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ABSTRACT 1 

Automated driving may lead to (much) higher road capacities combined with increased road 2 

safety, driver comfort and lower costs. Although this vision may hold ground in the long run, 3 

first a transitional period will take place in which increasing percentages of vehicles with many 4 

different levels of automation will drive on our road networks. This transition poses a 5 

fundamental scientific challenge. The models used today to simulate and predict vehicular traffic 6 

are not valid to predict emergent properties of traffic flows under increasing amounts of vehicle 7 

automation. For example, we have no idea how non-equipped drivers respond to other drivers 8 

reading their morning papers behind the steering-wheel, nor what the consequences of these 9 

interactions are on traffic safety and capacity.  10 

In this paper we do not propose a new behavioural theory with which the effects of 11 

increasing vehicle automation can be predicted. What we propose is an advanced open-source 12 

simulation framework OpenTraficSim (OTS) that makes it possible to incrementally extend 13 

microscopic models with explanatory mental models, such that new behavioural theories can be 14 

tested and shared within our community. Given the societal importance of predicting the effects 15 

on safety and efficiency of vehicle automation, we sincerely hope this paper will fuel the 16 

discussion on how both open- and closed source simulation software can be adapted and made 17 

ready for the next-generation traffic simulation models that are needed in the coming decades. 18 

 19 

Keywords: Vehicle automation, Traffic simulation, Open-source, OpenTrafficSim  20 
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INTRODUCTION 1 

The appeal of automated driving for many politicians, leaders of industry and scientists is the 2 

potential of (much) higher road capacities combined with increased road safety and decreased 3 

vehicle emissions.  4 

There are strong arguments that support this enthusiasm. Higher capacities, that is, shorter 5 

minimum time headways are indeed possible by taking human drivers out-of-the-loop. In 6 

countries with well-trained drivers, high quality cars and road facilities, the average minimum 7 

time headway is slightly above 1,5 seconds (implies maximum flows of 2400 veh/h). This is 8 

close to average human reaction time, i.e. the time it takes the brain to process and interpret 9 

visual information, and take action accordingly (brake or overtake). Clearly, technology can do 10 

the job at a fraction of the time and much safer as well, as demonstrated in many field trials over 11 

the past three decades (1, 2). There are also additional behavioural inefficiencies that can be 12 

resolved with technology, for example more effective anticipation to downstream conditions and 13 

more efficient use of available traffic lanes.  14 

However, vehicle automation will not take place overnight. A transitional period of at least 15 

15-20 years will take place during which gradually vehicle automation will become 16 

commonplace in new vehicles. Many scientists and practitioners  foresee a transition through 17 

five (or 6 (3)) different levels of automation: no automation; driver assistance; partial automation 18 

(with the driver as a permanent supervisor); high automation (with conditional or partial 19 

supervision by the driver); and full automation. Either case, during this transition period (a) 20 

increasing percentages of drivers with (b) cars equipped with different levels of automation will 21 

drive alongside “non-equipped” drivers on our road networks that (c) are (potentially) not (at all) 22 

designed optimally to facilitate safe and efficient traffic operations for these mixed traffic flows. 23 

 24 

The central scientific challenge for the traffic flow theory and simulation community is that there 25 

is no unified theory of driving (or even a set of candidate theories) yet that enables us to 26 

quantitatively predict on beforehand the effects of increasing percentages of (heterogeneous) 27 

vehicle automation capabilities on either capacity or safety during this transitional period.  28 

Capacity is the emergent result of the complex interactions between drivers in vehicles with 29 

different (automation) capabilities (including none at all). How will for example non-equipped 30 

drivers respond to drivers passing at high speeds in tight platoons reading their morning papers 31 

behind the steering-wheel? It is unclear whether the effective minimum time headway would 32 

actually decrease under all circumstances. Research shows for example how reaction time may 33 

double in case an accident causes a queue to build up (4, 5), perhaps the unfamiliar experience of 34 

being overtaken by such a platoon may have the same effect. 35 

The obvious reason we cannot use existing mathematical models for e.g. car-following (CF, 36 

e.g. (6-12)) and lane changing (LC, e.g. (13-17)) to predict the consequences of vehicle 37 

