemma 8.13) P1kσσ
′′ -∂

u P2kσσ
′′, i.e. Q′1 -∂

u Q
′
2, which implies that

(Q′1, u,Q
′
2) ∈ Ru and therefore, (Q′1, u,Q

′
2) ∈ R as required.

Sub-case 2 : j 6= k. Then P1j = P2j , which implies that P1j -∂
u P2j ,

and therefore P1jσσ
′′ -∂

u P2jσσ
′′ by closure under substitution (lemma

8.13) which means that Q′1 -∂
u Q′2, and so (Q′1, u,Q

′
2) ∈ Ru. Therefore,

(Q′1, u,Q
′
2) ∈ R as required.

(ii) Suppose Q2σ
η−→ Q′2. This is the dual to the previous item.

(iii) Suppose d < u and Q1σ
d
 Q′1. This evolution could have been derived

only by TCHOICE. HenceQ′1 ≡ Σi∈IGiσ → P ′1i where P
′
1i
def
= P1iσ{ti/ti+d}.

This can be matched by Q2σ
d
 Q′2 where Q′2 ≡ Σi∈IGiσ → P ′2i with

P ′2i
def
= P2iσ{ti/ti+d}. But we know that P1k -∂

u P2k so by closure under

1For simplicity we assume that bound variables in Q1 and Q2 have been renamed if necessary.

314 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

substitution (lemma 8.13) P1kσ{ti/ti+d} -∂
u P2kσ{ti/ti+d}, i.e. P ′1k -∂

u P
′
2k.

Since 0 6 d < u, u− d 6 u, so by lemma 8.11, P ′1k -∂
u−d P

′
2k. Furthermore,

for all i 6= k. We know that P1i = P2i, therefore P
′
1i = P ′2i. Hence (Q′1, u−

d,Q′2) ∈ R′u−d and so (Q′1, u− d,Q′2) ∈ R, as required.

(iv) Suppose d < u and Q2σ
d
 Q′2. This is the dual to the previous item.

Case 2: (Q1, u,Q2) ∈ R′′u. Then Q1 -∂
u Q2. We check the four conditions for open

time-bisimulation:

(i) SupposeQ1σ
η−→ Q′1. ThenQ2σ

η−→ Q′2 andQ
′
1 -∂

u Q
′
2, hence (Q′1, u,Q

′
2) ∈

R′′u and so (Q′1, u,Q
′
2) ∈ R.

(ii) This is the dual of the previous item.

(iii) Suppose d < u and Q1σ
d
 Q′1. Then Q2σ

d
 Q′2 and Q′1 -∂

u−d Q
′
2,

hence (Q′1, u− d,Q′2) ∈ R′′u−d and so (Q′1, u− d,Q′2) ∈ R.

(iv) This is the dual of the previous item.

We conclude that R is indeed an open time-bisimulation. Hence, if P1k -∂
t P2k &∀i 6=

k. P1i = P2i, we have that (Σi∈IGi → P1i, t,Σi∈IGi → P2i) ∈ R′t and so (Σi∈IGi →
P1i, t,Σi∈IGi → P2i) ∈ R, which means that Σi∈IGi → P1i -∂

t Σi∈IGi → P2i.

Corollary 8.18. Let P1 = {P1i ∈ P}i∈I and P2 = {P2i ∈ P}i∈I be two families of

process terms, if for each i ∈ I, P1i -∂
ti P2i then Σi∈IGi → P1i -∂

min{ti|i∈I} Σi∈IGi →
P2i.

Proof. By using lemma 8.17 we have:

G1 → P11 +G2 → P12 + · · ·+Gn → P1n

-∂
t1 G1 → P21 +G2 → P12 + · · ·+Gn → P1n since P11 -∂

t1 P21 (lemma 8.17)

-∂
t2 G1 → P21 +G2 → P22 + · · ·+Gn → P1n since P12 -∂

t1 P22 (lemma 8.17)

...

-∂
tn G1 → P21 +G2 → P22 + · · ·+Gn → P2n since P1n -∂

t1 P2n (lemma 8.17)

Then we can use proposition 8.12 and obtain that

G1 → P11 +G2 → P12 + · · ·+Gn → P1n -∂
m G1 → P21 +G2 → P22 + · · ·+Gn → P2n

where m = min{ti | i ∈ I}.

Theorem 8.19. Let P1, P2 ∈ P. If P1 -∂
t P2 then νx.P1 -∂

t νx.P2.

E.6. TIME BISIMULATION 315

Proof. Let R =
⋃
u∈R+

0
Ru where

Ru
def
= {(νx.P1, u, νx.P2) |P1 -∂

u P2}

We claim thatR is an open time-bisimulation. Let (νx.P1, u, νx.P2) ∈ R. So (νx.P1, u, νx.P2) ∈
Ru and therefore P1 -∂

u P2. We proceed to check the four conditions of open time-

bisimulation:

(i) Suppose (νx.P1)σ
η−→ X. For simplicity assume that x does not occur in σ either

as a source or as a target. If it is we can simply rename it with a fresh name. This

way we can assume that (νx.P1)σ = νx.P1 and (νx.P2)σ = νx.P2σ. We proceed by

considering the possible cases of how this transition was derived:

Case 1: The transition was derived by NEW:

P1σ
η−→ P ′1 x /∈ fn(η)

νx.P1σ
η−→ X ≡ νx.P ′1

Hence x /∈ fn(η) and P1σ
η−→ P ′1. But P1 -∂

u P2, and by closure under substitution

(lemma 8.13,) P1σ -∂
u P2σ. So the transition P1σ

η−→ P ′1 can be matched by P2σ
η−→

P ′2 with P ′1 -∂
u P

′
2. So by NEW, νx.P2σ

η−→ Y ≡ νx.P ′2. Since P
′
1 -∂

u P
′
2, we have

that (νx.P ′1, u, νx.P
′
2) ∈ Ru, i.e. (X,u, Y) ∈ Ru and therefore (X,u, Y) ∈ R.

