
UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L’INFORMATION ET DE LA COMMUNICATION

T H È S E
pour obtenir le titre de

Docteur en Sciences
de l’Université de Nice - Sophia Antipolis

Mention : INFORMATIQUE

Présentée et soutenue par

Judicaël RIBAULT

Reuse and Scalability in Modeling
and Simulation Software Engineering

Thèse dirigée par : Jean-Claude BERMOND et Olivier DALLE

préparée au sein du projet MASCOTTE - INRIA / I3S (CNRS/UNS)

Rapporteurs : Lionel SEINTURIER - Professeur - Université Lille 1
Adelinde UHRMACHER - Professeur - Université Rostock, Allemagne
Gabriel WAINER - Professeur - Université Carleton, Canada

Directeurs : Jean-Claude BERMOND - Directeur de Recherche - Laboratoire I3S, Sophia Antipolis
Olivier DALLE - Maître de Conférences - Université Nice Sophia Antipolis

Examinateurs : Denis CONAN - Maître de Conférences - Télécom SudParis
David HILL - Professeur - Université Clermont-Ferrand 2

Président : Michel RIVEILL - Professeur - Université Nice Sophia Antipolis

Acknowledgments

Last thing to do :-)

Résumé

L'étude d'un système à l'aide de simulations informatiques à événements discrets implique

plusieurs activités: spéci�cation du modèle conceptuel, description de l'architecture logi-

cielle du modèle, développement des logiciels, scénarisation de la simulation, instrumen-

tation, plani�cation d'expérimentation, con�guration des ressources de calcul, exécution,

post-traitement et analyse, validation et de véri�cation (V&V). De nombreux éléments

logiciels sont requis pour remplir toutes ces activités. Toutefois, il est fréquent de créer

un nouveau simulateur à partir de rien quand on commence une étude à l'aide de simula-

tion. Dans ce cas il est nécessaire de développer de multiples outils prenant en charge les

activités de la simulation.

Cette thèse aborde le dé� de la création de nouveaux simulateurs tout en réutilisant

des modèles et des outils provenant d'autres simulateurs. En e�et, la réutilisation de

logiciel augmente la �abilité, est moins sujette aux erreurs, permet une meilleure utili-

sation des expertises complémentaires, améliore la conformité aux normes, et accélère le

développement. La réutilisation de logiciels peut être appliquée à toutes les activités de

la simulation. Plusieurs problèmes doivent être résolus pour tirer pleinement pro�t de la

réutilisation. Dans cette thèse, nous abordons trois questions principales: Tout d'abord,

nous étudions les solutions pratiques de réutilisation permettant de combiner un ensemble

choisi d'éléments logiciels utiles pour la modélisation et la simulation, en incluant aussi

bien les modèles, les moteurs de simulation, les algorithmes et les outils; Deuxièmement,

nous nous concentrons sur les questions liées à l'instrumentation; Troisièmement, nous

étudions le problème de l'intégration d'éléments logiciels provenant d'autres simulateurs

dans un nouveau simulateur.

Pour atteindre ces objectifs, nous étudions des techniques avancées de du génie

logiciel, tels que le génie logiciel à base de composants (CBSE) et la programmation

orientée aspect, sur lesquels nous construisons une solution originale pour la modélisation

et la simulation à l'aide de multiples couches réutilisables. Nous avons développé un

prototype d'architecture logicielle qui prove la faisabilité de cette solution.

Mots clés: simulation, évènements discrets, aspects, séparation des préoccupa-

tions, instrumentation, modélisation, composant, simulation distribuée, réutilisa-

tion

Abstract

Studying a system using discrete-event computer simulations implies several activities:

conceptual model speci�cation, software model architecture description, software devel-

opment, simulation scenario, instrumentation, experimentation planning, computational

resources con�guration, execution, post-processing and analysis, validation and veri�ca-

tion (V&V). Many software are required to complete all these activities. However, it is

common practice to create a simulator from scratch when starting a new a simulation

study. It is therefore necessary to redevelop a whole suite of tools to ensure support for

all simulation activities.

This thesis addresses the challenge of developing new simulators that reuse existing

models and simulator parts. Indeed, reusing software increases dependability, is less er-

ror prone, makes better use of complementary expertises, improves standards compliance,

and accelerates development. Reusing software can be applied to all simulation activi-

ties. Several problems have to be solved to derive full bene�t of reuse. In this thesis, we

address three major issues: Firstly, we investigate practical means of reusing and com-

bining valuable pieces of modeling and simulation software at large, including models,

simulation engines and algorithms, and supporting tools for the modeling and simulation

methodology; Secondly, we focus on issues related to instrumentation; Thirdly, we focus

on problems of integration of existing simulation tools.

To achieve these objectives, we investigate advanced software engineering techniques

such as component-based software engineering (CBSE) and aspect-oriented programming

(AOP), and use them to derive a novel approach for Modeling & Simulation based on

reusable layers. We developed a prototype software architecture that proves the feasibility

of this layered approach.

Keywords: simulation, discrete events, aspects, separation of concerns, instrumen-

tation, modeling, component, distributed simulation, reuse

Contents

1 Introduction 1

1.1 Objectives . 4

1.2 Dissertation Roadmap . 4

2 State of the Art 7

2.1 De�nition . 8

2.2 Reuse in Software Engineering . 8

2.2.1 Motivations and Bene�ts . 8

2.2.2 Metrics . 9

2.2.3 Techniques . 11

2.3 Reuse in Modeling and Simulation . 15

2.3.1 Background on Modeling and Simulation 15

2.3.2 State of the Art in M&S Software 21

2.3.3 Reusing Techniques in Modeling and Simulation 25

2.3.4 Open Questions for Reuse . 26

2.4 Software and Reusing Techniques Used In This Thesis 27

2.4.1 FRACTAL . 27

2.4.2 FRACTAL ADL . 31

2.4.3 Aspect-Oriented Programming . 32

2.4.4 Maven . 33

2.5 Discussion . 33

3 Design Considerations 35

3.1 Engineering in M&S . 37

3.1.1 Process and Development Models 37

3.1.2 Team Management . 38

3.1.3 Project Management . 38

3.1.4 Quality Management . 38

3.1.5 Design and Documentation of Products 39

3.1.6 Engineering Requirements . 39

3.2 Modeling and Simulation Application Design Considerations 40

3.2.1 Software Design . 40

3.2.2 Open Architectures . 43

3.2.3 Discussion . 44

4 Contributions to Reuse 45

4.1 Motivations and Objectives . 47

4.2 SoC and Reuse in Model and Scenario . 49

4.2.1 Advanced Scenarios Case Studies 49

4.2.2 Man-in-the-middle Attacker with FRACTAL ADL 51

viii Contents

4.2.3 Spy-Ware with Aspect-Oriented Programming 53

4.2.4 Conclusion . 55

4.3 SoC and Reuse in Simulation Engine . 55

4.3.1 Case Study: OSA Simulation-Engine 56

4.3.2 Simulation Concerns in ADL . 59

4.4 SoC and Distribution of Large Scale Simulation 61

4.4.1 FRACTAL RMI . 62

4.4.2 FRACTAL BF . 63

4.5 Other Means for Enforcing Reuse . 64

4.5.1 Promote Reuse With Dynamic Architecture 64

4.5.2 Enforcing Reuse and Replayability with Maven 68

4.6 Conclusion . 70

5 Contributions to Instrumentation 71

5.1 Motivations and Objectives . 73

5.1.1 Separation of Concerns . 73

5.1.2 From Real to Virtual System . 75

5.1.3 From Live to Post-Mortem Analysis 76

5.1.4 Data Processors Composition . 76

5.2 Open Simulation Instrumentation Framework 77

5.2.1 COSMOS . 77

5.2.2 Separation of Concerns . 77

5.2.3 From Live to Post Analysis . 80

5.2.4 Composition of Instrumentations 83

5.2.5 From Real to Virtual System . 84

5.3 Conclusions and Perspectives . 85

6 Thoughts on Integration 87

6.1 Motivations and Objectives . 88

6.2 Contributions . 89

6.2.1 Integration of Existing Simulation Elements 89

6.2.2 Integration of Existing Simulation Tools 91

6.3 Related Works . 91

6.3.1 Integration of Elements of the System Under Study 91

6.3.2 Integration of Services . 92

6.4 Conclusion . 93

7 Application and Performances 95

7.1 Use case study . 96

7.2 Applying Reusing Techniques Through OSA 97

7.2.1 Conceptual model . 97

7.2.2 Implementations . 97

7.2.3 Execution . 100

7.2.4 Deployement . 101

Contents ix

7.3 Performances . 108

7.3.1 FRACTAL Performance . 109

7.3.2 Deployment Performance . 110

7.4 Conclusion . 112

8 Conclusion 115

8.1 Contributions . 116

8.2 Perspectives . 117

Bibliography 119

List of Figures

2.1 FRACTAL component model. 29

2.2 Primitive membrane: control level for primitive components. 29

4.1 A view of the Open Simulation Architecture. 47

4.2 Reuse and adapt a model of reference. 50

4.3 Components layout of File Transfers Protocol case study. 50

4.4 Components layout of FRACTAL's MITM attack. 52

4.5 FTP model with Spy-Ware in Client. 53

4.6 Anatomy of an OSA component. 57

4.7 Internal architecture of the simulation-controller. 60

4.8 Schematic view of a dynamic architecture. 67

5.1 Simulation work�ow focusing on instrumentations tasks. 74

5.2 A zoom on the instrumentation part with COSMOS of the OSA layered

approach. 75

5.3 Separation of concerns using AOP. 78

5.4 Graphical representations of data processors in a distributed simulation. . 82

5.5 FRACTAL ADL composition mechanism and the resulting COSMOS design. 85

7.1 Files or raw data are cut into data-blocks. Each data-block is divided into

s initial fragments, to which r fragments of redundancy are added. Any s

fragments among s+r are su�cient to recover the original data-block. . . . 96

7.2 Conceptual view of the data storage model using one Network component

and the hyper-spaghetti phenomenon. 98

7.3 Conceptual view of the data storage model using a shared Network compo-

nent (shared are in gray). 99

7.4 Simpli�ed view of the architecture of the simulation project. 100

7.5 Conceptual view of the P2P model using the template-factory pattern. . . 106

7.6 Conceptual model of a distributed simulation of the P2P model. 108

7.7 Time to start simulations when varying the number of peers in the simulation.110

7.8 Evolution of the startup time depending on the number of nodes (with a

�xed number of peers per node). 111

7.9 Time to start a distributed simulation by the number of computational

nodes involved. 112

7.10 Maximum number of peers instantiated. 113

List of Listings

2.1 A sample FRACTAL ADL declaration that de�nes an application made of

client and a server. 32

4.1 FRACTAL ADL de�nition used to implement layout of �gure 4.3. 51

4.2 FRACTAL ADL de�nition used to implement layout of �gure 4.4. 52

4.3 FRACTAL ADL used to implement layout of �gure 4.5. 54

4.4 AspectJ code used to inject spyware functionnality related to layout of

�gure 4.5. 55

4.5 Code to execute a Basic DEVS model. 59

4.6 Scenario de�ning exogeneous events. 61

4.7 Deployment architecture using FRACTAL RMI 62

4.8 A distribution layer that provides a rmi service 63

4.9 A distribution layer that requires a rmi service 64

4.10 Model architecture without loop . 65

4.11 A simple model layer . 66

4.12 Model architecture with loop . 67

4.13 A simple POM �le of an OSA experience 69

5.1 Peer Java class without separation of concerns. 79

5.2 AspectJ aspect to observe Peer class. 79

5.3 Java class with separation of concerns. 80

5.4 FRACTAL ADL de�nition of a live analysis of a peer lifetime. 84

7.1 FRACTAL ADL de�nition of a peer component. 101

7.2 FRACTAL ADL de�nition of the P2P model. 102

7.3 FRACTAL ADL de�nition of the P2P model using template-factory pattern.103

7.4 FRACTAL ADL de�nition of a scenario for the P2P model. 104

7.5 FRACTAL ADL de�nition of a simulation control for the P2P model. . . 104

7.6 AspectJ code to acquire knowledge each time a disk fail. 105

7.7 Maven con�guration �le of the �exp-1000peers� experiment project. 105

7.8 FRACTAL ADL de�nition of an experiment for the P2P model 106

7.9 FRACTAL ADL de�nition of another experiment for the P2P model . . . 107

7.10 FRACTAL ADL de�nition of a deployment for the P2P model using Frac-

talRMI . 107

7.11 FRACTAL ADL de�nition of a deployment for the P2P model using Fracta-

BF. 109

Chapter 1

Introduction

Contents

1.1 Objectives . 4

1.2 Dissertation Roadmap . 4

2 Chapter 1. Introduction

It is well known in M&S that in order to achieve high credibility of M&S re-

sults it is mandatory to take into account the validity of models and simulation stud-

ies [L'Ecuyer, 1990, Johnson, 2002, Balci, 2003, Troitzsch, 2004, Kelton and Law, 2000,

Sargent, 2008]. But we miss evidence that software engineering of M&S products is taken

equally important � although the results achieved as well as their quality may heavily

depend on the implementations used. This lack of importance given to the simulation

software in the quality assessment of simulation results can be found through recent stud-

ies showing that many publications do not mention the information necessary to ensure

the replayability of simulations and therefore the credibility of simulations results. In

[Pawlikowski et al., 2002], the authors surveyed over 2200 publications on telecommuni-

cation networks in proceedings of the IEEE INFOCOM and such journals as the IEEE

Transactions on Communications, the IEEE/ACM Transactions on Networking, and the

Performance Evaluation Journal. Their conclusion was that �[...]the majority of recently

published results of simulation studies do not satisfy the basic criteria of credibility�.

Similarly, in [Kurkowski et al., 2005] Kurkowski et al. surveyed the results of MANET

simulation studies published between 2000 and 2005 in the ACM MobiHoc Symposium

: 75% of these papers used simulations, but they found out that less than 15% only of

the simulations were repeatable and only 7% addressed such important issues as initial-

ization bias. Thus, it is important to improve the practices. In this thesis we choose a

pragmatic approach based on the following claim: without any real incentive, or simply

by ignorance of better practices, practitioners will not spontaneously change their habits.

Therefore, our tentative answer to solve the quality issue is to improve practices with no

additional e�ort for practitioners, by providing tools that are designed to better support

the simulation methodology.

Creating a classic simulator able to achieve quality results already involves a signi�cant

amount of work and time. On one hand, a common practice to save time is to reuse existing

simulators to conduct new simulation studies. Furthermore, software reuse is known to

increase dependability, reduce process risk, makes e�cient use of specialists, comply with

standards, and accelerate development [Sommerville, 2007]. Notice also that reuse can

take many forms. The form of reuse we consider in this thesis is the reuse of existing

software without modi�cations on the source code. Indeed, to capitalize on bene�ts such

as allowing the comparison between studies or avoiding to re-enter the veri�cation process

of a model, elements of reuse should not be subject to modi�cation. On the other hand,

despite the ever increasing number of simulators that can be used, numerous studies still

continue to be conducted using new simulators created ab nihilo. Indeed, the time spent

to learn an existing simulator is often believed to be equivalent to the time spent to create

a speci�c simulator that better matches the modeler expectations. However, key activities

for achieving quality results, such as VV&A or results analysis, are often neglected in this

time evaluation. This leads to results that are di�cult to reproduce and whose quality may

be questioned, as pointed out in the papers cited above. However, it seems not reasonable

to expect that practitioners will change their habits. Based on this observation, our goal

becomes to build a framework or software architecture for simulation that helps users to

build their own simulation environment, so they can stick to their habits, but still comes

3

with strong incentives for reuse, so they can bene�t from the quality improvements.

The reuse in modeling and simulation can be applied to di�erent activities of the

simulation, such as the speci�cation of conceptual models with, for example, the reuse

of formal language such as DEVS; the description of the software architecture of the

model with, for example, the reuse of an architecture description language (ADL); the

development of simulation software such as the reuse of implementation of model, engine,

generator or queue; the scripting of the simulation with, for example, the reuse of all

or parts of existing scenarios; the instrumentation of the simulation with, for example,

the reuse of all or parts of existing instrumentations; the reuse of tools for automated

sequential analysis in stochastic simulations, like Akaroa[Pawlikowski and Yau, 1993] ;

the con�guration of computational resources with, for example, the reuse of a deployment

plan; the control of the execution with, for example, the reuse of tools (which allow to

stop the simulation if it exceeds a threshold, etc.). the post-processing and analysis with,

for example, the reuse of data processing and tools such as Scave; the validation and

veri�cation with, for example, the reuse of tests and formal veri�cation process.

Several techniques exist to promote the reuse without modi�cation among which the

use of libraries such as SSJ [L'Ecuyer et al., 2002]. SSJ allows to build a simulation fo-

cusing on the modeling part by reusing simulation engine and tools that have followed a

process of VV&A and are known for their quality. The use of components allows to sepa-

rate the various businesses of the simulation and allows the experts to work on their own

concerns. The use of a middleware such as HLA allows the composition of several simula-

tions in a global simulation. Despite these tools and techniques, many simulation elements

are not thought to be reused and it is di�cult to integrate them without modi�cation.

Thus, there are typically mixed concerns:

• modeling elements are intertwined which leads to the hyper-spaghettis phenomenon

described by Webster[Webster, 1995] in which many connections exist between the

software components. Besides the di�culty it adds to understanding and debugging

the code, it limits the reuse.

• in component-based models, the structure of the elements of the system (its topol-

ogy) needs to be described along with their behavior. Mixing these two concerns is

a common practice that prevents their independent reuse.

• an instrumentation is required to observe the behavior of the system under study

during the simulation and collect data in order to process them (to produce statistics,

animation, or any result). The probes that observes and collects data from the

simulation during its execution are often mixed with other concerns (such as the

modeling concern), which requires to edit the model when we want to change the

variables to be observed.

• and many other concerns, such as dealing with the System dynamics, distributed

execution and deployment, debugging, veri�cation, and so on.

This list is not exhaustive because it is always possible to add new concerns, and

each concern can be divided into sub-concerns. For example, a model may be obtained

4 Chapter 1. Introduction

by composing sub-models, a common practice found in component-oriented hierarchical

modeling formalisms such as DEVS[Zeigler et al., 2000].

This thesis proposes to develop techniques and tools for achieving reuse and scalability

in modeling and simulation software engineering. Section 1.1 presents objectives while

section 1.2 presents the organization of this thesis.

1.1 Objectives

This thesis aims to provide new solutions for reuse in the �eld of modeling and simulation.

Because many people develop simulations ab-nihilo, our goal is to allow them to do so

while having the ability to reuse what exists as much as possible, and at the same time

make it reusable. In order to achieve this goal, we must �nd a way of separating the

various concerns found in a simulation software. For this purpose, we aim at investigating

the use of advanced techniques of software engineering and programming and implement

them in a prototype M&S software architecture as a proof-of-concept. Our solution uses a

fully layered approach, which allows to strictly separate modeling and simulation concerns.

We validate our technique through the development of two proofs of concepts:

• Open Simulation Architecture (OSA) is our simulation platform promoting reuse

and integration of external software elements. OSA is a component-based applica-

tion based on a layered approach that allows to completely separate concerns and

thus encourage reuse and sharing. OSA uses AOP to allow communication between

layers that would need to communicate such that the instrumentation layer and

the modeling layer. To ensure replayability, OSA uses the Apache Maven project

management tool.

• Open Simulation Instrumentation Framework (OSIF) which is an instrumentation

framework that can be plugged to any systems and models without modi�cation on

them. OSIF allows to share, reuse and integrate analysis software elements. OSIF

is based on the same principle of separation of concerns as OSA and shows that all

the techniques for separation of concerns can also apply to a third-party tools.

While reuse is important for modeling and simulation, it should not come at the

expense of performance. OSA and OSIF have been developed keeping in mind that the

techniques used should not degrade the performance signi�cantly, and should instead serve

as a basis for implementing high performance distribution and parallelization mechanisms

such as optimistic or conservative parallelization and parallelization of executions following

an experimental plan.

1.2 Dissertation Roadmap

The remainder of this document is organized into six parts outlined brie�y in the following

paragraphs. Chapter 2 focuses on the state of the art relating to our work. Chapter 3

introduces design considerations for M&S software. Chapter 4 describes our contributions

1.2. Dissertation Roadmap 5

to the process of building a reusable and open simulation architecture. Chapter 5 describes

our contributions to the problematic of instrumentation in M&S. Chapter 6 describes our

contributions to the problematic of integrating third-party tools from other simulators.

Chapter 7 presents the experiments we conducted to validate our proposals.

Design considerations In this chapter, we consider design questions for M&S soft-

ware. We claim that discussing, designing, developing, and comparing M&S products

should start with software engineering considerations. We shortly introduce some of these

engineering concepts and discuss how these relate to the M&S domain.

State of the art In this chapter, we start with a survey of the solutions actually used

in existing simulators to promote separation of concerns and reuse. Then, we introduce

technologies used in this thesis such as component-base software engineering concepts or

aspect-oriented programming. We present the state of the art of component models used

in software engineering and explain why we chose the FRACTAL component model and

related tools. Then, we present M&S concept and terminology used in this thesis, and we

�nish by presenting open questions on instrumentation and integration.

Contributions to Reuse In this chapter, we investigate practical means of reusing

and combining any valuable piece of M&S software at large, including models, simulation

engines and algorithms, and supporting tools for the M&S methodology. Then, we focus on

how to provide distributed executions means that require no modi�cation on simulation

software as well as models. We also present our solution to develop and reuse models,

scenarios and engines using aspect-oriented programming and component models such as

the FRACTAL Component Model (FCM) through the OSA architecture.

Contributions to Instrumentation In this chapter, we study mechanisms to imple-

ment e�cient and non intrusive instrumentation of simulation models, without changing

or interfering with the code of the model. In most existing simulators, the outputs of

a simulation run consist either in a simulation report generated at the end of the run

and summarizing the statistics of interest, or in a (set of) trace �le(s) containing raw

data samples produced and saved regularly during the run, for later post-processing. In

this chapter, we address issues related to the management of these data and their on-

line processing, such as: (1) the mixing of the instrumentation code with the modeling

code; (2) the amount of data to be stored. It may be enormous, and often, a signi�cant

part of these data are useless while their collection may consume a signi�cant amount

of the computing resources; and (3) the di�culty of comparing studies since each user

(model developer) builds its own ad-hoc instrumentation and data processing. Last, we

present OSIF, a component-based instrumentation framework designed to solve the above

mentioned issues. OSIF is based on several mature software engineering techniques and

frameworks, such as COSMOS, FRACTAL and its ADL, and AOP.

6 Chapter 1. Introduction

Thoughts About Integration In this chapter, we consider the problem of reusing

parts of existing simulators in a new one. We started from the observation that despite

no single simulation software seems to be perfect, most of the elements required to make

a perfect simulator already exist as part of existing simulators. This chapter presents our

solution to integrate existing simulation elements such as models and engines thanks to the

ability of FRACTAL to encapsulate softwares. It is also interesting to integrate a simulator

as a back-end, particularly to reuse existing experimental planning. To demonstrate the

feasibility of such integration, we use our demonstration platform OSA as front-end for the

integration of existing models and engines from another simulator, but also as a back-end

for integration of existing experimental planning from another simulator.

Application and Performances In this chapter, we present results we have obtained

through various simulation experiments with original features. We present the model to

simulate, and the objectives in terms of scale, deployment, execution time and methodolo-

gies. The simulated system is a data storage system running on a P2P overlay network.

We show that this model scales very well. Then, we present the results obtained and give

a quantitative assessment in terms of reuse, instrumentation and integration.

Chapter 2

State of the Art

Contents

2.1 De�nition . 8

2.2 Reuse in Software Engineering . 8

2.2.1 Motivations and Bene�ts . 8

2.2.2 Metrics . 9

2.2.3 Techniques . 11

2.3 Reuse in Modeling and Simulation 15

2.3.1 Background on Modeling and Simulation 15

2.3.2 State of the Art in M&S Software 21

2.3.3 Reusing Techniques in Modeling and Simulation 25

2.3.4 Open Questions for Reuse . 26

2.4 Software and Reusing Techniques Used In This Thesis 27

2.4.1 FRACTAL . 27

2.4.2 FRACTAL ADL . 31

2.4.3 Aspect-Oriented Programming . 32

2.4.4 Maven . 33

2.5 Discussion . 33

8 Chapter 2. State of the Art

Since the early age of programming, people have sought for reuse. Reuse applies to

several domains of software engineering such as speci�cation, architecture, data, source

code, design, documentation, templates, human interface, plans, requirement, or test cases

([Barns and Bollinger, 1991], [Jones, 1993]). From a historical perspective, we generally

attribute reuse as a discipline of software engineering to McIlroy [McIlroy et al., 1969].

Indeed, he is the �rst to propose a formal reuse approach.

In this Chapter, we present the state of the art about reuse in software engineering and

reuse in modeling and simulation. Section 2.1 de�nes reuse. Then, section 2.2 presents

reuse in the general �eld of software engineering Section 2.3 presents reuse in the modeling

and simulation �eld Section 2.4 presents tools and techniques used in this thesis. Finally,

section 2.5 presents a discussion on reuse using the example of Eclipse.

2.1 De�nition

In this thesis, we agree with the de�nition described in [Krueger, 1992]: reuse is �the

process of creating software systems from existing software rather than building them

from scratch�. Reuse can sometimes require changes to match the need. For [Lim, 1994],

all modi�cations must be prohibited since modi�ed elements are no longer the same. For

Cooper in [John, 1994], modi�cation could be done, bene�ts from reusing and modifying is

greater than not reusing at all. To McIlroy, reuse could require some modi�cation, but in

that case modi�cation must be made carefully. We believe modi�cations should be applied

only if they don't change the speci�cations of the software component. In component-

based software engineering, these speci�cations de�ne the functionnal, or business part of

a component. Hence we de�ne component reuse as the ability to use a component in a

di�erent context without changing its functional part.

2.2 Reuse in Software Engineering

First, section 2.2.1 presents reuse motivations, bene�ts and drawbacks. Section 2.2.2

presents metrics and models used to measure reuse performance. Section 2.2.3 presents

reusing techniques.

2.2.1 Motivations and Bene�ts

As in the hardware industry, the software industry is asked to build more complex and

powerful software and to put them on the market quickly. Maximizing the reuse of code

(tested, checked or certi�ed) would minimize the development of new code and therefore

lower the development cost, time spent and improve the quality of software. Studies

([Tracz, 1988] and [Mili et al., 1995]) show that a signi�cant portion of code can be reused

from one application to another.

The bene�ts of reuse have been the subject of numerous publications

([Taivalsaari and Jyväskylän, 1993], [Schäfer et al., 1993], [John, 1994], [Mili et al., 1995],

[Karlsson, 1995], [Sametinger, 1997], [Sommerville, 2007]). In [Sametinger, 1997],

2.2. Reuse in Software Engineering 9

Sametinger summarizes the qualitative and quantitative e�ects of reusing as follows:

Qualitative e�ects:

• Fewer bugs Reusing code involve more feedback and thus more �xed bug that

�nally improve the quality and reliability of software.

• Productivity improved Although the introduction of systematic reuse can have

a negative impact on productivity in the beginning, long term systematic reuse

improve productivity.

• Lack of performance Generic components that can be used in several softwares

can result in a lack of performance compared to a dedicated code optimized for a

special application.

• Interoperability Applications that share the same component are made de facto

interoperable if this shared component allows them to communicate.

Quantitative e�ects:

• Less code to write and thus less time spent for developing new softwares.

• Time to market is shortened due to the reduction of development time.

• Less documentation to write Indeed, reusing software element means that we

could also reuse dedicated documentation. This imply to write detailed documenta-

tion when developing new reusable software element and thus spend time there.

• Less maintenance Must be maintained only the newly created code. The reused

code is maintained by a third group. However updated components can be expensive.

• Additional training costs An additional cost to train engineers to handle reusable

components must be took into account, but that cost is quickly amortized long-term.

• Small team The number of people necessary for the production of software no

longer needs to be as important. It results a better communication between team

members and thus an increased the productivity.

• Quick prototyping due to the assembly of existing component.

2.2.2 Metrics

Bene�ts and drawbacks of reusing vary depending on the project, time and money we

have to invest, and life span of the project. To determine whether reuse is bene�cial

and worth to be put in place, a number of metrics have to be taken into account. In

[Frakes and Terry, 1996], authors survey metrics and models for software reuse as summa-

rized hereafter.

10 Chapter 2. State of the Art

Reuse cost-bene�ts models attempt to measure and predict the quality and re-

turn on investment introduced by reuse. Several similar models have been pro-

posed ([Barnes et al., 1988], [Ga�ney Jr and Durek, 1989], [Poulin et al., 1993]). It ap-

pears from these models that costs rise quickly with component size and complexity

[Favaro, 1991]. Thus, to improve the quality of investment, we can act on 3 lever: �increase

level of reuse, reduce the average cost or reuse, reduce the investment needed to achieve a

given reuse bene�t�.

In [Margono and Rhoads, 1992], authors show that the cost of development for a

reusable component is more than the cost of development for an equivalent non-reusable

component. However, In [Frakes et al., 1991] and [Chen and Lee, 1993], authors show

that reuse improves productivity. The reuse cost-bene�ts models measure and help

to decide when it will be pro�table to develop a reusable component depending on

the number of times we expect to reuse it. If the objective is not the cost but the

quality, several studies ([Card et al., 1986], [Browne et al., 1990], [Frakes et al., 1991],

[Agresti and Evanco, 1992] and [Mohagheghi and Conradi, 2008]) show that the reuse is

bene�cial to the quality of software product.

Reuse maturity models attempts to measure the systematically reuse ability of an

organization and identify issues that prevented them to apply systematic reuse. Models

were proposed by [Koltun and Hudson, 1991] and [Davis, 1993].

Amount of reuse metrics focus on the percentage of reuse in the life cycle of an

object to measure reuse rate. It is based on the number of reused lines versus the total

number of lines of code. However, the reuse can take place at several locations and at

di�erent levels of granularity ranging from the reuse of source code to the reuse of external

tools or services. In this case it is necessary to �nd other metrics to measure the rate of

reuse. In [Frakes and Terry, 1994], Frakes and Terry propose the concept of �reuse level�

to calculate the overall reuse rate of a project depending on the reuse rate of each level.

In [Karunanithi and Bieman, 1993] and [Chidamber and Kemerer, 1994], authors provides

metrics specially adapted for measuring reuse rate in the context of object-oriented system.

In [Washizaki et al., 2003], authors provides a metrics suite for measuring the reusability

of black-box components without any source code.

Reuse failure modes model In [Frakes and Fox, 1996] and [Morisio et al., 2002], au-

thors allow to identify and classify barriers to reuse. There are many reasons to fail to

establish systematic reuse process. Studies conducted on this subject show that one of the

main reasons is that people do not even try to implement systematic reuse, and this may

be due to the small amount of resources allocated for reuse. In academic research, many

studies are made from scratch and we can think that people do not even think about trying

to reuse. This re�ects the fact that teams are not programming experts. Indeed, research

teams are generally small independent team, without big organization around to manage

project. In the end those who reuse are the teams that develop solutions to encourage

reuse. Others failure reasons are (in order of importance): inability to reuse, impossible to

2.2. Reuse in Software Engineering 11

understand the component, the component is not valid or e�ective, the component does

not exist, . . .

Reusability metrics can measure the rate of reuse of an object. It also helps to identify

what are the objects that would bene�t from being reusable. In [Selby, 1989], Selby after

conducting a study on NASA's codes identi�ed that codes most reused shared common

characteristics. In [Basili et al., 1990] and [Dunn and Knight, 1991], the authors propose

an approach to identify modules loosely coupled. These modules do not require much

e�ort to be reusable. Finally, authors target simple modules, focused, well-documented

and independent from other modules as good candidates for reuse.

Reuse library metrics address the problem of storing and searching for reusable com-

ponents. In [Frakes and Gandel, 1990], Frakes and Gandel de�ne a reuse library as � a

repository for storing reusable assets, plus an interface for searching the repository�. Au-

thors also identi�ed most common classi�cation schemes such as enumerated, faceted, and

free text indexing. They show that the way classi�cation is done is not so important.

The most important things is to be able to determine the quality of the assets to reuse.

Authors indexing schemes evaluation depend on cost, searching e�ectiveness, support for

understanding, and e�ciency. In [Frakes and Nejmeh, 1986], Frakes and Nejmeh propose

some metrics indicator that must be visible in a reuse library. Among those indicators,

we �nd the rate of successful reuse. Today with Internet and the Web 2.0, we rely a lot

on the opinions and commentary of a community to know what are the elements to be

reused or avoided.

2.2.3 Techniques

In [Sametinger, 1997], Sameting classify reuse techniques into 2 categories: �compositional

reuse� and �generative reuse�.

Compositional reuse The compositional reuse is the complex assembly of simple soft-

ware element. New software elements are developed in case none match.

There are many di�erent ways to assemble the components, but there must be a

standard to allow components to communicate. For example, component models such as

Corba, Java Beans, EJB, DCOM and modern composition systems, such as aspect-oriented

programming (Aspect-J). Looking back in the past, [Kernighan, 1984] used to de�ne the

assembly of components (in Unix) as connecting the output of a component with the

input of another component. Other techniques have emerged since then. Compositional

reuse is the composition of fragments from existing software as part of new software

development. This can be done in an ad-hoc and unsystematic way such as reusing portion

of source code, or in a more structured way, for example by clearly expliciting interfaces

[Röhl and Uhrmacher, 2008] and contracts [Chang and Collet, 2007]. The composition of

Web services to create mashups is another modern form of component reuse. At a coarse

grain level, complete systems are available for reuse as �virtual appliance�, i.e. virtual

12 Chapter 2. State of the Art

machine images specialized for a particular service; in that case the composition method

is standard networking, and the network itself can be a virtualized.

To reuse components, we must be able to identify, classify, rate and �nd components

as well as their documentation. Moreover, because of the nature of software engineering

(almost everything is possible compared to the hardware where there is more constraint),

customers do not want to settle for generic software and want specialization, so there

must be compositional mechanisms but also specialization and adaptation mechanisms.

All reusable items should be available in a repository (also called library). A compo-

nent repository is a database for the storage and retrieval of reusable components. In

[Moore, 1994], Moore classi�es repositories in 3 categories:

• local repository which contains usually used components.

