

Abstract

ATLAS is a modeling language that permits defin-
ing a static view of a city section for simulating
traffic in an area. The models are formally speci-
fied, avoiding a high number of errors in the ap-
plication, thus reducing the problem solving time.
The system required the manual generation of
ATLAS files, a tedious process that did not lend
itself for rapid changes to the system input. The
output of the system also suffered from a non-user
friendly interface. The solutions to these problems
were addressed in two parts: a front-end system
allowing the user to draw city sections (and then
parse the drawing to create a valid ATLAS file),
and an output subsystem permitting showing cars
to with realistic 3D graphics.

1 Introduction

Urban traffic analysis and control is a problem of
such a complexity that it is difficult to be analyzed
with traditional analytical methods. Modeling and
simulation techniques , instead, have showed a
certain degree of success, and they have been
gaining popularity as analysis tool. Simulation
permits studying particular problems using virtual
experimentation.

We have developed a toolkit for modeling
and simulation of traffic in urban centers. This
project followed a rigorous approach that we in-
troduce here. The first stage was devoted to define
and validate a high level specification language
representing city sections [1]. This language,
called ATLAS (Advanced Traffic LAnguage

Specifications) focuses on the detailed specifica-
tion of traffic behavior. The models are repre-
sented as cell spaces, allowing elaborate study of
traffic flow according with the shape of a city sec-
tion and its transit attributes. A static view of the
city section can be easily described, including
definitions for traffic signs, traffic lights, etc. A
modeler can concentrate in the problem to solve,
instead of being in charge of defining a complex
simulation.

The constructions defined in this language are
mapped into DEVS [2] and Cell-DEVS models
[3]. DEVS provides high performance for dis-
crete-event systems simulation [4]. Similar results
were obtained for Cell-DEVS models [5]. It also
provides a formal framework that can be used to
validate and verify the models. Using this ap-
proach permits us to reuse the models created, that
can be integrated with other using different for-
malisms (for instance, using Petri Nets or Finite
State Machines to specify the behavior of traffic
lights or railway controllers).

A real system modeled using the DEVS for-
malism can be described as composed of several
submo dels. Each of them can be behavioral
(atomic) or structural (coupled). Each of these ba-
sic models consist of a time base, inputs, states,
outputs and functions to compute the next states
and outputs. Coupled models can be integrated
into a model hierarchy, allowing the reuse of cre-
ated and tested models, enhancing the security of
the simulations, reducing the testing time and im-
proving productivity. A DEVS atomic model is
described as:

M = < I, X , S, Y, δint, δext, λ, D >

Defining and Visualizing Models of Urban Traffic

Gabriel Wainer
Shannon Borho

Jan Pittner

Department of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building. 1125 Colonel By Drive
Ottawa, ON. K1S 5B6. CANADA.

Here, I is the model's interface, X is the input

events set, S is the state set, and Y is the output
events set. We also use four functions: δint man-
ages internal transitions, δext external transitions, λ
the outputs, and D, the lifetime of a state. The in-
terface is composed of input and output ports to
communicate with other models. Each port is de-
fined as a pair, including a port name and its type.
The input external events (those coming from
other models) are received in input ports. The
model specification defines the behavior of the
external transition function under such inputs.
Each state has an associated duration time. When
this time is consumed, the internal transition func-
tion is activated to produce internal state changes.
The internal state can be used to provide model
outputs sent through the output ports. They are
sent by the output function, which executes before
the internal transition.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {M i}, {Ii}, {Zij} >

Here, I is the model interface, X is the set of

input events, and Y is the set of output events. D is
an index of components, and for each i ∈ D, Mi is
a basic DEVS model (atomic or coupled). Ii is the
set of influencees of model i. For each j ∈ Ii, Zij is
the i to j translation function. Each coupled model
consists of a set of basic models connected
through the input/output ports. The influencees of
a model will determine to which models one send
the outputs. The translation function is in charge
of translating outputs of a model into inputs for
the others. To do so, an index of influencees is
created for each model (Ii). For every j in this in-
dex, outputs of the model Mi are connected to in-
puts in the model Mj.

