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Resumen

A lo largo de los últimos años hemos visto cómo las arquitecturas de procesamiento y

almacenamiento se vuelven más baratas y eficientes, las infraestructuras de comunicación se

hacen más rápidas y escalables, y se desarrollan multitud de nuevas formas de interactuar

con el mundo que nos rodea. Cada día más dispositivos se conectan a la red, y la generación

de datos a nivel mundial está creciendo exponencialmente. En este contexto, el Internet de

las cosas promete ser la nueva revolución tecnológica, como en su día lo fue la introducción

de la red de redes o la accesibilidad móvil universal. Este paradigma promete difuminar la

tradicional barrera entre el mundo físico y el digital, embebiendo sensores y actuadores en

los objetos físicos que nos rodean y creando nuevos sistemas de información. Poco a poco,

estamos viendo cómo este concepto está transformando multitud de ámbitos y permitiendo

una gran variedad de nuevas aplicaciones y servicios. Las ciudades inteligentes emergen

poco a poco, creando nuevas formas de transporte, optimizando sus infraestructuras y mon-

itorizando y regulando aspectos como el tráfico de vehículos, la contaminación o los residuos

generados por la población. En la industria se están implementando numerosas formas de

monitorización y automatización, que están ayudando a minimizar los fallos, reducir el des-

perdicio y optimizar los procesos. En el ámbito médico vemos cómo el desarrollo de sistemas

de monitorización y plataformas de apoyo a la toma de decisiones están provocando una

transición desde el clásico sistema de diagnóstico y tratamiento post-facto hacia un marco

proactivo de prevención y pronóstico más centrado en la potenciación y personalización de la

salud que en el tratamiento de la enfermedad. Este contexto está favoreciendo el desarrollo

de sistemas cada vez más complejos, con un gran número de componentes heterogéneos

interactuando entre sí. Para abordar esta complejidad la industria ha ido incorporando

diferentes técnicas de modelado y simulación que facilitan su diseño, verificación y vali-

dación. Entre estas técnicas se encuentran los formalismos de modelado y simulación, que

proporcionan un marco de trabajo con un fuerte respaldo teórico y favorecen el desarrollo

xi



de sistemas robustos y escalables.

Esta tesis se orienta al desarrollo y estudio de modelos y escenarios de monitorización y

predicción dentro del ámbito de la salud, haciendo uso del formalismo de simulación DEVS.

Durante el desarrollo de la tesis se han realizado numerosas contribuciones en esta línea,

desde tres niveles distintos de abstracción. En el de más bajo nivel, se ha contribuido al

desarrollo de simuladores y herramientas de modelado con eventos discretos. Se ha añadido

un simulador Python al entorno de modelado y simulación xDEVS, se han propuesto im-

plementaciones alternativas reduciendo notablemente la carga introducida por este tipo de

simuladores, se ha contribuido a la definición de métricas para el análisis y comparación de

simuladores DEVS, y se han presentado varias herramientas que permiten la verificación de

este tipo de sistemas. Desde el punto de vista intermedio del modelado de sistemas de salud,

hemos desarrollado varias propuestas orientadas a la predicción y estimación de distintos

eventos o sucesos clave para distintas enfermedades. En las primeras etapas, hemos estudi-

ado cómo un sistema DEVS puede ser fácilmente implementado en una FPGA mediante su

traducción a un lenguaje de especificación hardware. Para ello, se desarrolló un prototipo

de sistema de monitorización sanitaria basado en un modelo de predicción de migraña,

recogiendo y formateando información desde sensores médicos reales y alertando de la prox-

imidad de nuevas fases de dolor mediante el uso de varios conjuntos de modelos predictivos.

Para la generación de este tipo de modelos, también presentamos una metodología modular

que permite automatizar la creación de bases de conocimiento y simplificar la producción

de modelos predictivos mediante especificaciones XML. Además, heos desarrollado modelos

epidemiológicos que nos permiten analizar y comprender cómo afectan distintos tipos de

medidas y escenarios en la propagación de distintas epidemias. Finalmente, desde el mayor

nivel de abstracción, nos planteamos cómo este tipo de modelos podrían ser usados de forma

segura y escalable en entornos del Internet de las cosas. En este sentido, hemos realizado

dos contribuciones principales. Una de ellas consiste en la mejora y extensión de SFIDE,

un simulador para el estudio de estrategias de distribución de trabajos computacionales en

xii



centros de datos. Rediseñamos la plataforma, permitimos la comunicación con el conocido

gestor de cargas SLURM, usado en multitud de centros de datos en todo el mundo, y posi-

bilitamos el modelado de escenarios que conecten esos centros de datos con dispositivos

finales a través del modelado de una capa de red intermedia. Por otra parte, realizamos un

estudio de optimización que pretende analizar cómo influye a nivel de consumo energético

la localización de distintos micro centros de datos en un contexto de monitorización médica

continua en un ámbito urbano. Este escenario contempla la existencia de miles de pacientes

de migraña monitorizados para la detección temprana de eventos críticos en su enfermedad,

y cómo las cargas de trabajo generadas por los dispositivos de monitorización se reparten

en los micro centros de datos y afectan al consumo energético total del sistema.

Con el desarrollo de estas temáticas, y abarcando numerosas herramientas, metodologías

y casos de uso, esta tesis proporciona una amplia visión de cómo el modelado y la simulación

supone una herramienta fundamental a la hora de desarrollar sistemas complejos, y cómo se

pueden aprovechar estas técncias para la elaboración y despliegue de sistemas de modelado

predictivo en el ámbito de la salud.
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Abstract

Over the past few years, we have seen how processing and storage architectures become

cheaper and more efficient, communication infrastructures become faster and more scalable,

and many new ways of interacting with the world around us are being developed. Every day

more devices are connected to the network, and the generation of data worldwide is growing

exponentially. In this context, the Internet of Things promises to be the new technological

revolution, as was the introduction of the network of networks or universal mobile accessi-

bility in its day. This paradigm promises to blur the traditional barrier between the physical

and digital world, embedding sensors and actuators in the physical objects that surround us

and creating new information systems. Little by little, we see how this concept is transform-

ing many fields and allowing a great variety of new applications and services. Smart cities

are continually evolving, creating new forms of transport, optimizing their infrastructures,

and monitoring and regulating aspects such as vehicle traffic, pollution, or waste generated

by the population. Numerous forms of monitoring and automation are being implemented

in the industry, helping to minimize failures, reduce waste, and optimize processes. In the

medical field, we see how the development of monitoring systems and decision-making sup-

port platforms are causing a transition from the classic post-facto diagnosis and treatment

system towards a proactive prevention and prognosis framework more focused on empow-

erment and personalization of health than in the treatment of diseases. This context favors

the development of increasingly complex systems, with a large number of heterogeneous

components interacting with each other. To address this complexity, the industry has been

incorporating different modeling and simulation techniques that facilitate its design, verifi-

cation, and validation. These techniques include modeling and simulation formalisms, which

provide a framework with strong theoretical support and favor the development of robust

and scalable systems.

This thesis is oriented to the development and study of monitoring and prediction mod-
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els and scenarios within the health field, using the DEVS simulation formalism. During its

development, numerous contributions have been made in this regard from three different

levels of abstraction. At the lowest level, it has contributed to the development of discrete-

event simulators and modeling tools. A Python simulator has been added to the xDEVS

modeling and simulation environment. Alternative simulator implementations have been

proposed that notably reduce the load introduced by this type of simulators. Also, the

thesis has contributed to the definition of metrics for the analysis and comparison of DEVS

simulators, and present several tools allowing the verification of this type of systems. From

the intermediate point of view of health systems modeling, we have developed several pro-

posals to predicting and estimating different key events for specific diseases. In the early

stages, we have studied how a DEVS system can be easily implemented in an FPGA by

translating it into a hardware specification language. For this, a health monitoring system

prototype has been developed based on a migraine prediction model, collecting and format-

ting information from actual medical sensors and alerting the proximity of new pain phases

through various sets of predictive models. For the generation of this type of models, we also

present a modular methodology that allows automating the creation of knowledge bases and

simplifying predictive models’ production using XML specifications. Also, we have devel-

oped epidemiological models that enable us to analyze and understand how different types

of measures and scenarios affect the spread of epidemics. Finally, from the highest level of

abstraction, we have considered how this type of model could be used safely and scalably in

the Internet of Things environments. In this regard, we have made two main contributions.

One of them consists of the improvement and extension of SFIDE, a simulator for studying

strategies for the distribution of computational work in data centers. We have redesigned

the platform, allowed communication with the well-known SLURM workload manager used

in many data centers around the world, and made possible the modeling of scenarios that

connect those data centers models with end devices by modeling of an intermediate network

layer. On the other hand, we have carried out an optimization study that aims to analyze

xvi



how the micro data centers’ location influences energy consumption in an urban healthcare

scenario. This scenario considers the existence of thousands of migraine patients monitored

for the early detection of critical events in their disease, and how the workloads generated by

the monitoring devices are distributed in several micro data centers affecting the system’s

overall energy consumption.

With the development of these topics, and covering numerous tools, methodologies,

and use cases, this thesis provides a broad vision of how modeling and simulation is a

fundamental tool when developing complex systems, and how these techniques can be used

for the development and deployment of predictive modeling systems in the healthcare field.
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Chapter 1

Introduction

The data generation ratio worldwide is increasing exponentially over the years. In every in-

stance, the domain-specific information is progressively taken into account to create valuable

knowledge that helps understand our reality and make our procedures and technologies more

effective and efficient. According to the International Data Corporation (IDC), worldwide

created, captured, and replicated data will grow to 175 zettabytes by 2025. Since 2018, in

which 33 zettabytes were registered, this represents an increment of 530% and a compound

annual growth rate of 61%174.

This scenario of the so-called data era opens many doors to provide new business values

and technologies for society. Data is changing everything around us, and we are beginning

to see the first glimpses of the opportunities that it can offer us. Some examples that

are already a reality are the automatic detection of production defects by image, tools to

predict and prevent breakdowns in industrial machinery, the principles of the autonomous

car, real-time translation between languages, or models that diagnose all kinds of diseases

and predict their events and outcomes. These examples are only a minimal part of the value

that data is offering us, as we are in a transitional phase. These technologies are constantly

growing for adapting to our needs, and soon they will be a fundamental part of our society.

However, the systems managing these data are becoming more complex every year. They

present a large number of components, usually behaving dynamically. They are steadily

evolving, incorporating new features and interacting with external systems. Over time, they
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tend to include knowledge of several disciplines and incorporate solutions with different lev-

els of detail. For instance, a data center simulation model could include a highly-detailed

representation of the processors functioning, and also describe high-level allocation strate-

gies. Moreover, a system can combine models with several temporal scales (i.e., discrete and

continuous models), or allow the generation of outcomes with different levels of precision.

For studying such complex systems, we usually first try to develop analytical solutions.

However, often the resulting mathematical models are not flexible or powerful enough for

representing all their particularities and interactions. A common alternative to overcome

these limitations consists in the development of simulation models, which allow describing

the behavior of a system through a combination of mathematical descriptions and algorithms

reproducing its life-cycle. This approach requires the creation of a conceptual model devel-

oped based on our study of reality, which is later transformed into a computational model

using a programming language. This resulting executable model is then used to study and

generate knowledge, adapting its inputs and configuration parameters based on our needs,

and comparing its outcomes with real-world data. This process can be performed itera-

tively, improving the conceptual model relying on the outcomes of the simulation. Through

this approach, we can reproduce complex situations that would be highly expensive or even

infeasible to study in reality.

Due to these advantages, a multitude of Modeling and Simulation (M&S) techniques

have been widely used in recent decades, both in academia and in industry. Although these

modeling formalisms were born and matured in academia, companies around the world have

already adopted them for the development of their software. This transition came first with

the introduction of Model-Based Systems Engineering (MBSE)96, which focused on gener-

ating different types of domain models as the primary documentation source. It favored

better coordination between the development teams and increased workflow productivity.

Over the years, and especially as of 2014, this evolved in Modeling and Simulation-Based

Systems Engineering (M&SBSE)68,140, a new perspective that seeks to reduce the gap exist-
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ing between the domain models and the resulting software products. The domain models are

replaced by executable models, able to directly reproduce behaviors present in the system of

interest and simulate large amounts of configurations in manageable times. The main goal

of this dissertation is to make M&SBSE the main driving force in the design of complex

systems with a focus on the Internet of Things (IoT) and healthcare applications as the

main use case. In the following sections, we describe some contributions oriented to this

goal, giving a brief overview of the related state of the art.

