
UNIVERSITÉ DE NICE-SOPHIA
ANTIPOLIS

École Doctorale
Sciences et Technologies de

l’Information et de la Communication

UNIVERSITÉ MOHAMMED V
AGDAL-RABAT

Centre d’Études Doctorales
Sciences et Technologies de Rabat

T H È S E
pour obtenir le titre de

Docteur en Sciences
de l’Université de Nice-Sophia Antipolis
et de l’Université Mohammed V Agdal

Spécialité : Informatique

Présentée et soutenue par

Ayoub AIT LAHCEN

Developing Component-Based Applications with a Data-Centric
Approach and within a Service-Oriented P2P Architecture:

Specification, Analysis and Middleware

(Développement d’Applications à Base de Composants avec une Approche Centrée sur les Données et
dans une Architecture Orientée Service et Pair-à-Pair : Spécification, Analyse et Intergiciel)

soutenue le 15 décembre 2012

Jury

Président : Driss ABOUTAJDINE PES à l’Université Mohammed V Agdal-Rabat
Rapporteurs : Gilles ROUSSEL Prof. à l’Université Paris-Est Marne-la-Vallée

Mahmoud NASSAR PH à l’ENSIAS
Examinateurs : Mireille BLAY-FORNARINO Prof. à l’Université Nice-Sophia Antipolis

Jacques PASQUIER Prof. à l’Université de Fribourg
Co-encadrant : Salma MOULINE PH à l’Université Mohammed V Agdal-Rabat
Co-directeur : Didier PARIGOT Chargé de Recherche à l’INRIA Sophia Antipolis

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2

http://tel.archives-ouvertes.fr/tel-00766329
http://hal.archives-ouvertes.fr


te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



To my Parents

To my Sister

To my Brother

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



Acknowledgements

This doctoral thesis has been prepared in joint guardianship with Mohammed V Agdal Uni-

versity (at LRIT laboratory) and Nice Sophia Antipolis University (at INRIA Sophia Antipolis).

My first thank goes to my thesis advisors Prof. Driss ABOUTAJDINE (LRIT laboratory)

and Dr. Didier PARIGOT (INRIA Sophia Antipolis). Without the various help they provided

me, the achievement of this dissertation would have never been possible. I thank them for their

support, patience, and useful advices. I’m deeply grateful to Prof. Driss ABOUTAJDINE for

encouraging me during the final stages of my Master’s project to think about doing a PhD.

His enthusiasm to propel scientific research in Morocco is something that I admire and hope

to replicate throughout my career. I would also like to thank him for serving as my thesis

committee chair. Likewise, I owe a great debt to Dr. Didier PARIGOT, he provided me with

all that a PhD candidate could ever need. I greatly appreciate his willingness to guide me in

improving this work, especially through the countless stimulating discussions we had together.

His professionalism and friendship will always be appreciated.

I would like to thank Prof. Salma MOULINE (LRIT laboratory), my co-advisor, for giving

me useful suggestions and comments for the improvements of this work. I would also like to

highlight that she gave me great confidence by choosing me to teach, since my first PhD year,

Master’s courses in Component-Based Software Development.

I wish to express my thanks and gratitude to Prof. Gilles ROUSSEL (Paris-Est Univer-

sity), Prof. Mahmoud NASSAR (ENSIAS), Prof. Mireille BLAY-FORNARINO (Nice Sophia

Antipolis University) and Prof. Jacques PASQUIER (Fribourg University) for accepting to be

members of my thesis committee. Their valuable feedback and inspiring comments helped me

to improve this dissertation in several ways.

Special thanks go to Dr. Pascal DEGENNE (CIRAD), Dr. Danny LO SEEN (CIRAD), Dr.

Remi FORAX (Gaspard Monge Institut) and Dr. Olivier CURE (Gaspard Monge Institut). I

have collaborated with them on the STAMP project (a French research project aiming at devel-

oping a new modelling language for describing environmental landscapes and their dynamics).

It has been a great pleasure to work with them and I always have a feeling that what I learnt

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



and took away from STAMP project is much more than what I gave through my contribution.

The work related to this project is reported in Chapter 8.

To so many people in INRIA Sophia Antipolis who directly or indirectly helped me and

made it a great experience, I’m deeply grateful. Special thanks to my team Zenith and par-

ticularly to its head Dr. Patrick VALDURIEZ. To a pleasant group of colleagues with whom

I shared lively lunch discussions about numerous subjects, thank you for creating a cheerful

atmosphere and an endless succession of bursts of laughter: Alexandre CARABIAS, Anca

BELME, Hubert ALCIN, Dr. Alain DERVIEUX, Dr. Valérie PASCUAL and Dr. Laurent

HASCOET.

I thank all PhD students and staffs in LRIT laboratory, it was nice to be among them during

the months I stayed each year in Morocco. I’m pleased to have Brahim AKBIL as a colleague

and as a dear friend. My deepest gratitude and thanks to him for all the support he made

available throughout my doctoral studies. He is always helpful and enjoyable. Thank you

Brahim for this invaluable friendship. A particular thank goes to my Master’s classmates whom

are now PhD students in LRIT laboratory (in alphabetical order): Abdelkaher, Ahmed, Laila,

Said. Thank you for all the great moments we shared together. I wish you all the best.

I would like now to acknowledge and thank those who have provided me with their unlim-

ited support, encouragement, understanding and patience. They have been always there for me

and have helped me in every possible way. My immense gratitude to my parents, my brother

Soufiane, my sister Dina and her husband Nour Eddin, and of course, to their little boy Yassir

who has been a source of joy and great relaxation that made me forget the stresses of work. A

big thank to all of you for your never-ending love.

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



Résumé

Le développement d’applications avec une architecture Pair-à-Pair (P2P) est devenu de plus

en plus important en ingénierie du logiciel. Aujourd’hui, un grand nombre d’organisations de

tailles et secteurs différents compte d’une manière croissante sur la collaboration entre mul-

tiples acteurs (individus, groupes, communautés, etc.) pour accomplir des tâches essentielles.

Ces applications P2P ont généralement un comportement récursif que plusieurs approches de

modélisation ne peuvent pas décrire et analyser (ex. les approches basées sur les automates

à états finis). Un autre challenge qui concerne le développement d’applications P2P est le

couplage fort entre la spécification d’une part, et les technologies et protocoles sous-jacents

d’autre part. Cela force les développeurs à faire des efforts considérables pour trouver puis

comprendre des informations sur les détails de ces couches basses du P2P. De plus, ce cou-

plage fort oblige les applications à s’exécuter dans des environnements figés. Par conséquent,

choisir par exemple un autre protocole pour répondre à un nouveau besoin à l’exécution devient

une tache très difficile. Outre ces points, les applications P2P sont souvent spécifiées avec une

faible capacité à déléguer des traitements entre les pairs, et se focalisent surtout sur le partage

et le stockage de données. Ainsi, elles ne profitent pas pleinement de la puissance de calcul et

de traitement offerte par le réseau P2P sous-jacent.

Dans cette thèse, nous présentons une approche qui combine les principes du développe-

ment orienté composants et services avec des techniques issues des Grammaires Attribuées

et d’analyses de flot de données (techniques utilisées surtout dans la construction de compi-

lateurs) afin de faciliter la spécification, l’analyse et le déploiement d’applications dans des

architectures P2P. Cette approche incorpore : i) Un langage formel nommé DDF (de l’anglais

Data-Dependency Formalism) pour spécifier les applications et construire leurs graphes de dé-

pendances de données. Un graphe de dépendances de données est nommé DDG (de l’anglais

Data-Dependency Graph) et est défini pour être une représentation abstraite de l’application

spécifiée. ii) Une méthode d’analyse qui utilise le graphe de dépendances de données pour in-

férer et calculer diverses propriétés, y compris certaines propriétés que les model-checkers ne

peuvent pas calculer si le système présente un comportement récursif. iii) Un intergiciel nommé

SON (de l’anglais Shared data Overlay Network) afin de développer et d’exécuter des applica-
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tions dans une architecture P2P sans faire face à la complexité des couches sous-jacentes. Cela

grâce essentiellement au couplage faible (par une approche orientée services) et à la fonction-

nalité de génération de code automatique.

Mots-clés : Spécification Formelle, Analyse Formelle, Dépendances de Données, Déve-

loppement de Logiciels à Base de Composants (CBSD), Architecture Orientée Services (SOA),

Pair-à-Pair (P2P).
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Abstract

Developing Peer-to-Peer (P2P) applications became increasingly important in software de-

velopment. Nowadays, a large number of organizations from many different sectors and sizes

depend more and more on collaboration between actors (individuals, groups, communities,

etc.) to perform their tasks. These P2P applications usually have a recursive behavior that

many modeling approaches cannot describe and analyze (e.g., finite-state approaches). An-

other challenging issue in P2P application development is the tight coupling between appli-

cation specification and the underlying P2P technologies and protocols. This forces software

developers to make tedious efforts in finding and understanding detailed knowledge about P2P

low level concerns. Moreover, this tight coupling constraints applications to run in a change-

less runtime environment. Consequently, choosing (for example) another protocol at runtime

to meet a new requirement becomes very difficult. Besides these previous issues, P2P applica-

tions are usually specified with a weak ability to delegate computing activities between peers,

and especially focus on data sharing and storage. Thus, it is not able to take full advantages of

the computing power of the underlying P2P network.

In this thesis, we present an approach that combines component- and service-oriented de-

velopment with well-understood methods and techniques from the field of Attribute Grammars

and Data-Flow Analysis (commonly used in compiler construction) in order to offer greater

ease in the specification, analysis and deployment of applications in P2P architecture. This ap-

proach embodies: i) A formal language called DDF (Data-Dependency Formalism) to specify

applications and construct their Data-Dependency Graphs (DDGs). A DDG has been defined

to be an abstract representation of applications. ii) An analysis method that uses DDG to infer

and compute various properties, including some properties that model checkers cannot com-

pute if the system presents a recursive behavior. iii) A component-based service middleware

called SON (Shared-data Overlay Network) to develop and execute applications within a P2P

architecture without the stress of dealing with P2P low level complexity. Thanks to SON’s

automatic code generation.

Keywords: Formal Specification, Formal Analysis, Data-Dependency, Component-Based

Software Development (CBSD), Service-Oriented Architecture (SOA), Peer-to-Peer (P2P).
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Chapter 1

Introduction – en français
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1.3.1 Des idées clés dans nos contributions . . . . . . . . . . . . . . . . . 33

1.3.2 DDF : Un langage formel pour des applications P2P à base de com-
posants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.3 Analyse des spécifications DDF en explorant le flot de données . . . 35

1.3.4 SON : Un middleware orienté composants, services et P2P . . . . . . 35

1.3.5 Evaluation de SON dans le contexte du projet STAMP . . . . . . . . 36

1.4 Organisation du manuscrit . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.1 Vue d’ensemble

Le développement d’applications avec une architecture Pair-à-Pair (P2P) est devenu de plus

en plus important en ingénierie du logiciel. Aujourd’hui, un grand nombre d’organisations de

tailles et secteurs différents compte d’une manière croissante sur la collaboration entre mul-

tiples acteurs (individus, groupes, communautés, etc.) pour accomplir des tâches essentielles.

Une architecture P2P est un concept où chaque entité agit à la fois comme serveur et client
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Chapter 1 : Introduction – en français

dans un réseau P2P [Schollmeier, 2001]. Cela est complètement différent des architectures

Client/Serveur où une entité peut agir uniquement en tant que serveur ou client, sans être ca-

pable de jouer les deux fonctions au même temps. Ainsi, dans une architecture P2P, les rôles

des différentes entités sont approximativement égaux et chaque entité fournit des services aux

autres en tant que pair.

Dans les systèmes logiciels, en particulier ceux qui sont déployés sur des architectures P2P,

les données échangées sont nécessaires pour accomplir des tâches de traitement et acheminer

des interactions entre les différentes entités du système. Néanmoins, la conception de systèmes

logiciels se focalise généralement sur l’ordonnancement des activités de traitement et néglige

le flot de données. Une approche centrée sur les données fournit une méthode différente de voir

et de concevoir des applications logicielles. Elle permet de s’intéresser de plus près au flot et à

la transformation de données tout le long du cycle de vie de l’application.

Dans ce contexte, nous avons défini un graphe de dépendances de données nommé DDG (de

l’anglais Data-Dependency Graph). Ce graphe a été choisi pour former une représentation abs-

traite d’applications, et ce, pour les raisons suivantes. Premièrement, elle ne représente qu’un

modèle de flux de données (imposé par la dépendance entre les données). Deuxièmement, DDG

expose un niveau de détail suffisant pour effectuer des analyses de flot de données.

Dans cette thèse, nous présentons une approche qui combine les principes du développe-

ment orienté composants et services [Szyperski, 1998] [Huhns and Singh, 2005] avec des tech-

niques issues des Grammaires Attribuées (AGs) [Paakki, 1995] et d’analyses de flot de données

[Aho et al., 2006] (techniques utilisées surtout dans la construction de compilateurs) afin de fa-

ciliter la spécification, l’analyse et le déploiement d’applications dans des architectures P2P.

Cette approche incorpore : i) Un langage formel nommé DDF (de l’anglais Data-Dependency

Formalism) pour spécifier les applications et construire leurs graphes de dépendances de don-

nées. ii) Une méthode d’analyse qui utilise le graphe de dépendances de données pour inférer et

calculer diverses propriétés, y compris certaines propriétés que les model-checkers ne peuvent

pas calculer si le système présente un comportement récursif. iii) Un middleware nommé SON

(de l’anglais Shared data Overlay Network) afin de développer et d’exécuter des applications

dans une architecture P2P sans faire face à la complexité des couches sous-jacentes du P2P.
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1.1 Vue d’ensemble

Le middleware SON est utilisé comme un environnement d’exécution qui gère les besoins

liés au P2P (comme la gestion de mécanismes de communications, de files d’attente ou de dif-

fusions de messages). La gestion de ces aspects est facilitée grâce essentiellement au couplage

faible (par une approche orientée services) et à la fonctionnalité de génération de code automa-

tique. Cette génération de code réduit et simplifie les tâches de développeurs d’applications et

leur permet de se concentrer davantage sur la logique métier.

Le formalisme DDF fournit un ensemble d’opérations nécessaires pour spécifier et analyser

des applications P2P. DDF peut être considéré comme un formalisme minimal et léger pour les

raisons suivantes. D’une part, l’objectif de DDF est de construire formellement un graphe de

dépendance qui expose le bon niveau d’abstraction pour effectuer des analyses de flots de don-

nées. D’autre part, DDF n’est pas destiné à écrire le détail du code métier ou à être un langage

de programmation généraliste. Il a été plutôt pensé suivant les principes des langages dédiés

(DSL – de l’anglais Domain-Specific Language) [Mernik et al., 2005]. DDF est fortement ins-

piré des caractéristiques des grammaires attribuées, notamment parce que ces dernières sont

capables non seulement de construire un graphe de dépendance similaire, mais aussi de cap-

turer naturellement un comportement récursif complexe (ce qui est très fréquent dans le cas

d’applications P2P – voir Section 2.2.1) que de nombreuses autres approches ne peuvent pas

décrire ou analyser.

L’environnement d’exécution du middleware SON peut être vu comme un ensemble de

composants en interaction. Ces interactions sont dues à des envois et des réceptions de services.

Lorsqu’un service est reçu ou envoyé, des données peuvent être échangées (par exemple, les

paramètres de service, le résultat du service ou des données propres aux composants). La propa-

gation d’appels de services entre composants peut dépendre de données transportées par un cer-

tain service appelé antérieurement. Par conséquent, notre approche a pour vocation d’étendre

la spécification de services (qui définit souvent seulement les entrées et les sorties de compo-

sants) par la notion de dépendance. Cette notion capture non seulement les dépendances entre

les services, mais aussi les dépendances entre les données échangées (requises et fournies). En

définissant cette notion, il nous sera possible d’inférer le flot de données d’une composition/un

assemblage de composants et de construire un graphe de dépendance de données de l’ensemble.
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Chapter 1 : Introduction – en français

Une fois le graphe de dépendance de données est construit à partir de la spécification DDF,

nous pouvons vérifier ou inférer plusieurs propriétés en analysant le flot de données. Dans le

Chapitre 6, cela est illustré à travers deux exemples. Le premier exemple montre comment

résoudre le problème de détection d’interblocage (deadlock en anglais) par une recherche de

circularité dans le graphe. Le deuxième exemple montre comment calculer la relation de do-

minance (entre données) en cherchant l’ensemble des dominateurs de chaque nœud du graphe.

Autres analyses (inspirées de travaux faits autour des GAs, comme ceux de [Parigot et al., 1996]

et [Jourdan and Parigot, 1990]) peuvent être effectuées. Par exemple, en analysant l’ordre d’éva-

luation de données, il sera possible de déterminer formellement quels services dans un système

peuvent être exécutés d’une manière parallèle ou incrémentale.

En plus de la construction du graphe de dépendance d’un système, notre formalisme DDF

est capable de capturer naturellement un comportement récursif grâce à une spécification orien-

tée règles. Il est bien connu dans la théorie des langages formels que de tel comportement ne

peut pas être capturé par des automates à états finis (FSA, de l’anglais Finite-State Automata)

[Aho et al., 2006]. Cela implique que les approches basées sur des FSA ne peuvent pas être uti-

lisées pour décrire ou analyser des applications logicielles qui intègrent de tels comportements.

En particulier, dans le contexte du développement à base de composants, où un grand nombre

d’approches de modélisation sont basées sur des FSA. Deux des approches à composants les

plus connues SOFA [Bures et al., 2008] et Fractal [Bulej et al., 2008] soulèvent clairement ce

problème. Par exemple, dans [Bures et al., 2008] les auteurs précisent : “our approach cannot

treat behavior that cannot be modeled by a regular language (e.g. recursion)”. Ainsi, de telles

approches à composants ne sont pas adéquates dans le contexte de construction d’applications

P2P où le comportement récursif est très fréquent, comme expliqué dans la section suivante.

1.2 Motivations et problématiques

1.2.1 Spécificité des applications P2P

L’évolutivité et l’auto-organisation comptent parmi les importantes propriétés des applications

P2P. Cela en raison du très large nombre d’utilisateurs et de la spécificité de connexions entre

24

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



1.2 Motivations et problématiques

les différents nœuds (connexions bas débit, haut débit, non stable, etc.) [Ripeanu et al., 2002].

Pour soutenir l’évolutivité et l’auto-organisation dans ce type de réseau, un grand nombre d’al-

gorithmes et de protocoles P2P ont été développés. Ces algorithmes et protocoles sont souvent

exécutés d’une manière récursive. Considérons, par exemple, le calcul de la réputation1 qui est

un problème d’une grande importance dans les environnements P2P [Aberer and Despotovic, 2001]

(un exemple simple qui justifie cette importance est le cas où, durant le téléchargement de fi-

chiers avec un logiciel de partage de fichiers en P2P, nous espérons que seulement des pairs

fiables soient choisis). Le calcul de la réputation repose sur une séquence de requêtes envoyées

pour obtenir des informations concernant la fiabilité d’un pair A et les réponses correspon-

dantes à ces requêtes. Ce calcul doit être effectué d’une manière récursive, car une réponse

reçue d’un autre pair B résulte d’une requête concernant la fiabilité de B. En plus, pour que le

calcul soit correct, toutes les réponses doivent être reçues dans le bon ordre, puisque la condi-

tion d’arrêt peut dépendre de cet ordre-là. Ces envois récursifs de requêtes/réponses peuvent

être vus comme une suite de parenthèses bien formées si chaque requête est remplacée par une

parenthèse ouvrante et chaque réponse correspondante est remplacée par une parenthèse fer-

mante. Par conséquent, l’ensemble de ces séquences bien parenthésés est langage de Dyck2. Par

exemple, la séquence "(())()" est bien parenthésé, et est un mot de Dyck, alors que la séquence

"())(" ne l’est pas. Dans la théorie des langages formels, Il est bien connu qu’un langage de

Dyck n’est pas un langage régulier [Stanley, 2001]. Dès lors, il n’existe aucun automate à états

finis qui reconnait un langage de Dyck.

Ce type d’envois récursifs de requêtes/réponses, présenté ci-dessus, peut être bien spécifié

en termes de langages non contextuels ou d’automates à piles (discutés plus tard dans la Section

4.1). Cependant, il est très fréquent que les protocoles P2P présentent un comportement récur-

sif plus complexe qui donne lieu à des structures contextuelles – des structures d’interactions

qui ajustent leurs comportements en fonction du changement de contexte. Pour illustrer cela,

considérons le cas où quatre pairs voisins échangent des informations selon une interaction

correspondant à deux envois récursifs de requêtes/réponses entrelacés. Ce type d’interaction

(anbmcndm) a une structure contextuelle et, par conséquent, il ne peut pas être spécifié par un

1Nous notons ici que le calcul de la réputation présente un cas particulier de la diffusion d’informations et qu’il
peut être effectué en utilisant le protocole Gossip présenté plus tard dans la Section 2.2.4.

2Un langage de Dyck D est un sous-ensemble de {x, y}∗ tel que si x est remplacé par une parenthèse ouvrante
et y par une parenthèse fermante, nous obtenons une séquence de parenthèses bien formées [Stanley, 2001].
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Chapter 1 : Introduction – en français

langage non contextuel [Aho et al., 1986].

En se référant aux travaux de recherche sur les Grammaires Attribuées [Parigot et al., 1996]

qui sont des langages sensibles au contexte, le comportement récursif des applications P2P peut

être capturé en décrivant à la fois le flux de contrôle et le flux de données de chaque interac-

tion. En plus, une fois spécifié, ce comportement peut être analysé en utilisant des algorithmes

d’analyse de flot de données. En outre, la hiérarchie de Chomsky [Chomsky, 1956] qui est une

classification des langages formels assure les inclusions suivantes :

type-3 ( type-2 ( type-1 ( type-0

avec :

type-3 : Langages réguliers (reconnus par des automates à états finis).

type-2 : Langages non contextuels (reconnus par des automates à pile).

type-1 : Langages contextuels (reconnus par des machines de Turing non-déterministes).

type-0 : Langages récursivement énumérables (reconnus par des machines de Turing).

1.2.2 Vers des analyses de flot de données pour les applications P2P

1.2.2.1 Les model-checkers et la spécificité des applications P2P

Le model-checking est une technique automatisée qui, étant donné un modèle à états finis

d’un système et une propriété formelle, vérifie systématiquement si cette propriété est satis-

faite pour (un état donné dans) ce modèle [Baier and Katoen, 2008]. Il explore tous les états

possibles du système d’une manière exhaustive. Le model-checking a été utilisé avec succès

dans des domaines différents tels que les systèmes embarqués, la conception de matériels in-

formatiques et le génie logiciel. Malheureusement, tous les systèmes ne peuvent pas tirer profit

de sa puissance. Une des raisons est que certains systèmes ne peuvent être spécifiés par un

modèle à états finis. En particulier, dans le contexte d’applications P2P (comme c’est expliqué

ci-dessus). Une autre raison est que le model-checking n’est pas adapté pour des applications

qui manipulent intensivement des données (et qui sont souvent développées en utilisant le para-
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1.2 Motivations et problématiques

digme P2P [Lee et al., 2007] [Ranganathan et al., 2002]). Le récent livre sur le model-checking

[Baier and Katoen, 2008] justifie clairement pourquoi la vérification d’applications manipu-

lant intensivement des données est extrêmement difficile. En fait, même s’il n’y a qu’un petit

nombre de données, l’espace d’état à analyser peut être très grand. Les auteurs du livre consi-

dèrent même que ces deux raisons sont parmi les premières limitations du model-checking :

“The weaknesses of model checking :

• It is mainly appropriate to control-intensive applications and less suited for data-intensive

applications as data typically ranges over infinite domains.

• Its applicability is subject to decidability issues ; for infinite-state systems, or reasoning

about abstract data types (which requires undecidable or semi-decidable logics), model

checking is in general not effectively computable.

• ... ”

1.2.2.2 Vérification par analyse de flot de données

L’analyse de flot de données réfère à un ensemble de techniques qui infèrent des informations

sur le flot de données le long des chemins d’exécution d’un système logiciel [Aho et al., 2006].

L’exécution d’un système logiciel peut être vue comme une série de transformations de l’état

du système (constitué à partir de l’ensemble des valeurs de toutes les variables du système).

Chaque exécution d’une instruction intermédiaire transforme un état d’entrée à un nouvel

état de sortie. On dénote les valeurs de flot de données avant et après une instruction s par

INPUTS[s] and OUTPUTS[s], respectivement.

Pour analyser le comportement d’un système, il faut prendre en compte tous les chemins

d’exécution possibles dans le graphe de flot de données. Ainsi, résoudre un problème d’analyse

de flot de données revient à trouver une solution à un ensemble de contraintes (appelées équa-

tions de flot de données) sur les INPUTS[s] et OUTPUTS[s], pour toutes les instructions s. Il

existe deux types de contraintes :

• Contraintes sémantiques : elles définissent la relation entre les INPUTS[s] et OUTPUTS[s],

pour chaque instruction s. Cette relation est généralement présentée comme une fonction
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Chapter 1 : Introduction – en français

de transfert f qui prend la valeur de flot de données INPUTS[s] avant l’instruction et pro-

duit une nouvelle valeur de flot de données OUTPUTS[s] après l’instruction. Autrement

dit, OUTPUTS[s] = fs(INPUTS[s]).

• Contraintes du flot de contrôle : si un système comprend les instructions sl, s2, ..., sn dans

cet ordre, alors, la valeur sortant de si est la même que celle entrant dans si+l. Autrement

dit, INPUTS[si+l] = OUTPUTS[si], pour tout i = 1, 2, ..., n − 1.

Par exemple, pour vérifier une propriété telle que la vivacité des variables qui détermine

si une variable est susceptible d’être utilisée dans un chemin du graphe de flot de données,

nous définissons les contraintes de vivacité des variables (c.-à-d., définir les équations de flot

de données spécifiant qu’une variable d est active (vive) en un point p si un chemin com-

mençant en p contient une utilisation de d). Ces équations peuvent être résolues en utilisant

un algorithme itératif. La convergence de cet algorithme est assurée par le théorème du point

fixe [Kam and Ullman, 1976] qui garantit qu’une solution unique de type point fixe existe pour

ces équations. Une fois calculée, la vivacité d’une variable est une information très utiles. Par

exemple, après l’utilisation de la valeur d’une variable à un point donné de l’exécution, il n’est

pas nécessaire de garder cette valeur en mémoire si elle n’est pas utilisée ultérieurement le long

d’un chemin d’exécution. Dans la Section 6.3.2, nous présentons un autre exemple (détection

de dominance) qui illustre plus en détail et les principes de l’analyse de flot de données.

Plusieurs d’autre propriétés peuvent être calculées à ce niveau d’abstraction (c.-à-d., le

graphe de flot de données), y compris certaines propriétés que les model-checkers ne peuvent

pas calculer si le système a un espace d’états infini (voir par exemple [Govindarajan et al., 1992]).

En outre, un grand nombre d’algorithmes a été proposé dans la littérature pour calculer ces pro-

priétés. Malheureusement, à ce jour, l’utilisation principale de ces algorithmes (et en général,

l’analyse de flot de données) reste dans le contexte de la construction de compilateur. En par-

ticulier, pour les algorithmes des grammaires d’attribuées, qui sont utilisés pour des analyses

sémantiques dans la plupart des compilateurs.

Notre motivation dans ce contexte est de tirer avantage de ces algorithmes et techniques qui

ont déjà prouvés leurs efficacités pour faciliter la spécification et l’analyse d’applications dans

des environnements P2P.
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1.2 Motivations et problématiques

1.2.3 Une approche centrée sur les données pour systémes à composants

Le développement à base de composants [Szyperski, 1998] est devenu de plus en plus important

en génie logiciel. Cela est dû essentiellement au besoin d’utiliser les concepts de cette approche

pour implémenter des services et augmenter le niveau d’abstraction en facilitant la réutilisation,

l’extension, la personnalisation et la composition de services [Yang and Papazoglou, 2004].

Ainsi, les services sont encapsulés dans des composants avec des interfaces bien définies pour

être réutilisés dans plusieurs nouvelles applications. Cependant, le flot de données qui permet

aux services d’accomplir des activités de traitements et qui guide les interactions entre compo-

sants est souvent pas pris en compte, voir même totalement négligé. Alors que dans plusieurs

domaines de recherche tels que le Grid Computing, l’Informatique Décisionnelle et le P2P,

les données sont incorporées comme une part importante du développement de systèmes. Ré-

cemment, dans le domaine émergent du Cloud Computing, où tout est service, la gestion de

données a fait l’objet d’une attention remarquable et d’un grand intérêt [Abadi, 2009], et cela

ne peut que croitre.

