
c© The British Computer Society 2014. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 12 November 2014 doi:10.1093/comjnl/bxu126

A Methodology for Resolution Mapping
for Cross-Resolution Simulation using

Event-B

Ahmet Kara1,2∗, Halit Og̃uztüzün1 and M. Nedim Alpdemir2

1Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
2Tübitak Bilgem İltaren, Ankara, Turkey

∗Corresponding author: ahmet.kara@tubitak.gov.tr

This paper proposes a software engineering solution for implementing simulations via the
composition of models at different resolution levels with the help of formal methods. Our
solution provides a systematic methodology that offers a well-defined sequence of stages to
obtain executable converters for entity resolution mapping, given the types of entity attributes
that are exchanged at model interfaces and the mapping specifications. Our methodology uses
Event-B as the formal specification language and Discrete Event System Specification as the
model composition framework; utilizes refinement relations between Event-B machines for the
specification, verification and generation of the data conversion steps between models and employs a
code generator that inputs the Event-B machine definitions to generate converter code that connects

two model ports.

Keywords: multi-resolution modelling; model composability; DEVS; Event-B; modelling and simulation

Received 19 August 2013; revised 3 September 2014
Handling editor: Mariangiola Dezani-Ciancaglini

1. INTRODUCTION

Constructing complex software systems through the integra-
tion and coordinated interactions of simpler components has
long been the focus of many research efforts. As the com-
plexity of software systems increases, the need for systematic
approaches increases accordingly. The issue at hand has a num-
ber of more specific problem areas, each of which deserves a
distinct line of research. In the work presented in this paper our
interest lies in a particular manifestation of this problem which
is constructing complex simulation applications by composi-
tion. We focus on a relatively subtle but an important challenge
for such complex simulation applications, which are cross-
resolution simulations involving multi-resolution models [1].
Although different viewpoints may be attached to the asso-
ciated set of problems by different research communities, we
argue that the issue of resolution mapping pertaining to exter-
nally visible properties (i.e. in terms of inputs and outputs)
of cross-resolution models is essentially a software engineer-
ing problem. In fact, the concept of connectors [2] in the con-
text of Component-Based Development [3] and the concept of

adapters [4] in the context of Service-Oriented Architecture [5]
can be seen as more general cases of resolution converters as
introduced in this paper. Resolution conversion has peculiar-
ities that are mainly characterized by the multiple facets that
induce distinct variations in the handling of the more general
problem; these facets will be briefly discussed below. Not sur-
prisingly, those peculiarities also allow us to contemplate the
more focused and concrete solutions. As such, based on the
analysis and selective targeting of those peculiarities, we will
argue that the process of specifying, verifying and generating
those converters can be supported by the use of a convenient
formal language to develop a rigorous software engineering
methodology. Along these lines, our primary motivation at
the outset of our research was to develop a well-defined (i.e.
based on formal specifications) and repeatable methodology
with necessary tool support that diminishes the shortcomings
of ad hoc coding practices mostly adopted for such conver-
sion tasks. Our solution covers aspects ranging from model and
mapping specification to mapping verification and application
construction by component composition.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2805

To facilitate a better understanding of the concepts of multi-
resolution modelling (MRM) and the peculiarities mentioned
above, we first provide an introductory summary, followed by
our key contributions. The reader is referred to Section 2 for
further information on the multi-resolution concepts.

1.1. Cross-resolution modelling in the context of complex
simulation applications

A modelling enterprise involves capturing the characteristics
and behaviour of systems via mathematical or logical abs-
tractions. Intrinsically, the same real-world system can
be represented by various abstractions. Depending on the
requirements of different stakeholders, those abstractions
may particularize specific aspects of the entities being
represented or they may delineate varying levels of structural
or behavioural information across the same set of aspects.
The level of detail at which system components and their
behaviours are represented is generally agreed to indicate the
resolution of a model that represents that system.

The issue of multiple resolution models pertaining to the
same real-world system manifests itself in the following three
distinct forms: (i) When constructing a model of the system, the
modeller may need to develop multiple representations of the
same system, each with a different level of resolution. This is
known as MRM. (ii) When developing simulation applications,
the simulationist may need to compose or orchestrate models
with different resolution levels, paying particular attention
to the resolution conversion requirements. This is known
as Cross-Resolution Modelling (CRM). (iii) When running a
simulation scenario and analysing the results of a simulation
run, the analyst may need to be aware of the existence
of multiple resolution models and take the possible cross-
resolution mapping issues into account when interpreting the
results.

The characterization of these issues and the problems
that may be attributed to them have already been explored
in the relevant literature. For instance, Powell [6] provides
a semi-formal description of the central concepts such
as resolution, aggregation, disaggregation and consistency
maintenance. Davis et al. [7–10] give an in-depth coverage
of the key terminology and discuss a wide range of aspects
offering considerable insight into the complexity of MRM. An
extensively studied problem in the literature is the need for
resolution mapping in a CRM and setting. The root of this
problem is that resolution is a relative concept and exhibits
variations across all the attributes of a model. Thus, the
term ‘level of resolution’ is not congruously applicable to
all the models involved in CRM so model developers need
a methodology to compose models with different levels of
resolution. Another root difficulty lies in the fact that the term
resolution refers to a multifaceted concept (Fig. 1) [8] and it
is a formidable task to find a solution that is applicable to all
facets. Of the six facets given in Fig. 1, the process, spatial

FIGURE 1. Aspects of model resolution (adapted from [8]).

and temporal facets are related to the internal behavioural logic
of a model and therefore it is less convenient to deal with
them. This is primarily because the model internals can be
arbitrarily complex and typically depend on many artefacts
starting from the conceptual models and requirements ending
with the implementation techniques across the development
life cycle of the model. Composing cross-resolution models
based on these facets will require coordination between the
model designers and developers during the development cycle,
which, in general, is not practical, since models might be
developed at different sites and at varying times, using a wide
range of technologies, standards and tools.

The entity, attribute and logical dependency facets of
resolution refer to the externally manifested properties of
models such as the input/output variables and their data
types. We claim that the resolution of a model can be more
conveniently manifested by its visible properties. As such, we
can document a model through its input/output variables and
use this information to facilitate composition with other models
of different resolution levels; however, to ensure a consistent
data exchange between composed models, it is necessary to
undertake a mapping of these variables. A purely syntactic
approach to define the mappings between these variables
may not result in a successful model composition, since the
semantics of data types should be preserved through the
resolution conversions. To cater for such semantics-preserving
conversions, we propose to map the inputs and outputs of
models via special connectors, called converters.

1.2. Our contribution

Clearly, ad hoc forms of converter building processes would
not greatly contribute to the current state of CRM since
many simulation application developers inevitably implement
some form of conversion logic to compensate for the
resolution mismatch between models. We argue that a rigorous
resolution mapping methodology should be founded on a
formal basis to address the four interrelated issues of (i) entity
definition, (ii) mapping specification, (iii) verification and (iv)
model composition. Furthermore, for practical purposes, this
methodology should have tool support.

Our contributions to the work in the field of complex
simulation software construction involving CRM are closely

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


2806 A. Kara et al.

aligned with the four aspects listed above. For item (i),
we provide a methodology for resolution mapping in a
CRM setting in which we use Event-B [11] as a formal
specification language; we use refinement relations between
Event-B machines for the validation and generation of the
data conversion steps between models, to resolve (ii); we
use tools to verify the transformations and provide a code
generator that uses the Event-B definitions and refinement
relations to generate the converter code, with the option
of generating monitor code based on machine invariants in
support of run-time verification to resolve (iii); we also propose
a formal definition of a resolution converter in the Discrete
Event System Specification (DEVS) setting, to incorporate it
into a well-established model composition paradigm, and thus
resolving (iv).

The remainder of this paper is organized as follows;
Section 2 outlines the background to our research; Section 3
details our proposed approach, and Section 4 provides a
description of the software tools to demonstrate the results
of our work. Then, in Section 5, we present the discussions
regarding the important aspects of this research. Finally,
Section 6 contains our concluding remarks.

2. BACKGROUND

This section provides information that is essential for a
better understanding of our work. First, we provide the
definitions of multi-resolution and CRM, including the
concept of aggregation/disaggregation, which is particularly
important for entity resolution mapping. Then, we present
introductory information concerning Event-B and refinement,
which together constitute the formal basis of this research.
Subsequently, we provide basic material on the DEVS
formalism that constitutes the basis for our world view on
model composability via port connections. Finally, we give
a concise summary of SiMA, our simulation framework that
implements an extended form of DEVS and serves as a basic
software platform for the implementation of our CRM work.

2.1. Multi-resolution modelling

All simulation models are abstractions of a reality but some are
more abstract, in the sense that they are less detailed than others
that represent the same reality. Resolution is the level of detail
at which system components and their behaviours are depicted
[7]. The subject that deals with multiple levels of resolution for
simulation models is called MRM.