automation is that these are mostly descriptive with respect to driving behaviour, that is, they do 38 

not endogenously compute behavioural responses of drivers to for example different traffic 39 

conditions or different road-lay-outs. Instead, these models contain parameters (e.g. reaction 40 

time, degree of politeness, risk-averseness) that are set exogenously and that are calibrated using 41 

data collected under current traffic conditions. Clearly, we do not have evidence (yet) for how 42 

non-equipped drivers respond to traffic conditions with say 40% “level-5 automated” vehicles, 43 

nor do we have evidence for the resulting dynamics. In fact, every change in the driving 44 

environment (in-vehicle assistance, road lay-out, traffic regulations, environmental conditions, 45 

etc) that may cause structural changes in driving behaviour (vehicle automation is an extreme 46 
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example) requires at best circumstance-specific parameter calibration and validation of existing 1 

microscopic models and in the worst-case the identification and estimation of completely new 2 

models altogether.  3 

For predicting safety consequences the situation is even more problematic. Most CF and LC 4 

models used today are by design collision-free, which means that deriving surrogate safety 5 

measures (e.g. time to collision) as a proxy for (un)safety from simulations is fundamentally 6 

flawed. To assess whether safety is at risk, explanatory psychological constructs are needed that 7 

can endogenously predict under which circumstances drivers take risks and/or make mistakes 8 

that may lead to unsafe situations and ultimately accidents. However, a small but increasing 9 

number of papers are published in which behavioural theories are incorporated in traffic flow 10 

models. For example, Hamdar and co-authors (18) propose a car-following model based on 11 

prospect-theory in which drivers way faster travel time against the risk of rear-end crashes, and 12 

Hoogendoorn et al combine a Task-Capacity-Interface model with the IDM to predict reaction 13 

time dynamics (19).  14 

In (20) Treiber and his co-authors conclude that the most probable reason that the traffic 15 

flow community has stuck to simple descriptive models for so long is that “the destabilizing 16 

effects of reaction times and estimation errors can be compensated for by spatial and temporal 17 

anticipations: one obtains essentially the same longitudinal dynamics, which explains the good 18 

performance of the underlying simple models” In other words, we did not need explanatory 19 

psychological constructs to describe and predict most phenomena we observe. With the 20 

transition to partial or full vehicle automation at hand, this is a luxury we can no longer afford. 21 

This is particularly true since there are many phenomena in current traffic that we do not 22 

fully understand, such as the capacity drop and most phenomena related to lateral movement. 23 

Incorporation of psychological concepts in simulation can help in explaining such variations in 24 

driver behaviour. 25 

 26 

In this paper we do not propose a new behavioural theory with which the effects of increasing 27 

vehicle automation can be predicted. What we propose is an open-source simulation framework 28 

OpenTraficSim (OTS) that makes it possible to incrementally extend microscopic models with 29 

explanatory mental models, such that new behavioural theories can be tested and shared within 30 

our community. This framework builds on the design of microsimulation model MOTUS (21) 31 

with which already a number of ex ante evaluations of advanced driver assistance systems have 32 

been performed (e.g. (22, 23)). Note that OTS is designed to also facilitate macroscopic and even 33 

reservoir type simulation (24); in this paper we discuss micro-simulation only. 34 

This paper is organised as follows. In the next section we first briefly discuss some of the 35 

research challenges relevant to the transition towards (whatever degree of) vehicle automation. 36 

Based hereon we derive some basic requirements for the design of a generic simulation 37 

framework that can support this research. The section thereafter discusses the resulting agent-38 

based design of OpenTrafficSim and in particular the Generic Traffic Unit (GTU) concept. Next 39 

we present a small experiment with a first prototype. We finish with a discussion and outlook 40 

toward the further implementation of the presented framework. 41 
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GETTING HUMAN FACTORS IN SIMULATION MODELS 1 