Notre motivation dans ce contexte du développement à base de composants est de permettre

aux données et de leurs flots d’être facilement spécifiés, vus et analysés, en particulier dans des

environnements P2P. Alors que la plupart des approches à composants actuelles se focalisent

sur les aspects structurels et fonctionnels de la composition de composants, nous insistons sur le

fait que la modélisation du flot et la dépendance entre données a le même degré d’importance.

Essentiellement, parce que les interactions entre composants sont guidées et acheminées par

les données échangées.

1.2.4 Exemple illustratif : la spécification du protocole Gossip

Afin de motiver et illustrer l’intérêt de notre approche, en particulier dans le contexte des ap-

plications P2P, nous expliquons notre formalisme à travers la spécification du protocole Gossip

[Voulgaris et al., 2005] [Jelasity et al., 2007]. Le protocole Gossip, appelé également protocole

épidémique, est un protocole bien connu dans la communauté du P2P. Il est utilisé principale-

ment pour assurer une diffusion/dissémination fiable de l’information dans un système distri-

bué, d’une manière très similaire à la propagation des épidémies dans des communautés bio-
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Chapter 1 : Introduction – en français

logiques. Ce type de dissémination est un comportement commun dans diverses applications

P2P, et selon [Jelasity, 2011], un grand nombre de protocoles distribués peuvent être réduits au

protocole Gossip. Il existe différentes variantes du protocole Gossip. Toutefois, un template qui

couvre un nombre considérable de ces variantes a été présenté par Jelasity dans [Jelasity, 2011].

Dans notre exemple, nous nous basons sur cette template présentée ci-dessous :

Algorithm 1 Squelette de l’algorithme Gossip (d’après [Jelasity, 2011])

loop
timeout(T)
node← selectNode()
send gossip(state) to node

end
procedure onPushAnswer(msg)

send answer(state) to msg.sender
state← update(state,msg.state)

end
procedure onPullAnswer(msg)

state← update(state,msg.state)
end

Pour modéliser ce protocole Gossip, nous considérons un ensemble de nœuds qui s’activent

périodiquement à chaque pas de temps T et disséminent ensuite des données dans le réseau en

échangeant des messages. En fait, quand un nœud reçoit des données, il répond à l’expéditeur,

puis propage à son tour les données dans le réseau (en pratique, les données sont envoyées à

un sous-ensemble de nœuds sélectionnés selon un algorithme spécifique). En terme de service,

un nœud est un composant qui a deux activités : servir et consommer des données. Il existe

deux services d’entrée (de l’anglais input services) pour l’activité servir et de deux services de

sortie (de l’anglais output services) pour l’activité consommer. Ces services sont décrits dans

l’interface du nœud comme suit :

({answer(resp : String), gossip(info : String)}in,
{gossip(info : String), answer(resp : String)}out)

Le service gossip est utilisé pour à la dissémination de données, alors que le service answer

est utilisé pour l’envoi de la réponse à l’expéditeur. Le comportement des services d’entrée

(l’activité servir) inverse tout simplement les mêmes étapes des services de sortie (l’activité
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1.2 Motivations et problématiques

consommer). A partir de cette description de services, nous pouvons construire intuitivement

un graphe de dépendance simple entre les services. En fait, les services de sortie d’un nœud

nodex sont connectés aux services d’entrée d’un autre nœud nodey, et ainsi de suite. Ce graphe

représente une partie du flot de contrôle, mais il n’offre pas une information très explicite sur

le flot de données. Nous ne pouvons pas savoir quelles sont les dépendances entre les services

et entre les données dans un nœud.

Pour compléter l’interface d’un nœud x avec une description à la fois du flot de contrôle et

de données, notre formalisme DDF spécifie le comportement sous la forme de règles :

r1 : timeout(T) → (gossip(statex), nodey)
r2 : (gossip(statey), nodey), [onPush] → (answer(statex), nodey)
r3 : (gossip(statey), nodey), [onPull] →

r4 : (answer(statey), nodey) →

r1 indique que le service interne timeout active nodex à chaque pas de temps T , puis envoie

la donnée statex au nodey par l’intermédiaire du service gossip. r2 indique que nodex reçoit la

données statey du nodey, puis répond nodey en lui envoyant la donnée statex par l’intermédiaire

du service answer si la condition onPush est satisfaite. onPush est une pré-condition (pour

simplifier les choses, nous ignorons dans cet exemple ces pré-conditions). r3 indique que nodex

reçoit la donnée statey du nodey par l’intermédiaire du service gossip. r4 indique que nodex

reçoit la donnée statey du nodey par l’intermédiaire du service answer.

En introduisant ces règles, le système peut être vu comme un ensemble de composants

où chacun de ces derniers a des entrées (côté gauche des règles) et des sorties (côté droit des

règles). Les entrées reçoivent des données portées par des services, et après un traitement, les

données résultantes peuvent être envoyées à travers les sorties. Ainsi, nous pouvons extraire

un graphe de dépendances entre données de l’ensemble du système en connectant les graphes

partiels de dépendance entre données de chaque composant utilisé dans ce système.

1.2.5 Le besoin d’un runtime orienté composants, services et P2P

Des technologies très performantes ont été développées dans le contexte du P2P. Cependant, la

plupart de ces technologies ne sont pas exploitées dans le processus de développement d’appli-

cations en raison des limitations des approches de spécification utilisées. Une de ces limitations
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Chapter 1 : Introduction – en français

est le couplage fort entre la logique métier et les protocoles sous-jacents du P2P. Cela force les

développeurs à faire des efforts considérables pour trouver puis comprendre les détails de ces

protocoles. De plus, ce couplage fort contraint les applications à s’exécuter dans des environne-

ments figés. Ainsi, choisir (par exemple) un autre protocole pour répondre à un nouveau besoin

d’exécution devient très difficile. Une autre limitation est que les applications P2P sont généra-

lement spécifiées avec une faible habilité à déléguer des activités de calcul/traitement à d’autres

pairs, et se focalisent en particulier sur le partage et le stockage de données. Par conséquent,

elles ne profitent pas pleinement de la puissance de calcul qu’offre le réseau P2P sous-jacent.

Une Architecture Orientée Services (SOA) est une forme d’architecture pour concevoir et

développer des applications avec un couplage faible. Son but principal est de fournir un mo-

dèle d’intégration flexible (en réduisant les dépendances) ainsi qu’un haut niveau d’abstraction

(en encapsulant les détails). Dès lors, la capacité d’applications à évoluer et à s’adapter aux

nouveaux besoins augmente. Dans la littérature, SOA est souvent couplée avec les principes du

développement à base de composants pour proposer des intergiciels. Cependant, la plupart de

ces derniers ne sont pas adaptés aux applications P2P. Une des raisons est que ces intergiciels

reposent sur des registres de services centralisés. Cet élément central dans une architecture

SOA peut provoquer un goulot d’étranglement et causer le blocage de tout le système en cas de

sa défaillance. Cela présente des risques de fiabilité et limite l’évolutivité d’applications. Une

deuxième raison est que ces intergiciels utilisent des protocoles de communication qui ne sont

pas adaptés aux environnements P2P. Par exemple, une application P2P n’est pas obligée de

fonctionner en utilisant un Système de Noms de Domaine (DNS, de l’anglais Domain Name

System) parce que les pairs n’ont pas toujours une adresse IP permanente.

Dans cette thèse, nous présentons le middleware SON. SON étend les principes de SOA,

ainsi que ceux du développement à base de composants pour développer et déployer des appli-

cations dans une architecture P2P d’une manière facile et efficace.

SON assiste les développeurs d’applications en leur fournissant un mécanisme de généra-

tion automatique de code. Ce code généré s’occupe de plusieurs aspects liés au P2P comme

la gestion de la communication, les files d’attente ou la diffusions de messages. En fait, l’uti-

lisateur de SON implémente seulement le code métier correspondant aux services déclarés.
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1.3 Contributions

Ensuite, l’outil de génération de code génère les composants correspondants et de leurs conte-

neurs associés. Le conteneur du composant incorpore toutes les ressources nécessaires pour

adapter le code implémenté à l’environnement d’exécution P2P.

SON peut être considéré comme un middleware générique et léger (avec l’ensemble des

opérations nécessaires qui doivent être présentes pour développer des applications P2P à base

de composants et services), et ce, pour la raison suivantes. Puisque, dans la plupart des cas,

les challenges auxquels les systèmes P2P font face peuvent se réduire à un seul problème :

“How do you find any given data item in a large P2P system in a scalable manner, without

any centralized servers or hierarchy ?” [Balakrishnan et al., 2003], SON a unifié la notion de

publish/subscribe : il utilise une table de hachage distribuée (DHT, de l’anglais Distributed

Hash Table) [Rhea et al., 2004] non seulement pour publier et consommer des données, mais

aussi pour permettre de publier, découvrir et déployer dynamiquement des services.

1.3 Contributions

Le travail présenté dans cette thèse comporte quatre contributions majeures. Avant de donner

un résumé de chacune de ces quatre contributions, nous présentons d’abord dans la sous-section

suivante des idées clés sous-jacentes à ces dernières.

1.3.1 Des idées clés dans nos contributions

Faire attention aux dépendances : Toute spécification informatique est exprimée dans un lan-

gage contenant des dépendances entre les données et entre les différentes étapes/pas de

la spécification. Les développeurs d’applications accordent généralement peu d’attention

à ces dépendances, en particulier, aux dépendances "non-directes" qui peuvent être très

difficiles à localiser sans une analyse automatisée. Dans de nombreux cas, une bonne ges-

tion de ces dépendances améliore considérablement le fonctionnement d’applications.

Par exemple, en réduisant le nombre de dépendances, plusieurs optimisations peuvent

être réalisées (comme réduire le temps d’exécution ou l’espace mémoire utilisé).

Séparer ce qui est calculé du comment il est calculé : Grosso modo, les dépendances peuvent
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Chapter 1 : Introduction – en français

être détectées et ajustées à trois niveaux : au moment de la spécification, au moment de

la compilation et au moment de l’exécution. Dans notre cas, nous nous intéressons aux

dépendances au moment de la spécification et avec l’idée de séparer, autant que possible,

ce qui est calculé du comment il est calculé. L’avantage de cela vient du fait que non pas

une seule mais plusieurs implémentations peuvent être synthétisées à partir de la spéci-

fication, et ce, grâce à l’analyse de dépendances entre données (par exemple, analyser

comment évaluer les données d’une manière incrémentale, partielle ou parallèle).

Faire face à la complexité des couches de bas niveau : L’un des principaux challenges lors

du développement d’applications en P2P est la nécessité de comprendre les protocoles

de bas niveau. Bien que ces protocoles utilisent différents procédés, structures de données

et algorithmes, leur objectif sous-jacent reste le même : trouver une donnée particulière

dans un réseau P2P d’une manière évolutive et efficace. Souvent, d’autres exigences non

fonctionnelles sont également prises en compte par ces protocoles. Par conséquent, leurs

complexités augmentent. Cela les rend difficiles à comprendre et à utiliser par les dé-

veloppeurs d’applications qui ne pas forcement des spécialistes de ces protocoles. Les

développeurs devraient avoir le choix de construire leurs applications au sein d’une ar-

chitecture P2P sans faire face à la complexité des couches de bas niveau. Nous avons

donc la conviction que l’abstraction est un début de solution pour répondre à ce besoin.

En fait, les détails du bas niveau doivent être présentés d’une façon plus abstraite à travers

un modèle de haut niveau, clair et facile à comprendre.

1.3.2 DDF : Un langage formel pour des applications P2P à base de com-
posants

Le langage DDF a été développé pour décrire formellement, en utilisant l’approche à compo-

sants, des applications P2P et leurs comportements. En particulier, le comportement récursif

qui est très fréquent dans le contexte du P2P et que beaucoup d’approches de modélisation ne

peuvent pas décrire et analyser (comme c’est expliqué dans la Section 1.2.1). DDF a été égale-

ment développé pour construire une représentation abstraite des applications spécifiées (c.-à-d.,

le graphe de dépendance de données). Cette abstraction expose le bon niveau de détails pour

effectuer des analyses de flot de données. Avec DDF, une application P2P est spécifiée comme
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1.3 Contributions

un réseau de recouvrement (de l’anglais Overlay Network) entre pairs. Les pairs sont représen-

tés par des instances de composants. Chaque instance de composant agit à la fois en tant que

serveur (avec ses services d’entrée) et en tant que client (avec ses services de sortie). Chaque

instance est connectée à un nombre limité de d’autres instances. Quand le réseau évolue dans

le temps, les instances peuvent continuellement chercher de nouveaux partenaires en utilisant

un protocole comme le protocole Gossip (voir Section 5.2). Dans le cas de DDF, nous suppo-

sons l’existence d’une infrastructure sous-jacente (comme le middleware SON) qui fournit aux

instances de composants les mécanismes nécessaires de communication et de stockage. Cela

nous évite de surcharger la spécification de haut niveau avec les détails liés à la spécificité du

réseau, et de traiter ces détails au niveau des couches basses, là où c’est nécessaires. Ainsi,

nous proposons une spécification simple qui peut être implémentée dans des environnements

différents et dynamiques.

1.3.3 Analyse des spécifications DDF en explorant le flot de données

La première étape de cette analyse consiste à construire un graphe de dépendance de données

(DDG) à partir de la spécification DDF. Ensuite, la vérification d’une propriété revient à trou-

ver une solution à un ensemble de contraintes (appelées équations de flot de données) sur les

entrées et les sorties des nœuds du graphe. Dans le Chapitre 6, nous illustrons cela à travers

deux exemples. Le premier exemple consiste à vérifier si un système comporte un interblo-

cage (deadlock), ce qui revient à chercher si un nœud dépend de lui-même dans le graphe. Le

deuxième exemple concerne la propriété de dominance (entre données) qui a de nombreuses

applications en informatique (optimisation de codes, détection de parallélismes, etc.). Pour cal-

culer la propriété de dominance dans un graphe DDG, nous formulons le problème comme

un ensemble d’équations de flot de données qui définissent un ensemble de dominateurs pour

chaque nœud du graphe. Ces équations sont résolues grâce à un algorithme itératif.

1.3.4 SON : Un middleware orienté composants, services et P2P

Avec le middleware SON, l’utilisateur est capable non seulement de développer des applica-

tions avec une approche à base de composants et orientée services, mais aussi de profiter d’un
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Chapter 1 : Introduction – en français

mécanisme de génération automatique de code qui réduit et simplifie plusieurs tâches liées à

l’exécution en environnement P2P (comme la gestion de la communication, l’instanciation de

composants à distance, la découverte de services, etc.). Ainsi, les développeurs d’applications

sont assistés et peuvent se concentrer davantage sur la logique métier. En fait, l’utilisateur de

SON définit pour chaque composant un ensemble de services (d’entrée, de sortie et internes).

Puis, il implémente seulement le code correspondant, c.à.d. les méthodes associées aux ser-

vices définis. Ensuite, l’outil de génération de code génère le conteneur de composants qui

incorpore toutes les ressources nécessaires pour adapter le code implémenté à l’environnement

d’exécution P2P.

1.3.5 Evaluation de SON dans le contexte du projet STAMP

STAMP (modelling dynamic landscapes with Spatial, Temporal And Multi-scale Primitives)

est un projet de recherche financé (en partie) par l’Agence Nationale de la Recherche (ANR)

et coordonné par Danny Lo Seen (du CIRAD, un centre de recherche français qui répond,

avec les pays du Sud, aux enjeux internationaux de l’agriculture et du développement). Nos

contributions dans le cadre du projet STAMP peuvent être présentées en deux grandes parties.

Premièrement, nous avons participé à la spécification d’un langage de modélisation pour dé-

crire les paysages et leur dynamique. Ce langage est nommé Ocelet et est le résultat principal de

ce projet. Deuxièmement, nous avons défini pour Ocelet un environnement d’exécution orienté

composants et services en se basant sur le middleware SON. L’évaluation de SON dans ce

contexte consiste à implémenter des scénarios d’application issus du domaine de la modélisa-

tion de l’environnement et de sa dynamique. L’objectif est de montrer comment SON (en parti-

culier, la disponibilité dynamique de services au cours de l’exécution) est capable d’améliorer

et de renforcer l’efficacité de ces applications simulant des dynamiques environnementales.

1.4 Organisation du manuscrit

Ce manuscrit de thèse est organisé comme suit. Dans les chapitres 3 et 4, nous présentons

les principaux concepts des approches utilisées et nous discutons l’état de l’art des travaux

connexes. Dans le chapitre 5, nous introduisons le formalisme DDF et nous prenons comme
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exemple illustratif la spécification du protocole Gossip. Dans le chapitre 6, nous présentons

comment les algorithmes d’analyse de flot de données peuvent être utilisés pour vérifier les

applications spécifiées avec le formalisme DDF. Nous illustrons cela à travers deux exemples :

la détection d’interblocage et l’extraction de la relation de dominance. Dans le chapitre 7, nous

décrivons les concepts et le fonctionnement du middleware SON. Nous présentons aussi deux

prototypes implémentés avec ce dernier : SGT (Simple Georeferencing Tool) qui est une ap-

plication simple et légère dédiée à la collecte, le traitement et l’affichage de données géoré-

férencées, et P2Prec (a social based P2P recommendation system) qui est un système de re-

commandation social en P2P développé au sein de notre équipe de recherche pour le partage

de données à large échelle. Le chapitre 8 a pour but de présenter l’évaluation de SON dans le

cadre du projet STAMP. Cette évaluation consiste à implémenter des scénarios d’application

issus du domaine de la modélisation de l’environnement et de sa dynamique. Deux scénarios

d’application ont été implémentés : Lotka-Volterra qui simule l’évolution d’un modèle proie-

prédateur, et Rift Valley Fever (la Fièvre de la Vallée du Rift) qui simule la propagation d’une

maladie transmise par des moustiques dans une zone de l’Afrique de l’Ouest. Enfin, le chapitre

9 présente la conclusion et les travaux futurs.
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Chapter 2

Introduction – in english
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2.3.2 DDF: A formal language for component-based P2P applications . . . 51

2.3.3 Analysis of DDF specification with data-flow principles . . . . . . . 51

2.3.4 SON: A component- and service-oriented P2P middleware . . . . . . 52
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2.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.1 Overview

Developing Peer-to-Peer (P2P) applications became increasingly important in software devel-

opment. Nowadays, a large number of organizations from many different sectors and sizes

depend more and more on collaboration between actors (individuals, groups, communities,

etc.) to perform their tasks. P2P architecture is the concept of an entity acting at the same

time as a server and as a client in P2P networks [Schollmeier, 2001]. This is completely dif-

ferent to Client/Server networks, within which the participating entities can act as a server or
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Chapter 2 : Introduction – in english

as a client but cannot embrace both capabilities. Therefore, the responsibilities of entities are

approximately equal and each entity provides services to each other as peers.

In software systems, especially those that support P2P applications, data are required for

achievement of the computing activity and driving the interactions between software entities.

Nevertheless, software system design is usually based on computational aspects with data as

an afterthought. A data-centric approach provides a different way of viewing and designing

applications. It lets us focus on the flow and transformation of data through the software system.

In this context, we have defined a Data-Dependency Graph (DDG). It has been chosen as

an abstract representation for P2P applications for the following two reasons. Firstly, it repre-

sents only one data-flow model (dictated by the dependence between data) on the execution.

Further, DDG exposes the right level of detail—enough to perform Data-Flow Analysis (DFA)

[Aho et al., 2006].

In this thesis, we present an approach that combines component- and service-oriented devel-

opment [Szyperski, 1998] [Huhns and Singh, 2005] with well-understood methods and tech-

niques from the field of Attribute Grammars (AGs) [Paakki, 1995] and Data-Flow Analysis

(commonly used in compiler construction) in order to specify, analyse and deploy P2P appli-

cations. This approach embodies a component-based service middleware called SON (Shared-

data Overlay Network) to develop and execute P2P applications, and a formalism called DDF

(Data-Dependency Formalism) to capture the behavior of SON’s applications and construct

their Data-Dependency Graphs.

SON middleware is used as an execution framework to handle the P2P runtime requirements

(e.g., communication mechanisms, message queue management and broadcasting messages)

with an automatic code generation. This generation offers greater ease to application developers

and allows them to focus only on the business logic.

DDF formalism provides the necessary set of operations to specify and analyze P2P ap-

plications. DDF can be considered as a minimal and lightweight formalism for the following

two reasons. Firstly, the goal of DDF is to formally construct the dependency graph which

exposes the right level of detail to perform data-flow analysis. Secondly, DDF is not intended
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2.1 Overview

to express business code or to be a general-purpose programming language. This is performed

according to Domain-Specific Language (DSL) [Mernik et al., 2005] principles. We note that

DDF is highly inspired by the main characteristics of the Attributed Grammars because they

are able not only to construct similar dependency graph, but also to naturally capture complex

recursive behavior (which is very frequent in P2P applications cf. Section 2.2.1) that many

other approaches cannot describe.

The runtime architecture of SON can be viewed as a set of interacting components. These

interactions are performed by receiving or sending service calls. When a service call is re-

ceived or sent, data can be exchanged (e.g., service parameters, service result and component

attributes). Moreover, the propagation of service calls from one component to another may

depend on the data carried by a certain service called earlier. Therefore, we want to extend

the specification of services that defines the inputs and outputs of components by the notion

of dependency. This notion captures not only the dependencies between services, but also the

dependencies between exchanged data (required and provided). By defining such notion, it

will be possible for a given composition/assembly of components to infer the data-flow and

construct a Data-Dependency Graph of the whole system. This notion of dependency between

services and between data is defined using DDF.

Once the Data-Dependency Graph is constructed from DDF specification, we can per-

form several data-flow analyzes. In Chapter 6, we illustrate that through two examples. The

first one shows how to treat the deadlock detection problem by searching for circularity in

the graph, while the second one computes dominance information by searching for domina-

tors for each graph node. Other analyzes (inspired from DFA and AGs literature (cf. e.g.,

[Parigot et al., 1996] [Jourdan and Parigot, 1990]) can be performed. For instance, by analyz-

ing the order of data evaluation, we will be able to determine formally which services in a

system can be executed in a parallel or incremental way.

In addition to the construction of the dependency graph of a system, our DDF formal-

ism is able to naturally capture recursive behavior by using a rule-based specification. It is

a well-known result from the formal language theory that Finite-State Automaton (FSA) can-

not capture such behavior [Aho et al., 2006]. This implies that FSA-based approaches used
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Chapter 2 : Introduction – in english

to model software applications cannot describe and analyze it. In particular, in the context of

component-based development, a large body of component behavior modeling approaches can

be reduced to FSA. The well-known component models SOFA [Bures et al., 2008] and Fractal

[Bulej et al., 2008] clearly raise this issue. For instance, in [Bures et al., 2008] the authors say:

“our approach cannot treat behavior that cannot be modeled by a regular language (e.g. re-

cursion)”. Therefore, such component approaches are not adequate for P2P applications where

recursive behavior is very frequent as explained in the next section.

2.2 Motivations and problem statements

2.2.1 Specificity of P2P applications

Important properties of P2P applications are scalability and self-organization because of their

very large user base and the specificity of connections between different peers (e.g., low-

bandwidth connections) [Ripeanu et al., 2002]. To support scalability and self-organization

in such networks, a large number of P2P-specific algorithms and protocols have been de-

veloped. These algorithms and protocols are often executed recursively. Consider, for in-

stance, reputation computation1 which is a problem of great importance in P2P environments

[Aberer and Despotovic, 2001] (a simple example justifying this importance is the case where,

while downloading files with a P2P file sharing software, we want to choose only reliable

peers). The reputation computation relies on a sequence of queries for getting the trust infor-

mation about a peer A and the corresponding responses. This computation must be performed

recursively because a response returned from another peer B results in a query about the trust-

worthiness of B. In addition, this trust computation needs the reception of all information in the

right order since the cut-off may rely on that order. Such recursive call-backs can be viewed as

a sequence of well-formed parentheses if a query call is replaced by a left parenthesis and the

corresponding response by a right parenthesis. Therefore, the set of sequences describing these

recursive call-backs is a Dyck-Language2. It is a well-known result from the formal language

1We note that reputation computation presents a particular case of information dissemination and can be per-
formed using Gossip protocol presented in Section 2.2.4.

2The Dyck-Language D is the subset of {x, y}∗ such that if x is replaced by a left parenthesis and y by a right
parenthesis, then we obtain sequence of properly nested parentheses [Stanley, 2001].
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2.2 Motivations and problem statements

theory that a Dyck-Language is not a regular language [Stanley, 2001]. Thus, no Finite-State

Automaton exists that accepts a Dyck-Language.

The kind of recursive call-backs presented above, which has a properly nested structure, can

be well defined in terms of context-free languages or Pushdown Automata (discussed in Section

4.1). However, it is frequently the case that P2P protocols present more complex recursive call-

backs which give rise to context-sensitive structures, e.g., interactive structures that adjust their

behavior when the context changes. Consider, for example, the case where four neighboring

nodes exchange information according to an interaction that corresponds to two interleaved

recursive call-backs. Such kind of interaction (anbmcndm) is context-sensitive and cannot be

described by context-free languages [Aho et al., 1986].

Referring to the research work on Attribute Grammars [Parigot et al., 1996] which are

context-sensitive languages, the recursive behavior of P2P applications can be captured by

describing both control and data flow of each interaction. In addition, this behavior can be ana-

lyzed using DFA techniques. Furthermore, the Chomsky hierarchy of languages [Chomsky, 1956]

ensures the following strict inclusions:

type-3 ( type-2 ( type-1 ( type-0

with:

type-3: Regular languages (recognized by Finite-State Automaton).

type-2: Context-free languages (recognized by Pushdown Automaton).

type-1: Context-sensitive languages (recognized by non-deterministic Turing machine).

type-0: Recursively enumerable languages (recognized by Turing machine).

2.2.2 Towards Data-Flow Analysis of P2P applications

2.2.2.1 Model checking and the specificity of P2P applications

Model checking is an automated technique that, given a finite-state model of a system and a for-

mal property, systematically checks whether this property holds for (a given state in) that model
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Chapter 2 : Introduction – in english

[Baier and Katoen, 2008]. It explores all possible states of the system in an exhaustive manner.

Model checking has been successfully applied to a wide range of systems such as embedded

systems, hardware design and software engineering. Unfortunately, not all systems can take

advantage of its power. One reason for this is that some systems cannot be described as a finite-

state model. In particular, in the context of P2P applications (as explained above). Another rea-

son is that model checking is not suited for data-intensive applications (which, in many cases,

are developed using the P2P paradigm cf. e.g., [Lee et al., 2007] [Ranganathan et al., 2002]).

The recent book on model checking [Baier and Katoen, 2008] clearly shows why the verifica-

tion of data-intensive applications is extremely hard. Even if there are only a small number of

data, the state space that must be analyzed may be very large. The authors even consider that

this is one of the first weaknesses:

“The weaknesses of model checking:

• It is mainly appropriate to control-intensive applications and less suited for data-intensive

applications as data typically ranges over infinite domains.

• Its applicability is subject to decidability issues; for infinite-state systems, or reasoning

about abstract data types (which requires undecidable or semi-decidable logics), model

checking is in general not effectively computable.

• ... ”

2.2.2.2 Verification by Data-Flow Analysis

Data-flow analysis refers to a body of techniques, which derive information about the flow of

data along software system execution paths [Aho et al., 2006]. The execution of a system can

be viewed as a series of transformations of the system state, which consists of the values of all

the data in the system. Each execution of an intermediate statement transforms an input state to

an output state. We denote these data-flow values before and after a statement s by INPUTS[s]

and OUTPUTS[s], respectively.

To analyze the behavior of a system, we must consider all the possible paths (i.e., sequences

of system states) through a flow graph that the system execution can take. Thus, solving a

problem in data-flow analysis is reduced to find a solution to a set of constraints (called Data-
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2.2 Motivations and problem statements

Flow Equations) on the INPUTS[s] and OUTPUTS[s], for all system statements s. There exist

two sets of constraints:

• Semantic constraints: they define the relationship between INPUTS[s] and OUTPUTS[s]

of each statement s. This relationship is usually presented as a transfer method f that takes

the INPUTS[s] before the statement and produces OUTPUTS[s] after the statement. That

is, OUTPUTS[s] = fs(INPUTS[s]).

• Control-flow constraints: If a system consists of statements sl, s2, ..., sn, in that order,

therefore, the control-flow value out of si is the same as the one into si+l. That is,

INPUTS[si+l] = OUTPUTS[si], for all i = 1, 2, ..., n − 1.

For example, to verify a property such as liveness of data that determines whether a datum

is used in the future along some path in the flow graph, we shall set up the constraints for live-

ness of data (i.e., define the data-flow equations specifying that a datum d is live at a system

point p if some path from p to its end contains a use of d). These equations can be solved using

an iterative algorithm form a fixed-point solution. The convergence of the algorithm is assured

by the theory of iterative data-flow analysis [Kam and Ullman, 1976], which demonstrates that

a unique fixed point exists for these equations. Liveness information can be very useful. For

instance, if the result of a datum assignment in a software system is not used along any sub-

sequent execution path, then the assignment is considered as dead code that we can eliminate.

