
 

Abstract 
 
ATLAS is a modeling language that permits defin-
ing a static view of a city section for simulating 
traffic in an area. The models are formally speci-
fied, avoiding a high number of errors in the ap-
plication, thus reducing the problem solving time. 
The system required the manual generation of 
ATLAS files, a tedious process that did not lend 
itself for rapid changes to the system input.  The 
output of the system also suffered from a non-user 
friendly interface. The solutions to these problems 
were addressed in two parts: a front-end system 
allowing the user to draw city sections (and then 
parse the drawing to create a valid ATLAS file), 
and an output subsystem permitting showing cars 
to with realistic 3D graphics.  

 
1 Introduction 
 
Urban traffic analysis and control is a problem of 
such a complexity that it is difficult to be analyzed 
with traditional analytical methods. Modeling and 
simulation techniques , instead, have showed a 
certain degree of success, and they have been 
gaining popularity as analysis tool. Simulation 
permits studying particular problems  using virtual 
experimentation.  

We have developed a toolkit for modeling 
and simulation of traffic in urban centers. This 
project followed a rigorous approach that we in-
troduce here. The first stage was devoted to define 
and validate a high level specification language 
representing city sections [1]. This language, 
called ATLAS (Advanced Traffic LAnguage 

Specifications) focuses on the detailed specifica-
tion of traffic behavior. The models are repre-
sented as cell spaces, allowing elaborate study of 
traffic flow according with the shape of a city sec-
tion and its transit attributes. A static view of the 
city section can be easily described, including 
definitions for traffic signs, traffic lights, etc. A 
modeler can concentrate in the problem to solve, 
instead of being in charge of defining a complex 
simulation.  

The constructions defined in this language are 
mapped into DEVS [2] and Cell-DEVS models 
[3]. DEVS provides high performance for dis-
crete-event systems simulation [4]. Similar results 
were obtained for Cell-DEVS models [5]. It also 
provides a formal framework that can be used to 
validate and verify the models. Using this ap-
proach permits us to reuse the models created, that 
can be integrated with other using different for-
malisms (for instance, using Petri Nets or Finite 
State Machines to specify the behavior of traffic 
lights or railway controllers). 

A real system modeled using the DEVS for-
malism can be described as composed of several 
submo dels. Each of them can be behavioral 
(atomic) or structural (coupled). Each of these ba-
sic models consist of a time base, inputs, states, 
outputs and functions to compute the next states 
and outputs. Coupled models can be integrated 
into a model hierarchy, allowing the reuse of cre-
ated and tested models, enhancing the security of 
the simulations, reducing the testing time and im-
proving productivity. A DEVS atomic model is 
described as: 

 
M = < I, X , S, Y, δint, δext, λ, D > 
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Here, I is the model's interface, X is the input 

events set, S is the state set, and Y is the output 
events set. We also use four functions: δint man-
ages internal transitions, δext external transitions, λ 
the outputs, and D, the lifetime of a state. The in-
terface is composed of input and output ports to 
communicate with other models. Each port is de-
fined as a pair, including a port name and its type. 
The input external events (those coming from 
other models) are received in input ports. The 
model specification defines the behavior of the 
external transition function under such inputs. 
Each state has an associated duration time. When 
this time is consumed, the internal transition func-
tion is activated to produce internal state changes. 
The internal state can be used to provide model 
outputs sent through the output ports. They are 
sent by the output function, which executes before 
the internal transition. 

A DEVS coupled model is defined as: 
 

CM = < I, X, Y, D, {M i}, {Ii}, {Zij} > 
 
Here, I is the model interface, X is the set of 

input events, and Y is the set of output events. D is 
an index of components, and for each i ∈ D, Mi is 
a basic DEVS model (atomic or coupled). Ii is the 
set of influencees of model i. For each j ∈ Ii, Zij is 
the i to j translation function. Each coupled model 
consists of a set of basic models connected 
through the input/output ports. The influencees of 
a model will determine to which models one send 
the outputs. The translation function is in charge 
of translating outputs of a model into inputs for 
the others. To do so, an index of influencees is 
created for each model (Ii). For every j in this in-
dex, outputs of the model Mi are connected to in-
puts in the model Mj.  

