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Proactive Edge Caching in Vehicular Networks: An
Online Bandit Learning Approach
Qiao Wang, Student Member, IEEE, David Grace, Senior Member, IEEE,

Abstract—By bringing content close to end-users, proactive
caching plays a vital role in improving the user experience
in wireless networks. Caching content at the network edge
proactively has been particularly effective in fast-changing ve-
hicular networks. The objective of this paper is to address
the proactive caching problem at the next roadside unit (RSU)
in vehicular networks using reinforcement learning techniques.
The paper proposes two proactive caching algorithms based
on multi-armed bandit (MAB) learning, namely non-contextual
MAB-based (MAB) and contextual MAB-based (cMAB). Addi-
tionally, the paper also investigates the uncertainty associated
with proactive caching systems in the form of entropy with a
specifically extended Subjective Logic framework, providing an
insight into the underlying link between prediction accuracy
and uncertainty. Two cities: Las Vegas, USA with grid road
layout and Manchester, UK with more complex and historical
layout, are considered in the simulation. Results have shown
the generality of the proposed schemes in cities with different
road layouts. Performance of the two proposed MAB-based
systems is compared with two non-contextual baseline system:
Equal Probability-based and Probability-based, and one contextual
baseline system named Compact Prediction Tree+ based. Both
proposed systems outperformed their counterparts. In terms
of the prediction accuracy, cMAB has reached 75% and 80%
accuracy in Las Vegas and Manchester respectively, and MAB
reaches over 50% in both testing cities. Regarding the benefits
to the vehicular network, cMAB and MAB perform similarly
in both cities irrespective of the road layout. Particularly, the
paper shows that on average 75% and 81% content fragments
are proactively served with cMAB and over 50% with MAB in
Las Vegas and Manchester, which is consistent with the prediction
accuracy associated with the schemes.

Index Terms—proactive edge caching, reinforcement learning,
multi-armed bandit, mobility prediction, vehicular network, un-
certainty, entropy, subjective logic

I. INTRODUCTION

PAST decades have witnessed a rapid growth of the au-
tomobile industry and its economic and societal impacts

continue to expand. With the rapid development in electronics
and communications, vehicles will be able to communicate
with each other, forming a large communication network,
i.e., vehicular networks [1]. In addition, the upcoming era
of autonomous vehicles means that vehicles will soon not
only act as a simple means of transportation but also become
moving entertainment centers where passengers are able to
entertain themselves while traveling in the car [2]. However,
on the other hand, this tendency also poses challenges. Content
providers are facing unprecedented pressure on the quality
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of service (QoS) because of the link capacity and stability
issues of general wireless networks [3], [4]. Another challenge
of vehicular networks is their rapidly changing and dynamic
nature. As fast-moving objects, vehicular users consequently
experience short intermittent connectivity with roadside units
(RSUs) more frequently than ordinary mobile users. This again
is a factor giving rise to a degraded quality of experience
(QoE). To improve QoS and QoE, caching has been a practical
way applied by content providers to bring content closer to
end users so that vehicles can fetch data from the nearest
distributed server [5].

Recently, thanks to the development of mobile edge intel-
ligence, mobile edge computing (MEC) units can be installed
on RSUs, which enables them to perform both storage and
computation functionalities [6], [7]. The immediate bene-
fit by applying MEC-enabled RSUs is that vehicular users
can reduce the frequency of accessing content from content
providers, by directly accessing to caches in RSUs, hence
lowering data services latency and alleviating backhaul traffic
[8], [9]. Nevertheless, frequent link re-connections due to
vehicles’ high speed mobility as well as the fast fading of
vehicle-to-roadside infrastructure (V2R) channels means that
vehicles may not be able to finish consuming the content
before leaving the connected RSU, meaning that they have
to re-establish the connection to the remote server for the
remaining parts at a drastically reduced data rate [4], [10].
This inevitably causes the user experience to be downgraded.
Proactive caching has been recognized as a promising solution
to the above issue. Pre-caching the desired content at the
future RSU in advance allows vehicles to obtain immediate
satisfaction after entering a new coverage area.

Effective proactive caching at the targeted RSU relies on
effective prediction. For prediction purposes, the rapid devel-
opment in machine learning has played an important role. In
fact, predicting the next RSU as a proactive caching node is
a direct application of reinforcement learning (RL) because
every prediction is a decision to make. The goal of any RL
problem is to map perceived states to actions by learning a
policy function. Nevertheless, in systems that do not have to be
represented by states, the learning problems become stateless
decision problems and the learning agent becomes stateless,
which significantly reduces the number of trials needed to
learn a mature strategy and speed up the learning process [11].
This is of great help in a dynamically changing vehicular envi-
ronment. Multi-armed bandit (MAB) problems [12], [13] are
basic instances of RL problems or to be specific, single state
model-free RL problems, where a learning agent does not have
to build up a model of the environment. This feature makes it
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efficient in dealing with the variable vehicular environment. It
has also attracted significant attention in various applications,
from recommendation systems and information retrieval to
healthcare and finance, thanks to its excellent performance
combined with certain attractive properties, such as learning
from less feedback [14]. In a bandit problem, the agent, i.e.,
the bandit, takes an action to achieve an immediate reward
without states being involved, aiming to maximize the total
amount of rewards.

Uncertainty is inextricably linked to learning algorithms
and their models and is an important concept in machine
learning methodology [15]. Assessing and quantifying uncer-
tainty helps us to understand more precisely the benefits that
models can bring. Reducing uncertainty will inevitably give
us more accurate prediction results. Subjective logic [16], [17]
has emerged as an effective method for uncertainty evaluation.
This formalism allows us to express specific forms of proba-
bility distributions by generating a multinomial opinion over
a discrete set of elements. It provides a concise formalism
to represent Dirichlet-multinomial and Dirichlet-categorical
models [18] and therefore, the opinion induces a categorical
distribution over the element set that allows evaluation of the
overall uncertainty as the entropy of the distribution. This
model has also been recently used to assess uncertainties in
deep networks [19], [20]. This will be further developed in
this paper.

The purpose of the paper is to address the problem of
effective proactive caching at the next RSU in vehicular
networks through MAB problem model. We treat this as a
decision-making problem and investigate the feasibility and
prediction performance of bandit learning in such situations.
To this end, we designed two algorithms: non-contextual MAB
and contextual MAB in vehicular networks by modelling the
problem as a bandit problem. The motivation of exploring
these two algorithms is to further investigate the benefit on
prediction performance by introducing context in contextual
MAB. Another purpose of the work is to investigate the
uncertainty behind the proposed proactive systems with Sub-
jective Logic framework. The motivation behind this is that
uncertainty is inseparably connected to learning algorithms,
and we aim to verify and support the superiority of the
proposed systems from the theoretical viewpoint of uncer-
tainty. Our work fills the void of using multi-independent-
agent MAB models to solve proactive caching problems in
such scenarios. Specifically, the main contributions of the
paper can be summarized as follows:

• We design non-contextual MAB-based and contextual
MAB-based algorithms in an online learning way to
address proactive caching at the next RSU. Despite the
many applications of MAB in a range of fields such as
ad placement and packets routing, we show how it can
be used for the first time in pre-caching problems. We
aim to attract more attention of the research community
to use the model-free MAB technique in fast-changing
vehicular environment.

• We implement MAB technique in a distributed way on
individual RSUs to realize instant learning and prediction,
whilst previous similar works were based on centralized

approaches. Besides, the performance comparison with
the baseline systems shows the advantages of using
the MAB reinforcement learning technique in solving
proactive caching problem. Particularly, the contextual
MAB with only single context required shows a faster
convergence and better accuracy than conventional se-
quence prediction model (i.e., Compact Prediction Tree+
based).

• We extend the subjective logic framework specifically
to proactive caching systems to analyze, using entropy,
the overall uncertainty behind the bandit problem based
systems as well as two baseline systems. By doing this,
we aim to investigate the uncertainty variation and its
correlation with prediction accuracy of different proactive
caching systems.

• We experiment with the test data of two cities with sig-
nificantly differing characteristics, Las Vegas and Manch-
ester, from USA and UK respectively. The results show
the scalability and adaptability of MAB-based approaches
in proactive caching problems with quite different road
layouts.