Challenges for driving behavioural research 2 

In the last decade many research groups have worked on the behavioural response to in-vehicle 3 

information (22, 25) and automation systems (26-29). And there are many open research 4 

challenges. 5 

Simulating drivers with level 1 or level 2 automation systems requires an understanding of 6 

how and under which conditions these systems are used. It is for example highly uncertain 7 

whether drivers are prepared to give up the steering wheel under those conditions where 8 

improved efficiency really matters (19). These conditions include dense hi-speed traffic, under 9 

which the task load of drivers is already high, but during which the potential gain of vehicle 10 

automation in terms of capacity are highest. Field trials of connected adaptive cruise control 11 

systems show that rather the opposite is true—drivers are more likely to turn off these systems 12 

under those conditions (30). Moreover, many such advanced cruise control systems allow drivers 13 

to configure the system to their own preferences, including the minimal time headway. There is 14 

evidence that under high percentages of vehicles equipped with cooperative cruise control 15 

drivers are willing to reduce their headway well below one second (31), but the distribution of 16 

those settings is wide.  17 

When drivers do give up the steering wheel (either voluntarily or automatically as in level 3 18 

automation systems) and substitute their role as driver for one as supervisor, additional problems 19 

occur. In recent studies researchers conclude that drivers of automated vehicles may be 20 

vulnerable to fatigue when normal vehicle control is restored (26-28). It takes time for a driver to 21 

re-engage with the driving task (particularly in terms of the lateral control of the vehicle) after a 22 

longer period of automatic driving (26). The editors of a special issue in Human Factors on 23 

automation in vehicles (32) tentatively conclude in their editorial that we “should not assume that 24 

automation can substitute seamlessly for a human driver” nor should we “assume that the driver 25 

can safely accommodate the limitations of automation”.  26 

A related challenge is that whereas some in-car innovations will make the driving task 27 

simpler (lane keeping, adaptive cruise control), other systems (advisory and information 28 

systems) may well do the opposite. The reason is that these may provide many opportunities for 29 

distraction that would likely increase the complexity of the driving task (28).  30 

 31 

There are also research challenges that to our knowledge have received little or no attention at 32 

all, but which are fundamental in making predictions (through simulation) of partially automated 33 

traffic flows. In our view the most important one concerns the response and driving behaviour of 34 

unequipped (or level 1, 2) drivers under increasingly heterogeneous traffic conditions with a mix 35 

of level 3-5 automation. The complexity of this challenge is nicely pointed out by Zheng (33) in 36 

his recent review of lane changing models: “[in heavy traffic] a typical LC decision-making 37 

process closely involves at least two players – the lane changer and the follower in the target 38 

lane. This is because the follower is often also required to make decisions as a result of someone 39 

else’s LC decision. Thus, at least two decision-making players and processes are involved in the 40 

LC process in heavy traffic”.  In other words, LC, much more than CF, is an interaction process 41 

rather than an individual decision-making process, and a similar argument goes for gap 42 

acceptance, crossing intersections, etc. These interactions that are today already poorly 43 

understood may fundamentally change if one of the players is a (partially) automated vehicle. To 44 

unravel this interaction process different experimental methodologies are needed than single 45 

driver simulator (or instrumented vehicle) methods. Moreover, new mathematical formalisms 46 
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(e.g. game theory) need to be used to quantify these interactions in simulation. Much can be 1 

learned here from pedestrian research (see e.g. (34)) 2 

Clearly, these challenges require a huge amount of research in the coming years. We now 3 

focus on what these challenges imply for next generation simulation models.  4 

Requirements for OpenTrafficSim (OTS) 5 

From the human factors literature we can list the relevant (at least most popular) mental 6 

constructs and capacities used to explain the driving process: 7 

 Workload is a construct that expresses the total amount of mental effort. i.e. the amount 8 

of (information-processing) resources used per time unit, to meet the level of 9 

performance required (35). Note that workload can be considered a driver state variable 10 

WL(t), that dynamically evolves over time. 11 

 Task capability is a construct that describes the driver’s capabilities to perform (driving) 12 

tasks. Also TC(t) can be considered a driver state variable, that is determined by his /her 13 

(baseline) driving skills, experience, etc., and that may evolve over time due to 14 

circumstances. The relationship between task demands and capacities has been modelled 15 

by (36) and is used in e.g. (19) as the task-capability interface model (TCI) of the driving 16 

process.  17 

 Situational awareness is a construct that was operationalized for air traffic simulation and 18 

control by Endsley (37) that defines the degree in which a driver is aware of his 19 

environment, and specifically those elements that are relevant for the driving task. 20 