• domain-speci�c repository which contains components speci�c to a domain or busi-

ness.

• reference repository referencing all the components. It acts as a general directory

and index of deposits.

The �reuse library metrics� already mentioned in section 2.2.2 address the problem

of storing and searching for reusable components. Indeed, the functions of identi�cation,

classi�cation and research in deposits are used to �nd the ideal candidate for reuse. These

features must be taken very seriously and are the source of actual research.

Generative reuse Generative reuse is based on the reuse of process generation. For

example, the use of Lex and Yacc allows the generation of syntactic analyzer from a

description. More recently, we could cite the Eclipse Modeling Framework or the Hobo

framework for Ruby on Rails[Dall et al., 2010]. We can also see programming languages

as low-level generator (conversion into machine code). Generative reuse are dedicated to a

speci�c domain and allow to reuse only source (speci�cation, source code, template, . . .).

Elements of reuse There are many elements involved in software development that we

might want to reuse:

• Algorithm We reuse algorithms concepts and ideas we �nd in several sources

(books, internet). The reuse of algorithms often requires changes to adapt to the

language or the data on which we want to implement it.

• Function library One of the most reused element.

• Class library The object version of the function library. Reusability bene�ts greatly

from the concept of inheritance, polymorphism and dynamic bindings. Cons, classes

works through family, 2 family will not declare the same interface and thus will not

be able to be interchangeable.

2.2. Reuse in Software Engineering 13

• Software architecture and design We can reuse patterns of well known software

architecture: communication processes, hierarchical layers, pipes and �lters, clients

and servers, interpreters [Garlan and Shaw, 1994]. The reuse of existing design is

primarily the reuse of knowledge due to experience. We can reuse the design of com-

plete system or sub system, interfaces, implementation, data structure, algorithms.

• Framework Class Reusing a framework allows to reuse all non-functional aspects

done by experts and thus allows the developer to work simply on the functional part.

It extended the principle of reuse class library applied to large-scale application.

• Design pattern Reusing design patterns allow to apply well-known and identi�ed

programming models to avoid common errors of design. This puts the emphasis on

reuse at the design level, but also allows to understand design and code faster.

• Business process Reusing business processes using standards such as BPEL (by

OASIS) or BPMN (by OMG), allows to reduce cost from the business changing and

improve productivity.

• Application Reusing applications allows to focus on the development of the envi-

ronment and let users choose what tools they want to use.

• Documentation It is possible to reuse documentations in conjunction with the

reuse of software elements.

It is also possible to mix both techniques. By generating reusable component, or by

composing template used in the generative process.

Component Frameworks The general idea of a software component is not so

new (see [McIlroy et al., 1969]), but one had to wait for almost 30 years and

approaches such as EJB [Bodo� et al., 2002] before industrial strength component

frameworks (CF) became available. Since then, many component framework have

been proposed such as ArchJava [Aldrich et al., 2002], PECOS [Genssler, 2002], K-

Component [Dowling and Cahill, 2001], OpenCOM [Clarke et al., 2001], OSGi [osg, 2004]

or FRACTAL [Bruneton et al., 2006]. A comprehensive study of the domain produces

more than 20 di�erent frameworks. Some of these component framework are general pur-

pose, whereas others wish to target speci�c application domains such as realtime systems,

or dynamic environments. The high level concepts of these frameworks are similar. They

all deal with the idea that �a software component is a unit of composition with contractu-
ally speci�ed interfaces and explicit context dependencies only. A software component can
be deployed independently and is subject to composition by third parties� [Szyperski, 2002].

Architecture Description Languages Architecture Description Languages

(ADL) are often used as a complementary paradigm to components. The idea is to

declaratively describe the connections between components and their assembling. As for

component framework, many ADL have been proposed in the literature. Readers can refer

to [Medvidovic and Taylor, 2002] for a survey of the domain. The architecture description

14 Chapter 2. State of the Art

languages are intended to formally describe software architectures of a computer system.

An architecture description language �ts perfectly to component-based system as it speci-

�es interactions between components. �A software architecture of a program or computing

system is the structure or structures of the system, which comprise software components,

the externally visible properties of those components, and the relationships among them�

[Bass et al., 2003]. Concepts commonly associated with the �eld of software architectures

are [Medvidovic and Taylor, 2002]:

• components that represent the basic entities of an application,

• connectors that identify the types of interactions between components of the archi-

tecture,

• con�gurations that describe an architecture in terms of components and connectors,

• composites that reify a con�guration as a component.

Lau and Wang's Survey of Component Frameworks Component models de-

�ned for applications are not necessarily suitable for the development of modeling and

simulation platforms. In particular, modeling and simulation platforms are looking for

models of components that are e�cient light enough not to penalize the conduct of the

simulation. But there are models of components that enjoys the bene�ts of programming

components while minimizing its disadvantages. These models of lightweight components

do not support every technical properties of the components (e.g. transactions and se-

curity) but o�er more �exible solutions to suit the needs of the container component.

The container is the runtime support of a software component and provides various ser-

vices implanted by the software platform. The support component is completed in order

to introspect and recon�gure applications dynamically. Moreover, models of lightweight

components used increasingly notions of hierarchy and division in order to increase the

modularity of the systems.

In [Lau and Wang, 2005], Lau and Wang survey existing software component models.

Rather than discussing them in some random sequential order, they survey the models in

meaningful groups. They present four categories that cover models accordingly to their

compositions in an ideal life cycle.

An idealized component life cycle is represented by a three-step phase: the design

phase, the deployment phase and the runtime phase. In the design phase, �a compo-

nent is designed and implemented in source code, by a component developer�. In the

deployment phase, �a component is a binary, ready to be deployed into an application by

a system developer�. In the runtime phase, �a component instance is created from the

binary component and the instantiated component runs in a system�

In category 3, there is no possibility to store into the repository composite components.

In categories 1, 2 and 4: the composition of the component instances (in the runtime phase)

is the same as that of the components in the design phase. Thus, the assembly is done

during the design phase. Category 1 switch from implementation to instantiation without

any repository whereas categories 2 and 4 store the result of the composition into the

2.3. Reuse in Modeling and Simulation 15

repository. Di�erence between categories 2 and 4 is that in category 2 it is not possible to

reference an existing component stored in the repository during the design phase whereas

it is possible in category 4.

From a simulation point of view, it is interesting to identify these phases in order to

know what kind of component model corresponds to our objectives. For replayability, it

is important to store models (primitive or composite) in a repository. For reusability, it is

important that in the design phase we can use model (primitive or composite) stored in

the repository. The only category that can store models in a repository but also use them

in the design phase are the component models of category 4.

Lau and Wang identify in category 4 Koala [Van Ommering et al., 2002],

SOFA [Bures et al., 2006] and Kobra [Atkinson et al., 2000]. FRACTAL though placed

in Category 1 uses a repository (Maven) for archiving models. These models can be refer-

enced from the design phase so I would place also FRACTAL as a component models of

category 4.

2.3 Reuse in Modeling and Simulation

This section presents reuse in modeling and simulation software engineering. First, sec-

tion 2.3.1 provides a background on modeling and simulation and presents the terminology

used in this thesis. Section 2.3.2 presents several modeling and simulation software. Sec-

tion 2.3.3 presents reusing techniques used by simulation software. Finally, section 2.3.4

presents open questions for reuse about instrumentation and integration of existing soft-

ware elements.

2.3.1 Background on Modeling and Simulation

The computer simulation has become essential for the design of telecommunication net-

works, roads, civil and military aviation, robotics, and for the study of natural systems

in physics, chemistry and biology, but also human systems in economics, social sciences,

strategy and military defense. The advantage of computer simulation is two-fold. On one

hand, its rapid implementation gives it a signi�cant economic advantage over a solution

based on a real infrastructure. On the other hand, its ability to simulate conditions that

are di�cult or impossible to create in a real infrastructure is an asset in many areas. The

advantages of computer simulation also allow research teams to test their theories.

This section presents necessary knowledge in the modeling and simulation �eld related

to this thesis.

Modeling Before studying a system, it is necessary to target the use of the model.

Depending on the objectives and decisions, we can distinguish models to:

• better understand the operation of a system,

• predict the future behavior of a system,

16 Chapter 2. State of the Art

• optimize performance through analysis of alternatives,

• design systems that do not exist,

• develop equipment/structures (circuits, architecture ...),

• rapidly obtain a working model to test ideas and seek advice from stakeholders,

• plan for the future (development of new infrastructures, etc.),

• assist in the acquisition of expensive equipment: can help decide which to buy by

analyzing scenarios/alternatives,

• test ideas before moving to production,

• train to react to certain situations (war games, economics, ...),

• have a better understanding of phenomena and mechanisms in science,

• view system (games, animations).

Once we have the objectives clari�ed and questions the model must meet raised, it is

necessary to establish a set of assumptions on the behavior of the system and in relation

with the question(s) to solve. All these assumptions (veri�ed or not by experiment)

are the conceptual model. The conceptual model is then translated into a physical or

mathematical model. A mathematical model �represents a system in terms of logical and

quantitative relationships that are then manipulated and changed to see how the model

reacts� [Law, 2007]. A mathematical model can be solved using analytical solution or

simulation. �If the model is simple enough, it may be possible to work with its relationships

and quantities to get an exact, analytical solution . . . [in the other case]. . . the model must

be studied by means of simulation� [Law, 2007].

A simulation model is a simpli�ed representation of a system that behaves like the

original from a certain point of view. As mentioned before, a model can either be a purely

mathematical construct (algebraic, calculus, random number generation, . . .) or has to

be represented in a programming languages for more complex systems. In [Law, 2007],

Law classi�ed simulation models into those that are static or dynamic, deterministic or

stochastic, or continuous or discrete :

• �A static simulation model is a representation of a system at a particular time, or

one that may be used to represent a system in which time simply plays no role. . . . a

dynamic simulation model represents a system as it evolves over time.�

• �If a simulation does not contain any probabilistic (i.e., random) component, it is

called deterministic�. Otherwise it is called stochastic.

• In a similar way, a discrete simulation model is a simulation model with a �nite

number of state whereas a continuous simulation model is a simulation model where

state variables change continuously over time. Notice that it is not necessary to have

a discrete simulation model to simulate a discrete system and vice versa.

Simulation There are several de�nitions for the simulation terms. In [Law, 2007], Law

simply describes simulation as the fact of using a computer to evaluate a model numerically.

2.3. Reuse in Modeling and Simulation 17

A more detailed de�nition is given by [Banks, 1999] and introduces the notion of system:

�Simulation is the imitation of the operation of a real-world process or system over time.

Simulation involves the generation of an arti�cial history of the system, and the observation

of that arti�cial history to draw inferences concerning the operating characteristics of the

real system that is represented.� The general de�nition of a system can be borrowed from

[Law, 2007]: �a system is de�ned to be a collection of entities, e.g., people or machines,

that act and interact together toward the accomplishment of some logical end.� From a

M&S point of view, [Zeigler et al., 2000] gave a more formal de�nition that is widely used

in the community: �[A system] is viewed as a source of observable data, in the form of

time-indexed trajectories of variables.�

A system can be discrete or continuous [Law, 2007]. A continuous system is a system

where state variables change continuously over time. There are 2 ways to make transitions

between states in discrete systems: at a �xed time period, so called time-driven, or at

variable times caused by asynchronous event, so called event-driven. In discrete-event

simulation, �each event occurs at an instant in time and marks a change of state in the

system� [Robinson, 2004]. Thus, the behavior of a system is orchestrated by a sequence

of events played chronologically (according to their date of occurrence).

Simulation activities Studying a system using component based discrete event simula-

tions implies several activities. The �rst modeling step consists in describing the model the

system expert has in mind. This conceptual model speci�cation may range from the

informal ones (textual, manual drawings) to the more formal ones (DEVS, . . .). Then,

it is necessary to translate the conceptual model speci�cation into a software model

architecture description. This description needs to be compliant with the targeted

computer simulation software and usually combines a list of components and a topological

description of their interactions (bindings). Next, the software development consists

mainly in implementing the behavior of model components using a programming language.

At this step, the model code is ready to be executed.

However, before running simulation experiments, simulation parameters need to be

�xed. First, the simulation scenario needs to be fully de�ned by setting up the initial

parameters of the components in order to reach the initial state of the system. The

model also needs to be instrumented with probes that will collect data samples during

the simulation run. Previous con�guration elements constitute an experiment plan:

studying a system using computer simulations often turns into comparing the behavior and

performances of the considered system using several variations of a same basic scenario.

These variations consist in using di�erent values for some of the initial parameters in the

basic scenario.

The last step consists in con�guring the computational resources to deploy the

simulation. Execution control allows to execute the simulator through di�erent ways

such a debug mode, start/stop/resume and so on. When the simulation is completed, a

post-processing and analysis step prepares the data collected during the simulation

runs (merging and formatting the data of several simulation runs) and run computations

on these data (e.g. statistical computations, graph plotting, . . .). In the end, a validation

18 Chapter 2. State of the Art

and veri�cation step veri�es that the software model behaves as expected.

Discrete simulation There are two main approaches to construct a discrete simulation,

as described by [Banks et al., 2004]:

The event-oriented approach �[. . .] concerns the modelling of a system as it evolves over

time by a representation in which the state variables change instantaneously at separate

points in time� [Law, 2007]. We explained in section 2.3.1 that the behavior of a system is

orchestrated by a sequence of chronological events. The task of the simulator is to choose

the next event in the future event-set and thus advancing the time of the simulation. The

usual algorithm is called next-event time advance: �after all state changes have been made

at the time corresponding to a particular event, simulated time is advanced to the time

of the next event, and that event is executed. Then simulated time is again advanced to

the scheduled time of the next event, and the procedure is repeated.� [Fishman, 2001]

Elements contained in events perform state transition and add new events in the future-

event set. Thus, it is possible to advance rapidly in the simulated time when the gap

of time between events is important. Conversely, if the gap of time between events is

small, the execution time of the simulation will be more important. Unlike the time-

driven simulation, the event-driven simulation can move quickly or detail the sequence of

execution with great precision according to the scenario being studied.

The process-oriented approach involves multiple threads. �A thread is a separately

schedulable unit of execution control, implemented as part of a single executing process�

[Banks et al., 2004]. The usual algorithm is to have an additional thread whose roles

is to organize the execution of simulation threads. �processing for that thread involves

removing the least-time event from the event-list, reanimating the simulation process

thread (or threads) associated with that event, and blocking until those threads have

completed� [Banks et al., 2004]. A thread can release events during its execution. At the

end of its execution, a thread blocks, waiting for an event or terminate. There may be one

or more active threads at a time depending on whether one wants a sequential or parallel

execution.

It is easier to implement an event-oriented simulator rather than a process-oriented

simulator because there is no need to manage threads control which require some expertise

in the programming language. Moreover, an event-oriented simulator is generally faster

because there is no context switching between processes. On the other hand, event-oriented

approach forces the modeler to design and implement more model-management logic to

translate a system into a series of states and transitions. Finally, we must choose between

the ease of modeling or the ease of developing a simulator (and possibly the execution

speed).

Distributed simulation The use of networking technologies has led to the emergence

of speci�c simulations, called distributed simulations possibly involving several di�erent

simulators connected by one or more computer networks. In this type of simulation, the

interoperability between distributed components is essential to ensure a coherent global

behavior. All actors must communicate and interact distributed by following a common

2.3. Reuse in Modeling and Simulation 19

framework which is set by a distributed simulation architecture. There are quite a number

of advantages over local simulations described by [Fujimoto, 2000] and reported hereafter:

• Reduced execution time: we can possibly reduce the execution time of the simulation

by running a simulation in a distributed manner across multiple computational node

in parallel. We can hope to gain a factor equal to the number of computational node

that are used if the time used by the communications is negligible compared to

computation time. Actually, in some rare cases the speed-up can even be greater

than the number of computational nodes, when dividing the computation leads to a

better use of processor and cache.

• Geographical distribution: Simulations of virtual reality takes advantage of the dis-

tribution by allowing multiple participants that are physically located on di�erent

sites to interact with each other.

• The integration of distributed simulation running on di�erent platforms provides a

new virtual simulation environment. This is the case in military simulations involv-

ing multiple simulation platforms (infantry, aviation, ...) through the HLA standard.

• Fault tolerance: the distribution increase the risk of failure, but on the other side

decreases the critical breakdown. Indeed, if a failure should occur on a computa-

tional node, others computational nodes can continue to run normally. That's the

advantage of batch processing distributed across multiple computational node.

Terminology

Scenario A scenario is in charge of reproducing the environment in which the simu-

lated system is placed. A scenario produces stimuli that are applied to the model in order

to in�uence its behavior in a controlled way. These stimuli are also called "exogeneous

events", because they originate from outside of the model.

Simulation (or Computer Simulation) A simulation is a program that is meant to

reproduce the behavior of an original "system" (or process) placed in a given context,

using a "model" of this system. The context in which the model is placed during a

simulation may have its own complex dynamics, following some "scenario". Usually, the

behavior of the original system is reproduced to be observed. These "observations" are

collected following an "observation policy" and implemented using an "instrumentation".

An "experimental framework" may also be used when the simulation goal is to build in

silico experiments in which the observations need to be associated with the situations

created by the scenario. Often, the dynamics of a simulation is handled by a part of the

simulation software called the "simulation engine". The "simulation engine" and other

generic parts of a simulation that can be reused for many simulations are usually referred

to as a "simulator".

20 Chapter 2. State of the Art

Simulation Run A "simulation run" describes a "simulation" executable with all its

"execution parameters", that is ready for execution. A simulation run produces a certain

amount of data, called the "simulation run output". The execution parameters explicit

details that are not supposed to have e�ect on the simulation run output, such as where

to �nd the data needed for the simulation or where to save the data �les produced by the

run. A simulation run can be complete or partial. A complete simulation run is a run that

ended normally after the full computation of the simulation. Multiples executions of a

complete simulation run should always produce the same data. Note: A partial simulation

run is NOT guaranteed to produce a subset of the data produced by the same simulation

run once complete.

Simulation Run Output (or Simulation Output) A simulation run output should

not depend on the execution context of the simulation run, i.e. a given simulation run

executed on two di�erent computer architectures should always produce the same output

(inclusive of computational errors). Note: A simulation run output should take into

account the computational errors, and any output di�erence that falls within the expected

computational error margin should not be considered signi�cant. Therefore, two di�erent

executions of the same run can still produce slightly di�erent raw data, especially when

they result from execution that occurred on di�erent architectures.

Simulation Run Execution (or Simulation Execution) A simulation execution de-

scribes a particular execution of simulation run including its execution context (computa-

tional resources, operating system speci�cations and libraries). A simulation run execution

can be interactive or non interactive (batch). Several executions of the same "simulation

run" obtained in the same execution context should always output the exact same raw

data. Note: the execution context makes no assumption on the computational speed: two

physically distinct computational resources are assumed to be identical as long as they

always produce the exact same raw data for any possible simulation run they could be

given to execute.

Trajectory An history of the (consecutive) values taken by a variable during a

simulation. A trajectory is kind of "observation" that includes timings.

Observation A series of consecutive data samples originating from the same "ob-

servation probe". A simulation may generate an arbitrary number of observations. When

the observation probe is associated to a variable and the data samples are the successive

time-stamped values of this variable, the observation may also be called a trajectory. Note:

Some observations produce a single value (e.g. the �nal value of a counter.)

Observation Sample or Datum Sample (pl. data samples) A datum produced by

an observation probe. An observation sample may or may not be time-stamped (with the

simulated time at which it was produced). A datum may or may not be a numerical value,

e.g. in a network simulation, an observation sample may be a packet header.

2.3. Reuse in Modeling and Simulation 21

Observation Probe or Data Probe Any source that is able to produce data samples

during a simulation. A probe maybe active or passive. A passive probe can only return

or generate data samples on demand. In addition to the data samples, an active probe is

able to produce noti�cations. The noti�cation mechanism is implementation dependent

(trigger/call-back function, observation event, etc) and may or may not contain the data

sample.

Observation Policy An observation policy lists the set of probes used in a simula-

tion and de�nes when and how they produce "observation samples". For an active probe,

the observation policy may be as simple as collecting a data sample every time the probe

issues a noti�cation. For a passive probe, some logic is needed to decide when to request a

value from the probe: e.g. at regular time intervals, or when a given threshold is reached,

or any other condition is reached (e.g. the end of simulation).

Instrumentation An instrumentation implements an "observation policy" and de-

�nes the on-line computations that are applied to the "observations". Such on-line com-

putations may include statistics computations, �lters, bu�ering, or I/O operations.

Scalability The scalability of a simulation is its ability to use all the resources at its

disposal to execute larger models, but also to use these resources to speedup the simulation

using, for example, conservative or optimistic approach.

Deployement The deployment of a simulation is its local or remote execution. Par-

allel deployments can be done to speedup the execution of the experiment plan.

2.3.2 State of the Art in M&S Software

Many survey already exist comparing simulators in network studies. Most of them only

focus on the performance and on ease of modeling. We believe that support for the simu-

lation methodology and credibility of simulation results are just as important as the afore-

mentioned point. In [Begg et al., 2006], the following criteria are used for comparison:

modeling capabilities, credibility of simulation models, credibility of simulation results,

extendability and usability. For their study, the authors compare several simulators such

as NS-2 and OMNeT++. These simulators are well known and are used in numerous pub-

lications in the �eld of network simulation. The authors conclude that �none of currently

available simulators satis�es all requirements� they need for their studies and it is better

to create a new simulator from scratch although it takes a long time in development, val-

idation and veri�cation (the authors refer to a year of development to achieve what they

want to get). Their conclusion agree with the subject of this thesis is that many of the

actors prefers to rebuild their own simulator knowing what is going to cost them and it is

therefore important to study the possibility of reuse.

In this section, we present the state of the art of techniques used in reusing, integration

and instrumentation in the �eld of modeling and simulation.

22 Chapter 2. State of the Art

JAMES II JAMES II [Himmelspach and Uhrmacher, 2009a] is a general and open

framework based on the �Plug'n simulate� concept [Himmelspach and Uhrmacher, 2007],

which allows developers to integrate their modeling and simulation methodological ideas

into, and to create their applications upon an existing framework. The plug-in concept

allows to add any number of extensions per extension point, and thus prototypical imple-

mentations by researchers or students can coexist with �high end� / sophisticated solutions

for practical use. Although JAMES II has been built using a plug-in based architecture,

parts of JAMES II have been created using a �service oriented architecture�. For the

parallel and distributed computation, the core of JAMES II contains classes for a main

server, and computation servers. These, as well as data sinks, are treated as services

which can be used for the execution of an experiment. In addition JAMES II is split

into a front-end, and a back-end (at least on two sites): on one hand JAMES II can

be integrated into any other application (front-end), and thus it then forms a back-end

of this application. Nevertheless JAMES II ships with an integrated, extensible front-

end as well. Extension points allow to add front-end plug-ins for many back-end parts.

On the other hand JAMES II supports the di�erentiation between symbolic (front-) and

executable models (back-end). Modelers bene�t from the �exibility that the framework

provides with respect to modeling, simulation, and analysis methods, supporting e�ective

and e�cient simulation studies, and the well tested methods add to the credibility of the

results achieved.

The goal of JAMES II is to provide a framework, reusable for a wide range of applica-

tions and supporting the needs of di�erent users, from modeling formalisms over simulation

algorithms to experimental design, validation, and optimization methods. This concept

together with currently more than 400 plug-ins, and an explicit representation and stor-

age of experiments ease developing modeling and simulation methods and contribute to a

systematic experimental evaluation of methods.

DEVS B.P. Zeigler de�nes in [Zeigler, 1976], a formal speci�cation for discrete event

systems: DEVS. This formalism has been introduced as a universal abstract formalism

independent from the implementation. It may, in its capacity for abstraction, express

systems de�ned in traditional formalisms such as di�erential equations (continuous time)

and di�erences equations (discrete time). The concept of atomic and coupled models,

introduced by [Zeigler, 1984], provides a way to construct composite models, reusing de-

scriptions stored in library.

The atomic model is a non-decomposable element. The behavior of this element is

governed by a discrete event model. Fundamentally, an atomic model has a time base,

inputs, states, outputs and functions to determine the next states and outputs from current

states and inputs.

A coupled model is a structural model. It describes a structure by interconnection

of basic models. Each basic model of the coupled model interacts with other models to

produce the overall behavior. The basic models are either atomic models or other coupled

models, the coupling of these models is carried out hierarchically.

Parallel to the development of DEVS models presented above, B.P. Zeigler has devel-

2.3. Reuse in Modeling and Simulation 23

oped the concept of abstract simulator [Zeigler et al., 2000]. The simulation architecture

is derived from the hierarchical structure of DEVS coupled models. An abstract simu-

lator is an algorithmic description to implement the functions of the model to generate

its behavior. Such a simulator is obtained by matching for each element of the model

a component of the simulator. The construction of a simulator independent from the

model allows a separation, during development, of the modeling and simulation parts. To

perform a simulation, a hierarchy of processors, equivalent to the hierarchy of models is

constructed. Each component of the model is associated with a processor of the hierarchi-

cal structure of the simulator. Each processor participates in the simulation by executing

the functions that express the behavior of the model.

Processors are: Simulator that provides simulation of atomic models using the DEVS-

de�ned functions; Coordinator that ensures messages routing between coupled models

depending by the de�nitions of coupling; Root Coordinator who manages the overall sim-

ulation. Processor starts and stops the simulation and manages the global time. The

simulation is carried out through exchange of speci�c messages [Zeigler et al., 2000] be-

tween di�erents processors.

CD++ CD++ [Wainer, 2002] is a software package for M&S based on the DEVS for-

malism. CD++ can be executed on one computer or on several computers. It can also be

executed in real time or in parallel. Atomic DEVS models can be programmed in C++.

CD++ is accompanied by CD++Builder which is an Eclipse plugin providing a develop-

ment environment for CD++ simulation projects. CD++ allows in addition to parallel

executions to interface with other machines or services. Several solutions are available for

integration and reuse such as the compatibility with the HLA standard [Pearce, 2003] or

through the RESTful protocol, i.e. using webservices. The use of web services enables the

integration of application or data from heterogeneous sources (mashup) within the simu-

lation. In [Harzallah et al., 2008], the authors describe how they combined three sources

(the CD++ simulator, a worldwide weather service, and Google Map) to obtain a new

forest �re spread simulation.

HLA In 1996 and spurred by the U.S. Army, the High Level Architecture (HLA

[Dahmann et al., 1997]) became a standard that de�nes how to create a global simulation

composed of distributed simulations interacting without being recoded. In HLA, each

simulation is called federated, and it interacts with other federated simulations in what is

named in HLA a federation, which is actually a group of federated. In HLA, communica-

tion is established by sharing, dissemination and reception of information. Communication

between federated is managed by a Run-Time Infrastructure (RTI). A High Level Architec-

ture consists of the following components: Interface Speci�cation, that de�nes how HLA

compliant simulators interact with the Run-Time Infrastructure (RTI). The RTI provides

a programming library and an application programming interface (API) compliant to the

interface speci�cation; Object Model Template (OMT), that speci�es what information

is communicated between simulations, and how it is documented; Rules, that simulations

must obey in order to be compliant to the standard.

24 Chapter 2. State of the Art

Open Simulation Architecture OSA (Open Simulation Architecture) [Dalle, 2006,

Dalle, 2007a] is the prototyping software platform used in this thesis to experiment and

validate our new concepts.

OSA is a collaborative platform for component-based discrete-event simulation. It has

been created to support both M&S studies and research on M&S techniques and method-

ology. The OSA project started from the observation that despite no single simulation

software seems to be perfect, most of the elements required to make a perfect simulator

already exist as part of existing simulators. Hence, the particular area of research that

motivated the OSA project is to investigate practical means of reusing and combining

any valuable piece of M&S software at large, including models, simulation engines and

algorithms, and supporting tools for the M&S methodology.

OSA has been designed as a layered architecture in which each layer is devoted to a

particular M&S activity or concern, e.g. development, systems modeling, simulation, ex-

ecution control, deployment, platform administration, and testing. Each layer is designed

to be self-contained while still o�ering the possibility to overload existing layers. As each

layer describes a set of components that can be extended or modi�ed by other layers, it

makes reuse easier. Indeed, when reusing existing components, a common issue is that

some adaptations are usually required in order to match the requirements of the new us-

age context. In the case of OSA, these adaptations can be limited to the reusing context

without requiring changes on the original implementation (which might be used in other

contexts).

This layered architecture is inherited from the FRACTAL component framework

[Bruneton et al., 2006], which is the basis of our component-based architecture. FRAC-

TAL is a hierarchical component framework o�ering some bene�ts such as shared compo-

nents [Dalle et al., 2008]. FRACTAL comes with an Architecture Description Language

(ADL) called FRACTAL ADL, based on XML, that fully supports the layering principle

described above, by means of advanced object oriented constructions such as heritage and

overloading of ADL de�nitions. Another interesting feature of FRACTAL is the fact that

it supports the addition of any number of non-functional concerns, by means of dedicated

controllers, placed in the membrane of the components. Common examples of such con-

cerns are persistence, distributed execution, life-cycle management, naming, and binding.

In OSA, such speci�c controllers are used for the particular needs of M&S (simulation life-

cycle, instrumentation, event scheduling, and so on). FRACTAL and FRACTAL ADL

are further described in Section 2.4.

OSA is also meant to become a front-end / back-end architecture, with plans to rely

on Eclipse as a front-end graphical user interface for the de�nition of the various inputs

needed in a simulation experiment. However, the necessary Eclipse plug-ins are still under

development or still need to be integrated when reused from other simulators (e.g. the

statistical analysis tools from the Omnet++ simulator [Varga, 2001]).

At the begining of this thesis, OSA included a simple simulation engine called

SPR (Single Process with Reentrance) based on the AOKell Fractal Component

implementation[Seinturier et al., 2005]; this engine implementation could barely be dis-

tributed for parallel execution despite tools such as FractalRMI would allow it, because

2.3. Reuse in Modeling and Simulation 25

of the centralized design of the simulation engine and some limitations of the FractalRMI

factory that would limit the maximum size of a simulation to a few thousands of com-

ponents; the compilation of an OSA project was performed locally, using the ant Java

building tool; although OSA already included an extension of FractalADL for de�ning

observation probes, it was missing the processing part of the instrumentation framework.

As we will see throughout the remaining of this thesis, our contributions to OSA

include a redesigned engine based on the Fractal/Koch membrane compiler, an optimized

distributed execution mode that allows OSA to scale to con�gurations of up to millions of

components, a network-centric architecture based on maven, which also proviodes a new

multi-layer project layout, and a full-featured instrumentation framework.

2.3.3 Reusing Techniques in Modeling and Simulation

We di�erentiate through simulators presented above 6 di�erent ways to reuse:

• Model reuse: NS2/3 and Omnet++ allow to reuse model in several studies thanks

to the NED or Otcl languages. Models can also be reused in bigger models thanks

to component-based approach.

• Simulation reuse: HLA lets you assemble and operate all the di�erent simulations

that could not communicate directly. In HLA, reuse and interoperation are limited

within the federation.

• Formal reuse: DEVS o�ers syntactical reuse through a universal speci�cation inde-

pendent of implementation. A formal model will behave the same way regardless of

the implementation adopting the DEVS speci�cation.

• Software reuse: JAMES II proposes reuse at all levels of the simulation through

a plugin architecture. Reuse of di�erent plugins and their assemblies provides a

simulation perfectly adapted to the needs of the user.

• Mashup reuse: CD++ proposes to combine application and data using web services

within the simulation. Integration of real life information can be very interesting

in simulation to predict for example the evolution of a system in case of emergency

(�re forest, hurricane, . . .).

• System reuse: Sometimes real elements of the system under study can be reused in

the simulation, a technique which is also called emulation. For example, this tech-

nique is often used in network simulation, where the network stacks implementations

within the Operating System kernel can be reused withing simulations. In this case,

for example, one solution is to change the OS interface library using LD_PRELOAD

on unix systems. Another solution (found in NS3 [Lacage, 2010]) is to use an ELF

dynamic loader to run the same application binary into the simulation or into the

system.

These techniques are not antagonistic and can be used together.

26 Chapter 2. State of the Art

2.3.4 Open Questions for Reuse

Instrumentation Although some authors carefully describe the implementation de-

tails of a simulator and classical discrete-event simulation algorithms (e.g. Banks et al.

in [Banks et al., 2004, Andradóttir, 1998], or Fujimoto in [Fujimoto, 2000]), none do ac-

tually describe and discuss the issues related to the management of the data produced

during a simulation run: most of them simply assume that statistics are computed dur-

ing the simulation and either saved on-the-�y for later processing, or directly used to

produce a �nal execution report at the end of each run. Some authors, like Andradót-

tir [Andradóttir, 1998], propose techniques to reduce the computational complexity of this

dynamic observation and on-line statistics computation.

Others, like [Himmelspach et al., 2008], while still mainly focusing on experiment plan-

ning issues, acknowledge that handling the huge amount of data produced by a simulation,

especially in a distributed environment, is a complex task. For this purpose, they propose

a simple architecture in which instrumenters instantiate observers, that, in turn, may use

mediators to handle the transmission during the simulation of the data across the network,

to their storage destination. In JAMES II, the model must notify observers that variables

have changed. This prevents reuse without source modi�cation of model that was not

originally made for JAMES II.

In [Zeigler, 1984], Zeigler et al. further re�ne the methodology by introducing the

concept of Experimental Frame as follows: �[An experimental frame] is a speci�cation of

the conditions under which the system is observed or experimented with�. Hence, their

Experimental Frame not only describes the instrumentation and output analysis but also

drives the simulation. Thanks to this separation between the Experimental Frame and

the system model, it is possible to de�ne many Experimental Frames for the same system

or apply the same Experimental Frame to many systems. Therefore, we can have di�erent

objectives while modeling the same system, or have the same objective while modeling

di�erent systems.

In [Gulyas and Kozsik, 1999], Gulyas and Kozsik address the issue of separation of

concerns in simulation using AOP. But their application of the AOP paradigm is limited

to the gathering of simulation data. They do not consider using AOP for instrumentation

and analysis.

In [Varga and Hornig, 2008], Varga and Hornig address the issue of results' analysis.

They propose Scave, a tool to post-analyze simulation data. Scave can apply a batch

of analysis to several simulation data �les. This favors the comparison between similar

studies by using the same analysis process on several simulation outputs but does not raise

questions about data gathering.