Case 2: The transition was derived by NEW!:

P1σ
x!v−−→ P ′1

νx.P1σ
τ−→ X ≡ νx.P ′1

Hence P1σ
x!v−−→ P ′1. But P1 -∂

u P2, and by closure under substitution (lemma

8.13,) P1σ -∂
u P2σ. So the transition P1σ

x!v−−→ P ′1 can be matched by P2σ
x!v−−→ P ′2

with P ′1 -∂
u P

′
2. So by NEW, νx.P2σ

τ−→ Y ≡ νx.P ′2. Since P
′
1 -∂

u P
′
2, we have

that (νx.P ′1, u, νx.P
′
2) ∈ Ru, i.e. (X,u, Y) ∈ Ru and therefore (X,u, Y) ∈ R.

Case 3: The transition was derived by NEW∗:

P1σ
x!∗v−−→ P ′1

νx.P1σ
τ−→ X ≡ νx.P ′1

Hence P1σ
x!∗v−−→ P ′1. But P1 -∂

u P2, and by closure under substitution (lemma

8.13,) P1σ -∂
u P2σ. So the transition P1σ

x!∗v−−→ P ′1 can be matched by P2σ
x!∗v−−→ P ′2

with P ′1 -∂
u P

′
2. So by NEW, νx.P2σ

τ−→ Y ≡ νx.P ′2. Since P
′
1 -∂

u P
′
2, we have

that (νx.P ′1, u, νx.P
′
2) ∈ Ru, i.e. (X,u, Y) ∈ Ru and therefore (X,u, Y) ∈ R.

316 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

(ii) Suppose (νx.P2)σ
η−→ Y . This is the dual of the previous item.

(iii) Suppose d < u and (νx.P1)σ d
 X. For simplicity assume that x does not occur

in σ either as a source or as a target. If it is we can simply rename it with a fresh

name. This way we can assume that (νx.P1)σ = νx.P1 and (νx.P2)σ = νx.P2σ. This

transition could have been derived only by TNEW:

P1σ
d
 P ′1

νx.P1σ
d
 X ≡ νx.P ′1

So it must be that P1σ
d
 P ′1. But P1 -∂

u P2, and by closure under substitution

(lemma 8.13,) P1σ -∂
u P2σ. Hence P1σ

d
 P ′1 can be matched by P2σ

d
 P ′2 and

P ′1 -∂
u−d P

′
2. Therefore by TNEW, νx.P2σ

d
 Y ≡ νx.P ′2. Since P

′
1 -∂

u−d P
′
2, we

have that (νx.P ′1, u − d, νx.P ′2) ∈ Ru−d, i.e. (X,u − d, Y) ∈ Ru−d and therefore

(X,u− d, Y) ∈ R.

(iv) Suppose d < u and (νx.P2)σ d
 Y . This is the dual of the previous item.

We conclude that R is an open time-bisimulation. Suppose P1 -∂
t P2. Therefore

(νx.P1, t, νx.P2) ∈ Rt and so (νx.P1, t, νx.P2) ∈ R which means that νx.P1 -∂
t

νx.P2.

E.7 Legitimacy

Proposition 8.23. If len(γ̂) <∞ then duration(γ̂) <∞.

Proof. By induction on the length of γ̂. If len(γ̂) = 0 then duration(γ̂) = 0. Now
suppose 0 < len(γ̂) <∞. Then, len(γ̂) = n for some n ∈ N and γ̂ has the form

P0
(d0,η0)−−−−→ P1

(d1,η1)−−−−→ P2
(d2,η2)−−−−→ · · · (dn−1,ηn−1)−−−−−−−→ Pn

Assume that the statement holds for any execution with length strictly smaller than

n, so if

γ̂1 = P1
(d1,η1)−−−−→ P2

(d2,η2)−−−−→ · · · (dn−1,ηn−1)−−−−−−−→ Pn

then duration(γ̂1) = t <∞, since γ̂1 is �nite. But duration(γ̂) = d0+duration(γ̂1) =
d0 + t <∞.

Proposition 8.25. If γ̂ is legitimate and duration(γ̂) <∞ then len(γ̂) <∞.

Proof. Straight from the de�nition of legitimacy. If γ̂ is legitimate and duration(γ̂) <
∞, then assuming that len(γ̂) = ∞ implies that duration(γ̂) = ∞ which is a con-

tradiction.

E.7. LEGITIMACY 317

Proposition 8.28. For any P, P ′ ∈ P, d ∈ R+
0 , η ∈ A, and any substitution σ,

(i) if P
η−→ P ′ then Pσ

σ(η)−−→ P ′σ

(ii) if P
d
 P ′ then Pσ

d
 P ′σ

Proof. By induction on the derivation of P
η−→ P ′ and P

d
 P ′ respectively. We

proceed by case analysis on the structure of P .

Case 1: P ≡
√
. In this case, P has no transitions, so i) is vacuously true. For ii)

note that
√
σ ≡
√

and
√ d

√
, hence Pσ

d
 P ′σ.

Case 2: P ≡ x ↑ E. This has only one transition: P
η−→
√

where η = x!eval(E).

By de�nition of substitution, Pσ ≡ σ(x) ↑Eσ. But by TRIG, Pσ
η′−→
√
, where

η′ ≡ σ(x)!eval(Eσ) = σ(η). For evolution, suppose that P
d
 P ′. Then there

are two cases: either d = 0 or d > 0. If d = 0, then P ′ ≡ P and so P ′σ ≡ Pσ.