A comprehensive definition of MRM is given by Davis [7]
but it consists of the following basic points:

(i) building a single model with alternative user modes
involving different levels of resolution for the same
phenomena;

(ii) building an integrated family of two or more mutually
consistent models of the same phenomena at different
levels of resolution; or

(iii) both (i) and (ii).

For example, the sensor model in a wireless sensor network
(WSN) simulation [12] can be implemented at different levels
of resolution. To analyse a routing protocol, a sensor model
with a simple battery and wireless model is sufficient; however,
to analyse the monitoring capability of a sensor, details such as
the sensing unit and its sensitivity to environmental conditions
should be incorporated into the sensor model.

2.1.1. Cross-resolution modelling
CRM [13] is applicable to the concept of simulations at
different levels of resolution that are required to interoperate.
For CRM, it is important to understand the assumptions
made concerning the levels of resolution of the simulation
models. Two models that are required to work together might
have different characteristics which would make interoperation
difficult. Thus, at the heart of CRM is to ensure that such
discrepancies are resolved, in order to allow simulations to
interact with each other meaningfully.

To understand the CRM concept, a definition of resolution is
required:

As can be seen in Fig. 1, resolution is a multifaceted concept.
Using a military example to make the distinctions, a higher entity
resolution might mean following units as small as battalions rather
than divisions; a higher attribute resolution might mean following
the number of various weapons held by each battalion rather than
merely assigning the battalion a net ‘strength;’ a higher logical-
dependency resolution might mean including the constraints on the
attributes and their interrelationships (e.g., the sum total of the men
in the units comprising a division should equal the number of men
in the division). A higher process resolution might mean computing
the combat attrition at battalion level, rather than at division level
and then spreading the attrition equally across the battalions in the
division. A higher spatial and temporal resolution means using finer
scales for space and time [8].

As seen in this definition of resolution, unless two models
have been designed with CRM in mind, we cannot easily
discuss the relative resolution between them, because it is
likely that the models are complex and the resolution of one
model compared with another can be higher in some respects,
lower in others.

2.1.2. Aggregation/disaggregation
The common approach to CRM is aggregation/disaggregation
and these twin processes ensure that entities interact with each
other at the same level by forcing one entity to be formed at
the level of the other. For example, in a WSN simulation [12]
the sensors and interactions between sensors can be modelled
in terms of single units or bundles. A bundle is an aggregation
that models a set of sensors with a single base unit. If a low-
resolution entity (LRE) and a high-resolution entity (HRE)

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2807

FIGURE 2. Machine and context (adapted from [14]).

need to interact, either the LRE will be decomposed into its
constituents in a process known as disaggregation (LRE →
HRE, bundles to units) or an aggregation process takes place
(HRE → LRE, units to bundles).

2.2. Event-B

Event-B [11] is a formal modelling method for discrete systems
based on refinement [14, 15]. The main purpose of creating
models in Event-B is to consider and understand the complete
system starting from an abstract description.

When modelling a system, Event-B creates the formal
model, in such a way that the constant and variable parts are
retained in the distinct components of contexts and machines,
respectively. A machine consists of three distinct elements:
(i) a set of state variables, (ii) a conjoined list of predicates, the
invariants and (iii) some transitions, called events. A context
consists of objects (sets and constants) and the axioms that
constrain these objects (Fig. 2).

Events are operations that update the state variables of
a machine. Each event is composed of guard and action
statements. An event is allowed to execute an operation
whenever all its guard statements return true. Action statements
define the behaviour of the event operation and are required in
order to update the state variables of the machine.

2.2.1. Refinement
Refinement [14] is applied to Event-B when there is an
introduction of new machines and contexts that are related
(refines, extends) to existing abstract ones (Fig. 3). The sets and
constants of an abstract context are retained in its extension. In
other words, the extension of a context only consists of new
sets and constants. However, in the refinement of the machines,
the concrete machine N has a collection of state variables that
might be completely distinct from its abstraction M. However,
it is allowed that invariants of N can depend on variables of its
abstraction M, these are called glue invariants and they ‘glue’
the state of the concrete machine N to that of its abstraction
M. We consider glue invariants to be important since we use
them as the main constructs for the specification of the req-
uired data transformations between different entity resolution
levels.

FIGURE 3. Machine refinement and context extension (adapted
from [14]).

2.2.2. Proof obligations
To reason about a machine, we consider its proof obligations,
which are produced from the union of invariants, axioms and
guards [15]. For the purpose of our work, proof obligations
serve to show that the glue invariants are consistent with the
invariants of both machines.

There are several types of proof obligations, some of which
are as follows:

(i) feasibility: The body of an event should not be blocked
when the event is enabled, for example, the before/after
predicates should not prevent from continuing;

(ii) invariant preservation: Action statements of events
should preserve all the invariants of the machine.

A machine in Event-B must be verified by discharging its
proof obligations. The following software tools enable both the
definition and verification of Event-B machines:

(i) Atelier B [16] is a commercial product, designed
primarily for B Language [17], but it has an extension for
Event-B;

(ii) Rodin [18] is an open-source project which is actively
being developed by its community. It has been developed
over an Eclipse framework [19] and supports plug-
in development for both functionality and language
extension.

Owing to its power in application programming interface
and since it has an open-source license, we selected Rodin as
our Event-B tool.

2.3. Discrete event system specification

The DEVS is a formalism introduced by Zeigler [20] to
describe discrete event systems. About 15 years later, a
revision to DEVS was introduced called Parallel DEVS [21],
which enabled the exploitation of parallelism in modern
computers. In this formalism, there are two types of models;
atomic and coupled. The former embodies behavioural logic
and the latter is composed of other models, called sub-models,

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


2808 A. Kara et al.

and the connections between those sub-models. An atomic
model in Parallel DEVS consists of a set of input events,
state set and a set of output events; an internal, external and
confluent transition function, an output function; and time
advance function. The formal definition of an atomic model
in the Parallel DEVS formalism is as follows:

M = 〈X, S, Y, δint, δext, δcon, λ, ta〉,
where X is the set of input events; S is the set of states; Y is
the set of output events; δint : S → S is the internal transition
function; δext : Q × Xb → S is the external transition function,
where Xb is the set of bags of the elements of X and:

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is total state set;
δcon : S × Xb → S is the confluent transition function,
subject to δcon(s, φ) = δint(s); λ : S → Y b is the output
function, where Y b is the set of bags of the elements of Y ; and
ta : S → 	+

0 ∪ {∞} is the time advance function.
In DEVS, models communicate with each other using their

ports, which are the interfaces of the models. External input
events (X ) are received by the input ports and the output events
(Y ) are sent from the output ports. The current state s is valid
for a time interval, which is determined by the time advance
(ta) function. After the completion of each time interval the
output function (λ) is executed to send the output events that
belong to the current state and then the internal transition
function (δint) is executed to calculate the new state. If a model
receives an external event during this time interval (e), the
external transition function (δext) is executed and the current
state is updated to reflect the effects of the incoming events.

A coupled model is a composition of models (atomic or
coupled models) and the port couplings between these models.
Coupled models do not contain any behavioural logic, states
or transition functions that need to be executed. They are
intermediate structures that form the hierarchy in the model
structure. A coupled model in the parallel DEVS formalism is
formally defined as follows:

C M = 〈X, Y, D, {Mi }, EIC, EOC, IC〉,
where X is the set of input events; Y is the set of output
events; D is the name set of sub-components; {Mi } is the set
of sub-components where, for each i ∈ D, Mi can be either an
atomic DEVS model or a coupled DEVS model; EIC: external
input coupling that connects external inputs to the sub-model
inputs; EOC: external output coupling that connects sub-model
outputs to the external outputs; and IC: internal coupling that
connects sub-model outputs to the sub-model inputs.

A complete description of DEVS semantics can be found in
[20–22].

2.4. Simulation modelling architecture

Simulation Modelling Architecture (SiMA) [23] is a modelling
and simulation framework, based on the DEVS [20] approach

to provide a solid formal basis for complex model construction.
The SiMA simulation execution engine implements the
parallel DEVS [21] protocol, which provides a well-defined
mechanism for model execution. SiMA builds on a specialized
and extended form of DEVS formalism, namely SiMA-DEVS,
which:

(1) formalizes the notion of ‘port types’ leading to
a strongly typed (and therefore type-safe) model
composition environment. In this respect SiMA
specializes the basic DEVS formalism by introducing
type constraints on the port definitions;

(2) introduces the new Direct Feed Through Transition
function, to account for model interactions that involve
state inquiries with possible algebraic transformations
(but with no state change) without a simulation time
advance.

Strongly typed data ports require a model developer
using SiMA to define data types to be used for inter-
port communication. SiMA uses port data types for several
issues including the serialization/deserialization of data values
flowing between atomic models. For the implementation of
our proposal, we employ SiMA as a modelling and simulation
framework, and we use strongly typed ports to our advantage,
but we do not use the direct feed through transition.