Integration In the previous section we discussed the bene�ts of reuse, but often it is

con�ned to the reuse within a single simulation. For example, simulation frameworks o�er

capabilities to facilitate the production of generic models. In some situations, it may prove

to be valuable to reuse elements coming from other simulators. Such elements include

reference models as well as engines, simulation tools, or even part of real systems running

in real time. It is also interesting to integrate a simulator as a back-end, particularly to

2.4. Software and Reusing Techniques Used In This Thesis 27

reuse pre-processing tools such as experimental planning.

In the simulation platforms presented above, only HLA-compliant simulators and

CD++ have developed techniques for integration. Integration within HLA has a cost

since it is necessary that simulators develop a communication layer compatible with HLA.

In addition, the integration is con�ned to the reuse of entire simulation within federations.

Mashup technique used in CD++ allow the integration of any software or data through

web services. It's really interesting to integrate content from the world wild web but

ine�ective for the integration of simulation tools that do not o�er web services. Emula-

tion is another technique for software integration. An emulator is a program that allows

to run software on a platform which it is not intended for. The simulator emulates the

underlying system expected by the software. This implies that the simulator intercepts

the system calls of the software and returns responses to the software which runs on the

targeted system. NS3 o�ers an emulation solution for the integration of simulation in real

networks or the integration of real network node in the simulation. Another solution come

from software engineering: the encapsulation in components. The component-oriented

programming allows a software unit to be assembled with other components through en-

capsulation in a component. Integration without modi�cation in components can be done

in di�erent ways: using the inheritance feature o�ered by object-oriented programming,

or using aspect-oriented programming.

2.4 Software and Reusing Techniques Used In This Thesis

This section presents software tools and techniques used in this thesis. Section 2.4.1

presents the Fractal component model. Then, section 2.4.2 presents the architecture de-

scription language associated with the Fractal Component model. Section 2.4.3 presents

the aspect-oriented programming paradigm. Finally, section 2.4.4 presents the Apache

Maven project management and comprehension tool.

2.4.1 FRACTAL

FRACTAL is the ObjectWeb Consortium component reference model

[Bruneton et al., 2004]. FRACTAL is neither a software environment nor a run-

time executive. It is a speci�cation. In other words, it is a set of rules and features

that a component-based software architecture is supposed to follow or implement in

order to be compliant with this model. FRACTAL does not mandate the use of any

speci�c programming language. On the contrary, it allows to combine component

implementations possibly based on di�erent programming languages.

The FRACTAL speci�cation de�nes several levels and sublevels of compliance. These

levels allow an implementation not willing or not able to implement completely the model

to state how much of the speci�cation it complies with. At the lowest level, a component

architecture claiming to be compliant with level 0.0 is just supposed to implement its

components using the object programming paradigm. At the highest level, a component

architecture claiming to be compliant with level 3.3 is supposed to fully implement all the

28 Chapter 2. State of the Art

features of the speci�cation.

Compared to standard (Java) object instances, components have the ability to sup-

port (or obey to) non-functional concerns, such as life-cycle, naming, access control or

persistence to name a few. More precisely, �non-functional� means that it is a concern

that is not related to the business logic of a given component, but applies equally to all

components. Let's look closer at an example with the life-cycle concern: the life-cycle

concern is about starting and stopping a component without compromising the whole

application; it is meant for high-availability applications, to allow any component to be

safely replaced with an upgraded version without shutting down the whole application.

This concern applies equally to all the components of the application regardless of their

speci�c business: it is a non-functional concern.

In FRACTAL, these non-functional concerns are implemented by means of dedicated

controllers, placed beside the functional code (or merged with it, depending on the FRAC-

TAL implementation). The list of controllers associated to a given component is merged

into an entity called a membrane in the FRACTAL jargon. Compared to other compo-

nent models, an interesting feature of FRACTAL is that it allows to build new custom

membranes, by adding, removing or replacing any such controller to or from an existing

membrane.

Despite most of the FRACTAL implementations come with a minimal set of default

controllers, none are explicitly required by the FRACTAL speci�cation. This lack of min-

imal requirement makes the component model extremely versatile, but it incurs a slightly

heavier programming cost, because the exact list of available controllers must be retrieved

by introspection. For example, let's consider the so-called naming-controller, which is

in charge of assigning a name (any string value) to a component. Because this very basic

feature is optional, the corresponding controller is not required to be present. Therefore,

a careful programming requires that introspection is used to retrieve that controller prior

to using it, because there is a risk that it might not be available. This programming con-

straint is a deliberate choice of the FCM designers. On one hand, if that naming feature

was required to be present in all components, then the programming would be easier be-

cause the corresponding controller could be accessed without caution. On the other hand,

forcing any feature that could be useless to be associated to all component might result in

very big components each possibly having a signi�cant amount of useless code (and bugs).

Hereafter, we summarize some of these key features (see [Bruneton et al., 2004] for the

complete description).

Component external structure A FRACTAL component is an object-oriented

unit of code that has external interfaces. These interfaces may be of two kinds: either client

or server. The former emits service requests, the latter receives service requests. Interfaces

are identi�ed by a string name. Their name must be unique for a given component but

names may be reused for naming interfaces in other components. A client interface is

intended to be bound to a server interface.

2.4. Software and Reusing Techniques Used In This Thesis 29

sub−component

content

binding

external

interface component
shared

membrane

Figure 2.1: FRACTAL component model.

Membranes The control logic is de�ned in the FRACTAL component model with

a membrane composed of controllers, each one being specialized with a particular control

mechanism (binding management, lifecycle, etc.). In [Seinturier et al., 2006], Seinturier et

al. apply to the design of the control layer the same principles which were applied to the

application layer: engineer the control with components. By �contractually specifying the

interfaces� [Szyperski, 2002] of these control components, they foster their reuse, clarify

the architecture of the membrane, and ease the development of new ones.

The most widely used control membrane in FRACTAL applications is the one asso-

ciated with primitive components. The architecture of this membrane is illustrated in

�gure 2.2. This membrane provides �ve controllers, for managing the lifecycle (LC), the

bindings (BC), the component name (NC), the super components (SC) and a controller

(Comp) implementing the general Component interface, which is available for all FRAC-

TAL components. As a matter of convention, provided interfaces are drawn on the left

side of the components, and required interfaces are on their right side. Bindings represent

communication paths between the controllers.

Figure 2.2: Primitive membrane: control level for primitive components.

30 Chapter 2. State of the Art

The architecture presented in �gure 2.2 illustrates that the control function for primi-

tive components is not simply realized by �ve isolated controllers, but is the result of the

collaboration of these �ve controllers. Compared to a purely object-oriented approach, a

component-based solution for the implementation of control membranes allows describing

explicitly the dependencies between controllers. New control membranes can be developed

by extending existing ones, or simply by developing a whole new architecture.

From a simulation point of view, easily develop controllers allow to quickly implement

new formalisms, new algorithms, or add non-functional services such as persistence to

simulation components.

Hierarchical structure Components may have a hierarchical structure (�g 2.1).

Hierarchical components are made of a controller part (also called membrane) and a con-

tent part. The content part is composed of one or more components. Since a membrane

and its content recursively form a component it may have external interfaces. It may

also have internal interfaces. As external interfaces, internal interfaces may be either of

type client, or of type server. Internal interfaces are only available to components of the

content part. A component of the inner part may only bind its external interfaces to

external interfaces of other inner components or to the inner interface of its surrounding

controller. Therefore, the model strictly forbids a component to bind its external inter-

faces to the ones of components outside its membrane or inside its neighbouring (inner

part) components.

Interface Introspection Introspection is the ability for an object to collect useful

information about other objects (possibly including itself). In the FRACTAL model,

components have the ability to introspect their interfaces. For example, a component may

retrieve its own list of available internal and external interfaces.

Functional and controller interfaces A functional interface is an interface used

to o�er or obtain services to or from other components. A controller interface is a server-

only interface. It is o�ered to a component to access non-functional services, such as

introspection, (re)con�guration, persistence, service policy, life cycle control (ability to

start/stop a component), and so on.

Factories and templates A factory component is a component that has the abil-

ity to create other components. FRACTAL distinguishes two kinds of factories: generic

factories, that have the ability to create several kinds of components, and standard com-

ponent factories, that only have the ability to create one kind of component. Templates

components are a special kind of standard factory components that may be recursively

composed of factories, and serve as a model to create normal components in a quasi iso-

morphic manner (isomorphic meaning the created component has the same hierarchical

structure as its creator template). Since factories are components and components are

created from factories, a special component is required to initiate the recursion. This

special component is a generic component factory called �bootstrap�.

2.4. Software and Reusing Techniques Used In This Thesis 31

Shared components The FRACTAL model allows a component to appear in the

content of several distinct enclosing components. Such components are called shared

components. This property has two noticeable consequences: (i) a component is possibly

placed under the control of several surrounding controller components and (ii) a shared

component may directly interact with components located in the inner parts of several

distinct components.

2.4.2 FRACTAL ADL

The FRACTAL Architecture Description Language (FRACTAL ADL) is a contributed

software Library, written in Java, which is part of the ObjectWeb Consortium's FRAC-

TAL project. FRACTAL ADL provides a Factory component that reads architectures

descriptions from �les and build the corresponding hierarchical component-based software

architecture in memory. These architecture descriptions are provided as XML de�nitions,

according to a Document Type De�nition (DTD).

The FRACTAL ADL Library is built using a collection of FRACTAL components.

Interestingly the component assembly that forms the FRACTAL ADL factory component

is built recursively: it reads its own architecture description (i.e., the architecture of the

hierarchical components used to implement the FRACTAL ADL factory) using a hard-

coded bootstrap component architecture. Thanks to this �exible, re�exive architecture,

the FRACTAL ADL components can be extended at will, which in turn allows to extend

the ADL itself, and therefore the language de�nitions it is able to recognize. This �exi-

bility might seem excessive, but it is consistent with the FRACTAL philosophy described

earlier, in which the non-functional services provided by the membrane of a component

can be customized and extended at will. This ability has been used to extend the origi-

nal ADL in various directions, such as including support for the distributed execution of

components for example. In the OSA project[Dalle, 2007b], we used this extension capa-

bility to allow the scheduling of exogenous events directly within a (model) architecture

de�nition, or to specify the points in the modeling code where to collect data samples for

the instrumentation framework.

Although almost all the content of the Factory could be re-engineered, and therefore

almost all its functional speci�cations could be changed, a typical FRACTAL ADL Factory

supports the following constructs :

• de�nition of a component, which is a container for more de�nitions, specifying its

name and source (either binary code or another ADL de�nition �le),

• speci�cation of component interfaces (services o�ered and used),

• list of components bindings (how services o�ered by some components are connected

to services used by others)

• component location (on which host to deploy the component instance for execution)

• component content (list of sub-components in case of a hierarchical component)

32 Chapter 2. State of the Art

Listing 2.1: A sample FRACTAL ADL declaration that de�nes an application made of
client and a server.

<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
<!DOCTYPE definition=" skipped . . . " >

<definition name="ClientServeurApp">
<component name="Cl i en t ">

<interface name=" c l i " role=" c l i e n t " signature="Cl ientSvc "/>
<content class="Cl ientImpl "/>

</component>

<component name="Server ">
<interface name=" srv " role=" se r v e r " signature="ServerSvc "/>
<content class="ServerImpl "/>

</component>

<binding client="Cl i en t . c l i " server="Server . s rv "/>
</definition>

• component special features (e.g. the template feature described later on, or the

capability of scheduling of simulation events used in OSA)

The Listing 2.1 illustrates the previous basic constructs through a simple client-server

example: at the top level, the application is composed of two components, a client, named

�client� and a server named �Server�. Since the semantics of each XML tag-word is self-

explanatory, it is not to be further explained.

2.4.3 Aspect-Oriented Programming

AOP [Kiczales et al., 1997] is a software engineering technique for modularizing appli-

cations bringing many concerns into play. The general idea is that, whatever the do-

main, large applications have to address di�erent concerns such as data management,

security, GUI, data integrity. Using only procedural or object orientations, these di�er-

ent concerns cannot always be cleanly separated from each other and, when applications

evolve and become more complex, concerns end up being intertwined, which leads to the

�hyper-spaghetti� phenomenon. AOP promotes three principles. Firstly, functional or

extra-functional aspects of an application should be designed independently from an ap-

plication core and so the application design is easier to understand. Secondly, it is not

easy to modularize common-interest concerns used by several modules, like logging service.

Those cross-cutting concerns can be described using AOP cross-cutting expressions that

encapsulate each concern in one place. Thirdly, AOP favors inversion of control principle.

Inversion of Control (IoC) is a design pattern attempting to remove all dependencies from

the business code by putting them in a special place where the goal is only to manage

dependencies. Considering a simple example of a lamp controlled by a switch, in basic

object-oriented programming, the control of the lamp is placed in the code of the switch.

Using the inversion of control principle with AOP the control of the lamp is no longer

in the code of the switch but in a dedicated aspect that will make the connection be-

tween the switch and lamp. This results in a better separation of concerns and reusability.

2.5. Discussion 33

Several languages and frameworks are available for programming aspect-oriented appli-

cations such as AspectJ [Kiczales et al., 2001] for the java programming languages or

AspectC++[Spinczyk et al., 2002] for the C++ programming languages.

2.4.4 Maven

Apache Maven project is a project management and comprehension tool, developed by

The Apache Software Foundation. Apache Maven is a free software tool for managing

and automating production of Java software. The goal is comparable to Make under

Unix: produces a software from source, optimizes the tasks necessary for this purpose and

ensures the production order.

Maven uses a paradigm known as the Project Object Model (POM) to describe a

software project. Each project or subproject is con�gured by a POM that contains the

information necessary to process the Maven project (project name, version number, de-

pendencies to other projects, libraries needed to compile, names of contributors, and so

on). This POM is materialized by a pom.xml �le at the root of the project. This approach

allows the inheritance of properties of the parent project. If a property is overridden in

the POM project, it covers those who are de�ned in the parent project. This allows to

reuse con�guration.

Another important feature and relatively speci�c to Maven is its dependency manage-

ment. Indeed, Maven can automatically download the dependencies of a project. Maven

can also publish a project on a repository in order to make it available to other projects.

The Maven dependency management is simpli�ed by the notions of inheritance and tran-

sitivity. Maven allows the use of di�erent categories of repositories:

• local repository includes everything that the developer has used and developed.

• global repository includes everything that have been publish publicly by the de-

velopers.

• enterprise repository makes available to all developers of a company private

projects.

The use of these repositories allows versioning, and thus promotes replayability by tracing

and downloading all the dependencies for a given version of a project.

Maven provides a plugin architecture for adding new features. These plugins are

available on Maven repositories, or can be developed. Thus, Maven can be con�gured to

suit our need.

2.5 Discussion

Recent success stories in Software Development and Designs have put the light on new

elements of discussion worth to consider in order to make reuse a true daily reality.

One of these is the Eclipse success story [des Riviêres and Wiegand, 2004]. The success

of the Eclipse development platform is mainly due to a simple but rather revolutionary

34 Chapter 2. State of the Art

philosophy: let everyone plug and �play� with what they want in the software platform.

This is a philosophy more than just a technical solution, because the technical solution

(a plug-in-based architecture) comes with strong incentives for reuse. The Eclipse core is

only a minimal environment providing little functionality if we except its highly versatile

Graphical User Interface and its powerful plug-in management system based on OSGi

bundles [Gruber et al., 2005]. Indeed, in terms of ergonomy, it is very di�cult to �nd the

perfect design that will please every end-user. Hence, the more a complex software includes

a large set of default functionalities, the more it has chances to distress its potential end-

users.

Going one step further in the analysis, it appears that because Eclipse has such an

ability to adapt to the users needs, and in particular not to force them to stick to a par-

ticular solution, and because early Eclipse contributions where plug-ins to support Eclipse

plug-ins development themselves, it adequately and conveniently supports any speci�c

corporate culture (provided that new plug-ins are developed to support this culture). In-

deed, many software companies have their own legacy corporate methods and procedures.

Therefore, the decision to move from old but well known developments tools supporting

these legacy methods and procedures to new tools is often perceived as a major risk. The

ability of Eclipse to embed such legacy methods and corporate procedures by means of

dedicated plug-ins is certainly another key of its success in the software industry.

However, the challenge with such a philosophy is to prime the pump of contributions

and initiate a virtuous circle: as long as no plug-in is available, nobody wants to use

an empty shell, and therefore nobody is interested in developing new plug-ins for such

a platform. In order to make such a product appealing, a minimal set of functionalities

needs to be provided by the software authors, in addition to the core functionalities. This

is where Eclipse made a di�erence: instead of providing these functionalities as a �xed

immutable set, they are provided as regular, and thus replaceable plug-ins.

Chapter 3

Design Considerations

Contents

3.1 Engineering in M&S . 37

3.1.1 Process and Development Models . 37

3.1.2 Team Management . 38

3.1.3 Project Management . 38

3.1.4 Quality Management . 38

3.1.5 Design and Documentation of Products 39

3.1.6 Engineering Requirements . 39

3.2 Modeling and Simulation Application Design Considerations . . 40

3.2.1 Software Design . 40

3.2.2 Open Architectures . 43

3.2.3 Discussion . 44

36 Chapter 3. Design Considerations

In this chapter1, we consider design questions for M&S software. We claim that dis-

cussing, designing, developing, and comparing M&S products should start with software

engineering considerations. We shortly introduce some of these engineering concepts and

discuss how these relate to the M&S domain.

All processes in M&S can be seen as software engineering, and thus we discuss herein

from an engineering point of view which engineering techniques we could apply to improve

the overall quality. M&S �engineering� may be considered according to three main com-

plementary dimensions: either we consider the design of a M&S software product or we

consider the design of a model or we consider the design of a simulation (i.e. experiment

design). In the following we focus on the �rst term which is essentially software engi-

neering, because we strongly believe that a good software design is the �rst requirement

for achieving trustworthy results as soon as a computer is used to produce these results.

Nevertheless many of the techniques hereby discussed can be used for all M&S engineering

dimensions.

The question addressed in this chapter is to identify which requirements a good M&S

software product must ful�ll, and how software engineering can help in ful�lling these

requirements. Obviously, we must consider the software dimension of such products, and

refer to the abundant literature about software engineering. For example, Sommerville

states that a good software should: �. . . deliver the required functionality and performance

to the user and [it] should be maintainable, dependable and usable.� [Sommerville, 2007,

p. 6].

Hence, we can �rst use software engineering to understand M&S tool building as a

well-de�ned project, with feature and time management, using a development paradigm (a

process model to be used, e.g. V-Model, waterfall; a programming habit, e.g. eXtreme Pro-

gramming), and so on. In addition we can apply software engineering methods to design

the M&S software product, e.g. pattern based design description [Gamma et al., 1995],

we can and should apply testing techniques to our software product, we can de�ne

maintenance rules for the software, we can try to �nd (architectural) patterns which

may help on creating M&S tools [Garlan and Perry, 1995], and last but not least we

can control the overall production process (e.g. according to ISO 9001). Experience

shows that a well-de�ned development process as well as reuse can increase the quality

([Endres and Rombach, 2003, pp. 77], [Sommerville, 2007, p. 417]). Well-designed M&S

software products should support reuse of existing (software) components. Through reuse,

such components can be continuously improved in time (both in terms of quality/relia-

bility and e�ciency), and gain a better understanding from their (re)users community.

Therefore, in the end, reuse is expected to make solutions more mature and ultimately

improve the e�ciency of our research e�orts.

In the following we sketch di�erent techniques and patterns which can be used to

discuss, to design, to develop, and to compare M&S software in general.

1This chapter was written in collaboration with Jan Himmelspach and Olivier Dalle and has been
published in the 41st Winter Simulation Conference (WSC) in Austin, Texas [Dalle et al., 2010].

3.1. Engineering in M&S 37

3.1 Engineering in M&S

Engineering techniques can be applied in modeling, experiment design, and M&S software

product design and development. The very �rst engineering discipline to be taken into

account is essentially software engineering � the result is a software product with which we

can start to apply M&S to applications, or with which we can start to do M&S research.

Software engineering methods generally aim at the production of high-quality software in

a cost e�ective way.

Having a M&S product to work with we can start with �model engineering� � i.e. we

start a model building process including calibration and validation steps. Having both

a model and a M&S software we can execute our experiments with, we can �nally start

with the engineering process of our experiments. For all three engineering tasks, common

engineering techniques can and should be used.

In the following we give an overview of relevant software engineering techniques to be

used if a M&S software is being developed.

3.1.1 Process and Development Models

Process models play an important role in the de�nition of �projects�. They make clear

what has to be part of the project, and when we have to expect to enter a new phase and

when we might have to enter an old phase again.

There are some specialized process models for M&S around as well [Law, 2007,

Balci, 2003, Sargent, 2008, Van Waveren et al., 2000, Wang and Lehmann, 2008]. These

adapted models de�ne and align di�erent phases in a M&S project, however they all lack

the (explicit) phase of the software development. Partially this might be related to the

fact that often no precise distinction is made between model, simulation algorithm, and

simulation, nor between a general and a domain speci�c solution, and that often the idea

of �reuse of structures� is not considered at all.

3.1.1.1 Process models

The increasing number of process models can be applied whenever something is about

to be produced / constructed. Among these the waterfall model, v-model, sequential

model, concurrent model, prototyping (vertical, horizontal), evolutionary model, compo-

nent based model, and spiral model. All these process models have in common that they

de�ne how the development process will �ow � thus do we have to expect cycles, how many

main phases do we have, and what are the phases? These models thereby help to manage

the project � often a phase can only be entered if the previous phase has been �nished,

often phases are associated with milestones � and thus you de�nitely know whether you

have �nished a phase or not, and they label the phases, and thus de�ne what has to be

done for a successful progress.

The process models from the M&S domain focus on the processing of simulation stud-

ies. Thus they typically encapsulate the path from model building over experiment design

to experiment execution. Typically the recommendation is that you explicitly select a pro-

38 Chapter 3. Design Considerations

cess model for all types of engineering. If you consider the complete development process

comprising software engineering, model engineering, and simulation engineering then you

might end up using di�erent process models per task (or a M&S speci�c one for the latter

two) and another process model for the overall (here 3/2-step) process.

3.1.1.2 Development models

Another important aspect on developing software is the organization of the development.

Various team structures can be used (hierarchical structures (e.g. chief programmer) ver-

sus �at structures (e.g. egoless programming)), team members can work on their own, or

they work together (e.g. in eXtreme Programming (XP)). However, not all organizational

forms can be used for all team settings. In the academic world teams are often pretty

small, sometimes they comprise exactly one member, e.g. someone working on her/his the-

sis, and thus some development models cannot be applied at all (e.g. pair programming

in XP).

3.1.2 Team Management

The composition of a team (e.g. you could try to get complementary personalities of

the team members), the skills of the team members, their motivation as well as the work

setting have a major impact on the overall development process. Consequently a good team

management is one of the key factors for a successful project. Any project management is

essentially based on a good team management: you will not be able to meet your project

goals with too few, unexperienced, unmotivated or overstrained people. This gets of special

importance in the academic setting where team members might be undergraduates or just

graduated ones (low(er) experience level) and it might be especially bad in the �eld of

M&S due to the number of di�erent tasks to be done for M&S software and the knowledge

required to do so.

3.1.3 Project Management

To understand the work on a given subject as project, including time and resource man-

agement, is considered to be a corner stone of a successful project. The management of a

project has to be aligned with the process and the development model to be used. If all

potential engineering tasks (tools, model, and simulation development) shall be applied

within one large M&S project, project management gets even more importance � we need

a good time management with milestones, which precisely de�ne when we can start with

subsequent engineering tasks. Project management should include quality management.

I.e. we have to take quality concerns seriously, and we have to integrate steps which try

to check whether we have reached the quality we are interested in.

3.1.4 Quality Management

Quality is a multifaceted, but widely used term [Himmelspach and Uhrmacher, 2009b].

And although many di�erent notions of quality exist, almost everyone agrees to the state-

3.1. Engineering in M&S 39

ment that �quality� is of importance. Means to improve �quality� are around for quite a

while now, and they are intensively applied. A relatively well-known example is the ISO

9001, and its application in many di�erent industries. Some of the notions of quality focus

on the production as such � they try to de�ne minimal aspects to be taken into account,

e.g. they might request a minimal documentation of the process applied. In research this

was / and still is done by the publication process. However, sadly, the latter is often of

poor quality [Pawlikowski et al., 2002], and thus standards used in other domains might

get of increasing interest here as well. Typical means to increase the quality are validation,

veri�cation, and well-de�ned development rules (as coding styles, repository usage, ...).

3.1.5 Design and Documentation of Products

At latest from 1995 on [Gamma et al., 1995] the usage of design patterns to describe

parts of software started to be common. Together with architectural patterns they can be

used to describe a system without the need to name all implementation details from the

beginning on, but still being relatively precise.

To use such descriptions can help to direct those who are going to realize a concrete

piece of software. Software pieces developed should �t into the overall architecture, and

therefore the architecture has to be well-de�ned, because the variety of alternatives on the

realization of a concrete piece of functionality is large. The latter includes alternatives

on the implementation / algorithmic level (e.g. di�erent event queues, random number

generators, simulation algorithms), as well as interfaces, and the overall design concept

(e.g. are these �pieces� services, plug-ins, are they to be included in a server, are they

in the back- or front-end, what shall be reusable). In addition a good documentation is

essential for reuse. To use abstract descriptions can help to make the product reusable at

all because then people do not need to understand all implementation details until they can

make a �rst judgment about the re-usability. And it is a good base for discussions about

and the comparison of products. In the following we mostly focus on design considerations

under the aspect of �reuse�.

3.1.6 Engineering Requirements

Sophisticated engineering requires knowledge of its methods and tools. This comprises

here knowledge in software engineering, knowledge in experimental design, and knowledge

in modeling. To execute all required engineering steps thoroughly requires a lot of time.

But time is a limited resource, as most often man power is as well. Thus the main question

is: where can we save time? If the �rst step of the overall engineering process is software

development we should take a closer look at this one � especially if all subsequent steps

are based on this. This gets even more important if we take a look at the ever growing

number of M&S products � why do we always have to redo everything from scratch?

40 Chapter 3. Design Considerations

3.2 Modeling and Simulation Application Design Consider-

ations

If we start to develop a new high-quality M&S software product we have to get clear about

a variety of issues. At �rst we need to make a number of top level decisions which are

often hard to revise later on:

• intended use of the product (modeling, simulation, method development, reuse, ...)

• intended user group

• general architecture of the software

• functionality to be included

In addition, due to the widespreaded usage of M&S it seems to be recommendable to

setup a glossary of commonly used terms. This can help to avoid misunderstandings stem-

ming from commonly used terms with di�erent notions as model, simulation, and experi-

ment. These considerations might provide a base for the initial design decision: the general

architecture of a the M&S software product to be developed. In addition, due to the wide-

spread usage of M&S, the requirements for a �good� M&S software may di�er � because dif-

ferent users might have a di�erent notion of quality [Himmelspach and Uhrmacher, 2009b].

Independent from any decision, the major requirement for M&S is credibility, i.e. results

of M&S should be reliable. Therefore it is essential that developers get aware of the overall

number, type, and interactions between the �bricks� of the software to be created. For

M&S this means that we we need to decide which �desirable software features� [Law, 2007,

page 193 �] we'd like to include from the overall set of possible techniques and elements

[Himmelspach, 2009]. Keys to ful�ll the major requirement of credibility are a careful de-

velopment of the overall product and of all elements. Therefore a careful VV&A process of

everything developed is mandatory, in particular this is well-known for modeling, and it is

something which should be supported by M&S software in general [Balci and Nance, 1992].

But we need the same for the M&S products the model is created in / with.

3.2.1 Software Design

Architectural designs and design patterns are important aids if an application shall be

described. They help to think about problems and solutions in a more focused, abstract,

and nearly standardized manner. Using explicit architectural designs and design patterns

can thus improve the overall development process. They can help on discussing problems,

and they can lead developers to reusable solutions �tting to the overall system being

developed [Sommerville, 2007, p. 293].

In the following we take a look at a variety of architectural design alternatives for

applications, and we try to map them on M&S software: Are they usable at all, and if so,

are they usable for complete M&S products or just for parts of it?

3.2. Modeling and Simulation Application Design Considerations 41

3.2.1.1 Architectural design alternatives

The list of design alternatives given here is not complete and should thus be considered

as a �teaser� to motivate a search for additional ones if none of the alternatives listed here

is the right one for your purpose.

Model view controller AModel-view-controller (MVC) is a pattern for an architecture

which separates the model (data) and the controller (control logics), from any number of

views on the data. In M&S we can exploit this pattern for di�erent tasks such as modeling

and simulation execution. For modeling, the MVC pattern can be exploited to have

di�erent concurrent views on the model to be created. In simulation, the MVC pattern

can be used to describe the dependency between an (interactive) runtime visualization,

the executable model, and the simulation algorithm.

Layers A layers based architecture is an architecture in which high-level components

depend on low-level components which further depend on even lower-level components

and so on. The layered architecture supports modi�ability, portability and reusability of

each layer independently from the others thanks to the vertical decomposition.

In M&S layered approaches can be used to describe solutions for model composition,

model instrumentation, simulation execution, and the interplay of these.

Blackboard A blackboard based architecture is based on a centralized information ex-

change space � the �blackboard�. This architecture has been used in arti�cial intelligence

(AI) products, for example. Information is written to the blackboard and all involved en-

tities can read the information they are interested in. In AI this has been used to realize

cooperative problem solving strategies. In M&S blackboard based approaches can be used

for data collection, and for synchronizing simulation algorithms.

Client-server A client-server based architecture is an architecture for distributed ap-

plications, including distributed M&S products. These can be peer-to-peer, 2-tier, n-tier

or Cloud/Grid Computing products. This architecture can be used in two ways: a server

knows about the clients and can delegate jobs to these, or the clients send jobs to the

server. In M&S client-server architectures can be used for distributed computation, for

data collection, for model databases, and for data analysis.

Front-end and back-end Front-end and back-end architectures separate the overall

process of the application into two phases: in the front-end data is collected which is then

used by the back-end to perform operations on. Thus the front-end can be considered

to be the interface between users and the back-end. A strict distinction between front-

end and back-end can be found in M&S products as well � if models or experiments are

designed they are typically designed in the front-end and need to be transformed for the

back-end. This is used if models are created in a special modeling language, and if they

are transferred to a representation which can be executed in an e�cient manner.

42 Chapter 3. Design Considerations

Monolithic application A monolithic application takes care of everything on its own.

Usually parts of such an application cannot be reused, and they cannot be easily ex-

changed. M&S tools might be created in this manner. If so, they are often created to

compute a concrete particular simulation (with one model), on a single platform.

Service-oriented architecture A Service Oriented Architecture (SOA) provides the

systems functionality by a set of inter operating services. The services are only loosely

coupled, and systems based on this concept are especially suited for distributed computing

scenarios. Each service provides a well-de�ned function. A service does not depend on

the context or state of other services. Service-orientation can be used for M&S software

as well. Either services are just from the M&S software to realize a certain functionality

(e.g. databases or visualizations) or they can be realized as fully service-oriented archi-

tectures (e.g. simulation algorithm, modeling front-end, and random number generators

as services).

Pipes and �lters Pipes and �lters (also known as pipelining) depicts a system compris-

ing independent functional units each working on an input which is transformed by the

unit into an output. These functional units are combined in a chain, which means that

the output of the predecessor is the input of the successor. In M&S this architecture can

for example be used to realize an automated experiment execution and post processing of

the simulation data.

Plug-in architecture A plug-in (also known as add-in, add-on, snap-in, or extension)

based architecture allows to extend an existing application with new functionality without

the need to recompile the application. This functionality might be provided by third

parties, and thus it allows to integrate unforeseen features, helps to keep the application

small (you only need to include what you are in need of), and it helps on integrating

software distributed with di�erent licenses. Plug-in architectures can be built on existing

bases like the Java Plug-in Framework or OSGi. M&S software can be created based on a

plug-in concept as well. Thereby plug-ins can be exploited on a variety of levels, pursuing

a strict separation of concerns and making reuse possible and in our opinion �relatively

easy�. Plug-ins in a M&S software can be, for example, simulation algorithms, modeling

languages, optimization algorithms, event queues, random number generators.

Mixed architectures Sometimes several architectures are mixed for the creation of a

particular application. Mixing architectures is of interest if none of the standalone archi-

tectures can be used to describe the overall architecture of the software to be developed.

In M&S this seems to be common approach: M&S software can contain relatively inde-

pendent parts to support modeling, simulation run execution, and experiment de�nition

and control. Each of these might be realized using a di�erent architecture, e.g. simula-

tion execution might be realized based on a �client-server� architecture, whereby the the

modeling might be based on a �front-end � back-end� system.

3.2. Modeling and Simulation Application Design Considerations 43

3.2.1.2 About �classes� of M&S products

Many M&S products are labeled with one of the terms �library�, �framework�, �kernel�,

�platform�, �tool�, �workbench� or �environment�. It is hard to decide whether the name

is chosen correctly if the tools are not described in a su�cient manner, and/or if the code

is not fully available. Usually the name should indicate the type of the product, and thus

give a �rst hint on how one can use it. Consequently we should take care of using these. Li-

braries are collections of reusable functionality. Frameworks provide in addition to reusable

functions � as libraries already do � ��ows of control� [Johnson and Foote, 1988]. A frame-

work may be built on top of a set of libraries, and a framework might be used to create

more specialized solutions. Frameworks shall ease / speed up the development of software

from the domain they are created for, and they usually can [Madsen, 2003]. A kernel typ-

ically is the lowest software level available and comprises data and process management.

It is the base all software parts runnable on this kernel have to be built on. A middle-

ware typically provides support for the integration of components (e.g. CORBA), this

might include inter component communication, security, resource allocation, and transac-

tion management. A tool usually provides support for an individual task (e.g. a compiler,

word processor). They can be distributed as general-purpose, standalone tools or they

might be integrated into a workbench. A workbench is a set of tools to support di�erent

process phases of the production process. An environment typically supports all of or at

least a substantial part of the production process it has been created for. Therefore it

might integrate a number of workbenches [Sommerville, 2007, p. 87]. A platform typically

means a background system which provides the basics for other products to run on (e.g.

Java VM).