The Cell-DEVS (informally described in Fig-
ure 1) formalism was proposed as an extension to
DEVS permitting to describe cellular models.
Cell-DEVS allows to define complex cellular
models that can be integrated with other DEVS.
Here, each cell of a space is defined as an atomic
DEVS with explicit timing delays. Transport and
inertial delays allow to define timing behavior of
each cell in an explicit and simple fashion. A
transport delay allows us to model a variable re-
sponse time for each cell. Instead, inertial delays
are preemptive: a scheduled event is executed
only if the delay is consumed.

Figure 1: Informal Definition of Cell-DEVS.

Cell-DEVS atomic models can be formally

specified as:

TDC = < X, Y, I, S, N, delay, d, δint, δext, τ, λ, D >

where X represents the external input events,

Y the external outputs, and I is the interface of the
model. S is the cell state definition, and N is the
set of input events. Delay defines the kind of de-
lay for the cell, and d its duration. Each cell uses a
set of N input values to compute the future state
using the function τ. These values come from the
neighborhood or other DEVS models, and they
are received through the model interface. A delay
function can be associated with each cell, allow-
ing deferring the outputs. Therefore, the outputs
of a cell are not transmitted instantaneously, but
after the consumption of the delay. The outputs
usually include the execution results of the local
computing functions. This behavior is defined by
the δint, δext, λ and D functions.

A Cell-DEVS coupled model is defined by:

GCC=<Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z>

Here, Ylist is an output coupling list, Xlist is an
input coupling list and I represents the interface of
the model. X are the external input events and Y
the external outputs. The n value defines the di-
mension of the cell space, {t1,...,tn} is the number
of cells in each dimension, and N is the neighbor-
hood set. C is the cell space, B is the set of border
cells and Z the translation function. The cell space
defined by this specification is a coupled model
composed of an array of atomic cells. Each of
them is connected to the cells defined by the
neighborhood. As the cell space is finite, the bor-
ders should have a different behavior than the re-

maining cells. Otherwise, the space is wrapped,
meaning that cells in a border are connected with
those in the opposite one. Finally, the Z function
allows one to define the internal and external cou-
pling of cells in the model. This function trans-
lates the outputs of m-eth output port in cell Cij
into values for the m-eth input port of cell Ckl.
The input/output coupling lists can be used to
transfer data with other models.

 The formal specifications for DEVS and
Cell-DEVS were used to build the CD++ tool [6].
This tool provides a specification language fol-
lowing the formal specifications described in this
section. ATLAS was formally defined as a set of
constructions, which were mapped into DEVS and
Cell-DEVS models [7, 8]. The behavior for each
of the constructions presented in this language
was validated in terms of their correctness when
built as Cell-DEVS models . Then, a compiler was
built following the specifications [9]. The com-
piler, called ATLAS TSC (Traffic Simulator
Compiler), generates code by using a set of tem-
plates that can be redefined by the user. In this
way, ATLAS specifications can be translated into
different tools with facilities to define cellular
models. It also avoids version problems if the un-
derlying tools are modified.

Figure 2: Structure of the software platform to de-
velop ATLAS models

In ATLAS, a modeller can easily describe a

city section, including traffic signs, traffic lights,
etc. A modeller can concentrate in the problem to
solve, instead of being in charge of defining a
complex simulation or defining the models using
a simulation package. Until now, the definition of
models of urban traffic required the manual gen-
eration of text files defining city section using
ATLAS constructions. This is a tedious process
that does not lend itself for rapid changes to the
system input. The output of the system also suf-
fered from a non-user friendly interface. The
simulation output was converted into different file

types with primitive ASCII drawings of the simu-
lation results. Thus, it was not easy for a user to
define the input for the system, or easily absorb
the simulation results. The solutions to these prob-
lems were addressed in two parts. A front-end
program allows the user to draw a small city sec-
tion complete with roads, intersections, and deco-
rations, and then parse the drawing to create a
valid ATLAS file.

Likewise, the output went from a single seg-
ment of road with blocks as cars to a full-blown
city section with realistic 3D graphics. Parsing the
ATLAS file, building the city section in a VRML
world and then mapping the simulation output re-
sults onto the system accomplished this result. We
will discuss the details of this enhanced facilities
in the following sections.