Situational awareness can also be considered a state variable SA(t) that may dynamically 21 

evolve over time as a function of WL, TC and many other factors. Note that different 22 

SA(t) variables could exist for different stimuli or threats. Awareness closely relates to … 23 

 … Subjective perception (SP), which can be considered a separate construct. SP 24 

translates the physical driving environment to what the driver subjectively makes of it.  25 

 (subjective) Task Complexity is a construct that is often used but is not clearly defined. In 26 

(35) complexity is interpreted as a measure for traffic conditions (denser traffic is more 27 

complex), whereas in (38) it is considered a measure that rates the clarity of visual 28 

information. Subjective task complexity or simply complexity can be understood as a 29 

state-variable  STC(t) that rates the difficulty of the driving environment. 30 

 31 

The key to incorporate these constructs in a modular and generic way is that they are considered 32 

explanatory for the (exogenous) parameters in most microscopic traffic simulation models. In 33 

their literature review Hoogendoorn et al (39) conclude for example that the changed role of the 34 

driver from automation 1 upward may have a substantial influence on driver-workload and 35 

situation awareness resulting in, for instance, an increase in reaction time. We use the 36 

delineation in (20) to identify the key variables and their probable explanatory constructs: 37 

 Reaction time is a function of probably all constructs (WL, TC, SA and TC) 38 

 Estimation capabilities of stimuli such as speed differences, headways, etc (inputs to CF 39 

and LC) are subject to SP and SA.  40 

 Both temporal and spatial anticipation are manifestations of the fact that humans have 41 

predictive capabilities (with of course different degrees of accuracy). These capabilities 42 

can be modelled via SP, or through a dedicated “predictive mental component”. 43 

 44 
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There are, of course, many additional variables relevant for CF and LC, such as those that govern 1 

decision making (affected by all constructs), inertia (related to SA and SP), aggressiveness 2 

(related to personal characteristics and probably also WL), etc.   3 

MODULAR AGENT-BASED DESIGN FOR MICROSCOPIC TRAFFIC SIMULATION 4 

Overall structure of the OTS simulation process 5 

To facilitate simulation of these mental processes (with implementations of the appropriate 6 

psychological models) we propose the simulation process schematically outlined in FIGURE 1. 7 

In this scheme, GTU stands for generic traffic unit (a person or vehicle) and will be explained 8 

further below. So-called on-GTU-Units (OGU’s) represent technologies that either enhance the 9 

vehicle (e.g. vehicle automation) or assist the driver (e.g. route navigation, information systems).  10 

 11 
FIGURE 1 Schematic representation of the microscopic driving process in OpenTrafficSim (OTS).  12 

Below a (simplified) “algorithm” for a single simulation step: 13 

Step 1. The simulation environment provides each driver with the prevailing system state 14 

(the infrastructure, controllers, positions, speeds of drivers in the vicinity, etc.) 15 

Step 2. If Perception is activated the state may be altered as a result of e.g. (limited) visual 16 

capacities. A driver assistance system (OGU) may on the other hand enhance 17 

perception. 18 

Step 3. Mental constructs—if instantiated—are updated. This may further degrade or 19 

enhance subjective perception and likewise affect some or all driving parameters 20 

(reaction time, sensitivity, etc). 21 
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Step 4. The fundamental difference of OTS with other simulation environments is in the 1 

update (re-evaluation) scheduling of driving behaviors (CF, LC, GA, etc). This 2 

scheduling is not the product of the (arbitrary) choice for a numerical time step, but 3 

a process that is explicitly modeled (e.g. (40) it is shown that action points have a 4 

wide distribution and are themselves a function of the (traffic) circumstances and 5 

possibly many other factors). On the basis of a plan (route / destination) and the 6 

drivers Experience (if instantiated) the driver computes a continuous (possibly 2 or 7 

3D) path over the infrastructure for the next n time units using whatever models for 8 