The rest of the paper is structured as follows. The related
works regarding proactive caching and MAB applications in
vehicular networks are summarized in Section II. Section III
mainly discusses the network architecture and system model.
The proposed algorithms are introduced in Section IV, and in
Section V, the uncertainty analysis model is provided. Section
VI shows the simulations results. Section VII discusses the
theoretical analysis, time complexity and convergence of the
proposed algorithms. Section VIII concludes the paper.

II. RELATED WORK

This section discusses some relevant studies and is divided
into two parts: Proactive Caching in Vehicular Networks and
Reinforcement Learning and Uncertainty.

A. Proactive Caching in Vehicular Networks

Proactive caching in the literature can roughly be cate-
gorized as what to cache and where to cache. The former
mainly relies on content popularity prediction. For example,
the authors in [21] proposed a two-level prediction model for
predicting video popularity to pre-cache popular videos in the
content delivery network and in the survey [22], the authors
summarized the studies on popularity-based video caching
techniques in cache-enabled networks. However, most of pop-
ularity prediction methods require RSUs to collect vehicles’
data which may contain sensitive information. We believe that
this will become increasingly difficult for network operators
given the increasing restrictions on security and privacy. In
addition, they are not very effective because vehicles are fast
moving objects and this cause validity issues of the prediction.
The latter, on the other hand, depends on how well the
system is able to anticipate where a vehicle is going. This
is more manageable and applicable for network operators and
also essential in the rapidly changing vehicular environment.
Therefore, we are interested in where to cache, as our proposed
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methods address the problem of proactive caching at the next
possible RSU.

Predicting where to cache via mobility prediction may
include caching at vehicle nodes and RSU nodes. The very
recent work in [23] proposed a relay strategy where the RSU
separate the connecting vehicles into clusters through trajec-
tory prediction and pre-caching content at multiple vehicles
in the cluster to increase the communication time with the
requesting vehicle. An earlier work on vehicle node edge
caching was by Yao et al. [24] used a tree-based Markov
chain model - Prediction-based on Partial Matching (PPM)
in a Vehicular Content-Centric Network to predict vehicles’
probability of reaching different hot spot regions and they
select a vehicle node with longer sojourn time in a hot
spot region as the caching node. Whilst both works focused
on vehicle node caching, they both require numerous data
for offline training and the vehicles needed to send their
trajectories to every RSU they visit in [24], which inevitably
raised concerns on transmission overhead and privacy issues.

In terms of RSU node edge caching, Khelifi et al. [25]
put forward a proactive caching scheme based on vehicular
mobility prediction on top of a Named Data Networking
architecture. The authors used Long Short Time Memory
(LSTM) to first predict the moving direction of the vehicle
and then estimated the next possible RSU, instead of directly
predicting the next RSU. Similarly, in terms of the next
RSU selection, the work in [4] also used LSTM to predict
the direction of a vehicle by training realistic traffic data,
after which Q-learning is applied to determine how much to
cache. Both of the previous studies using LSTM require vast
amount of offline training with labeled data for a proper model.
This is the first fundamental difference from our work where
we concentrate on online learning where prediction accuracy
improves based on trial and error. Besides, the prediction
model in these two works is considered in a centralized way,
that is prediction is made by a central node for a vehicle after
the offline training stage. In contrast, ours has considered a
distributed system where RSUs are learning and predicting
independently, which is the second substantial difference. The
authors of [26] proposed a sequence-prediction based proactive
caching system to address the problem. Their model is based
on a sequence prediction algorithm, Compact Prediction Tree+
[27], by training vehicle-specified simulated traffic traces. Sim-
ilarly, this work also requires training sequences of individual
vehicles offline.

B. Reinforcement Learning and Uncertainty

One of the most widely used model-free RL techniques
is Q-Learning proposed by Watkins [28]. It is an off-policy
method where the policy is updated based on the best possi-
ble future scenario, in contrast to its on-policy counterpart
State–action–reward–state–action (SARSA) [29] that takes
into account what actually happens after an action is taken for
policy updating. The Deep Q-Learning approach, combining
Q-Learning with deep neural networks, has recently become a
popular technique. Based on deep Q-networks [30], it resolves
the impracticability to use the traditional tabular Q-Learning

method in environments consisting of large state spaces with
high dimensions, but it is also limited to supporting discrete
action and state spaces [31]. Nevertheless, a significant issue of
such methods is their adaptability and applicability in realistic
wireless communications environments with features such as
dynamic traffic levels, dynamic network topology, and so on.

Given a highly dynamic vehicular environment and discrete
action set in our problem, it is applicable and practical to con-
sider it as stateless instead of its classical counterpart, which
can dramatically reduce the number of Q-values needed for
estimation by the learning agent, thereby potentially reducing
the number of trials needed for it to learn a mature strategy and
improving the adaptability of RL-based cognitive devices (e.g.,
RSUs). The MAB model is a single-state model [13] with no
state transitions (i.e., stateless). While it has been widely used
and proven to be effective in areas such as ad placement, com-
puter game-playing, etc., its application in vehicular networks
seems to be more limited. Dai et al. [32] proposed a multi-
armed bandit learning algorithm called Utility-table based
Learning to solve the distributed task assignment problem in a
MEC-empowered vehicular network. The work in [33] focused
on task caching problems in the edge cloud. The authors
proposed an intelligent task caching algorithm based on a
multi-armed bandit algorithm and evaluated its benefits in task
latency performance. Authors of [34] discussed the potential of
using a MAB problem in future 5G small-cell networks as well
as its applications and future research directions. A detailed
example of using a MAB model for energy-efficient small cell
activation in 5G networks has been provided in [34]. Xu et
al. [35] investigated collaborative caching problems in small-
cell networks by learning learn the cache strategies directly at
small base stations online by utilizing multi-agent MAB.

The uncertainty associated with learning models has at-
tracted significant attention. Subjective logic first proposed
in [16] has emerged as an effective method for uncertainty
evaluation. The work in [18] used a subjective logic framework
to solve bandit problems, where the action selection is based
on sampling the multinomial opinion over the action set. They
quantified the overall uncertainty of the proposed system with
the entropy of the categorical distribution. The authors in
[36] argued that Beta distribution and subjective logic are
isomorphic in terms of fusion, while finding the equivalence
between uncertainty and entropy of Beta models. It has also
been used for assessing uncertainty in deep networks as
studied in [19] and [20].

Despite all the benefits of active caching for user experience
and the potential of the MAB , to the best of our knowledge,
there are no studies focused on the problem of applying MAB
to select the next RSU for proactive caching. In addition, no
one has studied the uncertainty of these systems so far. We
believe this area is worth more investigations.

III. NETWORK ARCHITECTURE AND PROBLEM
STATEMENT

In this paper, we consider a vehicular network with caches
enabled at edge RSUs as in Fig. 1. Vehicles that enters the
network frequently request and download the content they are
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interested in. The RSUs are intelligent so they are able to learn
and predict the next possible RSU a vehicle will connect to
and send a pre-caching request to that RSU. In this way, the
backhaul traffic can be reduced and the vehicular users may
benefit from this in terms of their network experience.

Consider an area G in an urban area deployed with N
RSUs in a set R = {r1, r2, ..., rN} and a content database
C = {c1, c2, ..., cK} providing K pieces of content of various
sizes, represented by fck , ck ∈ C fragments each of which
is of size Fc. There may have L = {1, 2, ..., L} residential
areas and workplaces in G where vehicular users from the set
V = {v1, v2, ..., vM} travel from and to on a daily basis. Each
RSU ri ∈ R is equipped with mobile edge computing (MEC)
that is capable of both computing and caching so that the
RSU can learn from vehicles’ traces for next RSU prediction
and proactively cache the proper content in need. Despite
the functionalities, the computing resource consumption and
content replacement in caches is out of the scope of the present
work. There may be m neighboring RSUs of ri and hence the
next potential pre-caching node is selected from the neighbors.
Besides, there is a central server that is responsible for a few
connecting RSUs in a distributed way so that the result of
proactive caching can be fed back to them to achieve accurate
learning model.