2 Atlas constructions

ATLAS allows representing the structure of a city
section defined by a set of streets connected by
crossings. The language constructions define a
static view of the model, which is considered to
be built as grids composed of cells [1]. ATLAS
formal specifications were used to build the
ATLAS TSC compiler and the syntax for its lan-
guage sentences. Following, we present the main
constructions of ATLAS and its syntax.

a) Segments: they represent sections of a

street between two corners. Every lane in a given
segment has the same direction (one way seg-
ments) and a maximum speed. They are specified
as: Segments = { (p1, p2, n, a, dir, max) / p1, p2 ∈
City ∧ n, max ∈ Ν ∧ a, dir ∈ {0,1} }, where p1
and p2 represent the boundaries of the segment
(City = { (x,y) / x, y ∈ R }), n is the number of
lanes, and dir represents the vehicle direction.
The a parameter defines the shape of the segment
(straight or curve, allowing to define the city
shape more precisely, including the exact number
of cells), and max is the maximum speed allowed
in the segment.

This constraint was included in ATLAS TSC.
The compiler permits defining the segments by
delimiting them using the sentences begin seg-
ments and end segments. At least one segment
must be defined, using the following syntax:

id = p1, p2, lanes, shape, direction,
speed, parkType

These values map the parameters mentioned

previously, with shape: [curve|straight] and
direction: [go|back]. Finally, parkType is
used to define parking constructions, formally
specified in the following paragraphs.

b) Parking: border cells in a segment can be

used for parking. They are formally defined as:
Parking = { (s, n1) / s ∈ Segments ∧ n1 ∈ {0,1} ∧
s = (c1, c2, n, a, dir, max) ∧ n > 1 }. Every pair (s,
n1) identifies the segment and the lane where car
parking is allowed. If n1 = 0, the cars park on the
left; if n1 = 1, on the right (lane n-1).

If we review the construction used for Seg-
ments in ATLAS TSC also includes information
for the parking segments. In this case,

parkType: [parkNone | parkLeft | park-
Right | parkBoth]

defines in which area of the segment a car can
park.

c) Crossings: these constructions are used to
represent the places where more than one segment
intersect. They are specified as: Crossings = { (c,
max) / c ∈ City ∧ max ∈ Ν ∧ ∃ s, s’ ∈ Segments
∧ s = (p1, p2, n, a, dir, max) ∧ s’ = (p1’, p2’, n’,
a’, dir’, max’) ∧ s ≠ s’ ∧ (p1 = c ∨ p2 = c) ∧ (p1’
= c ∨ p2’ = c) }. Crossings are built as rings of
cells with moving vehicles following the ideas
presented in [10]. A car in the crossing has higher
priority to obtain the next position in the ring than
the cars outside the crossing. In ATLAS TSC, the
definitions for crossings are delimited by the sepa-
rators begin crossings and end crossings.
Each sentence defines a crossing using the follow-
ing syntax:

id = p, speed, tLight, crossHole, pout

Parameters p and speed represent (p1,p2) and

max of the formal specification. Pout defines the
probability of a vehicle to abandon the crossing,
used to simulate random routing of different vehi-
cles. The remaining parameters are related with
specific types of crossings, and will be explained
in the following paragraphs.

d) Traffic lights: crossings with traffic lights
are formally defined as: TLCrossings = { c / c ∈
Crossings }. Here, c ∈ TLCrossings defines a set

of models representing the traffic lights in a cor-
ner and the corresponding controller. Each of
these models is associated with a crossing input.
The model sends a value representing the color of
the traffic light to a cell in the intersection corre-
sponding to the input segment affected by the traf-
fic light. The following qualifier is added to a
standard crossing definition in ATLAS TSC for
crossings with traffic lights: tLight:
[withTL|withoutTL].

e) Railways: they are built as a sequence of
level crossings overlapped with the city segments.
The railway network is defined by: RailNet = {
(Station, Rail) / Station is a model, Rail ∈ Rail-
Track }, where RailTrack = { (s, δ, seq) / s ∈
Segments ∧ δ ∈ Ν ∧ seq ∈ Ν }. RailNet repre-
sents a set of stations connected to railways, thus
defining a part of the railway network. Railtrack
associates a level crossing with other existing
constructions in the city section. Each element
identifies the segment that is crossed (s) and the
distance to the railway from the beginning of the
section (δ). Finally, a sequence number (seq) is
assigned to each level crossing, defining its posi-
tion in the RailTrack . When a railway is defined
in ATLAS, the begin railnets and end rail-
nets act as separators. Each RailNet is defined us-
ing the following syntax:

id = (s1, d1) {,(si, di)}

where si defines an identifier of a segment
crossed by the railway, and di defines the distance
between the beginning of the segment si and the
railway. The compiler automatically generates the
sequence number.