1.1 M&S formalisms: benefits and challenges

Despite the inherent potential in the introduction of M&S mechanisms to the development

workflow, it is important to select methodologies with a solid theoretical foundation and

able to manage high complexity levels. According to Castro et al.229, models are frequently

perceived as "islands of knowledge", implemented for specific simulation engines. This

makes it difficult to generalize or reuse models and becomes an obstacle when addressing

the interdisciplinary challenges present in large-scale projects. However, there exist differ-

ent modeling formalisms that help to overcome such setbacks, providing clear, reusable, and

unambiguous specifications with which we can represent all kinds of heterogeneous complex

systems. Among all these M&S formalisms, Discrete Event Systems (DESs)-based envi-

ronments are widely used due to their intuitive and powerful nature34. They describe the

state of the model as a discrete set that evolves as different events occur. Amid all the

available DES approaches (e.g., Markov chains or Petri nets), the Discrete Event System

Specification (DEVS) formalism230 showed great success in integrating other discrete-event

and continuous-time systems207. It also allows combining submodels of different nature to

compose a hybrid system, usually using Quantized State Systems (QSS) to approximate

continuous-time models through discrete events111.

There exist plenty of DEVS-based frameworks available in different programming lan-

guages and containing a great variety of specific tools. These frameworks can be used to
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implement models based on a variety of DEVS-based formalisms (e.g., CDEVS, Cell-DEVS,

DynDEVS, FDDEVS, PDEVS), perform parallel and distributed simulations, graphically

design and visualize our models’ hierarchy, and export our results in several formats. How-

ever, they also present some common drawbacks, such as the lack of interoperability stan-

dards or the shortage of powerful verification tools. As each framework contains a particular

DEVS simulator implementation, we deal with different APIs and programming languages

depending on the tools used to develop our system. Hence, reusing and combining the result-

ing models is still a tough task. For overcoming this inconvenience, the DEVS community

proposed several web-based solutions to interconnect heterogeneous simulators. Touraille et

al.198 proposed an XML-based definition for defining standard distributed simulation link-

ing DEVS and non-DEVS simulations. Risco-Martin et al.176 implemented a framework to

connect heterogeneous DEVS simulation combining Service Oriented Architecture (SOA)

with Web Services Description Language (WSDL). As a result, this platform can execute

simulations without local access to modeling components. Bae et al.15 also contributed

to this trend, presenting a DEVS-based plug-in framework for the interoperability of sim-

ulators. With this approach, it can communicate heterogeneous models implemented in

accordance with the PlugSim interface and includes algorithms to support data exchange

and time synchronization between DEVS and non-DEVS models.

During the development of the thesis, we have made exhaustive use of different DEVS

modeling and simulation frameworks. Moreover, we have made direct contributions

to the core of the xDEVS M&S toolkit, implementing a Python DEVS sim-

ulator, developing several tools for facilitating the verification of models, and

proposing new implementation methodologies to reduce overhead introduced by

the DEVS simulators. Moreover, we have extended the DEVStone benchmark,

providing an objective way of analyzing and compare different DEVS simulator

implementations.
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1.2 Verification, Validation & Optimization of M&S Sys-
tems

The design, development, and implementation of complex systems continue to be a challeng-

ing effort at the systems engineering level. The problem is much more accentuated today in

the data era, with the dawn of paradigms like the Internet of Things and Machine Learning.

Modeling and Simulation are continuously demanding new formal methodologies to manage

the design, development, and implementation of such ultra-large systems with a high level

of quality and accuracy while fulfilling a wide range of real-time constraints137. The way

we perform M&S must be adapted, providing new ideas and tools to separate the model

from the simulator, and the implementation from the analysis. These M&S techniques often

remain difficult to verify and validate. Performing Verification and Validation (V&V) is an

exhaustive exercise for any simulation model. Due to the inherent complexity in current

simulation models that comprise multi-faceted data-driven methodologies or co-simulation

methodologies, V&V is a challenge of its own139.

In the software industry, these activities are a solid part of the development workflow.

They have been developing V&V methodologies for decades and applying them to their

projects to improve the development performance and reduce the project development time

and the overall costs. However, the simulation field is experiencing a slow adoption of

these V&V methodologies, and the most popular M&S frameworks provide a reduced offer

of verification tools. The CD++ DEVS-based simulator accepts basic test cases defining

the expected component outputs211. Saadawi and Wainer180 also proposed an alternative

method to check DEVS models by translating the model components hierarchy to Timed

Automata representations and using the UPPAAL model checker over them21. It was ex-

emplified with eCD++, an extension of the CD++ simulator oriented to the development

of real-time models. Zengin et al.232 adapted the verification and validation technique pro-

posed by Forrester and Senge187 to the DEVS-Suite environment, exemplifying them using

an Open Shortest Path First (OSPF) simulation model. This approach generates test case
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sets, defining its contribution to the overall model confidence. These tests cover differ-

ent modeling aspects, as the objective specification, and the structure and behavior of the

model. Members in the DEVS community also developed external V&V solutions, applying

them over some publicly available simulators. Li et al.119 designed a DEVS-based test-

ing framework combining black-box and white-box approaches, aiming to check both the

model specification and behavioral correctness of DEVS simulators. For performing this

verification, they proposed a standard XML representation for event-and-state-traces and

implemented a tool for generating test case suites covering all possible DEVS constructs and

their combinations. They applied their methodology over the PythonDEVS and DEVS++

simulators, being able to point some flaws of their implementations. Hwang et al.97 defined

Finite & Deterministic DEVS (FDDEVS), a variant of the DEVS formalism oriented to

facilitate the equivalence between the requirements set and the model behavior. Mittal and

Douglass138 developed a DEVS Domain Specific Language (DSL) called DEVS Modeling

Language (DEVSML) to write correct DEVS models by construction. This language was

integrated by Mittal and Martin141 in an Eclipse-based DEVSML Studio.

We have contributed to this trend by implementing several verification tools.

We have developed a unit testing platform following the principles of the Exper-

imental Frame (EF), allowing the definition of XML-based test cases containing

the expected states and outcomes of the different components of the system.

We have also developed a verification tool that takes advantage of the clear

differentiation of the modeling and simulation layers to embed a transparent

and constraint-based algorithm in the execution of models. These constraints are

specified in terms of arithmetic and logical expressions and can be used to ensure certain

relations among the outputs of the subcomponents of the system in a straightforward man-

ner. Finally, there are some specific cases in which we cannot ensure the outputs produced

by our system. This is known in the testing world as the oracle problem. In the testing

theory this case can be covered by many methodologies, but one of the most popular is
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metamorphic testing236. This approach establishes a set of relations between the input and

outputs of the system. We have also translated this into the simulation world,

with the development of a platform-independent and flexible tool to perform

metamorphic testing over DEVS models. This tool reads the logging files produced

by the simulator of our choice and parses them through simulator-specific translation plu-

gins, getting clear information about the time of the events, the inputs, and the outputs

of the system. This information is progressively passed to the relations evaluator module,

which checks the compliance of the relations for every change produced in the input and

output sets. The relations can be defined with external files using a custom notation, or

through a set of Python functions following the notation of specific interfaces provided by

the verification tool. This leads to our next contribution, detailed below.

1.3 Internet of Things

In tandem with the volume of the data, the number of worldwide connected devices is

also increasing rapidly. Its current number already exceeded the 20-billion barrier, and it’s

growing at a 10% per year pace125. This fits into the already established paradigm of the

Internet of Things (IoT). Things around us are progressively equipping microcontrollers,

transceivers for digital communication, and suitable protocol stacks that will make them

able to communicate among them and with the users226. In this way, they become an

integral part of the Internet and open the door for multiple new use cases. Some examples

are the urban IoT, where the traditional public services and infrastructures are optimized

and evolved to allow interacting with the citizens, or the healthcare IoT, where the real-time

monitoring through networked sensors is showing great potential to evolve different aspects

of medicine such as the prediction, diagnose, and treatment of a wide range of physical and

mental diseases.

Despite the new opportunities offered by the IoT paradigm, it also introduces some new

requirements that need to be addressed adequately. The increase in the number of connected
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devices creates high storage and computing needs, that often can not be covered without

the help of additional infrastructures because of the design and power consumption restric-

tions of the end devices. Cloud computing is one of the enabling platforms to support these

needs, providing on-demand networked access to a shared pool of configurable computing

resources. However, despite its flexibility and scalability, it introduces communication de-

lays and can increase the overall system consumption. To alleviate its disadvantages it is

usually combined with other technologies as Fog and Edge Computing. Although it has a

similar characterization to the Cloud, Fog nodes usually present more heterogeneous storage,

computing, and networking resources, and are located near the edge devices. This closeness

gives Fog Computing a supporting role to the Edge computations, reducing the latency that

would involve sending the data to the Cloud by providing intermediate computational and

storing resources. Edge Computing is usually done in the same device that generates the

data. Hence, it avoids the latency provoked by communication networks. As there is no

transmission of data, they also stay safer and more reliable. However, Edge devices are

usually restricted by their battery power constraints and present limited computing and

storage resources.

This three-layer IoT framework allows the use of efficient policies capable of distributing

the computing needs over the different nodes composing the network. This distribution

is performed assuming a trade-off among parameters such as acceptable delay, power con-

sumption, or security and legislation policies. Often, the Edge layer only performs simple

calculations, or preprocessing tasks to leverage the data transmitted over the network. The

rest of the tasks are distributed between Fog and Cloud layers according to the main goals

of the service to be offered. They even can be dynamically adjusted based on parameters

as priorities, expected precision of results, or computing load levels. Distributed scenarios

also become possible, sharing computing loads between multiple devices to improve latency

and improve the overall performance of the system. In this context dynamic on-demand

networks can also be configured, in which similar nodes collaborate to provide functional-
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ities that they would lack by themselves. For instance, optimized traffic regulation based

on smart vehicle fleets or more precise weather forecasts based on networks of monitoring

nodes deployed over a territory.

As the development of these complex systems involves a great effort in terms of design and

implementation, it is highly convenient to use Modeling & Simulation (M&S) techniques to

simulate and optimize their performance. Over the last few years, a great deal of research has

been done in this regard, designing different allocation strategies to efficiently distribute the

load processing over the nodes of the network, and implementing multiple frameworks that

facilitate the design and implementation of IoT scenarios. Some of them focus on scenarios

covering only certain types of computational resources53,192, while others are oriented to

specific types of processing methodologies104,122.

This thesis contributes to these research lines from two perspectives. First,

as a collaboration with the École Polytechnique Fédérale de Lausanne, we have improved

and extended the SFIDE data center simulator. SFIDE allows the study of different

allocation strategies, modeling the entire cooling and processing infrastructures, and gen-

erating detailed reports of task allocation, power energy consumption, and cooling-related

information. We have redesigned its implementation, adding some additional

features like compatibility with SLURM, a popular workload manager used in data

centers over the world. Moreover, originally SFIDE only accepted a local generation of

tasks. We have extended this perspective, allowing the definition of IoT devices and

intermediate networks. In this way, we can now obtain information about the power

consumption regarding network communications and end nodes, as well as useful insights

of the communication delays. On the other hand, we have performed an optimiza-

tion case study, studying the impact that the specific locations of Micro Data

Centers have on the infrastructure energy consumption. In this scenario, the data

centers receive and process model training and inference tasks, from a population of moni-

tored migraine patients. We describe in detail the whole workflow, including the extraction
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of the different building layouts and infrastructures of the selected urban area, the modeling

of the population behavior, and the implementation of the IoT scenario itself using a data

stream-oriented IoT framework.

1.4 Healthcare Monitoring Systems

Healthcare systems present several features suitable for the application of M&S techniques.