Fig. 1: Illustration of the architecture of cache-enabled vehic-
ular network

The communication model characterizes only the key ele-
ments needed to study the problem, given that the interest of
the work is to find where to cache accurately. Essentially, a
vehicle vj ∈ V in the network is associated with the closest
RSU. vj may request a type of content ck from its currently
connecting RSU ri in a random way. ri then starts to transmit
ck to vj from its cache directly or through the content provider
in the backhaul network or both, depending on the dwelling
time and data rate. In order to focus on the proactive caching
task at the next RSU, following assumptions are made: 1) the
underlying issues arising at the physical and MAC layers e.g.,
packet loss, interference, re-transmissions are not considered

Fig. 2: Distributed Structure of Proactive Caching System

in vehicular communications so, the transmission rate e is a
constant; 2) the dwell time of the vehicles in the coverage
area of a RSU is extracted from the test trace being simulated
and is known so that the number of content fragments can be
derived; 3) the system is completely proactive, meaning that
reactive caching is not enabled. When the RSU ri evaluates
that it is unlikely to transmit the entire content to vj , it predicts
the next RSU and requests it to perform proactive caching on
the remaining fragments fr. A transmission delay µ would
be introduced if fr is not found in the actual next RSU, via
fr×Fc

ω where ω is the backhaul link rate. Additionally we
assume that a vehicle does not request new content until it
finishes consuming the current one [26] and the system keeps
a record of content consumption so that when handover occurs,
vehicles continue to download the remaining of its previously
requesting content.

A typical proactive caching scenario is shown in a structure
diagram in Fig. 2. The current associated RSU may face a
prediction decision involving a few neighboring RSUs when
a vehicle requests content from it. Assuming the vehicle v̂
sends its request for a content ĉ right after it enters the
coverage of the RSU r̂, r̂ serves v̂ with its cached fragments
of ĉ if available or through content provider in the backhaul
network otherwise, which would cause some delay, or both
ways. Whichever way, r̂ evaluates how many fragments of ĉ
it can transmit to v̂ before handover. If ĉ has a relatively small
size and/or v̂ would stay connected rather long, ĉ can be fully
transmitted (consumed) and therefore, no proactive caching in
the next RSU is required. Otherwise, r̂ will have to coordinate
one of its neighbors by the prediction/learning algorithm for
pre-caching the remaining of ĉ via proactive caching request
message. This is where proactive caching happens. The role of
the central server that connects multiple RSUs is to transmit
prediction/cache hit feedback message which acts as rewards
in the learning algorithms.

Problem Statement: In a vehicular network with proactive
caching enabled, the goal of this feature is to enable seamless
delivery of content to vehicular users. The effective cache
hit is the way to achieve this goal and is based on accurate
predictions of the next RSU. How to select the next possible
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RSU node for a vehicle as accurately as possible through
trial-and-error based reinforcement learning (i.e., the MAB
algorithm) is the essential problem covered in this paper.
Besides, how the uncertainty of prediction associated with
proactive systems evolves during learning is another problem
this paper studies.

IV. ALGORITHM DESIGN

This section will briefly introduce some background of
multi-armed bandit problem, following which the learning
algorithms designed for proactive caching will be discussed.

A. Multi-armed Bandit Problem

The multi-armed bandit (MAB) problem, sometimes also
known as k-armed bandit problem, is a special instance of
reinforcement learning (RL). Different from a traditional or a
full RL problem where a learning agent may have multiple
states associated with the environment (e.g., positions in a
game), it only has a single state in MAB problem [13]
(i.e., no state transitions). From this perspective, MAB is
essentially identical to stateless Q-Learning [37] and can also
be treated as a model-free reinforcement learning technique.
A well-known scenario of the bandit problem is where a
gambler in a casino sits in front of a slot machine with one
or multiple arms (referred to as a one-arm bandit and k-
armed bandit respectively) and tries to get payoffs by pulling
the arm(s). The ultimate goal of the gambler is to achieve
the highest cumulative rewards through learning the inherent
reward pattern of each lever and gradually concentrating on the
best lever. During the learning process, the gambler will face
the exploration-exploitation dilemma [38]: where the gambler
tries out the potential arms that may return high payoffs
(exploration) or pulls the arm that has yielded the highest
reward from the past experiments (exploitation). This is a
non-trivial process and carefully balancing exploration and
exploitation is crucial in MAB problems.

A MAB problem can be formally given as a tuple [18]:
⟨A,R⟩, where A = {a1, a2, ..., ak} is the a set of k actions
(i.e., arms) and R = {θ1, θ2, ..., θk} associates action ai with
its reward probability distribution defined by θi. There are
a number of variants of MAB problems and it is out of
the scope of the paper to cover all of them. Therefore, in
the following a canonical example of MAB - the Bernoulli
bandit problem and the contextual bandit will be discussed
as they are closely related to the problem here and the
proposed learning algorithm for proactive caching. In addition,
the approaches to resolve exploration-exploitation dilemma in
MAB problems are plenty such as ϵ-greedy, upper-confidence
bound algorithm, Thompson sampling [38], etc. The aim of
this paper is not to find out a sophisticated way to balance
exploration and exploitation so the most straightforward ϵ-
greedy is adopted here.

1) Bernoulli multi-armed bandit: Consider a k-armed ban-
dit problem ⟨A,R⟩. The agent takes actions from action set
A and any action played will generate a success (reward
1) or failure (reward 0). Action a ∈ A produces a success
with probability θ ∈ R. In other words, for an action a,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Beta(5,5)

Beta(50,50)

Beta(500,500)

Fig. 3: An example of the sample-average process shown with
Beta distribution

a reward r = 1 is produced with probability θ and r = 0
with probability 1 − θ. In this case, θ can be viewed as the
expected reward of taking action a, is unknown to the agent
and is invariant in a stationary MAB problem. One natural way
to estimate such θ is to use sample-average method [13] by
averaging the rewards actually received. The estimated value
of θ at time step t can be denoted as:

Qt(a) =
sum of rewards when a taken prior to t

number of times a taken prior to t

=

∑t−1
i=1 ri · 1Ai=a∑t−1

i=1 1Ai=a

(1)

where Ai is the action taken at time i, 1condition is 1 if condi-
tion is true and 0 if not, and ri = {1, 0} is the reward of i-th
selection of action a. According to the law of large numbers,
Equation (1) converges to θ as the the denominator tends to
infinity. A more intuitive way to illustrate this is through the
probability density function of Beta(α = successes, β =
failures) distribution as shown in Fig. 3. Consider a 95%
confidence interval, in the late stage of sample-average process
after 1000 trials with 500 successes and 500 failures, the range
that captures the true probability θ is [0.469, 0.531], i.e.,
P (0.469 < θ < 0.531) = 0.95. However, the intermediate
stage with 100 trials (50 successes and 50 failures) returns
a much wider range of [0.403, 0.597] for the same 95%
confidence interval and the initial stage with only 10 trials
gives an even wider range of [0.212, 0.788]. Thus, the more
trials, the more certain one can be about the approximation
to the true probability θ. By taking the proper action with
associated action-selection strategy (e.g., ϵ-greedy), it is also
to maximize the cumulative rewards

∑T
t=0 r

t where T is the
given time horizon.

2) Contextual bandits: As an extension of the above multi-
armed problem, the contextual bandit problem associates ac-
tions with side information or context [39]. In such problems,
the agent aims to learn a policy that maps contexts to actions,
that is, π(ai | sj) where sj is one of the contexts. Another
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viewpoint is that it now consists of multiple independent MAB
tasks associated with contexts, and the agent aims to learn the
best policy under various contexts. Every time an agent is
assigned a MAB task (possibly with a certain probability), it
will be given a “clue” (i.e., context) and learn what the best
action is under this clue. In general, the agent can do better
with the presence of context information that distinguishes
one bandit problem with another [13]. Despite the fact that
contextual bandit problems involve learning policies, they still
resemble the general MAB tasks, as the action taken only
affects the immediate reward, and makes no difference to
the next situations, as well as their rewards. Therefore, it is
an intermediate between the MAB problem and the full RL
problem.

B. MAB-based Proactive Caching Algorithms

The primary focus of the proactive caching problem in this
paper is where to pre-store relevant content in the immediate
future. Therefore, it is vital for a RSU to predict as accurately
as possible the next potential RSU a vehicle is about to
handover to. Intuitively, this may not seem to be closely
related to a MAB problem so, in the following we will first
demonstrate how to match them together.