3.2.2 Open Architectures

The bene�ts of well-de�ned architectures are manifold and already mentioned above. Here

we would like to strengthen the idea of open architectures which can help to create concrete

software products e�ectively. For large companies it might work to have an own archi-

tecture, however for smaller groups it is recommended to use existing open architectures

[Endres and Rombach, 2003, p. 56]. This helps sharing results, and thus helps on creating

credible results in the end � if experts from di�erent domains add their knowledge. But

open architectures mean that there is an additional (small) burden for developers using

open architectures: they may run into the need to adapt their code to changes in the

architectures. However, we think that this burden is less important than the burden to

create a credible M&S application from scratch. An open architecture is not bound to any

architectural design � every architectural design can be created as an open architecture.

Open architectures can be developed from the beginning on as �open architecture� or they

might be released after some time of closed development. Open architectures have to be

available, and to be usable by everyone who is interested in.

44 Chapter 3. Design Considerations

3.2.3 Discussion

Technical solutions for reuse are rather well-known and often adopted in M&S but this

is not enough to achieve wide reuse. The technical solution must come with an open

philosophy that gives true incentives for everyone to reuse each other's contributions.

Of course, some technical solutions, like the High Level Architecture (HLA), have been

widely adopted, but this was more by necessity: HLA is a solution when two (or more)

simulators must be interconnected. In Eclipse, the reuse event is more opportunistic:

reuse often takes place in a more general optimization process, in which end-users tends

to ever improve the quality of their working environment.

And we believe this form of opportunistic reuse is a very missing element in the M&S

�eld. Indeed, we claim that every single piece of engineering (not only software) may be

worth to reuse and we should go further than reusing parts of models by encapsulation or

engines through middlewares / RTIs. However, applying reuse everywhere results in one

strong technical requirement (in addition to the usual methodology concerns about vali-

dating the reuse context): reusable pieces must be su�ciently separated. One solution for

solving this issue is to apply the Separation of Concerns (SoC) Software Engineering prin-

ciple. Examples of pieces that can be reused independently using SoC techniques include

the various levels of modeling, instrumentation, scenarios, experiment plans, deployment

maps for distributed execution, documentation templates, unit tests, V&V methods.

Net-centric architectures can help to establish such a broad reuse. For example, repos-

itories help to maintain precise version information and allow to track changes, special

databases make reusable elements available (and �ndable) and thus help on reproducing

experimental results, and publicly available and commonly used ontologies can help to

classify reusable elements.

Another important issue in reuse is licensing. A thorough discussion of the impacts

of certain licenses on reusability is out of our expertise but it is a serious issue with

which one should carefully deal. Some licenses might restrict reuse or come with con-

straints that require careful attention, such as the General Public License (GPL). Con-

sequently, for a wide-spread (re-)usage of products, �exible and open licenses should be

used. Component/Plug-in based approaches may help here, because they might ship with

di�erent licenses as the product they are to be used in � as long as their licenses are com-

patible with the product they shall be used in. This can lower the barrier to contribute,

because the authors can keep full (technical and legal) control over their contribution,

they can contribute to di�erent projects or even sell their product in the end.

Chapter 4

Contributions to Reuse

Contents

4.1 Motivations and Objectives . 47

4.2 SoC and Reuse in Model and Scenario 49

4.2.1 Advanced Scenarios Case Studies . 49

4.2.2 Man-in-the-middle Attacker with FRACTAL ADL 51

4.2.3 Spy-Ware with Aspect-Oriented Programming 53

4.2.4 Conclusion . 55

4.3 SoC and Reuse in Simulation Engine 55

4.3.1 Case Study: OSA Simulation-Engine 56

4.3.2 Simulation Concerns in ADL . 59

4.4 SoC and Distribution of Large Scale Simulation 61

4.4.1 FRACTAL RMI . 62

4.4.2 FRACTAL BF . 63

4.5 Other Means for Enforcing Reuse 64

4.5.1 Promote Reuse With Dynamic Architecture 64

4.5.2 Enforcing Reuse and Replayability with Maven 68

4.6 Conclusion . 70

46 Chapter 4. Contributions to Reuse

In this chapter, we investigate practical means of reusing and combining any valuable

piece of M&S software at large, including models, simulation engines and algorithms, and

supporting tools for the M&S methodology. Then, we focus on how to provide distributed

executions means that require no modi�cation on simulation software as well as models.

We also present our solution to develop and reuse models, scenarios and engines using

aspect-oriented programming and component models such as the FRACTAL Component

Model (FCM) through the OSA architecture.

We saw in section 2.3.3 that reuse can take several forms: model reuse, simulation

reuse, formal reuse, software reuse, or service reuse. Then we saw in section 3.2.3 that reuse

increases dependability, is less error prone, makes better use of complementary expertises,

improves standards compliance, and accelerates development. In this chapter, we propose

a solution that allows to go further by separating all the elements of a simulation. This

strict separation of concerns allows to add, replace or delete all the elements of a simulation.

Component programming allows a separation of concerns by components (which act as

black box). We can go further with the use of an architecture description language that

allows to view a simulation as a set of layers, each layer re�ecting a speci�c concern. There

is no limit on the number of layers that makes up a simulation. In addition, the use of

software engineering techniques such as aspect-oriented programming, which can reverse

dependencies, allows communication between elements de�ned in separate layers without

breaking the strict separation of concerns.

Figure 4.1 shows a simplifed view of the resulting OSA layered architecture. On the

left we have a Maven repository containing components. The central part shows the OSA

layered approach with simulation engine, models, scenarios and instrumentations. Ev-

ery layer can be composed by several sub-layers (such as the representation of the model

layer, scenario layer or instrumentation layer). Each layer is independent, communica-

tion between elements of distinct layer is done either through the component interfaces

(which assumes that a layer need another layer to work: low independence) or because

of the AOP (strong independence). The composition of all layers (through the mecha-

nism of inheritance and overloading of FRACTAL ADL) leads to a complete simulation

architecture.

Section 4.1 describes our motivations and objectives to promote reuse in modeling and

simulation software. Section 4.2 describes the use of FRACTAL ADL and AOP through

the design and reuse of models and scenarios. Section 4.3 describes the use of �componen-

tized� membranes and the extensibility of FRACTAL ADL through the implementation of

a new simulation engine. Section 4.4 describes the use of FRACTAL RMI and FRACTAL

BF to distribute a simulation without modifying the existing code. Section 4.5 describes

other means for enforcing reuse, such as our work on FRACTAL template to have a itera-

tion control (loop) in the ADL (4.5.1) or the Maven project management tool that enforce

reuse and replayability (4.5.2).

4.1. Motivations and Objectives 47

Figure 4.1: A view of the Open Simulation Architecture.

4.1 Motivations and Objectives

By repeating the simulation activities de�ned in section 2.3.1, we realize that reuse can

be bene�cial in all the stages of a simulation study. Solutions put forward and listed in

section 2.3.3 are not antagonistic and can work together. However, it is imperative to

separate concerns or it will be impossible to reuse an existing element of a simulation.

Our experimental platform OSA, based on the FRACTAL component model, allows to

strictly separate concerns through the use of FRACTAL ADL which allows to see each

simulation concern as a separate layer. Following, we list the forms of reuse we consider

in this thesis:

• Reuse of (model) architecture allows to de�ne an architecture of reference, and

have di�erent implementations that conform to this architecture. Thanks to the

component-oriented programming and the use of an architecture description lan-

guage, it is easy to de�ne a reference architecture and simply change the implemen-

tation of the components. Reuse of architecture can also prove to be interesting for

building to new architectures incrementally, by assembling existing architectures.

FRACTAL ADL mechanism provides overload and multiple inheritance to de�ne a

48 Chapter 4. Contributions to Reuse

new architecture by the composition of existing architectures. Section 4.5.1 covers

the work we have undertaken to add a new mechanism to FRACTAL ADL: iter-

ation control (loop). The iteration control in the ADL allows to de�ne dynamic

architectures more easily reusable.

• Reusing of model allows a model to be placed in di�erent experimental conditions,

using di�erent scenarios. This is the case when we want to test one solution in

several situations (test study). Reusing of scenario allows a reference scenario to

be applied to several models. This is the case when we want to test several solutions

in one situation (comparative study). Reuse of model and scenario is studied in

detail in section 4.2.

• Reuse of simulation engine and the strict separation of concerns between the

engine and the rest of the simulation allows to change the implementation of the

engine, but also to incorporate new simulation formalisms. This allows reuse of

models and engines from other simulators. Section 4.3 details the implementation

and the addition of an engine in our experimentation platform OSA. Chapter 6

details the integration of a formalism (DEVS) and an existing implementation (from

JAMES II) into our experimentation platform OSA.

• Reuse of computational resource con�gurations allows to test di�erent dis-

tributed simulation algorithms for a given con�guration of component resources.

Reuse is possible through the strict separation of concerns between the model, the

architecture and the con�guration of the distribution. This reuse is detailed in sec-

tion 4.4.

• Reuse of the instrumentation and analysis allows to apply multiple instru-

mentations to the same model (this is the case when reusing a model in di�erent

studies). It also allows reuse of a given instrumentation on multiple models (this is

the case in comparative studies where one wishes to observe the same variables on

di�erent but similar models). This form of reuse is studied in detail in chapter 5.

• Reuse of veri�cation is interesting for automatically checking di�erent implemen-

tations of the same type. The integration of models from other environments allows

to use the features of these environments. For example JAMES II provides a plat-

form for automatic veri�cation. It may be interesting to develop models in JAMES

II to take advantage of the automatic veri�cation and then use them in another

simulation platform such as OSA. We elaborate on this possibility in more details

in chapter 4.

• Reuse of tools for pre and post processing allows access to reliable and powerful

tools. Techniques for reusing tools such as the JAMES II experimental planning are

discussed in chapter 4 while techniques for reusing Scave, the post-processing tool

of OMNeT++ [Varga, 2001, Varga and Hornig, 2008], are discussed in chapter 5.

4.2. SoC and Reuse in Model and Scenario 49

4.2 SoC and Reuse in Model and Scenario

In the 70's, Zeigler introduced the DEVS formalism [Zeigler, 1976]: a formalism to rep-

resent the hierarchical structure and behavior of discrete-event systems according to the

Systems Theory. Later, Zeigler et al. further introduced in their Framework for Modelling

& Simulation the concept of Experimental Framework [Zeigler et al., 2000]. This Experi-

mental Framework separates the computer simulation concerns in two parts: on one hand

the model of the System Under Testing (SUT) and on the other hand, the Experimental

Frame (EF). Hereafter, we will refer to the part of the Experimental Frame that gener-

ates exogenous events (inputs) for the model part, as the scenario part. This approach of

separating concerns has bene�ts, such as allowing a better reusability of components.

From a methodological point of view, reuse allows to: (i) build reference model used in

several studies, particularly to compare di�erent solutions and (ii) bene�t from user feed-

back and/or improvements. Notice there are also situations in which reuse can simply not

be avoided. Indeed, we may distinguish two levels of component availability. At source

level, reusing an existing code o�ers enough �exibility to allow any desired modi�cation

(but at the cost of losing the results of a previous veri�cation and validation.) On the

contrary, when components are only available in compiled object code, reuse necessarily

happens without any modi�cation.

Furthermore, the approach of separating concerns may imply some limitations. For

example, Systems Theory normally prohibits direct interactions between the scenario part

and the inner parts of models, because interactions have �rst to go through the boundaries

of the outer components of the model in order to reach the inner ones. Furthermore, for

some studies, it may be useful to extend the previous de�nition of a scenario to include,

in addition to the ability to send exogenous events to the model, the ability of applying

structural changes to an existing model (before the simulation starts running).

In the following, we describe new techniques coming from the �eld of software engi-

neering that can be used in the �eld of simulation to get around these limitations while

enforcing the separation of concerns principles of the Experimental Framework. Hence, it

is worth noting that separating models and scenario allows a better reuse of components

in both parts: reuse of a given model with various scenarios, or reuse of a given scenario

with various models. In particular, it is often advocated that a model that can be reused

multiple times or used in combination with other models can save many time, expenses,

and e�orts [Davis and Anderson, 2004].

4.2.1 Advanced Scenarios Case Studies

We present hereafter two case studies to illustrate the new techniques we use to build

advanced scenarios reusing existing component models. It is worth mentioning that these

techniques allow to use models that are only available in compiled form, at execution level

(for example because it came after a long validation and veri�cation process, or because

we want to keep the source code secret). Figure 4.2 shows the composition of the complex

scenario and the reference model. The reference model contains two components A and B.

The complex scenario adds a new component C between A and B, and a new component

50 Chapter 4. Contributions to Reuse

EE

A B

Scenario

Model

Scenario X Model

C

EE BA C

X

Figure 4.2: Reuse and adapt a model of reference.

EE which generates exogenous events. The composition is the result of the model and

the scenario. In order to build such a composition we propose to use (i) an Architecture

Description Language (ADL) with overloading capability like FRACTAL ADL and (ii)

Aspect-Oriented Programming (AOP) like AspectJ. To illustrate this kind of composition

we build a practical example: a small security case study based on a reference model in

which a user establishes an FTP session with a server using the unsecured version of the

protocol. The case study will consist in simulating a Man-In-The-Middle attack (MITM)

and a Spy-ware version of the client.

ClientImpl ServerImpl

Client Server

cftp

sftp

Figure 4.3: Components layout of File Transfers Protocol case study.

As described previously, we use AOP and ADL in an original way to override

di�culties in reusing models. We choose to show the cost and bene�ts through a simple

case study. First, let us assume that we have a model we want to reuse to test di�erent

security �aws. There is a model representing the Basic operation of a server File Transfer

4.2. SoC and Reuse in Model and Scenario 51

Listing 4.1: FRACTAL ADL de�nition used to implement layout of �gure 4.3.

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name=" f tp ">
05
06 <component name="Cl i en t ">
07 <interface name=" c f tp "
08 role=" c l i e n t "
09 signature="FTPService"/>
10 <content class="Cl ientImpl "/>
11 </component>
12
12 <component name="Server ">
14 <interface name=" s f t p "
15 role=" se rv e r "
16 signature="FTPService"/>
17 <content class="ServerImpl "/>
18 </component>
19
20 <binding client="Cl i en t . c f t p "
21 server="Server . s f t p "/>
22</definition>

Protocol (FTP). This simple model has not been developed in order to be used in this

study but we assume it has been successfully validated for the needs of this security

study. Also, we assume we are not supposed to have access to the source of that model

which is used as a pre-compiled �black-box� model. Figure 4.3 shows the architecture of

the model, and listing 4.1 details its implementation in FRACTAL ADL. Line 4 speci�es

the name of this model, line 6-11 correspond to the client de�nition and line 12-19 to

the server de�nition. Line 7-9 and 14-16 describe client and server interfaces used by the

binding on line 20-21.

The protocol represented by this model is a two-party protocol. We will denote the

two parties by the names Client and Server (Client want to be authenticated on Server).

The model behavior is as follows : the client sends the user's login and password to the

server to be authenticated. To do this, client asks his interface (cftp, declared line 07) to

obtain connection with the server. In this study, we focus on the login step to test security

�aw.

From this model, we propose a new reusing approach. First, we will show how to add a

man in the middle attacker in this model using the overload capability of FRACTAL ADL.

Second, we will show how to simulate a spy-ware on client using the overload capability

of FRACTAL ADL and AOP.

4.2.2 Man-in-the-middle Attacker with FRACTAL ADL

From the original model described in section 4.2.1, we want to test the ftp login process

security. We decide to test the security against a man-in-the-middle attacker. In the

man-in-the-middle setting (MITM), there is a third party called Adversary. We assume all

52 Chapter 4. Contributions to Reuse

ClientImpl ServerImpl

Client Server

cftp

sftp

AttackerImpl

asftp
acftp

Attacker

Figure 4.4: Components layout of FRACTAL's MITM attack.

Listing 4.2: FRACTAL ADL de�nition used to implement layout of �gure 4.4.

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name="mitm−f t p " ex tends=" f tp ">
05
06 <component name="Adversary">
07 <interface name=" ac f tp "
08 role=" c l i e n t "
09 signature="FTPService"/>
10 <interface name=" as f t p "
11 role=" se rv e r "
12 signature="FTPService"/>
13 <content class="AdversaryImpl "/>
14 </component>
15
16 <binding client="Cl i en t . c f t p "
17 server="Adversary . a s f t p "/>
18 <binding client="Adversary . a c f tp "
19 server="Server . s f t p "/>
20</definition>

communications between Client and Server are (or might be) intercepted by the Adversary.

Thus both Client and Server talk to the Adversary instead of directly to each other.

Adversary needs to transmit information between Client and Server, but - it's the security

break - he can read, change, or drop messages exchanged between the 2 parties depending

on his goals.

What makes this case interesting is the ability to modify the original FTP client-server

topology (�gure 4.3) to obtain the new topology described in �gure 4.4. In practice, to

build this scenario we need to add a new component inside an existing model. Like

in reality, the Adversary needs to mimic Server's interface and Client's interface. In

fact, the Adversary needs to imitates Server for the Client, and imitates Client for the

Server. Figure 4.4 shows the new architecture we want to obtain compared to �gure

4.3 section 4.2.1. Since the model is locked, we cannot change his topology directly in

source code. Listing 4.2 shows how to use the FRACTAL ADL overload capability to

4.2. SoC and Reuse in Model and Scenario 53

overload the topology. Line 04 shows that we extended the original ftp model in a new

model called mitm-ftp. Line 06-14 declares the new Adversary component. And line 16-

19 demonstrates how overload the original binding between Client and Server by a new

binding between Client and Adversary, and between Adversary and Server. With this

topology, communication between the Client and the Server go through the Adversary.

This example shows how to modify a model to include new component or change

topology. The overload capability of FRACTAL ADL permits to reuse and change some

speci�cation of the model, like the topology. In fact, in our example, communications

between the Client and the Server go through the Adversary but the FTP model have not

been modi�ed. We build a new model extending the original FTP model, and overload

the binding between the Client and the Server. In the next section, we use FRACTAL

ADL to add a new component and change the topology, but we also demonstrate how to

use AOP. The next section describes the FTP model with a spy-ware inside the client.

4.2.3 Spy-Ware with Aspect-Oriented Programming

In this section, we demonstrate how using FRACTAL ADL and aspect-oriented program-

ming we can add a spy-ware1 [Sta�ord and Urbaczewski,] into the Client from the original

FTP model. The goal of this attack is to steal the user login and password when typed in.

Spy-ware send all information to a third party using the network. The model architecture

we want to obtain is shown in �gure 4.5. We see the Client is connected to a third entity

(Spy) that implements the Spy-Ware.

ServerImpl

Client Server
sftp

cftp

sspy

cspy

SpyImpl

ClientImpl

SpyWare

Spy

Figure 4.5: FTP model with Spy-Ware in Client.

Listing 4.3 shows a solution using FRACTAL ADL and AOP to introduce spy-ware

in the original FTP model. Using the extension capability of FRACTAL ADL, we add

a new spy interface to the Client component, we add a Spy component and we bind the

Client and the Spy together. Line 04 shows how to create a new model extending the

original FTP model. Lines 06-17 represent the Spy component, lines 07-09 represent

1Spy-ware is the name given to the class of software that is surreptitiously installed on a computer and
monitors users activities and reports back to a third party on that behavior [Anon, 2004; Daniels, 2004;
Doyle, 2003; Taylor, 2002].

54 Chapter 4. Contributions to Reuse

Listing 4.3: FRACTAL ADL used to implement layout of �gure 4.5.

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name="spyware−f t p " ex tends=" f tp ">
05
06 <component name="Spy">
07 <interface name=" sspy "
08 role=" se rv e r "
09 signature="SpyServ ice "/>
10 <content class="SpyImpl"/>
11 </component>
12
13 <component name="Cl i en t ">
14 <interface name="cspy"
15 role=" c l i e n t "
16 signature="SpyServ ice "/>
17 </component>
18
19 <binding client="Cl i en t . cspy"
20 server="Spy . sspy "/>
21</definition>

the interface for connecting with the Spy component. Lines 13-17 represent the Client

component declared in the original FTP model, lines 14-16 show the new interface added

to the Client component. Lines 19-20 represent the binding to connect the Client with

the Spy component.

AOP allows us to introduce new code into objects without the objects needing to have

any prior mechanism of that introduction. The FTP model has been validated and we

assume we don't have the source code so we cannot change its implementation to introduce

some concerns about spy-ware. The listing 4.4 shows how using AOP we can add new

concerns (Here, a spyware that sends information via a dedicated component interface)

inside an existing model.

Line 01 explains we want to intercept a method call, and do something before the

method was called. Line 02 shows methods we want to intercept: all methods from the

FTPService java interface called by a ClientImpl class. Line 03 adds a condition, only

component bound with a Spy component are concerned. Line 05 asks the Client interface

connected to the Spy component to have this one. Line 06 calls through the connection

with the Spy the send method to send data. This aspect (written in AspectJ) repre-

sent the Spyware, the Spy component represent the third party waiting for data to analyze.

This example shows how to modify a model to include a new component, change a

topology and instrument a component. The capability of AOP to inject some code inside

the model allows to read variables of the model. Here we demonstrate how a third party

component can access the login and password �eld during the login process of the client

on server.

4.3. SoC and Reuse in Simulation Engine 55

Listing 4.4: AspectJ code used to inject spyware functionnality related to layout of �gure
4.5.
01 before (ClientImpl b) :
02 call (∗ FTPService . ∗ (. .)) && this (b)
03 && i f (isBinding (b)) \{
04 try \{
05 SpyService spyS = b . lookupFc (" cspy") ;
06 spyS . send (thisJoinPoint . getArgs () [0]+ "") ;
07 \} catch (NoSuchInterfaceException nsie) \{
08 . . .
09 \}
10 \}

4.2.4 Conclusion

We have shown how ADL and AOP techniques can be used to extend the reusability of a

model. Both techniques o�er new ways to create a complex scenario without modifying the

original model. Hence, the model remains valid which saves additional costs and e�orts.

The ADL allows to build a composition of the model with the scenario by overloading

some model de�nitions like bindings. AOP helps to add some code into the model, for

example to allow a third party component to access an existing model's private data.

However, this latter technique must be used with extreme care in order to guarantee that

the code newly inserted in a component will not change its behavior. However, tools can be

built to make automatic veri�cations on the code inserted and ensure this non-interference

property. Our planned future works are to build a new DEVS-compliant engine for OSA

in order to experiment these techniques on existing DEVS models. However, we want

also to further investigate the bene�ts and drawbacks of using ADL and AOP techniques

with the DEVS Modelling & Simulation framework. A last direction we want to explore

is the identi�cation of practical use cases in which such techniques prove to be useful, in

particular in the networking and security area, where models and scenarios exhibit a priori

a high complexity[Seo, 2006].

4.3 SoC and Reuse in Simulation Engine

The Simulation Engine is the core part of the computer simulation program. It provides

the run-time services and algorithms used to execute the Model (compute its Trajectory)

and observe its outputs. In [Barr, 2004], Barr distinguishes three main techniques for

providing these services and algorithms: by means of Kernels that operate similarly to an

Operating System kernel and provide a transparent mechanism to run simulation based on

unmodi�ed programs, or by means of Libraries, that o�er less transparency in exchange

of performances, or by means of dedicated programming languages that simpli�es the

development of simulations but su�er from specialization e�ects.

The simulation engine executes simulation-runs. Each simulation-run corresponds to

the computation of a Trajectory.

As previously stated, the processing of an event normally leads to changes in the system

56 Chapter 4. Contributions to Reuse

state. It may also lead to the emission of new events. Therefore, causal relationships exist

between events, and the simulation engine should o�er a minimal set of mechanisms to

preserve these causality chains. The engine must ensure a partial order of the processing

of events according to their time of occurrence:

• The simulated time changes when all the events occurring at the same time have

been processed.

• New events generated in response to a given event may not be associated with an

occurrence time prior to the current simulated time (the occurrence time of the

currently processed event)

• The new simulated time may only advance to the date associated with the closest

event in the future (the event with the closest associated occurrence time from the

current simulated time)

Separating the engine from the model is a common practice, which allows to reuse the

same engine implementation with various models. However, once a model is developed

for a particular engine, it is often di�cult to move the same model to another engine,

because the model often depends on and makes heavy use of unique features provided by

the engine. A well known case is that of the NS-2 simulator that involves both a scripting

language (OTcl) and C++ and forces the model developer to add instructions in this C++

code to deal with the scripting level.

DEVS has been the �rst to introduce the concept of abstract simulator. This concept

allows to decouple the model from the simulator and to choose an engine implementation

independently from the model. We propose a technical solution for clearly separating

the engine from the model. Our solution enables to follow the principles mentioned in

DEVS. Separation of concerns allows to test new simulation algorithms easily with a

simple replacement of the engine. We can choose the most appropriate engine for a given

model to have the best performance. We could also implement new formalisms into the

same simulation environment and turn OSA into a testbeds for simulation formalisms or

algorithms.

The next section describes the design of a new engine and its integration into our

prototyping platform: OSA.

4.3.1 Case Study: OSA Simulation-Engine

As mentioned in section 2.3.2, our experimental platform OSA is based on top of the

FRACTAL component model. In FRACTAL, the non-functional part of the application

must take place in the membrane (the content part of the component host the functional

part of the application). Now, if the model is the functional part of the simulation ap-

plication, the code needed to run the simulation model becomes the non-functional part

and must take place in the membrane as simulation controllers. Bene�ts of doing this

is that all components that use these membranes have the same simulation controllers.

Thus, the simulation engine is distributed over all components that are equipped with a

4.3. SoC and Reuse in Simulation Engine 57

control membrane implementing the simulation non-functional services (�gure 4.6). This

membrane will be referred to, in the remainder of this section, as the primitiveSim mem-

brane. A second membrane (compositeSim) is also available for composite simulation

components.

The services of the primitiveSim and compositeSim membranes are accessed

through a dedicated simulation-controller interface. Component with or with-

out simulation-controller interface can possibly be mixed: components with a

simulation-controller interface are called active components and those without such

an interface are called passive components. Indeed the simulation services provided by the

simulation-controller interface allow the component to wait or resume on some event

or condition. Therefore components with this interface must implement a scheduler and

manage threads activity and concurrency.

Hereafter, we �rst describe one simulation service o�ered to the component and then

we discuss how to implement (or replace) the OSA simulation engine. This API provides

a process-oriented simulation service.

Figure 4.6: Anatomy of an OSA component.

Simulation services During the simulation, the functional part of the component (the

model) may use the following services, that are provided by the simulation-controller

interface, that provide a process-oriented simulation engine:

• current_time(): returns the current simulated time;

• abort()/terminate(): requests abnormal/normal termination of the simulation

execution;

• object = wait(key, timeout),

release(key, object): wait blocks the current executing thread on a key ob-

ject until another thread calls release with the same key object. Further-

more this wait/release mechanism allows the releaser to transmit an object refer-

ence to the waiter, a mechanism inspired from Hoare's Communicating Sequential

58 Chapter 4. Contributions to Reuse

Processes[C.A.R. Hoare, 1978]; optionally, the waiting may be guarded with a time-

out that sets the maximal simulated time after which the waiting thread must be

woken up;

• spin_lock(), spin_unlock(), spin_trylock(): a basic locking mechanism for

ensuring mutual exclusion inspired from the Linux kernel API[Bovet et al., 2002]

• schedule_myself(time, method, param): this primitive is used to schedule new

events; indeed, in OSA, an event corresponds to the execution of a method at a

speci�ed time of the simulation.

This process-oriented design allows to implement models that follow the simpler event-

oriented paradigm. For example, a "call-back-on-event" mechanism such as the one found

in ns-2 can easily be emulated using a single component with a single thread, and by call-

ing the schedule-myself() method to schedule the callback of that component's methods

(the only constraint is that the callback methods must be listed in the component busi-

ness interface). The synchronisation mechanism provided by the wait()/release() methods

allows multiple threads to execute concurrently with safe interactions. The spin_lock()

method provides the necessary support for safe reentrance in case of parallel multithreaded

execution. As an example, we provide in listing 4.5 the code that could be used to exe-

cute a Basic DEVS model. We assume that delta_ext(), delta_int(), lambda(), ta() and

init_state() are virtual methods provided by the DEVS model (init_state() computes the

initial state of the model at time t=0)

Our DEVS emulation component provides an input() method to receive inputs from

other components; it uses an output() method to send outputs to other components.

However, thanks to the �exible design of OSA and FRACTAL, this simulation API may

be replaced or masked by another one. This is a powerful mean for reusing existing models

developed for other discrete-event simulators that have their own di�erent simulation APIs.

In other words, OSA can easily mimic other simulators and therefore reuse their existing

models. Moreover, the components used in a given simulation scenario are not forced to

share the same API which means that, theoretically, components developed for various

simulators may inter-operate in the same simulation scenario.

Implementing a simulation engine in OSA As already mentioned in previ-

ous section, the simulation engine implementation is located (distributed) in the

simulation-controller implementations that lay in each active component. Unfortu-

nately FRACTAL does not support the notion of shared component between membranes.

Although it is not forbidden by the speci�cation, none of the FRACTAL implementation

we have tested o�er this possibility. To share a scheduler (located in the membrane)

between di�erent components, simulation controller in the membrane is connected to an

external component (the scheduler), which is shared between components of the model.

Implementing a new simulation engine for OSA mainly consists in developing and

replacing all or parts of the simulation-controller implementation. As shown on �g-

ure 4.7, the current simulation-controller implementation is built using three types

4.3. SoC and Reuse in Simulation Engine 59

Listing 4.5: Code to execute a Basic DEVS model.

private int input_wq ; // An a r b i t r a r y o b j e c t used fo r synchoni za t ion

void input (message_bag msg) {
release (input_wq , msg) ;

}

void OSA_DEVS_run () {
state = init_state () ;
sigma = ta (state) ;
last = current_time () ;
while (true) {

message_bag input_msg = wait (input_wq , sigma) ;
i f (input_msg == TIMEOUT_MSG) {

output_msg = lambda (state) ;
state = delta_int (state) ;
sigma = ta (state) ;
output (output_msg) ;
last = current_time () ;

} else {
elapsed = last − current_time () ;
last = current_time () ;
state = delta_ext (state , elapsed , input_msg) ;
sigma = ta (state)

}
}

}

of abstractions, each having their own interface: the event queues, the event scheduler,

and the explicit simulation services. Because these abstractions have their own inter-

faces, their implementations may be replaced (rewritten) independently. In addition, these

simulation-controllers, that are distributed in all the components, use two centralized

objects: the SimEngine for boot-strapping the simulation and the super-scheduler which

ensures the synchronization of the local schedulers of the active components.

4.3.2 Simulation Concerns in ADL

The simulation engine is the very core part of the architecture. The simulation engine ex-

ecutes scenarios. During a scenario execution, also called a simulation-run, the simulation

engine computes the history of a system model given its initial state and a set of exoge-

neous events. An event is a stimulus occurring at (associated to) a particular date in the

simulated time. We simply call this particular date the occurrence time (of the event). An

exogenous event is an external stimulus applied to the system model at a given occurrence

time (one exogeneous event at least is required to start the simulation). In response to

these exogenous events, the system model may (and usually does!) produce endogeneous

events. An endogeneous events corresponds to an internal stimulus occurring at a given

occurrence time.

Following the principle of separation of concerns, we want to add in a separate layer the

data about exogenous events. Listing 4.6 is an example of architecture layer containing

elements that can be added to the ADL. Line 4 de�nes the architecture name. Line 6

describes the component name in which we want to add exogenous events. Lines 6 to 11

60 Chapter 4. Contributions to Reuse

Figure 4.7: Internal architecture of the simulation-controller.

correspond to exogenous events we want to declare:

• exoevents : this tag opens a block in which several exogenous events may be declared.

It has a single signature mandatory attribute, which is an (ADL) reference to an

interface of the component. In other words, the string used in this attribute must

match the one given for the name attribute of an interface tag within the same

component (the itfname string in the above listing).

• exoevent : this tag declares an exoevent. An exoevent corresponds to the invocation

of a method at a particular time in simulation. This tag accepts the following

attributes:

� name : the event name (any string allowed)

� type : the event type. The only supported event type for now is StartOfCall.

� time : the time in simulation at which the event is to be scheduled. The string

value MUST be translatable to a positive �oating point number.

� method : in OSA, all event are associated to method calls. This string is the

name of the (Java) method to be invoked, without specifying the interface: this

method MUST belong to the interface declared in the surrounding exoevents

tag.

� param : a string parameter to be provided to the previous method. There

is currently a limitation on the signature of the methods that can be used to

declare exogeneous events: the method MUST return void and MUST accept

a (unique) String parameter. More general forms of method signatures will

probably be supported in future versions.

This de�nition is meant to overload the layer containing the de�nition of the Hello com-

ponent.

We presented in section 2.4.2 FRACTAL ADL as an extensible and modular toolchain

framework for reading architecture descriptions. This toolchain can be extended to suit our

4.4. SoC and Distribution of Large Scale Simulation 61

Listing 4.6: Scenario de�ning exogeneous events.

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name=" f r . i n r i a . osa . . . s c ena r i o1 ">
05
06 <component name="Hel lo ">
07 <exoevents signature=" it fname ">
08 <exoevent name="Foo" type="Star tOfCa l l " time="10.00 " method="SendHel lo "

param=""/>
09 <exoevent name="Bar" type="Star tOfCa l l " time="25.50 " method="SendHel lo "

param=""/>
10 </exoevents>
11 </component>
12
13</definition>

needs. To accomplish that, new XML tags or attributes can be added to the FRACTAL

ADL DTD grammar description, and the ADL processing toolchain can be extended to

treat them.

Integrating �exoevents� in FRACTAL ADL required to modify the grammar but also

the Loader component of FRACTAL ADL [Quema, 2005] to integrate the new Exoevent

Loader in the toolchain of the FRACTAL ADL factory. The Loader component transforms

FRACTAL ADL de�nition into an abstract syntax tree (AST). Every component of the

toolchain takes the AST loaded by the delegated component,makes modi�cations on the

AST, and then returns AST to the next component in the toolchain. Therefore, our

Exoevent Loader component is placed in last position after components have been loaded

by the Loader component. The Exoevent Loader adds exogenous event to the queue of

the simulation controler located in the membrane of the simulation component.