The Cell-DEVS (informally described in Fig-
ure 1) formalism was proposed as an extension to 
DEVS permitting to describe cellular models. 
Cell-DEVS allows to define complex cellular 
models that can be integrated with other DEVS. 
Here, each cell of a space is defined as an atomic 
DEVS with explicit timing delays. Transport and 
inertial delays allow to define timing behavior of 
each cell in an explicit and simple fashion. A 
transport delay allows us to model a variable re-
sponse time for each cell. Instead, inertial delays 
are preemptive: a scheduled event is executed 
only if the delay is consumed.  

 

 
Figure 1: Informal Definition of Cell-DEVS. 

 
Cell-DEVS atomic models can be formally 

specified as: 
 
TDC = < X, Y, I, S, N, delay, d, δint, δext, τ, λ, D > 

 
where X represents the external input events, 

Y the external outputs, and I is the interface of the 
model. S is the cell state definition, and N is the 
set of input events. Delay defines the kind of de-
lay for the cell, and d its duration. Each cell uses a 
set of N input values to compute the future state 
using the function τ. These values come from the 
neighborhood or other DEVS models, and they 
are received through the model interface. A delay 
function can be associated with each cell, allow-
ing deferring the outputs. Therefore, the outputs 
of a cell are not transmitted instantaneously, but 
after the consumption of the delay. The outputs 
usually include the execution results of the local 
computing functions. This behavior is defined by 
the δint, δext, λ and D functions. 

A Cell-DEVS coupled model is defined by: 
 
GCC=<Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z> 
 

Here, Ylist is an output coupling list, Xlist is an 
input coupling list and I represents the interface of 
the model. X are the external input events and Y 
the external outputs. The n value defines the di-
mension of the cell space, {t1,...,tn} is the number 
of cells in each dimension, and N is the neighbor-
hood set. C is the cell space, B is the set of border 
cells and Z the translation function. The cell space 
defined by this specification is a coupled model 
composed of an array of atomic cells. Each of 
them is connected to the cells defined by the 
neighborhood. As the cell space is finite, the bor-
ders should have a different behavior than the re-



 
 
maining cells. Otherwise, the space is wrapped, 
meaning that cells in a border are connected with 
those in the opposite one. Finally, the Z function 
allows one to define the internal and external cou-
pling of cells in the model. This function trans-
lates the outputs of m-eth output port in cell Cij 
into values for the m-eth input port of cell Ckl. 
The input/output coupling lists can be used to 
transfer data with other models. 

 The formal specifications for DEVS and 
Cell-DEVS were used to build the CD++ tool [6]. 
This tool provides a specification language fol-
lowing the formal specifications described in this 
section. ATLAS was formally defined as a set of 
constructions, which were mapped into DEVS and 
Cell-DEVS models [7, 8]. The behavior for each 
of the constructions presented in this language 
was validated in terms of their correctness when 
built as Cell-DEVS models . Then, a compiler was 
built following the specifications [9]. The com-
piler, called ATLAS TSC (Traffic Simulator 
Compiler), generates code by using a set of tem-
plates that can be redefined by the user. In this 
way, ATLAS specifications can be translated into 
different tools with facilities to define cellular 
models. It also avoids version problems if the un-
derlying tools are modified.  

 

Figure 2: Structure of the software platform to de-
velop ATLAS models  

 
In ATLAS, a modeller can easily describe a 

city section, including traffic signs, traffic lights, 
etc. A modeller can concentrate in the problem to 
solve, instead of being in charge of defining a 
complex simulation or defining the models using 
a simulation package. Until now, the definition of 
models of urban traffic required the manual gen-
eration of text files defining city section using 
ATLAS constructions. This is a  tedious process 
that does not lend itself for rapid changes to the 
system input. The output of the system also suf-
fered from a non-user friendly interface. The 
simulation output was converted into different file 

types with primitive ASCII drawings of the simu-
lation results. Thus, it was not easy for a user to 
define the input for the system, or easily absorb 
the simulation results. The solutions to these prob-
lems were addressed in two parts. A front-end 
program allows the user to draw a small city sec-
tion complete with roads, intersections, and deco-
rations, and then parse the drawing to create a 
valid ATLAS file.  

