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Abstract

In this paper, a finite element analysis (FEA) based fast optimization method to optimize a lightweight in-wheel switched
reluctance machine is presented. This method speeds up the switched reluctance machine optimization procedure by running
the FEA simulations with single-phase constant current excitations for half electrical cycle and estimating the machine
performance metrics using the gathered FEA data. Hence, the machine‘s dynamic performance estimation process takes
shorter for each design candidate. The optimization algorithm employs designs of experiments (DOE), response surface (RS)
analysis method, and differential evolution algorithm (DE). Here, the DOE method is used to reduce the search space by
narrowing down the upper and lower boundaries of each design variable based on the RS analysis. Although this process
does not guarantee getting the Pareto front, it places the search space close to the actual one. Hence, the multi-objective DE
optimization finds the Pareto optimal solution set without requiring a large number of iterations as well as a large number of
candidate designs for each iteration. The method is applied to a 24/16 SRM that is intended to be used in a lightweight race
car as a hub motor. Six dimensionless geometric variables are optimized to satisfy three objective functions, namely torque
ripple, motor mass, and copper loss. While the conventional DE takes at least 3000 candidate designs, the proposed method
considers only 559 designs to reach a similar Pareto front. It is observed that the proposed method takes about 6 h 30 min
compared to the conventional method that takes 32 h 50 min using the same computer. Therefore, the computation time is
reduced almost five times with the proposed method.

Keywords Fast optimization - Switched reluctance machine - Multi-objective differential evolution algorithm - Design of
experiment - Response surface analysis - Finite element analysis

1 Introduction

Due to its reliability and low cost, the usage of rare-earth
magnet-free switched reluctance machines (SRM) for elec-
tric and hybrid vehicles gains widespread popularity in recent
years [1]. SRMs are comparable with induction machines
(IMs) in terms of power density and efficiency [2]. Since
the magnets and windings are absent on the rotor, SRMs are
cheap, reliable, robust, and have simple geometry compared
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to the IMs and permanent magnet synchronous machines
(PMSMs). Hence, SRMs are suitable for high-speed and
harsh environment applications such as electric vehicles
(EVs) [3].

In SRMs, electrical energy is converted to mechanical
energy with the help of reluctance torque. By applying cur-
rent to the stator windings, the nearest rotor pole is aligned
with the excited stator pole to minimize the magnetic reluc-
tance. Later, the stator phases are energized sequentially to
provide proper rotation [4, 5].

Design of the electrical machines based on the design
specifications and the operating conditions is an important
matter that should be dealt with carefully. To analyze the
influence of the different design variables on machine per-
formance, an appropriate optimization technique is generally
utilized. Though a wide range of optimization techniques
can be found in the literature, choosing the right technique
depends on the nature of the problem [6-8].
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Several optimization studies have been introduced for
SRMs in the literature. Design limitations of SRMs are inves-
tigated in [9], where the design objectives are maximizing
the torque, the torque per ohmic losses and the efficiency.
The optimum tooth-width/tooth-pitch ratio, optimum rotor-
diameter/stator-diameter split ratio, and yoke-width/half-of-
the-tooth-width ratio of the motor are studied to meet the
three objectives mentioned above. In [10], the torque and
co-energy are selected as objective functions and the flux
density is considered as a constraint. A sequential approxi-
mate optimization method is used to meet the objectives and
to find the optimum values of stator inner diameter, stator
pole angle, rotor pole angle, and air gap of a 6/4 SRM. In
[11], the objective is to increase the efficiency by shortening
the flux path in an outer rotor SRM for electric bus appli-
cations. A multi-objective design optimization is proposed
in [12] for 8/14 outer rotor SRM, where genetic algorithm
(GA) optimization is applied and the objective functions are
introduced as a weighted sum of the individual design objec-
tives. Objective functions of the optimization are selected as
maximizing average steady-state torque, torque factor, torque
quality factor, average torque per active mass, loss factor, and
minimizing the torque ripple. In [13], an SRM optimization
for EVsis introduced, where some constraints are considered
and motor parameters are optimized using the parametric
sweep method of the machine with both static and dynamic
analyses. Another study using the Kriging model and GA
for optimizing the 6/4 SRM is reported in [14]. The objec-
tive function is to reduce the torque ripple while finding the
minimum Kriging function instead of solving the problem
by finite element. A multi-objective optimization with GA
is studied and five different SRM designs are compared in
[15], where two objectives; maximizing the output torque
and minimizing the root mean square (RMS) value of torque
ripple are considered. In [16], the design and optimization of
a four-phase 16/20 in-wheel switched reluctance motor (IW-
SRM) with four indicators; torque, torque ripple, efficiency,
and torque density are proposed, where the design objectives
are converted into a single objective function via optimized
weight functions. In general, optimization objectives are cho-
sen as minimizing the motor mass/volume, minimizing the
losses/maximizing the efficiency, and minimizing the torque
ripple. In some studies, stack length is kept constant and
the first objective is defined as maximizing the torque per
mass/volume [17], whereas, in other studies the objective is
selected as minimizing the motor mass by calculating the
stack length for all candidate designs to get the same torque
output. In this paper, the latter approximation is considered.