We have described how to add a new tag in FRACTAL ADL that will be processed

and delivered to a controller located in the membrane of a component. This solution can

be used to replace or add other tags in FRACTAL ADL, such as tag for instrumentation

to de�ne which variable to probe, or tags for a dedicated formalism (change the �interface�

tag of FRACTAL ADL to add the notion of bandwidth for example).

4.4 SoC and Distribution of Large Scale Simulation

Large scale simulations sometimes need several computational nodes. Reuse can lead to

the composition of simple models not designed for distributed execution. In this case the

distribution of the simulation requires to modify the architecture of the model to establish

remote connections. These modi�cations can not occur within the existing architecture

or we loose the bene�ts associated with reuse. Separation of concerns requires to declare

the existence of remote connections in a separate layer that will be added to existing

layers that de�ne the architecture of the model. Moreover, we can not change the model

code to support these external communications or we loose the bene�ts associated with

reuse. Encapsulation of the model code in components allows remote connections to be

62 Chapter 4. Contributions to Reuse

Listing 4.7: Deployment architecture using FRACTAL RMI

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name=" f r . i n r i a . osa . Di s t r ibuteNodeServer ">
05
06 <component name="Node">
07 <virtual−node name="remote−node1" />
08 </component>
09
10 <component name="Server ">
11 <virtual−node name="remote−node2" />
12 </component>
13
14</definition>

managed by the FRACTAL component model. The code of the model remains the same

regardless of the distribution. The distribution must be transparent to existing models

and architecture. In this section we propose two solutions to distribute a simulation based

on FRACTAL tools: FRACTAL RMI and FRACTAL BF.

4.4.1 FRACTAL RMI

FRACTAL RMI allows to distribute a FRACTAL architecture through the RMI protocol.

FRACTAL RMI handles the distribution of components and communications seamlessly.

Every interface of a FRACTAL component is a remotely accessible access point. The

FRACTAL ADL language provides the <virtual-node> tag to specify on wich computa-

tional node components are distributed.

Listing 4.7 shows a layer of architecture that allows to distribute the architecture de-

�ned in listing 4.11 of the previous section. Line 4 describes the name of the de�nition.

Lines 6-8 describe the Node component. Line 7 associate the Node component to the

virtual node �remote-node1�. This layer deals only with remote connections and it is nor-

mal (and recommended) that we �nd no further information on components due to the

separation of concerns. Lines 10-12 describe the Server component. Line 7 associate the

Server component to the virtual node �remote-node2�. During the execution of the simu-

lation, we associate the variables "remote-node1" and "remote-node2" to computational

nodes (for example remote-node1 will be associated to 192.168.0.1 and remote-node2 to

192.168.0.2). This layer of architecture associated with the architecture de�ned in listing

4.11 forms a distributed architecture where components Node and Server are running on

remote machines. By simply adding this distribution-layer, it is not necessary to modify

the existing architecture or model code. The disadvantage of FRACTAL RMI is that

the interpretation of the architecture is on a single machine and the representation of the

architecture should �t in memory in order to start the instantiation. It is a limiting factor

because on very large architecture it is impossible to interpret the overall architecture

on a single physical machine. In this case and to see components as remote services, we

propose the use of FRACTAL BF.

4.4. SoC and Distribution of Large Scale Simulation 63

Listing 4.8: A distribution layer that provides a rmi service

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name=" f r . i n r i a . osa . D i s t r i bu t edSe rve r "
05 ex tends=" f r . i n r i a . osa . Server "
06 arguments="address , port ">
07
08 <exporter type="rmi" interface="Server . l i n k ">
09 <parameter name="serviceName" value=" l i n k " />
10 <parameter name="hostAddress " value="${ address }" />
11 <parameter name="port " value="${port }" />
12 </exporter>
13
14</definition>

4.4.2 FRACTAL BF

The FRACTAL Binding Factory (FRACTAL BF) transforms a component into a remote

service, or connects a component to a remote service. FRACTAL BF allows the use

of various protocols such as web services, RMI, and much more. It is also possible to

implement new communication protocols into FRACTAL BF. To do this, FRACTAL BF

provides a simple API or new tag in FRACTAL ADL. We call �exporter� the entity that

will transform a server interface into a remote service. we call �binder� the entity that will

connect a client interface to a remote service.

The reference model is the model described in listing 4.11. We want to split this

model in two parts. Part �Server� which o�ers a service, and part �Node� which requires a

connection to this service. Layer architecture described in the listing below 4.8 transforms

the component �Server" in a service accessible via the RMI protocol. Then listing 4.9

connect the component Node to the remote Server service.

Listing 4.8 describes the architecture of the model �Server� that we want to deploy

and make it accessible remotely. Line 4 describes the architecture name, line 5 describes

the existing architecture it extend and line 6 describes the parameters used. Lines 8-12

correspond to FRACTAL BF and transform the interface �link� of component �Server� in

an interface accessible remotely. Line 8 describes the protocol type (in this case, RMI)

and the interface that we want to make remotely accessible (here, the interface �link�

from component �Server�). Line 9 describes the RMI service name we want to associate

with this binding. Line 10 describes the address of the local component Server. Line 11

describes the communication port.

Listing 4.9 describes the architecture of the model �Node� that we want to deploy and

to connect to the remote �Server� service. Line 4 describes the architecture name, line

5 describes the existing architecture it extend and line 6 describes the parameters used.

Lines 8-12 correspond to FRACTAL BF and transform the interface �link� of component

�Node� in a remote connection to a remote service. Line 8 describes the protocol type (in

this case, RMI) and the interface that we want to connect to remote service (here, the

interface �link� from component �Node�). Line 9 describes the RMI service name we want

to use for this binding. Line 10 describes the address of the remote component Server.

64 Chapter 4. Contributions to Reuse

Listing 4.9: A distribution layer that requires a rmi service

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name=" f r . i n r i a . osa . Distr ibutedNode ">
05 ex tends=" f r . i n r i a . osa . Node"
06 arguments="adress , port ">
07
08 <binder type="rmi" interface="Node . l i n k ">
09 <parameter name="serviceName" value=" l i n k " />
10 <parameter name="hostAddress " value="${ address }" />
11 <parameter name="port " value="${port }" />
12 </binder>
13
14</definition>

Line 11 describes the communication port.

With FRACTAL BF, we cannot reuse as is a complete architecture and deploy it. But

we can recreate the architecture using several smaller architecture that will be connected

together at runtime. The bene�ts of this approach are that this architecture are smaller

and require fewer resources to be instantiated and architecture can be instantiated in par-

allel. Moreover, FRACTAL BF allows to establish remote connections without modifying

the code of the model. However, it is di�cult to have a global view of the simulation as

we instantiate and run several architecture in parallel on several computational node.

4.5 Other Means for Enforcing Reuse

In this section, we present �rst time how the use of dynamic architecture allows you to

create architectures that are more easily reusable. In a second step, we present the Maven

project management tool which promotes the replayability and the reuse of projects.

4.5.1 Promote Reuse With Dynamic Architecture

The shared component is a means for reuse: a shared instance appears in several locations

in the architecture de�nition [Dalle et al., 2008, Dalle, 2006]. Another way to reuse is to

have only one de�ned component in the architecture de�nition but several instance. This

last feature is interesting to describe dynamic architectures. FRACTAL ADL provides an

interesting feature to describe dynamic applications: the couple template/factory. We can

use this to favor reuse (by encouraging the creation of generic architectures) creating a

loop mechanism within FRACTAL ADL. Take the example of an application containing

multiple nodes connected to a server. Since FRACTAL ADL has no way to express the

notion of loop, the most elegant solution is to describe the complete architecture as shown

in listing 4.10. Line 4 describes the name of the architecture. Lines 6-7, 9-10, and 12-

13 respectively describe the 3 components Node1, Node2 and Node3 whose de�nition

are given in the �le Node.FRACTAL. The de�nition described in this �le represents a

primitive component having a client interface named �link�. Lines 15-16 describe the Server

4.5. Other Means for Enforcing Reuse 65

Listing 4.10: Model architecture without loop

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name=" f r . i n r i a . osa . NodeServerExample1">
05
06 <component name="Node1"
07 definition=" f r . i n r i a . osa . Node"/>
08
09 <component name="Node2"
10 definition=" f r . i n r i a . osa . Node"/>
11
12 <component name="Node3"
13 definition=" f r . i n r i a . osa . Node"/>
14
15 <component name="Server "
16 definition=" f r . i n r i a . osa . Server "/>
17
18 <binding client="Node1 . l i n k " server="Server . l i n k " />
19 <binding client="Node2 . l i n k " server="Server . l i n k " />
20 <binding client="Node3 . l i n k " server="Server . l i n k " />
21
22</definition>

component whose de�nition located in the �le Server.FRACTAL represents a primitive

component with a server interface named �link�. Finally lines 18-20 describe the connection

between the 3 components Node1, Node2 and node3 with component Server.

The reuse of this architecture is complicated if we want to vary the number of Nodes

in the application. FRACTAL allows through factory and template to describe only one

template component Node and bind it to a Factory component that will take care of

duplicating it. Unfortunately, the template feature does not permit to a component to

behave as a regular one. Thus, it is imperative to add the logic in the Factory component

so it can bind new cloned components (in our case, bind a cloned Node to the Server). We

believe this is an obstacle to the separation of concerns that can have many adverse e�ects

on reuse. Indeed, a dynamic architecture can be reused by another architecture, and

FRACTAL ADL features such as inheritance and overloading allow to modify the binding

between components as described in section 4.2. In this case, we must also replace the

Factory component by a new Factory component to ensure the correct binding between

cloned component and the rest of the architecture. A template is not a component that

behave as a regular one, it's a component only used as a model for cloning. Thus, it is

not possible to establish bindings between a template component and regular component.

Therefore, it is impossible to reuse an architecture in order to add dynamicity, and it is

mandatory to add knowledges about bindings in the Factory component. To cope with

these limitations in the existing FRACTAL ADL implementation, we propose a solution

to add dynamicity to existing architectures while suppressing the necessary the logic in

the Factory component to establish bindings.

Our solution consists in changing the behavior of a template so that it can also behave

as a component. Thus, the factory responsible for duplication of this template can create

new instances, but also bind new instances in the same manner as the original template

66 Chapter 4. Contributions to Reuse

Listing 4.11: A simple model layer

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name=" f r . i n r i a . osa . NodeServerExample2">
05
06 <component name="Node"
07 definition=" f r . i n r i a . osa . Node"/>
08
09 <component name="Server "
10 definition=" f r . i n r i a . osa . Server "/>
11
12 <binding client="Node . l i n k " server="Server . l i n k " />
13</definition>

and therefore does not need additional knowledge.

Listing 4.11 shows an example of a description that we want to reuse to add dynam-

icity. Line 4 describes the architecture name. Lines 6-7 describe the Node component

whose description is de�ned in the �le Node.FRACTAL. The de�nition described in this

�le represents a primitive component having a client interface named �link�. Lines 9-10

describe the Server component whose de�nition located in the �le Server.FRACTAL rep-

resents a primitive component with a server interface named �link�. Line 12 describes the

connection between the Node and Server components through their interface �link�.

We would like to reuse this architecture, but we want to be able to vary the number of

Node components. Figure 4.8 represents a schematic view of our solution. Each di�erent

component are represented by a geometric sign. The circle represents the Node component

(the N represents the content of the Node component). The triangle represents the Server

component (the S represents the content of the Server component). The star represents the

Duplicator component (the D represents the content of the Duplicator component). In a

layer, the Node component is connected to the Server component. In another independent

layer, the Duplicator component is connected to the Node component. In this layer, the

Node component don't have any content but is declared as a template (the T mentioned

on the top of the circle). The composition of this 2 layers is the result shown in the bottom

part of the �gure. The Duplicator component is connected to the Node component which

is a regular component with template feature. The Duplicator component duplicates the

Node component and bind the new Node component as the template one.

We propose to describe an additional layer that will be based on this architecture.

Listing 4.12 describes the reuse of the previous de�nition to which we add the possibility

to have a variable number of Node components. Lines 4-6 describe the architecture name,

which architecture it extends, and de�nes the �scale� parameter which is the number of

Node components we want in our architecture. Lines 8-10 describe the Node component

which is added the template possibility. Lines 12-14 describe the factory component

�Duplicator� whose de�nition is described in the �le Duplicator.FRACTAL. This de�nition

describes a primitive component with a client interface �template�. We see in line 13 that

the parameter �scale� is passed to the factory component Duplicator. Line 16 established

a link between the interface �template� of the factory component Duplicator and the

4.5. Other Means for Enforcing Reuse 67

Figure 4.8: Schematic view of a dynamic architecture.

Listing 4.12: Model architecture with loop

01<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
02<!DOCTYPE definition . . . >
03
04<definition name=" f r . i n r i a . osa . NodeServerExample3"
05 ex tends=" f r . i n r i a . osa . NodeServerExample2"
06 arguments=" s c a l e ">
07
08 <component name="Node">
09 <template−controller desc=" simPrimit iveTemplate " />
10 </component>
11
12 <component name="Dupl i cator "
13 definition=" f r . i n r i a . osa . Dupl i cator (${ s c a l e }) ">
14 </component>
15
16 <binding client="Dep l i ca to r . template " server="Node . component" />
17
18</definition>

interface �component� that exists in all FRACTAL components. At runtime, during the

initialization, the factory component Duplicator will try to duplicate �scale� times the

component connected to its �template� interface. Thanks to our changes on FRACTAL,

we can declare a component as a template too. The factory component Duplicator will

duplicate and then bind new components in the same way that the original template

component, i.e. bind all new Node components to the Server component. This generic

solution duplicates and binds in the same way component bound to the �template� interface

of the factory component Duplicator.

Thus, we provide a solution to the problem of loop in FRACTAL ADL, which requires

only minor changes to FRACTAL. This change has to my knowledge no adverse side e�ect

and may be proposed to the FRACTAL developer community. A study of the e�ects on

performance during the instantiation of large architecture with and without loops is seen

68 Chapter 4. Contributions to Reuse

in chapter 7.

4.5.2 Enforcing Reuse and Replayability with Maven

Once the software is ready for reuse, a last element is required to help dealing the issues

related to the dissemination of the reusable code. For this purpose, we use the Apache

Maven project, which is a project management and comprehension tool, developed by

The Apache Software Foundation. Apache Maven is a free software tool for managing

and automating production of Java software. The goal is comparable to Make under

Unix: produces a software from source, optimizes the tasks necessary for this purpose and

ensures the production order.

Maven uses a paradigm known as the Project Object Model (POM) to describe a

software project. Each project or subproject is con�gured by a POM that contains the

information necessary to process the Maven project (project name, version number, de-

pendencies to other projects, libraries needed to compile, names of contributors, and so

on). This POM is materialized by a pom.xml �le at the root of the project. This approach

allows the inheritance of properties of the parent project. If a property is overridden in

the POM project, it covers those who are de�ned in the parent project. This allows to

reuse con�guration.

Another important feature and relatively speci�c to Maven is its dependency manage-

ment. Indeed, Maven can automatically download the dependencies of a project. Maven

can also publish a project on a repository in order to make it available to other projects.

The Maven dependency management is simpli�ed by the notions of inheritance and tran-

sitivity. Maven allows the use of di�erent categories of repositories:

• local repository includes everything that the developer has used and developed.

• global repository includes everything that have been publish publicly by the de-

velopers.

• enterprise repository makes available to all developers of a company private

projects.

The use of these repositories allows versioning, and thus promotes replayability by tracing

and downloading all the dependencies for a given version of a project.

Maven provides a plugin architecture for adding new features. These plugins are

available on Maven repositories, or can be developed. Thus, Maven can be con�gured to

suit our need.

Comparing to existing tools to support replayability and reuse, maven is a all-in-one

tool. It allow to start a new simulation project, manage dependency, compilation and

execution processes, and most of all, put everything in a repository for a further reuse.

Moreover, Maven is not dedicated to a speci�c software.

Listing 4.13 represents the a POM �le of a simulation experiment. Lines 3-8 indicate

the name, type and version of the project. Lines 10-16 indicate the enterprise repository

we want to use to access private dependencies. Lines 20-41 show the dependencies needed

4.5. Other Means for Enforcing Reuse 69

Listing 4.13: A simple POM �le of an OSA experience

<?xml version=" 1 .0 " encoding="UTF−8"?>
01<pro j e c t . . . >
02
03 <modelVersion>4 . 0 . 0</modelVersion>
04 <groupId>fr . inria . osa . helloworld</groupId>
05 <a r t i f a c t I d>experience</ a r t i f a c t I d>
06 <packaging>jar</packaging>
07 <name>OSA helloworld experience</name>
08 <version>1 . 2 . 3</version>
09
10 <r e p o s i t o r i e s>
11 <r epo s i t o r y>
12 <id>osa . inria . fr</ id>
13 <name>OSA Repository</name>
14 <ur l>http://osa . inria . fr/osa_repo/</ u r l>
15 </ r epo s i t o r y>
16 </ r e p o s i t o r i e s>
17
18 [. . .] <!−− p l u g in s con f i gu ra t i on −−>
19
20 <dependenc ies>
21 <dependency>
22 <groupId>fr . inria . osa . helloworld</groupId>
23 <a r t i f a c t I d>model</ a r t i f a c t I d>
24 <version>1 . 2 . 3</version>
25 </dependency>
26 <dependency>
27 <groupId>fr . inria . osa . helloworld</groupId>
28 <a r t i f a c t I d>instrumentation</ a r t i f a c t I d>
29 <version>1 . 2 . 3</version>
30 </dependency>
31 <dependency>
32 <groupId>fr . inria . osa . simulationEngines</groupId>
33 <a r t i f a c t I d>basicEngine</ a r t i f a c t I d>
34 <version>1.7</version>
35 </dependency>
36 <dependency>
37 <groupId>fr . inria . osa . helloworld</groupId>
38 <a r t i f a c t I d>scenario</ a r t i f a c t I d>
39 <version>1 . 2 . 3</version>
40 </dependency>
41 </dependenc ies>
42
43</ p ro j e c t>

70 Chapter 4. Contributions to Reuse

to run this project. This experience is the composition of many simulation projects: a

model (version 1.2.3), a scenario (version 1.2.3), an instrumentation (version 1.2.3), and

a simulation engine (basicEngine version 1.7). The model project de�nes dependency to

a simulation API (basicAPI version 1.0) that the simulation engine (basicEngine version

1.7) must implements.

4.6 Conclusion

In this chapter, we have shown how separation of concerns allows to promote reuse. We

have shown practical examples of the use of techniques and software engineering tools such

as component programming and aspect-oriented programming. We have shown how the

use of dynamic architectures allow to create architectures more easily reusable. We have

also shown that the use of the Maven project management tool helps with the dissemina-

tion of the code and favors replayability.

The set of techniques presented in this chapter applies as seen throughout this chapter

on the layers of modeling, scenario and deployment, but these practices should apply to

all concerns of the simulation such as instrumentation, simulation, and potentially other

layer following concerns relating to study that one wishes to lead.

Chapter 5

Contributions to Instrumentation

Contents

5.1 Motivations and Objectives . 73

5.1.1 Separation of Concerns . 73

5.1.2 From Real to Virtual System . 75

5.1.3 From Live to Post-Mortem Analysis 76

5.1.4 Data Processors Composition . 76

5.2 Open Simulation Instrumentation Framework 77

5.2.1 COSMOS . 77

5.2.2 Separation of Concerns . 77

5.2.3 From Live to Post Analysis . 80

5.2.4 Composition of Instrumentations . 83

5.2.5 From Real to Virtual System . 84

5.3 Conclusions and Perspectives . 85

72 Chapter 5. Contributions to Instrumentation

This chapter was written in collaboration with Denis Conan, Sebastien Leriche and

Olivier Dalle and has been published in the third International ICST Conference on Sim-

ulation Tools and Techniques in Malaga, Spain [Ribault et al., 2010].

The work�ow used for studying a system using discrete-event simulation is often de-

scribed in the simulation literature, e.g. in [Banks et al., 2004, Law, 2007]. Despite a few

minor di�erences, every author seems to agree on the various major steps of this work�ow:

de�ne the objective(s) of the study, collect data about the system to be simulated, build a

model of the system, implement an executable version of this model, verify correctness of

the implementation, execute test-runs to validate the simulation model, build experiment

plans, run production-runs to generate outputs, analyze data outputs, and �nally, produce

reports.

In [Zeigler, 1984], Zeigler et al. further re�ne the methodology by introducing the

concept of Experimental Frame as follows: �[An experimental frame] is a speci�cation of

the conditions under which the system is observed or experimented with�. Hence, their

Experimental Frame not only describes the instrumentation and output analysis but also

drives the simulation. Thanks to this separation between the Experimental Frame and the

system model, it is possible to de�ne many Experimental Frames for the same system or

to apply the same Experimental Frame to many systems. Therefore, we can have di�erent

objectives while modeling the same system, or have the same objective while modeling

di�erent systems.

In [Dalle and Mrabet, 2007], Dalle and Mrabet already presented the OSA Instrumen-

tation Framework (OIF). OIF is inspired from the concepts of the DEVS Experimental

Frame (EF) but it only focuses on the instrumentation, validation and analysis concerns.

Indeed, in OSA, the instrumentation and scenario concerns are separated into distinct

layers which is not the case in the DEVS EF. On the contrary, the DEVS EF speci�es

three distinct entities (generator, transducer and acceptor), and therefore establishes a

clear separation between three concerns, that are not distinguished in OSA. However, the

concept of layers found in OSA is orthogonal to that of entities (or component, which

are also supported by OSA), which means that OSA could actually implement both sep-

arations �i.e., in OSA, one can easily implement the generator, acceptor and transducer

components in both the scenario and instrumentation layers.

In this chapter we present the Open Simulation Instrumentation Framework (OSIF).

OSIF is inspired from the OIF project but it is not a part of the OSA project. In fact,

one of our motivation is to be able to plug OSIF on any simulator. We use our experience

in building the OSA architecture to build a new framework dedicated to the instrumen-

tation of simulations and to the processing of simulation data, based on similar concepts:

provide an open architecture, with a clear separation of concerns, and in the end, favor

reuse of useful components. OIF is a tool for OSA while OSIF aims at being a generic

instrumentation and data processors framework that could be plugged onto any simulation

code (including OSA) written in a language supporting AOP (Java, C/C++, Python. . .).

The simulation code does not need to be available in source form since AOP can also be

applied on compiled code or at runtime.

Indeed, like in OIF, in OSIF we propose to separate the modeling concern and the

5.1. Motivations and Objectives 73

instrumentation concern, using AOP at the bottom-half of the framework to build the

probes in charge of collecting data samples. At the top-half of the framework, we (re)use

the COSMOS framework [Conan et al., 2007, Rouvoy et al., 2008] which allows for on-

line computations (e.g. statistics) and data transmission and storage (notice COSMOS is

not a contribution of this thesis). Moreover, it is possible to save the simulation data in

any format. For example, using the standard format of the OMNeT++ simulator, we are

able to reuse the Scave tool [Varga and Hornig, 2008] to post-process simulation data.

In the sequel of the chapter, section 5.1 presents our motivations to build a generic

open instrumentation framework and how we plan to achieve our goals. Then, section 5.2

presents the Open Simulation Instrumentation Framework. Finally, section 5.3 concludes

the chapter and draws some perspectives.

5.1 Motivations and Objectives

Law presents in [Law, 2007] a general work�ow to build a valid and credible simulation

study. Figure 5.1 summarises Law's work�ow, focusing only on tasks where instrumenta-

tion is needed. The �rst four tasks of Law's work�ow lead to a simulation model. Then,

the programmed model is validated: the simulation model is instrumented and validation

results are compared with results from the real system. Next, more simulation experiments

are designed, ran and analyzed according to the simulation objectives. The conclusions

drawn from the simulation results are �nally presented in a document.

In this chapter the term simulation model is used to designate the source code that

implements the behavior of the model of the system under study and the term system

model is used to designate the conceptual model of the system under study. In the

following sections we further discuss the four main reasons that motivate our work: the

ability to separate concerns (sec. 5.1.1), the ability to apply the same validation process

to real and simulated systems (sec. 5.1.2), the ability to easily switch from live to post-

mortem analysis (sec. 5.1.3) and the need for composition in data processors (sec. 5.1.4).

5.1.1 Separation of Concerns

To design the instrumentation of a simulation model by following the work�ow depicted

in Fig. 5.1, most simulators o�er a simulation API for the declaration of observable

data within the simulation model. This common practice implies that all the possible

observations for a given simulation model need to be decided (and hard coded) at the

time the simulation model is implemented. Hence, simulation model developers may �nd

it di�cult to choose which data need to be instrumented while experimenters may be

reluctant to run simulations that generate large amount of useless data. Moreover, if the

resulting simulation model does not contain the required instrumentation for an analysis,

a software evolution is necessary to modify the simulation model. This raises an issue

about the credibility of the conclusions drawn from the comparison of simulation results

obtained using di�erent simulation models.

From this perspective, the separation of concerns between model and instrumentations

74 Chapter 5. Contributions to Instrumentation

1- Formulate the Problem
2- Collect Information/Data
 and Construct an
 Assumptions Document
3- Is the Assumptions
 Document Valid?
4- Program the Model

Is the Programmed
Model Valid?

Design, Conduct, and
Analyze Experiments

Document and Present
the Simulation Results

No

Yes

Figure 5.1: Simulation work�ow focusing on instrumentations tasks.

provides many bene�ts. For example, keeping the simulation model clear from any instru-

mentation allows to reuse it in many di�erent studies and makes it more understandable.

Moreover, instrumenting only the data needed allows to run simulations faster. On large-

scale simulations involving many experts, each expert could work on his/her part. Indeed,

it is important for large-scale and distributed simulations to give enough �exibility to

instrumentation experts so they can work independently from each others or from mod-

eling experts. This allows you to program the model (item 4 of the top box of �gure 5.1)

independently from the validation tool.

We propose to use the Aspect-Oriented Programming (AOP)

paradigm [Kiczales et al., 1997] because it allows such a separation of the modeling

and instrumentation concerns, each of which being weaved on demand, possibly at

the last minute, before an actual simulation run execution is started. Moreover, we

separate the collection of raw instrumentation data (into collectors) from the processing

of higher-level instrumentation results (into processors with generic operators). This

second separation of concerns is one of the key concepts proposed by the COSMOS

framework [Conan et al., 2007, Rouvoy et al., 2008].

Figure 5.2 shows schematically the separation of concerns between the di�erent layers

of the instrumentation. COSMOS is based on FRACTAL, we can use the same properties

as the one we used for the separation of concerns between models or scenarios. Thus, the

instrumentation may be the composition of several layers of instrumentation through the

5.1. Motivations and Objectives 75

Figure 5.2: A zoom on the instrumentation part with COSMOS of the OSA layered
approach.

mechanism of inheritance and overloading of FRACTAL ADL. We can de�ne one or more

layers of instrumentation that monitor the scenario (Instrumentation1), the model (Instru-

mentation2) or overload some of the existing instrumentation to continue the computation

made on the data (Instrumentation N).

5.1.2 From Real to Virtual System

Before carrying out a simulation study, it is necessary to follow a validation process as

mentioned in the second box of Figure 5.1. The validation process can help to validate a

simulation model by comparing simulation results with data collected during experiments

on a real system. This requires to use �rstly the same inputs and secondly the same

statistical analysis on the outputs. The best approach would be to use the same processing

work�ow on both the simulation and real data. Indeed, a process to validate results that

could be applied both on a real system and on a simulation model gives more credibility

to the simulation model, and allows extrapolating the �ndings of a simulation on a real

system.

The COSMOS framework has been created to process context information of real sys-

tems during their executions. In addition, COSMOS can be used for simulation purposes,

which allows to reuse the same data processors when experimenting the real system and

76 Chapter 5. Contributions to Instrumentation

simulating the virtual system.

5.1.3 From Live to Post-Mortem Analysis

The third box of �gure 5.1 is about the design, the running and the analysis of simulation

experiments. Running a simulation may result in a huge amount of simulation data

and may then consume a lot of disk space. Moreover, gathering data in a distributed

simulation is not trivial and may also consume a lot of network bandwidth. After having

run experiments, when all the simulation data are collected, a validation phase is necessary

before they are analyzed. Indeed, a simulation run may produce results that could not be

analyzed for instance because the con�dence interval is too large or because the duration

of the simulation considering the simulation time is too narrow. If so, it is necessary to

loop to the third box in order to obtain results that are analyzable. Afterwards, simulation

results are analyzed and conclusions can be drawn (fourth box of �gure 5.1).

In order to avoid memory, disk, and bandwidth consumption issues, and in order to

ease and then optimize the validation and analysis processes, we propose to execute these

three steps (data gathering, validation of simulation results, and analysis) together during

the simulation run (called live analysis). Therefore, data gathering may not need to store

data on disks but send them instead directly to the validation and analysis processors.

The validation process dynamically controls the analysis process in order to produce better

quality results. As a consequence, the data �ow can be optimized. Moreover, it is easier

to replay a study that integrates its data processors. Indeed, since statistical analysis are

done live during the simulation run, no third-party tool is required. Nevertheless, it is

sometimes necessary to preserve raw data (e.g. for debugging purposes). Thus, logging

capabilities for post analysis is also a requirement.

COSMOS provides the developer with pre-de�ned generic operators such as averagers

or additioners. Each operator is included into a unit of control called a processor or a

node. A node can be �nely tuned to be active or passive, blocking or not in observation

or in noti�cation, etc. Therefore, COSMOS allows us to easily build a live analysis on

instrumented data while optimizing data �ow. Moreover, we will show in the next sections

how we can easily complement chains of processors that optimize data �ows for live analysis

with chains of nodes that log raw data for post analysis.

5.1.4 Data Processors Composition

Another interesting feature is the possibility to write simple instrumentation and data

processors (validation of simulation results and analysis) and combine them into more

complex ones. This approach helps reducing the complexity of designing an instrumenta-

tion since writing many simple instrumentation and data processors is easier than writing

a complex one. Furthermore, considering reuse, it is more likely to reuse several times

simple and generic data processors than to reuse a complex one. Another case of reuse is

the design of a new data processors from an already existing one from a catalogue. Reusing

and composing data processors is also an asset when comparing studies sharing the same

data processors. In that case, it is easier to compare and trust the results because vali-

5.2. Open Simulation Instrumentation Framework 77

dation of simulation results and results analysis are the same among studies. Of course,

since instrumentation makes the bridge between simulation model and data processors,

instrumentation reuse is possible as long as the code onto which instrumentation is applied

is similar with the one for which the instrumentation was initially designed for. On the

other hand, the data processor is independent and can be reused regardless of the language

and the simulation model. Thus, in worst case it will be necessary to create/adapt the

instrumentation code, but we can always reuse the data processors.

5.2 Open Simulation Instrumentation Framework

In this section, we present the Open Simulation Instrumentation Framework (OSIF). We

begin with a short introduction to the principles of the COSMOS framework. Then, we

explain how to handle issues presented in section 5.1 with OSIF.

5.2.1 COSMOS

COSMOS (COntext entitieS coMpositiOn and Sharing) [Conan et al., 2007,

Rouvoy et al., 2008, Romero et al., 2009] is a LGPL component-based framework

for managing context data in ubiquitous applications; it is based on the FRACTAL

component model [Bruneton et al., 2006]. Context management is (i) user and application

centered to provide information that can be easily processed, (ii) built from composed

instead of programmed entities, and (iii) e�cient by minimizing the execution overhead.

The originality of COSMOS is to use a component-based approach for encapsulating

�ne-grain context data, and to use an architecture description language (ADL) for

composing these context data components. By this way, we foster the design, the

composition, the adaptation and the reuse of context management policies. In the context

of OSIF, context data components become instrumentation data components.

The COSMOS framework is architectured around the following three principles that

are brought into play in OSIF: the separation of data gathering from data processors,

the systematic use of software components, and the use of software patterns for compos-

ing these components. The �rst principle supports the clean separation between data

gathering that may depend upon the simulation framework and data processors that is

simulation framework agnostic. The second principle, software components, fosters reuse

everywhere. Finally, the third principle promotes the architecture-based approach �com-

posing rather than programming�. The COSMOS framework is implemented on top of

the FRACTAL component ecosystem with the message oriented middleware (MOM)

DREAM [Leclercq et al., 2005].

5.2.2 Separation of Concerns

In OSIF, the separation between simulation and instrumentation concerns is performed

using the Aspect-Oriented Programming (AOP) paradigm and the COSMOS' concept of

the �collector�.

78 Chapter 5. Contributions to Instrumentation

Aspect-oriented programming Instrumentation is a cross-cutting concern because

many parts of the simulation model need to be introspected and complemented with

instrumentation concern. The left part of �gure 5.3 illustrates how the instrumentation

concern pollutes the modeling code when using traditional Object-Oriented Programming

(OOP). The code is hard to read and it is hard to �gure out where the code of the model

is. The right part of �gure 5.3 illustrates how to avoid this drawback by reorganizing the

instrumentation concern into separate source code �les (aspects). The arrow represents

the action of the AOP weaver which is a tool that is responsible for binding the aspects

with the modeling code on demand (and possibly dynamically). This keeps the code of

the model concise and stripped from the instrumentation code.

Figure 5.3: Separation of concerns using AOP.

As an example, listing 5.1 illustrates a Java class Peer with two methods: boot() and
halt(). Each method has some modeling code and call the instrumentation framework

(crosscuting concern). The instrumentation code pollutes the modeling code as illustrated

on the left part of �gure 5.3. Indeed, Java class Peer invoke method write(message)
which is part of the instrumentation framework represented here by the Sampler object.
Sampler is connected to the simulator engine and writes on disk the simulation time and

the message.

5.2. Open Simulation Instrumentation Framework 79

Listing 5.1: Peer Java class without separation of concerns.

public class Peer{
Sampler sampler ;
String peername ;

public void boot ()
{

[. . .] // modeling code snipped

sampler . write (peername+" boot") ;
}

public void halt ()
{

[. . .] // modeling code snipped

sampler . write (peername+" ha l t ") ;
}

}

Listing 5.2: AspectJ aspect to observe Peer class.

public aspect peer_instrumentation {
Sampler Peer . sampler ;

after (Peer peer) : execution (void Peer . boot ())
&& this (peer)

{
sampler . write (peername+" boot") ;

}

after (Peer peer) : execution (void Peer . halt ())
&& this (peer)

{
sampler . write (peername+" ha l t ") ;

}
}

Thanks to AOP, it is now possible to separate the modeling concern from the instru-

mentation concern. The aspect of listing 5.2, written in AspectJ, shows how to isolate

the instrumentation concern in a separate module as illustrated on the right part of �g-

ure 5.3. The aspect peer_instrumentation calls the instrumentation framework right after

the execution of methods boot() and halt().
Therefore, listing 5.3 illustrates the same modeling code stripped from instrumentation

concern.