3. OUR APPROACH

The approach presented in this paper utilizes the data type
information from the input/output variables used in models of
different resolution levels to facilitate their composition. If two
distinct models are to be composed via their input and output
ports, either they must use identical input/output data types or
a conversion between the data types is needed. Evidently, our
assumption here is that composable models are semantically
related but may have non-identical data representations due to
the different entity resolution levels they employ.

To compose models at different resolution levels, our
solution proposes the specifying, generation and use of
converters between data types defining the ports of the
connected models. Put simply, these converters are connectors
between the output and input ports of models. Similar to
models, converters have input and output variables, but unlike
typical atomic models they do not have any behavioural logic.
Contrary to the simplicity of the idea, achieving resolution
mapping via converters following a systematic methodology is
not straightforward. Thus, systematic and repeatable resolution
mapping via converters needs to have the following three
aspects:

(1) a formal language for specifying the entities to be
mapped and the mapping between them;

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2809

(2) a tool that assists with verification of the conversion
specification and generates executable converters for
the conversion;

(3) a well-defined, formal basis for incorporating the
notion of resolution converters into model composition
schemes in a uniform way.

Although there are several proposals in [13, 24–26]
regarding the use of converters between simulation models in
the literature, to the best of our knowledge they fall short of
offering a comprehensive solution with respect to the aspects
listed above. The main novelties of our approach are as
follows:

(1) It involves a formal proposal to fit the concept of
converters into a well-established model composition
paradigm (i.e. DEVS). Our proposal states that
resolution conversion (of entities) can be specified
uniformly via first class constructs called connectors
that are inserted between couplings among atomic
and/or coupled models in a DEVS setting.

(2) It provides a systematic methodology that offers a
well-defined sequence of stages to obtain executable
converters for entity resolution mapping, given the
appropriate descriptions of entities and refinement
relations. Our methodology relies on Event-B as a
formal specification language that utilizes refinement
relations between Event-B machines for the validation
and generation of the data conversion steps between
models, and employs a code generator that uses Event-
B machine definitions and refinement relations to
generate the converter code.

(3) It enables the systematic reuse of converters in a
uniform way.

Section 3.1 provides a more detailed account of the first
point given above; Section 3.2 gives details of the second point.
Although the third point is a direct consequence of the first
two, presenting a detailed discussion is outside the scope of
the current paper.

3.1. The formal representation of converters in the
DEVS setting

To forge the notion of converters into a coherent and well-
established model composition paradigm, the formal represen-
tation of converters in DEVS terminology is important. The
DEVS atomic model definition given in Section 2.3 provides a
convenient formal basis for a converter definition.

Here, we propose that a connector model can be defined as
a standard DEVS atomic model restricted in its time advance
function, such that ta : S → {0,∞} is the restricted time
advance function.

The idea is that the atomic model operates in only two states;
an idle state where the model waits for an input (i.e. the next

time interval is equal to infinity), and a transition state with
zero duration which is triggered by the receipt of an input that
produces the converted output at the end of the state. Thus,
the connector model does not violate the closure under the
coupling property of DEVS, since it is essentially an atomic
model.

Let cv denote an internal container for converted values.
A converter can be implemented with the following transition
functions:

(i) δint: An internal transition function that removes all
converted values from cv and, due to implementation of
ta, forces the model to wait for the next input, i.e. puts the
atomic model into a passive or idle state.

(ii) δext: An external transition function that converts each
input value and stores the converted value in cv.

(iii) δcon: A confluent transition function that calls δint first and
δext second as proposed in [21] as a default definition, i.e.
δcon(s, x) = δext((δint(s), 0), x).

(iv) λ: An output function that gets the values from cv and
publishes them to the output ports.

(v) ta: If cv contains converted values, the time advance
function produces 0 to be able to dispatch output in the
same simulation time; otherwise ∞ to let the model wait
for an input.

3.2. A methodology for entity resolution mapping

Our methodology has five main stages:

(1) Definition of data types for the variables of Event-B
machines (Section 3.3.1).

(2) Definition of mappings between data types of different
resolution levels (Section 3.3.2).

(3) Verification of conversion steps (Section 3.3.3).
(4) Generation of the converter (Section 3.3.4).
(5) Optionally, instrumenting the converters with pre-

and post-condition checkers as an aid for run-time
verification (Section 3.3.5).

We present the details of our approach in the following
subsections. Since our methodology supports both directions
of mapping, first we will discuss HRE to LRE mapping.
Subsequently, we will describe LRE to HRE and mixed
mappings.

3.3. HRE to LRE mapping

To demonstrate our approach, we consider a simple WSN
simulation [12] constructed using DEVS-compliant models
(an extended version of our previous example as presented in
[27]). A top-level visual representation of the DEVS models
developed to implement the proposed WSN is given in Fig. 4.
The WSN system consists of four components:

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


2810 A. Kara et al.

FIGURE 4. Models and entities in the sample scenario.

(i) Sensors detect the movement of objects in the environ-
ment and can communicate with other sensors within their
range.

(ii) The sink unit is the base unit that collects and fuses all the
information supplied by the sensor network.

(iii) The platform has a predefined path that it follows during
the course of simulation. It represents the detectable
object for the sensors in the environment.

(iv) The environment model calculates the environmental
information depending on the sensor locations, such
as the humidity and noise level that affect the signal
transmission.

The simulation exercise is set to involve thousands of
sensors spread over a wide area to track the path of a
platform. This large number of sensors means that the
simulation requires a large amount of CPU power; however,
to decrease the CPU cost, the resolution level of some of the
sensors that are away from roads can be reduced, since their
behavioural requirements allow for lower fidelity levels. A
low-resolution sensor model that was developed for previous
simulations already exists, and is to be integrated into the
current simulation.

The sensors transmit DataPacket values through their output
ports. After introducing the low-resolution sensor models, we
need to integrate a converter between the high-resolution and
low-resolution sensors (Fig. 5).

The output data type the of the high-resolution model
labelled DetailedDataPacket contains a 3D Position attribute
with a SignalStrength value to be used by the receiver model
for the receivable signal limit with environmental information
from the environment model. The Direction value contains the
vectoral position of the target. However, the output data type of
the low-resolution model DataPacket contains a 2D Location
attribute with an exact CommunicationRange value which
is updated by a percentage with environmental information.

FIGURE 5. Composition of the new low-resolution model.

Furthermore, it contains only the Distance of the target without
the direction.

3.3.1. Using event-B for model data type definitions
We use an Event-B machine as a container for the data
type definitions for the input/output variables of a model. As
mentioned above, an Event-B machine is specified using three
main constructs, namely; a set of variables, a list of invariants
and some events. We define a mapping of these constructs to
three facets of the entity type specification in the following
ways:

(i) Variables representing an attribute of an entity.
(ii) Invariants providing constraints on variables that are

crucial for type conversions.
(iii) Events providing modifiers for variables; however, our

methodology does not require any event definition.

The DataPacket entity can be represented with an Event-
B machine as given in Fig. 6. Note that the VARIABLES
section of the machine definition includes attributes of the
complex type DataPacket; furthermore, the INVARIANTS
section contains the types of attributes. In an Event-B machine,
invariants have two major responsibilities:

(i) Data Type Specification: such as integer, string or
complex types such as an array.

(ii) Provision of Constraints: The relations among variables
are specified. For instance, range restrictions such as x >

y and x < 1000, or more complex constraints such as
x ≤ y/z ∗ 100 can be stated.

Figure 7 shows the use of invariants for the provision
of additional constraints for the DataPacket entity. These
invariants are used for the dynamic checking of the converter
output. As part of the code generation process Assertion
statements are generated corresponding to those invariants.

3.3.2. Applying Event-B refinement
Traditionally, refinement is used to develop a concrete system
based on an existing abstract model [14]. For the purpose of
resolution mapping, a concrete system corresponds to a high-
resolution (or disaggregated) entity, and an abstract system
corresponds to a low-resolution (or aggregated) entity. Thus,
refinement in this case can be viewed as obtaining a HRE
from a LRE. The glue invariants of Event-B map the variables
of a refined machine (i.e. the HRE definition) to those of an

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2811

FIGURE 6. Event-B machine for the DataPacket entity.

FIGURE 7. More invariants for the Event-B machine of DataPacket entity.

abstract machine (i.e. LRE definition). This effectively makes
the glue invariants the primary vehicle for the specification of
the refinement relationships between two entities of different
resolution levels. It should be the responsibility of the model
developers to define the glue invariants for each refinement.