Accordingto [18, 19], the evolutionary algorithm has great
potential for solving a wide range of difficult problems. One
of the suitable evolutionary algorithms for solving multi-
objective and multi-constrained optimization problems is
the differential evolution (DE) algorithm. A comprehensive
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study of multi-objective optimization algorithms that com-
pares three different optimization algorithms is presented
in [20], where DE, GA, and particle swarm optimization
(PSO) for the design of a 6/4 SRM are studied. The results
state that the DE algorithm has better performance in terms
of convergence speed and quality of the final Pareto solu-
tion set compared to the others. In [21], a multi-objective
DE algorithm is applied to an SRM to minimize the torque
ripple of 6/4 SRM while building an active current profile
that is integrated into multi-objective optimization using the
DE algorithm. Another multi-objective DE algorithm-based
optimization study is proposed in [22], where, the optimal
design of three different SRM topologies is considered for
the direct drive EV applications and reducing the total loss
and mass are the two objectives of the optimization. In [23],
design of experiment (DOE) and DE based method is con-
sidered to identify the designs of an SRM with magnetically
disconnected rotor modules. The aim is to minimize the
losses and the mass while producing the target torque. In [24],
multi-objective optimization of an IW-SRM using the DE
algorithm is proposed. The paper only investigates the opti-
mum rotor pole and stator pole arc angles to achieve desired
average torque and high torque density. Another design opti-
mization study of an IW-SRM using multi-objective DE
algorithm is reported in [17]. Here, the machine is analyt-
ically modeled and both static and dynamic analyses are
performed, where static torque, efficiency, and torque per
volume are considered as objective functions.

One of the biggest drawbacks for majority of the afore-
mentioned optimization studies is that they use weighted
sum approach which converts a multi-objective optimiza-
tion problem to a single objective by taking the weighted
average of each individual design objectives [25]. As a mat-
ter of fact, determining the weights is a tiresome process
and quantifying the importance of the objectives may vary
from one designer to another. Furthermore, this approach
does not always produce the desired solution, and the opti-
mization algorithm provides only one solution at the end,
which makes this approach less flexible. Instead, it is desir-
able to obtain a set of optimized designs where one of them
can be selected as a final design. Hence, the designer has
multiple optimal solutions to select. This approximation is
called Pareto based multi-objective optimization (PBMO).
In this paper, the importance of all objective functions are
considered equal, and a solution set is created instead of a
single solution.

PBMO algorithms often require a large number of candi-
date designs. For instance, a typical DE algorithm requires
a population of 50 individuals and 60 generations yielding
to 3000 total simulations to approximate the Pareto optimal
solution set, which leads to a large amount of computation
time.
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In this study, to minimize the computation time a combi-
nation of the DOE/Response Surface (RS) analysis method
and the DE algorithm is used to design an IW-SRM for a
lightweight electric racing car. During the optimization pro-
cess, FEA simulations are set up to run a single phase constant
current excitation to obtain the static flux linkage and torque
curves for four current levels (minimum number of curves
to represent the nonlinearity) from zero to the rated current.
Hence, the flux linkage and torque curves versus the current
and position are obtained over a half electrical period. Since
the flux linkage waveform has even and torque waveform has
odd symmetry with respect to the mid pole position, these
data can be reconstructed for the rest of the period. Using the
recorded data, a MATLAB®/Simulink® model is built and
steady-state machine performance is analyzed with the opti-
mized turn on/off angles. The results of this simulation are
sent back to the main optimization algorithm to be evaluated.
This way, the performance data to be extracted from coarsely
recorded static curves and fast candidate design performance
analysis are performed for each candidate design.