Since only the required instrumentation aspect is weaved to the simulation model, the

execution of the simulation runs faster. Moreover, software evolutions of the simulation

model and the instrumentation are facilitated. Finally, data processors can be developed

independently by instrumentation experts and reused more easily.

COSMOS collector The lower layer of the COSMOS framework de�nes the notion of

a data collector. In the context of ubiquitous applications, data collectors are software

entities that provide raw data from the environment. As part of COSMOS, the data

collectors are connected to sensors such as ,for example, heat sensors, or sensors that

80 Chapter 5. Contributions to Instrumentation

Listing 5.3: Java class with separation of concerns.

public class Peer{
String name ;

public void boot ()
{

[. . .] // modeling code snipped

}

public void halt ()
{

[. . .] // modeling code snipped

}
}

analyze the network load. As part of the M&S, environment is the model to simulate.

The probes are then implemented through AOP. A data collector retrieves instrumented

data from a simulation and provides them to the data processors. COSMOS collectors are

generic and the data structure to be pushed by the advice code of the instrumentation

aspect is an array of Object. Therefore, COSMOS collectors and AOP instrumentation

advices perform the junction between the simulation framework and instrumented data

processors of OSIF.

5.2.3 From Live to Post Analysis

We propose to reuse some concepts of COSMOS such as the data processor and the data

policy to analyze simulation data during execution but also to log the raw simulation data

while preserving optimization on data �ow.

COSMOS processor We have seen that the lower layer of the COSMOS framework

de�nes the notion of data collector. The middle layer of the COSMOS framework de�nes

the notion of a data processor, named context processor in COSMOS. Data processors

�lter and aggregate raw data coming from data collectors. The role of a data processor

is to compute some high-level numerical or discrete data from raw numerical data output

either by data collectors or other data processors. Therefore, data processors are organized

into hierarchies with the possibility of sharing. A data processor (a node of this graph)

can be parameterized to be passive or active, blocking or not blocking in observation or

in noti�cation, as explained hereafter:

• Passive or active A passive node obtains simulation data on demand; a passive

node reacts to explicit requests made by other nodes. An active node is associated to

a thread and initiates the gathering and/or the treatment of simulation data on its

own. The thread may be dedicated to the node or be assigned from a pool. Typical

examples of an active node are the centralization of several types of simulation data,

the periodic computation of a higher-level simulation data, and the transmission of

the latter information to upper nodes. An active node can be used to explicitly

control the sampling rate of data and limit the computation overhead.

5.2. Open Simulation Instrumentation Framework 81

• Observation or noti�cation The simulation reports containing simulation data

are encapsulated into messages that circulate from the leave nodes to the root nodes

of the hierarchies. When the circulation is initiated at the request of parent nodes

or client applications, it is an observation. In the other case, this is a noti�cation.

• Blocking or not blocking During an observation or a noti�cation, a node that

processes the request can be blocking or not. A blocking node in observation replies

to the request of the parent node or the client application by providing the most

up-to-date simulation data that it possesses without requesting child nodes while a

not blocking node in observation begins by requesting a new observation report from

each of its child nodes, and then updates its simulation data before replying to the

request of the parent node or the client application. A blocking node in noti�cation

computes a new observation report with the new simulation data just being noti�ed

without notifying parent nodes while a not blocking node in noti�cation computes

a new observation report with the new simulation data just being noti�ed, and then

noti�es the parent node or the client application.

Figure 5.4 illustrates how to use COSMOS data processors to collect and compute

outputs in a distributed simulation. A distributed simulation involving three peers is

executed on two computers. This processing produces as output the min, max, and

average lifetime of peers. Each peer is connected to a data collector. Data collectors receive

simulation data every time the state of the attached peer changes. Then, collectors push

the simulation data to the data processors in which they are enclosed. Data processors O3,
O5, and O6 compute the lifetime of peers, that is the di�erence between the starting up

and the shutting down, and send these simulation data to processors O2 and O4. Those
processors gather these simulation data from all the peers of the same host and compute

the min, max, sum of the lifetimes of peers and the total number of times lifetime has

been calculated. Since the latter processors are blocking in noti�cation, the �ow of data is

stopped. In conclusion, data processors O2 or O4 are updated every time a peer lifetime

is computed and gather simulation data collected on every peer executing in a host.

Data processor O1 is responsible for gathering simulation data at the global level, that

is for all the peers of all the hosts. This node is active in observation but blocking, thus

meaning that it periodically requests simulation data from data processors 02 and 04.
Therefore, considering this live analysis, the disk overhead to store simulation data

can be minimum if we store only the �nal result provided by node O1. Concerning the

bandwidth overhead, it depends upon the number of requests performed by node O1 and

upon the amount of simulation data transferred from node O4 to O1. Considering the

previous simulation involving N peers (N ′ is the number of peers on Computer2), each peer

being started up and shut down T times during the simulation. A basic instrumentation

would have written N ∗T times the peer name, the action (boot or halt) and the simulation

time on disk. The same instrumentation would have transferred N ′ ∗ T times the peer

name, the action (boot or halt) and the simulation time through the network. For large-

scale simulations, the amounts of data can be huge. Using OSIF, we can easily build a

live analysis instrumentation that directly writes only the min, max, and average lifetimes

82 Chapter 5. Contributions to Instrumentation

C2 C3C1

P1

O3 O5 O6

O2 O4

O1

block noti f icat ion

block observat ion

act ive not i f ier

act ive observer

Computer 1 Computer 2

Distr ibuted Simulat ion

Outpu t

Peer1 Peer2 Peer3

Figure 5.4: Graphical representations of data processors in a distributed simulation.

of peers on disk, and transfers the min, max, and sum of these lifetimes and the total

number samples used for the computation through the network. Moreover, live analysis

has its own separate thread, running asynchronously, which pro�ciently bene�ts from the

parallel computing capabilities of modern multicore architectures. For example, running

a local simulation involving 1000 peers during 5 years takes 23 seconds to instantiate

and 70 seconds to execute with live analysis of peers lifetime. With basic logging of the

raw simulation data the same simulation takes 14 seconds to instantiate and 70 seconds

to execute. The di�erence represents the overload due to the instantiation of COSMOS

nodes and collectors.

COSMOS instrumentation policy The upper layer of the COSMOS framework de-

�nes the notion of a context policy that translated into the concept of instrumentation

policy in OSIF. COSMOS instrumentation policy abstracts simulation data provided to

the user/application. In other words, instrumentation policies are the �entry points� in the

graph of processing nodes. We use instrumentation policies to translate instrumentation

data provided by COSMOS processors into an understandable format: textual, graphical,

or third-party tools compliant.

Let's take the example of �gure 5.4. Assume we want to change our initial goal in

order to keep logs of the simulation events and build a trace of the peers connections

and disconnections. The node O1 aggregates and merges simulation data from nodes

O2 and O4 and pushes them to the instrumentation policy P1. P1 then outputs data

according to a speci�c format, for instance the format of the OMNeT++ analysis tool

5.2. Open Simulation Instrumentation Framework 83

Scave [Varga and Hornig, 2008]. Scave helps the user to process and visualize simulation

results saved into vector and scalar �les. So, the instrumentation policy P1 translates

simulation data output by node O1 into vector or scalar �les understandable by Scave,

during a post analysis.

We have seen how using COSMOS data processors and policies can help in designing

a live analysis or a logging system. Logging raw data is necessary in certain cases such as

debugging but live analysis allows to reduce disk usage and network bandwidth usage. The

CPU overhead may be signi�cant on large instrumentations with lots of computations: in

the worst case, it will be the same as the computation needed by a post analyze. Thus,

OSIF allows designing instrumentations taking into account the topology of the simulation

and optimizing the data �ow, but it can also produce data compliant with existing tools

in order to compare simulation studies' results.

5.2.4 Composition of Instrumentations

In this section, we show how the architecture description language of FRACTAL

(FRACTAL ADL) can be used for sharing, reusing and mixing COSMOS-based instru-

mentation processing: collectors, data processors, and instrumentation policies.

Component-based architecture Being based on COSMOS, OSIF bene�ts from the

three principles of separation of concerns, isolation and composability of the component-

based software engineering approach: in COSMOS, every data collector and every data

processor is a software component. By connecting these components, we de�ne assem-

blies that gather all the information needed to implement a speci�c instrumentation pol-

icy. COSMOS is implemented with the FRACTAL component model presented in sec-

tion 2.4.1, and instrumentation policies are speci�ed using FRACTAL ADL presented in

section 2.4.2. Designers of intrumentation policies are able to describe complex hierarchies

of data processors by taking advantage of the two main characteristics of FRACTAL: hi-

erarchical component model and sharing.

Architecture description language As presented in section 2.4.2, FRACTAL ADL

is a XML language to describe the architecture of a FRACTAL application. Extension

and rede�nition allow the reuse (of a part or the whole) of existing instrumentation policies

written using FRACTAL ADL. When a de�nition B extends a de�nition A, B possesses

all the elements de�ned in de�nition A, like an internal copying mechanism. Moreover,

if de�nition B de�nes an element that has the same name in de�nition A, B's de�nition
overrides A's one. The extension mechanism enables us to create a new de�nition by

composition of existing de�nitions. To manage FRACTAL components at a conceptual

level, it is possible to use a graphical user interface integrated in Eclipse. Listing 5.4

illustrates a FRACTAL ADL de�nition of the live analysis of a peer. This de�nition

takes one argument and is composed of four FRACTAL components: a collector and a

data processor parameterized with the name of the peer used in argument and allowing

to compute the lifetime of a peer, a data processor computing the average lifetime, and

an instrumentation policy presenting the result.

84 Chapter 5. Contributions to Instrumentation

Listing 5.4: FRACTAL ADL de�nition of a live analysis of a peer lifetime.

<definition name="PeerL i f e t ime " arguments="peername">
<component name="OutputPolicy "

[. . .] <!−− ADL code snipped −−>
<component name="AverageLi fet ime "

[. . .] <!−− ADL code snipped −−>
<component name="Li fet imeOf ${peername}"

[. . .] <!−− ADL code snipped −−>
<component name="Co l l e c to rOf ${peername}"

[. . .] <!−− ADL code snipped −−>
</component>

</component>
</component>

</component>
</definition>

Figure 5.5 illustrates the multiple extension capability of FRACTAL ADL. At the

top, we have a FRACTAL ADL de�nition extending the FRACTAL ADL de�nition of

listing 5.4 with two di�erent parameters. At the bottom, we have the resulting instrumen-

tation policy. We can see that the data processors LifetimeOfPeer1 and LifetimeOfPeer2
are both encapsulating the data processor AverageLifetime. This can be done thanks to the
inheritance mechanism of FRACTAL ADL. From this example, it's easy to imagine and

design more complex compositions such as composition of several live analysis (lifetime,

bandwidth. . .) and logging for later post-analysis of the simulation data.

The extension capabilities of FRACTAL ADL allow, as illustrated in the example

de�ned in �gure 5.5, to merge components. The merging process allows to update and

extend already de�ned component. Therefore, it is possible to reuse and extend existing

data processors and con�gure it. This can range from a simple update of parameters to

the replacement or addition of management contexts.

There are several bene�ts to using the extension and the rede�nition mechanisms of

FRACTAL ADL. First, writing many simple instrumentations and data processors is eas-

ier for maintenance than writing a complex one from scratch. Second, there is more chance

to reuse generic simple instrumentations and data processors than a complex dedicated

one. Third, it is easier to compare and have con�dence in results when instrumentation

and data processors are the same among studies. In order to do this, since a simulation

model is the composition of existing models and new models, the corresponding instru-

mentation may also be the composition of existing instrumentations with existing data

processors and new data processors. Therefore, each simulation model may come with

one or more instrumentations and data processors that could be reused �i.e., at least the

instrumentation and the data processors used to validate the simulation model.

5.2.5 From Real to Virtual System

In OSIF, we use COSMOS to process simulation data. As mentioned in section 5.1, it

would be appropriate to compare simulation results with the results of an experiment.

COSMOS has originally been developed to manage context data in ubiquitous applica-

5.3. Conclusions and Perspectives 85

<definition name="Composition"
ex tends=PeerL i f e t ime (peer1) ,

PeerL i f e t ime (peer2)>
</definition>

CollectorOfpeer1 CollectorOfpeer2

Lifet imeOfpeer1 Lifet imeOfpeer2

AverageLifetime

OutputPolicy

Figure 5.5: FRACTAL ADL composition mechanism and the resulting COSMOS design.

tions [Bruneton et al., 2006, Romero et al., 2009]1. So, OSIF can naturally be used for

instrumenting and processing output for both real applications and simulations of real ap-

plications. As a consequence, the validation of simulation models is much more e�ective

and less buggy, and the level of con�dence in the validation process is improved.

5.3 Conclusions and Perspectives

OSIF is based on several mature software engineering techniques and frameworks, such as

COSMOS, FRACTAL and its ADL, and AOP. Bene�ts of OSIF are multiple: (i) OSIF

allows a complete separation of concerns between modeling, instrumentation and data

processors; (ii) OSIF favors validation of results by allowing to share the analysis process

between the real system and the simulated system; (iii) OSIF allows to manage and

optimize the �ow of simulation data whether we want to live analyze or post analyze

simulation data; and (iv) OSIF allows to design and compose complex instrumentations

and data processors in a simple way. OSIF has been successfully tested on the OSA

simulator through a large case study presented in Section 7.1. OSIF has been designed

so that there are no connection between the simulator, the instrumentation, and the data

processors. Thus, OSIF can be used and reused on any simulator. Since AOP is available

for most programming languages, OSIF could be used regardless of the simulator and the

language used. COSMOS collectors are written in Java, but there are already several ways

to integrate non-Java languages, for example, using JNI. The next step is to federate a

community around OSIF to build and share COSMOS components in order to enrich the

experience of the end-users.

1See also the following projects: Cappucino on mobile commerce (http://www.cappucino.fr/), and
Totem on pervasive gaming.

86 Chapter 5. Contributions to Instrumentation

To enrich the OSIF experience, we are planning future works. The �rst one is de-

rived from the fact that extension and rede�nition mechanisms of FRACTAL ADL can

lead to unintended results because of some unexpected side e�ects. A tool for describ-

ing, analyzing and verifying data processors as the one currently developed by COS-

MOS (COSMOS DSL) will retain the advantages while avoiding disadvantages. Then, a

medium term project is to build on top of the COSMOS instrumentation policy a tool to

drive simulation experiments. We plan to investigate techniques such as those described

by [Himmelspach et al., 2008]. Indeed, COSMOS o�ers all we need to drive simulation

such as controlling the number of runs necessary to obtain the expected con�dence inter-

vals or automatically cut the beginning of a simulation or re�ning inputs to obtain the

best inputs combination for a study.

Chapter 6

Thoughts on Integration

Contents

6.1 Motivations and Objectives . 88

6.2 Contributions . 89

6.2.1 Integration of Existing Simulation Elements 89

6.2.2 Integration of Existing Simulation Tools 91

6.3 Related Works . 91

6.3.1 Integration of Elements of the System Under Study 91

6.3.2 Integration of Services . 92

6.4 Conclusion . 93

88 Chapter 6. Thoughts on Integration

In this chapter, we consider the problem of reusing parts of existing simulators in a new

one. We started from the observation that despite no single simulation software seems to

be perfect, most of the elements required to make a perfect simulator already exist as part

of existing simulators. This chapter presents our solution to integrate existing simulation

elements such as models and engines thanks to the ability of FRACTAL to encapsulate and

compose software. It is also interesting to integrate a simulator as a back-end, particularly

to reuse existing experimental planning. To demonstrate the feasibility of such integration,

we use our demonstration platform OSA as front-end for the integration of existing models

and engines from another simulator, but also as a back-end for integration of existing

experimental planning from another simulator.

We saw in chapter 4 reasons and solutions for making tools that promote reuse. How-

ever, this reuse is limited to a community using the same tools. Integration is the ability

to share and reuse software components between di�erent user communities. Integration

is thus a complex task because it must succeed in establishing means of communication

between the various elements to be assembled without those being designed to work to-

gether. We also saw in section 2.3.4 that there were already solutions for integration (HLA

to integrate simulation or CD++ to integrate services). We propose to extend integration

to all elements of the simulation through the use of software engineering techniques such

as component-oriented programming and aspect-oriented programming.

In the sequel of this chapter, section 6.1 presents our motivations to work on the

integration of existing elements in simulation and how we plan to achieve our goals. Sec-

tion 6.2 presents our works on the integration of parts of the JAMES II framework into

OSA. Section 6.3 presents related works on the integration of elements into simulations.

Finally, section 6.4 concludes the chapter and draws some perspectives.

6.1 Motivations and Objectives

By repeating the simulation activities de�ned in section 2.3.1, we realize that reuse can be

bene�cial in all stages of a simulation study. We propose to group integration techniques

into 4 categories:

• Integration of existing simulation elements allows to integrate elements from

existing simulator such as models, engine, formalism, etc. The bene�ts of such

integration are the same as those related to reuse (see section 3.2.3).

• Integration of existing simulation tools allows the integration of pre and post

processing tools such as experimental planning or results analysis. The integration

of such tools allows to save development time, and to access reliable and powerful

tools.

• Integration of elements of the system under study (emulation) allows to

integrate within the model to simulate elements from the system that we study.

There is no need to make assumptions about the behavior of the system which is

integrated in the simulation. Nevertheless, we still need to make assumptions on the

part of the system that we will emulate.

6.2. Contributions 89

• Integration of services (mashup) allows to integrate within the simulation data

or services. For example integrate within a simulated forest �re data from meteo-

rological services to predict �re behavior. The bene�ts of such integration are the

separation of concerns among experts and updating real-time data provided by a

third partner whose job is not simulation.

Integration of existing simulation elements can be done through the encapsulation of

components and separation of concerns between elements of the simulation. Integration of

existing simulation tools is achieved through the establishment of communication channels

between the tools, such as a common format to store data or creating a wrapper to control

backend tool. Integration of elements of the system under study can be done through the

encapsulation in components, separation of concerns and aspect-oriented programming

that allows to intercept method call without having to modify the source code of the orig-

inal software. Integration of services can be achieved through component programming.

In fact, the code inside the component communicates through the interface of the com-

ponent. This is the platform that implements the component model that supports the

communication to remote services.

6.2 Contributions

This section presents our contributions in the integration of existing simulation elements.

First, we present the integration of elements from James II into OSA. Second, we present

the integration of OSA in a tool of JAMES II.

6.2.1 Integration of Existing Simulation Elements

The integration of elements of existing simulation allows to reuse existing models, sce-

nario, engine or formalism from existing simulation software and integrate them in others

simulation software. Our experimental platform based on the OSA FRACTAL component

model allows to highlight our solutions based on the use of encapsulation property of com-

ponent models. Thus, the following section discusses possible ways to integrate elements

of the simulation framework JAMES II in OSA. As presented in section 2.3.2, JAMES II

is a general and open framework based on the �Plug'n simulate� concept , which allows

developers to integrate their modeling and simulation methodological ideas into, and to

create their applications upon an existing framework. JAMES II currently provides over

400 plugin.

Integrating JAMES II Elements into OSA In this section, we discuss the integra-

tion of di�erent elements from the JAMES II framework into OSA. We �rst present the

integration of elements from the library of JAMES II such as generators or queues. Then

we discuss the integration of formalism and simulation engine, such as DEVS formalism

and the simulation engine associated with this formalism. Then we discuss the integration

of models and di�erent way to reuse the models (reuse of part of model or reuse of full

model). Finally, we discuss the bene�cial side e�ects that we found to integration.

90 Chapter 6. Thoughts on Integration

Library integration JAMES II can be reused as a library with, for example, the

reuse of generator or queue. There are several methods to reuse JAMES II as a library.

The �rst is the direct use of classes of JAMES II, but this does not correspond to a

strict separation of concerns. Indeed, a direct reference to classes of JAMES II prevent

to easily replace them later. The second is the encapsulation of classes of JAMES II in

FRACTAL components. We must then create as many components as classes of JAMES

II that we want to reuse. The third is to use the plugin mechanism of JAMES II to

load the implementation at runtime. We must then create a single component by type of

services (random number generator, queue) that we want to reuse. During the component

initialisation, the FRACTAL factory calls the JAMES II registry for an instance corre-

sponding to the given server interface and set the singleton. However, this process can be

parameterized, and thus, although using the framework functionality, we can still ask for a

concrete implementation � but if this does not exist we will just return an alternative, thus

here we have a softer binding between the two. We selected and implemented the third

method because it minimizes the number of components required while providing as much

functionality as the other two methods. Moreover, the addition of new implementations

of a type of service already supported in OSA will be automatically taken into account.

Engine integration To encapsulate engines, we have done this in a similar way as

the library way. In fact, to bene�ts from the automatic engine selection of JAMES II, we

have build an engine factory component where the role is to ask the JAMES II registry for

a concrete implementation according to the given model. The engine factory component

is connected through the FRACTAL interface to the model component. Thus, we can

reuse all the FRACTAL communication protocol to handle a communication between the

simulator engine and the model.

Here, we chose not to put the simulation engine inside the component's membrane.

This choice was made because JAMES II prohibits any interaction between the model and

the engine (unlike the process-oriented engine of section 4.3). Therefore, there is no interest

in placing the engine inside the membrane. The engine can be seen as a simulation layer

on top of the simulation model whose role will be to lead state's transition (as proposed

by Zeigler with his concept of abstract simulator [Zeigler, 1984]).

Model integration Reusing complete JAMES II model into OSA allow to use OSA

functionalities such as the instrumentation framework on this model. To wrap a model into

a component without modi�cation, we have created a new model extending the previous

one. This new model contain only the necessary information to be �componentized� - i.e.

special java annotations. Fraclet[Rouvoy et al., 2006] will then add during the compilation

phase some methods necessary to transform this new model (overloading the previous

one) into a component. In that way, the resulting component provide a server interface

corresponding to the original model interface.

Reusing part of JAMES II model into OSA allow to use OSA functionalities such

as those provided by FRACTAL ADL. Moreover, it can a�ord to have components of

references used in several simulations. To do this, without modifying the original model,

6.3. Related Works 91

we override parts of the model that we want to transform into components. Thus, for

example with the DEVS formalism, we override the classes that de�ne the original model

and we override the initialization method so that the assembly is done via FRACTAL ADL

and not directly in the model code. Thus, the model is no longer a monolithic block but

an assembly of components described via FRACTAL ADL. The communication protocol

between components is handled by FRACTAL.

Positive e�ect Since it is possible to reuse elements of the JAMES II framework, it

is possible to reuse development functionality of the JAMES II framework. For example, to

make a new implementation of a queue, it is wise to do so within the JAMES II framework

and then use it in OSA rather than implement it directly in OSA to take advantage of

the queue test process of JAMES II. This separation of concern between the development

framework and the runtime framework is also a form of reuse.

6.2.2 Integration of Existing Simulation Tools

The integration of existing simulation tools allows to reuse existing pre or post-processing

tools and bene�ts from reliable and powerful tools quickly. Technical solutions to connect

integrate an existing tools and requires the establishment of common rules, such as a

common format for storing data or by the use of the frontend/backend pattern. We

showed in section 5.2.3 page 82 that it is possible to reuse post-processing tools such as

Scave (the post-processing tool of OMNeT++) through the recording of the simulation

results in a format understandable by Scave.

The use of the front-end back-end pattern can be used in the case of pre-production

tools such as the experimental planning of JAMES II. The uses of the experimental plan-

ning of JAMES II requires the simulation to be executed as a backend. OSA can be

used from the command line and this method can be used to de�ne the parameters of

the simulation. The disadvantage of this approach is that the parameters passed on the

command line are not stored in the simulation project and the replayability is not guaran-

teed. We used the experimental planning tool from JAMES II that saves all settings of a

study. The replayability is then provided by the pre-processing tool. Another solution is

the possibility to let OSA drive the experimental planning who drive the OSA simulation.

The top OSA project de�ned with Maven using the Project Object Model ensures the

replayability as it fully explicits the experiment settings.

6.3 Related Works

This section presents works on the integration of system elements and services into the

simulation.

6.3.1 Integration of Elements of the System Under Study

The integration of elements of the system under study allows to reuse parts of this system

and thus there is no need for any assumptions about their behavior. This saves time in

92 Chapter 6. Thoughts on Integration

development but also in V&V.

In [Moallemi and Wainer, 2009, Holman et al., 2009], the authors show interesting

technique to use the code of the model as the system code. They �rst develop the code

for the simulation (using CD++), then use the same code into the system.

In OSA, reuse of code of the system that we study is done via the encapsulation

in FRACTAL components. The integration is done without modifying the source code

through the inheritance o�ered by Java or by using AOP (already presented in chapter 4

and chapter 5) as well as FRACTAL ADL. The integration of system element may need

to intercept some calls such as system calls and emulate the behavior of the underlying

system to simulate the global behavior also requires an engine with real time capabilities.

Here again AOP can help to intercept and overload method call without modifying the

original source code.

Notice other techniques can be used, such as changing the OS interface library using

LD_PRELOAD on unix systems. In [Lacage, 2010], Lacage shows that the �use of a

simple ELF dynamic loader together with replacement libraries for the Linux user space

environment and the kernel space runtime environment is su�cient to allow the Direct

Code Execution of unmodi�ed user space and kernel space protocol implementations�.

Thus, �the same application binary can run both standalone on the host system to be

used in a testbed or directly within the simulator�.

However these techniques are less convenient than AOP when applied to OSA.

6.3.2 Integration of Services

The integration of services allows to reuse existing services and data from �elds that have

no links with the simulation. This allows experts to focus on their core business without

having to think about how their data or services are used. Thus, it is possible to create new

applications and hence new simulations by combining di�erent services into a simulation.

For example, in [Harzallah et al., 2008] the authors conducted a simulation featuring his

CD++ simulator, a mapping service and a weather service to simulate a �re forest.

The integration of existing services can be done through di�erent protocols such as web

service. FRACTAL BF already presented in chapter 4 allows to connects a FRACTAL

component directly to a service using several protocols (such as RMI or web service).

Thus, Using FRACTAL BF enables a simulation component to connect seamlessly with

a remote service. Indeed, the code encapsulated in a component only knows the local

interface o�ered by the component that act as a proxy for accessing other components.

Thus, the component model (here FRACTAL associated with FRACTAL BF) manages

the connections between the content of the component and the outside world. In addition,

FRACTAL BF allows to transform a FRACTAL component into a remote service. This

can help in building mashup between di�erent simulations from di�erent simulators.

6.4. Conclusion 93

6.4 Conclusion

The integration of the JAMES II plugin system into OSA components allows to reuse all

plugins from JAMES II. This includes the simulation engine, but also queues or random

number generators. By reusing plug-ins from JAMES II in OSA, it now gets easier to

create simulation schedulers and models for the latter because we have access to a lot of

component encapsulating modeling facilities such as queues, engines, and models. Ele-

ments of these can be exchanged easily, as the reuse here means that we automatically

have a strict separation of concerns that can use alternatives. Consequently the advan-

tages of having multiple algorithms in JAMES II hold true for OSA as well. We also

demonstrated that it is possible to execute a model from JAMES II in OSA. It is thus

possible to use the FRACTAL ADL language to describe a simulation in OSA by using

models from JAMES II.

We also worked on the integration of OSA as a backend for the experimental planning

of JAMES II. The conclusions on the work needed on JAMES II to allow the integration

of third-party simulators are not reported in this thesis. From the OSA side, the use of

OSA as a backend is done by simply passing parameters on the command line.

Finally, we have provided solutions for achieving mashups and emulations. Mashups

are easily achievable using FRACTAL BF. Using FRACTAL BF and mashups can also

allow simulations to interoperate. The emulation can be done through the encapsulation

of existing code into components and the interception of calls to the underlying system

are done using AOP.

Chapter 7

Application and Performances

Contents

7.1 Use case study . 96

7.2 Applying Reusing Techniques Through OSA 97

7.2.1 Conceptual model . 97

7.2.2 Implementations . 97

7.2.3 Execution . 100

7.2.4 Deployement . 101

7.3 Performances . 108

7.3.1 FRACTAL Performance . 109

7.3.2 Deployment Performance . 110

7.4 Conclusion . 112

96 Chapter 7. Application and Performances

This chapter illustrates the use of techniques of reuse, separation of concerns and

deployment presented in this thesis through a use case study derived from an actual study

performed in our research team. Section 7.1 presents the context and the system (data

storage on a peer to peer overlay network) we want to study. Section 7.2 describes how

the techniques presented in this thesis serve our case study.

7.1 Use case study

We wish to study the impact of various parameters on the backup of data on a peer-to-

peer storage system. Traditional backup solutions, e.g. data centers and high-end NAS

appliances are highly reliable, but also tend to be very expensive. Peer-to-peer systems

are an interesting alternative to obtain a storage solution with high reliability at low cost.

Indeed, companies with a lot of resources distributed in di�erent geographical locations can

use them instead of expensive backup system. Similarly, small structures and individual

can come together and to contribute their resources to bene�t from a system data backup.

Many systems have been proposed, e.g., Intermemory, CFS, Farsite, OceanStore, PAST,

Glacier, TotalRecall, or Carbonite [Chun et al., 2006].

The key concept of peer-to-peer storage systems is to introduce redundancy to the

data and distribute it among peers in the network. The protocol we have chosen to model

for maintaining the level of redundancy is based on �erasure codes� [Luby et al., 1997,

Weatherspoon and Kubiatowicz, 2002], such as Reed Solomon and Tornado. When using

Erasure Codes, the original user data (e.g. �les, raw data, etc.) is cut into data-blocks

that are in turn divided into s initial fragments (or pieces) of equal size. The encoding

scheme produces s + r fragments that can tolerate r failures (see Figure 7.1). In other

words, the original data-block can be recovered from any s of the s+r encoded fragments.

In a peer-to-peer storage system, these fragments are then placed on s + r di�erent peers

of the network.

initial data-block
(s + r fragments)

File Network
+

remaing
fragments

reconstructed
data-block

File

tolerate r
failures

Figure 7.1: Files or raw data are cut into data-blocks. Each data-block is divided into s
initial fragments, to which r fragments of redundancy are added. Any s fragments among
s+r are su�cient to recover the original data-block.

A peer-to-peer systems can be full-distributed or hybrid. A hybrid system possesses

a centralized server that will manage the overall meta-information of the system while a

full-distributed peer-to-peer system distribute the meta-information on peers. The meta-

information is the data that allow to �nd a piece of data in the peer-to-peer system and

7.2. Applying Reusing Techniques Through OSA 97

know the level of redundancy. This leads to model a system where all nodes are potentially

connected to all nodes, which is to have N * (N-1) connection.

PeerSim is a simulator (peersim.sourceforge.net/) that has been used for some years to

evaluate P2P protocols (e.g. DHT, gossip, etc.). It has a simple cycle-based architecture

that allows fast prototyping and evaluation of P2P algorithms. But PeerSim is not dis-

tributable and it seems impossible to �t in memory on a single computer the modeling of

a large scale peer-to-peer system, i.e. in million of node with a large amount of references

and meta-informations.

Designing such a system raises fundamental questions: How much resource (bandwidth

and storage space) is necessary to maintain this redundancy and to ensure a given level

of reliability? How to choose the basic set of parameters, such as s, r, r0, to obtain

an e�cient utilisation of bandwidth? What is the probability that a particular system

con�guration results in a data loss over a given time period? How the placement strategy

impacts the system behavior?

7.2 Applying Reusing Techniques Through OSA

7.2.1 Conceptual model

We choose to represent the system described above in a hierarchical fashion, with a cen-

tralized server to store meta information.

Since all peers can communicate, they must all be connected to each other. This

implies N * (N-1) connections. To decrease the number of connections, we can use a

component to route communications. This results in 2N connections to connect all peers

among them. Figure 7.2 depicts conceptually the system under study. We can clearly see

from this �gure, the phenomenon of hyper-spaghetti due to too many connections between

components.

Figure 7.3 shows the same conceptual model, but this time we use a shared component

[Dalle et al., 2008] "network " between all peers. We see that the component "network"

is de�ned in the component "server" and peers share this instance (shown in gray). Peers

communicate through the single component instance "network" present in each peer. This

results in a better readability and understandability of the model, but also the con�gura-

tion �les are simpli�ed and reduced, and thus the instantiation time is reduced.

7.2.2 Implementations

To implement the previous model in OSA, we �rst create a new project called "P2P".

Figure 7.4 shows the architecture of the "P2P" project and a part of the architecture

of the "OSA" project. Each directory is a Maven project. These Maven projects are

versioned and stored in a network repository to be easily reused.

Listing 7.1 shows the FRACTAL ADL de�nition of a �peer�. This composite component

contains several components whose de�nitions are described in other �les. In addition,

the propagation of parameters allows to reuse this component without modi�cation. The

component �peer� reuse components, and is reusable.

98 Chapter 7. Application and Performances

ServerImpl

Network

Peer1

ReedSolomon

Storage

Client

PeerN

ReedSolomon

Storage

Client

ReedSolomon

Server

Figure 7.2: Conceptual view of the data storage model using one Network component and
the hyper-spaghetti phenomenon.

This �peer� component will be reused in a more complex model, containing many �peer�

components and one �server� component as shown in �gure 7.3.

Listing 7.2 is the FRACTAL ADL de�nition of the conceptual model described by

the �gure 7.3. This de�nition reuses the �peer� de�nition 1000 times which represent an

overall number of 5000 fractal primitive components. Inside peers component, we rede�ne

the network component to use the one de�ned into the �server� component.

We realize that for large-scale architecture, FRACTAL ADL �les could be large. There-

fore, time required to parse all the de�nitions can be very long, and construction in memory

impossible. The loop mechanism was not present in Fractal, we use the template-factory

pattern presented in this thesis. Figure 7.5 shows the conceptual model on the use of the

template-factory pattern. There is only one component �peer� which is converted into a

template and one component �duplicator� which will duplicate the template to which it is

connected to a number of times. Listing 7.3 shows the FRACTAL ADL de�nition of the

use of the template-factory pattern. We add to the �peer� component and each subcom-

ponent a template-controller to describe the way to duplicate them. Then, the component

�duplicator� is parameterized and connected to the �peer� template-component. This def-

inition is fully parameterized and could be reused easily.