CF, LC, GA are implemented. The schedule interval n can be as short (e.g. one time 9 

step) or long (20 seconds) as needed and can be modeled as a function of 10 

circumstances. To compute such a path, the driver needs to make assumptions 11 

(predictions!) about drivers around him. In the example in the second part of the 12 

paper this point is further explained. With computing this path come intentions 13 

(flashing lights, next time instant the driver wants to re-evaluate, etc). A driver 14 

assistance system (OGU) may change or override this path.  Note that re-evaluation 15 

of this path will occur either at the intended re-evaluation interval or as soon as 16 

circumstances dictate. 17 

Step 5. If physical models for the driving task have been instantiated, these execute the 18 

driving intentions resulting in activities of e.g. the drivers body, clutch, pedals, 19 

transmission, engine, resulting in an actual physical movement (if any) 20 

Step 6. The DSOL (see further below) simulation environment executes during the interval 21 

n the movement resulting from the computed path, unless circumstances require re-22 

evaluation before the simulation of the path is finished. 23 

The Generic Travel Unit (GTU) and other OTS classes 24 

The core objects in OTS simulations are so-called generic travel units (GTUs). The GTU class 25 

hierarchy has two major branches: Person and Vehicle. In many aspects, these classes are one 26 

another’s mirrors. A Person has perceptive capabilities, so does a Vehicle (given it has sensors, 27 

etc); a Person has Mental capabilities, a vehicle has Computing capabilities; etc. FIGURE 2 28 

schematizes the GTU in relation with some of the other main classes.  29 

The key message is that with this GTU design (FIGURE 2) and the simulation process organised 30 

as in FIGURE 1 OTS offers maximum flexibility for micro-simulation: 31 

 In the simplest scenario, Perception simply copies the system state (e.g. list of vehicles, 32 

network, etc); both Mental and Experience are dummy objects and Vehicle just contains 33 

parameters (length, max acceleration, etc) resulting in a “normal” microsimulation. 34 

 Every Person can drive any type of Vehicle according to any (combination of) models for 35 

both planning and driving, either very simple, or highly complex. 36 

 All Vehicle automation or Person information systems are modelled through On-GTU-37 

Units (OGUs) that may affect all Person or Vehicle objects, parameters and methods. 38 

 39 

Finally, this design and the underlying DSOL simulation engine (see next section) allows also 40 

for true multi-modal simulation, that is, a simulation in which multiple modes plan and move in 41 

the same (virtual) environment.  42 

 The Mover class of a Person can also be used to model pedestrians, cyclists, 43 

motordrivers, barge or plain pilots, and conversely, the Vehicle class can represent any 44 

type of car, tram, train, vessel, etc. 45 

 46 
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A central prerequisite for this is that the simulation engine is able to deal with objects that run on 1 

different clocks (are updated with their own time step).  2 

 3 
FIGURE 2: Pseudo-UML schema for the Generic Travel Unit - the core simulation object in OTS 4 

OTS PHILOSOPHY AND SOFTWARE DESIGN 5 

OTS has been built on top of the open source simulation package DSOL, Distributed Simulation 6 

Object Library (41, 42). DSOL is a Java-based, object oriented, multi-paradigm simulation 7 

environment that prepares for distributed and parallel execution of the simulation model. DSOL 8 

is a general purpose simulation environment that adheres to the best practices in the simulation 9 

field, such as strict separation between simulator and model (43), strict notions of time and state 10 

(44), state-of-the are random number generators (45, 46), probability distribution functions (47), 11 

and a clear structure for experiments and run control conditions (48). The fact that DSOL is 12 

object oriented makes it easy (49) to extend the available simulation objects in the library such as 13 

simulators, experiments and statistics, into traffic specific building blocks for OTS, while still 14 

being able to use all other simulation objects that have not been specialized for use in a traffic 15 

environment. The use of Java has several key advantages over other programming languages: the 16 

availability of a very large ecosystem of open source libraries, the ability to compile into stand-17 
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alone programs that can run on any computer with a Java Runtime Environment installed, and 1 

platform independence (e.g., Windows, Mac and Linux),.  2 

 3 

DSOL is a multi-paradigm simulation platform. running event scheduling simulations (DEVS – 4 

Discrete EVent Systems Specification), time stepped models (DTSS – Discrete Time Systems 5 