They are complex systems affected by high uncertainty and variability. They often require

a stochastic approach to solve their inner challenges. M&S has been applied for a multitude

of purposes, including health and care systems operation, disease progression modeling,

screening-related modeling, or health behavior modeling. Although M&S traditionally has

had a considerably lower adoption than in other sectors such as business and commerce,

aerospace, and the military, we have seen a rise in the M&S-aided development of health-

care systems in the last decade. A wide range of healthcare applications, services, and

infrastructures are being developed, at the same time that the systems to develop became

more and more complex. They have also been powered by the progression of technologies

like the Internet of Things and Machine Learning. Networked sensors, either worn on the

body or embedded in our living environments, make possible the collection of useful data

that can be processed later to obtain relevant conclusions by the medical staff. Specifically,

the continuous monitoring through the use of Healthcare Monitoring Systems (HMSs) opens

the door to a wide range of applications supporting medical and healthcare services. Con-

trary to the post-facto diagnose-and-treat reactive paradigm, having these data allows the

prognosis of diseases in their initial stages80. Moreover, some diseases have specific symp-

toms for each patient. Monitoring the patients in those cases would allow the generation

of personalized treatments based on the specific needs of each individual. As a result, the

overall performance of the health system can be improved while reducing the involved costs.

We have also seen how M&S helped to face the events derived from the recent COVID-19

pandemic73,144. Plenty of models analyzing the spread were developed by research groups all
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over the world, assuming a great role in government decision-making and helping to reduce

its impact and consequences.

During the development of the thesis, we have made many contributions to health-

care modeling. First, we have studied the model-driven design and implementation

of an HMS of a migraine prediction system. Based on a previously developed DEVS

model, we have adapted the migraine prediction system using a hardware de-

scription language. As a result, we have obtained a fully operational implementation

of the system, able to get data directly from medical sensors, and to generate alerts when

a new pain phase within the migraine cycle is approaching. We have also designed a

modular methodology to simplify the creation of predictive models from data

coming from symptomatic disease patients through custom XML specifications.

The methodology has been used to design a fully-operational system able to anticipate

stroke types and outcomes in the early stages of new stroke crises. For this development,

actual monitorization data coming from the Stroke Care Unit of the Hospital Universitario

de la Princesa was used, combining that with the diagnoses of the medical staff, and storing

the resulting models in a central database in an automated way. The system also cov-

ers the specification of end nodes, capable of downloading suitable predictive models from

the central database and generate inferences. Finally, in collaboration with the Advanced

Real-Time Simulation Laboratory (ARS) of Carleton University, we have been involved

in the development of different epidemiology models. These models combine

cellular automata and discrete-event simulations to generate a prediction of the

evolution of the epidemy over time, basing its behavior on the discretization of a set

of differential equations characterizing the virus spread.

1.5 Publications

1.5.1 Conference papers

This thesis has generated the following articles in international conferences:
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• Henares, K., Pagán, J., Ayala, J. L., Risco-Martín, J. L. Advanced migraine

prediction hardware system. In Proceedings of the 50th Computer Simulation Con-

ference (Bordeaux, France, 2018), SummerSim’18, Society for Computer Simulation

International.

• Henares, K., Risco-Martín, J. L., Zapater, M. Definition of a transparent

constraint-based modeling and simulation layer for the management of complex sys-

tems. In Proceedings of the Theory of Modeling and Simulation Symposium (Tucson,

Arizona, USA, 2019), SpringSim’19, Society for Computer Simulation International.

• Henares, K., Risco-Martín, J. L., Hermida, R., Roselló, G. R., Cárdenas,

R. Modular framework to model critical events in stroke patients. In Proceedings of

the 2019 Summer Simulation Conference (Berlin, Germany, 2019), SummerSim’19,

Society for Computer Simulation International.

• Henares, K., Risco-Martín, J. L., Ayala, J. L., Hermida, R. Unit testing

platform to verify DEVS models. In Proceedings of the 2020 Summer Simulation

Conference, SummerSim’20, Society for Computer Simulation International (pp. 1-

11).

• Cárdenas, R., Henares, K., Ruiz-Martín, C., Wainer, G. Cell-DEVS Models

for the Spread of COVID-19. Cellular Automata for Research and Industry conference.

(ACRI 2020).

• Cárdenas, R., Henares, K., Ruiz-Martín, C., Arroba P., Wainer, G.,

Risco-Martín, J. L A DEVS simulation algorithm based on shared-memory for

enhancing performance. In Proceedings of the 2020 Winter Simulation Conference,

WinterSim’20, Society for Computer Simulation International.

1.5.2 Book chapters

This thesis has generated the following book chapters:
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• Henares, K., Pagán, J., Ayala, J. L., Zapater, M., Risco-Martín, J. L.

Cyber-Physical Systems Design Methodology for the Prediction of Symptomatic Events

in Chronic Diseases, in S. Mittal, A. Tolk (eds.) Complexity Challenges in Cyber Phys-

ical Systems: Using Modeling and Simulation (M&S) to Support Intelligence, Adapta-

tion and Autonomy (2019), Wiley & Sons.

• Henares, K., Martín, J. L. R., Pagán, J., González, C., Ayala, J. L., Her-

mida, R. Cyber-Physical Systems Design Flow to Manage Multi-channel Acquisition

System for Real-Time Migraine Monitoring and Prediction. In J.L.R Martin, S. Mit-

tal, T. Oren (eds.) Simulation for Cyber-Physical Systems Engineering (pp. 283-304).

Springer, Cham (2020).

1.5.3 Other publications

The author has also contributed in the following journal article:

• Gago-Veiga, A. B., Pagán, J., Henares, K., Heredia, P., González-García,

N., De Orbe, M. I., ... Vivancos, J.. To what extent are patients with migraine

able to predict attacks?. Journal of pain research (2018).
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Chapter 2

Modeling and Simulation of Complex
Systems

Complex systems are usually understood as organizations that include a large number of

interacting components. They usually have a dynamic nature and increase their complexity

over time. Some examples of complex systems are communication infrastructures, the Earth

climate system, economies, organisms, or socio-economic organizations as cities. Given their

inner complexity, we usually need mathematical models to study them. Furthermore, in

many cases, they cannot be studied only with analytical solutions. A common alternative are

simulation models, which allow to describe the behaviors of a system through a plethora of

model types (e.g. Ordinary Differential Equations (ODE), Machine Learning, fuzzy models),

and algorithms reproducing its life-cycle based on these descriptions.

When developing a system it is important to determine the context within it has to be

composed and used. This context is usually referred in the literature as the experimental

frame. The experimental frame is also crucial for performing and validating simulations49.

The behavior of a simulation model is impacted by this context, and its outcomes can also

alter its state. Figure 2.1 shows the relation between these entities. From this perspective,

a model is a representation of the system itself. A simulation implies the use of a simu-

lation engine for reproducing the behaviors of the system under study through the model

specification.
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Figure 2.1: System, model and simulation relation

There are several phases and activities involved in the development of a simulation

model. Figure 2.2 summarizes this process, showing the main modeling and assessment

activities (dashed and solid lines, respectively). First, some analysis is performed over

real-life phenomena to extract knowledge, as mathematical definitions, or behavioral rules.

The conceptual model is constructed with this knowledge. Then, we can implement a

computerized model based on this conceptual model, using the programming language and

modeling framework of our preference. By interpreting the simulation outcomes of the

computarized model we are able to analyze real-world conditions in a flexible and powerful

way. We can perform studies that would be infeasible in the real world, and we can adapt

the initial conditions and behavior parameters of the model to perform an in-depth analysis

of the systems. However, several relevant inaccuracies or errors can be introduced in these

models during the development process. To avoid these situations, we have to introduce

several assessment activities.

The qualification activity aims at assuring that the conceptual model correctly extracts

information of the system with the desired level of detail. The verification activity checks the

relationship between the conceptual and computerized model (i.e. it verifies that the com-

puterized model faithfully represents the conceptual model description, without introducing

any unexpected additional behaviors derived from the programming implementation). Fi-

16



Reality

Conceptual
Model

Computerized
Model

Qualification

Validation

Verification

Simulation

Analysis

Programming

Figure 2.2: The model lifecycle.

nally, the validation activity aims at checking whether the simulation outcomes represent

correctly the reality. Section 2.2 provides more detail about the Verification and Valida-

tion (V&V) of models, extending these concepts and detailing some inner challenges and

methodologies.

Over time, models increase their complexity in different ways. They progressively accu-

mulate knowledge of several disciplines and increase the level of detail of certain phenomena

representations as the different development iterations are completed. The same model can

combine low-level and high-level descriptions, and analyze a problem with different level

of detail. For instance, a data center simulation model could include a highly-detailed

representation of the processors included in its processing units, and also describe the allo-

cation strategies of incoming computational tasks. This example illustrates the concept of

multi-resolution modeling (MRM). According to Davis and Bigelow50, MRM involves the

development of a single model or family of models including different levels of resolution for

a specific problem. Resolution is the detail with which a system (or attribute) is modeled169.

The different levels of resolutions are usually associated with the level of abstraction desired

to describe the situation. Figure 2.3 depicts some of the resolution dimensions present in

modeling and simulation:

• System: a model can represent an individual system or a hierarchical composition
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Figure 2.3: Resolution dimensions in modeling and simulation.

of systems. This composition can be performed iteratively, breaking down specific

systems, or aggregating external systems.

• Object-related: different resolution can be achieved by altering the entities, attributes,

or dependencies of the system, or modifying how they interact among them.

• Process: individual processes can be described with different levels of detail depending

on the desired level of abstraction.

• Temporal-scale: a simulation model can be executed with different time bases. Dis-

crete models only change their state variables at certain time instants. In continuous

models, the state variables change continuously over time. Hybrid models combine

these two approaches. Section 2.3.1 gives more detail about this classification.

• Spatial-scale: different levels of detail can be obtained in the simulation outcomes by

changing the operational units of the model.

A complex model usually has a large number of heterogeneous components (usually re-
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ferred to as agents). The combination of the size of these models and their diversity often

leads to large-scale behaviors known as emergent behavior. These complex behaviors, un-

predictable from the knowledge of the separate components, play a central role in the theory

of complex systems. They usually appear when we extrapolate properties and make predic-

tions of the whole system based on incomplete knowledge of its parts and configurations12.

As the systems grow, the properties of the entire system become very different from those

of its components.

Although the theoretic foundation for modeling emergent behavior has been reviewed

by several authors in the literature? ? , and several tools have been created to facilitate the

specification of these kind of phenomena? ? , reproducing emergent behaviors in artificial

environments is still a challenging task. As the models produced in the modeling workflow

represent simplified versions of the real systems, the inner omission of some low-level details

implies an information loss that may cancel these emerging behaviors. To avoid this, the

model has to be supported by strong hypothesis or theoretical constructs and be extensively

simulated to check its correctness. However, the computational complexity of the simulator

execution may also introduce unintended behaviors that contribute to inaccurate emergent

behavior142. Therefore, the use of robust verification and validation methodologies and

techniques has an critical role when ensuring the reliability of a complex system.

2.1 Advantages of M&S when implementing complex sys-
tems

M&S encompasses a great variety of procedures that produce models of phenomenons or

infrastructures and simulate their behavior. A model is a simplified representation of the

structure and behavior of a particular system of interest. However, as an approximation

to the actual system, it should include its main features, be able to process the same

inputs, and produce expected outputs. Hence, a good model should be a judicious trade-off

between realism and simplicity158. Usually, simpler models are created in the early stages of
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development, evolving and increasing in complexity as the project progresses. Many M&S

approaches are not based on a well-defined theoretical framework, and therefore they cannot

assume this increasing complexity. According to Castro et al.229 models tend to be treated as

islands of knowledge, that are quickly encapsulated in specialized tools and that are then very

difficult to generalize or reuse. This can push M&S in a opposite direction to that required

to address the challenges related to interdisciplinary modeling of large projects. In this

regard, the use of modeling formalisms represents a solution for this problem, offering clear,

reusable, and unambiguous specifications able to deal with the complexity and interaction

among heterogeneous subsystems. Some examples are Petri Nets, Markov Chains, or DEVS.

The DEVS formalism can be used to represent accurately any discrete event system, and

approximate any continuous system with the desired level of detail.