In Section 6.3.2, we provide an other example (detection of dominance) that illustrates in more

details the principles of data-flow analysis.

A broad range of other system properties can be computed at this level of data abstraction,

including some properties like safety and liveness that model checking cannot compute for

infinite state systems (cf. e.g., [Govindarajan et al., 1992]). In addition, several algorithms

have been proposed in literature to compute these properties. Unfortunately, to date, the most

dominant application of these algorithms, and more generally, Data-Flow Analysis, is in the

context of compiler construction. In particular, for Attribute Grammar formalism, which is

used to describe the semantic analysis in most compilers.

Our motivation in this context is to use the well-understood methods and techniques from

the field of AGs and DFA in order to construct an abstract representation for P2P applications

45

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



Chapter 2 : Introduction – in english

and then perform data-flow analyzes on it.

2.2.3 Exploring data-centric approach for component-based systems

Component-based Software Engineering (CBSE) [Szyperski, 1998] became increasingly im-

portant in software engineering. This emerges from the need to use CBSE concepts to imple-

ment services and raise the level of abstraction by easing packaging, reusing, extending, cus-

tomizing and composing services [Yang and Papazoglou, 2004]. Thus, services can be encap-

sulated and their interfaces can be exposed into cohesive components to assist in the creation of

new applications. Hence, component-based approach yields promising benefits such as service

composition, reusability and adaptation. However, the data manipulated by services to produce

actionable results and which drive component interactions are considered as an afterthought.

Whereas, the data are incorporated as an important part of the development of systems in sev-

eral research areas such as Grid Computing, Business Intelligence and P2P systems. Recently,

in the emerging Cloud Computing area, where everything is as a service, data management has

been receiving significant excitement and attention [Abadi, 2009], and this can only increase.

Our motivation in this context is to investigate the applicability of the data management for

software component systems by allowing run-time data to be specified, viewed and analyzed,

especially in P2P environments. While many of the current component approaches emphasize

the structural and functional aspects of component composition, we insist on modeling of flow

and dependencies of run-time data because the interactions between components are due to

exchanged data. Thus, it is our belief that data must be considered to be an integral part of

design and behavior specifications of component-based systems.

2.2.4 Illustrative example: specifying Gossip protocol

In order to motivate and illustrate that our approach is useful, especially in the context of P2P

applications, we explain our dependency formalism in an example that consists of a Gossip

protocol [Voulgaris et al., 2005, Jelasity et al., 2007]. Gossip protocol, also called epidemic

protocol, is well-known in the community of P2P. It is mainly used to ensure a reliable in-

formation dissemination in a distributed system in a manner closely similar to the spread of
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2.2 Motivations and problem statements

epidemics in a biological community. This kind of dissemination is a common behavior of var-

ious P2P applications, and according to [Jelasity, 2011], a large number of distributed protocols

can be reduced to Gossip protocol. There exist different variants of Gossip protocol. However,

a template that covers a considerable number of those variants has been presented by Jelasity

in [Jelasity, 2011]. In our example, we will rely on this template shown in Algorithm 2.

Algorithm 2 The gossip algorithm skeleton (from [Jelasity, 2011])

loop
timeout(T)
node← selectNode()
send gossip(state) to node

end
procedure onPushAnswer(msg)

send answer(state) to msg.sender
state← update(state,msg.state)

end
procedure onPullAnswer(msg)

state← update(state,msg.state)
end

To model this Gossip protocol, we consider a set of nodes, which get activated in each T

time units exactly once and then spread data in a network by exchanging messages. Basically,

when a node receives data, it responds to the sender and propagates the data to another node in

the network (in practice, the data are propagated to a subset of nodes selected according to a

specific algorithm). In terms of service, a node is a component that has two activities: serving

and consuming data. There are two input services for the serving activity and two output ser-

vices for the consuming activity. These services are described in the node interface as follows:

({answer(resp : String), gossip(info : String)}in,
{gossip(info : String), answer(resp : String)}out)

The gossip service is for the propagation of data and the answer service is for sending a

response to the sender. The behavior of input services (serving activity) just mirrors the same

steps of the output services (consuming activity). From this description of services, we can

construct intuitively a simple dependency graph between services, i.e., output services of a

nodex are connected to input services of nodey, and so on. This graph represents a part of

the control flow but it is not very explicit about the data flow. In fact, we do not know the

47

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



Chapter 2 : Introduction – in english

dependencies between services and between data within a node.

To complete this interface with a description of both control and data flow, our formalism

specifies the behavior with a set of rules:

r1 : timeout(T) → (gossip(statex), nodey)
r2 : (gossip(statey), nodey), [onPush] → (answer(statex), nodey)
r3 : (gossip(statey), nodey), [onPull] →

r4 : (answer(statey), nodey) →

where, r1 indicates that the internal service timeout activates the nodex in each T time and

then sends the data statex to nodey through the service gossip. r2 indicates that the nodex

receives the data statey from nodey and then responses by sending the data statex through the

service answer if the condition onPush is satisfied. onPush is a guard condition (to keep things

simple, we will ignore guard conditions in this example). r3 indicates that the nodex receives

the data statey from nodey through the service gossip. r4 indicates that the nodex receives the

data statey from nodey through the service answer.

By introducing these rules, the system can be viewed as a set of components where each

component has inputs (left side of the rules) and outputs (right side of the rules). The inputs

receive data carried by services, and after computation, these data can be sent through out-

puts. Therefore, we can extract a Data-Dependency Graph of the whole system by connecting

together the partial data dependency graphs corresponding to each component used in this sys-

tem.

2.2.5 Needs for component and service-oriented P2P runtime

There exist interesting technologies developed in the P2P context. However, most of these

technologies are not well exploited in application development process due to the limitations

of specification approaches used for P2P applications. One of these limitations is the tight

coupling between application specification and the underlying P2P technologies and protocols.

This forces software developers to make tedious efforts in finding and understanding detailed

knowledge about P2P low level concerns. Moreover, this tight coupling constraints applications

to run in a changeless runtime environment. Consequently, choosing (for example) another
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2.2 Motivations and problem statements

protocol at runtime to meet a new requirement becomes very difficult. Besides these previous

issues, P2P applications are usually specified with a weak ability to delegate computing activi-

ties between peers, and especially focus on data sharing and storage. Thus, it is not able to take

full advantages of the computing power of the underlying P2P network.

Service-Oriented Architecture (SOA) is an approach for designing and architecting loosely

coupled applications with services requested and consumed on demand. The main purpose

of SOA is to provide a flexible model of integration (by reducing dependencies) as well as a

higher level of abstraction (through encapsulations of details). Thus, the ability to align appli-

cations with new business requirements increases. In the literature, SOA are usually coupled

with CBSE principles to propose component-based service middlewares. However, most of

them are not adapted to P2P applications. One reason for this is that they rely on centralized

service registries/brokers. Such centralized element in a SOA might cause a bottleneck and

central point of failure. Thing that introduces reliability risks and limits application scalabil-

ity. Another reason is that they are based on communication protocols which are inadequate in

P2P environment. For instance, P2P systems are not forced to operate using a Domain Name

Service (DNS) because the peers might not have a permanent IP address.

In this thesis, we present SON middleware. It extends the principles of service-oriented

architecture as well as component-based development to support building applications within a

P2P architecture in an effortless and effective way.

SON middleware assists application developers by providing an automatic code generation

which handles several runtime requirements (e.g., communication mechanisms, message queue

management, broadcasting messages, etc.). In fact, SON’s user implements only the business

code corresponding to the declared services. Afterwards, a code generation tool generates the

corresponding components and their associated containers. The component container embodies

all resources needed to adapt the implementation code to the P2P runtime environment.

SON can be considered as a generic lightweight P2P middleware (with the necessary set of

operations that must be present to develop component and service-based P2P applications)

for the following reason. Since, in most cases, the challenges of P2P systems can be re-

duced to a single problem: “How do you find any given data item in a large P2P system in
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a scalable manner, without any centralized servers or hierarchy?” [Balakrishnan et al., 2003],

SON has been unified the notion of publish/subscribe: it uses a DHT (Distributed Hash Table)

[Rhea et al., 2004] not only to publish and subscribe data, but also to enable dynamic service

publication, discovery, and deployment.

2.3 Contributions

The work of this thesis features four major parts of contributions. Before giving a summary of

each part in the last four subsections, we present first key ideas that underlie those parts.

2.3.1 Key ideas in our contributions

Pay attention to dependencies: Any software specification that is expressed in a language

contains some kind of dependencies between data and between the steps of the spec-

ification. Software developers generally pay little attention to these dependencies, in

particular, to “non-direct” dependencies that they can be very hard to identify without a

computer analysis. In many cases, managing dependencies leads to direct improvement

in the application’s running time. For example, reducing the number of dependencies

may help to perform several optimizations (e.g., in execution time or memory usage).

Separate what is computed from how it is computed: Roughly speaking, there are three times

at which dependencies can be detected and adjusted: when software is specified, when it

is compiled, and when it is executed. In our case, we are interested in dependencies at the

specification level and we have chosen to separate, as far as possible, what is computed

from how it is computed. The advantage of this choice comes from the fact that not only

one but multiple implementations of the specification can be synthesized by analyzing

data dependencies (e.g., evaluating data in incremental, partial, or parallel way).

Avoid the stress of dealing with low level complexity One of the main challenging issues in

P2P application development is the need to understand low level protocols. Although

low level protocols use various schemes, data structures and algorithms, the underlying

purpose remains the same: find a given data within a P2P network in a scalable and
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consistent manner. In many cases, other non-functional requirements are also taken in

charge by the protocols. Consequently, their complexity increases, which makes them

difficult to comprehend and use by non-specialist software developers. Software devel-

opers should have the choice to build their applications within a P2P architecture without

the stress of dealing with P2P low level complexity. As such, we believe that abstrac-

tion is a solution to simplify the development of P2P applications. The low level details

should be abstracted into clear and easy to understand model.

2.3.2 DDF: A formal language for component-based P2P applications

DDF (Data Dependency Formalism) is used as an underlying formalism for the work presented

in this thesis. It has been developed to formally describe component-based P2P applications

and their recursive behavior. This kind of behavior is very frequent in the context of P2P

and many modeling approaches cannot describe it, as explained in Section 2.2.1. DDF has

been also developed to construct an abstract representation (i.e., Data-Dependency Graph).

This abstraction exposes the right level of detail to perform data-flow analyzes. With DDF, a

P2P application is specified as an overlay network between peers. Peers are represented by

component instances. Each component instance acts both as a server (with its input services)

and a client (with its output services). Each instance is connected to a bounded number of

other instances. As the network evolves, instances can continuously seek after new partners

through a specific protocol such as Gossiping (cf. Section 5.2). We assume the existence

of an underlying layer (SON infrastructure in our case) that provides to component instances

the necessary storage and communication mechanisms. These assumptions allow us to make

only very weak networking issues at the high level description and defer the additional ones

to the lowest level where they are needed. Thus, we provide a simple specification that can be

implemented in different environments with different low level assumptions.

2.3.3 Analysis of DDF specification with data-flow principles

The first step of this analysis is to construct a Data-Dependency Graph (DDG) from a DDF

specification. After that, verifying a property is reduced to find a solution to a set of constraints
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(called data-flow equations) on the inputs and the outputs of the graph nodes representing data.

In this thesis, we illustrate that through two examples. The first example consists of checking

the property of deadlock freedom which is reduced to find whether a node in the graph depends

on itself. The second example is about dominance property that has many applications in

computer science (code optimization, detection of parallelism, construct of hierarchical overlay

networks, etc.). To compute dominance information in a DDG, we formulate the problem as a

set of data-flow equations that defines a set of dominators for each graph node. These equations

are solved with an iterative algorithm.

2.3.4 SON: A component- and service-oriented P2P middleware

By using SON (Shared-data Overlay Network) middleware, the user is able not only to exe-

cute applications in component- and service-oriented model, but also to perform an effective

code generation to support P2P runtime requirement. Thus, software developers are assisted

and have greater ease in application development stage. These facilities allow them to focus

more on the business logic and defer to SON the management of the runtime (e.g., communica-

tion mechanisms, instantiation and connection of components, service discovery, etc.). In fact,

SON’s user defines for each component a set of services (input, internal and output). Then,

he only implements the code of the component, i.e., the methods that implement the defined

services. Afterwards, a code generation tool, called Component Generator, generates the com-

ponent container that embodies all resources needed to adapt the implementation code to the

P2P runtime environment.

2.3.5 Evaluation of SON in the STAMP project

STAMP (modelling dynamic landscapes with Spatial, Temporal And Multi-scale Primitives)

is a research project supported (in part) by the Agence Nationale de la Recherche (ANR) and

coordinated by Danny Lo Seen (from CIRAD, a French research centre working with develop-

ing countries to tackle international agricultural and development issues). Within the STAMP

project, we have contributed in two main ways. First, we have participated to the design and the

specification of an environmental modelling language called Ocelet, which has been the main
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result of this project. Second, we have defined for Ocelet a component and service-oriented

runtime based on SON infrastructure. The evaluation of SON in this context consists of imple-

menting application scenarios from the area of modelling environmental landscapes and their

dynamics. The objective is to show, how SON (i.e., especially the dynamic availability of ser-

vices in a service-oriented runtime) is able to improve and enhance the effectiveness of such

environmental dynamic applications.

2.4 Thesis outline

This thesis is organized as follows. In Chapters 3 and 4, we present some background concepts

and the state-of-the-art. In Chapter 5, the DDF formalism is introduced and illustrated through

the case-study Gossip protocol. In Chapter 6, we present how Data-Flow Analysis techniques

can be used to analyze applications specified with our DDF. We illustrated that through two

examples: deadlock and dominance detection. In Chapter 7, we describe the fundamental

concepts of SON middleware. Besides the conceptual issues, the chapter presents a summary

of the two prototypes: SGT (Simple Georeferencing Tool) which is a lightweight application

dedicated to collect, process and display georeferenced data, and P2Prec (a social based P2P

recommendation system) which is developed in our research team for large-scale data sharing.

Chapter 8 aims at presenting the results of the evaluation of the SON in the context of STAMP

project. The evaluation consists of implementing application scenarios from the area of mod-

elling environmental landscapes and their dynamics. Two application scenarios are presented:

Lotka-Volterra that simulates the evolution of a predator-prey model, and Rift Valley Fever that

presents a land-scape modelling experiment on the spread of a mosquito-borne disease in an

arid area in West Africa. Finally, Chapter 9 concludes and presents future work.
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Chapter 3

Paradigms and concepts
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Before engaging in a discussion of existing related approaches (presented in the next chap-

ter), we aim here to familiarize the reader with some concepts from the field of software engi-

neering that are needed to comprehend the work presented in this thesis. These concepts are

presented in three sections. Section 3.1 defines the concept of a software component and gives

the principles of component-based development. It also presents the main characteristics of

some industrial and academic component models. Section 3.2 introduces Service-Oriented Ar-

chitecture (SOA), and presents its characteristics and its design principles. Finally, Section 3.3

gives an overview of Peer-to-Peer (P2P) architecture and presents some of its related designs

(i.e., centralized, decentralized and hybrid).
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Chapter 3 : Paradigms and concepts

3.1 Component orientation

3.1.1 What is a component?

In its most general sense, a software component is an independently deliverable package of

reusable software services [Kaisler, 2005]. In the computer science literature, the term “com-

ponent” has many definitions. Here are a few commonly accepted ones:

- A component is a non-trivial, nearly-independent, and replaceable part of a system

that fulfills a clear function in the context of a well-defined architecture. A component

conforms to and provides the physical realization of a set of interfaces. [Kruchten, 1998]

- A software component is a unit of composition with contractually specified interfaces

and explicit context dependencies only. A software component can be deployed indepen-

dently and is subject to third-party composition. [Szyperski, 2002]

- A software component is a piece of self-contained, self-deployable computer code with

well-defined functionality and can be assembled with other components through its in-

terface. [Wang and Qian, 2005]

Kruchten suggests that, first, a component is non-trivial; it is functionally and conceptually

larger than a single class or a single line of code. Typically, a component encompasses the

structure and behavior of a collaboration of classes. Second, a component is nearly independent

of other components because it rarely stands alone. A given component collaborates with other

components and in so doing assumes a specific architectural context. Third, a component

is substitutable for any other component which realizes the same interfaces. This aspect helps

during development, where parts of a system can be stubbed, sketched, then replaced by mature,

robust implementations. Fourth, a component fulfills a clear function. A component is logically

and physically cohesive, and thus denotes a meaningful structural and/or behavioral chunk of a

larger system. It is not just some arbitrary grouping. Fifth, a component exists in the context of

a well-defined architecture. A component represents a fundamental building block upon which

systems can be designed and composed. Finally, a component conforms to a set of interfaces.

Thus, it may be substituted in any context wherein that interfaces apply.
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3.1 Component orientation

Szyperski suggests1 that a component has a technical part, with aspects such as indepen-

dence, contractual interfaces, and composition. It also has a market-related part, with aspects

such as third parties and deployment. This definition has several implications. For a compo-

nent to be composable with other components, it needs to be sufficiently self-contained. Also,

it needs to come with clear specifications of what it requires and provides. In other words, a

component needs to encapsulate its implementation and interact with its environment by means

of well-defined interfaces. For a component to be independently deployable, it needs to be well

separated from its environment and other components. A component, therefore, encapsulates

its constituent features. Also, as it is a unit of deployment, a component will never be deployed

partially. In this context, a third party is one that cannot be expected to have access to the

construction details of all the components involved.

Wang and Qian suggest that a component is a program or a collection of programs that can

be compiled and made executable. It is self-contained; thus, it provides coherent functionality.

It is self-deployable so that it can be installed and executed in an end user’s environment. It can

be assembled with other components so that it can be reused as a unit in various contexts. The

integration is through a component’s interface, which means that the internal implementation

of a component is usually hidden from the user. This definition differs from the previous ones

by the fact that it has been proposed to embrace a wide range of industrial component-based

approaches. Component approaches complying with it include JavaBeans and Enterprise Java

Beans (EJB) from Sun Microsystems (bought by Oracle), COM (Component Object Model),

DCOM (Distributed Component Object Model), and .NET components from Microsoft, and

CORBA (Common Object Request Broker Architecture) components from the Object Man-

agement Group.

3.1.2 Component-Based Software Development (CBSD)

Component-Based Software Development (CBSD) is also called component-based software

engineering (CBSE). Its main purpose is to break monolithic applications into reusable units

1Szyperski’s definition was first formulated at the 1996 European Conference on Object-Oriented Program-
ming (ECOOP) as one outcome of the Workshop on Component-Oriented Programming (Szyperski and Pfister,
1997).
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Chapter 3 : Paradigms and concepts

(components) that can be implemented, distributed, and upgraded independently [Kaisler, 2005].

To achieve this, we need mechanisms for interoperability between components. Once compo-

nents can interoperate, we can combine them to develop larger and more complex applications

in incremental way. Thus, CBSD improves software developers’ productivity and application

quality.

As suggested in [Leeb, 1996], component-based development has at least two key advan-

tages over traditional Object-Oriented Programming (OOP). First, components interoperate at

runtime. Therefore, they can be dynamically integrated in an application. Second, component

interface are separated from the implementation. Thus, it is possible to implement and update

components independently. To implement the code of a component, only the interface of that

component is needed.

At the implementation level, applications are generally sets of modules written in one or

more programming languages. Such modules come under various names (methods, procedures,

objects, packages, etc.), but they can all be seen as abstractions for components. However, they

are not sufficient to meet the goal of component-based development. One reason for this is

that the programming languages used to develop these modules only support a small set of

basic interconnection mechanisms (e.g., method invocation or shared global variables). The

programmer is then constrained to include additional functionalities to reduce dependencies

among application modules.

3.1.3 Component models

A component model consists of a set of rules to be followed in component development and

deployment [Jaffar-ur Rehman et al., 2007]. These rules might concern the way in which the

interfaces should be implemented, the component that must be packaged, and the documents

to be filled out to provide additional information on the component itself. Many different

component models have been defined and they can be put in two large groups: industrial group

and academic group. In the following sections, we briefly present three component models

that lead the scene in each group. More discussions about other academic ones related to our

approach can be found in the next chapter.
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3.1 Component orientation

3.1.3.1 Academic models

SOFA 2.0 [Bures et al., 2006] is a typical academic component model. It uses hierarchical

components that can be either primitives or composites. It is a successor of the SOFA

component model [Plásil et al., 1998], which has the following features: ADL-based de-

sign, behavior specification using behavior protocols, generated connectors supporting

distribution of applications, and a runtime environment with dynamic update of compo-

nents. In SOFA 2.0, a component is primarily seen as a black-box. It has a well-defined

interfaces and exists at design, deployment, and run time. Components are defined by

their frame and architecture. A frame enables to define a component via interfaces, while

an architecture implements at least one frame and specifies internal structure of the com-

ponent (its subcomponents and their composition). The specification is separated from

the implementation by using meta-model. The semantics of component composition is

defined trough Extended Behavior Protocols (EPB). Finally, deployment-related features

are specified separately in a deployment plan.

FRACTAL [Bruneton et al., 2006] is a general component model that is dedicated to imple-

ment, deploy, and manage software systems, in particular, operating systems and mid-

dleware. The main features of FRACTAL are the following: composite components

(that contain sub-components), in order to have various levels of abstraction; shared

components, in order to model and share resources while maintaining component en-

capsulation; Introspection capabilities, in order to control the execution of a system;

and re-configuration capabilities, in order to dynamically deploy and configure a sys-

tem. A FRACTAL component can be understood as being composed of a membrane that

supports interfaces to introspect and reconfigure its internal features, and a content that

consists of a set of other components. The membrane of a component can have external

and internal interfaces and is typically composed of several controllers (that usually play

the role of interceptors). In addition to component nesting, FRACTAL provides bindings

mechanisms to define the architecture of an application. Communication between com-

ponents is only possible if their interfaces are bound. FRACTAL supports two kinds of

binding: primitive and composite. A primitive binding is a binding between a client inter-

face and a server interface in the same address space (i.e., it can be implemented by direct

61

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



Chapter 3 : Paradigms and concepts

language references). A composite binding is a communication path between a certain

number of component interfaces. This allows to construct a distributed configuration of

FRACTAL components.

JAVA/A [Baumeister et al., 2006] is a programming language that forms an instance for a Java-

based architectural programming. JAVA/A integrates architectural notions into Java, and

provides an abstract component model. In contrast to interface-based component ap-

proaches, the primary distinguishing characteristic of JAVA/A component model is the

consistent use of ports as explicit architectural modelling elements [Knapp et al., 2008].

Ports allow application designers to segment the communication interface of components

and thus the representation of different views (faces) to other components. In addition,

ports are equipped with behavioral protocols to regulate message exchange according

to the desired viewpoint. Furthermore, the fact to strongly encapsulate behaviors com-

municating through ports fosters modular verification, which is one of the aims of the

JAVA/A approach. Another important aim of the JAVA/A is the representation of soft-

ware architecture entities in a programming language. JAVA/A then extends Java by

introducing keywords: port, required, provided, simple and composite component, and

assembly, and including port protocol descriptions as UML state machines. The JAVA/A

compiler transforms components into Java code that can be compiled to byte code using

a Java compiler. The generated Java classes are integrated into the JAVA/A component

framework, which provides operations that are common to all JAVA/A components (like

reconfiguration support).

3.1.3.2 Industrial models

Enterprise JavaBeans (EJB) [Panda et al., 2007] is an architecture that defines a program-

ming model for developing server-side Java applications. It provides an EJB container to

manage the life cycle of application components. When an EJB client requests a server

component, the container allocates a thread and submits the request to the appropriate

EJB component instance. The container manages all component resources and all in-

teractions between components and the external systems. The EJB component model

defines the structure of the component interfaces and the mechanisms through which a
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3.1 Component orientation

component interacts with its container and with other components [Gorton, 2011]. The

EJB version 1.1 defines two main types of components, called session beans and entity

beans. Session beans are generally used for executing business logic and to respond to the

clients’ requests. In a model-view-controller architecture, session beans correspond to

the controller because they embody the business logic of a three-tier architecture. There

are two types of session beans, namely stateless session beans and stateful session beans.

A stateless session bean does not maintain a conversation with calling process. This

means that it does not keep any state information related to any client that calls it. Con-

trary to a stateless session bean, a stateful session bean maintains a conversation with

calling process; therefore it keeps state information about the client that calls it. On the

other hand, entity beans are generally used for representing business data. Data objects

in an entity bean are mapped to some data items in an associated database. Entity beans

are usually accessed through session beans, which provide the business level services

to the application clients. For further reading, we refer to the online EJB specification

[Oracle, 2012] that is continuously updated.

CORBA Component Model (CCM) [OMG, 2006] [OMG, 2002] is defined by the Object Man-

agement Group (OMG), which is an open membership, not-for-profit computer industry

standards consortium. CORBA (Common Object Request Broker Architecture) has been

proposed to enables software components written in different computer languages and

running on different computers to work together. In CORBA, a component is a basic

meta-type. The component meta-type is an extension and specialization of an object

meta-type. Component types are specified in IDL (Interface Definition Language) and

represented in an Interface Repository. A component is denoted by a component refer-

ence that is represented by an object reference. A component definition is a specialization

and extension of an interface definition. Although the current CORBA specification does

not provides mechanisms to support formal semantic descriptions, component definitions

are associated with a single well-defined set of behaviors. A component type encapsu-

lates internal representation and implementation, and it is instantiated to create concrete

instances with state and identity. Although the specification of components includes stan-

dard frameworks for implementation, these frameworks, and any assumptions that they
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Chapter 3 : Paradigms and concepts

might involve, are completely hidden from the component clients.

OSGi [The OSGi Alliance, 2012] is a general-purpose Java framework that supports the de-

ployment of extensible and downloadable applications known as bundles. OSGi-compliant

devices can download, install or remove OSGi bundles. The management of the installa-

tion and the update of bundles is dynamic and scalable in the run time. OSGi framework

provides to the bundle developer the necessary resources needed to take advantage of in-

dependence and dynamic code-loading capability in order to effortlessly develop services

that can be deployed on a large scale in small-memory devices. In OSGi, a component

is a Java class contained in a bundle. The distinguishing aspect of a component is that it

requires the following artifacts within the bundle: i) an XML document that contains the

component description; a Service-Component manifest header that names the XML doc-

uments with the component descriptions; and an implementation class which is specified

in the component description. Component configurations are activated and deactivated

under the control of SCR (Service Component Runtime - the actor that manages the

components and their life cycle.). The decisions of SCR are based on the information

specified in the component’s description. This information consists of basic information

about the component like the name, type, implemented services and references. Refer-

ences are dependencies which the component has on other services.

3.2 Service-Oriented Architecture (SOA)

3.2.1 Definition and characteristics

W3C Working Group defines Service-Oriented Architecture (SOA) as “a set of components

which can be invoked, and whose interface descriptions can be published and discovered”

[W3C, 2004]. The resources provided by these components are called services and a service

is defined as follow: “a service is an abstract resource that represents a capability of per-

forming tasks that form a coherent functionality from the point of view of providers entities

and requesters entities. To be used, a service must be realized by a concrete provider agent”

[W3C, 2004]. As illustrated in Figure 3.1, SOA relies on three actors: i) the Service Provider
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3.2 Service-Oriented Architecture (SOA)

publishes on a Service Broker the service descriptions which specify both the available service

operations and how to invoke them (e.g., network protocol that must be used for the invocation,

software components required to establish the connection, etc.); ii) the Service Broker registers

the service descriptions and references; and iii) the Service Consumer discovers the services

by running a search on the Service Broker. It then establishes a connection with the provider to

invoke the service operations.

Figure 3.1: Actors in Service-Oriented Architecture.

3.2.2 Design principles

Principles help shape every aspect of our world. We navigate ourselves through various situ-

ations and environments, guided by principles we learned from our society and from our own

experiences. In the IT world, many approaches encouraged the use of design principles so that

when you did something, you would “do it right” on a consistent basis. Often, though, their

use was optional or just recommended. They were viewed more as guidelines than standards,

providing advice that we could choose to follow. When moving toward a service-oriented

architecture, principles take on renewed importance primarily because the stakes are higher.

Instead of concentrating on the delivery of individual application environments, we usually

have a grand scheme in mind that involves a good part of the enterprise. A “do it right the first

time” attitude has therefore never been more appropriate [Erl, 2007].