Likewise, the output went from a single seg-
ment of road with blocks as cars to a full-blown 
city section with realistic 3D graphics. Parsing the 
ATLAS file, building the city section in a VRML 
world and then mapping the simulation output re-
sults onto the system accomplished this result. We 
will discuss the details of this enhanced facilities 
in the following sections.  

 
2 Atlas constructions 

 
ATLAS allows representing the structure of a city 
section defined by a set of streets connected by 
crossings. The language constructions define a 
static view of the model, which is considered to 
be built as grids composed of cells [1]. ATLAS 
formal specifications were used to build the 
ATLAS TSC compiler and the syntax for its lan-
guage sentences. Following, we present the main 
constructions of ATLAS and its syntax. 

 
a) Segments: they represent sections of a 

street between two corners. Every lane in a given 
segment has the same direction (one way seg-
ments) and a maximum speed. They are specified 
as: Segments = { (p1, p2, n, a, dir, max) / p1, p2 ∈ 
City ∧ n, max ∈ Ν ∧ a, dir ∈ {0,1} }, where p1 
and p2 represent the boundaries of the segment 
(City = { (x,y) / x, y ∈ R }), n is the number of 
lanes, and dir represents the vehicle direction. 
The a parameter defines the shape of the segment 
(straight or curve, allowing to define the city 
shape more precisely, including the exact number 
of cells), and max is the maximum speed allowed 
in the segment. 

This constraint was included in ATLAS TSC. 
The compiler permits defining the segments by 
delimiting them using the sentences begin seg-
ments and end segments. At least one segment 
must be defined, using the following syntax: 
 

id = p1, p2, lanes, shape, direction, 
speed, parkType 



 
 

 
These values map the parameters mentioned 

previously, with shape: [curve|straight] and 
direction:  [go|back]. Finally, parkType is 
used to define parking constructions, formally 
specified in the following paragraphs. 

 
b) Parking: border cells in a segment can be 

used for parking. They are formally defined as: 
Parking = { (s, n1) / s ∈ Segments ∧  n1 ∈ {0,1} ∧  
s = (c1, c2, n, a, dir, max) ∧  n > 1 }. Every pair (s, 
n1) identifies the segment and the lane where car 
parking is allowed. If n1 = 0, the cars park on the 
left; if n1 = 1, on the right (lane n-1).  

If we review the construction used for Seg-
ments in ATLAS TSC also includes information 
for the parking segments. In this case,  

 
parkType: [parkNone | parkLeft | park-
Right | parkBoth]  

 
defines in which area of the segment a car can 
park. 
 

c) Crossings: these constructions are used to 
represent the places where more than one segment 
intersect. They are specified as: Crossings = { (c, 
max) / c ∈ City ∧  max ∈ Ν ∧  ∃ s, s’ ∈ Segments 
∧  s = (p1, p2, n, a, dir, max) ∧  s’ = (p1’, p2’, n’, 
a’, dir’, max’) ∧  s ≠ s’ ∧  (p1 = c ∨  p2 = c) ∧  (p1’ 
= c ∨  p2’ = c) }. Crossings are built as rings of 
cells with moving vehicles following the ideas 
presented in [10]. A car in the crossing has higher 
priority to obtain the next position in the ring than 
the cars outside the crossing. In ATLAS TSC, the 
definitions for crossings are delimited by the sepa-
rators begin crossings and end crossings. 
Each sentence defines a crossing using the follow-
ing syntax: 

 
id = p, speed, tLight, crossHole, pout 

 
Parameters p and speed represent (p1,p2)  and 

max of the formal specification. Pout defines the 
probability of a vehicle to abandon the crossing, 
used to simulate random routing of different vehi-
cles. The remaining parameters are related with 
specific types of crossings, and will be explained 
in the following paragraphs. 
 

d) Traffic lights: crossings with traffic lights 
are formally defined as: TLCrossings = { c / c ∈ 
Crossings }. Here, c ∈ TLCrossings defines a set 

of models representing the traffic lights in a cor-
ner and the corresponding controller. Each of 
these models is associated with a crossing input. 
The model sends a value representing the color of 
the traffic light to a cell in the intersection corre-
sponding to the input segment affected by the traf-
fic light. The following qualifier is added to a 
standard crossing definition in ATLAS TSC for 
crossings with traffic lights: tLight: 
[withTL|withoutTL]. 
 