1) Mapping proactive caching to MAB problems: As dis-
cussed in the last subsection, a MAB problem is composed
of action set, rewards and agent as well as context in a
contextual bandit problem. Here, an agent aims to maximize
its cumulative rewards by taking appropriate actions from
the action set in a given period time. Regarding the next-
RSU proactive caching scenario in vehicular networks, a
RSU assists a vehicle to successfully hit the content that
was previously being transmitted. They resemble each other
in terms of node selection and success or failure (reward).
Therefore, we model the pre-caching problem as a MAB
problem using the following mappings:

• RSU as bandit learning agent: Any RSU in the vehicu-
lar network acts as a learning agent, and its neighboring
RSUs are equivalent to its actions. Predicting the next
RSU as a proactive caching node is actually making a
decision on one of the agent RSU’s neighbors.

• Stateless RSU: In general, the state of a reinforcement
learning agent is associated with the environment. Since
the interaction of a RSU with the vehicular environment
can be extremely dynamic and complicated to represent,
the single state feature of MAB resolves this problem.
In other words, an agent RSU is single state or stateless
which means that it does not transfer to a new state by
taking an action.

• Action selection as next RSU prediction: The agent
RSU will either exploit its current knowledge to select
the greedy action/neighbor or explore other non-greedy
actions that may return a higher reward depending on the
exploration-exploitation scheme adopted.

• Reward generation: When handover happens, the sys-
tem will return a reward to the previous agent RSU. This
is achieved by determining whether there is pre-cached
content in the RSU after the handover, or alternatively

whether the RSU is the previously predicted one. The re-
ward in return helps an agent RSU compute the estimated
values of its actions.

• Previous RSU as context: The agent RSU may also make
use of contexts for its action selection as in a contextual
bandit problem. By identifying the previous RSUs that
the visiting vehicles coming from as contexts, it can map
such contexts into various bandit tasks and perform more
effective learning. Technical details about the contextual
information will be covered shortly.

In a vehicular system with multiple RSUs, the problem
becomes a multi-player, multi-armed bandit problem where
each individual RSU is an independent player and learns its
own best action or best policy. On this basis, we designed
two algorithms to address proactive caching: non-contextual
(Bernoulli) MAB and contextual MAB, and the detailed design
will be elaborated in the following subsection.

2) Addressing Proactive Caching with bandit learning: We
will elaborate the two bandit learning algorithms that address
proactive caching from three aspects: action selection and
value estimation, reward function, and context information.

a) Action selection and value estimation Two critical ele-
ments in MAB problems are action selection and action
value update. Given the estimated action values Q(a) of
actions in A, the ϵ-greedy method is used to make a
selection: the best action is selected with probability of
1− ϵ; otherwise, actions will be selected randomly with
a small probability ϵ regardless of their action values.

At =

{
argmaxa Q(a), 1− ϵ

random, ϵ
(2)

Another important method is the action value estima-
tion, also known as action-value method in the literature.
Recall in a Bernoulli multi-armed bandit, the true success
probability θ of action a is its expected reward, defined
as θ

.
= E [r | A = a]. The sample-average approximation

method for action-value estimation shown in Equation
(1) can have a more compact representation with incre-
mental implementation [13]. For action a which has been
selected for n times, the estimated value is:

Qn+1 =
1

n
·

n∑
i=1

ri

=
1

n

(
rn + (n− 1)

1

n− 1

n−1∑
i=1

ri

)
=

1

n
(rn + (n− 1)Qn)

= Qn +
1

n
(rn −Qn) (3)

An important parameter in the incremental value up-
dating rule of Equation (3) is 1

n , the step-size. As can be
noted from the Equation 3, this step-size declines as n
grows. In fact, this is fairly effective in a stationary bandit
problem where the reward probabilities (i.e., θ) remain
unchanged over time. Vehicular networks, however, are
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dynamic environment with varying traffic density and
may result in a non-stationary bandit problem. There-
fore, recent rewards should be given more weights when
updating action values. This is often achieved using a
constant step-size denoted with α ∈ [0, 1] and Equation
(3) therefore becomes:

Qn+1 = Qn + α(rn −Qn) (4)

A more general form of Equation (4) that is adopted
in our algorithms is:

Q(a)← (1− α)Q(a) + αr (5)

where Q(a) is the quality value of action a, named
Q-value as in Q-learning [11], [37], r is the reward
associated with the most recent trial and is determined
by a reward function, and α ∈ [0, 1] is the step-size or
learning rate .

b) Reward function The reward function R is used to
generate a reward associated with the action taken pre-
viously when an outcome is observed. Given an action
a taken at time step t and the observed outcome as b
(may occur immediately), its reward can be computed
with rt = R(b). In a Bernoulli MAB problem discussed
earlier, the reward function R is actually the outcome
itself (1 or 0), meaning that rt = R(b) = b. In order to
introduce punishment for a caching miss, we referred to
the reward function that has been successfully applied in
the Dynamic Spectrum Access problem in [11]:

R(b) =

{
1, b = True
−1, b = False

(6)

As mentioned in “Mapping proactive caching to MAB
problems”, the outcome b is determined by observing
whether a vehicle switches to the predicted RSU, equiv-
alent to a cache hit or miss if pre-caching request was
sent to the RSU. The relevant reward will then be
generated with Equation (6) and fed back to the earlier
decision-making RSU. With Equation (3), (5) and (6), the
learning agent aims to update its estimate of each action
Q(a) = E [rt], make an action selection and maximize
its cumulative rewards max

∑
rt.

Notably, due to the constant α adopted in Equation
(5) and the negative reward introduced in Equation (6),
Q(a) ∈ [−1, 1] is no longer a probability i.e., it is not an
estimate of θ as in the sample-average method (Equation
(1)), but directly represents the expected reward of the
action a.

c) Contextual information The above methods for updating
actions’ Q-values, selection, and reward function can
be applied to both non-contextual and contextual bandit
problems. The difference is that the agent in a contextual
MAB problem maps contextual situations to its specific
action values. In other words, it associates a specific Q-
table with each individual situation and aims to learn a
policy under different contexts. There are limitations on
the performance of the agent in a non-contextual MAB
problem. For example, vehicles that visit one agent RSU

might go to its neighbors in a similar proportion, which
means that its actions might have similar values, and this
results in back and forth selections between its actions.
However, these vehicles may also come from various
directions and if the agent RSU is able to distinguish
and make use of such information, and split to separate
bandit tasks, it is likely to improve the overall accumu-
lated rewards. This is the major motivation to propose
contextual MAB-based algorithm.

Specifically, the context we introduced on top of a non-
contextual MAB-based algorithm is the previous RSU
that a vehicle connected to prior to the current agent RSU.
Once a vehicle connects to a RSU and starts to request
content from it, the agent RSU needs to predict the next
RSU (action selection) and inform it to pre-cache the
needed content if necessary. In the non-contextual MAB,
the agent RSU makes this decision according to the Q-
values of its actions. In contextual MAB, however, it will
first identify the previous RSU that the vehicle came from
as context and learn the action values associated with it
so that decisions are properly made under such context.
The equivalent equations to Eq. 3 and Eq. 5 for action
selection and action-value updating in contextual MAB
model become:

At =

{
argmaxa Qt(a | sj), 1− ϵ

random, ϵ
(7)

Q(a | sj)← (1− α)Q(a | sj) + αr (8)

where sj is the detected context at t.