To achieve this, Erl proposes in its book [Erl, 2007] eight SOA design principles: service

contracts, service coupling, service abstraction, service reusability, service autonomy, service

statelessness, service discoverability and service composability. In the following paragraphs,

we give a brief explanation (extracted from Erl’s book) for each of these design principles.
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Chapter 3 : Paradigms and concepts

Service contract. As with many terms in the IT industry, “contract” is one that can have dif-

ferent meanings when associated with automation solutions. For example, it is relatively

common to view a contract as the equivalent of a technical interface. When it comes to

services within SOA, we have a slightly broader definition. A contract for a service (or

a service contract) establishes the terms of engagement, providing technical constraints

and requirements as well as any semantic information the service owner wishes to make

public. A service contract is always comprised of one or more technical service descrip-

tions designed for runtime consumption, but there are also cases when non-technical

documents are required to supplement the technical details. Both are considered valid

parts of the overall contract.

Loose coupling. Any part of an automation environment that’s separable has the potential (and

usually the need) to be coupled to something else for the sake of imparting its value. The

root of the term (couple) itself implies that two of something exist and have a relation-

ship. The most common way of explaining coupling is to compare it to dependency. A

measure of coupling between two things is equivalent to the level of dependency that ex-

ists between them. In SOA, we emphasize the reduction (“loosening”) of dependencies

(“coupling”) between the parts of a service-oriented solution, especially when compared

to how applications have traditionally been designed. Specifically, loose coupling in SOA

is advocated between a service contract and its consumers and between a service contract

and its underlying implementation.

Service abstraction. We can only assess and judge the value of something for which informa-

tion is made available to us. What we publish about a service communicates its purpose

and capabilities and provides details to potential consumers about how it can be program-

matically invoked and engaged. The information we don’t publish about a service pro-

tects the integrity of the coupling formed between it and its future consumers. By keeping

specific details hidden, we allow the service logic and its implementation to evolve over

time while continuing to fulfill its obligations in relation to what was originally published

in its contract. Service abstraction therefore raises post-implementation, organizational

issues (such as access control) that can also be part of a governance methodology. How-

ever, because it directly affects the service design process and specifically influences
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3.2 Service-Oriented Architecture (SOA)

design-time decision points as to what should be published in the official service con-

tract, it is very much part of the service design stage as well.

Service reusability. There is perhaps no principle more fundamental to achieving the goals of

service-oriented computing than that of reusability. It can even be argued that several

of the other principles would not exist if the service-orientation paradigm did not place

such a core emphasis on fostering reuse. In theory, reuse is a pretty straight-forward

idea: simply make a software program useful for more than just one single purpose. The

reasons for doing so are also quite evident. Whereas something that is useful for a single

purpose will provide value, something that is repeatedly useful will provide repeated

value and is therefore a more attractive investment. The rationale is logical, but it also

brings to light the difference between something that is simple and something that is easy.

Reuse is a simple concept, but history has taught us that achieving reuse is not easy.

Service autonomy. Autonomy represents the ability to self-govern. Something that is au-

tonomous has the freedom and control to make its own decisions without the need for

external approval or involvement. Therefore, the level to which something is autonomous

represents the extent to which it is able to act independently. If a software program exists

in an autonomous runtime state, it is capable of carrying out its logic independently from

outside influences. It therefore must have the control to govern itself at runtime. The

more control the program has over its runtime execution environment, the more auton-

omy it can claim. Hence, for services to provide a consistently reliable and predictable

level of performance as members of a service inventory and as members of complex

compositions, they must exist as self-sufficient parts, i.e., possess a significant degree of

control over their underlying resources.

Service statelessness. A good indication that the design of an agnostic service was successful

is when it is reused and recomposed on a regular basis. This outcome emphasizes the

need to optimize the service processing logic so as to support the requirements of multiple

consumer programs while the service itself consumes as little resources as possible. As

the complexity of service compositions increases, so does the quantity of activity-specific

data that needs to be managed and retained throughout the lifespan of the composition.
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Chapter 3 : Paradigms and concepts

Services required to process and hold this data while waiting for other services in the

composition to carry out their logic can tax the overall infrastructure. This is especially

the case when numerous instances of those services need to exist concurrently, further

compounding the drain on system resources. To maximize service scalability and to

make the most of whatever performance thresholds service inventories are required to

work within, services and their surrounding architecture can be designed to support the

delegation and deferral of state management responsibilities. This result in a service

design streamlined by leveraging a condition called statelessness.

Service discoverability. The concepts behind discovery are quite straight-forward. From an

architectural perspective, it is often desirable for individual units of solution logic to be

easily located. The process of searching for and finding solution logic within a specified

environment is referred to as discovery. A key aspect of discovery is that you may or

may not have been aware of the logic’s existence before you discovered it. By discover-

ing that something you want to build already exists, you avoid creating redundant logic.

By discovering that something you want to build does not yet exist, you can safely de-

fine the scope of your development effort. Discovery is often classified as an extension

of infrastructure and therefore associated with application architecture. For something

within the application to be discoverable, it needs to be equipped with meta-information

that will allow it to be included within the scope of discovery searches. An architectural

component that can adequately be discovered is considered to have a measure of discov-

erability. In term of service, discoverability information is essentially a combination of

the content in a service contract and meta-data in the corresponding service broker.

Service composability. If something is decomposed, it can be recomposed. In fact, composi-

tion is usually the reason something is decomposed in the first place. We break a larger

thing apart because we see potential benefit in being able to do things with the individual

pieces that we would not have the freedom to do were they to exist as just a whole. Apply-

ing this approach establishes an environment where solution logic exists as composable

units. As a result, there is the constant opportunity to recompose the same solution logic

in order to solve new problems. When we apply this rationale to the world of automation,

the implications become pretty clear. Why build one large program that can only perform
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3.3 Peer-to-Peer (P2P) architecture

a fixed set of functions, when we can decompose that program into smaller programs that

can be combined in creative ways to provide a variety of functions for different purposes?

This is the basis of the separation of concerns theory supported in SOA through service

composition principle.

3.3 Peer-to-Peer (P2P) architecture

3.3.1 What is Peer-to-Peer?

Originally, the term peer-to-peer was used to describe the communication between two peers

and is analogous to a telephone conversation. A conversation through a telephone involves

two people (peers) which have equal status, communication between a point-to-point connec-

tion. Simply, this is what P2P is, a point-to-point connection between two equal participants

[Taylor and Harrison, 2004].

Historically, the Internet started as instances of P2P systems. Its challenge was to establish

connections among distributed machines using different network protocols and within a com-

mon network architecture. The first hosts on this network were some US universities, which had

independent computing sites connected with equal status, not in client/server or master/slave

relationship. From the beginning of the Internet until mid-nighties, internet network had one

model of connectivity. This model assumed that machines are always switched on and con-

nected with permanent IP addresses. However, with the development of the first global web

browser called Mosaic and the invention of the dial-up modem, a new model of connectivity

began to emerge because users would enter and leave the Internet frequently and unpredictably.

Therefore, the DNS system has been evolved to support assigning IP addresses dynamically.

Over time though and the improvement of software and hardware technologies, P2P has be-

gun to emerge as a class of applications that takes advantage of the second internet connectivity

model. This class of applications started by exploiting unused resources in the network such as

storage space, communication edges and available processors. Among the first proposed appli-

cations, we find Napster [Napster, 2012] launched in 1999, Gnutella [Gnutella, 2012] launched

in 2000, and Freenet [Freenet, 2012] launched in 2001. They were especially dedicated to
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Chapter 3 : Paradigms and concepts

file sharing—users wanted to find certain files (e.g., music or video files) in the Internet net-

work and download them as soon as possible. Actually, P2P applications are not limited to

file sharing and are developed for various concerns like voice over IP, instant messaging, video

streaming and anonymous web browsing. Although these P2P applications relay on the same

P2P principles, they have been developed in different P2P architecture designs that we describe

in the next subsection.

3.3.2 Architecture designs

As presented by the IEEE Standards Association "architecture is defined by the recommended

practice as the fundamental organization of a system, embodied in its components, their re-

lationships to each other and the environment, and the principles governing its design and

evolution" [IEEE, 2000]. From this definition, architecture captures the structure of a system

in terms of components and how they interact. It also notes that architecture has a design

and evolution principles. In the P2P context, this corresponds to how the participating peers

(components), at the application level, connect among each other, and how they need to fulfill

their obligated tasks to maintain an evolving network [Kwok, 2011]. Hence, if we change how

peers connect, interact and evolve we may obtain different P2P architectures. Based on existing

P2P systems that have been developed, we can classify possible P2P architectures into three

categories: centralized, decentralized and hybrid.

3.3.2.1 Centralised P2P systems

Although P2P is usually considered as an opposite to the centralized client-server model, the

first generation of P2P systems (e.g., Napster) relayed on centralized architecture. Nevertheless,

in contrast to traditional client-server model, the central server(s) in P2P systems only keeps

meta-information about shared content (e.g., ID or IP addresses of peers where a content is

available) and manages global tasks (e.g., deals with updates in the network and coordinates

tasks among the peers) [Liu and Antonopoulos, 2010]. However, as in decentralized system,

once a peer obtains its information and tasks, it can connect and interact directly with other

peers (without going through the central server(s) anymore).
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3.3 Peer-to-Peer (P2P) architecture

Although P2P systems based on centralized architecture are pretty efficient since the inter-

action among peers is facilitated by central server(s), such systems usually fail to scale with the

increase of participating peers. The central server(s) rapidly become the performance bottle-

neck and the existence of single point of failure prevents from using network for many potential

applications [Galuba and Girdzijauskas, 2009].

3.3.2.2 Decentralised P2P systems

Due to the drawbacks of centralized P2P systems, decentralized P2P systems emerged and are

actually widely used. They rely on any central server and their all peers have equal status,

rights and responsibilities. Each peer has only a partial view of the network and offers content

(data/services) that might be relevant to only some queries peers. Thus, locating peers offering

content quickly is a critical and challenging issue. The main advantages of such systems are:

i) they do not have a single point of failure, ii) they can enjoy high scalability, performance,

robustness, and other desirable features [Vu et al., 2010].

There are two logical network topologies (overlay) in the design of decentralized P2P sys-

tems: structured and unstructured. The difference between these two topologies lies in how

queries are being forwarded among peers.

Unstructured P2P overlay is "an overlay in which a node relies only on its adjacent nodes for

delivery of messages to other nodes in the overlay. Example message propagation strate-

gies are flooding and random walk" [Buford et al., 2009]. In unstructured P2P overlays,

each node is responsible for its own content, and keeps registry of neighbors that it may

forward queries to. Due to their simplicity, such overlays are pretty robust and withstand

failures. However, they do not provide any mapping between the identifiers of contents

and those of nodes [Vu et al., 2010]. This implies that: i) finding contents is challenging

since it is difficult to predict which node maintains the queried content, ii) no guaran-

tee on the completeness is provided, unless to search in the entire network, and iii) no

guarantee on querying time is provided, except for the worst case (the entire network is

searched). Among the most famous systems built using unstructured P2P overlays, we

find Gnutella [Gnutella, 2012] and Freenet [Freenet, 2012].
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Chapter 3 : Paradigms and concepts

Structured P2P overlay is: "an overlay in which nodes cooperatively maintain routing infor-

mation about how to reach all nodes in the overlay" [Buford et al., 2009]. Compared

to unstructured ones, structured overlays provide a limited number of query messages

needed to find any content in the overlay. This is especially important when the con-

tent that we search is not popular or rarely available. To achieve this deterministic

routing, nodes are placed into a virtual address space, the overlay topology is orga-

nized into a specific geometry (e.g., ring, toruse and hypercube), and a converging dis-

tance function that maps content and node identifier is defined for the routing algorithm

[Buford and Yu, 2010]. To support these functionalities, most of the structured P2P sys-

tems rely on a Distributed Hash Table (DHT). A DHT is a particular instance of structured

P2P overlays and is defined as follow: "a DHT is a decentralized system that provides the

functionality of a hash table, i.e., insertion and retrieval of key-value pairs. Each node in

the system stores a part of the hash table. The nodes are interconnected in a structured

overlay network, which enables efficient delivery of the key lookup and key insertion re-

quests from the requestor to the node storing the key. To guarantee robustness to arrivals

and departures of nodes, the overlay network topology is maintained and the key-value

pairs are replicated to several nodes" [Galuba and Girdzijauskas, 2009]. Every DHT de-

fines its own key space. The P2P overlay uses the DHT keys for addressing its nodes.

Each node has a specific location in the key space and stores the key-value pairs that

are close to that location. The node’s routing table is initialized when the node joins the

overlay, using a specified bootstrap algorithm. Nodes periodically exchange their rout-

ing table (as part of overlay maintenance). Thus, a request can be routed to the node

that maintains the desired content accurately and quickly. However, since the placement

of content is tightly controlled, the cost of maintaining the structured topology of the

overlay might be high, especially in a very large network environment [Vu et al., 2010].

3.3.2.3 Hybrid P2P systems

Centralized P2P systems are able to provide a reliable and quick content locating. However,

the systems’ scalability is affected due to the use of central server(s). Although decentralized

P2P systems are more adapted to deal with this aspect than centralized P2P systems, they need
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3.3 Peer-to-Peer (P2P) architecture

a longer time in content locating. Thus, to maintain scalability as in decentralized P2P systems,

a hybrid design approach for P2P systems have been proposed.

The term hybrid is used in different disciplines and employed to characterize "anything

that is a mixture of two or more things" [Cambridge Academic Content Dictionary, 2008].

In the context of P2P systems, this term is used to describe an approach that combines both

centralized and decentralized architectures. Generally, hybrid P2P systems are realized using

two kinds of peers (ordinary and super peers) and/or two hierarchical tiers (the upper tier serves

the processing of the lower one) [Vu et al., 2010].

Super-peers are some peers that possess much more powerful capabilities and having more

responsibilities than other (ordinary) peers. Super-peers form an upper-level in a hybrid system

and are selected to act as servers for the ordinary peers such as in a centralized P2P system.

Thus, ordinary peers can benefit from much more services, especially in resource location

process.

Hierarchical tiers in hybrid P2P systems are often in two levels. The upper level is dedicated

to process some services for the lower level. For instance, the hybrid P2P system BestPeer

[Ng et al., 2002] has a certain number of location independent global names lookup servers

(LIGLOs) that serve as an upper level in the system. This upper level generates a unique

identifier for the peers, helps peers to dynamically recognize their neighbors, and facilitates

peers to reconfigure their neighbors with certain metrics. However, LIGLO does not provide

resource location mechanisms for the peers.

In summary, hybrid P2P systems have several advantages and desirable functionalities that

are helpful for peers to evolve into the network. For example, they can provide functionalities

to optimize network topology, improve querying time and save system resource consumption.
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Chapter 4

Discussion of related approaches

Contents
4.1 Approaches for specification and analysis . . . . . . . . . . . . . . . . . . 75

4.2 Execution in P2P architecture through middlewares . . . . . . . . . . . . 79

In this chapter, the main proposals of the scientific community related to the specification

and analysis of software systems together with the execution in P2P architecture through mid-

dlewares are collected and discussed. Section 4.1 provides an overview of the most commonly

used specification and analysis works, which are based on different approaches (like finite-state,

process algebras and data-flow approaches) and proposed in various contexts (like CBSE, net-

work protocol and database context). Section 4.2 does the same but for the most known works

that propose runtime environments in P2P architecture.

4.1 Approaches for specification and analysis

The power of the software system analysis approaches depends on the modeling technique

for the behavior of software systems. This behavior is usually modeled by Finite-State Au-

tomata (e.g., [Bures et al., 2008]). However, it may also be modeled by process algebras (e.g.,

[Allen and Garlan, 1997]), context-free languages (e.g., [Burkart and Steffen, 1992]), pushdown

processes (e.g., [Burkart and Steffen, 1994]), etc.

In the context of the component-based system, the finite state approaches usually use regular

languages to describe component behavior. However, these finite state approaches can only
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Chapter 4 : Discussion of related approaches

handle bounded recursion (i.e., up to a certain depth) and limited abstraction of the data-flow.

To address this more explicitly, we discuss hereafter some of such approaches.

There is a large body of component models using various formal and semi-formal speci-

fications in the context of component-based systems. These specifications concentrate on dif-

ferent aspects of component modeling. Due to this diversity, we refer to [Rausch et al., 2008]

which provides an interesting study of state-of-the-art in component-based systems. Among

the component models discussed in [Rausch et al., 2008], KobrA [Atkinson et al., 2008] is a

UML-based method for describing components and component-based systems. It uses differ-

ent diagrams representing three projections: structural, functional and behavioral. KobrA is

not a formal language, but rather a set of principles for using mainstream modeling language.

It provides a certain degree of flexibility because anything that conforms to its principles can in

practice be accommodated within the method. Rich Services [Demchak et al., 2008] provides

an architectural framework that reconciles the notion of service with hierarchy (systems-of-

systems). It uses message sequence charts in order to specify component behaviors. This

allows the approach to model bounded recursion. rCOS [Chen et al., 2008] is an extended the-

ory of UTP (Unifying Theories of Programming) [Hoare and Jifeng, 1998] for object-oriented

and component-based programming. UTP combines the reasoning power of predicate calculus

with the structuring power of relational algebra. In rCOS approach, each component interface

has a contract. A contract only specifies the functional behavior in terms of predicates (pre and

post conditions) and a protocol defining the acceptable traces of method calls. The behavior is

specified by a state diagram and should be accepted by FSA. The protocol is specified by a se-

quence diagram. The reasons for having these two diagrams are different. In fact, the sequence

diagram allows generating CSP processes to deal with concurrency, when the state diagram has

an operational semantics which is easier to use for verification with model checking. SOFA

[Bures et al., 2008] is a hierarchical component model. It is dedicated to the development of

distributed application with dynamic update of components. It uses behavior protocols for the

specification of interaction behavior of components. This allows to verify the system archi-

tecture independently from the implementation, and the relation of the component model and

implementation. In order to fully automate behavior verification, a tool chain is used. It consists

of behavior protocols to Promela translator and the Spin model checker. However, behavior
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4.1 Approaches for specification and analysis

protocols cannot treat behavior that cannot be specified by a regular language. Like SOFA,

Factal also uses behavior protocols to specify component behavior. Therefore, they have the

same limitation on the description of component behavior.

Since the finite state models are not providing an adequate abstraction of a system that

contains recursive call-backs, context-free model checking have been proposed. Among the

first works in this direction, we could mention [Burkart and Steffen, 1992], which presents an

algorithm that decides whether a property written in the alternation-free modal mu-calculus is

satisfied for context-free processes, i.e., for processes that are given in terms of a context-free

grammar or equivalently. In [Burkart and Steffen, 1994], pushdown processes are proposed

as a generalization of context-free processes to better support parallel composition. Push-

down processes are processes that can be (finitely) represented by means of classical Push-

down Automata. After introducing these two approaches, several models [Alur et al., 2005,

Benedikt et al., 2001, Esparza et al., 2000, Burkart and Steffen, 1997] for infinite-state systems

have been proposed especially to decrease checking complexity. But in the end, these models

are still closely related to context-free processes and pushdown processes, and usually have

the same expressiveness. In contrast to our approach, they cannot handle recursive call-backs

which gives rise to context-sensitive structures (cf. Section 2.2.1).

Process algebras such as CSP (Communicating Sequential Processes) or CCS (Calculus of

communicating systems) can be used as an alternative approach for verifying protocol confor-

mance. These algebraic approaches are more powerful than FSA and context-free grammars.

According to Milner [Milner, 1980], algebra appears to be a natural tool for expressing how

systems are built. However, in order to automate analysis, some constraints on the specification

language can be required. For instance, in [Allen and Garlan, 1997], the authors have been re-

stricted their use of the CSP notation in a way that processes will always be finite. Therefore,

the analysis of the behavior boiled down to a finite-state verification.

Compared to other works where component approach is dedicated to manipulate protocols,

Reussner [Reussner, 2002] presents the model of counter-constrained finite state machines. It

is an extension of finite state machines, specifically created to model protocols containing de-

pendencies between services due to their access to shared resources. However, Reussner does

77

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



Chapter 4 : Discussion of related approaches

not consider composition operators and does not provide an underlying discipline. Puntigam

[Puntigam, 2003] shows that it is possible to develop component interfaces specifying non-

regular protocols for the communication between components and the rest of a system. The

concepts proposed in this paper need support from a programming language. However, no

practically usable programming language supports these concepts.

Different data-flow based approaches have been proposed in the domain of system mod-

eling. In [Garousi et al., 2005], a control-flow analysis for UML 2.0 sequence diagrams is

presented. To define the control-flow, the authors propose an extended activity diagram meta-

model. [Yang et al., 2009] presents DFA-based algorithms to analyze BPEL programs and de-

tect their data-flow anomalies. These algorithms operate on a control-flow graph derived from

Activity Object Tree (AOT). The AOT is based on Eclipse Modeling Framework to express the

relationships among activities. [Zhou and Lee, 2006] proposes a causality interface for dead-

lock analysis in a concurrent model of computation called Dataflow. It shows that deadlock is

decidable for synchronous Dataflow models with a finite number of actors. [Cain et al., 2008]

presents an approach where a meta-model of an object oriented program’s runtime is con-

structed to manage DFA. This meta-model contains classes that represent the relationship be-

tween the program elements (e.g., classes, objects and methods) in order to create an abstract

representation for DFA. Like these different approaches, we also use DFA-based algorithms

to analyze the constructed systems. However, our approach is dedicated to component-based

P2P applications. It provides a formalism to capture their specific behavior (i.e., recursive call-

backs) and constructs an abstract representation (i.e., DDG) from which we can obtain multiple

implementations of the control logic by analyzing the order of data evaluation.

The principle of the transformation of an abstract representation is also present in other for-

mal systems. Many of those formal systems, such as λ-calculus [Sheard, 1997], catamorphisms

[Launchbury and Sheard, 1995], hylomorphisms [Onoue et al., 1997] and other from category

theory, have been studied in previous works of Parigot (e.g., [Correnson et al., 1999]) and a

large comparison of these different formal systems can be found in [Duris, 1998] [Correnson, 2000].

These works show that those formal systems share a similar global structure. They abstract pro-

grams in some mathematical domain. Then, the transformed program is obtained by a backward

translation from the mathematical domain. For instance, the HYLO system [Onoue et al., 1997]
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4.2 Execution in P2P architecture through middlewares

transforms a program into hylomorphisms and then performs partial data evaluation. After that,

these new hylomorphisms could be translated back into a program. However, these formal sys-

tems share a surprising constraint: the abstraction always relies on objects where recursive

structures or schemes are strongly preserved and cannot be easily modified. For example, with

λ-calculus, the recursive calls are altogether defined in the structure of the λ-terms. With hy-

lomorphisms, these recursion schemes are exactly pointed out by functors (a special type of

mapping in category theory) which are used as transformation parameters. Thus, transfor-

mations cannot freely restructure the abstract representation. Taking in mind these previous

studies, DDF has then been defined with the following distinctive characteristics: i) allowing

parts of the control logic (even if it is recursive) to be described conceptually separated from

other parts by using the concept of rules; ii) the user describes what is to be done rather than

the details of how it is to be done; iii) from a single specification, multiple implementations can

be synthesized by analyzing the order of data evaluation.

Other works relevant in the context of our approach can be found in database and net-

work protocol communities. They are applied, for example, in [Alvaro et al., 2010] to the

Cloud Computing in order to raise the level of abstraction for programmers and improve

program correctness in a data-centric, declarative style. Another interesting approach is P2

[Loo et al., 2005]. It can be viewed as a synthesis of ideas from these two communities works

applied to overlay networks [Andersen et al., 2001]. P2 is a system that uses a declarative logic

language to express and implement overlay networks. It directly parses and executes such spec-

ifications into a data-flow program. The approach proposed in [Lin et al., 2011] seems to be

close to our work in the sense that it also passes through the construction of a dependency graph

to perform some optimizations. The difference between those works and our approach is that

they are not based on components, what usually drives them to specify into their models (e.g.,

relational algebras and rule-based specification) the whole application.

4.2 Execution in P2P architecture through middlewares

There has been a large body of related work carried out to develop P2P middlewares. This has

proposed increasingly novel approaches addressing application from many different domains
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Chapter 4 : Discussion of related approaches

such as distributed sharing of data, video streaming and gossip communications. For example,

JavaPorts framework [Manolakos et al., 2001] aims to provide a set of tools that will enable

developing parallel applications on a network of heterogeneous workstations. A JavaPorts ap-

plication can be defined as a collection of interacting tasks using a Task Graph abstraction. In

this graph the nodes correspond to application Tasks. Tasks communicate using point-to-point

connections between peer ports. Expeerience [Bisignano et al., 2003] is a middleware provid-

ing support for mobile application developers exploiting P2P technology over ad hoc networks.

It has been developed in Java and is based on JXTA. It manages the discovery service, mul-

tiple interfaces, intermittent connectivity and code mobility. SpiderNet [Gu et al., 2004] is a

P2P service composition framework. It achieves service composition by supporting directed

acyclic graph composition topologies and considering exchangeable composition orders. Spi-

derNet provides failure recovery scheme that maintains a small number of dynamically selected

backup compositions to achieve quick failure recovery for realtime streaming applications.

Juno [Tyson et al., 2008] is a networking middleware dedicated to multimedia content distri-

bution (e.g., file sharing, video on demand and live streaming). It is designed in a component-

based manner and has been implemented using the OpenCOM [Coulson et al., 2008] compo-

nent model. Juno provides a configurable framework, allowing the middleware to be specialised

and adapted to a variety of environments. Kompics [Arad and Haridi, 2010] is a message-

passing component model that can be used for building P2P systems. Kompics provides a

framework to compose protocol layers in a similar way to Mace [Killian et al., 2007] and Wids

[Lin et al., 2005]. Mace is a language support for building distributed systems as C++ com-

ponents. It allows describing each layer of the distributed system as a reactive state transition

model. This state transition model enables model checking of the system implementation to

find both safety and liveness bugs. WiDS is a toolkit that provides several run-times to run P2P

protocols in different modes. In particular, in its simulation engine that helps to evaluate and

debug P2P protocols in a controllable environment.

The main characteristics that distinguish SON from the approaches outlined above can be

summarized as follow:

• Son’s applications are specified by a rule-based language that captures the recursive be-

havior of P2P applications. This kind of behavior is very frequent in the context of P2P
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4.2 Execution in P2P architecture through middlewares

and many modeling approaches cannot describe it.

• More general abstraction for P2P applications can be induced from the specification

rules. This abstraction represents only one data-flow model (dictated by data depen-

dencies) on the execution. Further, it exposes the right level of detail to perform DFA.

• SON ensures that the target implementation and generated code fit well the behavioral

constraints contained in the specification rules.

• SON’s user implements only the code corresponding to the declared services. After-

wards, a code generation tool generates the containers of the components. The compo-

nent container embodies all resources needed to adapt the implementation code to the

run-time environment.

• SON can be considered as a generic lightweight middleware (with the necessary set

of operations that must be present to develop any kind of component-based P2P ap-

plications) for the following reason. Since, in most cases, the challenges of P2P sys-

tems can be reduced to a single problem: “How do you find any given data item in a

large P2P system in a scalable manner, without any centralized servers or hierarchy?"

[Balakrishnan et al., 2003], SON has been unified the notion of publish/subscribe: it uses

a DHT not only to publish and subscribe data, but also to enable dynamic service publi-

cation, discovery, and deployment.
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Chapter 5

DDF: A formal language to specify
component-based P2P applications

Contents
5.1 Why our formalism is inspired by the Attribute Grammars . . . . . . . . 86

5.2 Case study: Gossip protocol . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 DDF specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3 Behavior with data dependency . . . . . . . . . . . . . . . . . . . . 100

5.3.4 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Defining a simple generic P2P system . . . . . . . . . . . . . . . . . . . . 110

This chapter introduces a formal language to specify and analyze component-based P2P ap-

plications. It is called DDF (Data Dependency Formalism) and used as an underlying formalism

for the work presented in this thesis. DDF has been essentially developed for the following two

reasons. Firstly, to formally describe the recursive behavior of P2P applications. This kind of

behavior is very frequent in the context of P2P and many modeling approaches cannot describe

it, as explained in Section 2.2.1. Secondly, to formally construct an abstract representation

(i.e., Data-Dependency Graph) for P2P applications. This abstraction exposes the right level of

detail to perform data-flow analyzes. Throughout this chapter, the DDF concepts are illustrated

and explained on a number of examples distilled from a case study that consists of a gossip

85

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



Chapter 5 : DDF: A formal language to specify component-based P2P applications

protocol [Voulgaris et al., 2005, Jelasity et al., 2007]. Gossip protocols, also called epidemic

protocols, are well-known in the community of P2P to ensure a reliable information dissem-

ination. This kind of dissemination is a common behavior of various P2P applications, and

according to [Jelasity, 2011], a large number of distributed protocols can be reduced to a gossip

protocol. Before presenting this case study and then the DDF specification, a short explication

is provided to show why Attribute Grammars have inspired us to develop DDF.