The motor geometry is built in FEA software based on
the six dimensionless ratio parameterized variables. First,
DOE and RS analyses are performed to narrow down the
search space by updating initial optimization variable bound-
aries. Later, the DE optimization algorithm is performed with
the updated boundaries to minimize three design objectives,
namely; mass, copper loss, and torque ripple. The FEA sim-
ulations are done at a constant speed, constant current, and
constant current density in the stator slots. The stack length
of the machine is selected in a way to get a constant aver-
age torque value; hence all the candidate designs generate the
same output torque. Induced winding voltage and rotor/stator
pole arc angles are considered as constraints. Constraints
are handled with Lampinen’s constraint handling approach
[26]. The Pareto optimal set is obtained and a suitable design
among the set is selected as a final design. During the opti-
mization process, 59 simulations are performed for initial
DOE/RS analysis and 500 simulations with 25 individuals in
a population and 20 generations for DE optimization. There-
fore, the computation time to obtain the performance data
for each candidate design, as well as the whole optimiza-
tion process, is reduced. The total number of simulations is
reduced to 559 from typical 3000-10,000 simulations per-
formed in similar studies in the literature [17, 25]. Even if
the conventional multi-objective DE runs with 3000 candi-
dates, which is the minimum required number, the proposed
method reduced the computation time significantly from 32 h
50 min to 6 h 30 min with a computer that has two Intel Xeon
E5-2620V4, 2.1 GHz processors, 64 GB of DDR4 RAM, and
256 GB of SSD hard drive.

This paper is organized as follows: The optimization
problem definition and the details of the FEA, optimization
parameters selection, objectives, and constraints are pre-
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Fig. 1 Flow diagram of the optimization process

sented in Sect. 2, followed by the explanations of the DOE
and RS methodology and DE algorithm in Sect. 3 and 4. The
optimization of a 24/16 IW-SRM is presented in Sect. 5.

2 Optimization problem

The proposed method for the topology optimization of
lightweight IW-SRM is performed using the DOE method
followed by RS analysis and DE algorithm. The optimiza-
tion algorithm is executed in MATLAB®, parameter sets are
sent to FEA software, Ansys Maxwell, and data are collected
back as shown in Fig. 1.

The optimization starts with the initialization of the design
variables and their initial upper and lower boundaries fol-
lowed by the specification of the design objectives and the
constraints, which are given in detail in Sect. 2.3. The sec-
ond step of the algorithm is performing the DOE and RS
analysis to find out in what range the parameters should be
limited to minimize all the cost functions; hence, the param-
eter boundaries are refined, narrowed down. Therefore, the
search space got smaller and convergence time got shorter.
The algorithm continues with the DE algorithm and iterates
until the termination criteria is satisfied to find the final Pareto
front.
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As seen in Fig. 1, in DOE and DE steps there is a sub-
function that calculates the performance of the candidate
SRM designs and exports these results to the main algorithm.

In order to obtain the performance measures of an SRM
with the given parameter set, one should either run dynamic
simulations in FEA software or built a model that can
give acceptable results using the data taken from the FEA
software. The first option requires the time stepping FEA
simulation to be run for numerous times to find the opti-
mal angles which is a time consuming process. It should be
kept in mind that this process only determines the optimized
angles, and should be repeated for all candidate designs dur-
ing the optimization; hence, the computation time will be
massive. Instead, the flux linkage vs position vs current and
torque vs position vs current waveforms can be determined
from the FEA, and lookup tables (LUT) can be generated.
Then, a motor model can be built in a software platform
like MATLAB®/Simulink® to run dynamic simulations. The
optimal turn on/off angles can be determined through an iter-
ative search or with a simple angle sweep algorithm, and all
the performance measures can be calculated using the opti-
mized angle values. One problem with this method, it again
requires the FEA simulation to run many times to obtain
high-resolution LUTs to represent the candidate machine
with high accuracy. Although this method takes less time
than calculating everything with time-stepping FEA, it still
takes a considerable amount of time.