e) Railways: they are built as a sequence of 
level crossings overlapped with the city segments. 
The railway network is defined by: RailNet = { 
(Station, Rail) / Station is a model, Rail ∈ Rail-
Track }, where RailTrack = { (s, δ, seq) / s ∈ 
Segments ∧  δ ∈ Ν ∧  seq ∈ Ν }. RailNet repre-
sents a set of stations connected to railways, thus 
defining a part of the railway network. Railtrack  
associates a level crossing with other existing 
constructions in the city section. Each element 
identifies the segment that is crossed (s) and the 
distance to the railway from the beginning of the 
section (δ). Finally, a sequence number (seq) is 
assigned to each level crossing, defining its posi-
tion in the RailTrack . When a railway is defined 
in ATLAS, the begin railnets and end rail-
nets act as separators. Each RailNet  is defined us-
ing the following syntax: 

 
id = (s1, d1) {,(si, di)} 

 
where si defines an identifier of a segment 
crossed by the railway, and di defines the distance 
between the beginning of the segment si and the 
railway. The compiler automatically generates the 
sequence number. 
 

f) Men at work: the construction defining 
men at work is specified by: Jobsite = { (s, ni, δ, 
#n) / s ∈ Segments ∧  s = (c1, c2, n, a, dir, max) ∧  
ni ∈ [0, n-1] ∧  δ ∈ Ν ∧  #n ∈ [1, n+1-ni] ∧  #n ≡ 1 
mod 2 }. Here, each (s, ni, δ, #n) ∈ Jobsite is re-
lated with a segment where the construction 
works are being done. It includes the first lane af-
fected (ni), the distance between the center of the 
jobsite and the beginning of the segment (δ), and 
the number of lanes occupied by the work (#n). 
These values are used to define an area over the 
segment where vehicles cannot advance. In 
ATLAS TSC, the begin jobsites and end job-



 
 
sites separators define the jobsites to be used. 
Each jobsite is defined as: 

in t : firstlane, distance, lanes 

In this case, firstlane defines the first lane 
affected by the jobsite, distance is the distance 
between the center of the jobsite and the begin-
ning of the segment, and lanes is the number of 
lanes occupied. 

 
g) Traffic signs : they are defined by: Control 

= { (s, t, δ) / s∈Segments ∧ δ∈Ν ∧  t∈{bump, de-
pression, pedestrian crossing, saw, stop, school} 
}. Each tuple here identifies the segment where 
the traffic sign is used, the type of sign, and the 
distance from the beginning of the segment up to 
the sign. In ATLAS TSC, the begin ctrElements 
and end ctrElements delimiters define all the 
control elements, with: 
 

in t : ctrType, distance 
 
being the definition for each sign. Here, ctrType: 
[bump | depression | intersection | saw | 
stop | school] defines the different signs. The 
distance parameter defines the distance to the 
beginning of the segment. An extension of this 
construction allows us to define potholes, whose 
size is one cell. The definition of these elements is 
done using the begin holes and end holes sepa-
rators. Each hole is defined as: 
 

in t : lane, distance 

 
A pothole can also be included in a crossing. 

Previously defined in the Crossings paragraphs, 
crossHole: [withHole|withoutHole] defines if 
a crossing contains a pothole or not. 
 

h) Experimental frameworks: experimental 
framework constructions permit build experi-
ments on a city section by providing inputs and 
outputs to the area to be studied. They are associ-
ated with segments receiving inputs, or those used 
as outputs, and are defined as: 

 
InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧  
s ∈ Segments ∧  [ ( dir = 0 ∧  (∃ v ∈ Ν : (p2,v) ∈ 
Crossings) ) ∨  (dir = 1 ∧  (∃ v ∈ Ν : (p1,v) ∈ 
Crossings) ) ] } 
OutputSegments = { s / s = (p1, p2, n, a, dir, max) 
∧  s ∈ Segments ∧  [ ( dir = 0 ∧  (∃ v ∈ Ν : (p1,v) ∈ 
Crossings)) ∨  (dir =1 ∧  (∃ v ∈ Ν: (p2,v) ∈ Cross-
ings)) ] } 