f) Men at work: the construction defining
men at work is specified by: Jobsite = { (s, ni, δ,
#n) / s ∈ Segments ∧ s = (c1, c2, n, a, dir, max) ∧
ni ∈ [0, n-1] ∧ δ ∈ Ν ∧ #n ∈ [1, n+1-ni] ∧ #n ≡ 1
mod 2 }. Here, each (s, ni, δ, #n) ∈ Jobsite is re-
lated with a segment where the construction
works are being done. It includes the first lane af-
fected (ni), the distance between the center of the
jobsite and the beginning of the segment (δ), and
the number of lanes occupied by the work (#n).
These values are used to define an area over the
segment where vehicles cannot advance. In
ATLAS TSC, the begin jobsites and end job-

sites separators define the jobsites to be used.
Each jobsite is defined as:

in t : firstlane, distance, lanes

In this case, firstlane defines the first lane
affected by the jobsite, distance is the distance
between the center of the jobsite and the begin-
ning of the segment, and lanes is the number of
lanes occupied.

g) Traffic signs : they are defined by: Control

= { (s, t, δ) / s∈Segments ∧ δ∈Ν ∧ t∈{bump, de-
pression, pedestrian crossing, saw, stop, school}
}. Each tuple here identifies the segment where
the traffic sign is used, the type of sign, and the
distance from the beginning of the segment up to
the sign. In ATLAS TSC, the begin ctrElements
and end ctrElements delimiters define all the
control elements, with:

in t : ctrType, distance

being the definition for each sign. Here, ctrType:
[bump | depression | intersection | saw |
stop | school] defines the different signs. The
distance parameter defines the distance to the
beginning of the segment. An extension of this
construction allows us to define potholes, whose
size is one cell. The definition of these elements is
done using the begin holes and end holes sepa-
rators. Each hole is defined as:

in t : lane, distance

A pothole can also be included in a crossing.

Previously defined in the Crossings paragraphs,
crossHole: [withHole|withoutHole] defines if
a crossing contains a pothole or not.

h) Experimental frameworks: experimental
framework constructions permit build experi-
ments on a city section by providing inputs and
outputs to the area to be studied. They are associ-
ated with segments receiving inputs, or those used
as outputs, and are defined as:

InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧
s ∈ Segments ∧ [(dir = 0 ∧ (∃ v ∈ Ν : (p2,v) ∈
Crossings)) ∨ (dir = 1 ∧ (∃ v ∈ Ν : (p1,v) ∈
Crossings))] }
OutputSegments = { s / s = (p1, p2, n, a, dir, max)
∧ s ∈ Segments ∧ [(dir = 0 ∧ (∃ v ∈ Ν : (p1,v) ∈
Crossings)) ∨ (dir =1 ∧ (∃ v ∈ Ν: (p2,v) ∈ Cross-
ings))] }

In the following figure we show the specifi-
cation of a simple city section including 17 seg-
ments and 3 crossings.

begin segments
BankGOS1=(0,0),(5,0),1,straight,go,60,0,parkNone
BankGOS2=(5,0),(6,0),1,straight,go,60,0,parkNone
BankB1=(0,0),(5,0),1,straight,back,60,0,parkNone
BankB2=(5,0),(6,0),1,straight,back,60,0,parkNone
LibraryG1=(5,0),(5,2),2,straight,go,55,0,parkNone
LibraryGOS2=(5,2),(5,5),2,straight,go,55,0,parkNone
LibraryBACKS1=(5,0),(5,2),2,straight,back,55,0,parkNone
LibraryBACKS2=(5,2),(5,5),2,straight,back,55,0,parkNone
AltaVistaGOS1=(0,5),(5,5),1,straight,go,40,0,parkNone
AltaVistaGOS2=(5,5),(6,5),1,straight,go,40,0,parkNone
AltaVista-
BACKS1=(0,5),(1,5),1,straight,back,40,0,parkNone
AltaVista-
BACKS2=(1,5),(4,5),1,straight,back,40,45,parkLeft
AltaVista-
BACKS3=(4,5),(5,5),1,straight,back,40,0,parkNone
AltaVista-
BACKS4=(5,5),(6,5),1,straight,back,40,0,parkNone
BronsonGOS1=(2,2),(5,2),1,straight,go,75,0,parkNone
BronsonGOS2=(5,2),(12,2),1,straight,go,75,0,parkNone
end segments