5.1 Why our formalism is inspired by the Attribute Gram-
mars

Many techniques and algorithms for Data-Flow Analysis (DFA) were introduced in Attribute

Grammars (AGs) literature. These techniques and algorithms are commonly used in com-

piler construction for performing optimizations from a program’s abstract representation (an

attribute-dependency graph induced by the Abstract Syntax Tree of the program). In a previous

work of [Parigot et al., 1996], it has been argued that in the term “Attributed Grammar” the

notion of grammar does not necessarily imply the existence of an underlying tree, and that the

notion of attribute does not necessarily mean decoration of a tree. Hence, Dynamic Attributed

Grammars (DAGs) have been presented by Parigot et al. as an extension to the AG formalism.

DAGs are consistent with the general ideas underlying AGs, thing that allows them to retain

the benefits of the results that are already available in that domain. In the same direction, we

define our formalism which will allow us to construct a Data-Dependency Graph (DDG) for

component-based P2P applications and use the already developed DFA algorithms to perform

analyzes on it. To achieve this, we have inspired by the main characteristics of AGs and DAGs.

Those characteristics are briefly presented in the rest of this section.

Structural decomposition and declarative character

AGs were introduced by Knuth [Knuth, 1968] and, since then, they have been widely studied

[Deransart et al., 1988, Deransart and Jourdan, 1990, Paakki, 1995]. An AG is a declarative

specification that describes how attributes (variables) are computed for rules in a particular

syntax (i.e., it is syntax-directed). They were originally introduced as a formalism for describ-
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5.1 Why our formalism is inspired by the Attribute Grammars

ing compilation applications; they were intended to describe how to decorate a tree, and could

not be easily thought about in the absence of the structure (tree) representing the program to

compile. In this application area, AGs were recognized as having these two important qualities:

• they have a natural structural decomposition that corresponds to the syntactic structure

of the language, and

• they are declarative in that the writer only specifies the rules used to compute attribute

values, but not the order in which they will be applied.

Thus, a program can be described by AGs as a set of productions. Each production p

describes an elementary control-flow and has the following form:

p : X0 → X1, ...,Xn

X0 represents a node in a tree and X1, ...,Xn are its child nodes. For each production p we give a

set of semantic rules defining the computation of the synthesized attributes of X0 and the inher-

ited attributes of X1≤i≤n. The synthesized attributes are the result of the attribute computation,

and may use the values of inherited attributes. Synthesized attributes are used to pass computed

information up the tree, while inherited attributes pass information down and across it.

Synthesized and inherited attributes

To illustrate the concept of synthesized and inherited attributes, Table 5.1 gives AG productions

that describe the computation of terms like 3 ∗ 5 and 3 ∗ 5 ∗ 7. In this example (extracted

from [Aho et al., 1986]), each of the nonterminals T and F has a synthesized attribute val;

the terminal digit has a synthesized attribute lexval, which is an integer value returned by

the lexical analyzer. The nonterminal T ′ has two attributes: an inherited attribute inh and a

synthesized attribute syn. The semantic rules are based on the idea that the left operand of the

operator ∗ is inherited. More precisely, the head T ′ of the production T ′ → ∗ F T ′1 inherits the

left operand of ∗ in the production body. Given a term x ∗ y ∗ z, the root of the subtree for

∗ y ∗ z inherits x. Then, the root of the subtree for ∗ x inherits the value of x ∗ y, and so on,

if there are more factors in the term. Once all the factors have been accumulated, the result is

passed back up the tree using synthesized attributes.
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

To see how the semantic rules are used, consider the annotated parse tree for 3 ∗ 5 in Figure

5.1. The leftmost leaf in the parse tree, labeled digit, has attribute value lexval = 3, where the 3

is supplied by the lexical analyzer. Its parent is for production 4, F → digit. The only semantic

rule associated with this production defines F.val = digit.lexval, which equals 3.

At the second child of the root, the inherited attribute T ′.inh is defined by the semantic rule

T ′.inh = F.val associated with production 1. Thus, the left operand, 3, for the ∗ operator is

passed from left to right across the children of the root.

The production at the node for T ′ is T ′ → ∗ F T ′1 (we retain the subscript 1 in the annotated

parse tree to distinguish between the two nodes for T ′). The inherited attribute T ′1.inh is defined

by the semantic rule T ′1.inh = T ′.inh × F.val associated with production 2.

With T ′.inh = 3 and F.val = 5 , we get T ′1.inh = 15. At the lower node for T ′1, the production

is T ′ → ε . The semantic rule T ′.syn = T ′.inh defines T ′1.inh = 15. The syn attributes at the

nodes for T ′ pass the value 15 up the tree to the node for T , where T .val = 15.

Productions Semantic rules

(1) T → FT ′ T ′.inh = F.val
T.val = T ′.syn

(2) T ′ → ∗FT ′1 T ′1.inh = T ′.inh × F.val
T ′.syn = T ′1.syn

(3) T ′ → ε T ′1.syn = T ′.inh

(4) F → digit F.val = digit.lexval

Table 5.1: Attribute Grammar productions of a simple multiplication calculator.

Dependency graph

A dependency graph is used to determine an evaluation order for the attribute instances in a

parse tree. In other words, it helps to determine how the values of attributes can be computed.

An important number of DFA algorithms introduced in AGs literature are based on it. An edge

in a dependency graph from one attribute instance to another indicates that the value of the first
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5.1 Why our formalism is inspired by the Attribute Grammars

Figure 5.1: Annotated parse tree for 3 ∗ 5. (from [Aho et al., 1986])

is needed to compute the second. This allows to express the constraints implied by the semantic

rules. To illustrate that, we consider the same example extracted from [Aho et al., 1986] and

we present in Figure 5.2 the dependency graph for the annotated parse tree of Figure 5.1. The

nodes of this dependency graph, represented by the numbers 1 through 9, correspond to the

attributes.

Figure 5.2: Dependency graph for the tree of Figure 5.1. (from [Aho et al., 1986])

Nodes 1 and 2 represent the attribute lexval associated with the two leaves labeled digit.

Nodes 3 and 4 represent the attribute val associated with the two nodes labeled F. The edges to

node 3 from 1 and to node 4 from 2 result from the semantic rule that defines F.val in terms of

digit.lexval. In fact, F.val equals digit.lexval, but the edge represents dependence, not equality.

Nodes 5 and 6 represent the inherited attribute T ′.inh associated with each of the occurrences of

nonterminal T ′. The edge to 5 from 3 is due to the rule T ′.inh = F.val, which defines T ′.inh at
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

the right child of the root from F.va1 at the left child. We see edges to 6 from node 5 for T ′.inh

and from node 4 for F.val, because these values are multiplied to evaluate the attribute inh at

node 6. Nodes 7 and 8 represent the synthesized attribute syn associated with the occurrences

of T ′. The edge to node 7 from 6 is due to the semantic rule T ′.syn = T ′.inh associated with

production 3 in Table 5.1. The edge to node 8 from 7 is due to a semantic rule associated with

production 2. Finally, node 9 represents the attribute T.val. The edge to 9 from 8 is due to the

semantic rule, T.val = T ′.syn, associated with production 1.

Description of recursion and conditions with Dynamic AGs

Because of their historical roots in compiler construction, the notion of (physical) tree in AGs

was considered as the only way to direct computations. This is the main cause for their lack

of use and lack of expressiveness. Some works have attempted to respond to this problem by

proposing extensions to the classical AG formalism, for instance Higher-Order Attribute Gram-

mars [Swierstra and Vogt, 1991], Circular Attribute Grammars [Farrow, 1986], Multi-Attribute

Grammars [Attali, 1988] or Conditional Attribute Grammars [Boyland, 1996]. The main dif-

ference between these works and the one proposed by [Parigot et al., 1996] is the methodology

used to attack the problem. All of them, in a first step, propose a linguistic extension designed

to make the expression of a particular application easier (for instance, data-flow analysis for

Circular AGs) and, in a second step, wondered how this extension could be implemented. In

contrast, the approach [Parigot et al., 1996] was, first, to precisely characterize the intrinsic

power of the classical formalism and, thereafter, to derive the language extensions that allow

to fully exploit this power. The basic observation is that the notion of grammar does not nec-

essarily imply the existence of a (physical) tree. In fact, the proposed view of the grammar

underlying an AG is similar to the grammar describing all the call trees for a given functional

program or all the proof trees for a given logic program: the grammar precisely describes the

various possible flows of control. In this context, a production describes an elementary recur-

sion scheme (control flow), whereas the semantic rules describe the computations associated

with this scheme (data flow).

It is very important at this point to observe that all the theoretical and practical results on

AGs (in particular, the algorithms for constructing efficient attribute evaluators) are based only
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5.1 Why our formalism is inspired by the Attribute Grammars

on the abstraction of the control flow by means of a grammar and not at all on how its instances

are obtained at run-time. In consequence, two notions which comply with this view have been

presented by Parigot et al.:

• Grammar Couples allow to describe recursion schemes independently from any physical

structure and/or to exhibit a different combination of the elements of a physical structure.

A grammar couple defines an association between a dynamic grammar and a physical or

concrete grammar.

• Dynamic Attribute Grammars (DAGs) are defined on top of Grammar Couples. They

allow attribute values to influence the flow of control by selecting alternative dynamic

productions.

These extensions eliminate the major criticism against AGs, namely, their lack of expres-

siveness. As an example to illustrate that, let’s see how to describe the structure and dy-

namic semantics of the while statement. If STAT,COND respectively represent statements and

boolean conditions, Table 5.2 shows the productions for the while statement. In this example,

name:TYPE means that TYPE is the type of name. p ∈ Pc is the concrete production which

describes that a while statement is made of a condition and a body statement. pr and pt ∈ Pd

are two dynamic productions which respectively represent the recursive behavior of a while

structure (pr) as long as the condition is true and the termination case (pt) when the condition

becomes false.

Concrete production p ∈ Pc:
p : while : STAT→ cond : COND body : STAT

Dynamic productions pr and pt ∈ Pd:
pr : w = while : STAT→ cond = cond : COND

body = body : STAT w-rec = while : STAT,
pt : w = while : STAT→ cond = cond : COND

Table 5.2: Part of a grammar couple for the while statement

Table 5.3 presents the semantic rules block describing the conditional semantic of our ex-

ample of the while statement. Attributes names are prefixed by h. for inherited, and s. for
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

synthesized. The attribute env represents the execution environment of a statement and s.c

carries the value of the boolean condition.

{ h.env(cond) := h.env(w), // common semantic rule
{ (s.c(cond)), // boolean expression
{ (w = while : STAT→ cond = cond : COND

body = body : STAT w-rec = while : STAT,
h.env(body) := h.env(w) // true case:
h.env(w − rec) := s.env(body)
s.env(w) := s.env(w-rec) },

{ w = while : STAT→ cond = cond : COND, // false case:
s.env(w) := h.env(w) } } }

Table 5.3: The semantic rules block for the while statement

Attribute Grammars and our Data Dependency Formalism

Although AGs were introduced long ago, their lack of expressiveness has resulted in limited

use outside the domain of static language processing. With the notion of Dynamic Attribute

Grammars defined on top of Grammar Couples, it is possible to extend this expressiveness and

to describe computations on structures that are not just trees, but also on abstractions allowing

for infinite structures. In our work, we explore to take advantage of this to define a Data

Dependency Formalism. DDF is consistent with the general ideas underlying AGs, hence we

expect to retain the benefits of the results and techniques that are already available in that

domain. In particular, those introduced for Data-Flow Analysis.

5.2 Case study: Gossip protocol

As presented in Section 2.2.4, a large number of algorithms and protocols have been developed

for P2P applications to support different properties. These algorithms and protocols usually

have a recursive behavior that many modeling approaches cannot describe and analyze. To

illustrate how our approach can deal with this issue, we have chosen to explain our Data De-

pendency Formalism in a case study that consists of a gossip protocol [Voulgaris et al., 2005]
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5.2 Case study: Gossip protocol

[Jelasity et al., 2007]. In addition to the fact that gossip protocols present a recursive behavior,

our choice is especially motivated by the following other reasons. According to [Jelasity, 2011],

a broad range of distributed protocols can be reduced to gossip protocols and those gossip pro-

tocols can help in the building of large-scale cloud computing systems that are considered the

computing platform of the future by many actors in both research and industrial communities.

The rest of this section presents this protocol in more detail.

Gossip in human communities

Humans frequently try to find information about those around them. But interconnections in so-

cieties are complex, and it is impossible to be present at the same time in different places to get

this kind of information directly. Therefore, people pick it up through an intermediary, whether

or not they have the possibility and patience to confirm it later either directly or indirectly.

This phenomenon, called gossip (or rumor, which differs primarily by being speculative and

sometimes pertaining to events rather than people), is an important social behavior that nearly

everyone experiences, contributes to, and presumably intuitively understands [Foster, 2004].

To complement views of gossip as essentially a means for spreading and gaining informa-

tion, [Baumeister et al., 2004] proposes that gossip helps people learn about how to function

effectively within the complex and ambiguous structures of human social life. Gossip can thus

be understood as an extension of observational learning, in the sense that people can learn from

the success and failures of others outside of one’s field of vision and sometimes even outside

one’s circle of friends.

Gossip and epidemics

The first real application of gossip as a protocol in the context of computer systems was pre-

sented in [Demers et al., 1987]. In this paper, the authors recognize its power of spreading

information and propose a formal treatment to ensure that each replica of the database on

the Xerox Corporate Internet1 (CIN) was up-to-date. They were originally inspired by the

way in which epidemics spread in a biological community. Thing that is closely analogue
1The worldwide CIN comprised several hundred routers connected by gateways and phone lines of many

different capacities. It also comprised thousands of workstations, servers and computing hosts.
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

to gossip. In fact, disease epidemics are contagious and spread from person to person when

a virus (that plays the role of a piece information) enters the body. Hence, the term epi-

demic algorithm/protocol is sometimes employed when describing a computer system in which

gossip-based information dissemination is used. Figure 5.3 based on the one proposed by

[Eugster et al., 2004] illustrates that. In this figure, a multicast source, represented by the black

circle, sends a message to be disseminated in a system of size n. Each infected process—each

process that receives the message—forwards it by default to a randomly chosen subset of other

processes. Afterward, each of these infected processes in turn forwards the information to an-

other random subset. Eventually, the message will reach all processes of the system with a high

probability after a certain number of rounds.

Figure 5.3: Epidemic algorithm (based on a figure from Eugster et al. 2004).

Applications of gossip in computer systems

In the last years, epidemic/gossip protocols have been widely used to exchange information

(data) in large-scale P2P systems [Jelasity et al., 2007]. This has been motivated by the ca-

pacity of these protocols to ensure that information is reliably exchanged, even if the peers

dynamically join and leave the system or the underlying network suffers from broken or slow

links.

Beyond disseminating information in distributed systems, gossiping can be generalized to

different applications for various domains such as resource management, overlay maintenance
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5.2 Case study: Gossip protocol

and data aggregation. For instance, in the context of data aggregation in which information

about a large distributed system need to be gathered and expressed in a summary form, gossip-

ing can be used as an efficient tool for computing aggregates, e.g., sums, averages and maxi-

mum of some attribute of the system nodes. We refer to [Kermarrec and van Steen, 2007] for a

survey on gossiping applications.

Gossip algorithm

In [Jelasity et al., 2007], the authors present a generic and simple gossip algorithm, which fac-

tors out the very abstraction of a peer-sampling service and captures many possible variants

of gossip-based protocols (the simple template presented in the Introduction relies on this al-

gorithm). For these reasons, we adopt exactly the same formulation of this gossip algorithm,

which we express using DDF in the next section.

In a gossip algorithm, each node in the network periodically exchanges information with

a subset of other nodes. In fact, every node maintains a local membership table providing a

partial view on the complete set of memberships and periodically refreshes the table using a

gossiping procedure. The table (view) is a list of c node descriptors, where c is the size of the

list and is the same for all nodes. A node descriptor contains a node network address and an age

that represents the freshness of the given node descriptor. The list changes by means of usual

list operations (e.g., permute) that are defined on it. Therefore, the tables reflect the dynamics

of the system by continuously changing random subset of the nodes (in the presence of failure

and joining and leaving nodes).

The algorithm consists of two activities (serving and consuming) in each node: an active

client gets activated in each T time units exactly once and then initiates communications with

other nodes, and a passive server waits for and answers these requests. The behavior of the

passive server just mirrors the same stapes of the active client. In terms of DDF, each activity

corresponds to a pair of rules given in table 5.7. This table describes the behavior of a Gossip

System constituted of two nodes (nodex and nodey) and the associated methods (implementa-

tions) extracted from [Jelasity et al., 2007]. The detailed description of this system is formally

defined with DDF and presented in progressive manner throughout the next section.
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

5.3 DDF specifications

Our Data Dependency Formalism (DDF) is essentially dedicated to applications that can be

divided into autonomous components communicating to each other over channels. For this

purpose, we separate clearly computational activities and component interactions. Thus, we

distinguish two types of descriptions, grouped as syntactic and semantic descriptions. The

syntactic descriptions consist of a collection of input, output and internal services described

only by their signatures. The semantic descriptions consist of interaction rules that define not

only the valid sequences of service invocations, but also data exchange required for achieving

of the functional activities and driven the interactions between components. We call interface

the syntactic part and behavior the semantic part.

5.3.1 Interface

A service is a functional activity supported by a component. If the component provides a

service through its interface, the service is called input service; if the component requires a

service through its interface, the service is called output service. If the component provides a

service that is invoked only by itself, the service is called internal service. In a component, a

service call refers to an output service or an internal service.

An internal service represents a particular action of a component. To describe, for ex-

ample, time sequence (one component’s behavior occurs after some time), an internal service

timer(timeout : Int) can be used to represent a timer. This internal service timer has an argu-

ment timeout that can be set as an integer. Once timer.timeout is set, the component’s behavior

can only occur when timer.timeout == 0.

Formally, a service and an interface are defined as follow:

Definition 1 (Service). A service is a 3-tuple δ =< type, name, arg >, where:

• type is the service type;

• name is the service name;

• arg is a set of the service arguments. �

96

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



5.3 DDF specifications

A service s is written as s(a0, ..., an), its result is denoted by s$ and its arguments are denoted

by args with args = (a0, ..., an).

Definition 2 (Interface). An interface is a 3-tuple I =< Sin, Sout, Sint >, where:

• Sin, Sout, Sint are a set of, respectively, input, output and internal services. �

Example 1 (Interface of a gossip component). According to Definition 2, the interface of a

gossip component (called Node) is expressed as INode =< Sin, Sout, Sint >, where:

• Sin = {gossip(buffer : Buffer), answer(buffer : Buffer)};

• Sout = {answer(buffer : Buffer), gossip(buffer : Buffer)};

• Sint = {timeout(T : TimeUnit)}. �

A gossip component has two activities: serving and consuming information (data). The

two input services are for the serving activity and the two output services are for the consuming

activity. The behavior of input services (serving activity) just mirrors the same stapes of output

services (consuming activity). The gossip service is for the propagation of data and the answer

service is for sending a response to the sender. Figure 5.4 illustrates these features.

Figure 5.4: Services of a gossip component.

5.3.2 Component

A component encapsulates data (attributes) with methods to operate on the component’s data.

Methods implement the services provided through the component interface. A service is imple-

mented by one method. A component contains the declaration of attributes whose values define
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

the state of its instances, along with the bodies of methods that operate on those attributes. A

method defined within a component can access only those attributes that are declared within

the component, along with any arguments that are passed to the method.

The component prohibits concurrent access to its methods. Only one method can be run

within the component at any one time. Consequently, the programmer does not need to code

this synchronization explicitly; it is built into the component. This technique is widely used in

operating systems [Silberschatz et al., 2008] to simplify reasoning about the implementation of

concurrent distributed applications.

During run time, a component might need inputs. When it receives an input, the component

will respond to this by executing its methods and/or changing its state (attributes). Otherwise,

without inputs, a component may produce an output and/or change its states. This output may

have an eventual response as an input.

Formally, a component is defined as follows:

Definition 3 (Component). A component is a 4-tuple C =< A, I, Imp, m >, where:

• A is a set of typed attributes;

• I is an interface;

• Imp is a set of methods (implementing the services provided through the interface). A

method is denoted F and defined in Definition 6;

• m : {Sin, Sout} → Imp is a function that maps each service s ∈ (Sin ∪ Sint) of I to a compo-

nent method in Imp. �

An attribute may be chosen as a component state. State changes are caused by an input,

output or internal service. Thus, for the external environment, the input and output services

may describe a visible state change. These states may be used by guard conditions (defined in

Section 5.3.3) to control the component behavior.

A component may have multiple instances. An instance ci of a component C = (AC, IC, ImpC,mC)

is denoted by ci : C.
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5.3 DDF specifications

Example 2 (Gossip component). According to definition 3, a gossip component, called Node,

is expressed as Node =< A, I, Imp,m >, where:

• A = {view : List(IP : Address, age : Int), buffer : List, c : Int, push : Bool, pull : Bool,

T : Time, H : Int, S : Int};

• I = INode;

• Imp = {Fr1(),Fr2(),Fr3(),Fr4()};

• m : {Sin, Sout} → Imp. �

An instance of the gossip component Node has an IP address to exchange services with

other instances of Node in a P2P network. Each instance maintains a view representing its

partial knowledge of the network membership. A view is a list of c couples (IP, age). Attribute

c represents the size of the view and is the same for all instances. A couple (IP, age) contains

an IP address of an instance in the network and an age that represents the freshness of this

instance.

To reflect the dynamics of the system (joining and leaving instances), the gossip algorithm

(executed periodically on each instance and implemented by the methods {Fr1(),Fr2(),Fr3(),Fr4()}

that we explain later in this Chapter), updates the views by changing their random subset of the

instances.

In fact, once a running instance selects another instance to exchange membership informa-

tion with and the information has to be pushed (boolean attribute push is true), then the buffer

of the running instance is initialized with a fresh information (IP = Myaddress, age = 0). Then,

c/2 − 1 elements are selected randomly from the view (ignoring the oldest ones) and appended

to the buffer. The number of the oldest elements (as defined by their age) is H and is less

than or equal to c/2. H defines how aggressive the gossip algorithm should be when it comes

to removing links that potentially point to faulty instances (dead links). In other words, if an

instance is not alive, then its information will never get refreshed (and thus become old), and

therefore sooner or later it will get removed. The larger H, the sooner older elements will be

removed from the view. The buffer created this way is sent to the selected instance. If a reply

is expected then the boolean attribute pull is true. After removing the H oldest elements, the

S first elements are removed from the view. These S elements are exactly the ones that were
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

sent to the instance previously. If S is high, then the received elements will have a higher prob-

ability to be included in the new view. Since the same gossip algorithm is run on the receiver

side, this mechanism in fact controls the number of elements that are swapped between the two

instances. If S is low then both parties will keep many of their exchanged elements. We present

in Table 5.4 a summary of these attributes’ features and we refer to [Jelasity et al., 2007] for

more details.

Attributes Explanations

view(IP, age) is a list of couples. Each couple contains an IP address of a
node in the network and an age that represents the freshness
of this node.

buffer is a temporal list used to store output or input information.
c is the size of the view.

push if it is true, then the information will be sent to the selected
instance.

pull if it is true, then a reply is expected.
H is the number of the oldest elements in the view and is less

than or equal to c/2. H defines how aggressive the algo-
rithm should be when it comes to removing links that po-
tentially point to faulty instances.

S is the number of elements that were sent to the selected in-
stance. If S is high, then the received elements will have a
higher probability to be included in the new view.

Table 5.4: Component attributes.

5.3.3 Behavior with data dependency

As in the grammar-based modeling methods which are well suited to describing the control

logic for the processing of data streams [Börger, 2000], the aim of our specification is to de-

scribe in a structured way what the control logic does while striving not to describe how the

control logic is computed or implemented. By what we mean describing the sub-behaviors

(called rules) of the control logic and by how we mean describing the lower-level implemen-

tation details (usually presented as states, transitions, encodings and other details of a FSA

controller).
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5.3 DDF specifications

This choice to separate, as far as possible, what is computed from how it is computed

has been especially made in the grammar-based approaches for the following reasons. Firstly,

when the complexity of the control logic increases, describing the states and transitions of a

FSA controller implementing the control logic becomes problematic. FSA controller of even a

few states can have a large number of transitions and if some modifications should be made in

the control logic, the FSA can change considerably. Secondly, the lower-level specifying how

things are computed can be synthesized from the high-level control specification.

Typically, the synthesis begins with the construction of an abstract representation of the

design (Data-Dependency Graph in our case) and then a translation (or transformation) is per-

formed to obtain an initial FSA representation. In our case, and as in Attribute Grammars, we

look to have a data/attribute evaluator (which consists of a set of DFA algorithms) rather than

a FSA controller. The advantage of a data evaluator comes from the fact that not only one but

multiple implementations of the control logic can be synthesized by analyzing the order of data

evaluation (incremental, partial, total, parallel, etc.).

Thus, our method is based on describing the sub-behaviors of the control logic as a set

of rules. The total behavior of a design is described by composing together the rules using

compositional operators. Each rule links one input event to some output events (see Definition

6). When an input event is received, a rule will respond to this by executing computations,

changing values of its attributes or sending output events. In a rule, the input event is linked

to output events by a transition labeled by optional guard conditions. The guard conditions

indicate the circumstances under which a rule can be applied.

To keep the rule definition simple, we define first input and output event.

Definition 4 (Input Event). An input event v of a component C =< A, I, Imp,m > is an element

of (Sin ∪ Sint). �

Definition 5 (Output Event). An output event v of a component C =< A, I, Imp,m > is an ele-

ment of (Sout ∪ Sint). �

Based on these events, a rule may specify four kinds of events (asynchronous events): re-

ceiving an input service, receiving an internal service, emitting an output service and emitting
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

an internal service. Table 5.5 gives some examples (with abbreviations) of such events.

Input Event→ Output Events Informal meaning

s1(args1)[Guards]→ ... receipt of a service s1(args1), which is an
input or internal service.

...→ s2$ emission of a response s2$ of a service s2,
which is an input or internal service.

...→ s3(args3) emission of a service s3(args3), which is
an output or internal service.

s4$[Guards]→ ... receipt of a response s4$ of a service s4,
which is an output or internal service.

Table 5.5: Asynchronous events.

To take into account the synchronous events, we introduce a synchronization (a rendez-

vous) symbol ↑. Thus, when a service is called, the caller waits until the service response

returns. We describe this kind of event in table 5.6.

Input Event→ Output Events Informal meaning

...→ s1(args1) ↑ emission of a service s1(args1), and wait-
ing for its result.

Table 5.6: Synchronous event.

In a rule r, we distinguish three types of data grouped as input, computed and output data.

The input data denote the known data used during the computation achieved by the method

implementing the service corresponding to the input event of r (this method is called F and it is

defined hereafter in Definition 6). The input data consist only of internal component attributes

and the arguments or result of the service causing the input event. The computed data consist

of the results of F and the output data consist of the arguments or result of the service causing

the output event. The output data are presented as the union of the input and computed data.

Guard conditions act on the input data. They ensure that the input data are valid or conforms

to the conditions before applying the rule. They can be used, for instance, to ensure that two

events are mutually exclusive if they occur at the same time.

Formally, a rule is defined as follows:
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5.3 DDF specifications

Definition 6 (Rule). A rule describes the behavior of a component C when it receives an input

event v. A rule is defined by a 4-tuple r =< L, Guards,R,E >, where:

• L = { v } with v is an input event. L represents the left side of the rule;

• Guards are the guard conditions, indicating the circumstances under which the input

event v can be executed. A guard condition consists on a set of Boolean expressions. An

input event v is executed if each Boolean expression is true;

• R = { v1, ..., vn | ∀i ∈ 1..n, vi is an output event } ∪ {∅}. R represents the right side of the

rule;

• E is a semantic equation which has the following form :

(b0, ..., bq) = F(a0, ..., ap) (5.1)

where F is a method that implements the service corresponding to the input event v and

defines the computation of the output data (bi) in terms of the input data (ai). �

Before giving the definition of the constraints on the equation E, we define first three sets

of data: Input Data IDr, Computed Data CDr and Output Data ODr.