Although these modeling formalisms were born and matured in the academia, companies

around the world have already adopted them for the development of their projects. The

Model-based Systems Engineering (MBSE) methodology has gained a lot of popularity over

the last decade and tends to replace the classical documentation structures with domain

models. Moreover, several efforts propose the introduction of executable models in the de-

velopment workflow68. This evolution makes its way from MBSE to the Model & Simulation

Based Systems Engineering (M&SBSE), helping to overcome the gap between the system

model specification and the respective implementation. By performing simulations with

these executable models it is possible to reproduce behaviors present in the system of inter-

est, allowing the study of its correctness and performance based on the outcomes of these

executable models. Usually, these models allow simulating large amounts of configurations

in manageable times, which would be too expensive or infeasible to execute in the actual

system.

In this M&SBSE context, modelers have benefited from classic and new M&S frameworks

or toolkits. Some of them implement well-known and robust simulation formalisms consoli-

dated over decades. For instance, we can see M&S tools implementing formalisms as Finite
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State Machines (JFLAP177, jFAST217, ASSIST81), Petri Nets (CPNTools172, ExSpect202,

GreatSPN7), SysML (Astah SysML209, Modelio143, Papyrus55), or DEVS (CD++211, DE-

VSJava183, PythonPDEVS25, xDEVS175). These tools provide a formal basis while con-

tributing to reduce costs, improve the scalability, and increase the quality of products and

systems. Also, several of them provide simple and intuitive Application Programming In-

terfaces (APIs) for generating executable models using the most popular programming lan-

guages.

Nowadays, M&S plays a crucial role in understanding key concepts of complex systems.

Among other things, it allows to test hypotheses for feasibility, identify bottlenecks in the

flow of entities or information, or introduce several performance metrics for analyzing sys-

tem configurations from different points of view. Also, simulations allow us to compress

time to observe certain phenomena over long periods, or expand time to observe a volatile

phenomenon in detail127. These advantages have allowed researchers to study with greater

detail complex systems or environments, in a great variety of fields. For instance, we can

see relevant M&S-related studies in areas like business150, critical infrastructures79,157, ge-

netics51, healthcare60, or military41,225, to name just a few.

2.2 Verification and Validation of simulation models

Verification and validation (V&V) techniques are used to guarantee that models are accu-

rate representations of their corresponding systems. Validation is the process of checking if a

model meets the needs of the customer and other identified stakeholders. For this, input and

output trajectories between the source system (whether real or conceptual) and the model

under test must be generated. The validity, whether replicative, predictive, or structural,

requires these trajectories to be equal74. On the other hand, verification is the attempt to

establish that the simulation relation holds between a simulator and a model (i.e. the simu-

lator faithfully implements the model’s dynamic behavior). This is generally accomplished

through two main approaches: formal proof of correctness and extensive testing74 182.
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Testing consists of the dynamic verification of a program behavior on a finite set of test

cases, suitably selected from the usually infinite executions domain, against the expected

behavior201. This procedure usually implies the generation of representative test cases sets.

They include the necessary inputs to complete the system under tests and the expected re-

sults. Also, they can include prefix and postfix values, to put the system into an appropriate

state to receive the input and to prepare the system for the next tests, respectively. Test

cases can be defined based on the knowledge of domain experts or can be generated follow-

ing different coverage criteria. These criteria are usually based on graphs of the behavior

of the system, logic relation between its entities, input-space partitioning, or syntax-based

methodologies6. To contrast these test cases against the actual system, several techniques

have been used over the years in the software industry, usually applying different techniques

in each activity of the development flow. Some of them imply monitoring the internal states

and data flows inside the artifact under testing, and others apply black-box testing. As a

result, there exist a great variety of techniques and criteria103. However, although some au-

thors have brought these methods closer to the M&S field92 47, they are not well-established

yet. As part of these efforts, we focused on transfer one of these popular techniques, Unit

Testing, to an M&S framework. This testing method95,179 performs a low-level assessment

of the units produced in the implementation phase. Hence, it verifies these units have the

functionality that the developer (or a modeler, in a M&S scope) expects. Usually, once

defined, unit tests are executed periodically in an automated way and separated from the

actual system. In this way, it allows finding bugs in the early stages, which helps to increase

confidence in the software artifact, and facilitates the integration of subsystems. They can

be defined both in text or in code, and specify test cases based on pairs of sets of inputs and

outputs. These combinations of inputs and their expected outputs should cover the com-

plete behavior of the components. In this way, unit tests easily detect the introduction of

changes that affect the expected behavior, alerting the developer about the failed test cases

and the affected components. These tests are often defined after the model implementation.
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However, they can be developed in parallel or even before the model definition (test-driven

development). This growing practice has been widely studied and usually results in defect

reduction and quality improvements in the final software artifact100.

Although this approach can be applied in much of the most common simulation for-

malisms, it is especially interesting in modular systems like DEVS. The modular and hier-

archical nature of DEVS makes the extraction of units a straightforward task. The individual

behaviors are defined as atomic modules, while the complex functionalities are encapsulated

in coupled modules. Both of them have a fixed number of input and output ports, with cer-

tain expected data types and formats. Taking advantage of this, we have developed several

verification tools during the development of this thesis. Sections 3.3 and 3.4 provide extra

details about these contributions.

2.3 M&S techniques to tackle complex systems

2.3.1 Continuous, discrete and hybrid models

Starting from an abstract model, and following the definitions of different modeling for-

malisms, multiple model artifacts can be generated. These artifacts could differ in terms of

the time base, how the time evolves, or the state-space. However, they also usually share a

common structure. According to Wymore et al.220 a casual and deterministic system SYS

can be described as:

SY S =< T,X,Ω, Q, δ, Y, λ >

where:

• T is the time base.

• X is the input set. It describes the different input values (possibly represented as an

product set).
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• Ω = ω : T → X is the input segment set. Each input segment ω represent the values

associated with each input x ∈ X and time t ∈ T .

• Q is the state set. Represent all the unique states in which the system can be.

• δ : Ω×Q→ Q is the transition function. It determines how the system changes among

the different states. For determining a new state, the transition takes into account the

previous state and a subset ω ∈ Ω.

• Y is the output set. It describes the different output values.

• λ : Q × X → Y is the output function. It determines when and how the outputs of

the systems are generated.

Based on the time basis, we can distingish among different types of models (depicted

in Figure 2.4). When T = R we call them continuous-time models. When T = N, we

call them discrete-time models. It is worth noting that some discrete-event models also

have R as the time base, but they only process events in particular time instants. Untimed

models as Finite State Automata (FSA) also fall in this category. In these models, the

explicit time base is replaced by a notion of progression206. These two time categorizations

can also be combined, giving rise to the so-called hybrid or discrete/continuous models. In

these models, time advances continuously until some specific conditions are met. When it

happens, they pause the continuous evolution and go through many discrete states. Only

when this process has been finished, the time continues to advance again.

2.3.2 Simulation formalisms

Discrete Event System Specification (DEVS)230 is a modular and hierarchical formal-

ism presented in 1976 by Bernard P. Zeigler. It is able to describe complex systems based on

two types of modules. Atomic modules describe the behavior of the system and respond to

a finite set of events, changing their state and producing outputs. Coupled modules reflect
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Figure 2.4: Model segment types.

the system structure, grouping other atomic and coupled modules. Both of these module

types can have input and output ports, to receive and send information to other modules.

These ports are connected by directed couplings, linking pairs of output and input ports.

Figure 2.5a depicts a simple representation of this kind of structure. A formal description

of this formalism can be found in Chapter 3.

Markov chains, kemeny1976markov were introduced by Andréi Markov in 1906.

This kind of model defines discrete stochastic processes where the probability of occurrence

of an event only depends on the previous state (what is known as Markovian property). It

consists of a finite set of states and a probabilistic definition of transitions. This is depicted

in Figure 2.5b. The model starts in a specific state, and in each transition event it evolves

in a stochastic manner based on the probability factors specified in the transition arrows.

From this idea, multiple variations and extensions have been proposed over time. A popular
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Figure 2.5: Examples of several modeling specification representations.

one is the Generalized Semi-Markov Process (GSMP), a formalism to describe and analyze

discrete-event systems71.

Petri Nets (PNs) are a discrete-event system model introduced in the early 1960s

by Carl Adam Petri167. Although it encompasses several types of system models, analysis

techniques, and notational conventions, the most used class of PNs is called place/transition

nets. These logic models only represent the order in which the events are produced, not

the time related to the events. They consist of places, transitions, arcs, and tokens. These

tokens are located inside of the places, and the arcs connect pairs of place-transition or

transition-place. The places from which an arc runs to a transition are called the input

places of the transition, whereas the places to which arcs run from a transition are called

the output places of the transition. When transitions are activated, they consume tokens

from the input places and generate add tokens to the output places. This activation is
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produced when there are tokens in all his input places. Figure 2.5c shows a basic example

of these nets.

Systems Modeling Language (SysML)64 is a general-purpose modeling language

oriented to systems engineering applications. It was developed extending the Unified Mod-

eling Language (UML), reducing the software-centric restrictions of the UML definitions,

and adding new types of diagrams. Through its diagrams, SysML allows capturing both the

structure and the behavior of the systems. Although it was originally designed to develop

static models, several efforts have been made to create executable SysML definitions and

frameworks over the years. For instance, Balestrini-Robinson et al.16 presented a framework

containing a Python programming interface for SysML models and integrate it with OpenM-

DAO, a multi-disciplinary design, analysis, and optimization framework developed by NASA

Glenn Research Center. Kapos et al.105 propose transforming the SysML metamodel to a

DEVS model using the Query/View/Transformation (QVT) language. For this purpose,

additional simulation properties and enriched system descriptions are added alongside the

SysML basic definition.

2.4 Application fields

As we have seen M&S brings great benefits and is being progressively implemented in a

multitude of fields of application. In this section, we focus in two highly coupled fields

related to the scenarios developed in this thesis, Internet of Things (IoT) and Healthcare.

The impact of these fields is described below, providing some context and stating how they

benefit from M&S.

2.4.1 Internet of Things

The Internet of Things (IoT) is a paradigm that groups a variety of physical objects and

an infrastructure to connect them and enable their interaction and control. The concept of

smart devices was first discussed as early as 1982 at Carnegie Mellon University with the
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introduction of a versioned Coke machine able to report its inventory and the temperature

of the newly introduced drinks200. After some years of development of this new idea, Kevin

Ashton et al. introduced in 1999 the concept of Internet of things 13 to describe a system

where the Internet connects to the physical world via ubiquitous sensors. This connectivity

empowered computers with mechanisms to gather information from connected devices with-

out human intervention. In this way, it is possible to determine when things need replacing,

repairing, or recalling, improving the processes efficiency and, consequently, reducing the

inner wastes, losses, and costs.

This idea has been developed over the years131,214, increasing its presence in our day to

day and affecting numerous application fields. Nowadays, IoT comprises a great variety of

heterogeneous devices, from simple sensors and actuators to vehicles or buildings. Support-

ing this growth, multiple IoT protocols have been developed, focusing on optimizing the

bandwidth and reducing the latency of the communications between the Internet and the

connected devices. It also benefited from the improvements of technologies like Wireless

Sensor Networks (WSNs), barcodes, intelligent sensing, RFID, NFCs, or low energy wire-

less communications72. Supported by the large amount of data generated by IoT devices,

we have also seen a convergence with multiple technologies like cloud computing, wireless

networking, real-time analytics, machine learning, sensors, and embedded systems58.

IoT is still in continuous development and a common consensus over the IoT definitions

and standards is yet to be achieved. However, the IoT is currently going through a phase of

rapid growth. According to Cisco Research, there will be 27.1 billion networked devices by

the end 2021, up from 17.1 billion in 201642. Globally, there will be 3.5 networked devices

per person. IDC estimates that these numbers will continue growing, reaching 55.7 billion

connected devices worldwide by 2025, 75% of which will be connected to an IoT platform.

They estimate data generated from connected IoT devices to be 73.1 ZB by 2025, growing

from 18.3 ZB in 201998. Consistently with this increase, the global IoT market is expected

to reach a value of $1.256 trillion by 2025 from $0.690 trillion in 2019 at a compound annual
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growth rate of 10.53%, during the period 2020-2025124.