Algorithm 1: Non-contextual multi-armed bandit
Initialization (if not done): For RSU m ∈M with the

number of actions (RSU neighbors) Am, their
Q-values are initialized to Q(a) = 0 for a ∈ Am ;

while not the end of the test do
if Content transmission is happening whilst in RSU
m then

Predict the next RSU by:
a∗ ← selection decision based on Eq. (3);
Precaching content at a∗ if needed;

end
if Handover happens then

r∗ ← observe the reward according to Eq. (6);
Update Q(a∗) with Eq. (5);

end
end

As mentioned earlier, being able to distinguish the
incoming directions could help resolve the dilemma in
a non-contextual MAB problem. Prior RSUs can be
straightforwardly accessed and used as a reference to such
directions compared to other sorts of information (e.g.,
road information, vehicle angel, etc.), and this enables
the agent RSU to solve separate bandit tasks associated
with them, thereby guaranteeing a more effective policy
learned than in a non-contextual MAB problem.
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Algorithm 2: Contextual multi-armed bandit
Initialization (if not done): For RSU m ∈M with the
number of actions (RSU neighbors) Am, their
Q-values are initialized to Q(a) = 0 for a ∈ Am ;

while not the end of the test do
if Content transmission is happening whilst in RSU
m then

s← detect the previous RSU s before m;
if s is a new detection then

Create an entry of s to its action values;
Initialize Q(a | s) = 0 for a ∈ Am;

end
Predict the next RSU by:
(a∗ | s)← selection decision based on Eq. (7);
Precaching content at a∗ if needed;

end
if Handover happens then

r∗ ← observe the reward according to Eq. (6);
Update Q(a∗ | s) with Eq. (8);

end
end

We sum up the above in Algorithm 1 and Algorithm 2
for non-contextual and contextual bandit learning respectively,
which have been applied to our proactive caching problem.
Additionally, a general flowchart of MAB-based proactive
caching is integrated and shown in Fig. 4, though contextual
MAB may also involve identifying the context and updating
its action values correspondingly.

V. UNCERTAINTY ANALYSIS MODEL

In decision-making problems, reducing uncertainty is
deemed to be vital as less uncertainty means that an agent is
likely to make more accurate decisions. Thus, it is meaningful
to assess and quantify the uncertainty in a learning problem.
In this work, we adopt Subjective Logic framework [17] and
particularly adjust it to investigate uncertainty in bandit learn-
ing based proactive caching systems. The motivation behind
this is to provide a more insightful analysis model for the
performance of proactive caching systems and how uncertainty
evolves during the learning process. We also aim to give a
greater insight as to how MAB-based systems outperform the
others and how the context introduced by the contextual MAB
algorithm could benefit the whole system. This subsection will
introduce some background and discuss how we achieve this.

A. Uncertainty

In the field of machine learning and statistics, a reliable
estimation of uncertainty plays an important role in order
to create reliable statistical models [18]. In [15], uncertainty
in statistical models is classified as aleatoric and epistemic.
Given a set of observed data samples D = {d1, d2, ..., dn}
that are generated by an unknown stochastic process P , if the
task is to fit a model p (D | Θ) that describes the observation
D, the set of parameters Θ needs to be learned from the
collected observations. Apparently, the uncertainty that affects

the accuracy of model p (D | Θ) comes from both the internal
randomness of process P and the limitation of the number of
observations used to estimate the model. Therefore, these two
types of uncertainty can be described as:

• Aleatoric uncertainty is inherent randomness in the data
generation process P which can be reflected by the
variability in the outcome of a trial. A typical example
is coin flipping. For this type of uncertainty, however
much data provided, the uncertainty of final fitted model
p (D | Θ) is unlikely to be less than the underlying model
P [18].

• Epistemic uncertainty on the other hand, is due to the lack
of knowledge about the best model such as finite sam-
ple size. Different from aleatoric uncertainty, epistemic
uncertainty can be improved by having more samples or
trials.

The present study concentrates on the overall uncertainty
of bandit learning algorithms, accounting for both aleatoric
and epistemic uncertainties, which can be computed as the
entropy of the relevant distribution under the subjective logic
framework.

B. Subjective Logic

Subjective logic [17] has been a promising approach to
evaluate uncertainties in a statistical model. It is a compact for-
malism to represent specific forms of probability distributions
(Dirichlet-multinomial and Dirichlet-categorical models) [18].
Specifically, given a discrete domain X = {x1, x2, ..., xk}
with k elements, there exists an multinomial opinion for the
domain:

o = (b, u, c) , subject to u+

k∑
i=1

b = 1

- b ∈ Rk
≥0: belief vector that represents the degree of

certainty over the k elements
- u ∈ R≥0: uncertainty scalar that shows the degree of

certainty on belief vector
- c ∈ Rk

≥0: base rate vector which often expresses the prior
probability distribution of the k elements

According to [18], the belief vector acquires the first-order
uncertainty of the distribution of beliefs over the domain map-
ping to the aleatoric uncertainty whereas u maps to epistemic
uncertainty capturing the second-order uncertainty about the
belief model. In such a model, the probability of an element
xi in the domain X with opinion o can be computed with:

p (xi | o) = bi + uci (9)

An existing mapping between an opinion o = (b, u, c) and an
evidential Dirichlet pdf s = Dire(e) [18] [17]:{

ei =
Wbi
u if u ̸= 0

ei =∞ otherwise
(10)

whose reverse is: 
bi =

ei

W+
∑k

i=1
ei

u = W

W+
∑k

i=1
ei

(11)
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Start

Content can be 

consumed within 

dwelling time

Send the pre-caching request to 

RSU_p 

RSU_x == RSU_p?

Or

Cache hit?

Yes

Positive reward 

1

Update action values of the 

previous agent RSU

Negative reward 

-1

No

Finish

Actual handover to new RSU 

(e.g., RSU_x)

Predict the next RSU (e.g., RSU_p) 

based on Q-values

No

No precaching needed

Generate Service Finish event in 

event list

Yes

Fig. 4: Flowchart of MAB-based proactive caching algorithm: this is a general cycle of an agent RSU serving a connecting
vehicle, from Start when it receives content request from a connecting vehicle, to Finish when its action-value table is
successfully updated with corresponding rewards.

where W is a non-informative prior weight normally specified
equal to 2 for consistency.

Equation (10) and (11) form a theoretical foundation for
the uncertainty analysis in the present work. Most importantly,
Equation (11) allows to build the multinomial opinion o over
actions of RSUs with experiment observations (i.e., evidence).
Hence we are able to obtain the probabilities of actions and
overall uncertainty in the form of entropy accordingly. How
we define evidence and the overall uncertainty calculation will
be discussed in the following.

C. Uncertainty evaluation of proactive caching systems

Similar to the uncertainty in decision-making theory, two
sources of uncertainty exist in proactive caching systems,

corresponding to aleatoric and epistemic uncertainties. On
the one hand, for a RSU, the right decision depends on the
proactive caching scheme as well as the randomness in the
system. These are all inherent aleatoric uncertainty. On the
other hand, epistemic uncertainty in such systems comes from
the lack of visits of the RSU or the lack of chances for it to
make decisions, which should be reduced as more observations
are collected .

To form an opinion over an action set, the evidence of
the set needs to be collected, with which the corresponding
belief vector and uncertainty scalar of the opinion tuple can
be obtained through Equation (11). The probability of an
individual action can be achieved accordingly via Equation (9).
For an arbitrary RSU with m actions, the subjective opinion
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ot =
(
bt, ut, c

)
at an arbitrary timestep t conveys:

• the belief of an agent on action ai being the best action
with bti

• the global uncertainty over the beliefs with u
• the prior belief c which is constant

Therefore, at timestep 0 or in the beginning of the learning
process, the initial values of the three elements are:

b0i = 0 ∀i ∈ [1,m]

u0 = 1

ci =
1
m ∀i ∈ [1,m]

which means that the agent has no knowledge about which
of its actions is likely to be the best and they have equal
probabilities. The uncertainty at this point is the maximum, 1.

The rule we used to collect evidence that supports the belief
that action at could be the best is straightforward:

et+1
i = eti + 1

[
at = ai

]
where the evidence is updated by adding one piece if [at = ai]
is true. Thus, the evidence at any timestep t forms the opinion
ot and with Equation (9) a categorical distribution of the action
set can be induced: p (a | ot) = Cat(bt + utc). From this
distribution, the overall uncertainty can be calculated as the
entropy of the distribution:

H = −
m∑
i=1

p(ai | ot) log2 p(ai | ot) (12)

For the non-contextual MAB algorithm, Equation (12) can
be applied directly because of its single state feature. In
contrast, for contextual MAB, the entropy computation needs
to consider the number of contextual situations.

Given an agent that has n contextual situations denoted by
S = {s1, s2, ..., sn} with m actions, each of these situation
is an independent bandit task as mentioned earlier. As a
consequence, we can compute their entropy called context
entropy as:

H(sj) = −
m∑
i=1

p(ai | ot, sj) log2 p(ai | ot, sj) (13)

For the agent, the global uncertainty in terms of entropy then
becomes:

H =

∑n
j=1 H(sj)

n log2 m
(14)

This draws on the Exploration Entropy in a full reinforcement
learning problem [40] where multiple states are associated
with an agent.