Specification), or differential equation (DESS – Differential Equation Systems Specification); 6 

for more information, see (43, 50). Combinations are also possible, and extensions such as cell-7 

based models and agents have been built as well (51). Multi-formalism offers many advantages 8 

for our OTS library: 9 

 Time-stepped models can be used when the system state is evaluated at constant intervals 10 

can be easily implemented using the DTSS formalism; 11 

 The event mechanism of DEVS is easy to use for scheduling traffic lights, arrivals of 12 

vehicles in the system, and models where the state is recalculated at scheduled time 13 

instants rather than at constant intervals; 14 

 Differential equations can be included as DESS (sub)models, e.g., for calculating non-15 

linear acceleration and braking behavior, which is usually relatively easy to represent as a 16 

set of differential equations; 17 

 Agent-based models can be used to specify the behavior and believes, desires and 18 

intentions (52) of traffic users such as car drivers or pedestrians. Each traffic user can 19 

now plan their own paths based on observations and schedule state changes using the 20 

event scheduling mechanism of DSOL. 21 

 22 

One of the most time-consuming tasks in making large-scale simulation models for traffic is the 23 

construction of the network models, e.g., by importing GIS files, databases, or CAD drawings. 24 

OTS builds on earlier projects with DSOL where models can very quickly be instantiated using 25 

components (53, 54). For these so-called automated model generation methods (55, 56) it is very 26 

important to develop solid meta-models to ensure syntactic, semantic, and pragmatic correctness 27 

of the generated simulation model (57).  28 

Finally, a strict unit system has been implemented in OpenTrafficSim for scalars, vectors, 29 

and matrices, allowing the Java compiler to check the correctness of formulas and to convert 30 

values between units. When a scalar that expresses a length is divided by a scalar that expresses a 31 

time, the resulting scalar can only be allocated to a scalar has 'speed' as its unit. This speed can 32 

now be displayed in m/s, m/h, or mi/h, totally dependent on the wishes of the user. Units are 33 

internally stored is SI units, so a length of 500 nautical miles can be divided by a fortnight, 34 

leading to an average speed expressed in km/h. The fact that the compiler checks for errors and 35 

the internal representation is always in SI units enables programmers to catch many coding errors 36 

at compilation time (instead of during runs). 37 

AN ILLUSTRATIVE EXPERIMENT 38 

In this section we present a small experiment. Note that we do not propose or implement a new 39 

mental model; we adjust parameters of driving behaviour (reaction time and desired speed) to 40 

demonstrate why integration of human factors into simulation is crucially important for 41 

predicting emerging effects on both traffic efficiency and safety caused by changes in the driving 42 

environment. 43 
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Test case description 1 

We investigate the ‘viewers jam’ phenomenon. Such traffic jams arise at the location of an 2 

incident on the other direction of the freeway. While drivers pay attention to the incident, their 3 

driver behaviour deteriorates as speeds tend to drop and reaction times increase (58). We 4 

simulate this finding on a 5km single-lane road stretch, with an incident at 3km. We assume that 5 

driver distraction grows linearly from zero to a maximum value over 600m up to 300m upstream 6 

of the incident, while staying at its maximum over 300m upstream of the incident, see FIGURE 7 

3(a). In the initial state we have 300 vehicles at their desired speed and desired headway, with 8 

the first vehicle at x = 0. Simulations are of 1000s with a numerical time step Δt = 0.25s. 9 

Car-following behaviour is simulated with the IDM+ model (59), the discrete equation for 10 

acceleration of a single vehicle is given in equation (1). The following parameters are used: b0 = 11 

0.75m/s2, and the default desired speed v0 is set at 120km/h. Other values are taken from (60): 12 

maximum acceleration amax = 1.25m/s2, maximum comfortable deceleration b = 2.09m/s2, 13 

stopping distance s0 = 3m, and desired headway T = 1.2s. We also use vehicle length l = 4m. 14 

Finally, s is the net headway while Δv is the approaching rate to the leading vehicle.  15 