In the coming years, the number of IoT applications and services is expected to grow at

a great pace. As a consequence, multiple application domains will be affected by this tech-

nology. Some domains where IoT is already helping to boost the efficiency of the inner pro-

cesses are agriculture, healthcare, smart cities, and nano-scale applications66. Smart cities

are expected to be great contributors to this trend, paving the way for the introduction of in-

telligent and unmanned transportation196 and optimized deliveries213, and optimizing their

infrastructures17,52,129. Improved industrial monitoring and automation techniques will also

help to minimize failures, reduce waste, and optimize processes. In healthcare, accurate pa-

tient monitoring and pharmaceutical management, added to the prediction of risk factors in

highly-impact diseases, will result in huge cost savings. These predictions will be facilitated

by the implementation of WSNs where patients with specific target diseases wear unintrusive

devices that allow to continuously monitoring patients state, registering variables like heart

rate, ElectroCardioGram (ECG), ElectroDermal Activity (EDA), ElectroEncephaloGram

(EEG), or peripheral oxygen saturation (SpO2). These variables, related to the Autonomic

Nervous System (ANS), can be modeled to relate them with specific diseases symptoms or

outcomes, generating useful predictions for patient diagnosis and treatment5,160.

These scenarios come accompanied by a need for storage infrastructures and computing

capabilities. This trend has led to the increasing use of data centers to store and process

data traditionally located in endpoints. Cloud computing is one of the enabling platforms to

support these needs. The National Institute of Standards and Technology (NIST)136 defines

cloud computing as "...a model for enabling ubiquitous, convenient, on-demand network ac-

cess to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal man-

agement effort or service provider interaction". Armbrust et al.61 simplify this concept

defining cloud as the “datacenter hardware and software that provide services". However,

in addition to raw computing and storage, cloud computing providers usually offer multiple
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software services, APIs, and development tools that allow developers to build seamlessly

scalable applications upon their services210. This Infrastructure as a Service (IaaS) model

approaches large and powerful cloud infrastructures to individuals, allowing them to develop

solutions to simplify and optimize different aspects of everyday life through a new range of

innovative services and applications. Through its use, it is possible to easily improve the

performance of systems, making use of these storing and processing capabilities, and reduce

systems overall cost.

However, there are also some drawbacks when using these services. Some applications

may not assume the latency derived from the intermediate communications or being re-

stricted by security or privacy concerns. In these cases, Fog Computing is often used. This

paradigm tries to solve these aspects by approaching these infrastructures to end-users and

comes with several advantages. In addition to the lower latencies derived from the closer

infrastructures, it enables the use of mid-range IoT protocols and helps to reduce problems

related to bandwidth bottlenecks. Also, the reliability of the connection is increased, due

to the existence of multiple interconnected channels. Some examples of fog nodes include

industrial controllers, Micro Datacenters (MDCs), and video surveillance cameras.

These two paradigms can also be combined in more complex scenarios, benefiting from

their individual advantages. Figure 2.6 depicts a typical architecture of a Cloud-Fog scenario.

The final devices often establish a connection with the nearest Fog node, although they can

also connect to alternative ones if the main node is down or overloaded. The application

requests requiring a fast response are usually processed in these nodes. They usually have

moderate computational power, and can also operate as a bridge to connect different types

of devices and applications.

When the request involves less urgent processing or requires higher computational power,

Fog nodes can opt for sending them to the upper Cloud layer. In this layer, we usually find

more powerful processing units and a higher amount of services. This load distribution is

usually a key aspect of Cloud-Fog scenarios149,156, being able to adapt it according to the
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goals of usability, energy consumption, and scalability of the system.

Such complex scenarios make IoT a great M&S application field. In the last years, a good

amount of research has been done in this regard. Multiple frameworks have been imple-

mented for defining IoT scenarios from different perspectives. We have simulators focusing

on the different computing layers, covering Cloud computing29,53,151, Fog computing32,76,116,

or even Edge Computing192. Some of them were developed focusing on specific types of

processing, as Map-Reduce104,122. Others are centered in specific types of architectures or

applications, as federated networks112, or data stream-oriented IoT applications32. These

and other IoT frameworks have been used for analyzing a large variety of scenarios. For

instance, Mahmoud et al.126 used the iFogSim framework for proposing energy-aware allo-

cation strategies for placing application modules on Fog devices, comparing the resulting

performance with Cloud-based solutions. Sarkar et al.184 also used this simulator to present
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a fog based intelligent surveillance system able to continously process the images recorded

by the security cameras to find specific events. Several parameters are used to compare the

scenario with an alternative cloud architecture, including network usage, energy consump-

tion, latency, and execution cost. Gudi et al.75 propose a novel architecture to improve the

human-robot communications in industrial environments by moving the processing of data

from Cloud to Fog, reducing notably the latency of communications.

2.4.2 Healthcare

Several reasons made healthcare a suitable application field for applying M&S techniques.

First, healthcare systems are characterized by uncertainty and variability, often requiring

a stochastic approach. Also, they are highly complex, so they benefit from modeling ap-

proaches that can deal with this complexity. Thirdly, the key role played by human beings

in healthcare systems requires an approach that allows interaction and communication be-

tween modeler and user or client224. Although M&S has been used for modeling healthcare

systems for over forty years, traditionally has had a considerably lower adoption than in

other sectors such as business and commerce, aerospace, and the military. In 2009, Brails-

ford et al.26 compared the use of M&S in these application fields, determining that only

8% of papers from healthcare reported analysis of a real problem with high levels of user

engagement, compared to 36.5% in the defense literature, and 48.9% in commerce. It was

in the last two decades when we have seen a significant scale of research in this application

field, especially after 2010. This research uses Discrete-Event Simulation (DES) as the main

simulation approach, although other approaches such as System Dynamics (SD), Monte

Carlo, and agent-based have also been used233.

The healthcare models can be classified into four main categories: Health and Care

Systems Operation (HCSO), Disease Progression Modeling (DPM), screening modeling,

and Health Behavior Modeling (HBM). Zhang et al.233 concluded that among all the DES

healthcare models developed up to 2016, 65% corresponded to HCSO-related studies. The
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remaining models corresponded mainly to DPM (28%), leaving only 5% for screening mod-

eling and 2% for HBM233. Moreover, the most frequently analyzed medical indications

are related to the circulatory system (18%), nervous system (15%), neoplasm (15%), and

musculoskeletal system diseases (13%)233.

Regarding health and care systems operation, the major part of the models (68%) rep-

resented systems corresponding with single health care units. In this category, there also

existed a high interest in modeling systems such as emergency workflows, intensive care

units, or health service providers. Disease progression modeling focuses on determining how

diseases evolve and assist in medical decision-making. It helps to compare different treat-

ment alternatives at a medical level in terms of resources consumed and health outcomes44.

An example of this is Sukkar et al. research54, which categorized Alzheimer patients into

several severity levels using regression techniques. In this way, they were able to obtain

information regarding performance over time on cognition, global performance, and activi-

ties of daily living. Another example is given by Holford et al.91, who modeled the Unified

Parkinson’s Disease Rating Scale (UPDRS) scores collected in 800 subjects followed for 8

years, and tested the effectiveness of a specific treatment over new patients using this model

as a reference. Among the screening-related modeling, most of the models correspond to

breast cancer screening43,193. In this category also laid studies concerning other types of

cancer31,56, tuberculosis30,82, and diabetes48, among others. In terms of research goals, the

screening modeling is used for diagnosis, assessment, or routines performance measurement.

Health behavior modeling covers topics such as community organization, communication,

diffusion of innovations, social marketing, information processing, stress and coping, relapse

prevention, and empowerment173. They are mostly developed over the last decade and

incorporates human behavioral factors into modeling practice. To this category belong sev-

eral approaches that try to develop behavioral-based strategies to stimulate people to quit

smoking67,99.

Even though the use of M&S in healthcare has increased considerably in recent years,
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there is still much to be done. Among all the opportunities that have arisen in this field,

personalized medicine is one of the use cases that is expected to have a greater impact on

our society. In these scenarios, patients are continually monitored and different models and

decision support systems are generated through the use of techniques as the BigData and

Machine Learning, supporting the clinician in their diagnosis and treatment decisions. This

topic is addressed with special intensity throughout this thesis.

In this chapter, several fundamental aspects of M&S were covered. First, the model

life-cycle was explained, explaining the different types of models and their related V&V

activities. Also, the advantages of M&S for the development of complex systems were dis-

cussed, introducing some common model-driven methodologies and simulation formalisms.

This dissertation was complemented with an explanation of crucial aspects in the M&S field,

as the different time bases used by simulation formalisms, an overview of how the complexity

of a model can increase through several resolution dimension giving rise to Multi-Resolution

Modeling (MRM), and the importance of verification and validation of models when creat-

ing reliable and robust systems. Finally, we summarized some opportunities that M&S is

bringing to two application fields highly related to the contributions of this thesis, the Inter-

net of Things (IoT) and Healthcare. A brief context was given for each of them, explaining

their main features and particularities, and exemplifying the potential benefits that M&S is

bringing to these fields through the enumeration of several related research projects.
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Chapter 3

Discrete Event System Specification

This chapter focuses on the DEVS formalism, since it has been adopted as the driving

force in the different M&S paradigms tackled in this thesis. We also describe the our

contributions regarding DEVS performance analysis and model verification. DEVS is a

modular and hierarchical formalism for discrete event systems modeling230 introduced in

1976 by Bernard P. Zeigler, emeritus professor at the University of Arizona. Based on Set

theory, it provides a framework for information modeling which gives different advantages

to analyze and design complex systems, such as completeness, verifiability, extensibility, and

maintainability. The parallel DEVS formulation (PDEVS) was introduced by Zeigler et al.39

in 1994 as an extension of the original DEVS protocol that introduced several improvements

concerning the definition of concurrent systems. Due to the high adoption of this updated

version of the formalism, the term DEVS is often used to refer to PDEVS formalism. This

also applies to the rest of this thesis, unless otherwise specified.

Over the years, the theory around this discrete-event formalism has been developed,

emerging new formalism extending the capabilities of the original DEVS definition, and

different M&S frameworks. Some examples of DEVS-based formalisms are Cell-DEVS212,

which combines the definition of Cellular Automata and DEVS for defining grid-shaped

cellular models based on a set of rules, or DynamicDEVS94, that addresses the dynamic

adaptation of the models as a response to changes in the environment. Several simulators

have been extensively used in the last decades for modeling and simulating systems using
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all these formalisms. They allow to easily implement models described in terms of the

DEVS theory to a computational model using custom libraries. Often, they also include

additional tools that simplify the definition, debugging, and visualization of DEVS models.

Some examples are GUIs to graphically design the models, powerful logging and transducers

systems, plugin support to implement new formalisms, simulation algorithms, and even

some V&V tools to implement different types of tests and improve the reliability of the

models. However, although these frameworks are based on the same DEVS definitions,

the specific implementations can differ significantly among them in terms of capabilities

and performance. This makes more important the initial simulator choice, since porting the

models between simulators is a time and resource-consuming task197. For this reason, several

efforts comparing the performance of the different publicly available DEVS simulators have

been presented, providing useful insight about which simulators are good choices depending

on factors like the inner complexity of the model structure.

This chapter is organized as follows. Section 3.1 gives a bit of context about the definition

of DEVS models, the main simulators of this formalism, and the importance of measuring

the engines’ performance. Section 3.2 explains in detail the architecture and features of

the xDEVS simulator, the main simulator on which we have focused our efforts. The next

section explains some of the contributions made in regard to providing robust verification and

performance measurement tools to DEVS simulators. Section 3.3 details the architecture and

implementation of a Unit Testing tool included in the Java branch on the xDEVS framework.

Section 3.4 describes the implementation of a constraint-based verification methodology

implemented in the DEVS simulation layer. Finally, Section 3.6 reports a revision that

we recently performed in the DEVStone benchmark, describing a metric to evaluate the

performance of Discrete-Event Simulators and overcoming the lack of a common model set

of the original definition.
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3.1 Background

First, a formal definition of DEVS model types and structure is provided in Section 3.1.1.

Second, Section 3.1.2 introduces the most popular DEVS-based M&S frameworks, placing

special emphasis on xDEVS, a framework used in most of the contributions of this thesis.

3.1.1 DEVS models definition

There are two types of DEVS models, atomic and coupled. Atomic models represent the

behavior of the system. They process the input events based on their current states and

condition, generating output events and transition to new states. Coupled models aggregate

two or more atomic and coupled models and connect them through explicit couplings. An

atomic model can be formally defined by the following equation:

A = 〈X, Y, S, δext, δint, δcon, λ, ta〉 (3.1)

where:

• X is the set of inputs described in terms of pairs port-value: {p ∈ IPorts, v ∈ Xp}.