In the proactive caching system, the actions of an agent RSU
have their own success probability, which is a source of the
aleatoric uncertainty. As mentioned earlier, even the optimal
model cannot have less uncertainty than the true process. The
MAB-based algorithms cannot remove such intrinsic uncer-
tainty but aim to form a belief vector b over the actions that
best describe it. For non-contextual MAB, sufficient learning
(trials) allows the agent RSU to have the best model for
the aleatoric uncertainty, compared to other non-contextual
baseline systems (which we shall see in the results section).

In other words, enough evidence results in a small epistemic
uncertainty u, and a smaller overall uncertainty means a
better fitted model. Contextual MAB (cMAB), on the other
hand, introduces a context (i.e., previous RSU) to further
disaggregate the problem into context-related. The aleatoric
uncertainty under each context s may be substantially reduced
in contrast to non-contextual case. Therefore, after sufficient
learning, the agent RSU will have the best model for the
aleatoric uncertainty associated with each context s, thereby
less overall uncertainty.

To sum up, Equation (12) will be applied to evaluate the
overall uncertainty in the non-contextual MAB-based proactive
caching algorithm, and Equation (13) and (14) will assess the
contextual MAB-based algorithm.

VI. SIMULATION AND PERFORMANCE EVALUATION

A. Simulation Setup

Simulation in this work includes two parts: traffic simulation
and network simulation. Vehicle traffic traces are generated
by Simulation of Urban MObility (SUMO) [41] and they
are processed with event-driven network simulation program
implemented in MATLAB [42].

1) Traffic simulation: SUMO is used to simulate a real
transportation network discussed in Section III. The scenario
we are interested in is the daily commuting routine of people
living in a particular urban area. We focus on an area in Las
Vegas as our primary city and Manchester as a secondary city
to generalize the application of MAB-based schemes to two
cities with different road planning. For both areas shown in
Fig. 5, five traffic zones (TAZs) are defined in SUMO and
in total 174 vehicles travel from and to these zones as their
origins and destinations. These TAZs are designed to simulate
realistic residential and office areas. We assume that a TAZ
contains both residential and office areas. In order to simulate
vehicles with same daily routine, each vehicle has their own
fixed departure and arrival zone. However, each vehicle may
have different departure time and lanes (which may result
in route difference) from test trace to test trace. Again, this
is to imitate that people in reality may set off for work at
various time slots, park at various places of an area, and take
slightly different commuting routes, despite having the same
workplace (TAZ).

200 files of test traces for each city have been generated to
simulate 200 workdays and the simulation period in SUMO is
between 8am to 9am. The vehicles’ routes between two TAZs
are defined by the tool duarouter and follow the Shortest or
Optimal Path Routing rule. They depart at the maxSpeed and
follow the default Car Following Model to keep the maximum
speed which is safe in the sense of being able to stop in
time to avoid a collision. Other road behaviors apply as well
such as lane changing, accelerate/decelerate, intersections, etc.
Technical details about these settings can be found in SUMO
documentation1.

1https://sumo.dlr.de/docs/
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(a) RSU and TAZ distribution in Las Vegas

(b) RSU and TAZ distribution in Manchester

Fig. 5: Urban areas for simulation

2) Network simulation: Discrete event-driven system simu-
lation [43] allows the vehicular network simulation to be per-
formed through a series of events. Test traces are generated by
SUMO and passed to the simulation system sequentially. The
discrete event list corresponding to the test trace being tested
is created at the beginning, which may include departure and
arrival of vehicles, content request, handover, and finishing
of content consumption. As the present work concentrates on
online learning, a complete cycle of the simulation is testing
200 trace files and the learners (i.e., RSUs) make predictions
as they learn throughout the simulation cycle and become
increasingly knowledgeable as the simulation runs. Fig. 6
shows a structure of the modules mentioned and the relevant
parameters are summarized in Table I. The closely related
parameters to the MAB-based systems in Table I are learning
rate α referenced in [44] and ϵ selected empirically. The
network parameters such as transmission rate and backhaul
link rate, are empirical values and they have no impact on the
performance of proactive caching (i.e., prediction accuracy or
cache hit ratio).

Fig. 6: Simulation modules

TABLE I: Simulation Parameters

Parameter Value

α for bandit learning 0.5
ϵ for bandit learning 0.05

No. of test traces 200
No. of Vehicles 174

SUMO Simulation Time 8:00 - 9:00
No. of RSUs 32 (Las Vegas) / 30 (Manchester)

Backhaul Link Rate ω = 5Gbps
Transmission rate e = 50Mbps

Size of content database K = 30
Fragment size Fc = 100MB

B. Performance Evaluation

The performance of non-contextual and contextual MAB-
based proactive caching systems is compared with three other
proactive caching systems:

• Equal Probability-based Proactive Caching System:
RSUs select a pre-caching node with equal weight from
their neighbors. In other words, it is a random selection
scheme.

• Probability-based Proactive Caching System: This al-
lows RSUs to make the next pre-caching node decision
based on their previous popularity using information from
historical traces. This is an intuitive scheme where a
RSU believes the neighbor with more frequent handovers
deserves a higher weight to become the caching node.

• CPT+ based Proactive Caching System: This system
is based on the sequence prediction algorithm CPT+.
Different from the work [26], we have adjusted the
algorithm to be used in an online mode. In brief, a RSU
trains its prediction tree model with currently available
vehicles’ data and when predicting the next RSU for a
vehicle, it matches all the past RSUs this vehicle has
connected and gives out the most possible RSU (highest
score).



IEEE TRANSACTIONS ON MOBILE COMPUTING 12

Remark: the five systems are referred and denoted in
the following as: cMAB and MAB for contextual and non-
contextual bandit learning systems, respectively; EQ, PB, and
CPT+ represent for equal probability-based, probability-based,
and CPT+ based systems, respectively.

1) Evaluation: We mainly focus on the evaluation of the
proactive caching performance of the systems. An action
selection is considered correct when the selected pre-caching
neighboring RSU is the actual transited RSU. In the systems
considered, it is identical to a cache hit. Additionally, the
extended subjective logic framework discussed in Section V
is applied to the systems to provide an analysis of uncertainty
except for CPT+. This is because CPT+ is a fundamentally
different algorithm compared to the other four, in terms of its
model and algorithm design. The variability of its action set
and the difficulty of accessibility to “contexts” have made the
extended uncertainty model inapplicable. The entropy calcu-
lation for EQ and PB systems is also based on Equation (12)
as the non-contextual MAB. Furthermore, how the proactive
caching systems benefit the network is also considered.

The following aspects will be shown in the results:
• Cumulative prediction accuracy: Denoting the total num-

ber of predictions as Qprediction and correct ones as
Qcorrect of test trace n, the cumulative prediction ac-
curacy PA up till trace n is defined as:

PA =

∑n
i=1 Qcorrect∑n

i=1 Qprediction

• Cumulative distribution function (CDF) of uncertainty:
Aims to show uncertainty at the system level as well
some particular RSUs.

• Proportion of Proactive Caching Content Fragments: the
proportion of the number of content fragments that are
proactively cached and transmitted to vehicular users.
This reflects the effectiveness of a proactive caching
system.

We evaluate the network performance of the systems using
Proportion of Proactive Caching Content Fragments as a
figure of merit, instead of network delay, because the com-
munication model considered in the paper does not model
underlying transmission layers and backhaul links, given the
focus of the paper is to find where to cache accurately.

2) Experimental results: As Las Vegas is the primary city,
we will first elaborate its results as well as detailed analysis.
The secondary city Manchester will also be demonstrated but
in a more general way.