begin crossings
Bank&Library = (5,0),60,withoutTL,withoutHole,0,0.5
Library&AltaVista = (5,5),55,withoutTL,withoutHole,0,0.5
Library&Bronson = (5,2),55,withoutTL,withoutHole,0,0.5
end crossings

Figure 3: Specifying a city section in ATLAS
TSC

As we can see, even this specification is sim-
ple (and it will generate 2400 lines of Cell-DEVS
specifications to be simulated), the creation of
complex city sections can be tedious. The goal of
MAPS interface (as shown in Figure 2) is to pro-
vide a visual front-end for ATLAS. MAPS allows
users to draw small city sections which are then
automatically parsed into ATLAS files. Users can
quickly and easily change the layout of the city
section, as well as ATLAS specific parameters.
MAPS eliminates the need to know the ATLAS
language, and it dramatically reduces the time it
takes to create ATLAS files. This allows for rapid
simulation of urban traffic, which in term tests the
Cell-DEVS engine. Likewise, an output interface
in VRML enhances the vis ualization of the simu-
lation results. The following sections will describe
the main features of MAPS in detail.

3 Creating Input Maps

As mentioned in the previous section, the goal of
our input maps is to provide a visual front-end for
ATLAS. The following list introduces the key
features of MAPS:

- Intuitive interface allows user to quickly
draw streets.

- Intersections are automatically generated for
the user.

- Roads, instead of segments, allow the user to
ignore ATLAS abstractions.

- Decorations can be easily added, changed, or
removed.

- ATLAS parameters can be easily modified to
change simulation parameters.

- Parses user's drawing into ATLAS format.
The following figure shows the city section of

Figure 3 represented using MAPS.

Figure 4 : Describing a small city section in MAPS.

The parser first removes and stores crossings
to preserve their settings (such as pout). City level
decorations are then stored (e.g. rail-nets). The
parser then loops through each road to see if it in-
tersects with other roads. If a previously generated
crossing exists at the intersection point it is used.
If it isn't, a new intersection is created. The parser
also checks to see if the road contains a rail-net. If
it does, a Boolean value is set to inform the parser
to check which segment the rail-net belongs to as
the segments are created.

A new list of breakpoints (a simple class that
stores the location of the cut, and the type – e.g.,
start of the road, end of the road, intersection,
parking start, parking end) will determine how to
cut up the road into segments. This list does not
contain intersections that do not form segments
(e.g., at the start and end of the road being seg-
mented). Breakpoints can also be created by park-
ing, as the parking can be on only certain parts of
the road. The parser loops through the parking
decorations of that road for each lane to create

breakpoints for that lane. Each lane is its own
segment, which can be further segmented by park-
ing decorations on that lane. Each segment must
have a unique identifier. This unique identifier is
tagged to other decorations that that lane is af-
fected by (e.g., roadwork spanning multiple lanes,
potholes, etc).

Figure 5. RoadView of a road with parking, a
stop sign, and roadwork

The lane breakpoints are then sorted and the
segments are created, named and decorated. The
process repeats for as many lanes and as many
roads. The creation of segments from lanes is
discussed further below. The segments and deco-
rations are stored in vectors for each. The parser
goes through the vectors for the segments and
various decorations. The crossings are parsed and
their ATLAS code is added to the vector which
will then be looped through to generate the
ATLAS file.

A road may have multiple lanes, multiple in-
tersections, and multiple places to park each with
different parameters. Additionally each part of the
road can have other decorations like potholes and
stop signs. The process of portioning a road is de-
scribed above. This section describes how the
segments themselves are created from a lane.
Note the above figure contains four ATLAS seg-
ments – one lane with the direction “go”, and
three with reverse. Two of the “reverse” segments
have no parking, while one (the part of the lane

that is colored blue) does. The user need not
worry about creating the segments, naming them,
and ensuring the decorations are attached to the
correct segment. This is all done automatically by
MAPS.