Then, by TTRIG0, Pσ
d
 Pσ ≡ P ′σ. If d > 0 then P ′ ≡

√
, so P ′σ ≡

√
, but by

TTRIG, Pσ
d

√
≡ P ′σ.

Case 3: P ≡ x↑∗E. Analogous to the previous case.

Case 4: P ≡ ∆E → Q. We have that Pσ ≡ ∆Eσ → Qσ. i) The only transition that

P has is from DELAY, which implies that if P
η−→ P ′ then η = τ , eval(E) = 0,

and P ′ ≡ Q. This means that eval(Eσ) = 0, and so, by DELAY, Pσ
η−→ P ′σ.

ii) If P
d
 P ′ then 0 6 d 6 eval(E) and P ′ ≡ ∆(E − d) → Q. So, P ′σ ≡

∆(Eσ − d)→ Qσ. But this means that Pσ
d
 P ′σ by TDELAY.

Case 5: P ≡ νx.Q. Let σ be any substitution. We can assume, without loss of

generality that x does not occur in σ2. We now show each item:

i) A transition P
η−→ P ′ must have been derived with either NEW, NEW! or

NEW∗. Suppose it was derived with NEW. Then P ′ ≡ νx.Q′ for some Q′ such

that Q
η−→ Q′ with x /∈ fn(η). Then by induction hypothesis, Qσ

σ(η)−−→ Q′σ. Then,

by NEW, νx.Qσ
σ(η)−−→ νx.Q′σ. But we assume that x does not occur in σ, so we

have (νx.Q)σ
σ(η)−−→ (νx.Q′)σ. The cases for NEW! and NEW∗ are analogous.

ii) An evolution P
d
 P ′must have been derived with TNEW. Hence P ′ ≡ νx.Q′

for some Q′ such that Q
d
 Q′. By induction we have that Qσ

d
 Q′σ, and so,

by TNEW, we have νx.Qσ
d
 νx.Q′σ, which implies (νx.Q)σ d

 (νx.Q′)σ.

Case 6: P ≡ Pl ‖ Pr. Let σ be any substitution.

i) The transition P
η−→ P ′ must have been derived by any of the PAR rules or

COMM rules. We show one of the PAR cases and one of the COMM cases, as

the rest are almost identical.

2If x occurs in σ, we can simply rename x as shown in de�nition 6.19.

318 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

Sub-case 1) It was derived by PARτ . Then η = τ and P ′ ≡ P ′l ‖ Pr for some

P ′l such that Pl
η−→ P ′l . By induction hypothesis, Plσ

σ(η)−−→ P ′lσ, which by PARτ

implies that Pσ ≡ Plσ ‖ Prσ
σ(η)−−→ P ′lσ ‖ Prσ ≡ P ′σ, since σ(τ) = τ .

Sub-case 2) It was derived by COMM. Then η = τ and P ′ ≡ P ′l ‖ P ′r for some

P ′l and P
′
r such that Pl

x!v−−→ P ′l and Pr
x?v−−→ P ′r for some x and v. By induction

hypothesis, Plσ
σ(x!v)−−−−→ P ′lσ and Prσ

σ(x?v)−−−−→ P ′rσ. But since σ(x!v) = σ(x)!σ(v)

and σ(x?v) = σ(x)?σ(v), we conclude, by COMM, that Pσ ≡ Plσ ‖ Prσ
σ(η)−−→

P ′lσ ‖ P ′rσ ≡ P ′σ since σ(τ) = τ .

ii) The evolution P
d
 P ′ must have been derived by TPAR. Hence P ′ ≡ P ′l ‖ P ′r

for some P ′l and P
′
r such that Pl

d
 P ′l and Pr

d
 P ′r. By induction hypothesis,

Plσ
d
 P ′lσ and Prσ

d
 P ′rσ, from which we conclude, by TPAR, that Pσ ≡

Plσ ‖ Prσ
d
 P ′lσ ‖ P ′rσ ≡ P ′σ.

Case 7: P ≡ PlTPr. Analogous to the previous case.

Case 8: P ≡ Σi∈IGi → Pi where each Gi = xi?Fiδti. Without loss of generality,

we assume that the bound names of the guards do not occur in σ3. Then we have

that Pσ ≡ Σi∈IGiσ → Piσ, where each Giσ = σ(xi)?Fiδti.
i) A transition P

η−→ P ′ must have been derived with CHOICE, and so η = xk?v
for some xk and v, and P ′ ≡ Pkσ

′′ for some substitution σ′′ = σ′ ∪ {tk/0} where
σ′ = match(Fk, v, ∅) 6= ∅ with Gk = xk?Fkδtk. Let ς ′

def
= match(Fk, σ(v), ∅) and

ς ′′
def
= ς ′ ∪ {tk/0}. Since the structure and constants of σ(v) are the same of those

of v, we have that σ′ and ς ′ are essentially the same, modulo σ, this is, ς ′(y) =
σ(σ′(y)) for any y ∈ N , and ς ′ = ∅ ⇔ σ′ = ∅. Since this transition occurred,

σ′ 6= ∅ and therefore ς ′ 6= ∅. This allows us to conclude that Pσ
σ(η)−−→ P ′′ where

σ(η) = σ(xk)?σ(v) and P ′′ ≡ Pkσς
′′ by CHOICE. We claim that σς ′′ = σ′′σ.