Note that reaction time Tr is incorporated in a similar way as in the HDM (20). The input to 16 

equation (1) is delayed; but drivers do anticipate each time step Δt in the period [t-Tr, t) to 17 

compensate for Tr by assuming constant acceleration of both the ego vehicle and the leader. 18 

 19 
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Driver distraction is integrated in two ways, We assume that desired speed drops and 22 

secondly that reaction time increases. The level of distraction d for driver i at time t is given in 23 

equation (2) in line with FIGURE 3(a). There are differences between drivers for d0, which is the 24 

level to which a drivers’ behaviour is affected. For each driver it is a fixed random value taken 25 

from a uniform distribution between 0 and 1. 26 
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 29 

The change in desired speed is given in equation (3) (driver and time step index omitted for 30 

clarity), where v0
def is the default desired speed of 120km/h, and Δv0 is the maximum change for 31 

a fully distracted and most affected (d0 = 1) driver. Δv0≤0 is changed between scenarios. 32 

 33 

 
0 0 0

defv v d v     (3) 34 

 35 



Van Lint, Schakel, Tamminga, Knoppers & Verbraeck   12 

 

The change in reaction time Tr is done in a similar way, according to equation (4). Here, Tr
def 1 

is the default reaction time of 0.5s, whereas ΔTr is the maximum change for a fully distracted and 2 

most affected driver. ΔTr≥0 is changed between scenarios. 3 

 4 

 def

r r rT T d T     (4) 5 

Test scenarios and performance indicators 6 

We define 12 scenarios to assess the effects of Δv0 and ΔTr on the resulting traffic operations. 7 

For 6 we have Δv0 = {0, -10, -20, -30, -40, -50}km/h with ΔTr = 1s, and for the remaining 6 we 8 

have Δv0 = -50km/h with ΔTr = {0, 0.25, 0.5, 0.75, 1.25, 1.5}s. Note that ΔTr = 1s is missing in 9 

this array as it is part of the first 6 scenarios. For each scenario 30 runs are used as d0 is a 10 

random. 11 

A number of indicators is derived to assess traffic efficiency and safety. The overall 12 

efficiency is measured by the average outflow (the production) expressed in equation (5) where 13 

t1 is the time when the 1st vehicle crosses the downstream end and t300 is the time when the last 14 

vehicle crosses the downstream end. 15 

 16 

 
300 1
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 18 

For large values of Tr collisions may occur which we allow. A collision occurs in case a 19 

specific vehicle has a negative net headway for a consecutive number of time steps (note that 20 

headways < 0 are truncated to 0 in equation (1) to prevent simulation artefacts). Since we allow 21 

collisions, we also compute time-to-collision (TTC) (6): 22 

 23 
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Results  25 

The influence of Δv0 and ΔTr on downstream flow is shown in FIGURE 3(b-c). For Δv0 = 0km/h 26 

there are no disturbances at all and temporal anticipation is completely able to compensate for 27 

the reaction times as high as 1.5s in total. For Δv0 = 10km/h we see a strong drop as disturbances 28 

now occur. Together with Tr
def = 0.5s and ΔTr = 1s, mild disturbances thus produce a strongly 29 

deteriorated traffic efficiency. For larger values of Δv0 efficiency drops slowly as disturbances 30 

are slightly larger.  Interestingly, even for Δv0 = -50km/h, values of ΔTr up to 0.75 seem to have 31 

little influence on efficiency with downstream flow being about 2250veh/h. Apparently, 32 

temporal anticipation is relatively accurate for reaction times up to 1.25s in total. For large 33 

values of ΔTr we do see seriously deteriorated traffic flow efficiency. 34 

FIGURE 3(d-e) show the influence of ΔTr on the number of collisions and TTC between 0s 35 

and 4s, i.e. critical values. Both indicators show a similar effect, larger reaction times deteriorate 36 

safety. For ΔTr = 1.25s we get 1.1 collisions on average, while ΔTr = 1.5s produces 5 collisions 37 

on average. TTC values between 0s and 4s are also frequent for these values of ΔTr. For ΔTr = 38 