To parse the lane valid intersections found for
the road are added to the lane's breakpoints. Next,
breakpoints are created from parking. The break-
points are then sorted to be in ascending order
(from the start of the road to the end). The follow-
ing rules apply to parsing a lane's decorations:

- There is no parking available at the start and
end of a lane (the first and last grid units may not
have parking)

- Parking objects may not overlap.
- Parking objects may not be intersected by

another road – that is, there is no parking allowed
in an intersection.

- Segments with parking may not contain a
rail-net

Figure 6 : MAPS graphical interface.

These rules were formed by looking at typical
rules for real life streets, as well as make parking
parsing logic simpler. The user is informed if any
decorations violate the rules, and the locations of
the invalid objects are displayed. The segments
are created if the parking decorations are valid.
The segments are then decorated by looping
through the decorations for that lane and checking
to see if the decoration (such as potholes, stop
signs, etc) lay on that particular segment. If the
user created a decoration that has a length of more
than one grid size, then multiple decorations are
added as many times as the length requires. The
decorations differ in their position from the start
of the road.

Figure 6 presents a screenshot of a more de-
tailed city section using MAPS. Note the presence
of railnets (black rectangle with white line), cross-
ings (yellow circles, automatically generated),
roadwork (yellow squares), stop signs (red
squares), parking sections (blue rectangles), mu l-
tiple and bidirectional roads, ready access to
ATLAS parameters such as speed, curvature of
the road, etc. Figure 7 shows the ATLAS TSC
specifications generated by the tool. As we can
see, the new representation of the model is more
intuitive, simpler to modify and faster to under-
stand and run experiments.

Figure 7: Resulting specification in ATLAS TSC

4 Visualizing Outputs in 3D

MAPS also includes a graphical user interface that
shows traffic flowing through a predefined city
based on the results of a simulation. MAPS uses
the created plan file to determine a static view of
the city without cars present, showing the user the
various segments and crossings involved in the
ATLAS city section. The GUI uses the results file
from a previous simulation by the CD++ simula-
tor, and determines the location and direction of
specific cars at a particular point in time using a
log file generated by the simulator. A car shape
will be displayed on the screen in the appropriate
cell on a segment for the amount of time specified
in the log file. When that time expires, the car will
move to a new cell as per the results file.

The entire city will operate in this manner with
cars moving within segments and from segment to
segment. The user will be able navigate around
the city as they wish using any tool capable of
running VRML files, watching cars pass through
the various segments. The time will be displayed
as it changes according to the log file so the user
has an idea of the time as cars are mo ving. This
will allow the user to see the buildup of traffic on
different segments graphically as time passes, in-
stead of having to interpret the results using each
segment’s automatically created text file or the
log file generated by the simulator.

(a) (b)

(c)

Figure 8: Car, segment and crossing VRML ob-
jects.

In order for the system to achieve these goals,
it was essential to find or create VRML objects
that represent cars, segments and crossings. The
first issue is that a static view of the city should
first be shown from the plan file with the seg-
ments and crossings displayed to the user. Figure
8.a) shows the road shape as simply two squares,
one overlapping the other such that a lane is de-
fined for the segment where the cars will travel.
One road shape is displayed in the VRML GUI
for every cell in the segment. If a segment is five
cells long with three lanes, then 15 VRML road
shapes will be displayed on the screen in the di-
rection specified by the coordinates in the plan
file. Similarly, a crossing shape was created that
represents an ATLAS crossing as shown in figure
8.b). Again, the crossing is simply two squares,
one larger than the other corresponding to a real
life road crossing.

Another requirement of this project was to
show the traffic flowing throughout the city sec-
tion according to a log file provided by the simu-
lator. In order to make the output look realistic,
the car shapes we sought after that look like real
cars. The car shape shown in figure 8.c) was used
to represent traffic flowing through a city. This
car shape is a slightly modified version of a shape
found on [11].