An example of the use of glue invariants for the purpose
of defining a refinement from a DataPacket entity to a
DetailedDataPacket entity (as depicted in Fig. 8) is illustrated
in Fig. 9. Note that the DetailedDataPacket machine contains
different variables and indicates, via the REFINES keyword,
that it is a refinement for the DataPacket machine. It should
also be noted that the glue invariants define how the aggregated
variables of the DataPacket entity can be obtained from the
variables of DetailedDataPacket entity. As a relatively subtle
point, the use of accessor functions such as Vector3D_X for the
variables of complex types can be seen in the expressions of

glue invariants. These functions enable access to the members
of complex data types (X member of a Vector3D variable)
and are used for both the proof system and code generation
described in the following sections.

3.3.3. Proving glue invariants
The verification of the glue invariants requires extensive tool
support. Fortunately, for that purpose the Event-B community
has developed such tools as Rodin [18], which generates proof
obligations (POs) for possible gaps to be filled to construct the
proof. Then, it attempts to automatically prove all POs and if
this is not possible, it requests the user to prove the remaining
POs manually. Inside the proof editor, Rodin requests the user
to select related invariants about his/her model and produce the
required statements to prove the proof obligation. If the current
list of invariants is not sufficient to prove the PO, the user

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


2812 A. Kara et al.

FIGURE 8. Event-B Machine for the DetailedDataPacket entity.

FIGURE 9. Glue invariants for the DetailedDataPacket entity.

should update his/her glue invariants or define more invariants
to provide further constraints. Eventually, when all POs have
been proved, the machine is verified and ready for converter
generation.

For example, for the glue invariant glue1 in Fig. 9 the prover
requires the definition of CalculateRange function (e.g. Signal-
Strength * 10) in order to verify the Communication Range ≤
1000 and SignalStrength ≥ 40 invariants. The related POs
could be resolved by using the function definition inside the
Rodin editor.

The Event-B prover is triggered by the statements in the
event definitions of a machine. As our methodology does not

require the modelling of events, the user needs to define an
‘INITIALISATION’ event with initial values of all variables.
Although these values are not actual ones to be used in the
simulation, they should be consistent with the constraints on
both sides of the refinement.

For example, setting the initial value of the SignalStrength
variable to 40 will force us to set the Communication Range
variable to 400. If the CalculateRange function were (e.g.
SignalStrength ∗ 100) we would make Communication-
Range = 4000, then the prover will warn us that the Com-
munication Range ≤ 1000 constraint is violated and we have
to update our conversion routines.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2813

3.3.4. Converter generation
Once the glue invariants that define the conversion relation-
ships between the low-resolution and high-resolution entities
are specified and proved to preserve the constraints (as speci-
fied by the glue invariants), then the converters can be gener-
ated based on the statements of the glue invariants. Note that
converter generation does not depend on glue invariant proofs.
Therefore, converters can be generated while the glue invari-
ants are unproven, but such a practice would not be advisable
from the viewpoint of reliability.

Glue invariants in general are of the form x = expr
(a, b, . . .), where x represents a variable of a lower-resolution
entity and expr(a, b, . . .) represents an algebraic expression
in terms of variables, such as a, b, . . . of a higher-resolution
entity. To generate the converter code, we transform these
statements into statements in a programming language and
inject them into the related methods that are called up during
the simulation execution.

As such, the generation of a converter from DetailedData-
Packet entity to DataPacket entity, for instance, fills the gap
between our high-resolution and low-resolution sensor models,
and allows the simulation to execute as expected (Fig. 5).

3.3.5. Monitor generation
As discussed in Section 3.3.1, the invariant statements about
the provision of constraint information can be used to verify
the input and output of the converters. They specify the
relationships between variables and self-restrictions such as
x > y and x < 1000. We generate assert statements for each
invariant that produces an error upon receipt of invalid values.
At run-time the converter input/output is checked against
the source and target machine invariants, respectively; more
specifically, this occurs before and after the conversion takes
place.

3.4. LRE to HRE mapping

Although, up to this point, we have discussed the mapping of
HREs to LREs, our proposed approach puts no limit on the
model composer with respect to the direction of the mapping.
Event-B refinements can be put to work in both directions with
refinement as usual and with abstraction.

The methodology stages, discussed thus far, can be applied
to LRE to HRE mapping without any modification. Our
transformation routines introduced above only employed
aggregation, therefore additional information was not needed.
However, in a CRM scenario, connections from LRE to HRE
are likely to require additional information; thus resolving this
issue requires further consideration.

To illustrate the problem in the context of our example
described in Fig. 4, we require a converter from low-resolution
sensor models to high-resolution models as the sensor network
needs communication in both directions (Fig. 10).

FIGURE 10. Composition of a new low-resolution model with LRE
to HRE mapping.

In general, the reverse direction requires extra information
(to be input to the converter) or assumptions ‘to fill the gap’.
Assumptions to map the Communication Range value to the
actual SignalStrength value can be produced by a model
developer who knows the behaviour of the high-resolution
sensor model and can interpret concrete values with respect
to the abstract values.

For the example of the sensor model given above, we need to
have a mapping from LREs to HREs. There are many ways to
implement such mappings, but we can put them into two main
categories:

(i) Mapping based on assumptions; a conversion function
that computes the outputs for inputs based on the
assumptions made by the model composer.

(ii) Mapping with the help of external data sources; the
conversion function uses external data sources, such as
statistical databases, to calculate the output.

These categories are described in the following sections.

3.4.1. Mapping based on assumptions
If the model composer knows the details of the high-resolution
model behaviour and he/she can be certain of the required
HRE values for the LRE values; thus, the model composer
can implement a function such as f (i1, i2, . . . , im) =
{o1, o2, . . . , on} in which i1, i2, . . . , im are the low-resolution
inputs and o1, o2, . . . , on are the high-resolution outputs.

For the CommunicationRange example it is possible to have
a mapping similar to the one below:

(i) CommunicationRange = 1 → SignalStrength = 42
(ii) CommunicationRange = 2 → SignalStrength = 44

(iii) . . .

(iv) CommunicationRange = 1000 → SignalStrength = 540

3.4.2. External data sources
The Communication Range variable has a limited domain
and can be implemented with simple mappings. More complex
variables require external inputs such as statistical databases to
fill the gap between the LRE and HRE values [7]. Hence, this
reverse mapping of complex variables will require the model
composer to attach external data sources to connectors to feed
the transformation function.

Let E represent the external data source; then our mapping
will look like f (E, S, i1, i2, . . . , im) = {S′, o1, o2, . . . , on}.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


2814 A. Kara et al.

FIGURE 11. Sample function declaration and its output constraint.

The state variable S is a reflection of values previously
converted and it will allow us to find more appropriate results
from our data source.

For the sensor model example, the LRE side only transmits
a Distance value, however, the HRE side requires a vectoral
Direction value which requires the exact position of the target
relative to the sensor at the time of detection. The LRE to
HRE converter obtains the position of the target from a store
that keeps the past values of all the outputs; then it fills the
Direction value with the Distance computed from the Position
taken from that store.

3.4.3. Implementing mapping on Event-B
Simple mapping functions such as those given in our examples
can be easily implemented using Event-B machines. However,
more complex functions that cannot be expressed using the
language capabilities of Event-B require a different solution
and, therefore, we suggest employing user-defined functions
for that purpose. Event-B allows for the definition of a function
declaration with its inputs and outputs and does not require
other function details unless there is a proof obligation that
needs to be proved. The constraints on inputs or outputs of such
functions can be defined and implemented as shown in Fig. 11.

Although we cannot formally verify the implementation
of these converter functions, we still have the option to
validate their input and check their output at run-time with the
generation of monitors as discussed in Section 3.3.5.

3.5. Mixed mapping

As discussed above, the resolution difference between two
models might be mixed in the sense that some of the attributes
within the same complex entity might be at low resolution and
others at high resolution.

To illustrate this situation, we can add a new variable to
our WSN example. The low-resolution sensor model uses
the T imeO f Day value of Data Packet to calculate the
actual Distance because the sensing unit receives more noise
during the day and Distance should be reduced to find the
target location. However, the developer of a high-resolution
sensor model does not deal with the T imeO f Day but uses
DayState which is an enumeration of Night and Daytime.
Thus, our converter includes a mapping from T imeO f Day
to DayState that involves aggregation into our LRE to HRE
conversion.

As seen in our examples, both the HRE to LRE and LRE
to HRE mappings can be specified for the generation of the

same converter. Thus, our solution supports conversion in
both directions for the same pair of models. If the model
composer defines the required Event-B machine refinements,
the converters will be generated accordingly.

3.6. Summary

The required stages to generate our converters are summarized
as follows:

(1) Entity types are defined as Event-B machines.
(2) Constraints and conversion steps are defined using

invariants.
(3) Machines (entities) that represent different levels of

resolution are linked to each other with refinement
relationships.

(4) All the machine invariants including glue invariants are
proved.

(5) Programming language statements of the converter are
automatically generated from glue invariants.

(6) Monitor statements that check the inputs and outputs of
the converter are generated from invariants.

Section 4 contains an implementation of our approach using
the SiMA [23] framework, followed by a discussion of our
findings in Section 5.