Fig. 7 shows the uncertainty analysis of four proactive
caching systems in Las Vegas at a system level. It is the
cumulative distribution of the uncertainty (entropy) of 32
RSUs at the end of test trace 1 and 200, respectively. These re-
sults illustrate performance before and after learning. The two
bandit learning schemes, non-contextual MAB-based (MAB)
and contextual MAB-based (cMAB), outperform the other
two baseline schemes in terms of the reduced amount of
uncertainty in decision-making. Both MAB and cMAB have
dramatically reduced the uncertainty level through sufficient
learning after 200 traces. The proportion of RSUs with en-
tropy less than 0.5 bits has increased from 0% to 49% and
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(b) CDF of uncertainty at test trace 200

Fig. 7: Overall Uncertainty of Las Vegas

20% to 90%, respectively. The superiority of the cMAB-
based system over its counterpart benefit from introducing
the context information. Uncertainty distributions of bandit
learning schemes were close to PB and EQ systems in the
initial stage of simulation, but this gap has been enlarged
in the end. The percentages of RSUs with less than 1-bit
entropy are 100%, 80%, 40%, and 0% for cMAB, MAB, PB
and EQ respectively. The PB scheme has not experienced a
significant change from this perspective because of its nature.
Since the test traces simulate vehicles following their own
daily commuting routines, the transition probability matrix or
the weights used by PB scheme for decisions does not vary
too much in the end of trace 1 and 200. By contrast, despite
the fluctuations in the initial stage of simulation due to lack of
samples, the EQ scheme is constantly the one with the highest
overall uncertainty and converges to a stable state finally. This
makes sense from the viewpoint of information theory [45]
as the entropy of a RSU with m neighbors is maximized to
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log2 m with equal probability 1
m among the neighbors.

Fig. 8 shows the prediction accuracy (or hit ratio) in a
cumulative way over the test traces. The accuracy superiority
of bandit learning schemes over the PB and EQ is closely
related to the uncertainty reduction. Another point to explain
this is that in bandit learning based schemes, RSUs make
their decision on Q-values and the goal is to maximize the
rewards. Therefore, fewer attempts are wasted on those actions
that are less likely to be successful, whereas PB and EQ
schemes, especially the latter one, attempt “bad” decisions
more frequently. We shall see this in individual examples
later. In addition, CPT+ is also shown in the figure, whose
prediction performance is in between cMAB and MAB. In
contrast to MAB, this makes sense since CPT+ relies greatly
on a vehicle’s past RSUs as a kind of context and this reduce
the prediction uncertainty. However, it is outperformed by
the cMAB as a model-free scheme with only one context
(i.e., previous RSU) required. The MAB scheme reaches its
limitation of 53% at a much earlier stage compared to cMAB
with an upper bound of nearly 80%. CPT+ seems to have an
increasing trend after test trace 200 and we can infer that it
would reach the performance of cMAB perhaps at test trace
500, because the performance of CPT+ depends on its model:
the more data, the better model. However, this is also its
limitation in terms of adaptability and flexibility. It is also
observed that the introduction of contextual information helps
RSUs make more accurate decisions throughout the simulation
cycle and meanwhile, it takes relatively longer to fully train
the model and converge due to this fact.
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Fig. 8: Cumulative Prediction Accuracy of Las Vegas

Although Fig. 7 and Fig. 8 have demonstrated the potential
interaction between prediction accuracy and uncertainty re-
duction, different RSUs may show significantly different vari-
ations on these two metrics. In Fig. 9 we have selected 4 types
of RSUs according to the number of their actions/neighbors.
From the top to bottom row, they are RSUs with 5 actions, 4
actions, 3 actions and 2 actions, respectively. The left column
is the uncertainty CDF of relevant RSUs in an aggregated way.
For example, there are 6 RSUs with 4 actions in our system. To

achieve the plot on the left hand side, we have collected their
uncertainty at the end of each test trace, resulting in 200 by 6
samples for the CDF plot. Note that there is only 1 RSU with 5
actions. Similarly, the right-hand column shows the cumulative
prediction accuracy of the corresponding RSUs also in an
aggregated way. The prediction accuracy of test trace 10 of

4-action RSUs is
∑6

1

∑10

1
Qcorrect∑6

1

∑10

1
Qprediction

. Both columns share the

same legend shown in the bottom left corner. In general,
the distribution of uncertainty of test traces still supports the
inner connection seen in Fig. 7 and 8. Although it may be
difficult to quantify the benefits of the reduction in uncertainty
to prediction accuracy at this point, it helps visualize such
benefits.
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Fig. 9: Performance of RSUs with Different Actions in Las
Vegas

Even with the same number of neighbors, RSUs may show
completely different performance in terms of uncertainty and
prediction accuracy, possibly depending on their geographical
location, traffic patterns, connectivity patterns, etc. In Fig. 10,
we have selected RSU 2 and RSU 22 from the map in Fig.
5a, both of which have two neighboring RSUs (actions to
be more precise) with unbalanced traffic. Over the 200 test
traces, there are 73% and 27% of the 1116 handovers from
RSU 2 to its two neighbors respectively, and RSU 22 also has
the same proportion based on 2872 handovers. Despite this,
proactive caching schemes have shown significantly different
performance on these two RSUs and we have summarized in
the table of Fig. 10 some statistical data in the end of the
simulation. Without additional context introduced, we believe
there is an unknown inherent success rate of each action for
non-contextual schemes (EQ, PB, and MAB), denoted as θ∗.
For the action 1 of RSU 2, θ∗ can be approximately 80%
according to the table as the success rates of all the three
schemes tend to converge to 80%. For action 2, however, there
does not seem to have a clear converging success rate, but
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Fig. 10: Performance comparison of two RSUs in Las Vegas

we can infer that it could be 18% as in EQ scheme. The
reason that PB and MAB have higher performance for action
2 is because they have fewer selections on action 2 than EQ,
referred to the “Count” row. Precisely because of this, during
the learning process, MAB leans towards action 1 as it tends
to have a better Q-value than action 2 and hence much fewer
wrong decisions are made, resulting a 78% overall accuracy.
On the other hand, θ∗ for action 1 and action 2 of RSU 22 is
tending to converge to somewhere around 50%. Consequently,
the MAB scheme is unable to tell which action would be a
better one as they both have similar Q-values and it shows
basically the same prediction performance as EQ and PB.

It is obvious that the introduction of additional contextual
information in cMAB has dramatically increased not only the
success rate of each action of RSU 2 and RSU 22 but also their
overall prediction accuracy to 99% and 82%, respectively. In
particular, compared to its counterpart MAB, it has resolved
the dilemma with RSU 22 where both actions have similar
inherent θ∗. In stead of “hesitating” between the two actions,
RSU 22 learns policy under different contexts in cMAB and
becomes more certain about which action is likely to be
correct. This is even more convincing for the case of RSU
2, where both actions have over 96% accuracy.

The system performance of Manchester is shown in Fig. 11,
as a secondary city for generalizing the application. Similarly,
we show the distribution of uncertainty among RSUs of four
systems in the end of test trace 200 in Fig. 11a and cumulative
prediction accuracy of all five systems in Fig. 11b. Bandit
learning-based schemes still show comparable benefits to that
in Las Vegas, especially cMAB whose prediction accuracy has
reached 80%. The performance has successfully demonstrated
the adaptability of the proposed bandit learning schemes in
a relatively more complex transportation network. One of the
reasons for this is that the proposed algorithms only rely on
information from the vehicular network itself for proactive
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Fig. 11: Prediction Performance of Manchester

caching decisions instead of taking additional information
from the road network. Despite the advantages over the other
two non-contextual systems (EQ and PB) as before in Manch-
ester, we clearly notice the performance limitation of non-
contextual MAB in contrast to its counterpart MAB scheme.
CPT+ still shows similar relative performance to cMAB and
MAB but has a faster growth rate compared to Las Vegas. This
might be because of the relative area size and traffic pattern
difference between two cities (which will be explained in detail
shortly).