In this study, this process is even simplified by using coarse
LUTs that only have data at four equally distanced current
values from zero to the rated current where there is no need
to run the simulation at 0 Amp value. Since the flux linkage
waveform has even symmetry and torque waveform has odd
symmetry with respect to the mid pole position, these data
can be taken up to half of the period and whole waveforms
can be reconstructed. This way, FEA simulation time for each
candidate design is cut in half.

The SRM model is built in MATLAB®/Simulink®
R2020b using the LUTs generated in the previous stage and
the terminal voltage equation

V=iR+ dk 1)
=1 _—
dr

where V is the terminal voltage, i is the phase current, R is
the winding resistance per phase, and A is the flux linkage.
Along with the SRM model, the MATLAB®/Simulink®
simulation contains a reference current generation block,
a hysteresis current controller, and an asymmetric bridge
inverter as shown in Fig. 2. The simulation runs at constant
rated speed and gives the output instantaneous and aver-
age torques, torque ripple, phase currents and voltages, and
the average copper loss as output. Also, for each candidate
design, stator and rotor core volumes, length and the cross
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Fig.2 SRM control model used in the optimization process

section of the copper wire, the average flux density of the
stator and rotor poles and yokes, as well as the induced max-
imum winding voltages are recorded in the FEA.

Since the FEA is performed with a constant phase cur-
rent, core loss cannot be accurately calculated with traditional
methods. Instead, the core loss is estimated using the catalog
data, iron volume, and average flux density at the stator and
rotor poles and yokes while friction and windage losses are
neglected. Hence, the efficiency of the machine is calculated
as follows:

P
n=+‘“ )
Pout + Peu + Pre

where Pqy is the output power which is the product of the
average torque and angular speed, P, is the copper loss, and
Ps. is the core loss that is expressed as follows [17]:.

Pre = Kte(Viotor + Vstator) 3)

where Kr. is the core loss coefficient for the base speed,
Viotor and Vgaor are the volumes of the rotor and stator,
respectively. The copper loss calculation is given in Sect. 2.3.

The details of the FEA model and the process of design
variable selection are explained in Sects. 2.1 and 2.2 followed
by the objectives and constraints of the optimization problem
in Sect. 2.3.

2.1 Finite element analysis (FEA)

The cross-sectional view of the machine FEA model, as well
as the geometric parameters, are shown in Fig. 3. Parameter
definitions and important design elements are provided in
Table 1.

The maximum current density is kept constant based on
the cooling requirements by calculating the stator slot areas
for each individual design and adjusting the number of turns
per pole accordingly.

Stack length is also kept constant to acquire the torque and
induced voltage waveforms for unit stack length, later these
quantities are scaled with the actual stack length calculated
for achieving the target average torque value.
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Fig. 3 Geometric parameters of in-wheel SRM
Table 1 Design parameters
Parameter Definition
Ry Rotor outer radius
R Stator inner radius
Ry Mid-air gap radius
G Air gap length
Lg Total stator thickness
L, Total rotor thickness
Ys Stator yoke thickness
Y, Rotor yoke thickness
Bs Stator pole arc angle
Br Rotor pole arc angle
N Number of stator poles
N; Number of rotor poles
N Number of turns per pole
Lgtack Stack length

2.2 Design variables selection

It is required for a motor optimization system to have a flex-
ible parametric model for each possible design inside the
search area. The geometric parameters are based on the sta-
tor outer radius, and they are ratio parameterized. For a fixed
motor outer diameter, six dimensionless geometric variables
are defined as given in Table 2.

Using these parameters as optimization variables allow
one to run the algorithm in all the search domain without
having geometry errors.