The description above is part of the modeling layer. Listing 7.4 is part of the scenario

layer. The �user� component play the role of a user adding data into the system. The

component �peerFailure� is in charge of triggering failures on a peer, for example by

cutting the connection between the component �storage� and the component �network�.

7.2. Applying Reusing Techniques Through OSA 99

ServerImpl

Network

Peer1

Network

ReedSolomon

Storage

Client

PeerN

Network

ReedSolomon

Storage

Client

ReedSolomon

Server

Network Network

Figure 7.3: Conceptual view of the data storage model using a shared Network component
(shared are in gray).

This mimics the fact that the disk of a peer is no more accessible. This de�nition is

independent from the �peer� de�nition described above, but assumes the existence of a

component called �peer� containing several sub-component. Indeed, the scenario involves

the connection of the �user� component with the �appliImpl� component. This listing also

allows to distinguish the presence of exogenous event (<exoevents>). Thus, the method

�home� of the �User� component will be executed at simulation time �10� and the method

�nextFailure� of the component �peerFailure� will executed at the simulation time �20�.

After the modeling layer and the scenario layer, let's talk about the simulation layer

represented by listing 7.5. The role of this simulation layer is to con�gure the control

of the simulation. Here we adopt a single scheduler (superscheduler) responsible of the

management of every simulation's component. Thus, the scheduler component is shared

between all the composite components and is connected to all the primitive simulation's

component. The only instance of the scheduler is in the component �server� and is shared

in other components to avoid the phenomenon of hyper-spaghetti.

To these three layers, we can possibly add other layers. For example a layer of in-

strumentation, necessary to know what is going on inside the model. We want to observe

disks failures and compute statistics about the failure rate of disks inside the peer to peer

model.

Listing 7.6 presents the aspectj code to acquire knowledge each time a disk fail. Line

01 de�nes the aspect class. Lines 02-04 specify that before the execution of the peerFailure

method from the PeerFailure class, we push to the StorersCollector the simulation's time

100 Chapter 7. Application and Performances

OSA

Engines

P2P

Models

Scenarios

Instrumentations

Experiments

OSAEngine, DEVS, Pi, CA, ...

Peer, Storage, ReedSolomon, Server, ...

PeerFailure, User, ...

PeerLifetime, FragmentLevel, ...

Exp1, Exp2, Exp3, ...

Simulations

SimulationConf

Figure 7.4: Simpli�ed view of the architecture of the simulation project.

and the failure's id. As mentioned in section ??, the statistical computation is managed

by COSMOS but could also be done by others tools. For more detail on the COSMOS

framework and how we used it through OSIF, see section 5.

7.2.3 Execution

The layers de�ned above are stored in a repository accessible via the Internet. Using

Maven can �nely tune dependencies between layers and component versions. Thus, our

execution layer will de�ne a set of dependencies (see Listing 7.7) and merge the di�erent

layers (see Listing 7.8).

Listing 7.7 shows a reduced view of the Maven con�guration �le (pom.xml). This �le

is used here to de�ne a new �experiment� Maven project called �exp-1000peers�. The �rst

part of the �le de�nes the parent project, then identi�es the project by groupId, parentId

and version number. We deliberately hide the use of various plugin that serve to con�gure

the project because it is verbose. These are among other plugin to con�gure the compila-

7.2. Applying Reusing Techniques Through OSA 101

Listing 7.1: FRACTAL ADL de�nition of a peer component.

<?xml version=" 1 .0 " encoding="ISO−8859−1" ?>
<!DOCTYPE definition PUBLIC "−//objectweb . org //DTD Frac ta l ADL 2.0//EN"

" c l a s s p a t h : // osa / u t i l / adl / stds im . dtd">

<definition name="p2p . models . peer " arguments=" s t o r e r s i z e , s , r ">

<component name="reedsolomon" definition="p2p . models . ReedSolomon (s=>${s } , r
=>${r }) " />

<component name="appl i Impl " definition="p2p . models . PeerImpl " />

<component name=" s t o r e r " definition="p2p . models . S to r e r (hdds ize=>${
s t o r e r s i z e }) ">

<exoevents s i gna tu r e=" s t o r e r ">
<exoevent name=" r e g i s t e r " type=" Star tOfCa l l " time="0"

method="boot" />
</ exoevents>

</component>

<component name="network" definition="p2p . models . Network" />

<binding c l i e n t=" appl i Impl . s t o r e r s " s e r v e r=" s t o r e r . s t o r e r " />
<binding c l i e n t=" appl i Impl . s e r v e r " s e r v e r="network . network" />
<binding c l i e n t=" appl i Impl . reedsolomon" s e r v e r=" reedsolomon . reedsolomon" />
<binding c l i e n t="network . peer " s e r v e r=" s t o r e r . s t o r e r " />

</definition>

tion and execution of this project. Then, dependencies are de�ned. There are dependen-

cies to sub-project �models�, �scenarios�, �instrumentations� and �simulations�. Thanks to

transitivity, the dependencies of the project �p2p.experiments.exp-1000peers� bene�ts from

dependencies of projects it depends. Dependencies of the sub-project �p2p.simulations�

to the project �OSA.OSAengines� are de facto added to the dependencies of the project

�p2p.experiments.exp-1000peers�.

Listing 7.8 represents the experiment layer which will be stored in the Maven project

described above. We de�ne the di�erent layers that we want to merge and we set the

parameters to de�ne a simulation application. Fixed and stored in a Maven repository

with all the dependencies, replayability is assured as long as the Maven repository exists.

In a future study, we may want to start again from previous experience and to vary

some parameter or to add elements to the simulation, such as adding an new scenario.

Listing 7.9 shows how to extend the previous experiment and change just one parameter in

order to have 2000 peers instead of 1000, and add in addition to the scenario �p2pscenario�,

a second layer of scenario �p2pscenario2�.

7.2.4 Deployement

The deployment of the model written in Listing 7.2 is described below in Listing 7.10. The

component �server� will be instantiated locally while the �rst 250 peers will be instantiated

on the computational resources associated with the virtual node �cr1�, the following 250

peers will be instantiated on the computational resources associated with the virtual node

102 Chapter 7. Application and Performances

Listing 7.2: FRACTAL ADL de�nition of the P2P model.

<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<!DOCTYPE definition PUBLIC "−//objectweb . org //DTD Frac ta l ADL 2.0//EN" " c l a s s p a t h :

// osa / u t i l / adl / stds im . dtd">
<definition name="p2p . models . p2pmodel1000" arguments="hddsize , s , r , r0 , theta ">

<component name=" se rv e r ">
<component name=" server Impl " definition="p2p . models . ServerImpl (${ r0

} ,${ theta } ,${ hdds ize }) " />
<component name="network" definition="p2p . models . Network" />
<component name="reedsolomon" definition="p2p . models . ReedSolomon (${

s } ,${ r }) ">
<binding c l i e n t=" server Impl . reedsolomon" s e r v e r=" reedsolomon .

reedsolomon" />
<binding c l i e n t=" server Impl . pee r s " s e r v e r="network . network" />
<binding c l i e n t="network . s e r v e r " s e r v e r=" server Impl . s e r v e r " />

</component>

<component name="peer0 " definition="p2p . models . peer (${ hdds ize } ,${ s } ,${ r }) ">
<component name="network" definition=" se r v e r /network" />

</component>

<component name="peer1 " definition="p2p . models . peer (${ hdds ize } ,${ s } ,${ r }) ">
<component name="network" definition=" se r v e r /network" />

</component>

[. . .]

<component name="peer999 " definition="p2p . models . peer (${ hdds ize } ,${ s } ,${ r })
">

<component name="network" definition=" se r v e r /network" />
</component>

</definition>

7.2. Applying Reusing Techniques Through OSA 103

Listing 7.3: FRACTAL ADL de�nition of the P2P model using template-factory pattern.

<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<!DOCTYPE definition PUBLIC "−//objectweb . org //DTD Frac ta l ADL 2.0//EN" " c l a s s p a t h :

// f r / i n r i a / osa / s imulat ionAPIs /basicAPI/ adl / stds im . dtd">
<definition name="p2p . models . p2pmodel" arguments="hddsize , s , r , r0 , theta , loop ">

<component name=" se rv e r ">
<component name=" server Impl " definition="p2p . models . ServerImpl (${ r0

} ,${ theta }) " />
<component name="network" definition="p2p . models . Network" />
<component name="reedsolomon" definition="p2p . models . ReedSolomon (${

s } ,${ r }) ">
<binding c l i e n t=" server Impl . reedsolomon" s e r v e r=" reedsolomon .

reedsolomon" />
<binding c l i e n t=" server Impl . pee r s " s e r v e r="network . network" />
<binding c l i e n t="network . s e r v e r " s e r v e r=" server Impl . s e r v e r " />

</component>

<component name="peer " definition="p2p . models . peer (${ hdds ize } ,${ s } ,${ r }) ">
<component name="network" definition=" se r v e r /network">

<template−c o n t r o l l e r desc=" sharedPrimit iveTemplate "/>
</component>
<component name=" s t o r e r ">

<template−c o n t r o l l e r desc=" simPrimit iveTemplate "/>
</component>
<component name="appl i Impl ">

<template−c o n t r o l l e r desc=" simPrimit iveTemplate "/>
</component>
<component name="reedsolomon">

<template−c o n t r o l l e r desc=" simPrimit iveTemplate "/>
</component>
<template−c o n t r o l l e r desc="simCompositeTemplate"/>

</component>

<component name="Dupl icatorFactory " definition="OSA. misc . Dupl i cator (
i t e r a t i o n=>${loop }) " />

<binding c l i e n t="Dupl icatorFactory . template " s e r v e r="peer . component" />

</definition>

104 Chapter 7. Application and Performances

Listing 7.4: FRACTAL ADL de�nition of a scenario for the P2P model.

<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<!DOCTYPE definition PUBLIC "−//objectweb . org //DTD Frac ta l ADL 2.0//EN" " c l a s s p a t h :

// osa / u t i l / adl / stds im . dtd">
<definition name="p2p . s c ena r i o . p2pscenar io " arguments=" f i l e p e r u s e r , alpha , ze ta ">

<component name="peer ">
<component name="user " definition="p2p . s c ena r i o . User (${ f i l e p e r u s e r

}) ">
<exoevents s i gna tu r e=" user ">

<exoevent name="user " type=" Star tOfCa l l " time="10"
method=" s t a r t " />

</ exoevents>
</component>
<component name=" p e e r f a i l u r e " definition="p2p . s c ena r i o . Pee rFa i lu re (

alpha=>${alpha } , ze ta=>${zeta }) ">
<exoevents s i gna tu r e=" s t o r e r ">

<exoevent name=" s t a r t " type=" Star tOfCa l l " time="20"
method=" nextFa i lu r e " />

</ exoevents>
</component>

<binding c l i e n t=" user . c l i e n t " s e r v e r=" appl i Impl . c l i e n t " />
[. . .]
[. . .]

</component>
</definition>

Listing 7.5: FRACTAL ADL de�nition of a simulation control for the P2P model.

<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<!DOCTYPE definition PUBLIC "−//objectweb . org //DTD Frac ta l ADL 2.0//EN" " c l a s s p a t h :

// osa / u t i l / adl / stds im . dtd">
<definition name="p2p . s imu la t i on . p2ps imulat ion ">

<component name=" se rv e r ">
<component name=" super s chedu l e r " definition="OSA. Engines . OSAEngine .

SuperScheduler " />
<binding c l i e n t=" server Impl . supe r s chedu l e r " s e r v e r=" supe r s chedu l e r .

supe r s chedu l e r " />
</component>

<component name="peer ">
<component name=" super s chedu l e r " definition=" ./ supe r s chedu l e r " />
<binding c l i e n t=" p e e r f a i l u r e . supe r s chedu l e r " s e r v e r=" supe r s chedu l e r

. supe r s chedu l e r " />
<binding c l i e n t=" user . supe r s chedu l e r " s e r v e r=" supe r s chedu l e r .

supe r s chedu l e r " />
<binding c l i e n t=" appl i Impl . supe r s chedu l e r " s e r v e r=" supe r s chedu l e r .

supe r s chedu l e r " />
<binding c l i e n t=" s t o r e r . supe r s chedu l e r " s e r v e r=" supe r s chedu l e r .

supe r s chedu l e r " />
</component>

</definition>

7.2. Applying Reusing Techniques Through OSA 105

Listing 7.6: AspectJ code to acquire knowledge each time a disk fail.

01 public aspect diskFailure {
02 before (PeerFailure failure) : execution (void PeerFailure . peerFailure ()) && this

(failure) {
03 DiskFailureCollector . pushFromAspect (failure . simulationController_ .

getSimulationTime () , failure . failureId_) ;
04 }
05 }

Listing 7.7: Maven con�guration �le of the �exp-1000peers� experiment project.

<?xml version=" 1 .0 " encoding="UTF−8"?>
<pro j e c t xmlns=" ht tp : //maven . apache . org /POM/4 . 0 . 0 " xmlns :x s i=" ht tp : //www.w3 . org

/2001/XMLSchema−i n s t ance "
xs i : s chemaLocat ion=" ht tp : //maven . apache . org /POM/4 . 0 . 0 h t tp : //maven . apache .

org /maven−v4_0_0 . xsd">
<parent>

<a r t i f a c t I d>p2p</ a r t i f a c t I d>
<groupId>p2p</groupId>
<version>1.0</version>

</parent>
<modelVersion>4 . 0 . 0</modelVersion>
<groupId>p2p . experiments</groupId>
<name>1000 peers</name>
<version>1.0</version>
<a r t i f a c t I d>exp−1000peers</ a r t i f a c t I d>

[. . .]

<dependenc ies>
<dependency>

<groupId>p2p</groupId>
<a r t i f a c t I d>models</ a r t i f a c t I d>
<version>1.0</version>

</dependency>
<dependency>

<groupId>p2p</groupId>
<a r t i f a c t I d>scenarios</ a r t i f a c t I d>
<version>1.0</version>

</dependency>
<dependency>

<groupId>p2p</groupId>
<a r t i f a c t I d>instrumentations</ a r t i f a c t I d>
<version>1.0</version>

</dependency>
<dependency>

<groupId>p2p</groupId>
<a r t i f a c t I d>simulations</ a r t i f a c t I d>
<version>1.0</version>

</dependency>

[. . .]

</dependency>
</ p ro j e c t>

106 Chapter 7. Application and Performances

ServerImpl

Network

Peer

Network

ReedSolomon

Storage

Client
ReedSolomon

Server

TEMPLATE

Duplicator

Network

Figure 7.5: Conceptual view of the P2P model using the template-factory pattern.

Listing 7.8: FRACTAL ADL de�nition of an experiment for the P2P model

<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<!DOCTYPE definition PUBLIC "−//objectweb . org //DTD Frac ta l ADL 2.0//EN" " c l a s s p a t h :

// f r / i n r i a / osa / s imulat ionAPIs /basicAPI/ adl / stds im . dtd">

<definition name="p2p . exper iments . exp−1000 peer s "
ex tends="p2p . models . p2pmodel (s=>5,r=>5,r0=>9, theta=>12, loop=>1000) ,

 p2p . s c e n a r i o s . p2pscenar io (f i l e p e r u s e r =>100,alpha=>17520, ze ta=>72) ,
 p2p . s imu la t i on s . p2psimulat ion ,
 p2p . in s t rumentat i ons . p2pinstrumentat ion ">
</definition>

�cr2�, and so on. During the execution of the simulation is associated to each virtual node

a physical resource on which the fractal factory can connect and deploy the component.

The use of the pattern template-factory described above (see Listing 7.3) prevents the use

of FractalRMI on new duplicated components as they don't exists at the Fractal loader

factory level. The components are duplicated at runtime by the �duplicator� component.

However, it is possible to create a component �duplicator� who would be in charge to

deploy the components in the manner of the Fractal loader factory. No other changes are

required on the code to deploy and connect remote components. Indeed, the code inside

the component only communicates with the internal interface of the component, and

the Fractal component model handles the remote communication between the external

interfaces of components.

Another solution for application deployment is the use of fractal Fractal-BF. Fractal-

BF transforms a component into a component providing a service interface or connect a

Fractal component to a service using various protocols (RMI, WebService, OSGi, Rest,

. . .). Figure 7.6 describes the development of a simulation as the overall composition

of two simulations. The �rst simulation on the �computer1� contains several �peer� (use

of template-factory) and a �server�. The second simulation on the �computer2� contains

7.2. Applying Reusing Techniques Through OSA 107

Listing 7.9: FRACTAL ADL de�nition of another experiment for the P2P model

<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<!DOCTYPE definition PUBLIC "−//objectweb . org //DTD Frac ta l ADL 2.0//EN" " c l a s s p a t h :

// f r / i n r i a / osa / s imulat ionAPIs /basicAPI/ adl / stds im . dtd">

<definition name="p2p . exper iments . exp−2000 peer s "
ex tends="p2p . exper iments . exp−1000peers ,

 p2p . models . p2pmodel (loop=>2000) ,
 p2p . s c e n a r i o s . p2pscenar io2 (gamma=>42) , ">
</definition>

Listing 7.10: FRACTAL ADL de�nition of a deployment for the P2P model using Frac-
talRMI
<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<!DOCTYPE definition PUBLIC "−//objectweb . org //DTD Frac ta l ADL 2.0//EN" " c l a s s p a t h :

// f r / i n r i a / osa / s imulat ionAPIs /basicAPI/ adl / stds im . dtd">
<definition name="p2p . deployments . p2pdeploy">

<component name=" se rv e r ">
</component>

<component name="peer0 ">
<v i r tua l−node name=" cr1 "/>

</component>
[. . .]
<component name="peer249 ">

<v i r tua l−node name=" cr1 "/>
</component>

<component name="peer250 ">
<v i r tua l−node name=" cr2 "/>

</component>
[. . .]
<component name="peer449 ">

<v i r tua l−node name=" cr2 "/>
</component>

<component name="peer500 ">
<v i r tua l−node name=" cr3 "/>

</component>
[. . .]
<component name="peer749 ">

<v i r tua l−node name=" cr3 "/>
</component>

<component name="peer750 ">
<v i r tua l−node name=" cr4 "/>

</component>
[. . .]
<component name="peer999 ">

<v i r tua l−node name=" cr4 "/>
</component>

</definition>

108 Chapter 7. Application and Performances

several �peer� but no �server�. Indeed, this second simulation must integrate with the �rst

simulation to make a single simulation containing twice as many peers. Any peer can

communicate together and with the server, we replace the implementation of the compo-

nent �network� with another implementation which will have the role to route e�ciently

any communication between peers located indi�erently on the computer �computer1� and

�computer2�.

ServerImpl

Network

Peer

Network

ReedSolomon

Storage

Client
ReedSolomon

Server

TEMPLATE

Duplicator Peer

Network

ReedSolomon

Storage

Client

TEMPLATE

Duplicator

Computer1 Computer2

Network

Internet

Figure 7.6: Conceptual model of a distributed simulation of the P2P model.

Listing 7.11 shows the deployment layer that will replace the implementation of the

component �network� located in the component �server� and initiates RMI connections

using Fractal-BF. The <exporter> turn the �network� interface of the �network� compo-

nent into a service using the RMI protocol. The <binder> try to establish a connection

to a remote service called �network� trough the RMI protocols. Parameterizing this de�-

nition allows to reuse them further, by specifying address and port of the local and remote

computer.

7.3 Performances

In this section, we present results we have obtained through various simulation experi-

ments. The simulated system is the data storage system running on a P2P overlay net-

work introduced above. We show that this model scales well and present a quantitative

assessment in terms of reuse, instrumentation and integration.

The challenges that we face are creating simulations of several million components,

distributed over several computational node, in order to reduce the startup time of the

simulation. In addition, separation of concerns should promote the reuse of various con-

cerns of the simulation, such as model, scenario, instrumentation, and deployment.

Section 7.3.1 shows the contribution of our work in terms of performance in FRACTAL

application. Section 7.3.2 shows comparative studies of the starting time of simulation

based on the number of node and peers.

7.3. Performances 109

Listing 7.11: FRACTAL ADL de�nition of a deployment for the P2P model using Fracta-
BF.
<?xml version=" 1 .0 " encoding="ISO−8859−1"?>
<!DOCTYPE definition PUBLIC "−//objectweb . org //DTD Frac ta l ADL 2.0//EN" " c l a s s p a t h :

// f r / i n r i a / osa / s imulat ionAPIs /basicAPI/ adl / stds im . dtd">
<definition

name="p2p . deployments . p2pdeploybf "
arguments=" remoteaddress , remoteport , l o c a l add r e s s , l o c a l p o r t ">

<component name="network" definition="p2p . deployments . ProxyNetwork (address
=>${address } , port=>${port }) " />

<expor te r type="rmi" i n t e r f a c e="network . network">
<parameter name="serviceName" value="network" />
<parameter name="hostAddress " value="${ l o c a l a dd r e s s }" />
<parameter name="port " value="${ l o c a l p o r t }" />

</ expor te r>

<binder type="rmi" i n t e r f a c e="network . remotenetwork">
<parameter name="serviceName" value="network" />
<parameter name="hostAddress " value="${ remoteaddress }" />
<parameter name="port " value="${ remoteport }" />

</binder>

</definition>

7.3.1 FRACTAL Performance

In this section, we provide a quantitative answer about the overhead of using FRACTAL,

and about the improvement we are providing. The FRACTAL component model has a cost

in comparison to a solution in full Java. A simple method call between two components

takes �fty times more time than a method call between two Java classes. To assess this,

we developed a very simple application consisting of 2 classes. The �rst class contains

a method that makes a given number of times a method call to a method of the second

class. The method of the second class does nothing so that we can measure the time spent

in method calls. The tests have been run on a 2.2Ghz dual core machine with 2GB of

RAM and Java 1.6.0_07. The full Java version of this application run 1010 method calls

in 15 seconds, while the FRACTAL version (using FRACTAL2.5.3-Snapshot) of the same

application run 108 method calls in 9 seconds. There is a speed factor between the two

of 50. In view of the bene�ts provided by the FRACTAL component model we consider

that this factor is acceptable. Indeed, this cost is relativized by the fact that in most

applications, the calculations within one component takes more time than the cost of an

external method call to another component. This is due to the fact that components

are bigger than objects. A component is a unit of modeling and may contain multiple

objects which is a unit of coding. The speed factor drawback is only for communication

between components, not for communication between objects inside a component. It is also

relativized by the fact that FRACTAL supports the means for providing communication

between components, which enables faster development of application and avoids many

bugs.

110 Chapter 7. Application and Performances

In our work related to the performance of very large scale simulation, we �rst wanted

to be able to run on a single machine as many components as possible. Therefore, we

worked to improve the performance of FRACTAL, by optimizing the data structure that

was inadequate for a very large architecture. Then, we studied the performance of the

FRACTAL templates described in section 4.5.1.

Figure 7.7: Time to start simulations when varying the number of peers in the simulation.

Figure 7.7 represents the time needed to start the simulation depending on the number

of simulated peers. The starting time of the simulation includes the instantiation of

components, their initialization and the initialization of the simulation. The upper (blue)

curve was obtained using the base implementation of FRACTAL. The middle(red) curve

was obtained with the modi�cations made to the data structure of FRACTAL. The lower

(green) curve was obtained with the use of the dynamic architecture based on templates.

This �gure shows that the optimizations on the data structures are increasingly important

as the number of peers increases. But this �gure is used mainly to see that the use of

the dynamic architecture is a signi�cant performance improvement of the startup time of

large simulations.

7.3.2 Deployment Performance

We saw in section 4.4 that it was possible, thanks to FRACTAL, FRACTAL BF or

FRACTAL RMI to deploy a distributed application seamlessly. By deploying our P2P

application with FRACTAL BF, we obtain the results shown in �gures 7.8 and 7.9. These

results were obtained after measuring the time to start a simulation on a homogeneous set

of machines on the Grid'5000 grid. Grid'5000 is a scienti�c instrument for the study of

large scale parallel and distributed systems. It aims at providing a highly recon�gurable,

7.3. Performances 111

controlable and monitorable experimental platform to its users with thousands of nodes

that can be exclusively alligned for experiments.

Figure 7.8 shows the starting time of a simulation based on the number of computa-

tional node used. The lower (blue) curve represents 100 peers per node, the middle (red)

curve represents 1000 peers per node, and the upper (yellow) curve represents 10000 peers

per node. The yellow curve shows that multiplying the number of peers by 50, it does

not increase the startup time of the simulation by 50, but a little more than 2. However,

the start-up time is not constant because the Server component is the bottleneck of the

application and it must manage more connections as the number of peers increase. The

scheduler also has more events to store in the waiting list.

Figure 7.8: Evolution of the startup time depending on the number of nodes (with a �xed

number of peers per node).

Figure 7.9 shows the starting time of a simulation depending on the number of node

on which it is distributed. It is expected that the time decreases with the number of

nodes used in parallel. Whether the lower (blue) curves (simulation of 10000 peers), the

middle (red) curves (simulation of 100000 peers) or the upper (yellow) curves (simulation

of 500000 peers), the time decreases as the number of nodes increases. However, we see a

threshold phenomenon and even the blue curve increases at the end. The startup time of

the simulation does not decreases proportionally with the number of nodes involved in the

distribution, because the model contains an important bottleneck with the presence of the

Server component that receives all communications from peers. The number of peers who

want to register to the Server component does not change depending on the distribution,

but instead of having a process that would establish a sequential connection with the

server, there are as many connection as there are nodes. Managing con�icts between

112 Chapter 7. Application and Performances

di�erent connections consumes resources. This means that distributing a simulation with

a too small number of peers on each computational node is not e�cient. We must �nd a

balance between distribution and computation. For example, we obtained a nearly perfect

distribution in the following case where the distribution divides the startup time by the

number of node: 20000 peers takes on 1 node 354 seconds, 170seconds on 2 nodes, and

95 seconds on 4 nodes. Moreover, we see that the yellow curve shows no value for 1 and

10 nodes. This is because it is simply impossible to run a simulation of this size without

exceeding the memory capacity of the machines.

Figure 7.9: Time to start a distributed simulation by the number of computational nodes

involved.

As we mentioned above, the use of multiple computational resources may be required to

run large models. Distribution of this model on di�erent resources requires an optimization

work that must be done by an expert. Through our independent layer approach, an expert

can work on the deployment of the various components regardless of the development

process.

7.4 Conclusion

Although FRACTAL ADL can already improve reusability through inheritance and over-

loading that divides architecture into several de�nitions, the changes we have made on the

template mechanism allow to go one step further, allowing to transform components of an

existing architecture into clonable components, without altering the original architecture

while improving reusability.

7.4. Conclusion 113

without dist. with dist.

without opt. 1000 N/A

with opt. 30000 >500000

Figure 7.10: Maximum number of peers instantiated.

Table 7.10 summarises our results. The number of peers that we were able to in-

stantiate on a single computational node without our optimizations was 1000. With our

optimizations, that number goes up to 30000, a size factor of 30. In terms of speed, the

instantiation of the 1000 peers took 534 seconds. With our optimizations the same instan-

tiation takes only 9 seconds, a speed factor of 60. If we add the distribution, the number

of peers can go up to more than 500000 peers, for a time of 330 seconds. Although it is

possible to continue to increase the size of the architecture and the number of node used,

the goal are now to improve the parallelization of the simulation engine in order to bene�t

from parallel execution.

Our initial challenge was to be able to run simulations with millions of Fractal com-

ponents. This challenge has been successfully met, since in our case study, a peer has 7

primitive components, which corresponds to 3.5 million components for a simulation of

500000 peers excluding shared components and composite components.

Chapter 8

Conclusion

Contents

8.1 Contributions . 116

8.2 Perspectives . 117

116 Chapter 8. Conclusion

In the introduction to this thesis, we posed the problem of reusing and integrating

elements of existing simulations. Indeed, reuse increases dependability, is less error prone,

makes better use of complementary expertises, improves standards compliance, and ac-

celerates development. These bene�ts can be observed in the development of simulation

software, at all levels of the architecture (modeling, scenario, instrumentation, simulation,

deployment , experimentation, and so on).

We started by discussing the design of simulation tools, how it is important to pay

particular attention, and how the reuse could be bene�cial. Then we surveyed the state of

the art techniques for reuse found in current simulation software products and we reach

the conclusion that these software does not allow to take advantage of all the bene�ts

of reuse and it was interesting to look at alternatives for reuse. We propose a proof of

concept with the realization of a prototype named OSA. This platform uses the principles

of component-oriented programming, aspect-oriented programming, and an architecture

description language that is �exible and o�ers advanced composition mechanisms such as

multiple inheritance and overloading. Then we describe a practical solution which exploits

such software engineering tools in the development of reusable model, scenario and sim-

ulation engine, and in the con�guration of the distributes execution seamlessly. We also

proposed OSIF, a tool to instrument and analyze applications such as simulation, based

on the same techniques and software engineering tools. OSIF allows a complete separation

of concerns between modeling, instrumentation and data processing; we showed that it

favors the validation of results by allowing the sharing of analysis between the real system

and the simulated system; we also showed that it allows to manage and optimize the �ow

of simulation data whether we want to analyse data during execution or post-mortem;

and we showed that it allows to design and compose complex instrumentations and data

processings in a simple way. Then we showed how the use of these software engineering

tools allows the integration of existing simulation elements. Finally, we validate the per-

formance of our approach with a study of performance in terms of reuse, execution time,

and scalability of a P2P simulation. If it is di�cult to measure quantitatively the bene�ts

of reuse, the work conducted on the advanced features of FRACTAL allowed us to cross

a gap in architecture size and in the starting time of simulation.

8.1 Contributions

We have shown in this thesis that the use of software engineering techniques allowed to

take advantage of reuse in two main areas which are:

• the production of tools that promote reuse through the use of component program-

ming and the layered approach, but it can also go through the use of other techniques

such as the plug'n simulate mecanism from JAMES II.

• the integration of third-party tools not intended to be reusable, through the use of

aspect-oriented programming.

We validate our approach with the realization of two software contributions: OSA and

OSIF (available on http://osa.gforge.inria.fr). Despite the fact that OSA has been pre-

8.2. Perspectives 117

sented by Olivier Dalle in [Dalle, 2006, Dalle, 2007a], OSA is one of the contribution of

this thesis. First, due to the major development to come from the OSA concept to the

OSA project. Second, due to the conceptual work done on OSA to enhance the original

concept.

OSA OSA is a collaborative platform for component-based discrete-event simulation.

OSA is based on the FRACTAL component model which allows to separate the functional

and nonfunctional concerns (controllers in the membrane manages the non-functional as-

pect of component). FRACTAL ADL allows separating functional concerns into di�erent

layers and provides multiple inheritance, overloading and dynamic architecture. Using the

overloading technique of FRACTAL ADL, combined with the use of aspect-oriented pro-

gramming, OSA allows to build advanced scenarios that result in the structural change of

a model, but without requiring the changes to be applied to the original model itself. The

use of FRACTAL RMI and FRACTAL BF allows to distribute an application over several

computing nodes, which achieves a signi�cant size architecture it would be unattainable on

a single compute node. The management of remote communications by FRACTAL also

allows mashup with remote services. The integration of existing code into components

allows the integration of simulation elements as the elements of the JAMES II framework.

The emulation can be done through the encapsulation of existing code into components

and the interception of calls to the underlying system are done using AOP.

OSIF OSIF is a base for creating, analysing and validating instrumentations. Bene�ts of

OSIF are multiple: (i) OSIF allows a complete separation of concerns between modeling,

instrumentation and data processors; (ii) OSIF favors validation results by allowing the

sharing of analysis between the real system and the simulated system; (iii) OSIF allows

to manage and optimize the �ow of simulation data whether we want to live analyze

or post analyze simulation data; and (iv) OSIF allows to design and compose complex

instrumentations and data processors in a simple way. OSIF has been designed so that

there are no connection between the simulator and instrumentation and data processors.

Thus, OSIF can be used and reused on any simulator. Since AOP is available for most

programming languages, OSIF could be used regardless the simulator and the language

used.

8.2 Perspectives

OSA OSA is an experimental platform, set up to validate our approach on separation

of concerns and techniques for reuse. In order to federate a user community and allow the

sharing of OSA components, we must work on a more high-level architecture that helps

the user with the simulation approach. This requires the development of automation tools

and graphical interface, as well as tools to guide the user. Of course, with the multitude

of tools available to support simulation, our research is about the integration of these

di�erent tools in OSA rather than to developing new tools dedicated to OSA.

118 Chapter 8. Conclusion

OSIF To enrich the OSIF experience, we are planning future works. The �rst one is

derived from the fact that extension and rede�nition mechanisms of FRACTAL ADL

can lead to unintended results because of side e�ects being di�cult to predict. A tool

for describing, analyzing and verifying data processors as one currently developed by

COSMOS (COSMOS DSL) will retain the advantages while avoiding disadvantages. Then,

a medium term project is to build on top of the COSMOS instrumentation policy a tool to

drive simulation experiments. We plan to bring into play the principles that Himmelspach

and al. explained in [Himmelspach et al., 2008]. Indeed, COSMOS o�ers all we need to

drive simulation such as controlling the number of runs necessary to obtain the expected

con�dence intervals or automatically strip out the beginning of a simulation or re�ning

inputs to obtain the best inputs combination for a study.

Interoperability The work done in this thesis provides solutions to known problems,

such as interoperability between simulations. Indeed, in distributed simulations, interoper-

ability between distributed components is essential to ensure a consistant global behavior.

All stakeholders must communicate and interact in a distributed way by following a com-

mon framework which is set by an architecture of distributed simulation. HLA allows to

create a global simulation composed of interacting distributed simulations without being

rewritten. Using HLA, simulations can communicate with other simulations regardless of

underlying platforms. However, the HLA model has limitations[Davis and Moeller, 2002]

and does not support real-time information. An original approach to composition could

be based on Web services using the RESTful communication protocol such as the one

described in [Al-Zoubi and Wainer, 2009]. This web-based protocol o�ers through a set

of simple communication primitives, all the necessary means for the composition of dis-

tributed simulations. Research e�orts should now focus on integration and interoperability

without modi�cation of existing models as well as taking into account information in real

time in order to use simulation as tools for decision making.