In the following figure we show the specifi-
cation of a simple city section including 17 seg-
ments and 3 crossings.  
 
begin segments 
BankGOS1=(0,0),(5,0),1,straight,go,60,0,parkNone 
BankGOS2=(5,0),(6,0),1,straight,go,60,0,parkNone 
BankB1=(0,0),(5,0),1,straight,back,60,0,parkNone 
BankB2=(5,0),(6,0),1,straight,back,60,0,parkNone 
LibraryG1=(5,0),(5,2),2,straight,go,55,0,parkNone 
LibraryGOS2=(5,2),(5,5),2,straight,go,55,0,parkNone 
LibraryBACKS1=(5,0),(5,2),2,straight,back,55,0,parkNone 
LibraryBACKS2=(5,2),(5,5),2,straight,back,55,0,parkNone 
AltaVistaGOS1=(0,5),(5,5),1,straight,go,40,0,parkNone 
AltaVistaGOS2=(5,5),(6,5),1,straight,go,40,0,parkNone 
AltaVista-
BACKS1=(0,5),(1,5),1,straight,back,40,0,parkNone 
AltaVista-
BACKS2=(1,5),(4,5),1,straight,back,40,45,parkLeft 
AltaVista-
BACKS3=(4,5),(5,5),1,straight,back,40,0,parkNone 
AltaVista-
BACKS4=(5,5),(6,5),1,straight,back,40,0,parkNone 
BronsonGOS1=(2,2),(5,2),1,straight,go,75,0,parkNone 
BronsonGOS2=(5,2),(12,2),1,straight,go,75,0,parkNone 
end segments 
 
begin crossings 
Bank&Library = (5,0),60,withoutTL,withoutHole,0,0.5 
Library&AltaVista = (5,5),55,withoutTL,withoutHole,0,0.5 
Library&Bronson = (5,2),55,withoutTL,withoutHole,0,0.5 
end crossings 

Figure 3: Specifying a city section in ATLAS 
TSC 
 

As we can see, even this specification is sim-
ple (and it will generate 2400 lines of Cell-DEVS 
specifications to be simulated), the creation of 
complex city sections can be tedious. The goal of 
MAPS interface (as shown in Figure 2) is to pro-
vide a visual front-end for ATLAS. MAPS allows 
users to draw small city sections which are then 
automatically parsed into ATLAS files. Users can 
quickly and easily change the layout of the city 
section, as well as ATLAS specific parameters. 
MAPS eliminates the need to know the ATLAS 
language, and it dramatically reduces the time it 
takes to create ATLAS files. This allows for rapid 
simulation of urban traffic, which in term tests the 
Cell-DEVS engine. Likewise, an output interface 
in VRML enhances the vis ualization of the simu-
lation results. The following sections will describe 
the main features of MAPS in detail. 

 
3 Creating Input Maps 
 
As mentioned in the previous section, the goal of 
our input maps is to provide a visual front-end for 
ATLAS. The following list introduces the key 
features of MAPS: 

- Intuitive interface allows user to quickly 
draw streets. 

- Intersections are automatically generated for 
the user.  



 
 

- Roads, instead of segments, allow the user to 
ignore ATLAS abstractions. 

- Decorations can be easily added, changed, or 
removed. 

- ATLAS parameters can be easily modified to 
change simulation parameters. 

- Parses user's drawing into ATLAS format. 
The following figure shows the city section of 

Figure 3 represented using MAPS.  
 

 

 

Figure 4 : Describing a small city section in MAPS.   

The parser first removes and stores crossings 
to preserve their settings (such as pout). City level 
decorations are then stored (e.g. rail-nets). The 
parser then loops through each road to see if it in-
tersects with other roads. If a previously generated 
crossing exists at the intersection point it is used. 
If it isn't, a new intersection is created. The parser 
also checks to see if the road contains a rail-net. If 
it does, a Boolean value is set to inform the parser 
to check which segment the rail-net belongs to as 
the segments are created. 