To see this, consider any name y ∈ N . We have three possibilities: 1) y = tk, 2)

y ∈ n(Fk) or 3) y /∈ n(Fk) ∪ {tk}. In each case we have that the substitutions

coincide: 1) ς ′′(σ(tk)) = ς ′′(tk) since tk does not occur in σ and a substitution

is always de�ned to be the identity on names which are not in its source. Hence

ς ′′(σ(tk)) = 0 by de�nition of ς ′′. On the other hand, σ(σ′′(tk)) = σ(0) = 0, by
de�nition of σ′′. 2) ς ′′(σ(y)) = ς ′′(y) since y does not occur in σ's source; but we

know that ς ′(y) = σ(σ′(y)), hence ς ′′(σ(y)) = σ(σ′(y)). 3) ς ′′(σ(y)) = σ(y) since
none of the variables in n(Fk) ∪ {tk} occur in the targets of σ, and therefore ς ′′

acts as the identity on anything that does not have names in n(Fk)∪{tk}. On the

other hand, σ(σ′′(y)) = σ(y) for the same reason: σ′′ is the identity on names not

in n(Fk) ∪ {tk}. In the three cases we have seen that σς ′′ = σ′′σ, and therefore

Pkσς
′′ ≡ Pkσ′′σ so we have that P ′′ ≡ P ′σ and therefore Pσ

σ(η)−−→ P ′σ.

ii) An evolution P
d
 P ′ must have been derived with TCHOICE, so P ′ ≡

3If they occur in σ, we can simply rename them as shown in de�nition 6.19.

E.7. LEGITIMACY 319

Σi∈IGi → P ′i where P
′
i ≡ Pi{ti/ti+d}. So P ′σ ≡ Σi∈IGiσ → P ′iσ. On the other

hand we have, by TCHOICE, that Pσ
d
 Σi∈IGiσ → Qi whereQi ≡ Piσ{ti/ti+d}.

But since none of the ti occur in σ, we have that {ti/ti+d}σ = σ{ti/ti+d}, so
Qi ≡ Pi{ti/ti+d}σ ≡ P ′iσ, and therefore Pσ

d
 P ′σ.

Case 9: P ≡ A(~y). Let σ be any substitution. We assume that the de�nition of A

is closed, i.e. if A(~x)
def
= Q then fn(Q) ⊆ ~x.

i) A transition P
η−→ P ′ must have been obtained by INST, and thereforeQ{~x/~y} η−→

Q′ for some Q and Q′. By induction hypothesis we have that Q{~x/~y}σ σ(η)−−→ Q′σ.

Without loss of generality we can assume that none of the names in ~x occur in

σ4. Hence {~x/~y}σ = σ{~x/σ(~y)} and so Q{~x/~y}σ = Qσ{~x/σ(~y)}, but the de�nition

of A is closed, fn(Q) ⊆ ~x which means that Qσ = Q since none of the names

in ~x occurs in σ. Therefore Q{~x/~y}σ = Q{~x/σ(~y)} and so Q{~x/σ(~y)} σ(η)−−→ Q′σ,

from which we conclude, by INST, that A(σ(~y))
σ(η)−−→ Q′σ, or in other words

Pσ
σ(η)−−→ P ′σ where P ′ ≡ Q′.

ii) The evolution P
d
 P ′ must be derived by TINST, which implies that d = 0

and P ′ ≡ P . Hence Pσ ≡ A(σ(~y)) 0
 A(σ(~y)) ≡ P ′σ.

Lemma 8.29. Let P ∈ P, and σ any substitution. If P is legitimate, so is Pσ.

Proof. Let γ be any execution of P . It must have the form

P
d0 P ′0

η0−→ P1
d1 P ′1

η1−→ P2
d2 P ′2

η2−→ · · ·

so by proposition 8.28, the corresponding execution γσ of Pσ has the form:

Pσ
d0 P ′0σ

σ(η0)−−−→ P1σ
d1 P ′1σ

σ(η1)−−−→ P2σ
d2 P ′2σ

σ(η2)−−−→ · · ·

hence len(γ̂) = len(γ̂σ), since there is a one-to-one relation between evolutions and

transitions in γ with those in γσ. Furthermore, duration(γ̂) = duration(γ̂σ) since

the substitution preserves the amount of time in each evolution. If P is legitimate,

then all its executions are legitimate, so if γ is legitimate, either len(γ̂) < ∞ or

len(γ̂) = ∞ and duration(γ̂) = ∞. But this is to say that for any execution γσ of

Pσ, either len(γ̂σ) < ∞ or len(γ̂σ) = ∞ and duration(γ̂σ) = ∞, i.e. that Pσ is

legitimate.

Theorem 8.30. (Su�cient conditions for legitimacy) Let D be a �nite set

of process de�nitions and P a process which invokes only de�nitions in D. If all

de�nitions in D are well-timed then P is legitimate.

4If they occur we can rename them in Q by fresh names.

320 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

Proof. By induction on the structure of P .

Case 1: P ≡
√
. This process has no in�nite executions, so it is always legitimate.

Case 2: P ≡ T where T ≡ x ↑ E or T ≡ x ↑∗ E. This process has no in�nite

executions, so it is always legitimate.

Case 3: P ≡ ∆E → Q. Assume the statement holds for Q. Let γ be any execution

of P . If it is �nite, then it is legitimate, by de�nition. Assume that γ is in�nite.

The �rst coalesced transition of γ̂ must be of the form P
(e,τ)−−−→ Q where e =

eval(E). Let γ̂1 be the remainder of the execution, starting from Q. By induction

hypothesis, γ̂1 must be legitimate, so duration(γ̂1) = ∞. But duration(γ̂) =
e+ duration(γ̂1), so duration(γ̂) =∞ as required.

Case 4: P ≡ νx.Q. Assume the statement holds for Q. Let γ be any execution of

P . If it is �nite, then it is legitimate, by de�nition. Assume that γ is in�nite.