4. IMPLEMENTATION IN A DEVS SETTING USING
SIMA

As pointed out in Section 2.4, SiMA [23] is a modelling
and simulation framework developed by our research group
at TÜBİTAK BİLGEM İLTAREN. It is founded on DEVS
[21] to provide a solid formal basis for building complex
models through composition. SiMA provides a convenient
software platform for our purposes since it inherently supports
simulation construction through model composition. In that,
the connectors fit well into the model coupling paradigm via
the input–output ports. SiMA also comes with a tool-chain
that facilitates the employment of a simulation construction
methodology that involves a distinct stage in which all data
types used for the input–output variables of model ports are
defined in XML conforming to an XML Schema. In a later
stage, automated code generation based on these types is
achieved using the KODO tool. As explained in more detail in
Section 4.2, this also is a good fit for our converter generation
approach.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2815

FIGURE 12. Sample KODO data type definition.

In addition to SiMA we also used Rodin [18] as an
appropriate and easily accessible tool to create and verify
Event-B constructs. Our development efforts contributing to
our existing software infrastructure followed two paths:1

(1) Implementing additional tools for Rodin to cater for
the definition of Event-B machines via KODO type
definitions and the generation of source code from
those definitions.

(2) Devising a mechanism for the incorporation of
converters into the model composition, to enable the
actual deployment and execution of those converters
between SiMA models at simulation run-time.

For the first path, we developed two tools that operate as
plug-ins to Rodin:

(i) Event-B Machine Generator (EMG): A tool to generate
Event-B machines on Rodin that represent the KODO
data types.

(ii) Converter Code Generator (CCG): A tool to generate
converters from the refinement definitions of Rodin.

For the second path, we used the atomic model implemen-
tation provided by SiMA and treat atomic models as algebraic
converters.

The overall converter generation process has four stages:

(1) Create KODO XML definitions for data types with
different levels of resolution (i.e. including the abstract
and refined counterparts of a certain entity).

(2) Use Event-B Machine Generator Plug-in of Rodin
(EMG) to produce an Event-B machine definition for
KODO data types.

(3) Decorate the Event-B machine definitions with glue
invariants to specify the conversion expressions
between abstract and refined entities.

1The full source code and work products, including case study
implementation, can be downloaded from the first author’s web page:
http://www.ceng.metu.edu.tr/ e1565621/MRMCodeGen.

(4) Use the code generator plug-in of Rodin (CCG) to pro-
duce source code that implements the conversion logic
corresponding to those Event-B machine definitions.

These stages are described in more detail in the following
sections.

4.1. Creating type definitions

As stated above, for a simulation construction we define our
overall information space by creating XML definitions for
entities flowing through the input–output ports of our models.
This creates a natural precursor for potential Event-B machines
where resolution conversion is needed. At this point we utilize
the KODO tool within the tool-chain of SiMA to generate
source code for input–output variable definitions for models.
KODO has a well-defined schema and a type system to define
data types in XML. KODO uses XML files that fully specify
the data type definitions for the input–output variables to be
used in SiMA models. These type definitions include primitive
and complex types for each data field of objects as illustrated
in Fig. 12.

4.2. Generating Event-B machines

In this stage, we use the EMG tool developed for Rodin
that uses the KODO data type definitions to generate Event-
B machine definitions. For example, the EMG reads the
KODO type definition given in Fig. 12 to generate the Event-
B machine in Fig. 13, which is, in fact, equivalent to the
machine definition given in Fig. 6. Note that we generate some
metadata in the form of comment tags (such as #Event, #Type,
etc.) that allows us to determine the object types, invariant
categories and other information during the code generation.
The generated machine defines all fields of the KODO data
type as variables, and their data types as primitive invariants.
We also generate and use a Context called MrmTypeContext
to define the type representations of all the complex data
structures in Event-B.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://www.ceng.metu.edu.tr/~e1565621/MRMCodeGen
http://comjnl.oxfordjournals.org/


2816 A. Kara et al.

FIGURE 13. Event-B Machine generated from the KODO data type definition.

FIGURE 14. Sample external transition function.

4.3. Decorating the Event-B machines with glue
invariants

The next step is the insertion of refinement relations in the form
of glue invariants. The user is required to select the related data
types to be used in the converters for model composition. Then
he/she should define the REFINES keyword in the refinement
machine (Fig. 8) and place his/her glue invariants as depicted
in Fig. 9. Note that some variables exist in both the LRE and
HRE model and do not require a glue invariant.

Additional invariants that define constraints and are required
for monitor code generation should be inserted manually. An
example of such additional invariants is shown in Fig. 7.

4.4. Generating the converter code

In this stage, the Event-B machines generated by the EMG
and finalized by the manual decoration process as described
in Section 4.2 are ready for the generation of converters. We
used the glue invariants in refined machines as the basis of our
converters and other invariants were used for verification.

As SiMA is implemented with C# language [28], our code
generator generates converters in that language. The converter
code can then be compiled together with the other source code
which implements the overall simulation.

4.4.1. Converter implementation using SiMA
The central idea is that converters are placed along the coupling
connections of the input/output ports between models. To achi-
eve this in a systematic and uniform way, we utilize an existing
construct of DEVS, namely the atomic model. In its original
form, this model is used to implement the behavioural logic of
a simulation model as a stateful component capable of operat-
ing in both discrete-event and discrete-time paradigms. Here,
however, we use a specialized and somewhat reduced form.

To achieve this, we define a special atomic model, called
the Converter Model, that implements the External Transition
Function (δext), which executes the appropriate converter
function for the received value of the input port (see Fig. 14 for
an example of the δext code) and implements all other transition
functions as described in Section 3.1.

4.4.2. Converter generation
After the generation of the model described in Section 4.4.1,
the next stage is the generation of the converter code. Our
Converter Model contains the ConvertItem function that lists
the conversion statements for each field of the destination data
type based on their glue invariants (Fig. 15).

A glue invariant has the form x = f (y, z, . . .), where x
is the destination data type and y, z, . . . are sources. Details

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2817

FIGURE 15. Sample glue converter function.

FIGURE 16. Sample content for a monitor function.

of f are defined as statements in the Event-B Machine or as
function definitions in its Context. So, the code generation
for the converter function depends on the specification of f
and its implementation patterns. We adopt the approach of
[29] regarding the target patterns in C# language and generate
statements in the glue invariants (Fig. 9) as statements in C#
language (Fig. 15).

4.4.3. Compensating for the shortcomings of Event-B
type system

Event-B itself is not a fully fledged programming language,
for example; it does not have primitive mathematical functions
(e.g. sin, sqrt etc.); however, some glue invariants require
these functions and to compensate for this shortcoming, our
methodology supports the manual implementation of complex
glue-functions.

To elaborate further, for a glue-statement such as x =
f (y) + q(z) we can generate full details of f and leave the
implementation of q to the user. The C# language supports
partial class definitions that allow the user to define his/her
functions in different files. Our code generator generates f in
the main file and requires the user to implement q in another
file to be used in the converter.

Although this extension is instrumental in allowing the
definition of refinements involving complex expressions, it
limits our automatic verification capability since we can no
longer use the implementation details of q in our proofs.
However, since this extension is implemented due to the
limitations of Event-B language, it can be omitted if, in
the future, the Event-B language is enriched to support our
requirements.

4.4.4. Using invariants for run-time verification of converter
output

Allowing the manual insertion of a conversion code appears
to be a loophole in our automatic verification capability.
However, our Event-B machines involve invariants that
provide constraints on the variables and the code generator can
use these invariants for converter input and output checking.

We generate the assert statements as given in Fig. 16 and
place them inside the MonitorSource and MonitorDestination
methods and call them at the beginning and end of the Convert-
Item method given in Fig. 15. These assert statements can be
executed in the debugging phase of the software development
and they can be omitted in the released executable.

5. DISCUSSIONS

In this section, we present a discussion of the central aspects of
the work that is relevant to our solution.

5.1. Discussion of related work

Different approaches to the composition of multi-resolution
models [24–26] have already been proposed in the litera-
ture. Among those, a relatively recent work, [25] introduced
the concept of ‘MR modelling space’ to separate the aggre-
gation/disaggregation (i.e. resolution conversion) logic from
the mechanics of the simulation execution (i.e. the simula-
tion space). Part of this Multi-Resolution Space is the Multi-
resolution Event Interface (MREI), which handles the reso-
lution mismatches of messages between models. In fact, the

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


2818 A. Kara et al.

idea of logically separating the resolution conversion and the
simulation by localizing the entity resolution conversion into
MREI has similarities with our approach in which the main
difference lies in formalizing the notion of entity resolution
conversion as a part of connector models in a DEVS setting.
Furthermore, and more importantly, we address the reliability
of the resolution conversion, firstly, through the formal verifi-
cation of the Event-B glue invariants and, secondly, through the
automatic generation of resolution converter components (i.e.
connector models) from declarative specifications (i.e. Event-
B machines). In that respect, it is important to note that we
specifically target the problem of CRM as opposed to MRM.
The implication of this emphasis is that our solution tackles
the problem of that interoperation of models that are coupled
via I/O ports exchanging objects at different resolution lev-
els but representing the same real-world entities. Those mod-
els, possibly at different resolution levels, that can replace
each other in a composition can be considered as members
of a Multi-Resolution Model Family (MRMF). In fact, at a
given simulation time only one member of this MRMF may
be operational where it would have to interoperate with other
models (that may possibly be a member of another MRMF);
this in turn may require a resolution conversion process due
to the difference in the entity resolution levels of the cou-
pled ports. Postulating along the same lines, the problem of
replacing a simulation model with another higher- or lower-
resolution model that is a member of the same MRMF at sim-
ulation run-time (dynamically) can be addressed separately
from the viewpoint of interoperation among cross-resolution
models, although the ramifications of the two problems are
related.