A new list of breakpoints (a simple class that 
stores the location of the cut, and the type – e.g., 
start of the road, end of the road, intersection, 
parking start, parking end) will determine how to 
cut up the road into segments. This list does not 
contain intersections that do not form segments 
(e.g., at the start and end of the road being seg-
mented). Breakpoints can also be created by park-
ing, as the parking can be on only certain parts of 
the road. The parser loops through the parking 
decorations of that road for each lane to create 

breakpoints for that lane. Each lane is its own 
segment, which can be further segmented by park-
ing decorations on that lane. Each segment must 
have a unique identifier. This unique identifier is 
tagged to other decorations that that lane is af-
fected by (e.g., roadwork spanning multiple lanes, 
potholes, etc). 

 

Figure 5. RoadView of a road with parking, a 
stop sign, and roadwork 

 



 
 

The lane breakpoints are then sorted and the 
segments are created, named and decorated. The 
process repeats for as many lanes and as many 
roads.  The creation of segments from lanes is 
discussed further below. The segments and deco-
rations are stored in vectors for each. The parser 
goes through the vectors for the segments and  
various decorations. The crossings are parsed and 
their ATLAS code is added to the vector which 
will then be looped through to generate the 
ATLAS file. 

A road may have multiple lanes, multiple in-
tersections, and multiple places to park each with 
different parameters. Additionally each part of the 
road can have other decorations like potholes and 
stop signs. The process of portioning a road is de-
scribed above. This section describes how the 
segments themselves are created from a lane. 
Note the above figure contains four ATLAS seg-
ments – one lane with the direction “go”, and 
three with reverse. Two of the “reverse” segments 
have no parking, while one (the part of the lane 

that is colored blue) does. The user need not 
worry about creating the segments, naming them, 
and ensuring the decorations are attached to the 
correct segment. This is all done automatically by 
MAPS.   

To parse the lane valid intersections found for 
the road are added to the lane's breakpoints. Next, 
breakpoints are created from parking. The break-
points are then sorted to be in ascending order 
(from the start of the road to the end). The follow-
ing rules apply to parsing a lane's decorations: 

- There is no parking available at the start and 
end of a lane (the first and last grid units may not 
have parking) 

- Parking objects may not overlap. 
- Parking objects may not be intersected by 

another road – that is, there is no parking allowed 
in an intersection. 

- Segments with parking may not contain a 
rail-net 

 
 

 

 

Figure 6 : MAPS graphical interface.



 

These rules were formed by looking at typical 
rules for real life streets, as well as make parking 
parsing logic simpler. The user is informed if any 
decorations violate the rules, and the locations of 
the invalid objects are displayed. The segments 
are created if the parking decorations are valid. 
The segments are then decorated by looping 
through the decorations for that lane and checking 
to see if the decoration (such as potholes, stop 
signs, etc) lay on that particular segment. If the 
user created a decoration that has a length of more 
than one grid size, then multiple decorations are 
added as many times as the length requires. The 
decorations differ in their position from the start 
of the road. 

Figure 6 presents a screenshot of a more de-
tailed city section using MAPS. Note the presence 
of railnets (black rectangle with white line), cross-
ings (yellow circles, automatically generated), 
roadwork (yellow squares), stop signs (red 
squares), parking sections (blue rectangles), mu l-
tiple and bidirectional roads, ready access to 
ATLAS parameters such as speed, curvature of 
the road, etc. Figure 7 shows the ATLAS TSC 
specifications generated by the tool. As we can 
see, the new representation of the model is more 
intuitive, simpler to modify and faster to under-
stand and run experiments. 

 

Figure 7: Resulting specification in ATLAS TSC 

4 Visualizing Outputs in 3D 
 

MAPS also includes a graphical user interface that 
shows traffic flowing through a predefined city 
based on the results of a simulation. MAPS uses 
the created plan file to determine a static view of 
the city without cars present, showing the user the 
various segments and crossings involved in the 
ATLAS city section. The GUI uses the results file 
from a previous simulation by the CD++ simula-
tor, and determines the location and direction of 
specific cars at a particular point in time using a 
log file generated by the simulator. A car shape 
will be displayed on the screen in the appropriate 
cell on a segment for the amount of time specified 
in the log file. When that time expires, the car will 
move to a new cell as per the results file. 