0.75s and ΔTr = 1s TTC values between 0s and 4s also occur, but not often. 39 

The influence of Δv0 on the number of collisions is not present, as with ΔTr = 1s being used 40 

within these scenarios, no collisions are produced at all. The influence of Δv0 on TTC is present, 41 
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with smaller values of Δv0 reducing the infrequent number of low TTC values at ΔTr = 1s even 1 

further, namely already from 143.57 at -50km/h to 26.43 at -40km/h. The strength of the 2 

disturbances thus affects safety. 3 

FIGURE 3(f) finally shows the spatial distribution of small values of TTC up to 8s for one 4 

scenario, with Δv0 = -50km/h and ΔTr = 1.25s. From the distribution we can see that because of 5 

the temporal anticipation, traffic remains relatively safe away from the incident. Near the 6 

incident, very critical TTC values occur, and for this scenario even 1.1 collisions occurred on 7 

average. In the range of 1000m till 2500m TTC values between 2s and 8s occur. This is because 8 

of moving jams that move upstream. These moving jams show strong decelerations because the 9 

large reaction times at the incident create very strong decelerations. 10 

(a) 

 

(b) (d) 

  

(c) (e) 

  
(f) 

 

x3 (incident at 3km) 

300m 

0km 5km 

300m 

x2 x1 
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FIGURE 3: Experiment layout (a) and main results (b-f) 1 

Discussion  2 

What this experiment illustrates is that by simulating the findings in (58) (a speed reduction and 3 

reaction time increase caused by an incident on the other carriageway) using a regular car 4 

following model, possibly counter intuitive results may occur. The results indicate that increased 5 

reaction time does not necessarily create unsafe traffic, at least not if the assumption of Treiber 6 

and co-workers (20) holds that temporal anticipation of drivers is usually able to compensate the 7 

reaction time sufficiently. Put simply, drivers have quite effective predictive abilities and (20) 8 

provide fairly convincing arguments for it. The question is under which conditions this remains 9 

the case and which determinants govern these predictive abilities. 10 

However, if we introduce larger distractions our results indicate that both efficiency and 11 

safety deteriorate. In that case in our simulation even collisions occur for particular values of 12 

ΔTr. In reality, secondary collisions certainly do take place (also in opposite driving directions). 13 

Nonetheless, the question again is which (critical) factors govern the probability of accidents 14 

under a variety of conditions. Clearly, if we would be able to endogenously compute reaction 15 

time and sensitivity to stimuli using validated mental models, this opens up the possibility to 16 

actually predict both safety and efficiency effects through simulation under conditions for which 17 

current models are not valid (yet). These evaluations would further improve if we are able to 18 

understand better how drivers are able to make predictions, and under which conditions these 19 

may deteriorate.  20 

CONCLUSION AND OUTLOOK 21 

In this paper we discussed why it is imperative for the traffic flow simulation and theory 22 

community to start serious collaborations with our peers in the human factors and social 23 

psychology fields: 24 

 Most of the microscopic models used today are in principle not predictively valid to 25 

evaluate ex ante the effects of vehicle automation, because they lack explanatory models 26 

for the dynamics of critical parameters of human drivers such as reaction time and 27 

sensitivity to stimuli. 28 

 It is possible to simulate traffic using findings from HF studies (we gave a small 29 

example) and do what-if analyses, but one must be very modest in drawing conclusions 30 

because of the many assumptions involved (in this case the idea that drivers have pretty 31 

strong anticipatory abilities) and the limited knowledge we have with respect to the 32 

circumstances under which these are still valid. 33 

 34 

We also presented a modular agent-based design for the open-source simulation suite 35 

OpenTrafficSim (OTS) that provides the objects and classes to integrate Human Factors 36 

gradually (as research efforts progress) into regular micro simulation modelling. OTS is built on 37 

state-of-the-art open-source simulation libraries and offers much additional functionality related 38 

to visualisation and network handling. Clearly, we have just started and in the past 1½ years it 39 

has been a two-steps-forward-one-step-back process. But, with support from industry now 40 

progress is accelerating!   41 

Given the societal importance of predicting the effects on safety and efficiency of vehicle 42 

automation, we sincerely hope this paper will fuel the discussion on how both open- and closed 43 
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source simulation software can be adapted and made ready for the next-generation traffic 1 

simulation models that are needed in the coming decades.  2 
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