One of the major goals of proactive caching in vehicular
networks is providing vehicular users with seamless content
delivery by bringing the content close to them accurately.
We measure the amount of fragments transmitted directly
from RSU caches to vehicular users and plot a bar chart of
the proportion of the average fragments served by proactive
caching for each of the proactive caching schemes of two
cities in Fig. 12. Overall, the proportions of both cities are
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consistent with the cumulative prediction accuracy, and the
cMAB scheme demonstrates remarkable superiority over the
other four. On average, it has achieved 75% in Las Vegas and
81% in Manchester, nearly double that of EQ and PB systems.
We can also conclude that our proposed proactive caching
schemes perform similarly irrespective of the road topology.
Note-worthily, the proportions in the two cities are based on
different absolute total number of fragments transmitted to
vehicles (around 1300 in Las Vegas and 750 in Manchester,
varying trace by trace). This is because a) the Manchester area
is relatively smaller than the Las Vegas area as a whole, b)
the connectivity patterns of the two cities are distinct, and c)
vehicles’ content request pattern and frequency are different
from test trace to trace of two cities. However, as the relative
size of the center of two areas have been kept on a similar
level, this is still an effective contrast.
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Fig. 12: Proportion of the Average Fragments Served by
Proactive Caching

VII. DISCUSSION

A. Theoretical analysis

Theoretically, the two proposed MAB-based algorithms
have advantages in terms of computational complexity. For the
three non-contextual algorithms i.e., MAB, Equal-probability
and Probability-based, the Probability-based one has the high-
est computational complexity. This is because RSUs in this
algorithm require some extra computational resources to store
historical traffic information in order to establish a probability
distribution over their actions. However, MAB algorithm is a
localized algorithm where the RSUs’ Q-tables get in-place
update, and individual RSU has its own fixed probability
distribution for prediction in Equal-probability algorithm. Al-
though cMAB algorithm is also a localized algorithm as MAB,
it does require RSUs to build context-related Q-tables and
therefore, needs slightly more space than MAB. Nevertheless,
this is worthwhile given the significantly reduced uncertainty
and improved prediction accuracy by cMAB. CPT+ based

algorithm, however, consumes the most resources because it
requires building a large prediction tree model to achieve
a certain prediction accuracy, which is still outperformed
by cMAB. Such advantage also makes it practical for the
implementation of MAB and cMAB algorithms.

In addition, we can also seek the theoretical accuracy of
these algorithms. Assume a vehicle v connecting to a RSU
m with N neighbors (actions). There exists an unknown
probability distribution of v actually going to the N neighbors
after m, denoted as A = [a1, a2, . . . , an] , n ∈ N and∑

n∈N an = 1. If the RSU m makes prediction with B =
[b1, b2, . . . , bn] , n ∈ N , then the chance that this is a correct
prediction can be computed by P = A ·B =

∑
n∈N an × bn.

Depending on which algorithm, B is different. In the most
under-performed one i.e., Equal-probability algorithm, B is
uniform distribution i.e., b1 = b2 = . . . = bn = 1

N and
thus P =

∑
n∈N an × bn = 1

N ×
∑

n∈N an = 1
N . In the

Probability-based algorithm, B is the transition probabilities
derived from previous traces, where b1 ̸= b2 ̸= . . . ̸= bn,
and therefore P remains to be P =

∑
n∈N an × bn. If the

traffic pattern through RSU m does not change significantly
over time, we can assume an = bn, so P =

∑
n∈N b2n.

In non-contextual MAB, B depends on Q-values and action
selection algorithm (i.e., ϵ-greedy). Therefore, the probability
bn of its neighbor n ∈ N to be predicted as the next

RSU is: bn =

{
1− ϵ, if n has the highest Q-value
ϵ · 1

N , Otherwise
. Take

an example of a RSU of two action choices (neighbors)
with uneven traffic pattern (e.g., 80% vs 20%). Its theoretical
accuracy with Equal-probability algorithm is 50% since it
has 2 neighbors. Because it has an uneven traffic pattern
where one of its neighbors has approximately 80% traffic,
we can compute the theoretical accuracy with Probability-
based algorithm P = 80% × 80% + 20% × 20% = 68%.
It is because of this traffic pattern that MAB has a domi-
nant action and therefore, the overall theoretical accuracy is
P = 80%× (1− ϵ) + 20%× ϵ

2 = 77%, where ϵ = 0.05. The
cMAB algorithm further expands the advantage of MAB and
reduces uncertainty by breaking down into context level, hence
resulting an even higher optimal boundary. The simulated
result of RSU 2 in Fig. 9 is consistent with the theoretical
values and this can be extended to other RSUs with different
number of choices.

Furthermore, another notable advantage of the proposed
cMAB and MAB algorithms is their natural capabilities of
coping with sudden major changes in the topology or ve-
hicular environment by rapidly adjusting Q-tables and poli-
cies, whereas Probability-based and CPT+ based algorithms
become very clumsy in this regard due to high reliance on
past data to establish their models.

B. Time complexity

The three main functionalities in the proposed MAB and
cMAB algorithms are: A - Next RSU selection (including ϵ -
greedy), B - Pre-caching content and C - Q-table updating
with rewards. From the perspective of actual code imple-
mentation, for MAB algorithm, an agent RSU with k actions
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requires O(k), O(1), and O(k) time complexity for function
A, B and C respectively. This is because function A and C
require action set traversal whereas B only needs insertion
manipulation with a vector. In addition, as function A, B and C
are executed sequentially, they account for a O(k) complexity.
The system may have multiple RSUs but due to the nature
of event-driven simulation, only one of them is “working” at
a time. Therefore, assuming the largest action set of these
RSUs is K, then the overall performance of N -length test
can be represented by O(NK). The major difference between
the two lies in the additional context s. Specifically, function
A and C are executed based on s once it is detected. But
this works in the same way as in a non-contextual MAB and
therefore, their complexity is identical to that in MAB for an
arbitrary RSU. Function B remains the same as well. Apart
from this, cMAB algorithm also involves context detection and
creation and these additional manipulations account for O(1)
complexity. Thus, cMAB has the same overall complexity, that
is O(NK) as above.

C. Convergence

The cumulative prediction accuracy in Fig. 8 and Fig.
11b demonstrates the convergence of the proposed MAB-
based proactive algorithms. Although a cumulative way to
show this may not be perfect, it is still sufficient to illustrate
the performance boundary in the commuting traffic scenario
we have considered. From the system level, theoretically
the cMAB algorithm should converge slower than the non-
contextual MAB because given a statistically fixed number of
Q-table updates (identical test traces) for a RSU fewer updates
are allocated to each individual context in cMAB in contrast
to MAB where all the updates are used for only one Q-table.
This difference in convergence can be found in the previously
mentioned results.

During the learning process, Q-values or Q-tables of in-
dividual RSUs may converge to rather different values de-
pending on the traffic pattern through it. For example, in the
non-contextual MAB algorithm, we have noticed that a high-
accuracy RSU (over 90%) with 4 actions have a converged
Q-table with values: ⟨−0.9375,−1,−0.9961, 1⟩ at an early
stage of the learning process. This demonstrates a convergence
to the last action and that there may exist very deterministic
routes for all the vehicles through this RSU. On the other
hand, it has also been found that an average-accuracy RSU
(approximately 50%) with same number of choices have a Q-
table with values: ⟨−1,−1,−0.5643,−0.4379⟩. Throughout
the learning process, the RSU tried to converge to the best
action by trial and error but failed to do so because the last
two actions are almost evenly good. This implies the dilemma
in non-contextual MAB and should be resolved by contextual
MAB exploiting the additional contexts available.

VIII. CONCLUSION

This paper studies how to cache the content at the next
RSU in a proactive way. As a way of addressing this,
the paper has proposed two bandit learning-based proac-
tive caching algorithms: non-contextual MAB and contextual

MAB and compared their performance with three other base-
line schemes: Equal Probability-based, Probability-based, and
Compact Prediction Tree+ based proactive caching strategy.
In addition to this, the subjective logic framework has been
extended to study the uncertainty associated with different
proactive caching systems. With this model, we have analyzed
in detail the overall entropy distribution of the systems as well
as the distribution of representative RSUs. Furthermore, two
urban areas of Las Vegas and Manchester with different road
layouts have been tested to demonstrate the adaptability of the
proposed schemes to a diverse set of road layouts.

Numerical results have shown the advantages of the pro-
posed proactive caching algorithms over their counterparts.
Contextual MAB-based scheme yields the highest benefit to
the system thanks to the introduction of contextual information
for uncertainty reduction. In both cities, the contextual MAB-
based proactive caching scheme reaches a prediction accuracy
of approximately 80% compared to roughly 50% of non-
contextual MAB-based scheme. As a result of this, the network
performance is dramatically improved with contextual MAB
in terms of the number of fragments directly transmitted
by caches. Performance of bandit learning-based systems is
similar in both cities regardless of road topology. Particularly,
75% and 81% content fragments are proactively served with
contextual MAB algorithm and over 53% and 50% with non-
contextual MAB algorithm in Las Vegas and Manchester,
respectively.
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