The entire city will operate in this manner with 
cars moving within segments and from segment to 
segment.  The user will be able navigate around 
the city as they wish using any tool capable of 
running VRML files, watching cars pass through 
the various segments.  The time will be displayed 
as it changes according to the log file so the user 
has an idea of the time as cars are mo ving.  This 
will allow the user to see the buildup of traffic on 
different segments graphically as time passes, in-
stead of having to interpret the results using each 
segment’s automatically created text file or the 
log file generated by the simulator. 

 

             
(a)      (b) 

 
(c) 

Figure 8: Car, segment and crossing VRML ob-
jects. 



 
 

In order for the system to achieve these goals, 
it was essential to find or create VRML objects 
that represent cars, segments and crossings. The 
first issue is that a static view of the city should 
first be shown from the plan file with the seg-
ments and crossings displayed to the user. Figure 
8.a) shows the road shape as simply two squares, 
one overlapping the other such that a lane is de-
fined for the segment where the cars will travel.  
One road shape is displayed in the VRML GUI 
for every cell in the segment.  If a segment is five 
cells long with three lanes, then 15 VRML road 
shapes will be displayed on the screen in the di-
rection specified by the coordinates in the plan 
file.  Similarly, a crossing shape was created that 
represents an ATLAS crossing as shown in figure 
8.b). Again, the crossing is simply two squares, 
one larger than the other corresponding to a real 
life road crossing. 

Another requirement of this  project was to 
show the traffic flowing throughout the city sec-
tion according to a log file provided by the simu-
lator.  In order to make the output look realistic, 
the car shapes we sought after that look like real 
cars.  The car shape shown in figure 8.c) was used 
to represent traffic flowing through a city.  This 
car shape is a slightly modified version of a shape 
found on [11]. 

 

    
(a)                                     (b) 

Figure 9: Crossings with stoplight and stop sign 
 
Some crossings in the plan file can be defined 

to have traffic lights or stop signs.  When the plan 
file is inputted into MAPS, the crossings are 
encapsulated in a Crossing object. There are 
attributes in this object indicating whether a 
crossing contains stop signs or traffic lights.  To 
make the city section realistic, crossings have stop 
signs and traffic light shapes attached to them. 

Figure 9 shows two crossings, one with a traffic 
light (figure 9.a)) and the other with a stop sign 
(figure 9.b)). 

The plan file describing the ATLAS 
specification contains many attributes for the 
segments and crossings but the most important 
attributes for MAPS are the start ing and ending 
points. Let us consider an example of two 
segments of a city section written in ATLAS TSC 
code, as shown in figure 10. 

 
Segment_A = (0, 0), (10, 10), 1, straight, 
go, 40, 300, parkNone 
Segment_A1 = (0, 0), (10, 10), 1, 
straight, back, 40, 300, parkNone 
Figure 10: Representation of a two-way street 

 
From figure 10, there are two segments, one 

going from (0,0) to (10,10) and the other is going 
in the opposite direction from (10,10) to (0,0).  
Each of the crossing, segment and cars are 1-by-1 
VRML objects and the simulator considers 1-by-1 
cells also, so the mapping from the plan file to the 
VRML world is simple.  Each of the two seg-
ments in figure 10 will contain 14 consecutive 
segment objects from figure 8.a) using the follow-
ing equation: ( ) ( )2

21
2

21 xxyy PPPPlength −+−= . 

If the segments do not run parallel to the x or 
y-axis, then the segment objects will have to be 
rotated to make them look consecutive.  The angle 
can be calculated as follows: 
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121tan . For instance, the seg-

ments in figure 10 will be rotated by an angle of 
45 degrees.   

Once the angle and length have been calcu-
lated, the segments have to be translated to the 
appropriate position in the VRML world. The first 
step is to translate the segment object to the seg-
ment’s start point, and then rotate the objects ap-
propriately as calculated above, and finally scale 
the segment object to the calculated length.  This 
is done for every segment in the plan file until the 
static view of the city section is shown in the 
VRML world.  An example of a static view of a 
city is shown in figure 11. 

 

 



 
 

 
Figure 11: Static view of Carleton campus with segments and crossings. 
 

The Crossings are added with little difficulty 
since they do not have to be rotated or scaled.  
The only task is to translate the crossing objects to 
their location defined in the plan file.  Once this is 
complete, the entire static view of the city is 
shown for the user. 