The �rst coalesced transition of γ̂ must be of the form P
(d,η)−−−→ P1 for some d,

η and P1. This coalesced transition corresponds to a pair P
d
 P ′1

η−→ P1. The

evolution must have been obtained by TNEW, which means that P ′1 ≡ νx.Q′1 for
some Q′1 and Q

d
 Q′1 by a shorter inference. Since P ′1 ≡ νx.Q′1, the transition

must have been obtained by either NEW, NEW! or NEW∗, which implies that

P1 ≡ νx.Q1 for some Q1 such that Q
′
1
η1−→ Q1. This gives us a coalesced transition

Q
(d,η1)−−−→ Q1. By doing this with every coalesced transition in γ̂ we obtain an

execution γ̂1 starting from Q. By induction hypothesis, γ̂1 must be legitimate, so

duration(γ̂1) = ∞. But duration(γ̂) = duration(γ̂1), because it has exactly the

same evolutions, so duration(γ̂) =∞ as required.

Case 5: P ≡ Pl ‖ Pr. Assume the statement holds for Pl and Pr. Let γ be any

execution of P . If it is �nite, then it is legitimate, by de�nition. Assume that γ

is in�nite. The �rst coalesced transition of γ̂ must be of the form P
(d,η)−−−→ P

(1)
l ‖

P
(1)
r , which is a pair P

d
 P ′l ‖ P ′r and P ′l ‖ P ′r

η−→ P
(1)
l ‖ P (1)

r . The evolution

must have been the result of TPAR, and therefore Pl
d
 P ′l and Pr

d
 P ′r. The

transition may have been the result of any of the PAR rules or COMM rules.

If it was the result of any of the COMM rules, then we have that P ′l
ηl−→ P

(1)
l

and P ′r
ηr−→ P

(1)
r for some complementary actions ηl and ηr. If it was the result

of a PAR rule, then we have that either P ′l
η−→ P

(1)
l or P ′r

η−→ P
(1)
r . In either

case we can build a pair of in�nite executions γl and γr each beginning with

Pl and Pr respectively. But by induction hypothesis, γ̂l and γ̂r are legitimate,

so duration(γ̂l) = ∞ and duration(γ̂r) = ∞. But the evolutions of P and its

derivatives are exactly the same as those of Pl and Pr, since evolution of a parallel

composition is the evolution of its parts by equal amounts of time as stated by the

TPAR rule. This means that duration(γ̂) = duration(γ̂l) = duration(γ̂r) = ∞,

E.7. LEGITIMACY 321

and therefore γ is legitimate.

Case 6: P ≡ PlTPr. Analogous to the previous case.

Case 7: P ≡ Σi∈IGi → Pi. Assume the statement holds for each Pi. Let γ be any

execution of P . If it is �nite, then it is legitimate, by de�nition. Assume that γ is

in�nite. The �rst coalesced transition of γ̂ must be of the form P
(d,xk?v)−−−−−→ Pkσ for

some d, xk and v, where Gk = xk?Fkδtk and σ = match(Fk, v, ∅)∪ {tk/0}. Let γ̂1

be the remainder of the execution, starting from Pkσ. By induction hypothesis,

any execution starting from Pk must be legitimate, hence, by lemma 8.29, γ̂1 must

be legitimate as well, so duration(γ̂1) =∞. But duration(γ̂) = d+duration(γ̂1),
so duration(γ̂) =∞ as required.

Case 8: P ≡ A(~y). Let γ be any execution of P . If it is �nite, then it is legitimate,

by de�nition. Assume that γ is in�nite. Then, since D is �nite, there must be

a process de�nition B ∈ D which is invoked in�nitely often, i.e. γ contains an

in�nite number of occurrences B(~z1), B(~z2), B(~z3), Hence γ̂ has the form

P
(d1,η1)−−−−→ · · ·

(di1 ,ηi1)
−−−−−→ B(~z1)

(di′1
,ηi′1

)

−−−−−→ · · ·
(di2 ,ηi2)
−−−−−→ B(~z2)

(di′1
,ηi′1

)

−−−−−→ · · ·

which we can write as

P
γ̂0=⇒ B(~z1)

γ̂1=⇒ B(~z2)
γ̂2=⇒ B(~z3)

γ̂3=⇒ · · ·

where each γ̂i is a �nite execution between each invocation of B. Since the

de�nition B(~x)
def
= Q is well-timed, there is a b > 0 such that for all ~zk,

mdB(Q{~x/~zk}) > b. But this means that there is a b > 0 such that for all k > 1,
duration(γ̂k) > mdB(Q{~x/~zk}) > b. Hence duration(γ̂) = Σ∞k=0duration(γ̂k) >
duration(γ̂0) + Σ∞k=1b =∞ as required.

Lemma 8.31. Let P,Q ∈ P. If P -∂
t Q and γP is an execution beginning with P

such that duration(γ̂P) < t, then there is an execution γQ, starting at Q, such that

acttrace(γ̂P) = acttrace(γ̂Q), len(γ̂P) = len(γ̂Q) and duration(γ̂P) = duration(γ̂Q).

Proof. The execution γ̂P must be of the form

P
(d0,η0)−−−−→ P1

(d1,η1)−−−−→ P2
(d2,η2)−−−−→ · · ·

We can show, by induction on i, that for each coalesced transition Pi
(di,ηi)−−−−→ Pi+1

there is a coalesced transition Qi
(di,ηi)−−−−→ Qi+1 where Pi -∂

ui Qi with ui = t−Σi−1
j=0dj .

322 APPENDIX E. PROOFS OF KILTERA'S PROPERTIES

The �rst coalesced transition corresponds to the pair P
d0 P ′1

η0−→ P1, where d0 < t.

But since P -∂
t Q, then Q

d0 Q′1 with P ′1 -∂
t−d0 Q′1, which in turn implies that

Q′1
η0−→ Q1 with P1 -∂

t−d0 Q1. So we can form a coalesced transition Q
(d1,η1)−−−−→ Q1.

So in general, assuming that the statement holds for all k < i, we show it for i. In

particular, we assume it holds for k = i−1: Pi−1 -∂
ui−1

Qi−1 with ui−1 = t−Σi−2
j=0dj .