• Y is the set of outputs, also described in terms of pairs port-value: {p ∈ OPorts, v ∈ Yp}.

• S is the set of states.

• δext : Q × Xb → S is the external transition function. It is automatically executed

when an external event arrives to one of the input ports, changing the current state,

if needed.

– Q = (s, e)s ∈ S, 0 ≤ e ≤ ta(s) is the total state set, where e is the time elapsed

since the last transition.

– Xb is the set of bags over elements in X.
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• δint : S → S is the internal transition function. It is executed right after the output

(λ) function and is used to change the state S.

• δcon : Q × Xb → S is the confluent function, subject to δcon(s, ta(s), ∅) = δint(s).

This transition decides the next state in cases of collision between external and inter-

nal events, i.e., an external event is received and elapsed time equals time-advance.

Typically, δcon(s, ta(s), x) = δext(δint(s), 0, x).

• λ : S → Y b is the output function. Y b is the set of bags over elements in Y . When the

time elapsed since the last output function is equal to ta(s), then λ is automatically

executed.

• ta(s) : S → <+
0 ∪∞ is the time advance function.

One the other hand, the formal definition of a coupled model is described as:

M = 〈X, Y,C,EIC,EOC, IC〉 (3.2)

where:

• X is the set of inputs described in terms of pairs port-value: {p ∈ IPorts, v ∈ Xp}.

• Y is the set of outputs, also described in terms of pairs port-value: {p ∈ OPorts, v ∈ Yp}.

• C is a set of DEVS component models (atomic or coupled). Note that C makes this

definition recursive.

• EIC is the External Input Coupling relation, from external inputs ofM to component

inputs of C.

• EOC is the External Output Coupling relation, from component outputs of C to

external outputs of M .

• IC is the Internal Coupling relation, from component outputs of ci ∈ C to component

outputs of cj ∈ C, provided that i 6= j.
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Given the recursive definition of M , a coupled model can itself be a part of a component in

a larger coupled model system giving rise to a hierarchical DEVS model construction.

The main simulation algorithm of DEVS usually considers two main issues, time syn-

chronization and message passing. Usually, the Simulator keeps track of the next event

time registered in its atomic model, while each Coordinator gives access to the minimum

next time among all its children simulators and coordinators. Using this approach, the main

loop can easily find out the nearest event time scheduled by the different child models of the

system. In this way, it is possible to improve the simulation performance by ensuring that

each iteration points to a simulation time associated with the next events to be processed.

The message passing usually takes advantage of the ports and couplings definition. The

different Atomic models, depending on their state and inputs, may generate outputs for one

or several output ports when executing their output function (λ). As part of the simulation

loop, after executing the suitable events of a specific iteration, the values contained in these

output ports are propagated to the input ports of the destination models specified by the

couplings. This process is performed in two steps to assure correct propagation through

the hierarchy of child models. First, the values corresponding to external output couplings

(EOC) are transmitted, using a bottom-up perspective (i.e. the models present in the leaves

of the hierarchy tree are considered first, and then going through the models in ascending

order until reaching the root model). After this, the EIC and IC couplings are executed,

using an top-down approach.

3.1.2 DEVS simulators: related work

There are several DEVS-based simulators in the state of the art, implemented in different

programming languages and with different capabilities. In the following we present briefly

some of the most popular, describing them and pointing out their distinctive points.

aDEVS (a Discrete EVent System simulator)152 is a C++ library for constructing

discrete-event simulations based on the Parallel DEVS and Dynamic DEVS (dynDEVS)
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formalisms. It was developed by James J. Nutaro, from the Oak Ridge National Laboratory

(ORNL). In previous papers, this simulator has shown very good performance175 77.

CD++211 is a toolkit for Discrete-Event modeling and simulation created at the Ad-

vanced Real-Time Simulation Laboratory (ARS) of the Carleton University, supervised by

Gabriel Wainer. It allows the definition of atomic models through the use of a C++ API.

Coupled models are defined using a custom specification language, that also can be used to

define Cell-DEVS models. CD++ allows the creation of DEVS models in a graphical way

using the CD++Builder Eclipse plugin. It supports classic, parallel, real-time, embedded

(E-CD++), and distributed simulations. A separate implementation of CD++ was created,

called CDBoost208. It uses the C++ popular set of libraries Boost to optimize its perfor-

mance. Although this provides good execution times, only one port per module can be used

and only one data type can be used for all the messages of the model. To solve this issue

they presented Cadmium22, a new C++17 compliant and template-based simulator, that

provides support for the PDEVS and Cell-DEVS formalisms and solves the aforementioned

issues. It has integrated features to facilitate model verification and supports multiple time

and message data types.

DEVSJava183 is a Java library developed under the supervision of B.P. Zeigler, H. Sar-

joughian and R. Lysecky. It provides an API for defining and simulating PDEVS, Dynamic-

Structure DEVS, and Real-Time DEVS models. The current version, DEVSJava 3.1, sup-

ports some additional features as automatic pruning of system entity structure, modeling

of differential equation systems, and cellular spaces. Moreover, several platforms have been

developed extending DEVSJava. A significant one is DEVS-Suite110, an M&S software that

provides a GUI to define, execute, and visualize results of PDEVS and CA systems.

James-II90 is a plugin-based framework created at the University of Rostock’s Mod-

eling and Simulation Research Group. It supports some DEVS variants (Classic, Parallel,

and Parallel Dynamic DEVS), and some additional formalisms as π-calculus, cellular au-

tomata, reaction models, and reaction-diffusion models. It is written in Java and provides
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a GUI to define the models and run experiments. New features can be written through the

development of plugins (as modeling formalisms, simulation algorithms, visualizers, etc.).

PowerDEVS23 is a general-purpose M&S tool for discrete event system specification

(DEVS) oriented to the simulation of hybrid systems. It allows to specify the behavior of

atomic models in C++, while the hierarchy of models is defined in a graphical way. Based on

this, the environment generates the code for the entire model and executes the simulation.

PowerDEVS also allows real time simulations and it is compatible with the Scilab numerical

package.

PythonPDEVS25 is a modeling and simulation package developed by the Modelling,

Simulation and Design Lab (MSDL) of the University of Antwerp, headed by Prof. Hans

Vangheluwe. It is implemented in Python and supports the Classic, Parallel, and Dynamic

Structure DEVS formalisms. It also allows us to perform distributed simulations, using Mes-

sage Passing Interface (MPI) as middleware. DEVSimPy, a graphical interface developed

at the University of Corsica, wraps this package and simplifies the PythonPDEVS model

design.

xDEVS175 is a multi-language M&S framework extensively used in the contributions

of this thesis. Section 3.2 provides a detailed description of xDEVS, describing the main

architecture of its DEVS simulator and several of the tools included in the framework to

improve the robustness of the models and facilitate their verification.

Table 3.1 summarizes this information, comparing the programming languages, release

year, supported DEVS formalisms, and their additional features.
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3.1.3 Performance measurement and optimization

Modeling and Simulation has been used for decades for studying and analyzing a great va-

riety of systems, simplifying the development workflows, and reducing the overall cost of

the projects. Nowadays there exist a wide variety of modeling techniques and tools, with

different possibilities and specific formalism support228. With such a diversity of tools and

formalisms, there are usually several suitable options that fit our interests and needs. The

particular choice depends on different variables, such as performance, complexity, or pro-

gramming language support. However, it tends to be a significant decision, as performance

among tools can differ by orders of magnitude, and changing between them is usually a

tough and time-expensive task. This is mainly due to the lack of interoperability standards,

which tie modelers with their legacy modeling tools197. In this regard, some state-of-the-

art proposals have been presented to provide mechanisms to enhance the compatibility and

reusability of the models145,188. However, porting models between popular M&S frameworks

nowadays keeps bringing the need for rewriting the models from scratch.

Since the definition of the DEVS formalism, the performance of DEVS simulators has

been a recurring research topic. One of the first proposals to improve their performance

was the Parallel DEVS (PDEVS) formalism presented Chow and Zeigler39, opening the

doors to DEVS parallel-executed simulations. Since then, several additional proposals were

presented. DEVS-C++227 is a high-performance environment that focuses on modeling

large-scale systems with high resolution. The authors simulate a watershed with different

degrees of detail to compare the speedup of using this tool on different High-Performance

Computing (HPC) clusters. Hu et al.93 proposed an alternative simulation engine for im-

proving the performance of large-scale cellular DEVS models by implementing a data struc-

ture that allows less time-consuming searches of active models. The performance analysis

consists of a comparison between state-of-the-art simulation engines and the new approach

when simulating two examples. Muzy et al.147 detected that the classical implementation of

DEVS simulators could lead to memory inefficiencies resulting from an excessive number of
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nodes147. The authors propose different simulation algorithms to overcome these deficien-

cies. To illustrate the obtained speedup, each of these contributions included a performance

comparative between previous simulation engines and simulation engines that implemented

the proposed algorithms. These comparisons measured the time required to simulate an

arbitrary model with a considerable degree of complexity. However, each contribution used

a different model to illustrate this performance enhancement. Depending on the model un-

der study, the number of events, couplings between components, and processing time of the

transition functions can vary significantly. Thus, a performance comparative taking into

account only one model is not enough to evaluate a DEVS simulation engine. Addition-

ally, as each contribution used a completely different model to illustrate its performance

enhancement, it is not possible to compare the performance enhancement achieved by these

contributions. The DEVStone benchmark70 was introduced in 2005 to overcome these lim-

itations. In the following, we describe this benchmark, presenting a brief overview of its

model types, and how they can be parameterized to vary its size and complexity.

The DEVStone benchmark

DEVStone70 is a synthetic benchmark devoted to automating the evaluation of DEVS-based

simulation approaches. It allows the generation of different types of models, each of them

specialized in measuring specific aspects of the simulation. This benchmark has become

popular over the years, and has been used by many researchers to evaluate and compare the

performance of different DEVS simulators175 63 204. DEVStone describes several synthetic

models that can be configured to vary their size and complexity. With this aim, they

present a recursive structure with configurable depth where all the levels contain equivalent

components and interconnections. The customization of the models is done through the

use of four parameters: (i) width, that affects to the number of components per layer, (ii)

depth, that specifies the number of nested coupled models, (iii) internal transition delay, and

(iv) external transition delay. These two types of delays execute CPU-intensive operations

during a fixed amount of time in the internal and external events of the atomic components.
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Figure 3.1: DEVStone models internal structure.

DEVStone describes four types of models (depicted in Figure 3.1). In the following we

describe its basic features and show how they scale depending of the specified depths and

widths, including the number of atomic models, External Input Couplings (EIC), Internal

Couplings (IC), External Output Couplings (EOC), and events. As the number of internal,
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external, and output events match for DEVStone models, these events indicate the number

of executions of each of these event groups.

• LI models: are the simplest models, with a low level of interconnections in their

coupled models.

#Atomic = (w − 1) ∗ (d− 1) + 1 (3.3a)

#EIC = w ∗ (d− 1) + 1 (3.3b)

#IC = 0 (3.3c)

#EOC = d (3.3d)

#Events = (w − 1) ∗ (d− 1) + 1 (3.3e)

• HI models: similar to LI models, but increases the number of internal couplings.

#Atomic = (w − 1) ∗ (d− 1) + 1 (3.4a)

#EIC = w ∗ (d− 1) + 1 (3.4b)

#IC =

{
(w − 2) ∗ (d− 1) ifw > 2

0 otherwise
(3.4c)

#EOC = d (3.4d)

#Events = 1 + (d− 1) ∗ (w − 1 +
w−2∑
i=1

i) (3.4e)

• HO models: variation of the HI models where all the atomic components in each

coupled module are connected to the coupled output port. It is worth noting that

these models present unconnected ports that may serve to detect malfunctioning in

the simulators when cleaning the values of ports without couplings.

#Atomic = (w − 1) ∗ (d− 1) + 1 (3.5a)

48



#EIC = (w + 1) ∗ (d− 1) + 1 (3.5b)

#IC =

{
(w − 2) ∗ (d− 1) ifw > 2

0 otherwise
(3.5c)

#EOC = w ∗ (d− 1) + 1 (3.5d)

#Events = 1 + (d− 1) ∗ (w − 1 +
w−2∑
i=1

i) (3.5e)

• HOmod models: it reproduces an exponential level of coupling and outputs model.