2.3 Objectives and constraints

In this study, the optimization problem has multiple objec-
tives and constraints. The first of the three objectives is

Table 2 Dimensionless geometric parameters

Variable  Definition Ratio
. . . Ri;
K The ratio of rotor inner radius to motor outer R—;‘J
radius
K The ratio of stator yoke to total stator thickness Zf
. . Y,
Ky The ratio of rotor yoke to total rotor thickness I
Se Stator pole arc embrace 3663 S
Re Rotor pole arc embrace 3663/’1\,,
. . . R
Kgsi The ratio of stator inner radius to motor outer R—f;
radius

minimizing the overall motor mass, which includes the stator
and rotor core as well as the winding copper masses.

f1 = min (M stator + Mrotor + Mwindings) 4)

where M g,i0r 1S the stator mass, Mooy 1S the rotor mass, and
M windings is the winding mass in kilogram. The stator and
rotor masses are calculated using the cross-sectional areas,
Agtator and Aoror, measured in FEA software, stack length, and
the mass density of the M 19 electrical steel, dyp9, which is
7300 kg/m3, as follows:

Mtator = A statorLstacde 19 (5)

Miotor = Arotor L stacde 19 (6)

The winding mass is calculated as:

Ag)
Mwindings = < ;Ot kﬁll)llturndCu @)
1 /360
Ny = 2(Lstack +2Lext + (NRslot<ﬁs + 5 (T - ﬁs))))
s
3

where Ago is the slot area, kgy; is the slot fill factor, [ 18
the average length of a single turn, Ry is the is the average
slot radius, Ly is end winding extension length, dc, is the
mass density of the copper, 8960 kg/m>.

The second objective is to minimize the copper loss, Pcy,.

f2 = min(Pcu) C)

The copper loss is calculated as:

P Cu — N, phase I ghase,rms Rphase ( 10)

where Nphase is the number of phases and Rppase is the phase
resistance that is expressed as follows:

NN, N,
Rphase _ Plitrn Ve « s )
Aglotkfin N phase
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where p is the resistivity of the copper.
The third objective is to minimize torque ripple.

. (max(T) - min(T)) (12)

f3 = min mean(7T)

where T is the electromagnetic torque.

The first constraint is the maximum induced voltage on the
phase windings, U, where it should be less than the voltage
limit, Uy,

=U-Upy<0 (13)

and the other constraint is on the rotor pole arc angle, B,,
where it should be greater than or equal to the stator pole arc
angle, B;.

Fy=p4 —Bs <0 (14)

Here, I' is the constraint matrix that contains /", and I"5.
In the DE optimization algorithm, constraints are handled
just like the objectives. This method is called Lampinen’s
constraint handling method and will be given in detail in
Sect. 4.

3 Design of experiments and response
surface methodology

DOE and RS techniques are useful statistical tools that pro-
vide a full insight into the interaction between the design
variables and the design objectives [25]. RS methodology
discovers the relationships between several critical design
variables and response variables. The idea behind the RS
methodology is to use a series of designed experiments to
obtain an optimal response [27]. Currently, the RS method-
ology using proper DOE has become extensively attractive,
since DOE reduces the search space by narrowing down the
upper and lower boundaries of each design variable based on
the RS analysis. Recent studies in electric machine design
optimization topics show that these techniques are used more
and more to determine the parameter sensitivity over the
design objectives [6]. The DOE approach is reported to be
more accurate when the number of design variables is small.
Even if it is not, the DOE approach gives an insight to the
designer for adjusting certain optimization parameters such
as boundaries of optimization variables and selecting the sig-
nificant design parameters. In this study, the DOE method is
used to determine the narrowed-down ranges of each individ-
ual design variable. Hence, the search domain shrinks down
to an area where all the design objectives get close to their
minimum values. This process does not guarantee obtaining
the Pareto frontier; however, it places the search space close
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to the actual Pareto front to be used as a starting point for a
more sophisticated optimization algorithm, which in our case
is DE. Hence, the computation time for the optimization got
a further reduction.

Since the number of design variables is only six in our case,
an additional elimination process for insignificant design
parameters is not necessary. On the other hand, machines
having more than seven variables may require such process
before proceeding to DE optimization [25].

4 Differential evolution

Differential evolution is one of the evolutionary algorithms
which is first introduced in [18, 28]. DE algorithm is a
suitable evolutionary algorithm for solving nonlinear and
multi-constrained complex optimization problems.

In DE, perturbing the vector population is done by using
vector differences. DE has similarities with traditional evo-
lutionary algorithms; however, the DE algorithm runs with
real numbers rather than operating in binary form as in the
GA and it does not use probability function. Instead, DE per-
forms the mutation-based distribution of the solutions in the
current population. In this way, search direction and possible
step sizes depend on the location of the individuals selected
to calculate mutation values [24].