Since Pi−1
(di−1,ηi−1)−−−−−−−→ Pi then there is a pair Pi−1

di−1
 P ′i−1

ηi−1−−−→ Pi. But note that

Σi−1
j=0dj 6 duration(γ̂P) < t and so di−1 +Σi−2

j=0dj < t. Therefore di−1 < ui−1. Hence,

from Pi−1 -∂
ui−1

Qi−1 we deduce that Qi−1
di−1
 Q′i−1 with P ′i−1 -∂

u′i−1
Q′i−1 where

u′i−1 = ui−1 − di−1 = t − (di−1 + Σi−2
j=0dj) = t − Σi−1

j=0dj . This in turn implies that

Pi -∂
ui Qi where ui = u′i−1 = t − Σi−1

j=0dj , and also Qi−1
(di−1,ηi−1)−−−−−−−→ Qi. So we can

build an execution γ̂Q starting with Q with the form

Q
(d0,η0)−−−−→ Q1

(d1,η1)−−−−→ Q2
(d2,η2)−−−−→ · · ·

which has the same trace: tr(γ̂Q) = tr(γ̂P) and therefore, acttrace(γ̂P) = acttrace(γ̂Q),
len(γ̂P) = len(γ̂Q) and duration(γ̂P) = duration(γ̂Q).

Theorem 8.32. Let P,Q ∈ P. If P -∂
t Q for all t ∈ R+

0 then P is legitimate if and

only if Q is legitimate.

Proof. It is enough to prove that if Q is legitimate then so is P . We prove this by

contradiction. Assume that Q is legitimate, but P is not. Then there is an in�nite

execution γP starting at P such that duration(γ̂P) = t < ∞ for some t ∈ R+
0 . But

P -∂
t Q by assumption, so by lemma 8.31, there must be an execution γQ beginning

with Q such that len(γ̂P) = len(γ̂Q) and duration(γ̂P) = duration(γ̂Q). But this
is to say that len(γ̂Q) = ∞ and duration(γ̂Q) = t < ∞, i.e. Q is illegitimate. A

contradiction.

Bibliography

[1] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural Operational Semantics.

In J.A. Bergstra, A. Ponse, S.A. Smolka, editor, Handbook of Process Algebra,

chapter 3, pages 197�292. Elsevier, 2000.

[2] J. C. M. Baeten. A brief history of process algebra. Theoretical Compututer

Science, 335(2-3):131�146, 2005.

[3] J. C. M. Baeten and J. A. Bergstra. Real Time Process Algebra. Formal Aspects

of Computing, 3:142�188, 1991.

[4] J. C. M. Baeten, D. A. van Beek, and J. E. Rooda. Process algebra for dynamic

system modeling. Technical report, Technische Universiteit Eindhoven, 2006.

[5] H. P. Barendregt. The Lambda Calculus. Number 103 in Studies in Logic and

the Foundations of Mathematics. North-Holland, revised edition, 1991.

[6] F. Barros, M. Mendes, and B. P. Zeigler. Variable DEVS � variable structure

modeling formalism: An adaptive computer architecture application. In Pro-

ceedings of the Fifth Annual Conference on AI, Simulation, and Planning in

High Autonomy Systems, pages 185�292, 1994.

[7] F. J. Barros. Modeling and simulation of dynamic structure heterogeneous �ow

systems. Transactions of The Society for Modeling and Simulation International,

78(1), January 2002.

[8] J. A. Bergstra and J. W. Klop. Process algebra for synchronous communication.

Information and Control, 60(1�3):109�137, 1984.

[9] J. S. Bolduc and H. Vangheluwe. A modelling and simulation package for classic

hierarchical DEVS. Technical report, McGill University, School of Computer

Science, 2002.

[10] L. Cardelli and A. D. Gordon. Mobile ambients. In Foundations of Soft-

ware Science and Computation Structures: First International Conference, FOS-

SACS'98. Springer-Verlag, 1998.

[11] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-

braic approaches to graph transformation I: Basic concepts and double pushout

approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Com-

puting by Graph transformation, volume 1: Foundations. World Scienti�c, 1997.

324 BIBLIOGRAPHY

[12] H. Ehrig. Introduction to the algebraic theory of graph grammars (a survey).

73:1�69, 1979.

[13] H. Ehrig, G. Engels, H.J. Kreowski, and Grzegorz Rozenberg, editors. Handbook

of Graph Grammars and Computing by Graph Transformation: Applications,

Languages and Tools, volume 2. World Scienti�c, 1999.

[14] C. Fidge and J. Zic. An expressive real-time CCS. In Proceedings of the Aus-

tralasian conference on Parallel and Real-time systems, pages 365�372, 1995.

[15] M. Fischer. A new time extension to the π-calculus based on time consum-

ing transition semantics. In Christoph Grimm, editor, Languages for System

Speci�cation, ChDL series. Springer-Verlag, 2004.

[16] W. Fokkink. Introduction to Process Algebra. Springer-Verlag, 2000.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of reusable Object-Oriented Software. Addison-Wesley, 1994.

[18] J. F. Groote. Transition system speci�cations with negative premises. Theoret-

ical Computer Science, 118(118), 1993.

[19] P. E. Hart, N. J. Nilsson, and B. Raphael. A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems, Science

and Cybernetics, 4(2):100 � 107, 1968.

[20] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[21] C. A. R. Hoare. Communicating Sequential Processes. Communications of the

ACM, 21(8):666�677, August 1978.

[22] D. R. Je�erson. Virtual Time. ACM-TOPLAS, 7(3):404�425, July 1985.

[23] J. De Lara and H. Vangheluwe. AToM3: A Tool for Multi-formalism and Meta-

Modelling. In European Joint Conference on Theory And Practice of Software

(ETAPS), Fundamental Approaches to Software Engineering (FASE), volume

2306 of Lecture Notes in Computer Sciece. Springer-Verlag, 2002.