Work�ow Another interesting research perspective is to follow the evolution of works

that address issues of simulations replayability such as [Perrone et al., 2009]. Our experi-

mentation platform is a platform that we can consider today as a low-level platform. To

ensure a minimal traceability and ensure simulation replayability, we use the versioning

and backup of simulation projects into Maven repositories. An interesting research per-

spective is the addition of a layer of control that guides the user through these choices to

promote good practices of the simulation.

Bibliography

[osg, 2004] (2004). OSGi Technical Whitepaper. OSGi Alliance. Revision 3.0.

www.osgi.org. 13

[Agresti and Evanco, 1992] Agresti, W. and Evanco, W. (1992). Projecting software

defects from analyzing Ada designs. Software Engineering, IEEE Transactions on,
18(11):988�997. 10

[Al-Zoubi and Wainer, 2009] Al-Zoubi, K. and Wainer, G. A. (2009). Using rest web-

services architecture for distributed simulation. In PADS, pages 114�121. IEEE Com-

puter Society. 118

[Aldrich et al., 2002] Aldrich, J., Chambers, C., and Notkin, D. (2002). ArchJava: Con-

necting software architecture to implementation. In Proceedings of the 24th International
Conference on Software Engineering (ICSE'02), pages 187�197. AP. 13

[Andradóttir, 1998] Andradóttir, S. (1998). Handbook of Simulation, chapter 9- Simula-
tion Optimization, pages 307�334. EMP & Wiley. 26

[Atkinson et al., 2000] Atkinson, C., Bayer, J., and Muthig, D. (2000). Component-based

product line development: the KobrA approach. In Software product lines: experience
and research directions: proceedings of the First Software Product Lines Conference
(SPLC1), August 28-31, 2000, Denver, Colorado, page 289. Springer Netherlands. 15

[Balci, 2003] Balci, O. (2003). Veri�cation, validation, and certi�cation of modeling and

simulation applications. In Chick, S., Sánchez, P. J., Ferrin, D., and Morrice, D. J.,

editors, Proceedings of the 2003 Winter Simulation Conference, pages 150�158. Winter

Simulation Conference. 2, 37

[Balci and Nance, 1992] Balci, O. and Nance, R. E. (1992). The simulation model devel-

opment environment: an overview. In Swain, J. J., Goldsman, D., Crain, R. C., and

Wilson, J. R., editors, Proceedings of the 1992 Winter Simulation Conference, pages
726�736, New York, NY, USA. ACM. 40

[Banks, 1999] Banks, J. (1999). Introduction to simulation. In Proceedings of the 31st con-
ference on Winter Simulation Conference: Simulation�a bridge to the future-Volume
1, page 13. ACM. 17

[Banks et al., 2004] Banks, J., Carson II, J. S., Nelson, B. L., and Nicol, D. M. (2004).

Discrete-Event System Simulation. Prentice Hall, 4th edition. 18, 26, 72

[Barnes et al., 1988] Barnes, B., Durek, T., Ga�ney, J., and Pyster, A. (1988). A frame-

work and economic foundation for software reuse. In Software reuse: emerging technol-
ogy, pages 77�88. IEEE Computer Society Press. 10

120 Bibliography

[Barns and Bollinger, 1991] Barns, B. and Bollinger, T. (1991). Making reuse cost-

e�ective. Software, IEEE, 8(1):13�24. 8

[Barr, 2004] Barr, R. (2004). An e�cient, unifying approach to simulation using virtual
machines. PhD thesis, Cornell University. 55

[Basili et al., 1990] Basili, V., Rombach, H., Bailey, J., and Delis, A. (1990). Ada reusabil-

ity and measurement. Computer Science Technical Report Series; Vol. CS-TR-2478,
page 25. 11

[Bass et al., 2003] Bass, L., Clements, P., and Kazman, R. (2003). Software architecture
in practice. Addison-Wesley Professional. 14

[Begg et al., 2006] Begg, L., Liu, W., Pawlikowski, S., Perera, S., and Sirisena, H. (2006).

Survey of simulators of next generation networks for studying service availability and

resilience. 21

[Bodo� et al., 2002] Bodo�, S., Green, D., Haase, K., Jendrock, E., Pawlan, M., and

Stearns, B. (2002). The J2EE tutorial. 13

[Bovet et al., 2002] Bovet, D., Cesati, M., and Oram, A. (2002). Understanding the Linux
kernel. O'Reilly & Associates, Inc. Sebastopol, CA, USA. 58

[Browne et al., 1990] Browne, J., Lee, T., and Werth, J. (1990). Experimental evalua-

tion of a reusability-oriented parallel programming environment. Software Engineering,
IEEE Transactions on, 16(2):111�120. 10

[Bruneton et al., 2006] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani.,

J. (2006). The fractal component model and its support in java. Software Practice &
Experience, 36(11-12). Special Issue on Experiences with Auto-adaptive and Recon�g-

urable Systems. 13, 24, 77, 85

[Bruneton et al., 2004] Bruneton, E., Coupaye, T., and Stefani, J.

(2004). The fractal component model speci�cation. Available from

http://fractal.objectweb.org/speci�cation/ [Last accessed: 11/30/2010]. Draft

version 2.0-3. 27, 28

[Bures et al., 2006] Bures, T., Hnetynka, P., and Plasil, F. (2006). Sofa 2.0: Balancing

advanced features in a hierarchical component model. In Software Engineering Research,
Management and Applications, 2006. Fourth International Conference on, pages 40�48.
IEEE. 15

[C.A.R. Hoare, 1978] C.A.R. Hoare (1978). Communicating sequential processes. Com-
munications of the ACM, 21(8):666�677. 58

[Card et al., 1986] Card, D., Church, V., and Agresti, W. (1986). Empirical study of

software design practices. IEEE Transactions on Software Engineering, 12(2):264�271.
10

Bibliography 121

[Chang and Collet, 2007] Chang, H. and Collet, P. (2007). Compositional patterns of

non-functional properties for contract negotiation. Journal of Software, 2(2):52�63. 11

[Chen and Lee, 1993] Chen, D. and Lee, P. (1993). On the study of software reuse using

reusable C++ components. Journal of Systems and Software, 20(1):19�36. 10

[Chidamber and Kemerer, 1994] Chidamber, S. and Kemerer, C. (1994). A metrics suite

for object oriented design. IEEE Transactions on software engineering, pages 476�493.
10

[Chun et al., 2006] Chun, B.-G., Dabek, F., Haeberlen, A., Sit, E., Weatherspoon, H.,

Kaashoek, M. F., Kubiatowicz, J., and Morris, R. (2006). E�cient replica maintenance

for distributed storage systems. In Proc. of NSDI, pages 45�48. 96

[Clarke et al., 2001] Clarke, M., Blair, G., Coulson, G., and Parlavantzas, N. (2001). An

e�cient component model for the construction of adaptive middleware. In Proceedings
of Middleware'01. 13

[Conan et al., 2007] Conan, D., Rouvoy, R., and Seinturier, L. (2007). Scalable Process-

ing of Context Information with COSMOS. In Indulska, J. and Raymonds, K., editors,

Proc. 6th IFIP WG 6.1 International Conference on Distributed Applications and Inter-
operable Systems, volume 4531 of lncs, pages 210�224, Paphos, Cyprus. Springer-Verlag.
73, 74, 77

[Dahmann et al., 1997] Dahmann, J., Fujimoto, R., and Weatherly, R. (1997). The de-

partment of defense high level architecture. In Proceedings of the 29th conference on
Winter Simulation Conference, pages 142�149. IEEE Computer Society. 23

[Dall et al., 2010] Dall, O., Lapides, J., and Locke, T. (2010). Rapid rails with hobo.

available from www.hobocentral.net/books [Last accessed March 2011]. 12

[Dalle, 2006] Dalle, O. (2006). OSA: an Open Component-based Architecture for Discrete-

Event Simulation. In 20th European Conference on Modeling and Simulation (ECMS),
pages 253�259, Bonn, Germany. 24, 64, 117

[Dalle, 2007a] Dalle, O. (2007a). Component-based discrete event simulation using the

Fractal component model. In AI, Simulation and Planning in High Autonomy Systems
(AIS)-Conceptual Modeling and Simulation (CMS) Joint Conference, Buenos Aires, AR.
24, 117

[Dalle, 2007b] Dalle, O. (2007b). The OSA Project: an xample of Component Based

Software ngineering Techniques pplied to Simulation. In Vakilzadian, H., editor, Proc.
of the Summer Computer Simulation Conference (SCSC'07), pages 1155�1162, San

Diego, CA, USA. Invited paper. 31

[Dalle and Mrabet, 2007] Dalle, O. and Mrabet, C. (2007). An instrumentation framework

for component-based simulations based on the separation of concerns paradigm. In Proc.
of 6th EUROSIM Congress (EUROSIM2007), Ljubljana, Slovenia. 72

122 Bibliography

[Dalle et al., 2010] Dalle, O., Ribault, J., and Himmelspach, J. (2010). Design consid-

erations for M&S software. In Proceedings of the 2009 Winter Simulation Conference
(WSC'09), pages 944�955. IEEE. 36

[Dalle et al., 2008] Dalle, O., Zeigler, B. P., and Wainer, G. A. (2008). Extending DEVS

to support multiple occurrence in component-based simulation. In Mason, S. J., Hill,

R. R., Mönch, L., and Rose, O., editors, Proceedings of the 2008 Winter Simulation
Conference. 24, 64, 97

[Davis and Anderson, 2004] Davis, P. and Anderson, R. (2004). Improving the compos-

ability of DoD models and simulations. The Journal of Defense Modeling and Simula-
tion: Applications, Methodology, Technology, 1(1):5. 49

[Davis, 1993] Davis, T. (1993). The reuse capability model: a basis for improving an

organization's reuse capability. In Software Reusability, 1993. Proceedings Advances
in Software Reuse., Selected Papers from the Second International Workshop on, pages
126�133. IEEE. 10

[Davis and Moeller, 2002] Davis, W. and Moeller, G. (2002). The High Level Architecture:

is there a better way? In Proceedings of the 1999 Winter Simulation Conference,
volume 2, pages 1595�1601. IEEE. 118

[des Riviêres and Wiegand, 2004] des Riviêres, J. and Wiegand, J. (2004). Eclipse: A

platform for integrating development tools. IBM Systems Journal, 43(2):371�383. 33

[Dowling and Cahill, 2001] Dowling, J. and Cahill, V. (2001). The k-component architec-

ture meta-model for self-adaptive software. Metalevel Architectures and Separation of
Crosscutting Concerns, pages 81�88. 13

[Dunn and Knight, 1991] Dunn, M. and Knight, J. (1991). Software reuse in an industrial

setting: a case study. In Proceedings of the 13th international conference on Software
engineering, pages 329�338. IEEE Computer Society Press. 11

[Endres and Rombach, 2003] Endres, A. and Rombach, D. (2003). A Handbook of Soft-
ware and Systems Engineering. Pearson Education Ltd., Essex, England. 36, 43

[Favaro, 1991] Favaro, J. (1991). What price reusability?: a case study. In ACM SIGAda
Ada Letters, volume 11, pages 115�124. ACM. 10

[Fishman, 2001] Fishman, G. (2001). Discrete-event simulation: modeling, programming,
and analysis. Springer Verlag. 18

[Frakes et al., 1991] Frakes, W., Biggersta�, T., Prieto-Diaz, R., Matsumura, K., and

Schaefer, W. (1991). Software reuse: is it delivering? In Proceedings of the 13th
international conference on Software engineering, pages 52�59. IEEE Computer Society

Press. 10

Bibliography 123

[Frakes and Fox, 1996] Frakes, W. and Fox, C. (1996). Quality improvement using a

software reuse failure modes model. Software Engineering, IEEE Transactions on,
22(4):274�279. 10

[Frakes and Gandel, 1990] Frakes, W. and Gandel, P. (1990). Representing reusable soft-

ware. Information and Software Technology, 32(10):653�664. 11

[Frakes and Nejmeh, 1986] Frakes, W. and Nejmeh, B. (1986). Software reuse through

information retrieval. In ACM SIGIR Forum, volume 21, pages 30�36. ACM. 11

[Frakes and Terry, 1994] Frakes, W. and Terry, C. (1994). Reuse level metrics. In Soft-
ware Reuse: Advances in Software Reusability, 1994. Proceedings., Third International
Conference on, pages 139�148. IEEE. 10

[Frakes and Terry, 1996] Frakes, W. and Terry, C. (1996). Software reuse: metrics and

models. ACM Computing Surveys (CSUR), 28(2):415�435. 9

[Fujimoto, 2000] Fujimoto, R. M. (2000). Parallel and distributed simulation systems.
Wiley Series on Parallel and Distributed Computing. J Wiley & Sons. 19, 26

[Ga�ney Jr and Durek, 1989] Ga�ney Jr, J. and Durek, T. (1989). Software reuse�key to

enhanced productivity: Some quantitative models. Information and Software Technol-
ogy, 31(5):258�267. 10

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). De-
sign patterns: elements of reusable object-oriented software. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA. 36, 39

[Garlan and Perry, 1995] Garlan, D. and Perry, D. E. (1995). Introduction to the special

issue on software architecture. IEEE Trans. Softw. Eng., 21(4):269�274. 36

[Garlan and Shaw, 1994] Garlan, D. and Shaw, M. (1994). Characteristics of higher-level

languages for software architecture. Technical Report CMUCS-94-210, School of Com-

puter Science and Software Engineering Institute, Carnegie Mellon University. 13

[Genssler, 2002] Genssler, T. (2002). Pecos in a nutshell. www.pecos-project.org [Last

accessed: 11/30/2010]. 13

[Gruber et al., 2005] Gruber, O., Hargrave, B. J., McA�er, J., Rapicault, P., and Watson,

T. (2005). The Eclipse 3.0 platform: Adopting OSGi technology. IBM Systems Journal,
44(2):289�299. 34

[Gulyas and Kozsik, 1999] Gulyas, L. and Kozsik, T. (1999). The Use of Aspect-Oriented

Programming in Scienti�c Simulations. In Proceedings of Sixth Fenno-Ugric Symposium
on Software Technology, Estonia. 26

[Harzallah et al., 2008] Harzallah, Y., Michel, V., Liu, Q., and Wainer, G. (2008). Dis-

tributed simulation and web map mash-up for forest �re spread. In IEEE Congress on
Services-Part I, 2008., pages 176�183. IEEE. 23, 92

124 Bibliography

[Himmelspach, 2009] Himmelspach, J. (2009). Toward a collection of principles, tech-

niques, and elements of simulation tools. In Proceedings of the First International
Conference on Advances in System Simulation. IEEE Computer Society. 40

[Himmelspach et al., 2008] Himmelspach, J., Ewald, R., and Uhrmacher, A. M. (2008). A

�exible and scalable experimentation layer. In Mason, S., Hill, R., Mönch, L., Rose, O.,

Je�erson, T., and Fowler, J., editors, Proc, of the 2008 Winter Simulation Conference
(WSC'08), pages 827�835, Miami, FL. 26, 86, 118

[Himmelspach and Uhrmacher, 2007] Himmelspach, J. and Uhrmacher, A. (2007). Plug'n

simulate. In 40th Annual Simulation Symposium, 2007. ANSS'07, pages 137�143. 22

[Himmelspach and Uhrmacher, 2009a] Himmelspach, J. and Uhrmacher, A. (2009a). The

JAMES II Framework for Modeling and Simulation. In 2009 International Workshop
on High Performance Computational Systems Biology, pages 101�102. IEEE. 22

[Himmelspach and Uhrmacher, 2009b] Himmelspach, J. and Uhrmacher, A. M. (2009b).

What contributes to the quality of simulation results? In Lee, L. H., Kuhl, M. E.,

Fowler, J. W., and Robinson, S., editors, Proceedings of the 2009 INFORMS Simula-
tion Society Research Workshop, pages 125�129, University of Warwick, Coventry, U.K.

INFORMS Simulation Society. 38, 40

[Holman et al., 2009] Holman, K., Kuzub, J., Moallemi, M., and Wainer, G. A. (2009).

Cable-anchor robot implementation using embedded cd++. In Dalle, O., Wainer, G. A.,

Perrone, L. F., and Stea, G., editors, SimuTools, page 35. ICST. 92

[John, 1994] John, J. (1994). Marciniak, Encyclopedia of software engineering. 8

[Johnson, 2002] Johnson, D. (2002). A theoretician's guide to the experimental analysis

of algorithms. In Fifth and Sixth DIMACS Implentation Challenges. 2

[Johnson and Foote, 1988] Johnson, R. E. and Foote, B. (1988). Designing reusable

classes. Journal of Object-Oriented Programming, 1(2):22�35. 43

[Jones, 1993] Jones, C. (1993). Software return on investment preliminary analysis. Soft-
ware Productivity Research, Inc. 8

[Karlsson, 1995] Karlsson, E. (1995). Software reuse: a holistic approach. John Wiley &

Sons. 8

[Karunanithi and Bieman, 1993] Karunanithi, S. and Bieman, J. (1993). Candidate reuse

metrics for object oriented and Ada software. In Software Metrics Symposium, 1993.
Proceedings., First International, pages 120�128. IEEE. 10

[Kelton and Law, 2000] Kelton, W. and Law, A. (2000). Simulation modeling and analy-
sis. McGraw Hill. 2

[Kernighan, 1984] Kernighan, B. (1984). The Unix system and software reusability. Soft-
ware Engineering, IEEE Transactions on, (5):513�518. 11

Bibliography 125

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and

Griswold, W. (2001). An overview of AspectJ. European Conference on Object-Oriented
Programming, 2001ÄîObject-Oriented Programming, pages 327�354. 33

[Kiczales et al., 1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V.,

Loingtier, J.-M., and Irwin, J. (1997). Aspect-oriented programming. In European
Conference on Object-Oriented Programming, ECOOP'97, volume 1241 of LNCS, pages
220�242, Jyväskylä, Finland. Springer-Verlag. 32, 74

[Koltun and Hudson, 1991] Koltun, P. and Hudson, A. (1991). A reuse maturity model.

10

[Krueger, 1992] Krueger, C. (1992). Software reuse. ACM Computing Surveys (CSUR),
24(2):131�183. 8

[Kurkowski et al., 2005] Kurkowski, S., Camp, T., and Colagrosso, M. (2005). MANET

simulation studies: the incredibles. ACM SIGMOBILE Mobile Computing and Com-
munications Review, 9(4):50�61. 2

[Lacage, 2010] Lacage, M. (2010). Outils d'expérimentation pour la recherche en réseaux.
PhD thesis, Université de Nice. 25, 92

[Lau and Wang, 2005] Lau, K.-K. and Wang, Z. (2005). A taxonomy of software compo-

nent models. In Proceedings of the 31st EUROMICRO Conference on Software Engi-
neering and Advanced Applications, EUROMICRO '05, pages 88�95, Washington, DC,

USA. IEEE Computer Society. 14

[Law, 2007] Law, A. M. (2007). Simulation Modeling and Analysis. McGraw-Hill Inter-

national, 4 edition. 16, 17, 18, 37, 40, 72, 73

[Leclercq et al., 2005] Leclercq, M., Quéma, V., and Stefani, J.-B. (2005). DREAM: a

Component Framework for the Construction of Resource-Aware, Con�gurable MOMs.

IEEE Distributed Systems Online, 6(9). 77

[L'Ecuyer, 1990] L'Ecuyer, P. (1990). Random numbers for simulation. Commun. ACM,

33(10):85�97. 2

[L'Ecuyer et al., 2002] L'Ecuyer, P., Meliani, L., and Vaucher, J. (2002). SSJ: SSJ: a

framework for stochastic simulation in Java. In Proceedings of the 34th conference on
Winter Simulation Conference: exploring new frontiers, page 242. Winter Simulation

Conference. 3

[Lim, 1994] Lim, W. (1994). E�ects of reuse on quality, productivity, and economics.

Software, IEEE, 11(5):23�30. 8

[Luby et al., 1997] Luby, M., Mitzenmacher, M., Shokrollahi, M., Spielman, D., and Ste-

mann, V. (1997). Practical loss-resilient codes. In Proc. ACM Symp. on Theory of
computing, pages 150�159. 96

126 Bibliography

[Madsen, 2003] Madsen, K. (2003). Five years of framework building: lessons learned.

In 18th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 345�352. ACM. 43

[Margono and Rhoads, 1992] Margono, J. and Rhoads, T. (1992). Software reuse eco-

nomics: cost-bene�t analysis on a large-scale Ada project. In Proceedings of the 14th
international conference on Software engineering, pages 338�348. ACM. 10

[McIlroy et al., 1969] McIlroy, M., Buxton, J., Naur, P., and Randell, B. (1969). Mass

produced software components. Software Engineering Concepts and Techniques, pages
88�98. 8, 13

[Medvidovic and Taylor, 2002] Medvidovic, N. and Taylor, R. (2002). A classi�cation

and comparison framework for software architecture description languages. Software
Engineering, IEEE Transactions on, 26(1):70�93. 13, 14

[Mili et al., 1995] Mili, H., Mili, F., and Mili, A. (1995). Reusing software: Issues and

research directions. Software Engineering, IEEE Transactions on, 21(6):528�562. 8

[Moallemi and Wainer, 2009] Moallemi, M. and Wainer, G. A. (2009). A system-on-chip

fpga implementation of embedded cd++. In Wainer, G. A., Sha�er, C. A., McGraw,

R. M., and Chinni, M. J., editors, SpringSim. SCS/ACM. 92

[Mohagheghi and Conradi, 2008] Mohagheghi, P. and Conradi, R. (2008). An empirical

investigation of software reuse bene�ts in a large telecom product. ACM Transactions
on Software Engineering and Methodology (TOSEM), 17(3):1�31. 10

[Moore, 1994] Moore, J. (1994). Debate on software reuse libraries. In Software Reuse:
Advances in Software Reusability, 1994. Proceedings., Third International Conference
on, pages 203�204. IEEE. 12

[Morisio et al., 2002] Morisio, M., Ezran, M., and Tully, C. (2002). Success and failure

factors in software reuse. IEEE Transactions on software engineering, pages 340�357.
10

[Pawlikowski et al., 2002] Pawlikowski, K., Jeong, H.-D., and Lee, J.-S. (2002). On credi-

bility of simulation studies of telecommunication networks. Communications Magazine,
IEEE, 40(1):132�139. 2, 39

[Pawlikowski and Yau, 1993] Pawlikowski, K. and Yau, V. (1993). AKAROA: a package

for automatic generation and process control of parallel stochastic simulation. Australian
Computer Science Communications, 15(1):71�82. 3

[Pearce, 2003] Pearce, T. (2003). Simulation-Driven Architecture in the Engineering of

Real-Time Embedded Systems. In Real-Time Systems Symposium. Work-in-Progress
Session. Cancun, Mexico. 23

Bibliography 127

[Perrone et al., 2009] Perrone, L. F., Cicconetti, C., Stea, G., and Ward, B. (2009). On

the automation of computer network simulators. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques (SIMUTools 2009), pages 49:1�49:10.
Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-

ing (ICST), Brussels, Belgium. 118

[Poulin et al., 1993] Poulin, J., Caruso, J., and Hancock, D. (1993). The business case for

software reuse. IBM Systems Journal, 32(4):567�594. 10

[Quema, 2005] Quema, V. (2005). Vers l'exogiciel�Une approche de la construction
d'infrastructures logicielles radicalement con�gurables. PhD thesis, Institut National

Polytechnique de Grenoble. 61

[Ribault et al., 2010] Ribault, J., Dalle, O., Conan, D., and Leriche, S. (2010). OSIF: a

framework to instrument, validate, and analyze simulations. In Proceedings of the 3rd
International ICST Conference on Simulation Tools and Techniques, pages 1�9. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-

ing). 72

[Robinson, 2004] Robinson, S. (2004). Simulation: The practice of model development and
use. John Wiley & Sons. 17

[Röhl and Uhrmacher, 2008] Röhl, M. and Uhrmacher, A. M. (2008). De�nition and anal-

ysis of composition structure for discrete-event models. In Mason, S., Hill, R., Moench,

L., and Rose, O., editors, Proceedings of the Winter Simulation Conference, pages 942�
950. 11

[Romero et al., 2009] Romero, D., Rouvoy, R., Chabridon, S., Conan, D., Pessemier, N.,

and Seinturier, N. (2009). Enabling Context-Aware Web Services: A Middleware Ap-
proach for Ubiquitous Environments. Chapman and Hall/CRC. 77, 85

[Rouvoy et al., 2008] Rouvoy, R., Conan, D., and Seinturier, L. (2008). Software Archi-

tecture Patterns for a Context Processing Middleware Framework. IEEE Distributed
Systems Online, 9(6). 73, 74, 77

[Rouvoy et al., 2006] Rouvoy, R., Pessemier, N., Pawlak, R., and Merle, P. (2006). Using

attribute-oriented programming to leverage fractal-based developments. In Proceedings
of the 5th International ECOOP Workshop on Fractal Component Model (FractalÄô06),
Nantes, France. 90

[Sametinger, 1997] Sametinger, J. (1997). Software engineering with reusable components.
Springer Verlag. 8, 11

[Sargent, 2008] Sargent, R. G. (2008). Veri�cation and validation of simulation models. In

Mason, S. J., Hill, R. R., Mönch, L., Rose, O., Je�erson, T., and Fowler, J. W., editors,

Proceedings of the 2008 Winter Simulation Conference, pages 157�169, Piscataway, New
Jersey. Institute of Electrical and Electronics Engineers, Inc. 2, 37

128 Bibliography

[Schäfer et al., 1993] Schäfer, W., Prieto-Díaz, R., and Matsumoto, M. (1993). Software
reusability. Ellis Horwood. 8

[Seinturier et al., 2005] Seinturier, L., Pessemier, N., and Coupaye, T. (2005). AOKell:

An aspect-oriented implementation of the Fractal speci�cations. Objectweb Fractal

Workshop, Grenoble, France. 24

[Seinturier et al., 2006] Seinturier, L., Pessemier, N., Duchien, L., and Coupaye, T. (2006).

A component model engineered with components and aspects. Component-Based Soft-
ware Engineering, pages 139�153. 29

[Selby, 1989] Selby, R. (1989). Quantitative studies of software reuse. In Software reusabil-
ity, pages 213�233. ACM. 11

[Seo, 2006] Seo, H. S. (2006). Network security agent DEVS simulation modeling. Simu-
lation Modelling Practice and Theory, 14(5). doi:10.1016/j.simpat.2005.08.010. 55

[Sommerville, 2007] Sommerville, I. (2007). Software Engineering. Addison-Wesley, 8

edition. 2, 8, 36, 40, 43

[Spinczyk et al., 2002] Spinczyk, O., Gal, A., and Schröder-Preikschat, W. (2002). As-

pectC++: an aspect-oriented extension to the C++ programming language. In Pro-
ceedings of the Fortieth International Conference on Tools Paci�c: Objects for internet,
mobile and embedded applications, page 60. Australian Computer Society, Inc. 33

[Sta�ord and Urbaczewski,] Sta�ord, T. and Urbaczewski, A. Spyware: The ghost in

the machine. Communications of the Association for Information Systems (Volume14,
2004), 291(306):291. 53

[Szyperski, 2002] Szyperski, C. (2002). Component Software - Beyond Object-Oriented
Programming. AW, 2nd edition. 13, 29

[Taivalsaari and Jyväskylän, 1993] Taivalsaari, A. and Jyväskylän, Y. (1993). A criti-
cal view of inheritance and reusability in object-oriented programming. University of

Jyväskylä. 8

[Tracz, 1988] Tracz, W. (1988). Software reuses: motivators and inhibitors. In Software
reuse: emerging technology, pages 62�67. IEEE Computer Society Press. 8

[Troitzsch, 2004] Troitzsch, K. G. (2004). Validating simulation models. In Horton, G.,

editor, 18th European Simulation Multiconference. Networked Simulations and Simula-
tion Networks, pages 265�270. The Society for Modeling and Simulation International,

SCS Publishing House. 2

[Van Ommering et al., 2002] Van Ommering, R., van der Linden, F., Kramer, J., and

Magee, J. (2002). The Koala component model for consumer electronics software. Com-
puter, 33(3):78�85. 15

Bibliography 129

[Van Waveren et al., 2000] Van Waveren, R. H., Groot, S., Scholten, H., Van Geer, F.,

Wösten, H., Koeze, R., and Noort, J. (2000). Good Modelling Practice Handbook.
STOWA, Utrecht, RWS-RIZA, Lelystad, The Netherlands. 37

[Varga, 2001] Varga, A. (2001). The omnet++ discrete event simulation system. In Pro-
ceedings of the European Simulation Multiconference (ESM'2001), Prague, Czech Re-

public. 24, 48

[Varga and Hornig, 2008] Varga, A. and Hornig, R. (2008). An overview of the OM-

NeT++ simulation environment. In Proceedings of the 1st international conference
on Simulation tools and techniques for communications, networks and systems & work-
shops, page 60. ICST (Institute for Computer Sciences, Social-Informatics and Telecom-

munications Engineering). 26, 48, 73, 83

[Wainer, 2002] Wainer, G. (2002). CD++: a toolkit to develop DEVS models. Software:
Practice and Experience, 32(13):1261�1306. 23

[Wang and Lehmann, 2008] Wang, Z. and Lehmann, A. (2008). Expanding the V-Modell

XT for veri�cation and validation of modelling and simulation applications. In System
Simulation and Scienti�c Computing, pages 404�410. Asia Simulation Conference. 37

[Washizaki et al., 2003] Washizaki, H., Yamamoto, H., and Fukazawa, Y. (2003). A met-

rics suite for measuring reusability of software components. 10

[Weatherspoon and Kubiatowicz, 2002] Weatherspoon, H. and Kubiatowicz, J. (2002).

Erasure coding vs. replication: A quantitative comparison. In Proc. of IPTPS, pages
328�338. 96

[Webster, 1995] Webster, B. F. (1995). Pitfalls of object-oriented development. M&T

Books, New York. 3

[Zeigler, 1976] Zeigler, B. P. (1976). Theory of Modelling and Simulation. Wiley & Sons,

NY. 22, 49

[Zeigler, 1984] Zeigler, B. P. (1984). Multifacetted Modelling and Discrete Event Simula-
tion. Academic Press Inc., London. 22, 26, 72, 90

[Zeigler et al., 2000] Zeigler, B. P., Kim, T. G., and Praehofer, H. (2000). Theory of
Modeling and Simulation. Academic Press, Inc. 4, 17, 23, 49

Abstract

Studying a system using discrete-event computer simulations implies several activities:

conceptual model speci�cation, software model architecture description, software devel-

opment, simulation scenario, instrumentation, experimentation planning, computational

resources con�guration, execution, post-processing and analysis, validation and veri�ca-

tion (V&V). Many software are required to complete all these activities. However, it is

common practice to create a simulator from scratch when starting a new a simulation

study. It is therefore necessary to redevelop a whole suite of tools to ensure support for

all simulation activities.

This thesis addresses the challenge of developing new simulators that reuse existing

models and simulator parts. Indeed, reusing software increases dependability, is less er-

ror prone, makes better use of complementary expertises, improves standards compliance,

and accelerates development. Reusing software can be applied to all simulation activi-

ties. Several problems have to be solved to derive full bene�t of reuse. In this thesis, we

address three major issues: Firstly, we investigate practical means of reusing and com-

bining valuable pieces of modeling and simulation software at large, including models,

simulation engines and algorithms, and supporting tools for the modeling and simulation

methodology; Secondly, we focus on issues related to instrumentation; Thirdly, we focus

on problems of integration of existing simulation tools.

To achieve these objectives, we investigate advanced software engineering techniques

such as component-based software engineering (CBSE) and aspect-oriented programming

(AOP), and use them to derive a novel approach for Modeling & Simulation based on

reusable layers. We developed a prototype software architecture that proves the feasibility

of this layered approach.

Keywords: simulation, discrete events, aspects, separation of concerns, instrumen-

tation, modeling, component, distributed simulation, reuse

	Introduction
	Objectives
	Dissertation Roadmap

	State of the Art
	Definition
	Reuse in Software Engineering
	Motivations and Benefits
	Metrics
	Techniques

	Reuse in Modeling and Simulation
	Background on Modeling and Simulation
	State of the Art in M&S Software
	Reusing Techniques in Modeling and Simulation
	Open Questions for Reuse

	Software and Reusing Techniques Used In This Thesis
	FRACTAL
	FRACTAL ADL
	Aspect-Oriented Programming
	Maven

	Discussion

	Design Considerations
	Engineering in M&S
	Process and Development Models
	Team Management
	Project Management
	Quality Management
	Design and Documentation of Products
	Engineering Requirements

	Modeling and Simulation Application Design Considerations
	Software Design
	Open Architectures
	Discussion

	Contributions to Reuse
	Motivations and Objectives
	SoC and Reuse in Model and Scenario
	Advanced Scenarios Case Studies
	Man-in-the-middle Attacker with FRACTAL ADL
	Spy-Ware with Aspect-Oriented Programming
	Conclusion

	SoC and Reuse in Simulation Engine
	Case Study: OSA Simulation-Engine
	Simulation Concerns in ADL

	SoC and Distribution of Large Scale Simulation
	FRACTAL RMI
	FRACTAL BF

	Other Means for Enforcing Reuse
	Promote Reuse With Dynamic Architecture
	Enforcing Reuse and Replayability with Maven

	Conclusion

	Contributions to Instrumentation
	Motivations and Objectives
	Separation of Concerns
	From Real to Virtual System
	From Live to Post-Mortem Analysis
	Data Processors Composition

	Open Simulation Instrumentation Framework
	COSMOS
	Separation of Concerns
	From Live to Post Analysis
	Composition of Instrumentations
	From Real to Virtual System

	Conclusions and Perspectives

	Thoughts on Integration
	Motivations and Objectives
	Contributions
	Integration of Existing Simulation Elements
	Integration of Existing Simulation Tools

	Related Works
	Integration of Elements of the System Under Study
	Integration of Services

	Conclusion

	Application and Performances
	Use case study
	Applying Reusing Techniques Through OSA
	Conceptual model
	Implementations
	Execution
	Deployement

	Performances
	FRACTAL Performance
	Deployment Performance

	Conclusion

	Conclusion
	Contributions
	Perspectives

	Bibliography