#Atomic = (w − 1 +
w−1∑
i=1

i) ∗ (d− 1) + 1 (3.6a)

#EIC = (2 ∗ (w − 1) + 1) ∗ (d− 1) + 1 (3.6b)

#IC = ((w − 1) + (w − 1)2 +
w−2∑
i=1

i) ∗ (d− 1) (3.6c)

#EOC = d (3.6d)

#Events = 1+
d−1∑
i=1

(1+(i−1)∗(w−1)+
w−1∑
j=1

j+(w−1)∗(w+(i−1)∗(w−1))) (3.6e)

3.2 xDEVS M&S framework

xDEVS175 is an object-oriented M&S framework developed in the Department of Computer

Architecture and Automation at the Complutense University of Madrid. Although xDEVS

started as a basic DEVS implementation in Java, nowadays it counts with three equiva-

lent implementations for the C++, Java, and Python programming languages. Moreover,

xDEVS includes several additional features to facilitate the development and fine-tuning

of models. Some examples are model flattening, a wrapper system to facilitate the inter-

operability of models, and some verification tools. During the development of this thesis,

several contributions have been made to this framework. The Python branch has been cre-

ated from scratch, providing it with parallel and distributed simulation mechanisms. Also,

we have developed a new simulation algorithm that reduces the overhead introduced by
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traditional implementation approaches. This is achieved by replacing the typical message

propagation present in DEVS simulators with a shared-memory approach, where the input

ports directly access the source message bags present in the output ports to which they are

connected. This approach has been included in the Python simulator, comparing both ap-

proaches and showing a great performance improvement. Moreover, we introduced several

tools that allow the verification of models from different perspectives, including unit testing,

a constraint-based simulation layer, and a metamorphic framework.

xDEVS aims to offer a common interface for developing DEVS models in several of the

most popular programming languages. Therefore, a modeler who has developed models in

one of these xDEVS simulators can easily adapt them or create new models in the other

simulators offered by this framework. To this end, xDEVS incorporates several wrappers

that allow the interaction with atomic components defined for other simulators. This inter-

operability effort tries to alleviate the heterogeneity of DEVS implementations and provides

a way to create models reusing components developed in different DEVS-based simulators.

Around this comprehensive DEVS M&S engine, we have added some utilities to improve

performance, as well as alleviate the maintainability and scalability in the creation of com-

plex models. This framework is available under the GNU Lesser General Public License v3.0

and provides support for specifying and running classic, parallel, real-time, and distributed

DEVS simulations. It organizes the object-based components in a hierarchical way and pro-

vides easily interchangeable coordinators for executing different types of simulations. The

different APIs keep a very similar structure and nomenclature, allowing to switch among

the different implementations without additional learning time investments.

Following the DEVS formalism, xDEVS presents a clear separation between the modeling

and simulation layers. A class diagram showing the relationship between these modeling and

simulation layers is shown in Figure 3.2. Although this diagram shows the general structure

of the simulator, there may be slight differences among the existing implementations. They

also come with some additional features, described in Table 3.2. These features have been
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implemented based on the requirements of different projects, and are progressively being

translated to all the xDEVS branches.

Table 3.2: Additional features included in the xDEVS simulator

xDEVS C++ xDEVS Java xDEVS Python

Constraints definition87 X X

Distributed simulations X X

Shared-memory ports X

Model flattening X X X

Unit testing86 X

DEVS models in xDEVS are created using two main components. Atomic components

define the behavior of the system. Coupled components contains other Atomic and Coupled

components, creating a model hierarchy. Both of them have Ports, that represent input/out-

put information points. To link two components of the model a Coupling can be created,

selecting the source and destination Ports. The information of Couplings is contained in

the Coupled elements that wrap the ports to be linked.

The simulation layer is based on the concept of the Abstract Simulator. Following

this concept we divide the simulation entities in Simulators and Coordinators. Each

Simulator is related with an Atomic component. Each Coordinator synchronizes their

child Simulators and Coordinators. This results in an equivalent hierarchy to the one

described for the modeling layer for structuring Atomic and Coupled models. Also, the

Coordinator children management changes in the different types of execution provided in

xDEVS: sequential, parallel, and real-time. These specific behaviors are defined as exten-

sions of the base Coordinator class. Table 3.3 summarize the coordinators available in each

of the xDEVS branches.

Figure 3.3 depicts how these layers are structured using the Experimental Frame - Pro-

cessor (EFP) model as an example. The EFP model is a common reference model where a
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Abstract
Simulator

+ timeLast: double

# timeNext: double

+ initialize(): void

+ exit(): void

+ ta(): void

+ lambda(): void

+ deltfcn(): void

+ clear(): void

Port<E>

+ name: String

+ parent: Component

+ values: List<E>

+ addValue(E): void

+ addValues(List<E>): void

+ clear(): void

+ getSingleValue(): E

+ getValues(): List<E>

Coupled

+ components: List<Component>

+ eic: List<Coupling>

+ eoc: List<Coupling>

+ ic: List<Coupling>

+ addComponent(Component): void

+ addCoupling(Port, Port): void

+ addInPort(Port): void

+ addOutPort(Port): void

+ flatten(): void

Coordinator

# simulators:
List<AbstractSimulator>

+ buildHierarchy(): void

+ simInject(Port, object): void

+ simulate(long): void

+ simulateTime(double): void

Atomic

+ phase: String

+ sigma: double

+ activate(): void

+ deltcon(): void

+ deltint(): void

+ deltext(double): void

+ holdIn(String, double): void

+ passivate(): void

+ passivateIn(String): void

Simulation
Clock

+ time: double

RealTime
Coordinator

# timeScale: int

Parallel
Coordinator

# numThreads: int

Component

+ name: String

Coupling

+ src: Port

+ dst: Port

Simulator

Figure 3.2: Class diagram of the xDEVS architecture.
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Table 3.3: Coordinators available in the different xDEVS implementations.

xDEVS C++ xDEVS Java xDEVS Python

Coordinator X X X

Parallel Coordinator X X

Real-Time Coordinator X

Generator component generates Jobs with specific period. The Processor receives these

Jobs and simulates some internal processing. Usually, the generation time is configured

to be less than the processing time in this model, and the Processor only accepts Jobs

when it is in the idle state. The Transducer is the component in charge of counting the

number of generated and processed jobs, as well as computing the ratio of processed jobs.

As shown in Figure 3.3a, the Generator and the Transducer are grouped in the EF coupled

component. Also, there is a root coupled model that contains the EF and the Processor

components. This modeling hierarchy is followed also in the simulation layer (as can be seen

in Figure 3.3b). A coordinator is created for each coupled component, and a simulator is

created for each atomic component. The arrows depict the dependencies among the simu-

lation entities. These dependencies between coordinators and simulators are the same that

the ones expressed between the coupled and atomic components of the model.

We have added several utilities to the pure DEVS M&S functionality, enumerated below:

• The constraints definition syntax87 allows checking arithmetic relations among the

values of the model output ports, even combining different hierarchy levels. In this

way, the reliability of the simulation is increased with the addition of intuitive JSON-

based definitions.

• Both Java and Python implementations also include distributed features that allow

them to interconnect models executed in different nodes through TCP network con-

nections.

• The shared memory ports, added to the Python xDEVS implementation, notably
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(a) Structure of the EFP model.

EFP
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Processor
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(b) Hierarchy of simulators and coordinators.

Figure 3.3: Experimental Frame-Processor (EFP) model.

decrease the simulation overhead by modifying the usual couplings definition. Instead

of propagating and copying the values in the ports, they reference the memory where

output values are stored in all the couplings destinations. Following this approach, it

has been proved that it is possible to reduce the synchronization overhead up to 40%

for this particular implementation46.

• Model flattening is a feature that reduces communication overheads by creating a

simplified and equivalent version of the models without coupled models in intermediate

levels of the hierarchy. This feature is supported by all xDEVS implementations.

• Finally, the unit testing tool integrated into the xDEVS Java branch allows us to

define, via XML definitions, both the internal states and the outcomes of specific

model components. Based on this definition, it automatically adds Generator and

Transducer modules to the model and executes it for checking the defined behavior in

the proper simulation times.
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xDEVS performance comparative

The performance of the xDEVS M&S framework has been compared with other similar

environments over time. This comparative can be used for developers to analyze the overall

performance of the simulator when dealing with specific model types, and for users when

studying the best platform for modeling their systems. Initially, the Java branch of xDEVS,

as the first implementation of this framework, has been compared with other simulators of

the state of the art, showing a great performance175. More recently, during the development

of this thesis, we analyzed the performance of the whole architecture, including the C++

and Python implementations, using the classic DEVStone benchmark70 (explained in detail

in Section 3.1.3).

For measuring the performance of xDEVS we have run all the DEVStone models with

a wide range of depth and width for each xDEVS implementation. These experiments

were run sequentially in a workstation with Ubuntu 18.04, Intel Core i7-9700, and 64GB

RAM. For LI, HI, and HO, the combinations from 200 to 600 with step 20 have been

generated for both of the parameters. For HOmod, due to its exponential complexity and

higher execution times, we considered the parameters from 30 to 100 with step 10. The

resulting simulation times have been compared against those generated by a DEVStone

implementation developed in the aDEVS simulator. Table 3.4 shows information of the used

engines and environments. Specifically, it includes the engine version and programming

language, as well as the interpreters or compilers used to run or compile the DEVStone

implementations. Also, it is worth noting that these simulation times do not include the

model creation and engine set-up times. It refers only to the simulation time.

In Figure 3.4 we can see a plot matrix representing a comparison of xDEVS vs. aDEVS

DEVStone simulation times. Each column corresponds to one of the xDEVS implementa-

tions (C++, Java, and Python), and each row represents a specific DEVStone model (LI, HI,
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Figure 3.4: DEVStone simulation times comparison between the different xDEVS imple-
mentations and aDEVS.
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Table 3.4: Engine versions and environments used for the DEVStone simulations.

Engine Version
Programming
language

Interpreter /
Compiler

adevs 3.3 C++17 g++ 7.5 (-o3)
xDEVS (1) 1.20181115 C++11 g++ 7.5 (-o3)
xDEVS (2) 1.20200321 Java OpenJDK 11.0.7
xDEVS (3) 1.1 Python3 CPython 3.6.9

HO, and HOmod). For each specific pair of these implementations and DEVStone models, a

plot contrasting the simulation times is shown. The X and Y axes represent the DEVStone

depth and width parameters used in the simulations. The Z axis corresponds to the relative

performance of the xDEVS simulators in comparison with aDEVS, specified as follows:

RelativePerformance(RP ) =
TaDEV S
TxDEV S

This performance is calculated with aDEVS as a reference for being the most efficient

DEVS simulator of the state of the art. With the use of this metric, we provide an insight

of how xDEVS performs executing the different model types while softening the machine

dependence of the simulation times. In the first column, we can see how the performance of

the C++ xDEVS implementation is in the range of 0.3-0.6 for the major part of the selected

models, obtaining better results as the models to be executed are more complex. The Java

xDEVS implementation obtains better results, obtaining times similar to aDEVS in the

most complex HI and HO models and improving its results in HOmod models. Finally,

we can see how the Python xDEVS has a considerably lower performance than the other

two xDEVS implementations, mainly due to the general differences of the programming

languages. It is worth noting that Python is an interpreted language, while C++ and Java

are compiled before the execution. However, we can see that the surface shapes are similar

to the other ones, obtaining worse performance ratios for small models and becoming better

as they get more complex. For a better understanding, Table 3.5 shows the performance

values for specific balanced configurations, for each model type and implementation.
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Additionally, as we focus on complex system, Table 3.6 shows a weighted average of

the performance values (RP ) obtained for all the considered model configurations (MC),

specified as follows:

WT (sim) =
∑

w,d∈MC

w ∗ d ∗ Tsim(w, d)∑
w,d∈MC w ∗ d

(3.7a)

RP =
WT (aDEV S)

WT (xDEV S)
(3.7b)

Table 3.5: Performance values for specific DEVStone balanced configurations.