[24] J. Y. Lee and J. Zic. On modeling real-time mobile processes. In Proceedings of

the twenty-�fth Australasian conference on Computer Science ACSC'02, pages

139�147, January 2002.

[25] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.

[26] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

BIBLIOGRAPHY 325

[27] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge

University Press, 1999.

[28] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I

and II. Reports ECS-LFCS-89-85 and 86, Computer Science Dept., University

of Edinburgh, March 1989.

[29] F. Moller and C. Tofts. A temporal calculus of communicating systems. In

J. C. M. Baeten and J. W. Klop, editors, CONCUR '90: Theories of Concur-

rency: Uni�cation and Extension, volume 458 of Lecture Notes in Computer

Science, pages 401�415. Springer-Verlag, 1990.

[30] A. Muzy, E. Innocenti, A. Aiello, J. F. Santucci, P. A. Santoni, and D. R. C.

Hill. Dynamic structure cellular automata in a �re spreading application. In

Proceedings of ICINCO'04.

[31] A. Muzy, E. Innocenti, J. F. Santucci, and D. R. C. Hill. Optimization of cell

spaces simulation for the modeling of �re spreading. In Proceedings of the 36th

Annual Simulation Symposium, pages 289�296, 2003.

[32] U. Nestmann and B. C. Pierce. Decoding choice encodings. Information and

Computation, 163(1):1�59, 2000.

[33] J. Nutaro. aDEVS-0.2, a C++ library for parallel DEVS. Technical report,

University of Arizona, Tucson, 1999.

[34] C. Palamidessi. Comparing the expressive power of the synchronous and the

asynchronous π-calculus. In Proceedings of POPL'97, 1997.

[35] P. Panangaden. The Principle of Well-founded Induction. Class notes, 1994.

[36] G. Plotkin. A structural approach to operational semantics. Lecture Notes

DAIMI FN-19, Dept. of Computer Science, Aarhus University, 1981.

[37] E. Posse. Generating DEVS modelling and simulation environments. In Summer

Computer Simulation Conference (SCSC'03), Student Workshop, 2003.

[38] E. Posse, A. Muzy, and H. Vangheluwe. A framework for the visual speci�cation

and simulation of cellular systems. In Proceedings of the 2006 Integrative DEVS

M&S Symposium, 2006.

[39] C. Priami. Stochastic π-calculus. Computer journal, 38(7):578�589, 1995.

[40] C. Prisacariu and G. Ciobanu. Timed Distributed π-Calculus. Technical report,

Institute of Computer Science, Romanian Academy, 2005.

326 BIBLIOGRAPHY

[41] J. Riely and M. Hennessy. A typed language for distributed mobile processes.

In Conference Record of POPL'98: The 25th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 378�390, 1998. Extended

abstract.

[42] W. A. Roscoe. Theory and Practice of Concurrency. Prentice-Hall, 1998.

[43] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by

Graph Transformation: Foundations, volume 1. World Scienti�c, 1999.

[44] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-

Order Paradigms. Ph.D. thesis, Department of Computer Science, University of

Edinburgh, 1992.

[45] D. Sangiorgi. A theory of bisimulation for the π-calculus. Technical Report

ECS-LFCS-93-270, 1993.

[46] S. Schneider. An operational semantics for Timed CSP. Information and Com-

putation, 1995.

[47] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. John

Wiley & Sons, Ltd., 2000.

[48] M. Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.

[49] A. M. Uhrmacher. Dynamic structures in modeling and simulation: A re-

�exive approach. ACM Transactions on Modeling and Computer Simulation,

11(2):206�232, 2001.

[50] H. Vangheluwe. http://moncs.cs.mcgill.ca/people/hv/teaching/MS/

assignments/assignment4/.

[51] H. Vangheluwe. DEVS as a common denominator for multi-formalism hybrid

systems modelling. In Andras Varga, editor, IEEE International Symposium on

Computer-Aided Control System Design. IEEE Computer Society Press, 2000.

[52] C. Verhoef. A congruence theorem for structured operational semantics with

predicates and negative premises. Nordic journal of Computing, 2(2):274�302,

1995.

[53] J. von Neumann. Theory of Self-reproducing Automata. University of Illinois

Press, 1966.

[54] G. A. Wainer, G. Christen, and A. Dobniewski. De�ning DEVS models with

the CD++ tool. In Proceedings of the 2001 European Simulation Symposium,

2001.

BIBLIOGRAPHY 327

[55] Y. Wang. CCS + time = an interleaving model for real time systems. In Proceed-

ings of ICALP'91 � Annual International Colloquium on Automata, Languages

and Programming, 1991.

[56] G. Winskel. The Formal Semantics of Programming Languages. The MIT Press,

Cambridge, Massachusetts, 1993.

[57] M. Wirsing. Algebraic Speci�cation. In Jan Van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B, Formal Models and Semantics, chap-

ter 13, pages 675�788. Elsevier, MIT Press, 1994.

[58] B. P. Zeigler. Multifacetted modelling and discrete event simulation. Academic

Press, 1984.

[59] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Simulation.

Academic Press, �rst edition, 1976.

[60] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and Simulation.

Academic Press, second edition, 2000.