Definition 7 (Input data IDr of a rule r). Let a rule r =< L,Guards, R,E > describes the be-

havior of a component C =< A, I, Imp,m > when it receives an input event v, the input data ID

of r are:

v ∈ L, IDr =


args ∪ A if v = s(args)

{s$} ∪ A if v = s$
(5.2)

�

Definition 8 (Computed data CDr of a rule r). Let a rule r =< L, Guards,R,E >, computed

data CD of r are the set of data resulting from the equation E:

CDr = { b0, ..., bq } (5.3)

�
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

Definition 9 (Output data ODr of a rule r). Let a rule r =< L,Guards, R,E >, output data OD

of r are the data emitted by the output events of r:

ODr =
⋃
vi∈R


args if vi = s(args)

{s$} if vi = s$
(5.4)

�

Once these three sets of data are defined, the constraints on the semantic equation E of a

rule r can be defined as follows:

Definition 10 (Constraints of a semantic equation). The constraints to be satisfied by a semantic

equation E : (b0, ..., bq) = F(a0, ..., ap) of a rule r are:

• Contraint (1): ODr elements can only be elements of the union of IDr and CDr:

ODr ⊆ IDr ∪CDr (5.5)

• Contraint (2): F only accepts IDr elements as inputs:

∀i ∈ 0..p, ai ∈ IDr (5.6)

�

Example 3 (A behavior of the gossip component Node). The following rule r indicates that

the component Node receives the data buffery from the outside through the service gossip and

then responses by sending the data bufferx through the service answer if the condition pull is

satisfied (pull == True):

r : gossip(buffery), [pull] → answer(bufferx) Fr

In this rule, if the information has to be pulled (Boolean attribute pull is true), then the

method Fr is executed. With the implementation of Fr is as follows:
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5.3 DDF specifications

(bufferx) = Fr(buffery){
buffer = (MyAddress, 0)
view.permute()
view.moveOldestH()
buffer.append(view.head(c/2 − 1))
bufferx = buffer
answer(bufferx)
view.select(c,H, S , buffery)
view.increaseAge()
}

During the execution of Fr, a buffer is initialized with a fresh information. Then, c/2 − 1

elements are appended to the buffer. These elements are selected randomly from the view with-

out replacement, ignoring the oldest H elements. The buffer created this way is sent through

the service answer. Then, the received buffery is passed to procedure select(c,H, S, buffery),

which creates the new view based on the listed parameters and the current view. Finally, the

view is updated with new age.

The input data IDr of this rule are the union of the attributes {view, c, buffer, H, S} and the

argument buffery of the input service gossip:

IDr = {view, c, pull, H, S} ∪ {buffery}

The computed data CDr are the data resulting from the execution of the method Fr:

CDr = {bufferx, view}

The output data ODr consist of the arguments of the emitted service answer:

ODr = {bufferx} �

In right side R of a rule, output events (separated by “;") may be output service emitted to

different remote components, and each component is a process that can be executed separately.

This parallel relation between output events is nearly implicit. For example, r : s→ s1, s2

means services s1 and s2 do not have sequential relation.

This relation characterizes the activity of a unique rule. So, in order to characterize the

activity of a set of rules, we define three operations for rules:
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

• Sequence operation “ ; ": Indicating a sequential order among rules. For example,

r1; r2; r3 means rule r1 acts before r2 and r2 acts before r3.

• Alternative operation “ | ": Indicating an alternative choice concerning the output events

of a rule. For example,
r : s[Guards]→ s1

| s2

means services s1 and s2 may have same chance to occur. This alternative can be con-

trolled by the guard conditions.

• Recursive operation “[ ]": Indicating that an internal service s will be called recursively.

This recursion can be controlled by the guard conditions. Thus, recursion operations

can be used to have repetition (loop) indicating that some rules will be executed n times

continuously. For example,

[r1 : s[Guards] → s1

r2 : s1$ → s]

means that the rule r1 execute the internal service s if guard conditions are satisfied,

and then it calls the service s1. When the service s1 response arrives, the rule r2 calls the

internal service s, which will be executed again by r1 if guard conditions are still satisfied.

Therefore, from the definition of an interface, a rule and rule operations, we have the fol-

lowing definition of a component behavior.

Definition 11 (Behavior). The behavior of a component C is a set of rules combined by se-

quence, alternative and recursion operations with respect to the following regular expressions:

B ::= r+ | [B+] | {B+} (5.7)

r ::= r | (r\r) (5.8)

�

Example 4 (The behavior of the gossip component Node). According to definition 11, the

behavior of the gossip component Node is BNode = {r1, r2, r3, r4}, where:
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5.3 DDF specifications

r1 : timeout(T) → gossip(bufferin) Fr1

r2 : answer(bufferout), [pull] → Fr2

r3 : gossip(bufferout), [pull] → answer(bufferin), updateView(bufferout) Fr3

r4 : updateView(bufferout) → Fr4

�

5.3.4 System

The component composition is based on connections among component instances. A connec-

tion between two instances occurs when one of them provides its interface and another instance

uses it. Hence, input (resp. output) services are connected to signature-matching output (resp.

input) services. There is a unique connection between two instances.

Once component instances are connected, the behavior of the entire resulting system is ob-

tained by composition of behaviors of participating instances. Since the component instance

behavior is a set of rules connected by sequence, alternative and recursive operations, the sys-

tem behavior can be again viewed as a set of rules connected by these same operations.

Formally, a system is defined as follows:

Definition 12 (System). A system is defined by a 2-tuple Sys =< Inst, Con > where:

• Inst is a set of component instances;

• Con = { (c1, c2) | (c1, c2) ∈ Inst × Inst } is a set of connections between instances. �

Example 5 (A gossip system). According to Definition 12, a gossip system constituted of two

instances (nodex and nodey) is expressed as GossipS ys = < Inst,Con >, where:

• Inst = {nodex : Node, nodey : Node};

• Con = {(nodex, nodey)}.

Now, we define the system behavior from the behavior of each underlying component in-

stance. To achieve this, we associate the source and the destination instances to the events of

the rules. For example, let a rule r : v→ v1, v2 describes the behavior of a component C when
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

receiving the input event v, where v ∈ Sin and Sin ∈ IC, and let connections (c, ci) and (c, cj),

where c, ci and cj are instances of, respectively, C, Ci and Cj components. The rule r will

be transformed to (v, ci)→ (v1, cj), (v2, ci) if the source instance causing the input event v is ci

and the destination instances of the output events v1 and v2 are Cj and Ci, respectively. This

transformation is performed by a function, which specifies in each rule the source component

instance causing its input event and the destination component instances of its output events.

Definition 13 (Rule Transformation). Let a rule r =< L,Guards,R, E > describes the behavior

of a component Ci when it receives a input event v ∈ L, and let a connection (ci, cj) ∈ Con,

where ci and cj are instances of, respectively, Ci and Cj components. The transformation of r

when ci is connected to cj is rci = σ(r)/ci→cj , where:

σ(r)/ci→c j = σ(r : v→ v1...vn)/ci→c j

= r : σr(v)/ci→c j → σr(v1)/ci→c j ...σr(vn)/ci→c j

(5.9)

with the transformation function σ is defined as follows:

σ : V
r,/ci→c j
−→ V × Inst or V

σr(v)/ci→c j =


(v, c j) if v ∈ r.L ∧ v ∈ S in(ci) ∩ S out(c j)
(v, c j) if v ∈ r.R ∧ v ∈ S out(ci) ∩ S in(c j)
v

(5.10)

�

Therefore, the system behavior is defined as follows:

Definition 14 (System Behavior). A system behavior B(Sys) is a set of rules combined by

sequence, alternative and recursion operations, where:

B(S ys) =
⋃

(ci,c j)∈Con

{
B(ci)/ci→c j ∪ B(c j)/c j→ci} (5.11)

B(cx)/cx→cy = {σ(r)/cx→cy |r ∈ B(cx) ∧ r.L ∈ S in(cx) ∩ S out(cy)} (5.12)

�
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5.3 DDF specifications

Example 6. According to Definition 14, the behavior of the gossip system GossipS ys = <

Inst,Con > (presented in example 5) is expressed as B(GossipS ys), where:

• B(GossipS ys) = B(nodex)/nodex→nodey ∪ B(nodey)/nodey→nodex

• B(nodex)/nodex→nodey = {rx
1, r

x
2}

• B(nodey)/nodey→nodex = {ry
3, r

y
4}

With rx
1, r

x
2, r

y
3 and ry

4 are specified as follow:

Gossip System behavior Hidden implementations
Server activity (nodex)
rx

1 : timeout(T )→ (gossip(bufferx), nodey) (bufferx) = Fr1(){
p = view.selectPeer()
if(push)

bufferx = (myAddress, 0)
view.permute()
view.moveOldestH()
bufferx.append(view.head(c/2 − 1))
gossip(bufferx)

else
bufferx = null
gossip(bufferx)

view.increaseAge()
}

rx
2 : (answer(buffery), nodey)→ Fr2(buffery){

if(pull)
view.select(c,H, S , buffery)
}

Customer activity (nodey )
ry

3 : (gossip(bufferx), nodex), [pull]→ (buffery) = Fr3(bufferx){
(answer(buffery),Nodex) buffery = (MyAddress, 0)

view.permute()
view.moveOldestH()
buffery.append(view.head(c/2 − 1))
answer(buffery)
}

ry
4 : (gossip(bufferx), nodex), [¬pull]→ Fr4(bufferx){

view.select(c,H, S , bufferx)
view.increaseAge()
}

Table 5.7: Behavior of a Gossip System constituted of two nodes (nodex and nodey).
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

5.4 Defining a simple generic P2P system

The idea of P2P is applied in various contexts and P2P systems do not necessarily have several

characteristics in common; neither do they have to rely on a fixed set of attributes. There are no

major standardization initiatives that look at all aspects of P2P technology and computing. The

term P2P is defined by its usage and unique formal definition of P2P computing does not exist

[Mauthe and Hutchison, 2003]. However, there are a number of features many P2P systems

share as introduced in the following well-known and academically accepted definitions:

• The Gartner Group [Gartner Research Group, 2001] defines P2P computing as: “char-

acterized by direct connections using virtual namespaces, it describes a set of computing

nodes that treat each other as equals (peers) and supply processing power, content or ap-

plications to other nodes in a distributed manner, with no presumptions about a hierarchy

of control".

• A brief concise definition of P2P computing is given in [Hofmann and Beaumont, 2005]:

“a set of technologies that enable the direct exchange of services or data between com-

puters".

• A more recent definition is given in [Taylor et al., 2009]: “The peer-to-peer (P2P) ar-

chitectural style consists of a network of loosely coupled autonomous peers, each peer

acting both as a client and a server. Peers communicate using a network protocol, some-

times specialized for P2P communication-such was the case for the original Napster and

Gnutella file-sharing applications. Unlike the client-server style where state and logic

are centralized on the server, P2P decentralizes both information and control."

These definitions highlight the following elements that are fundamental to P2P computing

and common in describing P2P applications: i) Direct exchange of resources between peers;

ii) Each peer is independent and equivalent in functions; iii) There are no center servers or

controllers; iv) Peers communicate using a network protocol.

In addition to these elements, we adopt the position proposed in [Barkai, 2002]: “One way

to derive a definition of purpose that is more inclusive, flexible, and extensible is this: There

are P2P technologies, and there is P2P computing". The P2P technologies allow peers to share
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5.4 Defining a simple generic P2P system

resources and collaborate on computational tasks. This implies an abundance of supporting

technologies, such as discovery, remote resource management, security and more. P2P com-

puting is the use of P2P technologies. A resulting phenomenon is the creation of an overlay

community (of peers/components) that collaborates through resource (data, services, ...) shar-

ing. This is the immediate result and operational purpose of P2P computing.

As can be understood from the above definitions, the P2P system we define with DDF is

formed by establishing an overlay network between peers. Peers are represented by component

instances. The same notation is used to refer to the component instances as well as the peers

they represent. Each component instance acts both as a server (with its input services) and

a client (with its output services). Each component instance is used to store resources (data)

which are accessible through services. Each instance is connected to a bounded number of other

instances and has a unique identifier, such as an IP address. As the network evolves, instances

can continuously seek after new partners by implementing a specific algorithm such as Gossip

algorithm (specified in Section 5.2). Thus, the final structure of the P2P network depends

on the kinds of these searching algorithms. We assume the existence of an underlying layer

(SON infrastructure in our case) that provides to component instances the necessary lookup

service (like a DHT; cf. Section 7.3.2) and communication mechanisms (like JXTA; cf. Section

7.3.3). These assumptions allow us to make only very weak networking issues at the high level

description and defer the additional ones to the lowest level where they are needed. Thus, we

provide a simple generic definition that can be implemented in different environments with

different low level assumptions.

Formally, we define a P2P system by extending the Definition 12 of a system.

Definition 15 (P2P system). A P2P system is defined by a 4-tuple P2PSys =< Inst,Con, γ, δ >:

• Inst is a set of component instances;

• Con = {(c1, c2)|(c1, c2) ∈ Inst × Inst} is a set of connections between component instances;

• γ : Inst → ID is a mapping function that maps each component instance c ∈ Inst to its

identifier id ∈ ID, where ID is a set of identifier;

• δ : T → InstT × ConT is a time mapping function that maps an instant t ∈ T to the set of

instances and connections that are available in this instant. �
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Chapter 5 : DDF: A formal language to specify component-based P2P applications

The time mapping function describes the evolution of the system over time. For example, if

a component instance c (a peer) joins the system at time ti and leaves at t j, then c is in the image

of t ∈ [ti, t j[. During the time interval [ti, t j[, c may open and close many connections to already

connected instances. These connections are also captured by the time mapping function and

are in the image of t ∈ [ti, t j[.

The time mapping function δ may control several P2P features (e.g., reach a certain posi-

tion in the network topology, adapt to failures, etc.), but the way how it is incorporated into the

specification depends on the protocol implemented by the network peers. For instance, in Gos-

sip protocol, each peer maintains a local membership table view(ID, age) providing a partial

view on the complete set of memberships and periodically refreshes the table using a gossiping

procedure.

To illustrate the evolution of a P2P system over time, we give the following example (see

Figure 5.5). The system consists of seven peers and ten connections. For all instants t ∈ [t0, t1[

the peers c1 to c5 participate in the system. c5 leaves the system at t1 and, therefore, its con-

nections disappear as well. c4 had a connection to c5 and could ask c3 about other peers. c3

could send the ipc1 to c4, so that c4 opens a connection to c1 at instant t2. At the same time, new

two peers c6 and c7 enters the system with a connection to c3 and c2, respectively. After t3, c3

mediates connections to c1. Formally, this example is defined as follows:

Inst = {c1, c2, c3, c4, c5, c6, c7};

Con = {con1, con2, con3, con4, con5, con6, con7, con8, con9, con10}.

ID = {ipc1 , ipc2 , ipc3 , ipc4 , ipc5 , ipc6 , ipc7 , };

Con con1 con2 con3 con4 con5 con6 con7 con8 con9 con10

(ci, c j) (c1, c2) (c2, c3) (c1, c3) (c3, c4) (c3, c5) (c5, c6) (c1, c4) (c3, c6) (c2, c7) (c1, c6)

γ :
Inst c1 c2 c3 c4 c5 c6 c7

ID ipc1 ipc2 ipc3 ipc4 ipc5 ipc6 ipc7
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5.4 Defining a simple generic P2P system

δ :

T InstT ConT

[t0, t1[ c1, c2, c3, c4, c5 con1, con2, con3, con4, con5, con6

[t1, t2[ c1, c2, c3, c4 con1, con2, con3, con4

[t2, t3[ c1, c2, c3, c4, c6, c7 con1, con2, con3, con4, con7, con8, con9

[t3, t4[ c1, c2, c3, c4, c6, c7 con1, con2, con3, con4, con7, con8, con9, con10

Figure 5.5: Illustration of an evolution of a P2P system.
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Chapter 6

Analysis of DDF specification

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Data-Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Analysis examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.1 Detection of deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Dominance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 122

This chapter aims at presenting how we analyze application behavior specified with our

Data Dependency Formalism, presented in the previous chapter. The first step of this analysis

is to construct a Data-Dependency Graph (DDG) that we introduce in Section 6.1 and 6.2.

After that, verifying a property is reduced to find a solution to a set of constraints (called data-

flow equations) on the inputs and the outputs of the graph nodes. This is illustrated through

two examples presented in Section 6.3.1 and 6.3.2. The first example consists of checking the

property of deadlock freedom which is reduced to find whether a node in the graph depends on

itself. The second example is about dominance property that has many applications in computer

science (code optimization, detection of parallelism, construct of hierarchical overlay networks,

optimizing routing, memory usage analysis, etc.). To compute dominance information in a

DDG, we formulate the problem as a set of data-flow equations that defines a set of dominators

for each graph node. These equations are solved with an iterative algorithm.
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Chapter 6 : Analysis of DDF specification

6.1 Introduction

As described in Section 2.2.2.2, Data-Flow Analysis refers to a body of techniques, which

derive information about the flow of data along program execution paths in order to infer or

compute some properties. To achieve this, we must first consider all the possible paths through

a flow graph that the program can take. Therefore, we have defined a Data-Dependency Graph

(DDG). It presents an abstract representation of a system. This abstraction exposes the right

level of detail to perform DFA.

The DDG models the flow of data values from the point where a data value is created, a

definition, to any point in a configuration where it is used, a use. A node in a DDG represents a

low-level operation on data. In most cases, nodes contain both definitions and uses. A directed

edge in a DDG connects two nodes (head and tail). The head defines a data value and the

tail uses it. The edges in the DDG represent interesting constraints on the control flow, i.e.,

a data value can be used only if it has been defined. This only implies a partial order on the

execution. Therefore, no total order among configuration operations is needed to be given by

the designer who often set it as an automaton to perform analysis. Moreover, it is possible

through a data-flow analysis on this graph to infer various data evaluation orders during run

time (e.g., total, parallel and incremental). Thanks to the theory of iterative data-flow analysis

based on a fixed-point theorem [Kam and Ullman, 1976].

6.2 Data-Dependency Graph

The Data-Dependency Graph is extracted from the semantic equations of the system by con-

necting together the Rule-Dependency Graphs corresponding to each rule used in this system.

The Rule-Dependency Graph of a rule r describes internal and external dependency relations

of input and output data, which are manipulated by the different services of r.

The internal relations are induced from the semantic equation of a given rule, which define

the computation of the output data in terms of the input data. Thus, Definition 16 defines the

internal dependency relation as follows:
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6.2 Data-Dependency Graph

Definition 16 (Internal Dependency Relation). The internal dependency relation Gint(r) in

IDr × ODr of a rule r is defined as follows:

ap Gint(r) aq if and only if (..., aq, ...) = F(..., ap, ...) (6.1)

�

Thus, aq depends on ap, if ap is an argument in the semantic equation for aq.

Figure 6.1: Example of an internal dependency relation.

Figure 6.1 shows an example of an internal dependency relation where output data a3 de-

pends on input data a1 and a2.

The external relations of a rule r are related to the source and destinations of events present

in r. Therefore, we present the definition of external dependency relation as follows:

Definition 17 (External Dependency Relation). Let a rule re describes the behavior of a com-

ponent instance e when it receives an input event, and let (v(ae
1, ..., a

e
q), e′) be an event in re. The

external relations induced from the event (v(ae
1, ..., a

e
q), e′) depend on the position of this event

in re:

i f (v(ae
1, ..., a

e
q), e′) ∈ re.L then ∀k ∈ 1..q, ae′

k Gext(r) ae
k (6.2)

i f (v(ae
1, ..., a

e
q), e′) ∈ re.R then ∀k ∈ 1..q, ae

k Gext(r) ae′
k (6.3)

�

Thus, ae
k depends on ae′

k , if ae
k is an argument in the input event received from e′. And ae′

k

depends on ae
k, if ae′

k is an argument in the output event emitted to e′.

Figure 6.2 shows an example of an external dependency relation where data of an input

event in rule re depend on data which are output in re′ .
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Chapter 6 : Analysis of DDF specification

Figure 6.2: Example of an external dependency relation.

When no confusion arises between the notions of relation and graph, we shall represent

them both by the same notation. Accordingly, we denote the Internal Dependency Graph of

a rule Gint(r) and the External Dependency Graph Gext(r). The union of these two graphs

represents the Rule-Dependency Graphs of r, which we denoted by G(r).

The Data-Dependency Graph, the graph of the whole system, is obtained from the union of

the Rule-Dependency Graphs and it is defined as follows:

Definition 18 (Data-Dependency Graph). Let Sys =< Inst,Con > be a system, the Data-Dependency

Graph of the system Sys is:

G(S ys) =
⋃

e∈Inst

( ⋃
r∈B(e)

(
Gint(r) ∪Gext(r)

))
(6.4)

�

Example 7. To illustrate how to construct a simple Data-Dependency Graph, we consider the

push-pull version (boolean attributes push and pull are true) of the system GossipSys presented

in Example 5. As specified before, the behavior of GossipSys is B(GossipS ys) = {rx
1, r

x
2, r

x
3, r

y
4},

where:

rx
1 : timeout(t) → (gossip(bufferx),Nodey) Frx

1

rx
2 : (answer(buffery),Nodey) → Frx

2

ry
3 : (gossip(bufferx),Nodex) → (answer(buffery),Nodex), updateView(bufferx) Fry

3

ry
4 : updateView(bufferx) → Fry

4

The Data-Dependency Graph of GossipSys at the end of timeout(t) is shown in Figure 6.7.

This graph is obtained from the union of the Internal Dependency Graphs of the rules rx
1, r

x
2, r

x
3

and ry
4, which are presented in Figures 6.3, 6.4, 6.5 and 6.6, respectively.
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6.2 Data-Dependency Graph

Figure 6.3: Internal Dependency Graph of the rule rx
1.

Figure 6.4: Internal Dependency Graph of the rule rx
2.

Figure 6.5: Internal Dependency Graph of the rule rx
3.

Figure 6.6: Internal Dependency Graph of the rule rx
4.
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Chapter 6 : Analysis of DDF specification

Figure 6.7: An example of a Data-Dependency Graph.
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6.3 Analysis examples

6.3 Analysis examples

6.3.1 Detection of deadlocks

In a component composition, services are often forced to wait for resources from other services

to finish execution. If the resources are not available, then the system may enter an infinite

wait state. Under the assumption that this issue is not caused by infinite loops, infinite wait

is always caused by deadlocks or starvations. A deadlock is a situation in which two or more

actions (services) are mutually waiting on each other to finish, while a starvation is a situation

in which an action is perpetually denied access to resources needed to make progress.

A system deadlock can be viewed as a circular dependency between data exchanged through

services. Therefore, the basis of our deadlock analysis is detecting possible circular dependen-

cies in the Data-Dependency Graph of the system.

Once the DDG is defined, we can induce if the system is deadlocked or not by searching for

circularity in the graph. In other words, we shall search for a datum which depends on itself.

An example of such as situation is given in Figure 6.8.

Figure 6.8: Example of data which depend on themselves.

Formally, a deadlocked system is defined as follows:

Definition 19 (Deadlocked system). Let Sys =< Inst,Con > be a system and G(Sys) = ∪e∈Inst(

∪r∈B(e)(G(r))) be the Data-Dependency Graph of Sys. Then Sys is said to be deadlocked if and

only if there exist a rule r ∈ B(e), e ∈ Inst such that G(r) contains a cycle. �

Now, we present an algorithm (Algorithm 3) which determines whether or not a system is

deadlocked. The first stage of our deadlock test algorithm is to construct the Rule-Dependency

Graph G(r) of each rule r in the behavior of each component in the system. This construction
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Chapter 6 : Analysis of DDF specification

is achieved by connecting together the internal and external dependency graph of r obtained

as described above. After that, G(r) is added to the Data-Dependency Graph G(Sys) which is

initially empty. Once all rule graphs are added to G(Sys), we compute transitive closure of

G(Sys), which we denoted by G(Sys)+, in order to add induced dependencies. Those induced

dependencies allow us to determine whether or not a node (a datum) of the graph is circular.

If this is true, then we deduce that the system has a deadlock and a message with the rule that

contains the circular data is printed.

Algorithm 3 Deadlock test

Require: S ys =< Inst,Con >; G(S ys) := ∅;

{ - - - - - - - - - - Construction of the system graph - - - - - - - - - -}
for all e ∈ Inst do

for all r ∈ B(e) such that r : (v0, e0)→ (v1, e1), ..., (vn, en) do
G(r) := Gint(r) ∪Gext(r);
G(S ys) := G(S ys) ∪G(r);

end for
end for

{ - - - - - - - - - - - - - - Search for deadlocks - - - - - - - - - - - - - -}
G(S ys) := G(S ys)+;
for all e ∈ E do

for all r ∈ B(e) such that r : (v0, e0)→ (v1, e1), ..., (vn, en) do
if G(S ys)/r contains a cycle then

print Deadlock detected in rule r;
end if

end for
end for

6.3.2 Dominance analysis

Dominance analysis is a concept from graph theory and has many applications not only in the

real world, but also in computer science. In compilers, dominance analysis is mostly used in

code optimization and it is performed over flow graphs representing the execution of programs.

One important task in this context is the optimization of loops since the execution of programs

tends to spend most of their time in their inner loops. In parallel computing, dominance analysis

is used to compute control dependences that identify those conditions affecting statement exe-

cution. Such information is critical for detection of parallelism [Srinivasan and Wolfe, 1992].
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6.3 Analysis examples

In peer-to-peer applications, dominance analysis can be used to construct hierarchical over-

lay networks for more efficient index searching. It can also be used for optimizing routing

among a set of nodes by reducing the searching space for a route to the dominating nodes in

the set. Dominating nodes are a small set of nodes which are close to all other. Another field

where dominance analysis is applied is memory usage analysis. In this field, the dominator tree

(defined hereafter) is used to easily find memory leaks and identify high memory usage.

In a Data Dependency Graph, we say that node di dominates node d j, written di dom d j, if

every path from the entry node of the graph to d j goes through di.

Figure 6.9: A Data Dependency Graph.

To make this dominance notion concrete, consider the Data Dependency Graph of Figure

6.9. Nodes d0, d1, d5, and d8 all lie on every path from d0 to d8, so Dom(d8) is {d0, d1, d5, d8}.

The full sets of dominators for the graph are as follows:

Dom(d0) = {d0}
Dom(d1) = {d0, d1}

Dom(d2) = {d0, d1, d2}

Dom(d3) = {d0, d1, d3}

Dom(d4) = {d0, d1, d3, d4}

Dom(d5) = {d0, d1, d5}

Dom(d6) = {d0, d1, d5, d6}

Dom(d7) = {d0, d1, d5, d7}

Dom(d8) = {d0, d1, d5, d8}

A useful way of presenting dominance information is a dominator tree, in which each node
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Chapter 6 : Analysis of DDF specification

d dominates only its descendants. For example, Figure 6.10 shows the dominator tree for the

DDG of Figure 6.9. Notice that d6, d7, and d8 are all children of d5, even though d7 is not an

immediate successor of d5 in the DDG. In fact, each node di in the tree has a unique immediate

dominator d j that is the last dominator of di in the DDG.

Figure 6.10: Dominator tree for the DDG of Figure 6.9.

To compute dominance information in a DDG, we can formulate the problem as a set of

data-flow equations and solve them with an iterative algorithm. This algorithm is based on the

one proposed by [Allen and Cocke, 1972] who relied on the principles of data-flow analysis to

Algorithm 4 Iterative Dominator Algorithm

Require: G(S ys) := (N, E);

for all n ∈ N do
Dom(n) = N;

end for

changed := True;

while changed do
changed := False;
for all n ∈ N do

temp = {n} ∪
(⋂

m∈preds(n) Dom(m)
)
;

if temp , Dom(n) then
Dom(n) = temp;
changed := True;

end if
end for

end while
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6.3 Analysis examples

guarantee termination and correctness.

Given a DDG = (N, E), where N is a set of nodes and E is a set of directed edges, the

following data-flow equations defines the Dom sets:

Dom(n) = {n} ∪
( ⋂

m∈preds(n)

Dom(m)
)

(6.5)

with the initial conditions: Dom(n0) = n0, and ∀n , n0, Dom(n) = N. preds is a relation

defined over E that maps each node to its predecessors in the graph. Algorithm 4 shows an

iterative solution for these dominance equations. It initializes the Dom set for each node, then

repeatedly computes those sets until they stop changing.
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Chapter 6 : Analysis of DDF specification
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Chapter 7

SON: The runtime middleware
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7.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.5.1 Simple Georeferencing Tool (SGT) . . . . . . . . . . . . . . . . . . 138

7.5.2 Social-based P2P recommendation system (P2Prec) . . . . . . . . . 142

This chapter describes fundamental aspects of the SON (Shared-data Overlay Network)

middleware. SON is based on the concepts (i.e., component, service, interface, etc.) defined

and formalized in our DDF for developing and deploying component-based P2P applications.

This chapter addresses aspects referring to the structure of SON, its underlying component

model and communication model. Besides those conceptual issues, the chapter presents a sum-

mary of the prototypical implementation and shows how SON middleware can be used to sup-

port the development of component-based P2P applications, as SGT (Simple Georeferencing
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Chapter 7 : SON: The runtime middleware

Tool) which is a lightweight application dedicated to collect, process and display georefer-

enced data, and P2Prec (a social based P2P recommendation system) which is developed in our

research team for large-scale data sharing.

7.1 Overview

It is expected that the applications specified with our DDF formalism would need to run in dis-

tributed and ubiquitous environments. In this context, application components must be able to

communicate with each other through the network. In addition, they must be able to adapt ac-

cording to their evolution and execution environment. We say that the application (architecture)

is dynamic [McKinley et al., 2004]. To meet these constraints, we adopted a service-oriented

component approach to develop a middleware called SON (Shared-data Overlay Network),

available online [SON, 2011] as an open-source software.