(a) (b)

Figure 9: Crossings with stoplight and stop sign

Some crossings in the plan file can be defined

to have traffic lights or stop signs. When the plan
file is inputted into MAPS, the crossings are
encapsulated in a Crossing object. There are
attributes in this object indicating whether a
crossing contains stop signs or traffic lights. To
make the city section realistic, crossings have stop
signs and traffic light shapes attached to them.

Figure 9 shows two crossings, one with a traffic
light (figure 9.a)) and the other with a stop sign
(figure 9.b)).

The plan file describing the ATLAS
specification contains many attributes for the
segments and crossings but the most important
attributes for MAPS are the start ing and ending
points. Let us consider an example of two
segments of a city section written in ATLAS TSC
code, as shown in figure 10.

Segment_A = (0, 0), (10, 10), 1, straight,
go, 40, 300, parkNone
Segment_A1 = (0, 0), (10, 10), 1,
straight, back, 40, 300, parkNone
Figure 10: Representation of a two-way street

From figure 10, there are two segments, one

going from (0,0) to (10,10) and the other is going
in the opposite direction from (10,10) to (0,0).
Each of the crossing, segment and cars are 1-by-1
VRML objects and the simulator considers 1-by-1
cells also, so the mapping from the plan file to the
VRML world is simple. Each of the two seg-
ments in figure 10 will contain 14 consecutive
segment objects from figure 8.a) using the follow-
ing equation: () ()2

21
2

21 xxyy PPPPlength −+−= .

If the segments do not run parallel to the x or
y-axis, then the segment objects will have to be
rotated to make them look consecutive. The angle
can be calculated as follows:

−
−

= −

xx

yy

PP
PP

rotation
12

121tan . For instance, the seg-

ments in figure 10 will be rotated by an angle of
45 degrees.

Once the angle and length have been calcu-
lated, the segments have to be translated to the
appropriate position in the VRML world. The first
step is to translate the segment object to the seg-
ment’s start point, and then rotate the objects ap-
propriately as calculated above, and finally scale
the segment object to the calculated length. This
is done for every segment in the plan file until the
static view of the city section is shown in the
VRML world. An example of a static view of a
city is shown in figure 11.

Figure 11: Static view of Carleton campus with segments and crossings.

The Crossings are added with little difficulty
since they do not have to be rotated or scaled.
The only task is to translate the crossing objects to
their location defined in the plan file. Once this is
complete, the entire static view of the city is
shown for the user.

Once the static view has appeared, the user
must input a model file to MAPS to verify that
each segment and crossing from the plan file
match up with a Cell-DEVS model in the model
file that the TSC outputs. There must exist a Cell-
DEVS model in the TSC model file with the same
name, lanes and length for every segment or
crossing in the city section. Likewise, we verify
every segment and crossing from the plan file and
only those are included in the TSC model file and
viceversa.

Finally, after the model file has been verified,
the user can get a log file of the ATLAS model
outputted by the CD++ simulator (following the
steps in Figure 2) in order to view the results of
the simulation. MAPS parses the log file for
output messages such as the one shown in figure
12.

Message Y/00:00:00:200/t1(0,0)/out/1 to t1
Figure 12 : Output message indicating that a car
has appeared

This message indicates that a car has now
appeared (the 1) in the cell 0 of lane 0 (the 0, 0) of
segment t1 at time 200ms. When MAPS
encounters this message, creates a VRML car
object (figure 8.c)), then rotates it by the same
amount and translates it to the same location as
the segment object in lane 0, cell 0 of segment t1
as determined when displaying the static view of
the city.

Another type of output message of interest
involves cars leaving cells. These messages are
very similar to the one in figure 12, as shown in
figure 13.

Message Y/00:00:00:400/t1(0,0)/out/0 to t1
Figure 13 : Output message indicating that a car
has left the cell

In this case, the car that was present in cell 0

of lane 0 at time 200ms as shown in figure 12, has
now left that cell. When MAPS receives this
message, it will look ahead to the remainder of the
messages for time 400ms and look for a message
indicating that a car is entering cell 1 of any lane
of segment t1. If it does in fact find such a
message, then the car that was present in cell 0,
lane 0 of t1 will be translated to its new position.
If such a message was not found which would
happen when a car leaves a segment, then the car

object that was present in the specific cell is
removed from the VRML world.