After specifying the population size, M, both upper, x,,
and lower limits, x;, must be specified for each design vari-
able. Then, the first generation is initialized based on the
normal distribution. Crossover probability factor, C,, and the
scaling vector, F, should also be defined here.

The main DE process includes the procedures of initial-
ization, mutation, crossover, and selection [18, 25].

After deciding the variables to be optimized as,

X = [Kr[, Ksl, Kry, Se, Re»KdSi] (15)

the initial values of the first generation design variables of
the population is formed. The initial values of the jth (j =
1,..., M) design variable of the ith (i = 1,..., N) vector in the
first generation can be expressed as:

xj i1 =rand;([1, N]). (x, — x) +x; (16)

where N is the dimension of solution, and the final value of
i, rand;({1, N])is a I x N vector while 0 <rand;(1 x N)<I.

Then, three different vectors x,1 ¢, x,2,, and x,3 , are ran-
domly selected to generate a mutant vector v; ;. This process
adds a scaled difference between two randomly selected vec-
tors to a third vector and can be expressed as follows [26, 29]:

vig=F X (xrl,g —xrz,g) +Xr3,¢ (17
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where F is the scaled factor which varies between O and 1, and
g varies from 1 to G where G is the number of generations.

Trial vector u; g is generated out of two different vector
variables, namely; x; ; and v; ¢ by crossover procedure which
is formulated as follows [25, 29]:

Uig = jig) = [Uj1g Ujrgljsg. - ujig] (18
Viie, Ifrand;(0;1)<C
Ujig= o8 J( ) =G (19)
: Xj.ig» oOtherwise

where the user-defined crossover probability factor changes
between 0 <C, < 1. Here, if the random number of the jth
variable in the ith vector is less than or equal to C,, the trial
vector u; ¢ is equal to the mutant vector v;,. Otherwise, the
trial variable is copied from vector x; .

In the selection process of the DE algorithm, the objec-
tive cost functions will evaluate the performance of each
candidate design. Then, the trial vectors, u;g, are com-
pared to the target vectors x;,, including the constraints
and design objectives in the current generation. It should be
noted that the constraints are handled as objectives, which is
called Lampinen’s selection criterion, and is adopted here as
described as follows:

Pim(ui g) < 0 and Pim(xig) < 0,
fn(“i,g) = fn(xi,g)§
or
: Ui (uig) <0,
i o, if '8
Xi,g+l = Hig: Fm(xj ) > 0;
or
T g) > 0,
max (L (uj g), 0) < max (T (xi g), 0);

X; g, otherwise

(20)

where f and T" are the cost and constraint vectors, respec-
tively.

The optimization process starts from a random parame-
ter set within the specified parameter boundaries and iterates
until the pre-defined criteria which are to reach the maximum
number of generations is satisfied. Hence, the design perfor-
mance will be improved each time until achieving the best
set of results, Pareto frontier.

5 In-wheel SRM topology optimization
with DOE/RS and DE

5.1 Machine specifications

The aim of this paper is to develop an optimized IW-SRM
that produces the average desired torque while minimizing
the active motor mass, losses, and torque ripple. 24/16 outer
rotor SRM is built-in FEA software, ANSYS/Maxwell. The

Table 3 Design specifications

Variable Definition Value

D, Machine outer diameter 284 mm
S/R Stator and rotor pole numbers 24/16

T Average electromagnetic torque 20 N'm
n Efficiency >90%

ks Slot fill factor 0.4

J Slot current density 7 A/mm?
np Base speed 1000 1/min
Uy Voltage limit 300V

g Air gap length 0.35 mm
Liated Rated phase current 21 A

designed IW-SRM runs at 1000 r/min speed with 21 A rated
current, 300 V voltage limit, and 0.4 slot fill factor. The air-
gap, g, should be selected as small as possible within the
manufacturing limits; hence, it is selected as 0.35 mm. The
specifications to be met for the in-wheel SRM and fixed
design values are given in Table 3.