SON is based on the concepts defined in the DDF for developing and deploying applica-

tions in a simple and effective way. SON combines three powerful paradigms: CBSE, P2P and

Service-Oriented Architecture (SOA) [Papazoglou and Heuvel, 2003]. As described in Section

3.2, SOA is a software architecture that uses services as fundamental elements for developing

applications. SOA is based on three actors: i) the Service Provider publishes on a Service

Broker the service descriptions which specify both the available service operations and how

to invoke them (e.g., network protocol that must be used for the invocation, software compo-

nents required to establish the connection, etc.); ii) the Service Broker registers the service

descriptions and references; and iii) the Service Consumer discovers the services by running a

search on the Service Broker. It then establishes a connection with the provider to invoke the

service operations. The SOA design principles (cf. Section 3.2.2) allows the development of

modular, loosely coupled and dynamic applications. Along this chapter, we show how these

SOA design principles can be integrated into our middleware while being separated from the

implementation code.

SON middleware is composed of a component model and a connection model (see Figure

7.1). The component model defines how to create and validate components. The connection
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7.1 Overview

model provides not only local and distributed communication mechanisms, but also allows

different peers to publish and search resources. In this context, a resource represents a com-

ponent that provides or requires services, and a peer represents a set of locally interconnected

components.

Figure 7.1: Overview of SON middleware.

By using the DDF specifications, SON’s user is able not only to check the consistency be-

tween each DDF rule and the corresponding implementation, but also to perform an effective

code generation, i.e., the target implementation and generated code fit well the behavioral con-

straints contained in the DDF rules. In fact, the user defines for each component a set of services

(input, internal and output) and behavioral rules. Then, he implements the code of the compo-

nents, i.e., the method F that implements the service corresponding to the input event of each

rule (cf. Definition 6). Afterwards, a code generation tool, called Component Generator (CG),

checks whether the implementation of each method F is valid and fits well the constraints (cf.

Definition 10) contained in the corresponding DDF rule. Once the implementation is valid, the

CG generates a set of Java source files that implement the container of the component. These

Java files (see Figure 7.2) are compiled together with the implementation code to generate a

standalone and ready-to-use component. Thanks to the component container that embodies all

resources needed to adapt the implementation code to the run-time environment. In particular,

the generated container embodies:
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Chapter 7 : SON: The runtime middleware

• mechanisms to instantiate, connect and run the component;

• a local facet for the business code developer who does not need to have a consistent

knowledge about the underlying infrastructure;

• a server facet that is connected to the local facet with a facade;

• a facade that transforms the output invocations in the local facet to an output service call

emitted by the server facet (and vice versa for the inputs);

• scheduling mechanisms to control the execution of the service invocation queue.

Figure 7.3 shows the process that is followed to generate the container. It also shows how

the DDF rules are used and the way in which the process steps are performed (i.e., automatically

or manually).

During the execution, a particular component runs by default. This component, called

Component Manager (CM), supports the creation of components and establishes connections

between them. To make the connection between two components, the CM uses their two inter-

face description files to match the required and provided services for both components. This

matching works both ways.

They exist two configurations in SON middleware. The first configuration (local) can man-

age the local exchange between the components on the same peer. In this case, the CM manages

locally a list of components. The second configuration allows managing the publishing and dis-

covery of components in a P2P network. In this context, the CM delegates the management of

remote component lists to a DHT (Distributed Hash Table) [Rhea et al., 2004]. A DHT is a dis-

tributed system that provides mechanisms to collectively manage a mapping from hash values

(keys) to some kind of content (data values), without any centralized control or fixed hierarchy,

and with a little human assistance. DHTs were introduced in the research community of P2P

because, in most cases, the challenges of P2P systems (e.g., storage, connectivity, coordination

of resources, etc.) can be reduced to a single problem: “How do you find any given data item

in a large P2P system in a scalable manner, without any centralized servers or hierarchy?"

[Balakrishnan et al., 2003].

After the connection process, two components interact with each other directly without

going through the CM (cf. Section 7.3.3). The advantage of this environment is its dynamic
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7.1 Overview

Figure 7.2: SON’s component structure.

Figure 7.3: Overview of the development process.
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Chapter 7 : SON: The runtime middleware

aspect. In fact, during the execution, the components can dynamically join and leave the system

over connections established on the fly. The next sections present the different aspects of this

middleware in more details.

7.2 Service-oriented component model

As presented in [Liu et al., 2006], service-oriented component approach help developers to

build SOC applications by separating non-functional requirements from business logic. To im-

plement such applications, one must take into account standards, code distribution, deployment

of components and reuse of business logic. To cope with these changes, applications need to

be more open, adaptable and capable of evolving. We present in this section a service-oriented

component model based on: i) the component interface description, named CDML and ii) the

deployment description, named World.

7.2.1 The component interface description (CDML)

We have defined an abstract Component Description Meta Language, i.e., independent from
any component technology:

• To enable that the runtime environment can be taken into account without any modifica-

tion to the business code.

• To enable that an interface can dynamically be discovered and adapted.

• To add meta-information to a component. This is a generic approach to record infor-

mation dealing with several concerns such as deployment management and component

behavior (specified with DDF rules in our case).

When these mechanisms are included, The Component Generator can automatically produce

the non-functional code. That is to say the container that hides all the communication and

interconnection mechanisms like the transformation of a service call by a sending message, the

management of a queue of received messages, and the broadcasting of a message toward the

connected components. Those runtime operations are totally transparent for the designer.

132

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



7.2 Service-oriented component model

As an example, a simple CDML of a component in a Gossip system (specified with DDF

formalism in Section 5.2) is given in Figure 7.4. The input keyword corresponds to a provided

service definition, and the output keyword corresponds to a required service definition. The CG

can automatically generates an equivalent description in Web Services format (WSDL) when

generating the non-functional code.

Figure 7.4: Simple CDML of a component (node) in a Gossip system.

7.2.2 The deployment description (World)

The deployment description file is used to describe the initial state of an application. It contains

a description of the components and connections that have to be created by the CM to launch

the application. Of course, after that, other components can ask to be connected with each

other dynamically as explained in the next subsection. A component instance is identified by

the couple (name of the component, name of the instance). For example, in Figure 7.5 the

instance (cmp1, cmp1-1) corresponds to an instance of component cmp1.
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Chapter 7 : SON: The runtime middleware

Figure 7.5: Example of a deployment description file.

7.3 P2P communication model

7.3.1 The Components Manager (CM)

The Components Manager loads components, creates their instances and maintains a local list

of them. To establish connections between two instances, the CM uses their interfaces to con-

nect output connectors (vs. input) of the first one with input connectors (vs. output) of the

second one. When connected, the two component instances interact with each other directly

without going through the CM (see Figure 7.6). Connection management, which includes

creation or destruction of connection, occurs when the CM receives notifications announcing

changes in the component registry. These mechanisms allow an application to be built as in-

terconnected component instances which can adapt dynamically to their context. Thanks to

the CM that monitors the execution context and acts on the components by managing their

connections.

Figure 7.6: Connection between instances of components.
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7.3 P2P communication model

In P2P mode, to know whether an instance is already created, the CM should not be lim-

ited to a local search. If the instance does not exist locally then the CM should also extend

the search to all connected CMs. For better modularity and information management, the CM

delegates the management of components and instances tables to the DHT module. The CM

has a policy to choose the effective connection. For example, a policy will favor local connec-

tions over distributed connections. Moreover, the CM structure allows to instantiate different

policies by using the Command design pattern [Gamma et al., 1995]. In fact, The request to

connect components is done in two steps. In the first step, the CM interrogates the local list

and DHT module on the presence or not of the instance of the destination. Each one responds

asynchronously to the CM. When the CM is in possession of all responses (even negative) then

in the second step, it selects according to its policy the module that handles the effective con-

nection. If in the first step, there is no positive response, the connection request is put on hold

until the CM receives a notification, such as a component has been started or discovered.

To publish, discover and connect components on the network, two modules are proposed

(see Figure 7.7). DHT module to publish and discover components, and PIPES module to

connect components deployed on remote peers.

7.3.2 The DHT module

DHT module manages remote component lists. In the current version, DHT module uses the

OpenChord implementation [Stoica et al., 2001], but nothing prevents from using other imple-

mentations. For this purpose, an interface was defined with the usual methods (put (key,value)

and get(key)) that can be expected from a DHT module. At each creation of a component

instance, the CM publishes into the DHT, the necessary information used by remote PIPES

modules to establish connection to this new created component instance.

7.3.3 The PIPES module

The PIPES module handles the communication between remote component instances. It opens

a TCP connection between peers. It is based on the concept of virtual pipes introduced into

the JXTA [Wilson, 2002], a communication technology that has been widely used within the
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Chapter 7 : SON: The runtime middleware

Grid community. This concept allows passing through a single TCP connection, several logical

communications (virtual pipes) between peers. By using this abstraction, each component may

open a virtual pipe to read messages sent to it. A virtual pipe is identified by a Universally

Unique Identifier (UUID). This identifier is associated with the component instance name and

registered in the DHT as follows:

[Key: component instance Name, Value: UUID of the virtual pipe]

[Key: UUID of the virtual pipe, Value: UUID of the PIPES module]

[Key: UUID of the PIPES module, Value: IP + Port Number]

The second record associates the virtual pipe component with the PIPES module it belongs.

The third record associates the PIPES module with its IP address and port number. Thus, two

peers can find into the DHT all the information needed to connect their components.

Figure 7.7: Run-time architecture of SON middleware.
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7.4 Implementation

7.4 Implementation

This approach has been fully integrated into the Eclipse environment [The Eclipse Foundation, 2003]

and implemented on top of OSGi [The OSGi Alliance, 2007]. Eclipse is built around a very

small extensible runtime core and its functionality, (including compilers, workbench, and sup-

port tools) consists of plug-ins that can be managed separately. That allowed us to integrate the

Component Generator (CG) into Eclipse as a plug-in.

The application programmer develops his Java code with Eclipse IDE, in the classic way.

Then, after defining the CDMLs, non-functional codes are generated using the CG plug-in to

obtain components usable by the SON middleware (see Figure 7.2). The OSGi service platform

provides a computing environment for applications, called bundles, to dynamically deploy ser-

vices in a centralized environment. It is also a small layer that allows multiple components

to efficiently cooperate in a single Java Virtual Machine (JVM) by managing aspects of local

service deployment. However, OSGi service platform leaves service dependency management

as a task for component developers, thing which is treated automatically in our case by the CM.

At the start of execution, the OSGi platform is launched, and the CM is started by default

as a bundle. In this context, two OSGi services are used and published. The first one, called

ContainerService, allows publishing the CDML when a component is started. The CM then

adds that started component to its table of available components. The second one, called,

ContainerProxy, allows publishing the component instance when it is created. The CM then

adds that new instance to its table of created instances. The CM can then manage the execution

in an extended environment unlike other classic Java application environments. Moreover,

installing a new bundle, registering a new service, or updating an existing component does not

need a restart of the JVM because the concerned components are notified of the new state and

adapt their connections accordingly through the CM.

7.5 Applications

In this section we illustrate the practical use of SON middleware with two application scenarios:

i) Simple Georeferencing Tool, ii) P2Prec: a social based P2P recommendation system for
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Chapter 7 : SON: The runtime middleware

large-scale data sharing. For each of these applications, we briefly describe its principle and

how SON has been used.

7.5.1 Simple Georeferencing Tool (SGT)

Simple Georeferencing Tool (SGT) is a lightweight prototype implemented as an application of

SON middleware. It is only composed of three SON’s components. SGT is dedicated to collect,

process and display georeferenced individual level data. Georeferencing is relating information

to geographic location [Hill, 2006] and its scope includes the informal means of referring to

locations, which we use in ordinary discourse using placenames, and the formal representations

based on longitude and latitude coordinates and other spatial referencing systems.

The application of georeferencing extends to almost all fields of human activity, includ-

ing medicine, agriculture, petroleum exploration, government administration and historical re-

search.

Georeferencing tools include services to identify a location of a place, object or person, such

as discovering the nearest gas station or the whereabouts of a colleague or friend. They include

package and vehicle tracking services, location-based games and even marketing services. In

our case, we have chosen to explain our simple georeferencing tool SGT by using it as a geo-

recommendation application as described in the following scenario.

A simple application scenario: using SGT for Geo-recommendation

In cities all over the world, people search to discover new places, to describe their impressions

and to share their discoveries with their colleagues, family, and friends. SGT is used to create

and display a combined view of surrounding addresses along with recommendations based on

the experiences and tastes of other persons. Thus, when SGT users are far from home and need

information about new places (restaurants, movie theaters, museums, gyms, etc.), SGT’s search

engine can helps them with the recommendations of locals in the surrounding area.

In this experimental scenario, SGT implementation consists in three SON’s components:

Provider, Consumer and Super-node. Provider component instances are used to expose the
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7.5 Applications

georeferenced services to the network, while Consumer component instances are used by

service consumers. Each Super-node instance is responsible for serving a certain number of

Provider and Consumer instances by publishing georeferenced services and the associated rec-

ommendation, answering queries, and creating notifications. Super-node component embodies

the functionalities of SON’s communication model (see Section 7.3). Thus, and instead of

using a central server as the case of most georeferencing tools, Super-node instances form an

overlay network based on a DHT that offers a reliable, robust and scalable mechanism to store

and manage data using P2P principles. As indicated in Section 7.3.2, we use OpenChord as a

DHT implementation.

Figure 7.8: Using SON to implement a geo-recommendation application.

Figure 7.8 gives a simple use case where provider users (a restaurant and a shop) use

Provider component instance (denoted by p) to publish their georeferenced services, while

consumer users use Consumer component instance (denoted by c) to get and add recommenda-

tions about those services. Provider and Consumer instances connect to the network through
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Chapter 7 : SON: The runtime middleware

Super-node instances which are their access points.

Provider users are required firstly to add (through Provider GUI, see Figure 7.9) new places

on the map and submit some information about the services available in those places. Places

on the map can be a local, work zone, district, path, department, etc. The service information

contains a name and a brief description.

After that, for each georeferenced service, a key-value pair is stored in the DHT. The key is

calculated depending on the longitude and latitude coordinates of the region where the service

place is located. The value of a key has the following form: serviceInfo, point, point, point, ...

point, where each point corresponds to the longitude and latitude coordinates of the corners of

the polygon representing the service place.

Thus, a consumer user can discover the available services around him by running queries

in the DHT through the Consumer GUI (see Figure 7.10). Afterwards, the consumer user can

Figure 7.9: Screenshot of Provider GUI .
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7.5 Applications

add his own recommendations about a service. He can also subscribe to a desired service and

receive notifications about new recommendations added by other people.

We close by pointing out that the front-end part (Provider and Consumer GUI) have been

generated from a Java Servlet using Google Web Toolkit (GWT) [GWT, 2007]. Java Servlet

is a server-side web technology that serves user requests and receives responses from the busi-

ness code of the component. GWT is a development toolkit for building complex browser-

based applications without the developer having to be an expert in browser technologies (e.g.,

JavaScript, AJAX and XMLHttpRequest). GWT cross-compiler translates the Java source code

to standalone JavaScript files that are deeply optimized. These allow SON’s components to eas-

ily provide a web user interface that runs across all browsers, including those for mobiles.

Figure 7.10: Screenshot of Consumer GUI.
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Chapter 7 : SON: The runtime middleware

7.5.2 Social-based P2P recommendation system (P2Prec)

In this section, we present a summary of the implementation of a prototype based on Gos-

sip protocol (specified with DDF formalism in Section 5.2). The prototype is called P2Prec:

a social-based P2P recommendation system. P2Prec was conceived in our research team

[Draidi et al., 2011b, Draidi et al., 2011a] and its web site is available online [P2Prec, 2011].

We refer to those references for further reading.

Locating contents based on contents ids in a P2P overlay network is now well solved. How-

ever, the problem with current P2P content-sharing systems is that the users themselves, i.e.,

their interest or expertise in specific topics, or their rankings of documents they have read, are

simply ignored. Consider, for instance, a scientific community (e.g., in bio-informatics, physics

or environmental science) where community members are willing to share large amounts of

documents (including images, experimental data, etc).

P2Prec is a social-based P2P recommendation system for large-scale content sharing. The

main idea is to recommend high quality documents related to query topics and contents hold

by useful friends (of friends) of the users, by exploiting friendship networks.

The recommendation model relies on a distributed graph, where each node represents a

user (peer) labeled with the contents it stores and its topics of interests. The topics each peer

is interested in are automatically calculated by analyzing the documents the peer holds. Peers

become relevant for a topic if they hold a certain number of highly rated documents on this

topic. A peer v becomes useful to a peer u, if u’s topics of interest and v’s relevant topics are

overlapped. To disseminate information about relevant peers, P2Prec rely on Gossip protocol as

follows. At each gossip exchange, each user u checks its gossip local-view to enquire whether

there is any relevant user v that is useful to u, and its friendship networks have high overlap

with u’s friendship network. If it is the case, a demand of friendship is launched among u and v.

Whenever a user submits a key-word query, this query is redirected to the top-k most adequate

friends by taking into account similarities, relevance, usefulness and trust.

We developed P2Prec as a SON application with two components: the LDA component for

the documents topics process and the P2Prec component for the recommendation process. For
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7.5 Applications

instance, the services of the P2Prec component are the services for passive and active prop-

agation through gossip services (gossip and gossipAnswer services) and the queries services

(query and queryAnswer services). There are two OSGi configurations, the Bootstrap Server

(BS) configuration and the Client (the peer) configuration. To run the P2Prec application, the

BS must be started on a given machine (with a given IP address). This IP address will be used

as the entry point into the P2Prec network for new peers. At the startup time, a new peer must

first identify itself with the BS (connect service) and the BS is going to return the current set

of all topics (allTopics service). Then within the local peer’s LDA component and the current

topics, the topics of each document is computed locally.

After these steps, the peer can start the recommendation steps and documents discov-

ery without any connection with the BS. Indeed, the research of topics of a new document

(computeTopic(doc) service) and the computing of topics of a query (computeTopic(query) ser-

vice) can be made locally with the local peer’s LDA component. Depending on the evolution

of documents on the P2Prec network, the BS may update the set of topics of documents, and

inform the peers by broadcasting this new topic set (using the allTopics service).
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Chapter 8

Evaluation of SON in the STAMP project
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This chapter aims at presenting the results of the evaluation of the SON middleware in

the context of STAMP project. The evaluation consists of implementing application scenar-

ios from the area of modelling environmental landscapes and their dynamics. The objective

is to show, how the SON middleware (i.e., especially the dynamic availability of services in

a service-oriented runtime) is able to improve and enhance the effectiveness of such environ-

mental application scenarios. At first, the main characteristics of today’s research approaches

in environmental modelling are outlined in Section 8.1. Known limitations of these approaches

have led to the initiation of the STAMP project, whose objectives are summarized in Section
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Chapter 8 : Evaluation of SON in the STAMP project

8.2. The fundamental concepts of a modelling language (called Ocelet) developed to meet

STAMP objectives are outlined in Section 8.3. Finally, two environmental application scenar-

ios are presented in Section 8.4: i) the Lotka-Volterra model which is also called predator-prey

model, ii) a land-scape modelling experiment on the spread of a mosquito-borne disease (Rift

Valley Fever) in an arid area in West Africa where ponds, pastures, herds and mosquitoes come

into play.

8.1 Characteristics of the main research approaches in envi-
ronmental modelling

Computer modelling of systems in space and time is common practice in many scientific dis-

ciplines. It allows by simulation the verification of the knowledge one has of a system, and

therefore helps to better understand how the system works in some situations, while aiming

at predicting the behavior of the system in a variety of other situations. When the system

considered is an environmental landscape, for which full scale physical experimentation can

rarely be considered, modelling could be applied to help analyze a variety of important issues

facing society today, such as the degradation of natural ecosystems with loss of biodiversity,

the emergence and spread of new diseases due to changing environmental and climatic condi-

tions, or the uncontrolled urbanization and population migrations as expressions of deep social

transformations.

The modelling of spatial and non-spatial dynamics of landscapes have been carried out

in a large variety of not only thematic, but also methodological contexts. No less than five

paradigms or modelling formalisms – system dynamics (SD), discrete event (DE), cellular au-

tomata (CA), agent-based (AB) and geographic information systems (GIS) – are being used

[Burrough and Mcdonnell, 1998, Borshchev and Filippov, 2004, Bousquet and Le Page, 2004,

Ratze et al., 2007]. This diversity, while being a sign of an active research field, may also sug-

gest that the concepts used by modellers could be too diverse to be satisfactorily described

with any single formalism. For instance, while geared for manipulating spatial information,

GIS suffer from an intrinsic limitation of not properly handling time (e.g., [Langran, 1992]).

During the last two decades there have been major contributions to address the Time issue
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8.1 Characteristics of the main research approaches in environmental modelling

in GIS (e.g., [Langran, 1992, Peuquet, 1994, Worboys, 1994, Claramunt and Thériault, 1995,

Yuan, 1999, Wachowicz and Wachowiez, 1999, Parent et al., 2006]). Adding Time as another

dimension to space proved however not to be just an implementation problem, and recom-

mendations were made that more theoretical and conceptual developments would be required

[Peuquet, 2001]. Likewise, formalisms that consider Time first (i.e., SD, DE) face the opposite

limitation with spatial information, where it is widely assumed the latter can only be treated

as either field or object models [Goodchild, 1992, Peuquet, 2001]. Improvements were sought

with coupled or hybrid models that capitalize on more than one of the formalisms: SD-DE

(e.g., [Zeigler, 1984]); AB-SD (e.g., [Duboz et al., 2003]); GIS-AB (e.g., [Brown et al., 2005,

Torrens and Benenson, 2005]); AB-DE (e.g., [Uhrmacher and Schattenberg, 1998]); AB-CA

(e.g., [Bousquet et al., 1998]); CA-DE (e.g., [Wainer and Giambiasi, 2005]). These works are

representative of what can be considered a highly active research domain, where research

communities assemble to address common thematic (e.g. landscape ecology, urban plan-

ning and management, spatial epidemiology), methodological (e.g. MAS–multi-agent sys-

tems, DEVS–discrete event system specification) as well as conceptual (e.g. object-field mod-

els of space (e.g., [Couclelis, 1992, Cova and Goodchild, 2002]), hierarchy and scales (e.g.,

[Wu, 1999]), data quality (e.g., [Devillers and Jeansoulin, 2006]), indeterminate boundaries

(e.g., [Burrough et al., 1996], time in GIS) issues.

In addition to the problem of choosing the appropriate modelling approach in a given con-

text, previous studies have stressed on the difficulties that modellers face when working from

conceptual models of dynamic landscapes to their simulation on a computer [Fall and Fall, 2001].

A general-purpose modelling language such as UML [OMG, 2007] appears unsuitable for two

main reasons: (i) it is not a directly executable specification: the execution model is only par-

tially implemented, such that the user must manually complete the produced code and (ii) the

concepts proposed are very general, and not readily configurable to the present case. One ap-

proach has been to develop domain specific languages (e.g. SME; [Maxwell and Costanza, 1997])

(SELES; [Fall and Fall, 2001]) (L1; [Gaucherel et al., 2006]) that would allow domain experts

to concentrate on the conceptual model, while leaving to an associated software tool the trans-

formation of the model into an implementation that runs on a computer. In this way, domain

experts may develop models using a higher level language, instead of programming directly

147

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



Chapter 8 : Evaluation of SON in the STAMP project

with general-purpose languages like Java or C++. However, for such a large domain where

spatial, temporal and multi-scale issues are still actively being studied, a DSL that can support

research on modelling processes in landscapes has to be flexible, and especially so at the very

basic level where landscape features and their interactions are defined. For example, a DSL that

has originally been developed using a predefined spatial data structure (e.g. grid cells) may limit

modellers in situations where other structures are more appropriate [Gaucherel et al., 2006]. A

trade-off between ease of use and expressiveness of a DSL therefore seems inevitable here.

An interesting parallel can be made between, on one hand, landscape entities and their in-

teractions that need to be modelled, and on the other, software components and services that

emerged with the component model programming. Interacting features in a landscape in many

aspects behave like communicating software components, and it is not surprising that many no-

tions used when modeling processes occurring in landscapes, such as dynamics, delays, events,

response or agent behavior, are also present in the service-oriented computing (cf. Section

3.2). In this study, we present an approach which has been developed for experimenting the

modeling of a variety of landscape situations that takes advantage of the flexibility offered by

component-service programming.

8.2 The STAMP project

8.2.1 Factual information on the project

The STAMP project (STAMP: modelling dynamic landscapes with Spatial, Temporal And

Multi-scale Primitives) is a research project coordinated by Danny Lo Seen (from CIRAD,

a French research centre working with developing countries to tackle international agricul-

tural and development issues). STAMP was supported (in part) by the Agence Nationale de

la Recherche (ANR) under Project No. ANR-07-BLAN-0121. The project partners are the

TETIS research unit (CIRAD; team leader: Pascal Degenne), the Zenith team of INRIA (team

leader: Didier Parigot), the Gaspard Monge Computer laboratory of Paris-Est University (team

leader: Olivier Curé) and the AMAP research unit (INRA, IRD; team leader: Daniel Auclair).

148

te
l-0

07
66

32
9,

 v
er

si
on

 1
 - 

18
 D

ec
 2

01
2



8.2 The STAMP project

8.2.2 Goals of the project

Each of the approaches discussed above in the previous section has demonstrated specific ben-

efits in different domains of application. However, research on environmental modelling re-

mains organized around tools that are not quite inter-compatible, in very dynamic but separate

research communities, whereas integration of different disciplines is crucial given the important

challenges facing societies today.

A known limitation of these approaches is the strong constraint relative to the format used

to represent spatial entities, urging the modeller to think in terms of grids, points, lines or poly-

gons. STAMP project attempt to overcome this constraint by exploring an approach based on

the use of modelling primitives. In the process, it was necessary to identify and define concepts

that are essential for modellers, then build a modelling computer language (called Ocelet),

together with the grammar and syntax needed to manipulate these concepts, and finally, to

develop the compiler and the environment/interface for building models and running simula-

tions. With Ocelet, the landscape is seen as a system composed of entities that interact through

relations. The language allows using pre-developed primitives to describe these entities, the

relations that link them, and to establish evolution scenarios of the system.

8.2.3 Our contributions in the project

Within the STAMP project, we have contributed in two main ways. First, we have participated

to the design and the specification of the Ocelet modelling language. Second, we have defined

for Ocelet a service-oriented component runtime based on SON infrastructure.

Compared to similar existing languages (cf. Section 8.1), Ocelet language elements have

been designed to seek a balance between modelling facility in simpler situations and ade-

quate expressiveness in more complex ones, while taking advantage of the flexibility offered

by component-service programming. The structure and the logic of the language, as well as

the language elements, are introduced in Section 8.3. For further reading, we refer the reader

to [Degenne et al., 2009] and [Degenne et al., 2010].

In addition to landscape complexity that is difficult to address otherwise than by modelling,
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Chapter 8 : Evaluation of SON in the STAMP project

landscape scientists (from different disciplines) face other difficulties when working from con-

ceptual models to their simulation and execution on a computer. Moreover, this kind of highly

dynamic applications must adapt according to its own evolution and change in its execution

context. But various business (the domain of landscape modelling) and technical challenges

(the management of dynamism and service interactions) complicate the ability to develop such

applications. For this reasons, we have chosen to develop an Ocelet runtime that would allow

domain experts to concentrate on the conceptual model, while leaving to SON middleware the

transformation of the model into an implementation that runs on a dynamic execution environ-

ment. Thus, the modeler of an Ocelet application does not need to know how the non-functional

code (e.g., communication mechanisms, sending and receiving messages, message queue man-

agement, etc.) is implemented. Furthermore, the encapsulation of Ocelet elements in SON

components allows the reuse of these elements in other landscape models. Since SON has been

presented during the previous chapter, we highlight in Section 8.4 application scenarios from

the area of landscape modelling in order to demonstrate the capabilities of the Ocelet runtime

based on SON middleware and its underlying mechanisms. For further reading, we refer the

reader to [Ait Lahcen et al., 2009] and [SON, 2011].

8.3 Ocelet modelling language

Ocelet has followed DSL development procedures recommended by [Mernik et al., 2005]. Its

design had to meet two main requirements: i) it has to provide concepts adapted for modelling

processes in landscapes, and ii) it must have underlying operational semantics that are able to

automatically generate code and run simulations corresponding to the models written with the

language. Around the language there is a modelling framework composed of

- a model building environment that enables syntax analysing and type verification,

- a code generator and compiler, and

- a program execution runtime based on SON infrastructure (see Figure 8.1).