Apparently, the most relevant works to our approach are
[13, 30] in which the authors present a number of what they
refer to as ‘fundamental observations’ regarding the problem
of CRM. We have found those observations quite useful
in determining the qualities and level of comprehensiveness
of the solutions in this field. We will not go into the
details of each of their observations at length, rather we
will compare central tenets of their solution with ours,
namely, the Multi-Resolution Entity (MRE). Since the authors
claim that MREs offer a solution framework that focuses on
the maintenance of consistency based on their fundamental
observations, we will undertake an informal evaluation
based on a qualitative comparison of the MRE solution
with our proposed solution as given in the following three
subsections.

5.1.1. Consistency maintenance
MREs internalize the consistency maintenance via the
management of a set of core attributes and a set of reversible
mapping functions. MREs maintain ‘internal consistency’
across multiple, concurrent levels of resolution. Within the
MRE concept, each entity either maintains state information
at all desired levels of resolution or produces attribute values

FIGURE 17. Design of an MRE with two resolution levels [13].

at each simulation step. Simulations involving MREs are
based on concurrently reflecting the effects of interactions at
all resolution levels. Figure 17 depicts a typical MRE for
two levels; Level0 for low resolution and Level1 for high
resolution. The MRE maintains the attributes at both levels
at all times and the consistency between the two states of the
MRE is maintained.

To maintain this consistency, relationships between the
attributes must be captured. These relationships can be
modelled by a directed, weighted graph where the nodes
represent the attributes and the edges represent relationships.
The MRE proposes the notion of an Attribute Dependency
Graph (ADG) [30], which depicts the various attributes and
sub-entities of the MRE and portrays the relationships among
them. An ADG is an encoding of the concurrent multi-
resolution interactions problem, and it is also an encoding of
solutions thereof.

Our solution is similar to the MRE in many ways; however,
it has the following additional advantages:

(i) Event-B machines that are linked to each other through
refinement relationships can be considered to collec-
tively define a Multi-Resolution Entity. From another per-
spective, the concept of a MRMF is embodied by the
collection of Event-B machines that are linked via the
refinement relationships.

(ii) The glue invariants that define the conversion logic
between the attributes can be viewed as a specification
of a directed graph between those attributes. In fact, the
edges of such a graph are annotated with expressions
that effectively specify a mapping between the related
attributes.

(iii) If there are additional invariant definitions other than the
glue invariants (such as range restrictions and type def-
initions) in the machines, those invariants are also taken
into consideration by the prover during verification, which
provides a further consistency checking mechanism on the
resolution mapping.

(iv) One important advantage of our approach is that since
our mapping is specified using a formal language, its

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2819

consistency can be verified using a prover; thus, its
implementation can be generated automatically, which
addresses the concept of correct implementation of the
mapping.

(v) In our approach the consistency maintenance logic is
internalized (and hence localized) into the notion of con-
nector model; this ensures a systematic approach to the
simulation construction and an effective management of
consistency issues at run-time. Consistency maintenance
in the sense of [30] amounts to the preservation of the glue
invariants in our terms.

It is worth noting that our solution perceives simulation models
as black-box components. The relation between the state and
I/O of a model is crucial for the comparison between our
solution and the MRE. If the data flowing through the I/O
ports is a direct mapping of the internal model state, the
implementation of converters would be equal to the state
mappings of the MRE. Otherwise, we would lose some of
the information about the state and our converter might not
achieve the envisioned success rate of the MRE in consistency
maintenance.

5.1.2. Staging and intrusiveness of resolution mapping
procedures

Although the authors [30] do not extend their discussion
towards design and implementation issues of MREs, our
understanding is that the MRE is more intrusive in terms of
the model internals since an MRE and the logic required to
map the different resolution levels specified within it seem to
be coupled with the behavioural logic of the implementation of
the relevant model. This implies that a change in the structure
(i.e. syntax) of an entity enforces complementary modifications
on the internals of the models that consume or produce that
MRE. This is something that may raise questions regarding the
architectural clarity and maintainability aspects of the overall
scheme when it comes to the actual construction of simulations
based on this concept.

Our approach separates the definition of MRE families from
the logic required to map between those MREs. This separation
is clearly expressed at a declarative level using a formal
language. Moreover, our methodology ensures that the data
constraints and mapping logic are verified via provers, and
implementation is generated, in an automated way, to support
correctness by the construction. The expressive power of the
language used (i.e. Event-B) does impose certain restrictions
on the complexity of the logic that handles the resolution
mapping; however, these restrictions are clearly delineated and
there are ways of working around them.

5.1.3. Practicality
Since the authors [30] only provide a design strategy, rather
than a complete solution with guidance for the implementation
of the MREs, there are no details given concerning how

consistency maintenance can be achieved in a simulation and
execution of ADG.

Our solution provides a methodology involving both a
design strategy and detailed implementation guidance. We give
details of the stages required to apply our methodology and
present an example of a complete converter generation. Hence,
we describe a practical process to implement a CRM solution
based on formal methods and available tools.

5.2. Converters in relation to connectors
in component-based development

The use of connectors in component-based development is a
well-known topic in software engineering [3, 31]. There is
also a considerable amount of research on developing a formal
basis for connectors in the context of component composition
[2, 32–35].

The use of the Connector Model as a first class construct
in a DEVS-based simulation construction environment is a
specific case of the generalized connector concept as discussed
in the literature cited above. In [36, 37], the authors propose
drivers that catch incoming real-time events from hardware
devices and send output commands to the hardware by user-
implemented driver objects. These drivers can be viewed as
connectors that allow the DEVS models to interoperate with
real-time systems.

In our case, the connectors play the specific role of entity
resolution conversion. Note that, although the adaptation of
interaction protocols between components being ‘glued’ is
one of the central properties of connectors in general, in our
case this is less of an issue. This is because the interaction
protocol of the DEVS models is under the strict control of the
simulation engine that rigorously applies the DEVS simulation
protocol [21]. Through this protocol the engine drives the
models via a standard control interface that is, by definition,
provided by each model. Therefore, port couplings between
models only act as data flow channels. Since our connectors
are defined to exist along port couplings (rather than between
the engine and the models), their functionality is limited to data
conversion.

It is worth noting that the use of Event-B to facilitate the
verification and automatic construction of connectors in the
DEVS setting to overcome resolution mismatches is a novel
aspect of our methodology in terms of the application of
formal methods in the component-based development of multi-
resolution simulation software.

5.3. Converters in relation to adapters
in service-oriented architecture

The notion of adapters is prevalent in the context of web
service interoperability and adaptation. A service interface
defines the set of operations that the service provides along
with the associated message formats and data types. In our

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


2820 A. Kara et al.

case, we are only concerned with data types, modelled
as Event-B machines. Let A and A′ be two ‘functionally
equivalent’ services with different interfaces; then suppose
that a service B is designed to use service A in a service
composition. Now, if we need to replace A with A′ in the
composition, a mismatch is likely to arise. In the SOA literature
various categories of common mismatches are identified
[4]. Overall, mismatches occur at two levels; protocol and
interface, and it is acknowledged that these two levels cannot
always be isolated. Since we work within the DEVS formalism,
using the parallel DEVS protocol in particular, protocol
mismatches are avoided. The interface level mismatches can be
signature and parameter constraint mismatches. The signature
mismatch is related to mismatches between operation names
and parameters. In our case, the operation is implicit in the
model ports selected in the model composition. In the case of a
parameter mismatch, e.g. differences in the names, numbers
and orderings of parameters, this is handled by the glue
invariants. The parameter constraint mismatch is related to
different constraints that the parameters must satisfy. In our
work, this issue is addressed by the machine invariants. To
sum up, adapters that handle interface mismatches between
services are similar in purpose and functionality to the adapters
proposed in this work.

Static schema matching approaches have been proposed that
automatically match the interface specifications (in WSDL,
in the form of XML documents) of web services [4, 38].
The techniques presented in the literature could be useful
to complement the present work with the aim to automate
glue invariant suggestion. The present work, however, focuses
on the formal verification of glue invariants and generating
adapter code automatically from them.