The computer that the optimization algorithm runs have
two Intel Xeon E5-2620V4, 2.1 GHz processors (each
of them has 8 cores, 16 threads, and 20 MB cache),
64 GB of DDR4 RAM, and 256 GB of SSD. The operat-
ing system is Windows 10 Professional, the FEA software
is ANSYS/Electronics Desktop 2019-R3 with 16 high-
performance computing license (HPC) (allows 16 simula-
tions run at the same time), and the optimization algorithm
runs on MATLAB® R2020b.

5.2 DOE and RS analysis

The initial upper and lower boundaries of the dimensionless
variables are selected as wide as possible based on mechan-
ical limitations and initial FEA results.

In the DOE method, the central composite design (CCD)
[18] method is used for determining the experiments to per-
form the RS analysis. CCD has generated 59 designs for 6
parameters. This parameter set is simulated and the relation-
ship among the three design objectives for each individual
design are obtained as shown in Fig. 4. In this figure, the
results that violate the design constraints are marked with Xx,
and the ones that do not are marked with dots.

For RS analysis, the second-order polynomial model is
used and the regression coefficients are determined using
the least-squares method. Previous studies show that the
second-order polynomial model provides flexibility for var-
ious functional forms to approximate the response surface
more accurately and to ease of estimation of the regression
coefficients.
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Fig. 4 Results of the DOE analysis

The parameter sensitivity analysis is performed and the
effects of the design variables on all design objectives are
observed as shown in Fig. 5a—c; hence, upper and lower
boundaries of the optimization variables are updated as given
in Table 4.

As it is mentioned earlier, the RS analysis guides the
designer to the areas that should be focused on; however,
it does not find the Pareto frontier parameter sets.

5.3 DE optimization and results

The method used in this paper reduces the number of simula-
tions significantly by performing the DE optimization with 20
generations and 25 individuals in each generation. Therefore,
the total number of simulations is reduced to 559 including
59 simulations required for DOE and RS analysis. Whereas,
a typical DE optimization task runs with 50 to 100 individ-
uals in each generation and iterates 60 to 100 generations
to determine the Pareto-optimal solutions which take 3000
to 10,000 simulations to be performed until the optimization
satisfies the termination criteria. Figure 6 shows the Pareto
set of the design objectives with the conventional DE and the
proposed method. It can be seen from the figure that both
methods converged to a similar Pareto front. Measured time
for the proposed optimization method including 59 DOE, 500
DE FEA simulations, and processing time in MATLAB® and
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Fig.5 a Sensitivity analysis for motor mass, b for copper loss, and
¢ torque ripple

Table 4 Initial and updated

Initial maximum Updated minimum Updated maximum

upper and lower boundaries of Parameter Initial minimum
the di sionless tri
e dimensionless geometric Kn 075
parameters
Kq 0.25
Ky 0.25
Se 0.40
R. 0.40
Kgsi 0.49

0.92 0.85 0.91
0.60 0.35 0.40
0.60 0.25 0.40
0.70 0.58 0.70
0.70 0.45 0.52
0.71 0.58 0.65
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Fig.6 Pareto set of design objectives

Table 5 Optimized design

parameters Parameter Optimized value

Kt 0.8767

Kq 0.3883

Ky 0.2749

Se 0.6124

R. 0.4207

Kgsi 0.5961

N¢ 27 turns

Lgtack 41.06 mm

Simulink® is about 6 h and 30 min, which is about five times
faster than a conventional DE optimization that takes about
32 h and 50 min with 3000 FEA simulations.

A Pareto frontier solution set contains multiple candi-
date designs that are not being dominated by other designs,
i.e., no objective can be improved without deteriorating the
other objective/s. Therefore, it is not possible to have a can-
didate machine having the highest efficiency, lowest mass,
and torque ripple. Accordingly, there is not a universal best
machine but there is the best machine for a specific applica-
tion. In this study, the motor is intended to be used in a small
electric race car, the mass and the efficiency of the motor
are more important parameters to be considered for the final
design.

Hence, the candidate design that has the parameters given
in Table 5 is selected as a final design. Based on the values
given in Table 5 and the calculations given in Table 2, the
final geometrical parameters are calculated and presented in
Table 6. The final design’s flux linkage and torque versus
current and position curves are presented in Fig. 7.