Ocelet is designed around five main concepts: Entity, Service, Relation, Scenario and

Datafacer. We define hereafter how these concepts should be understood in the context of
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8.3 Ocelet modelling language

Ocelet. Other common concepts such as argument, property, number are also used, but they do

not require specific descriptions.

Figure 8.1: The Ocelet modelling and simulation framework.

8.3.1 Ocelet main concepts

Entity

Entities are basic modelling parts that can be put together to build a model. A whole model

is, as such, also an entity. An entity can contain other entities, and is then called a composite

entity. Entities that do not contain other entities are called atomic entities. A forest for example

can be modelled by a composite entity that contains tree entities which are part of the forest.

From a computer science point of view, an entity is a component: an independant piece

of code that can be connected to other components to build an application. Entities can per-

form operations called services. Entities being software components, they can dynamically be

connected through their services, even without knowing how they are designed internally.

Structure of an entity:

entity( name, property*, service*, entity*, scenario*, relation*,

datafacer* )
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Chapter 8 : Evaluation of SON in the STAMP project

That specification means that an entity can contain properties (property*means 0 or more

property), services, entities, scenarios, relations, datafacers, and a name. Figure 8.2 gives an

illustration of this concept.

Figure 8.2: An illustration of a composite entity.

Service

A service is a functional description of how one can relate to an entity. It is thus a communica-

tion port of an entity. As arguments, service accept values from other entities, and describes the

capability of the entity to export values to other entities of the model. Services are published

outside the entity they belong to, meaning that it is possible to obtain a list of all the services

an entity provides.

Structure of a service:

service( name, argument*, result )

Relation

An entity can directly call a service available on another entity. It is the simplest link that can be

established betwen two entities. When modelling interacting landscape elements, relations of-

ten cannot be reduced to just a transfer of information between entities. Information sometimes
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8.3 Ocelet modelling language

needs to be transformed according to the nature of the relation. Two aspects of the interactions

have to be considered: we have to indicate which entities are interacting with each other, as

expressed by an interaction graph, and at the same time describe what is happening when they

interact. In Ocelet, the concept of Relation integrates both of these aspects.

Relations as interaction graphs

An interaction graph not only defines who are in relation (graph structure) but also how

the elements relate (behaviour). When modelling the environment, we consider that working

directly on interaction graphs can be useful for at least two reasons. First, acting at the most

elementary level of the underlying data structure (a set of dynamic graphs) allows manipulat-

ing in a similar way different kinds of relations (aggregations, spatial, functional, ...). Second,

the state of the model at any given time can be analysed using graph analysis algorithms to

extract topological characteristics that emerge during the simulation. These may reflect some

specificities of the model that would hardly be visible otherwise. Such analysis algorithms

have for example been developed by [Batagelj and Mrvar, 1998], [Fuller and Sarkar, 2006] or

[Saura and Torné, 2009].

Interaction graph with dynamic structure and behaviour

Entities of a model can, at a given time, relate to each other in diverse ways. For example,

neighbourhood (where two entities are considered neighbours if they are close enough for a

given distance function), aggregation (where some entities are considered parts of a larger

composite entity), connectivity (where entities can reach each other if a communication route

exist between them), influence (where one entity can influence the behaviour of another one)

are in fact relations. For each relation, one can build a graph where the nodes are entities and

the relations between entities are the arcs.

In many environmental modelling cases the graphs needed are actually hypergraphs (each

arc may connect more than two nodes). Such hypergraphs can be built explicitly. For example,

if we have several groups of entities connected to each other in the form of simple graphs,
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Chapter 8 : Evaluation of SON in the STAMP project

one can establish another graph connecting those groups to each other at a broader scale. In

that way, it is possible to consider the behaviour of entities within a group as well as between

groups. But one can also build hypergraphs implicitly. For example, in the case of a spatial

relation where an agricultural parcel is linked to each of its borders by one n-node arc, a graph

is built using arcs linking more than two nodes. Such n-node arcs based graphs are de facto

hypergraphs. Using n-node arcs can be a way to simplify the graph structure we have to ma-

nipulate in the model. Another aspect to take in consideration when modelling with interaction

graphs is their dynamic nature. During a simulation, some entities can be added to the model,

others can disappear, and individual relationships can be established or removed. This means

that the interaction graphs are dynamic, with evolving numbers of nodes and arcs, and have

changing graph topologies.

Attached to the graph are semantics that specify what happens between the linked entities

when they do interact: the kind of information they exchange, the actions one performs on the

other, the effects produced by the interaction on the entities and on the arcs involved. In many

types of environmental models, attaching behaviour to an interaction graph is not straightfor-

ward. Sometimes the graph structure is implicit (e.g. cellular automata based on tessellations)

and only the behaviour is specified. The programming work is then reduced but the specifica-

tion of the behaviour is seriously constrained by the implicit graph structure. In other cases the

graph structure is more versatile, and the arcs have to be tagged. At some other place in a pro-

gram the definition of how entities relate is written and depends on the tags placed on the graph.

A greater power of expression is obtained but the programming work is more difficult. In order

to get the best of both solutions, it would be necessary to manipulate the graph structure and

attach the behaviour semantics directly on that structure at a single place in the model’s code.

Roles and re-usability

It is rare when an environmental model is original in all its parts. The most common sit-

uation is to have some parts of the model that are similar to other already existing models.

Re-usability has been a key concern in software development and modelling tools as well. In

the case of behaviours attached to relation graphs, two situations can be considered:
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8.3 Ocelet modelling language

• Re-usability of a relation graph topology: It can be interesting to have ready made rela-

tion graph structures such as the 3-neighbours situations found in triangulated irregular

network, the 4 or 8-neighbours situations found in grids, or also star and circular shaped

relationships just to name a few. Based on the well known characteristics of such struc-

tures, one could imagine a modelling tool that provides optimized implementations for

them to be used in different models.

• Re-usability of an attached behaviour: In that case we wish to be able to reuse the defi-

nition of how entities interact with each other when they do, in different modelling situ-

ations. To make the behaviour definition adaptable to a different context, the interaction

should not be specified using the entities relating with each other but using the role they

play. It would then be possible to attach a behaviour definition to a different relationship

graph where entities are able to play similar roles. It also means that a behaviour defined

once can be instantiated several times, on different graphs, even in one same model.

Finally, it can be noted that by designing a modelling tool with re-usability concerns as

described above, it becomes possible to build sub-model libraries (named primitives in Ocelet)

and make them available for a modellers community.

Modelling your point of view

At least two cases can be identified where the notion of point of view can take the form

of semantics attached to a graph. First, when specialists of several different fields work on

the same environmental model, they may share the same entities but need to describe interac-

tions between these entities differently according to their own expert view. The nodes of the

graph could be shared, but the arcs and the behaviour attached to those arcs would reflect their

different points of views on the model. Second, it happens that different entities of a model

have different points of view on their environment and would then have to interact accordingly

with that environment. Here again the nodes of a graph could be shared but the arcs and the

behaviour attached to those arcs could be specific to every point of view.
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Chapter 8 : Evaluation of SON in the STAMP project

Relations are interaction graphs in Ocelet

The relation concept as defined in Ocelet is an interaction graph very close to what was

discussed above: it contains the information of who is in interaction and also of how they

interact. As relations have semantics attached to the arcs of their graph, they are constrained by

the type of entities that can be linked. The definition of a relation has to specify the role played

by the different entities involved, like for example:

relation RelationName[roleA, roleB] {...}

The statement above defines a relation of the most common kind: every arc of the graph

links two nodes. The nodes will be entities; one entity playing role A and the other role B.

Once defined, the relation must be instantiated, and which entities playing role A and role B

must also be stated for that instance:

myInstance = RelationName[EntityA, EntityB];

The fact that relations are defined using roles makes them reusable in different contexts.

A relation carefully designed with genericity in mind could then be used and adapted for sev-

eral different models. To establish connections and actually build the graph, the predefined

connect() and disconnect() services are available. For example, myInstance.connect(

lake,river) implies that lake is an instance of EntityA, river is an instance of EntityB

and an arc will be added to the relation graph between them. Ocelet allows to define relations

holding hypergraphs directly by specifying more than two roles in the declaration statement,

like for example: relation RelationName[roleA, roleB, roleC, roleD] {...}.

The how part is defined in the form of services that the modeller can write to precisely

describe what happens when the entities interact. The services are written in the declaration of

the relation, like in:

relation RelationName[roleA, roleB] {

service foo() { roleA.doSmthg(); roleB.setVal(roleA.getVal()); }

}
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8.3 Ocelet modelling language

The definition above implies that the entities playing roleA for that relation must provide

the two services doSmthg() and getVal(), while the entities playing roleBmust provide the

service setVal(). getVal() and setVal() must also return and accept compatible types.

These are verified when the relation is instantiated. One important point to note is that only one

call to the foo() service is necessary to activate all the arcs of the relation graph.

Scenario

A scenario gives a description of which actions and relations within a composite entity have

to be activated, and when. The relations in turn put selected entities in interaction in space

and time. The scenario therefore expresses the spatial and temporal internal behaviour of a

composite entity by managing the entities and relations it contains. For example, a ten year

evolution scenario embedded in a village entity could describe the extension of the village by a

few houses every year, taking in account population growth and several policy rules that govern

spatial expansion. The ten-year scenario could also be composed of yearly evolution scenarios.

Structure of a Scenario:

scenario( name, operation* , scenario* )

In practice, a scenario can be used to describe how an entity evolves undisturbed for a given time

period, and another scenario can contain the behavior of the same entity when a disturbance

event arises.

Datafacer

A datafacer is a device through which entities access data. The data can be in the form of an

external database or satellite image, but can also be internally generated, like in a logfile, during

model execution. The datafacer contains the necessary functions, developed for specific types

of data sources, to provide the services required by the entity to which it is attached. The other

entities of the model can interact with the Datafacer in a coherent manner whithout having to

deal with the details of how data access and queries are made. More formally, a datafacer is an

atomic entity that can be accessed directly by any entity in a model.
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Chapter 8 : Evaluation of SON in the STAMP project

8.3.2 How these concepts work together

Modellers who understand the landscape "system" they study as interacting landscape elements,

should be able to express their understanding with Ocelet without much compromise. Land-

scape elements are modelled as entities, which in turn can contain other landscape elements

(entities). Interactions between landscape elements are modelled using relations. The latter are

not just "wires" for transferring information, but can also hold instructions on what to do when

entities are in relation, thus expressing the "nature" of the relations.

Figure 8.3: Concepts of the Ocelet language.

The orchestration of the timing of the interactions between elements in a landscape (mod-

elled as entities contained in an entity) is carried out in a scenario attached to the landscape (see

Figure 8.3). The services of an entity express the behaviour of that entity as seen from outside.

Datafacers are a convenient way for entities in a model to access heterogeneous data sources

through a unique mechanism based on services, and in coherence with the rest of the language.
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8.4 Application scenarios with SON as a runtime

8.4.1 Lotka Volterra model

This section presents an execution scenario illustrating some requirements of landscape mod-

eling. It consists of the well-known prey-predator model introduced by Lotka and Volterra

[Lotka, 1925, Volterra, 1926, Murray, 2003] and that highlights the needs in terms of dynamic-

ity and service interaction. The model is based on a system of non linear differential equations

frequently used to describe the dynamics of ecological systems in which two species interact

and evolve during time, one is a predator and one is a prey:

{ dx
dt = x.(α − βy)
dy
dt = y.(−γ + δx)

(8.1)

where

α is an expression of the birth rate in the prey population

β is the death rate of prey due to predation

γ represents the natural death rate in the population of predators

δ is the rate of predator population growth per prey consumed

Using Ocelet, two entities (Rabbits for preys and Foxes for predators) and one relation (the

Predation relation) are defined; the time flow of the system is also described in a scenario (the

Evolve scenario). Ocelet is designed to promote separation of concerns and in the present case

the system of equations is split into the following parts:

• The birth rate of prey is calculated by the Rabbits entity through a birth() service.

• The natural death of predator is calculated by the Foxes entity through a natural_death()

service.

• The death rate of prey due to predation and the growth of predator population due to

predation have a meaning only if preys and predators meet in a model. They are hence
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Chapter 8 : Evaluation of SON in the STAMP project

calculated in the Predation relation by two respective services, updatePrey() and up-

datePredator().

The Predation relation provides a connection mechanism. When two entities are connected

through it, it acts as an interposition object by providing the updatePrey() and updatePredator()

services (see Figure 8.4 for the Ocelet code). This allows to enrich the connected entities

without requiring changes in them. The relations therefore offer better decoupling between

the business code (inside entities) and the connection code (inside relations). It is important

to note that the separation between business and connection codes allows to reuse already

developed relations with other entities, and in the same line, to consolidate a library of ready-

made relations to facilitate future model development.

This Lotka-Volterra Ocelet model is executed above our SON middleware as follows. For

each Ocelet concept: entity (Rabbits, Foxes), relation (Predation) and scenario (Evolve), that

the modeler specifies using an Eclipse plugin editor developed for this need, Java files contain-

ing the translated Ocelet code and CDML files describing the services (provided and required)

are generated as shown in Figure 8.1. A World file describing the initial state of the applica-

tion is also generated. The component generator will then create a container for every entity,

Figure 8.4: Predation relation written in Ocelet.
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8.4 Application scenarios with SON as a runtime

relation and scenario. Each container encapsulates, in addition to the Java implementation and

the service descriptions, all non-functional resources needed during the execution (e.g., mech-

anisms to instantiate, connect and run the component). Thus, we get components ready to be

used or archived in the Java ARchive (JAR) files. The World file can then be used by the Com-

ponents Manager to load the packages of components, create the instances, and wait a signal

from the graphical user interface to start the simulation (see Figure 8.6). The interactions be-

tween predators and preys in the Lotka-Volterra model are therefore transformed into dynamic

service interactions between components in a manner completely transparent to the modeler.

The result of an interaction between 50 predators and 15 preys are shown in Figure 8.5 (with

α = 0 : 1; β = 0 : 01; γ = 0 : 05; δ = 0 : 001).

Although this illustrative example may appear simple, the principal aim is to show how the

Ocelet runtime allows modelers to concentrate on the conceptual model, while leaving to SON

middleware the transformation of the model into a running application that take into account

the requirements claimed in the context of modelling landscape dynamics.

Figure 8.5: A simulation of the Lotka-Volterra model.
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Chapter 8 : Evaluation of SON in the STAMP project

Figure 8.6: Screenshot of the GUI of the Lotka-Volterra components.
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8.4 Application scenarios with SON as a runtime

8.4.2 Rift Valley Fever (RVF), a mosquito-borne disease

The spatial and temporal distribution of mosquitoes responsible for various vector-borne dis-

eases are often linked to landscape dynamics, as mosquitoes require appropriate breeding sites

for their development. One important such disease is the Rift Valley Fever (RVF) which af-

fects both livestock and humans. In livestock, outbreaks are generally associated with mass

abortions and high mortality rates in young animals, and may result in important economic

losses. The transmission of the virus in the Sahelian region of North Senegal is related to

the dynamics of temporary ponds which are favorable mosquito larval habitats. The live-

stock production system of the region is extensive and during the rainy season, areas in the

vicinity of permanent or temporary ponds are used by transhumant herds for water and graz-

ing needs [Bah et al., 2006]. When trying to model the spread of the virus, present models,

mainly epidemiological, solve Ordinary Differential Equations (ODE) for different populations

of mosquito species [Gaff et al., 2007]. Most of the spatial nature of the complex problem is,

however, either ignored, or concealed in appropriate contact rate parameters that are difficult to

estimate. As far as we know, only few studies focused on the spatial dynamics of vectors and

the disease they may transmit [Tran and Raffy, 2006, Otero et al., 2008, Linard et al., 2009]. In

order to understand the dynamics of the disease in view of proposing control measures, any

important aspect of the problem must not be ignored: it would be necessary to model mosquito

populations according to pond dynamics and presence of livestock, and therefore also model

ponds, pastures, herds that move following availability of water and food, and the transmission

of the virus to the animals. The approach that we are exploring offers interesting possibilities

for modelling and running complex problem simulations by focusing on each part one by one,

without ignoring the interactions between the parts. In the next, we focus on some of these

possibilities.

Modelling and running simple pond dynamics

In and around a given pond, the presence and abundance of Aedes and Culex mosquitoes at

different life stages depend for a large part on the sequence and duration of wet and dry periods

for that pond. Here we start with a simplified model of pond dynamics that describes the evolu-
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Chapter 8 : Evaluation of SON in the STAMP project

tion of water surface, given the pond’s shape and the quantity of water incoming or leaving the

pond. The positive and negative terms of a pond’s water budget are assumed to be only rainfall

and evaporation respectively. Other terms such as infiltration, run-off or water consumed by

animals have been ignored in this example, but could be included in a similar way. Therefore

to start with, the model is made of two atomic entities: Pond and Meteo. The functioning of

the model will rely on the relations between these entities, and on the scenario that describes

how these relations are expressed in time.

Figure 8.7: The SON components of the simple pond dynamics model.
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8.4 Application scenarios with SON as a runtime

The Pond entity only needs two services : waterIncome() and evaporate(). The first uses

rainfall to calculate the amount of water the pond receives, the second takes other meteorolog-

ical variables (solar radiation, wind speed, etc...) to estimate evaporation. These data would

be obtained from a Meteo entity which also provides two services: rainfall() and otherMeteo-

Var(). A waterExchange relation models how one pond entity updates its water budget given the

meteorological data obtained from a meteo entity. The relation is described as a one to one in-

teraction between a meteo and a pond. But when initializing a simulation, it is likely that many

instances pondi of the Pond entity will be created, each with different shapes and locations.

Typically, a series of calls to a waterExchange.connect(meteo,pondi) is needed to establish a

link between one instance of Meteo entity and every pondi entity through the waterExchange

relation. The evolve scenario will be executed for every time step of the simulation. That sce-

nario is based on a select statement that will apply the updatePond() service of the relation to all

the entities that had previously been connected. In other words, the series of calls to a connect()

statement creates an interaction graph between one meteo entity and many pondi entities, and

once that graph is built, a call to updatePond on the relation is enough to update all the ponds

present in that interaction graph. The purpose of the select statement is to provide a way to

activate only a subset of the interaction graph. For example, one can imagine a selection based

on spatial attributes that would call updatePond() on all the ponds located in a given area.

As shown in Figure 8.7, the pond dynamics model written in Ocelet is translated into a SON

application with four components. Each component corresponds to an element in the model

(i.e., Pond, Meteo, WaterExchange, Evolve) and embodies a Java implementation generated

from the Ocelet specification code, a CDML file that exposes the input and output services and

a component container that embodies all resources needed to adapt the implementation code to

the runtime environment.

The initial state of the application is described in the deployment file World. It contains a

description of the component instances and connections that have to be created to launch the

application. A component instance is identified by the couple (name of the component, name of

the instance). As shown in Figure 8.8, WaterExchange_1 is instantiated from the relation com-

ponent WaterExchange and connected to the instances Pond_1 and Meteo_1, while Evolve_1

is instantiated from the scenario component Evolve and connected to WaterExchange_1. Of
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Chapter 8 : Evaluation of SON in the STAMP project

Figure 8.8: Deployment description file of the simple pond dynamics model.

course, after that, other component instances can be created and connected with each other

dynamically during the execution as explained in Section 7.3.

When creating many instances of the Pond component, the specific shape and location of

each pond can be obtained from an existing GIS file (a shapefile for example). The initialising

scenario of the model needs to access the source of data through a Datafacer to obtain the unique

parameters of every Pond it creates. For the present example, the DHT module of SON plays

in the runtime the role of a Datafacer, it allows the access of external data sources and offer

services that can be called by the different components. Thus, the DHT module gives some

parameter settings, like the name and location of the shapefile, and some metadata needed to

access the right attributes from the file.

Dynamic deployment when extending an existing model

The simple pond dynamics model presented earlier can be made more realistic by improving the

description of its parts (which can be of different types: Pond, Meteo, WaterExchange, Evolve)

without changing the logic of the model. When studying the RVF problem, however, more

processes are also to be considered, among which, the dynamics of pastures, the displacement

of herds between ponds and grazing areas, the development of mosquito populations in the

ponds, and the transmission of the RVF virus. From the point of view of livestock management,
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8.4 Application scenarios with SON as a runtime

it may be enough to know how the grazing areas and ponds are changing during the season.

As disease surveillance by veterinary services are mainly based on farmer reports, farmers can

only estimate an a posteriori risk of animals being infected near the ponds. The point of view

of the entomologist, with a good understanding of mosquito population dynamics in the ponds,

and that of the epidemiologist, with the knowledge of how the virus is transmitted, would be

needed to better estimate this risk.

The inclusion of the mosquito populations within the previous simulation can be done as

follows. Once the simple pond Ocelet model has been tested and considered satisfactory, new

mosquito population entities at different stages of their life cycle (egg, larva, pupa and imago)

can be added and pond entity can be augmented with services that interact with mosquito en-

tities. Then, the SON infrastructure generates the new components corresponding to mosquito

entities and updates the pond component to take into account the new services. After that,

these components can be dynamically integrated in the runtime without stopping neither the

execution nor the components which are not affected by the modifications. The only condition

is that the updated pond entity/component would provide, in addition to the new services, the

same services as the first version to make sure that it would seamlessly integrate and interact

with the rest of the components.
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Chapter 9

Conclusions and future works

Contents
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.2 Future works and perspectives . . . . . . . . . . . . . . . . . . . . . . . . 174

This chapter presents the concluding remarks of this thesis along with perspectives for

future works. At first, Section 9.1 gives a summary of our major contributions and then presents

current assumptions and limitations of the proposed methods and techniques. Subsequently,

Section 9.2 discusses the future work directions and its perspectives.

9.1 Conclusions

The main goal of this thesis is to facilitate the development of component-based applications

with a data-centric approach and within a service-oriented P2P architecture. To achieve this

purpose, we have proposed: i) a formal language, called DDF (Data Dependency Formalism),

to specify such applications, ii) an analysis method of DDF specification based on data-flow

principles, iii) a runtime middleware, called SON (Shared-data Overlay Network), for devel-

oping and deploying component-based services within a P2P architecture. The principle char-

acteristics, assumptions and limitations of these contributions are summarized in the following

points.
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Chapter 9 : Conclusions and future works

The principle characteristics of our contributions are summarized as follow:

Related to DDF specification

• Allowing parts of the control logic (even if it is recursive) to be described conceptually

separated from other parts by using the concept of rules;

• The user describes what is to be done rather than the details of how it is to be done;

• From DDF specification we can construct an abstract representation (i.e., Data-Dependency

Graph). This abstraction exposes the right level of detail to perform data-flow analyzes;

• From a single specification, multiple implementations can be synthesized by analyzing

the corresponding Data-Dependency Graph.

Related to the analysis of the specification

• The proposed analysis helps to identify the dependencies between data and between the

steps of the specification, in particular, “non-direct” dependencies that they can be very

hard to identify without a computer analysis;

• Managing such dependencies leads to direct improvement in the application’s running

time. For example, reducing the number of dependencies may help to perform several

optimizations (e.g., in execution time or memory usage);

• Several algorithms have been proposed in the field of AGs and DFA to infer and com-

pute a broad range of properties. Our proposed analysis method explores to use these

algorithms in the context of component-based applications.

Related to SON middleware

• SON middleware extends the principles of SOA as well as CBSE to support building

applications within a P2P architecture in an effortless and effective way;

• SON provides a component model hiding the management of the underlying network

issues to relieve software developers from P2P low level complicated tasks;
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9.1 Conclusions

• SON’s user implements only the code corresponding to the declared services. After-

wards, a code generation tool generates all resources needed to adapt the implementation

code to the P2P runtime environment;

• SON has been evaluated in the context of STAMP project. The objective was to show,

how SON (i.e., especially the dynamic availability of services during runtime) is able to

improve and enhance the effectiveness of application scenarios from the area of mod-

elling environmental landscapes and their dynamics.

The following points summarize the assumptions and the limitations of our proposals:

Related to DDF specification

• Although the semantic equations of the DDF rules specify the value for each output

datum, in order to actually compute this value, the values of any input data that are

arguments of the defining semantic equation must first be available. Such dependency

relations restrict the order in which data can be computed.

• An important requirement in DDF is that the semantic equation of a rule should not have

side-effects, i.e., it should not access or change a datum in the system if this datum is

not in the set of input data of the rule. The reason for this restriction is that semantic

equations represent definitions of the data values, and not effects of execution.

• The semantic equation of a rule has no side-effects, neither do function invocations.

These two conditions imply that the DDF specification is non-procedural. A disadvan-

tage of this type of specification is that exception handling cannot be guaranteed to work

effectively because the control flow is not provided in explicit instructions.

Related to the analysis of the specification

• In extreme cases, a datum can depend on itself; such a situation occurs in ill-defined spec-

ification or when a system contains a deadlock. To resolve this problem, we search for

circularity in the Data-Dependency Graph of the system. This solution has been inspired
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from the attribute grammar theory, and it is known in this theory that the circularity test

increases exponentially. Fortunately, there are interesting approaches that can help to

deal with this problem in polynomial time [Deransart et al., 1988].

• The theory of AGs and DFA provide a wide range of algorithms to perform various

evaluation orders of data and compute different properties. However, a reformulation

of these algorithms is needed. In particular, when software is built with independent

and reusable components. The reason is that the most standard approaches for data-flow

analysis do not take into account modular structure, and takes as input an entire program

treated as a homogeneous entity.

Related to SON middleware

• Non-functional requirements such as security, privacy, response time, recovery, etc. need

to be considered at some point in the lifecycle of all software systems. In the actual

release of SON middleware, such non-functional requirements have not been treated. A

simple reason for this is that they were not the first objective of SON.

• Some performance limitations in SON middleware rise from the fact that it relays on a

DHT. In fact, although a request can be routed to the node that maintains the desired

content quickly and accurately, the placement of content is tightly controlled. This im-

plies that the cost of maintaining the structured topology of the overlay might be high,

especially in a very large network environment [Vu et al., 2010].

9.2 Future works and perspectives

With the increasing interest in using component-based principles in software engineering, every

approach that may ease the development of component-based applications is valued. In this

thesis, we have established the foundations for a formalism, an analysis approach and a runtime

environment to facilitate building component-based applications within a service-oriented P2P

architecture. This work provides basis for further research possibilities and, of course, gives
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9.2 Future works and perspectives

rise to a number of development and enhancement tasks that need to be improved with future

efforts. In particular, those related to the limitations and the assumptions presented above.

One of the future tasks that we plan to work on first is finalizing the automatization of

DDF specification and analysis within SON middleware. In fact, we consider implementing a

graphical user interface to assist SON’s users during the specification of application behaviors.

This graphical interface will also provide the possibility to verify or compute some application

properties with pre-implemented data-flow analysis algorithms. In chapter 6, we have treated

deadlock and dominance detection problems and given the associated algorithms. However,

other analysis algorithms (inspired for example from the works of Parigot on Grammar-Flow

Analysis) can be reformulated to be used. For instance, by analyzing the order of data evalu-

ation, we will be able to determine formally which services in a system can be executed in a

parallel or incremental way.

Afterwards, we plan to extend our formalism by program transformation mechanisms in

order to optimize resource allocations (e.g., optimize CPU and memory usage by analyzing

lifetime of data taking into account their functional dependencies and redundancies) in large-

scale data-centric applications. In particular, in the emerging Cloud Computing area, where

data management has been receiving significant attention. Another perspective field for the

application of this future work (i.e., optimization of resource allocations) is the Green Comput-

ing. Environmental protection and energy-aware resource management have become popular

and important research topics at present [Hu et al., ]. In this direction, Green Computing is

emerging as an indispensable part in sustaining the practice of protecting the environment on

both individual and collective levels.
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Abbreviations

AG Attribute Grammar

CA Cellular Automata

CBSE Component-based Software Engineering

CCM CORBA Component Model

CD Computed Data

CDML Component Description Meta Language

CG Component Generator

CM Component Manager

CORBA Common Object Request Broker Architecture

CSP Communicating Sequential Processes

DAG Dynamic Attributed Grammar

DDF Data-Dependency Formalism

DDG Data-Dependency Graph

DE Discrete Event

DFA Data-Flow Analysis

DHT Distributed Hash Table

DNS Domain Name Service

DSL Domain-Specific Language

EJB Enterprise JavaBeans
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FSA Finite-State Automaton

GIS Geographic Information Systems

GUI Graphical user interface

GWT Google Web Toolkit

ID Input Data

IDL Interface Definition Language

JAR Java ARchive

JVM Java Virtual Machine

OD Output Data

OOP Object-Oriented Programming

P2P Peer-to-Peer

RVF Rift Valley Fever

SD System Dynamics

SGT Simple Georeferencing Tool

SOA Service-Oriented Architecture

SON Shared-data Overlay Network

STAMP Spatial, Temporal And Multi-scale Primitives

UTP Unifying Theories of Programming

UUID Universally Unique Identifier
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