Index

action terms, 100

action trace, 151

action trace of an execution, 151

actions, 100

alpha conversion, 104, 132

anti-message, 178

antisymmetric, 246

arbitrary context, see context

arity, 252

ascending chain, 251

asynchronous communication, 56

bijective, 245

binary relation, 245

bisimilarity, 261

bisimilarity with predicates, 270

bisimulation, 257, 261

bottom, 250

bound names of a network term, 131

bound names of a process, 102, 130

bound names of an action, 102

bound names of an action term, 101

canonical normal form, 107

canonical normal form for network terms,

133

canonical projection, 275

cartesian-product, 245

chain, 251

channel, 56

channel mobility, 67

client, 191

client-server architecture, 190

closed term, 252

closure, 249

coalesced execution, 151

Coalesced LTS of a TLTS, 151

combinator, 252

composition, 245

compositional map, see semantic homo-

morphism

compositionality, 273

conditional process, 72

conditional processe, 118

congruence, 279

constant symbol, 252

context, 277, 278

context composition, 278

creating/hiding events, 111

d-channel, 70, 179

d-channel client, 188

d-channel server, 188

daemon process, 189

delay, 63

delaying processes, 111

derivation, 265

derived rules, 112

descending chain, 251

distributed process transitions and evolu-

tion, 133

domain, 245

duration of an execution, 151

elapsed time, 63, 98

elementary 1-congruence, 279

elementary context, 278

elementary n-congruence, 279

environment, 53

environments, 165

ephimeral trigger, see transient trigger

equivalence class, 246

INDEX 329

equivalence of a partition, 248

equivalence relation, 246

event-scheduler, 161

event/channel array, 75

event/channel arrays, 122

events, 54

evolution, 95

evolution relation, 95

expression, 96

expression evaluation, 104

external action, 100

external actions, 53

external choice, 56

formula, 266

negative, see negative (tss) formula

positive, see positive (tss) formula

fossil collection, 181

frame, 165

free names of a network term, 131

free names of a process, 102, 130

free names of an action, 101

function, 245

function de�nition, 72, 96

function symbol, 252

functional relation, 245

general congruence, 280

global control client, 188

global controller, 178, 184

global virtual time, 178

ground term, see closed term

GVT, 178

homomorphic, see semantic homomorphism

image, 245

index, 250

index function, 250

indexed set, 250

induction, 251

inference rule, 264

injective, 245

inner context, 278

input action, 100

input guard, 98

input segment, 156

instantaneous divergence, 149

interface, 57

internal action, 100

internal actions, 53

inverse, 245

irre�exive, 246

kernel of a function, 274

Kleene closure, 249

labelled transition system, 255

execution, 256

trace, 256

lasting trigger, 65

lasting triggers, 126

left-parallel, 62

legitimacy, 149, 152

legitimate execution, 152

legitimate process, 152

length of an execution, 151

link mobility, 67

listener, 98

listening to events, 108

local name declaration, 75

local name declarations, 122

LTS, see labelled transition system

LTS of a TLTS, 95

mapping, see function

match, 119

maximal, 250

minimal, 250

minimum delay for invocation, 152

module, 188

multicasting, 54

330 INDEX

name environments, 165

names of a network term, 131

names of a process, 102, 130

names of a value, 101

names of an action, 101

names of an action term, 101

negative (tss) formula, 267

negative message, 178

network terms, 129

network transitions and evolution, 134

non-determinism, 62

non-trigger events, 162

one-to-one, see injective

onto, see injective

open term, 252

open time-bisimilar up to, 146

open time-bisimulation, 145

operator, 252

output action, 100

panth format, 270

parallel composition, 58, 111

parent environment, 165

partial function, 245

partial order relation, 250

partition, 246

pattern, 55, 97, 104

Pattern matching, 104

peer-to-peer architecture, 190

port, 57

poset, 250

positive (tss) formula, 266

positive message, 178

power set, 246

preorder relation, 250

priority, 168

process, 53

process array, 75

process arrays, 123

process de�nition, 57

process instantiation, 57

process term, 97

process transitions and evolution, 108

quotient set, 246

range, 245

rank, 252

receiver, 98

ree names of an action term, 101

referent objects, 165

re�exive, 246

renaming, 103

rollback, 183

rule instance, 264

semantic domain, 282

semantic homomorphism, 282

semantic map, 282

sequence, 250

sequence comprehension, 73, 121

sequence pattern, 121

sequence patterns, 73

sequential composition, 77, 123

sequential loop, 77

sequential loops, 125

serial relation, 245

server, 192

signature, 252

similarity, 257

simulation, 257

simulation events, 162, 168

site, 53, 69

sort, 252

sort function, 252

sorted set, 252

state variables, 61

strati�cation, 269

strictly ascending chain, 251

strictly descending chain, 251

INDEX 331

structural congruence, 106

structural congruence over network terms,

132

structural congruence over process terms,

106

structural operational semantics, 255

subject, 168

substitution, 253

substitution of names, 103, 131

Su�cient conditions for legitimacy, 319

su�cient conditions for legitimacy, 153

surjective, 245

symmetric, 246

symmetric closure, 249

TDS, see term deduction system

term (of a signature), 252

term deduction system, 255, 263

term plug-in, 278

termination, 108

time additivity, 144

time compositionality, 148

time continuity, 144

time determinacy, 143

time interpolation, 144

time-bisimulation, 144

time-slot, 162

time-stamp, 168

Time-warp, 177

time-warp scheduler, 178

Timed Labelled-Transition System, 95

Timed-Labelled Transition Systems, 94

timeout, 63, 117

top, 250

total order relation, 250

total relation, 245

trace equivalence, 260

trace-handler, 161, 164

transient trigger, 65, 98

transition, 95, 256

transition relation, 94

transition system, see labelled transition

system

transition system speci�cation, 255, 266

LTS speci�ed by a positive TSS, 268

transitive, 246

transitive closure, 249

trigger events, 162

trigger process, 98

triggering events, 108

TSS, see transition system speci�cation

TSS formula, see formula

two-way similarity, 261

unicasting, 54

universality of canonical projections, 276

value, 99

variable (of a term), 252

variables of a pattern, 100

variables of an expression, 100

visitor, 157

well-founded order, 251

well-timed de�nition, 152

Zeno behaviour, 94, 150