The dynamic performance of the final design at the rated
conditions where the speed is 1000 r/min is simulated in the
MATLAB®/Simulink® model given in Fig. 2. The phase
currents and resulting torque waveforms with a hysteresis

Table 6 Optimized geometrical

Parameter Optimized value
parameters
Ry 142 mm
Rs; 84.65 mm
Ry 124.32 mm
g 0.35 mm
Lg 39.50 mm
L, 35.02 mm
Yy 15.34 mm
Y, 12.69 mm
Bs 9.186 deg
Br 9.465 deg
0.35 —ldc=04
L ||—Idc=34
0.3 ldc=64
L ||—Idc=94
_ 0.25 ——ldc=124
T ool Ide =154
g 7 —ldc =184
=~ 0.15¢ J|=——1dc =214
~ —Ide=244
0.1f Ide =274
—Idc =304
0.05
0
0 2 4 6 & 10 12 14 16 18 20 22
Position [deg]
(a)
40 —1Idc =04
30+ {|—Idc=34
20 ch =64
r 1|—1Idc=94
.E 10" ||—Ide=124
Z Ide =154
v 0 —Idc =184
g 10 —Idc =214
S -10+ 1|—1Idc =244
] Ide =274
201 | |=——tdc =304
-30
-40 e
0 2 4 6 8 10 12 14 16 18 20 22
Position [deg]
(b)

Fig.7 a Flux linkage versus position and current, and b torque versus
position and current plots

band of + 0.4 A obtained from the simulations are presented
in Fig. 8.

The efficiency of the final design is obtained with (2) by
calculating the output power, core loss, and copper loss using
(3) and (10) in the Simulink model. The RMS value of the
phase current is calculated as 12.81 A for the optimized turn
on/off angles, the phase resistance and the copper loss are
calculated as 0.27 Q2 and 134 W, respectively. The core loss
is estimated as 36 W for the rated frequency and 1.6 T peak
flux density. The final design has 92.5% efficiency, 9.4 kg
motor mass, and 56.4% torque ripple.
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Fig. 8 Phase currents and torque waveforms of the optimized design

6 Conclusion

In this paper, a finite element analysis (FEA) based sys-
tematic topology optimization of a lightweight In-Wheel
Switched Reluctance Motor (IW-SRM) is considered. The
optimization process is completed in two stages to overcome
the extensive computation time problem of the existing SRM
optimization methods. In the first stage, the design of exper-
iments (DOE) with central composite design (CCD) method
and response surface (RS) analysis are performed to make
a sensitivity analysis and determine the optimization vari-
ables’ upper and lower boundaries to ensure to minimize all
three design objectives, namely motor mass, copper loss, and
torque ripple. Later in the second stage, the differential evolu-
tion (DE) algorithm takes over the optimization process with
a smaller search space where the high-performance designs
become available. During the optimization process, static
flux linkage and torque curves obtained from the FEA are
used to determine the steady state performance of the SRM
with the help of a MATLAB®/Simulink® model. Therefore,
the performance data are extracted from the recorded static
curves, and fast candidate design performance analysis is
evaluated in the optimization process. Owing to this practi-
cal engineering approach, the computation time to obtain the
performance data for each candidate design and obtaining the
Pareto based multi-objective optimization (PBMO) results is
reduced significantly.

The proposed method is used to optimize a 24/16 IW-SRM
to compare conventional DE optimization. The number of
candidate designs and simulations is reduced to 559 from typ-
ical 3000-10,000 presented in related studies in the literature.
Even with the minimum required number of 3000 candidate
designs, the conventional multi-objective DE (MODE) takes
32 h 50 min, while the proposed method only takes 6 h 30 min
on a computer that has two Intel Xeon E5-2620V4, 2.1 GHz
processors, 64 GB of DDR4 RAM, and 256 GB of SSD hard
drive. As a result, at least five times faster optimization pro-
cess is achieved.

@ Springer

With these results, it is shown that a PBMO of an SRM
with a large number of design variables can be done with a
much lower computation cost without sacrificing the quality
of the final design set. This study can be extended to the
design optimization of the SRMs for various target driving
cycles, which require even larger number of time stepping
FEA simulations at various loading conditions and iterations.
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