In [39], authors confront the interface mismatch problem
by a sub-ontology extraction method. Their work focuses on
the alignment of the extracted representation ontologies for the
two service interfaces to be matched. In terms of our work,
this corresponds to the entity resolution mapping stage. They
mention adapter generation but no specifics are available.

In [40], the authors tackle the mismatch problem in
heterogeneous plug-n-play devices using an ontology-based
device and service description layer. They resolve the
heterogeneity in the device ontology layer with semi-automatic
alignment techniques. After validation by an expert they use
the alignment and generate code for an executable proxy
(converter). In terms of our work, alignments correspond to
glue invariants and expert validation can be regarded as the
informal counterpart of glue verification with POs. Although
their overall approach is similar to ours, the semantics
constraints, thus, the issue of preservation thereof, do not arise
in their setting.

The use of formal methods in the SOA literature pertaining
to the specification and generation of adapters has been limited.
In [41], authors propose an application adaptation framework
based on Petri nets used to capture template matchmaking

using a reachability analysis. These templates are somewhat
similar to our converters; they form the solution stages to solve
the mismatches. Their work focuses on selecting templates for
a mismatch condition, rather than formulating their definitions.
In contrast, our work enables the definition, verification and
generation of converters (templates) based on Event-B, a
formal specification language.

Event-B has been used in the formalization of service com-
position. For example, in [42], authors map the web ser-
vice composition process defined with BPEL on Event-B.
They define a translation of BPEL entities (including data
types defined in WSDL) to Event-B entities and present a
proof- and refinement-based approach for the formal repre-
sentation, verification and validation of Web Services com-
position. Our approach differs from this work with the code
generation process that would help the automation of connector
usage.

5.4. The unconventional use of refinement in our
approach

In its conventional sense, refinement is a process to derive
concrete models from existing abstract models. As such, it is
used to develop more concrete models that are closer to the
implementation. Many tools such as code generators developed
by the Event-B community operate on the most refined
models, because refinement reduces the level of abstraction
and increases the level of detail, both of which are desirable
improvements in a system development process. In the work
presented in this paper, we take a different perspective, in
that, we use refinement to define the relations between existing
entities and use the defined relation itself as the source for
the generation of a converter code. Evidently, our scheme
does not exclude cases where entities and refinement relations
that specify resolution mapping logic are defined together
at the simulation design stage. However, our solution can
operate in a setting where there are entities that represent
data types at different resolution levels that have already been
implemented and are ready to be used in a simulation. In such
a setting, we add refinement relations between those existing
entities to specify how to compensate for the resolution
mismatches between them in a formal language. As described
in Section 3, refinement allows us to define fine-grained
mapping expressions among attribute pairs and allows the use
of a proof subsystem to validate mapping specifications for the
preservation of constraints and consistency. Thus, we exploit
the power of refinement but employ it in an unconventional
way. It is also worth noting, once again, that we use the proof
capabilities of the Event-B tools [18] in refinement to validate
our converters for constraint preservation.

Recently, Hallerstede and Hoang advanced the method
of ‘interface instantiation’ as a special form of Event-B
refinement with a view towards decomposition [43]. They
define an interface as a collection of external variables

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2821

(i.e. those that are shared by the sub-models of a model)
with the associated invariants. Our notion of converter, as a
special kind of connector, can be seen as a counterpart of
their notion of interface with a view towards composition.
In their setting the instantiation of the interface facilitates
decomposition, whereas in our setting generating code from
the converter specification facilitates model composition.

6. CONCLUSION

In this paper, we have presented our approach to implement a
solution for the composition of multi-resolution models. The
construction of cross-resolution simulations is a multifaceted
and complex enterprise. Any attempt to devise elegant
solutions that target all of the facets of such a complex problem
is deemed to face enormous difficulties and likely to fall short
of delivering a comprehensive remedy that addresses all of
those facets. From the very start of our work our objective
has been to target a closely correlated subset of those facets
(in this case the entity, attribute and logical dependency facets)
and provide a relatively complete solution for that subset. In
that respect, our approach combines the strength of formal
approaches and languages, with tool and framework support
into a systematic methodology, to deliver a focused and in-
depth solution. Clearly, from the formal approaches we sought
one that facilitates precise, machine processable semantics;
and through the systematic methodology and accompanying
tool support we looked for a repeatable process that builds
upon rigorous foundations and relieves the simulationist from
adopting ad hoc practices.

To reiterate, the merits of our approach are that it;

(i) involves a formal proposal to fit the concept of
converters into a well-established model composition
paradigm, namely, DEVS;

(ii) provides a practical methodology that offers a well-
defined sequence of steps to obtain executable
converters for entity resolution mapping, given the
appropriate descriptions of entities and refinement
relations.

Our approach potentially facilitates the automatic discovery
and reuse of resolution converters (i.e. connector models as
black-box components) that have been developed for mapping
requirements that were already addressed in earlier simulation
exercises. A library of such connector models can be built
and made available for projects that involve CRM. Since
our simulation environment supports strongly typed port
definitions for both the models and connectors, the construction
of a model composition graph that involves semantically
compatible but syntactically incompatible model ports can be
achieved through appropriate combinations of connectors. In
fact, our research group has planned future work that can
realize such graph-building processes in a semi-automated

way. In [44], we have proposed our preliminary work about
connector composition and reuse in DEVS.

The use of Event-B in the composition of simulation
components can be examined from the perspective of the
Levels of Conceptual Interoperability Model (LCIM) [45].
The use of Event-B machines and invariants, as detailed in
the present work, addresses syntactic and semantic levels of
interoperability, where the structure and meaning of exchanged
data are shared between the interoperating systems. The
pragmatic level of interoperability further requires that the
systems have an agreement on the use of exchanged data. This
level can be addressed by the use of the refinement relations
involving events as well. Addressing dynamic interoperability
will require the consideration of the internal states of the
simulation components along with the operational context of
the composite simulation. This level can be addressed by the
modelling of the states and transitions of the components,
and the global context in which the data exchange takes
place. We regard supporting higher levels of LCIM in multi-
resolution model composition by the use of Event-B and
other formal methods as a promising direction for future
research.

REFERENCES

[1] Committee on Modeling and Simulation for Defense Transfor-
mation, National Research Council (2006) Defense Modeling,
Simulation, and Analysis: Meeting the Challenge. The National
Academies Press.

[2] Meng, S. and Arbab, F. (2009) Connectors as designs. Electron.
Notes Theor. Comput. Sci., 255, 119–135.

[3] Jifeng, H., Li, X. and Liu, Z. (2005) Component-Based
Software Engineering. In Hung, D. and Wirsing, M. (eds),
Theoretical Aspects of Computing—ICTAC 2005, Lecture Notes
in Computer Science 3722, pp. 70–95. Springer, Berlin,
Heidelberg.

[4] Kongdenfha, W., Motahari-Nezhad, H., Benatallah, B. and
Saint-Paul, R. (2014) Web Service Adaptation: Mismatch Pat-
terns and Semi-Automated Approach to Mismatch Identifica-
tion and Adapter Development. In Bouguettaya, A., Sheng, Q.Z.
and Daniel, F. (eds), Web Services Foundations, pp. 245–272.
Springer, New York.

[5] Papazoglou, M. and van den Heuvel, W.-J. (2007) Service-
oriented architectures: approaches, technologies and research
issues. VLDB J., 16, 389–415.

[6] Powell, D.R. (1997) Control of Entity Interactions in a
Hierarchical Variable Resolution Simulation. Technical Report.
Los Alamos National Lab., NM, United States.

[7] Davis, P.K. and Bigelow, J.H. (1998) Experiments in Multireso-
lution Modeling (MRM). RAND Corporation.

[8] Davis, P.K. and Hillestad, R. (1993) Families of Models that
Cross Levels of Resolution: Issues for Design, Calibration and

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/


2822 A. Kara et al.

Management. Proc. 25th Conf. on Winter Simulation, WSC’93,
Los Angeles, California, USA, pp. 1003–1012. ACM.

[9] Davis, P.K. (2000) Dealing with complexity: exploratory anal-
ysis enabled by multiresolultion, multiperspective modeling.
In Proc. of the 32nd conf. on Winter simulation (WSC ’00),
Orlando, Florida, pp. 293–302. Society for Computer Simula-
tion International.

[10] Davis, P.K. and Tolk, A. (2007) Observations on New Develop-
ments in Composability and Multi-Resolution Modeling. Proc.
39th Conf. on Winter Simulation: 40 Years! The Best is Yet to
Come, WSC’07, Washington D.C., USA, pp. 859–870. IEEE
Press.

[11] Abrial, J. (2010) Modeling in Event-B: System and Software
Engineering. Cambridge University Press.