MAPS will continue reading the log file and
adding, removing and translating car objects until
the end of the log file has been reached or the user
requests that the simulation be stopped. This let us
achieve the main goal of MAPS, namely to give
the user the ability to evaluate the city section as a
whole. MAPS outputs were designed to allow the
user to view their city that was created using
ATLAS, and not have to sift through text or
simulation log files for answers as to how traffic
flows through the roads and crossings of their city
section. It gives the user the ability to run
simulations on the same city but with slightly
different parameters, and see graphically how the
different parameters affect the traffic flow at
certain locations. Figure 14 shows an example of
the execution of the model defined in Figure 3.

Figure 14: Dynamic behavior of cars mo ving
within the city

5 Conclusion

ATLAS allows defining a static view of a city

section by including different components. This
approach provides an application-oriented specifi-
cation language, which allows the definition of
complex traffic behavior using simple rules for a
modeler. The mo dels are formally specified,
avoiding a high number of errors in the applica-
tion, thus reducing the problem solving time.

Originally, the system required manual gen-
eration of ATLAS files, a lengthy process and

prone to error. The outputs were simple text -based
files that the user should interpret. We built
MAPS, a set of I/O graphical interfaces which
permitted us to address these problems, allowing
the users to draw city sections, and a output sub-
system permitting showing cars to with realistic
3D graphics.

The development of MAPS was successful. A
static view of the city can be inputted as in Figure
4, and the execution results can be seen in a 3D
visualization, as shown in Figures 11 and 14. The
system requires the user to input the model file
used for simulation to ensure that the plan file
matches up with the simulation performed.
Finally, the user can input the log results file from
a previous simulation to view the city and see how
the cars proceeded throughout the segments and
crossings.

At present we are experimenting with parallel
execution of the models described in ATLAS. We
are also integrating the different existing tools
using the Eclipse platform [12]. The use of
Eclipse will enhance the modeling and simulation
experience, as the users will be able to run
different subsystems under a single integration
engine.

References

[1] Davidson, A.; Wainer, G. “ATLAS: a lan-
guage to specify traffic models using Cell-
DEVS”. Technical Report 00-003, Computer Sci-
ence Dept. Universidad de Buenos Aires. Submit-
ted. 2002.

[2] Zeigler, B., Kim, T., Praehofer, H. “Theory of
Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Sys-
tems”. Academic Press . 2000.

[3] Wainer, G., Giambiasi, N. “Timed Cell-
DEVS: modeling and simulation of cell spaces”.
In Discrete Event Modeling & Simulation: Ena-
bling Future Technologies. Ed.: H. Sarjoughian,
F. Ce llier. Springer-Verlag. 2001.

[4] Zeigler, B.; Moon, Y.; Kim, D.; Ball, G. "The
DEVS environment for high-performance model-
ing and simulation". IEEE Computational Science
and Engineering , Vol. 4, No. 3. 1997.
[5] Wainer, G., Giambiasi, N. “Application of the
Cell-DEVS paradigm for cell spaces modeling

and simulation”. Simulation. Vol. 76, No. 1. Janu-
ary 2001.

[7] Davidson, A., Wainer, G. “Specifying control
signals in traffic models ”. In Proceedings of AI,
Simulation and Planning in High Autonomous
Systems, AIS'2000. Tucson, Arizona. U.S.A. 2000.

[8] Davidson, A., Wainer, G. “Specifying truck
movement in traffic models using Cell-DEVS”. In
Proceedings of the 33rd Annual Simulation Sym-
posium. Washington, D.C. U.S.A. 2000.

[9] Torres, C.; Lo Tartaro, M.; Wainer, G. “Defin-
ing models of urban traffic using the TSC tool”.
Proceedings of the 2001 Winter Simulation Con-
ference. Washington, DC. USA. 2001.

[10] Chopard, B.; Queloz, P. A.; Luthi, P. “Cellu-
lar Automata Model of Car Traffic in two-
dimensional street networks”. J. Phys. A, vol. 29,
pp. 2325-2336, 1996.

[11] Ames, A.; Nadeau, D.; Moreland, J. “VRML
2.0 Sourcebook”. John Wiley & Sons. 1996.

[12] OBJECT TECHNOLOGY INTL. INC.
“Eclipse Platform Technical Overview”.
http://www.eclipse.org/whitepapers/eclipse-
overview.pdf. 2001.