Once the static view has appeared, the user 
must input a model file to MAPS to verify that 
each segment and crossing from the plan file 
match up with a Cell-DEVS model in the model 
file that the TSC outputs. There must exist a Cell-
DEVS model in the TSC model file with the same 
name, lanes and length for every segment or 
crossing in the city section. Likewise, we verify 
every segment and crossing from the plan file and 
only those are included in the TSC model file and 
viceversa. 

Finally, after the model file has been verified, 
the user can get a log file of the ATLAS model 
outputted by the CD++ simulator (following the 
steps in Figure 2) in order to view the results of 
the simulation. MAPS parses the log file for 
output messages such as the one shown in figure 
12. 
 
Message Y/00:00:00:200/t1(0,0)/out/1 to t1 
Figure 12 : Output message indicating that a car 
has appeared 

 

This message indicates that a car has now 
appeared (the 1) in the cell 0 of lane 0 (the 0, 0) of 
segment t1 at time 200ms. When MAPS 
encounters this message, creates a VRML car 
object (figure 8.c)), then rotates it by the same 
amount and translates it to the same location as 
the segment object in lane 0, cell 0 of segment t1 
as determined when displaying the static view of 
the city.   

Another type of output message of interest 
involves cars leaving cells. These messages are 
very similar to the one in figure 12, as shown in 
figure 13.   
 
Message Y/00:00:00:400/t1(0,0)/out/0 to t1 
Figure 13 : Output message indicating that a car 
has left the cell 

 
In this case, the car that was present in cell 0 

of lane 0 at time 200ms as shown in figure 12, has 
now left that cell. When MAPS receives this 
message, it will look ahead to the remainder of the 
messages for time 400ms and look for a message 
indicating that a car is entering cell 1 of any lane 
of segment t1. If it does in fact find such a 
message, then the car that was present in cell 0, 
lane 0 of t1 will be translated to its new position.  
If such a message was not found which would 
happen when a car leaves a segment, then the car 



 
 
object that was present in the specific cell is 
removed from the VRML world.   

MAPS will continue reading the log file and 
adding, removing and translating car objects until 
the end of the log file has been reached or the user 
requests that the simulation be stopped. This let us 
achieve the main goal of MAPS, namely to give 
the user the ability to evaluate the city section as a 
whole. MAPS outputs were designed to allow the 
user to view their city that was created using 
ATLAS, and not have to sift through text or 
simulation log files for answers as to how traffic 
flows through the roads and crossings of their city 
section. It gives the user the ability to run 
simulations on the same city but with slightly 
different parameters, and see graphically how the 
different parameters affect the traffic flow at 
certain locations. Figure 14 shows an example of 
the execution of the model defined in Figure 3. 

 

 
Figure 14: Dynamic behavior of cars mo ving 
within the city 

 
5 Conclusion 

 
ATLAS allows defining a static view of a city 

section by including different components. This 
approach provides an application-oriented specifi-
cation language, which allows the definition of 
complex traffic behavior using simple rules for a 
modeler. The mo dels are formally specified, 
avoiding a high number of errors in the applica-
tion, thus reducing the problem solving time.  

Originally, the system required manual gen-
eration of ATLAS files, a lengthy process and 

prone to error. The outputs were simple text -based 
files that the user should interpret. We built 
MAPS, a set of I/O graphical interfaces which 
permitted us to address these problems, allowing 
the users to draw city sections, and a output sub-
system permitting showing cars to with realistic 
3D graphics.  

The development of MAPS was successful.  A 
static view of the city can be inputted as in Figure 
4, and the execution results can be seen in a 3D 
visualization, as shown in Figures 11 and 14. The 
system requires the user to input the model file 
used for simulation to ensure that the plan file 
matches up with the simulation performed. 
Finally, the user can input the log results file from 
a previous simulation to view the city and see how 
the cars proceeded throughout the segments and 
crossings.  

At present we are experimenting with parallel 
execution of the models described in ATLAS. We 
are also integrating the different existing tools 
using the Eclipse platform [12]. The use of 
Eclipse will enhance the modeling and simulation 
experience, as the users will be able to run 
different subsystems under a single integration 
engine. 
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