[12] Yick, J., Mukherjee, B. and Ghosal, D. (2008) Wireless sensor
network survey. Comput. Netw., 52, 2292–2330.

[13] Reynolds Jr, P., Natrajan, A. and Srinivasan, S. (1997)
Consistency maintenance in multiresolution simulation. ACM
Trans. Model. Comput. Simul., 7, 392.

[14] Abrial, J.-R. and Hallerstede, S. (2007) Refinement, decomposi-
tion, and instantiation of discrete models: application to Event-
B. Fundam. Inform., 77, 1–28.

[15] Hallerstede, S. (2008) On the Purpose of Event-B Proof
Obligations. In Börger, E., Butler, M., Bowen, J. and Boca,
P. (eds), Abstract State Machines, B and Z, Lecture Notes
in Computer Science 5238, pp. 125–138. Springer, Berlin,
Heidelberg.

[16] ClearSy System Engineering (2013) Atelier B 4 - User Manual.

[17] Abrial, J. (1996) The B-Book: Assigning Programs to Meanings.
Cambridge University Press.

[18] Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F.
and Voisin, L. (2010) Rodin: an open toolset for modelling and
reasoning in event-b. Int. J. Softw. Tools Technol. Transf., 12,
447–466.

[19] The Eclipse Foundation (2013). http://www.eclipse.org.

[20] Zeigler, B.P. (1976) Theory of Modeling and Simulation. John
Wiley.

[21] Zeigler, B., Kim, T.G. and Praehofer, H. (2000) Theory of
Modeling and Simulation. Academic Press.

[22] Barros, F.J., Zeigler, B.P. and Fishwick, P.A. (1998) Multimodels
and Dynamic Structure Models: An Integration of DSDE/DEVS
and OOPM. Proc. 30th Conf. on Winter Simulation, WSC’98,
Washington, D.C., USA, pp. 413–420. IEEE Computer Society
Press.

[23] Kara, A., Deniz, F., Bozağaç, D. and Alpdemir, M.N. (2009)
Simulation Modeling Architecture (SiMA), a DEVS Based
Modeling and Simulation Framework. Proc. 2009 Summer
Computer Simulation Conf., SCSC’09, Istanbul, Turkey, pp.
315–321. Society for Modeling & Simulation International.

[24] Hong, S.-Y. and Kim, T. (2007) A Resolution Converter
for Multi-Resolution Modeling/Simulation on HLA/RTI. In
Koyamada, K., Tamura, S. and Ono, O. (eds), Systems Modeling
and Simulation, pp. 289–293. Springer, Japan.

[25] Hong, S.-Y. and Kim, T.G. (2013) Specification of multi-
resolution modeling space for multi-resolution system simula-
tion. Simulation, 89, 28–40.

[26] Baohong, L. (2007) A formal description specification for
multi-resolution modeling based on DEVS formalism and its
applications. J. Def. Modeling Simul., 4, 229.

[27] Deniz, F., Alpdemir, M.N., Kara, A. and Oğuztüzün, H. (2012)
Supporting dynamic simulations with simulation modeling
architecture (SiMA): a discrete event system specification-based
modeling and simulation framework. Simulation, 88, 707–730.

[28] Hejlsberg, A., Wiltamuth, S. and Golde, P. (2006) The C#
Programming Language. Addison-Wesley Professional.

[29] Méry, D. and Singh, N.K. (2011) Automatic Code Generation
from Event-B Models. Proc. 2nd Symposium on Information
and Communication Technology, SoICT’11, Hanoi, Vietnam,
pp. 179–188. ACM.

[30] Natrajan, A., Reynolds, P. and Srinivasan, S. (1997) MRE:
A Flexible Approach to Multi-Resolution Modeling. Proc.
11th Workshop on Parallel and Distributed Simulation, 1997,
Lockenhaus, pp. 156–163. IEEE.

[31] Bureš, T. (2006) Generating Connectors for Homogeneous
and Heterogeneous Deployment. PhD Thesis, Faculty of
Mathematics and Physics, Charles University.

[32] Hoare, C. and He, J. (1998) Unifying Theories of Programming.
Prentice Hall.

[33] Davies, J., Faitelson, D. and Welch, J. (2008) Domain-specific
semantics and data refinement of object models. Electron. Notes
Theor. Comput. Sci., 195, 151–170.

[34] Chen, X., He, J., Liu, Z. and Zhan, N. (2007) A Model of
Component-Based Programming. In Arbab, F. and Sirjani, M.
(eds), International Symposium on Fundamentals of Software
Engineering, Lecture Notes in Computer Science 4767, pp. 191–
206. Springer, Berlin, Heidelberg.

[35] Allen, R. and Garlan, D. (1994) Formalizing Architectural
Connection. Proc. 16th Int. Conf. on Software Engineering,
ICSE’94, Sorrento, Italy, pp. 71–80. IEEE Computer Society
Press.

[36] Cho, S.M. and Kim, T.G. (1998) Real-Time DEVS Simulation:
Concurrent, Time-Selective Execution of Combined RT-DEVS
Model and Interactive Environment. Proc. 1998 Summer
Simulation Conf., Reno, Nevada.

[37] Moallemi, M. and Wainer, G. (2010) Designing an Interface for
Real-Time and Embedded DEVS. Proc. 2010 Spring Simulation
Multiconference, SpringSim’10, Orlando, FL, USA, pp. 137:
1–137:8. Society for Computer Simulation International.

[38] Benatallah, B., Casati, F., Grigori, D., Nezhad, H. and Toumani,
F. (2005) Developing Adapters for Web Services Integration. In
Pastor, O. and Falcão e Cunha, J. (eds), Advanced Information
Systems Engineering, Lecture Notes in Computer Science 3520,
pp. 415–429. Springer, Berlin, Heidelberg.

[39] Jin, L., Wu, J., Yin, J., Li, Y. and Deng, S. (2010) Improve
Service Interface Adaptation Using Sub-Ontology Extraction.
2010 IEEE International Conference on Services Computing
(SCC), Miami, FL, July, pp. 170–177.

[40] El Kaed, C., Denneulin, Y. and Ottogalli, F.-G. (2011) Dynamic
Service Adaptation for Plug and Play Device Interoperability.
Proc. 7th Int. Conf. on Network and Services Management,
CNSM’11, Paris, France, pp. 46–55. International Federation for
Information Processing.

[41] Popescu, R., Staikopoulos, A., Brogi, A., Liu, P. and Clarke, S.
(2012) A formalized, taxonomy-driven approach to cross-layer

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://www.eclipse.org
http://comjnl.oxfordjournals.org/


A Methodology for Resolution Mapping using Event-B 2823

application adaptation. ACM Trans. Auton. Adapt. Syst., 7, 7:
1–7:30.

[42] Ait-Sadoune, I. and Ait-Ameur, Y. (2009) A Proof Based
Approach for Modelling and Verifying Web Services Compo-
sitions. 2009 14th IEEE Int. Conf. on Engineering of Complex
Computer Systems, Potsdam, Germany, June, pp. 1–10.

[43] Hallerstede, S. and Hoang, T.S. (2014) Refinement of decom-
posed models by interface instantiation. Sci. Comput. Program.,
94, 144–163.

[44] Kara, A., Og̃uztüzün, H. and Alpdemir, M.N. (2014) Hetero-
geneous DEVS Simulations with Connectors and Reo Based
Compositions (WIP). Proc. 2014 Spring Simulation Multicon-
ference, SpringSim’14, Tampa, FL, USA, pp. 291–296. Society
for Computer Simulation International.

[45] Tolk, A., Turnitsa, C. and Diallo, S. (2008) Implied ontological
representation within the levels of conceptual interoperability
model. Intell. Decision Technol., 2, 3–19.

Section A: Computer Science Theory, Methods and Tools
The Computer Journal, Vol. 58 No. 11, 2015

 at C
arleton U

niversity on D
ecem

ber 3, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

 

http://comjnl.oxfordjournals.org/

	1 Introduction
	1.1 Cross-resolution modelling in the context of complex simulation applications
	1.2 Our contribution

	2 Background
	2.1 Multi-resolution modelling
	2.2 Event-B
	2.3 Discrete event system specification
	2.4 Simulation modelling architecture

	3 Our approach
	3.1 The formal representation of converters in the DEVS setting
	3.2 A methodology for entity resolution mapping
	3.3 HRE to LRE mapping
	3.4 LRE to HRE mapping
	3.5 Mixed mapping
	3.6 Summary

	4 Implementation in a DEVS Setting Using SiMA
	4.1 Creating type definitions
	4.2 Generating Event-B machines
	4.3 Decorating the Event-B machines with glue invariants
	4.4 Generating the converter code

	5 Discussions
	5.1 Discussion of related work
	5.2 Converters in relation to connectors in component-based development
	5.3 Converters in relation to adapters in service-oriented architecture
	5.4 The unconventional use of refinement in our approach

	6 Conclusion