Model Depth Width xDEVS (C++) xDEVS (Java) xDEVS (Python)

LI

200 200 0.491 0.154 0.049
340 340 0.592 0.325 0.063
480 480 0.632 0.387 0.065
600 600 0.623 0.526 0.065

HI

200 200 0.419 0.492 0.044
340 340 0.504 0.673 0.066
480 480 0.533 0.815 0.073
600 600 0.539 0.921 0.077

HO

200 200 0.369 0.488 0.043
340 340 0.458 0.667 0.060
480 480 0.466 0.809 0.067
600 600 0.481 0.895 0.071

HOmod

30 30 0.215 0.635 0.034
40 50 0.237 0.914 0.075
70 70 0.301 1.574 0.118
100 100 0.387 2.212 0.158
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Table 3.6: Weighted average of performance values

xDEVS branch LI HI HO HOmod

C++ 0.619 0.546 0.474 0.354
Java 0.397 0.810 0.801 1.939
Python 0.065 0.073 0.067 0.142

3.3 DEVS Unit Testing Verification

Verification and validation play a crucial role in the development of reliable and robust

simulation models. This concept is well-established in the software industry, where testing

is considered a fundamental activity in the development process, and plenty of validated

methodologies have been used for decades. It has been proved that an adequate testing

strategy helps to improve the quality of the final product, and reduce project costs and

development times. However, the simulation field is having a slow adoption of this type

of V&V methodologies, and the popular modeling frameworks often lack verification tools

powerful enough to be integrated effectively into the modeling workflow. As an effort to

contribute to this transition, we have developed a unit testing tool upon the xDEVS M&S

framework.

In the following sections, several aspects of the development of this tool are discussed.

First, some implementation details are described, including its methodology and architec-

ture. Then, the specification of test cases is briefly discussed.

Implementation

This unit testing tool has been developed upon the Java branch of the xDEVS simulator. Its

implementation has been made following the principles of the Experimental Frame (EF). An

EF defines a limited set of circumstances under which the system is to be observed or sub-

jected to experimentation, including observational variables, input schedules, initialization

settings, termination conditions, and specifications for data collection and compression155.
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The information of these five blocks is described following an XML syntax, which is used

in the parsing phase to automatically generate some additional modules and connect them

to the system. These modules are added to the system. They do not affect the behavior of

the system and are only intended to inject data into the system and to obtain the resulting

values. They can be of two types: (i) Generators, that generates the appropriate stim-

ulus based on the test case input, and (ii) Transducers, that receive the response values

of the different components to compare them with the expected output values. Both the

Generators and the Transducers can be connected to any module of the system under

test, regardless of its depth in the module hierarchy. Hence, they can be used to check the

behavior of internal components without the need to isolate manually the components.

Transducer1

Generator1

Coupled1 (Root)

Coupled2

[Testing Wrapper]

Atomic1
Atomic5

Atomic2

Atomic3

Atomic4

Generator2

Transducer2

Figure 3.5: Experimental Frame approach for performing DEVS unit testing.

To perform the verification, a UnitTester helper class was added to the xDEVS API.

This class receives as arguments an atomic or coupled module (usually the root coupled

module of the system) and the XML testing file describing the test cases. Internally, this

module is allocated inside a TestingWrapper module (as shown in Figure 3.5). This addi-

tional coupled module ensures that the root module of the test is a coupled module, and
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Figure 3.6: Exception message produced by the xDEVS unit testing framework.

includes methods to facilitate the addition of auxiliary components in all the levels of the

hierarchy. After that, the different expected states specified in the XML file are processed

based on their related simulation time, in ascending order. For each state, the simula-

tion time advances according to the difference between the current simulation time and the

next state to verify. For each state, the values in the transducers registering the suitable

port outputs are compared with the expected ones. Moreover, the state of the different

atomic modules of the system is also checked if needed. When some discrepancy is found,

an exception is raised indicating the expected and actual values, the simulation time, and

the component or port where the problem occurred. An example of this kind of exception

message is shown in Figure 3.6.

The whole verification process described above is summarized in Algorithm 1. This al-

gorithm shows how the testing wrapper containing the root coupled model is instantiated

(lines 1-2), the specified generators are created and added to the testing frame to produce

the test inputs (lines 3-6), and the suitable transducers are generated based on the moni-

tored ports (lines 7-9). After all these needed models are created, the unit testing procedure

initializes the environment (lines 10-11) and iteratively checks the specified information for

each of the monitored states (lines 12-23). For each one of the states, the time difference

between the current and previous state is calculated (line 13) in order to advance the sim-

ulation time (lines 14-20). Depending on the test configuration, the values registered for

each port correspond either to all the outputs generated since the previous state or the ones

generated at the exact state simulation time. Finally, all the port values and atomic states

are verified based on the test case specification (line 21), and the state simulation time is
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saved as a reference for the next iteration (line 22).

Algorithm 1 Unit testing verification process
1: root_entity ⇐ instantiate_root()
2: unit_tester ⇐ instantiate_unit_tester(root_entity)
3: for gen_path, gen_out_port,model_in_port ∈ input_generators() do
4: generator ⇐ instantiate_generator(generator_info.path)
5: unit_tester.add_generator(generator, gen_out_port,model_in_port)
6: end for
7: for out_port ∈ monitored_ports() do
8: unit_tester.add_transducer(out_port)
9: end for

10: unit_tester.initialize()
11: last_time⇐ 0
12: for state ∈ monitored_states() do
13: time_diff ⇐ state.time− last_time
14: if state.accumulative then
15: unit_tester.simulate(time_diff)
16: else
17: unit_tester.simulate(time_diff − 1)
18: unit_tester.clear_transducers()
19: unit_tester.simulate(1)
20: end if
21: check_transducers()
22: last_time⇐ state.time
23: end for

Definition of test cases

In the following, the structure defined for the test case files used in this unit testing tool

is presented. As shown in Figure 3.7, test cases are defined in XML files with two main

sections: Generators and States. The Generators section defines the modules used to inject

inputs into the system. Given the object-oriented paradigm used by most of the DEVS

simulation engines, these generators are defined as classes in the project structure and are

dynamically instantiated in the testing procedure. However, it is worth mentioning that this

method can be easily adapted to other non-object-oriented simulation engines. In this case,

since the target simulator is JAVA-based, each Generator element specifies the classpath of
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<UnitTest accumulateOutputs="false">

<Generators>
<Generator name="generator_name" type="path.to.the.generator_class"

port="out_port_name"
connectTo="path.to.other.module_port" />

<!-- ... -->
</Generators>

<States>
<State time="1328227962">

<Port name="comp1.comp2.comp3.out_port1">
<[OutputType] attr1="val1" attr2="val2" />
<[OutputType] attr1="val3" attr2="val4" />
<!-- ... -->
<[OutputType] attr1="val5" attr2="val6" />

</Port>
</State>

<!-- ... -->

<State time="1328235606">
<Port name="comp1.out_port1">

<[OutputType] attr1="val1" attr2="val2" />
</Port>

<Atomic name="comp1.comp2.comp3" phase="active" sigma="200" />
<Coupled name="comp1.comp2.comp4" simple_attr="val1"

obj_attr.simple_attr="val2"/>
</State>

</States>
</UnitTest>

Figure 3.7: XML-based syntax to specify test cases. It allows checking port outputs and
internal attributes in all the components of the DEVS simulation.

the Generator module and the input port to inject the produced values. It should also be

pointed out that several Generators can be defined. Although they are usually specified at

the same level as the root coupled model, it is even possible to place them in different levels

of the hierarchical design.

The States section includes information about the variables and outputs of a given

simulation time. Each State can incorporate port outputs and models state variables. Port
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elements have to include in the name attribute the complete path of the port to monitor.

This includes both the path of the module containing the port and the port name, in

a fully qualified syntax: component1.component2.componentN.portName. As seen in the

last state in Figure 3.7, it is also possible to inspect the values of Atomic models. It is

worth mentioning that these variables can be checked even if they are private in the class

design. The comparison will be made with a previous casting of the variable to a string

(allowing the comparison with the string-based representation of custom objects). Moreover,

inspecting attributes inside other object attributes is also possible, following a syntax like:

object1.object2.attribute_name.

The accumulateOutputs of the root UnitTest element allows us to specify how to record

the outputs in the Transducers. If it is set to false, the verification occurs over the values

generated at the precise moment specified in the state. On the contrary, if it is set to true,

the transducers accumulate all the values generated since the previous state. Moreover,

this flag can also be specified in individual State elements to overwrite the default behavior

specified in the root UnitTest element.

3.4 Constraint-based simulation layer for verifying DEVS
models

According to Zeigler74 and Sargent182, the analysis of the relationship between the concep-

tual model and the computerized model is identified as computerized model verification. For

Zeigler, the simulator ensures that a strict relation (i.e. simulation relation) exists between

the conceptual model and the computerized model (Mittal and Risco-Martín 2017). In this

work, we capture the idea of performing V&V at the simulation level by implementing a

constraint specification architecture inside the DEVS simulation layer. In this way, the con-

straint evaluation is transparent to the modeler and can be defined in separated files. We

allow the possibility of adding the constraints as a set of arithmetic and logical expressions,

similarly to how constraints are defined in mathematical programming. Moreover, these
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constraints are not only related to numeric variables, but also to complex data types.

In the following, we provide additional details about both the architecture and the im-

plementation of this constraint-based simulation layer. Moreover, we include a motivational

example to ease the understanding of the tool.

Architecture

This architecture bases its operation on the constraints defined in text files. These con-

straints are dynamic in nature, defining arithmetic and logical expressions based on the

values present in the output ports of the different modules of the model. Hence, they may

not only be related to the outputs of a single component of the system. A single constraint

can involve combinations of outputs of different components, even from different levels of

the hierarchical model structure.

{
"vars": {

<variable_name1>: <arithmetic_expr1>,
<variable_name2>: <arithmetic_expr2>,
...
<variable_nameN>: <arithmetic_exprN>

},
"constraints": {

"constraint_name1": {"expr": <logic_expr1>, "level": <"info"/"error">},
"constraint_name2": {"expr": <logic_expr2>, "level": <"info"/"error">},
...
"constraint_nameN": {"expr": <logic_exprN>, "level": <"info"/"error">}

}
}

Figure 3.8: Formal definition of the set of constraints.

The set of constraints that the DEVS model must satisfy are defined through JavaScript

Object Notation (JSON), as shown in Figure 3.8. These JSON definitions present two main

sections, namely vars and constraints. The vars section is optional and includes a collection

of arithmetic expressions based on the output ports of the model. Hence, each variable

defined here can represent a value contained in an output port or an arithmetic combination
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of the values present in different output ports. The constraints section is mandatory and

specifies the set of constraints that are checked in simulation runtime. They are verified for

each simulation step and are expressed as logical expressions. These expressions can directly

reference output ports, or use previously defined variables. These variables, or output port

values, can involve complex data types, as long as their corresponding operators have been

overloaded. Arrays of variables are also allowed. Operations over arrays require the same-

length for both arrays since the logic conditions are computed element-by-element.

As shown in Figure 3.8, each variable in the vars section is expressed as a pair of

< variable_name >:< arithmetic_expression >. The variable name must consist of

uppercase and lowercase letters, numbers, and underscores. Output ports must be used

as operators of the arithmetic expressions. These ports are identified following the full

DEVS path in the following format: coupled1.coupled2.....coupledN .atomic1.port1 , where

coupled, atomic, and ports are referenced based on the identifiers specified in the definition

of the DEVS model structure. If the port used in the expression generates arrays instead

of single values, it is necessary to indicate the slice of the array that is taken into account

for the verification. This is done by specifying the start and the end indexes, as follows:

coupled1.coupled2.atomic1.port1[< start_index >:< end_index >].

In the constraints section, each constraint has the following specification format: ′ <

constraint_name >′:′ expr′ :′< logic_expr >′,′ level′ :′< info/error >′, where:

• constraint_name: identifier of the constraint. It has the same restrictions as variable

names. This identifier is shown in the output messages when the expression is not

satisfied.

• logic_expr : this expression indicates the activation condition of the constraint. It can

contain arithmetic (’+’, ’-’, ’*’ and ’/’) and logical (’==’, ’ !=’, ’<’, ’<=’, ’>’, ’>=’,

’&&’ and ’||’) operators. As operands, the expression can contain the full path of a

port, a numeric value or boolean literal (true/false), or a variable defined in the vars

section. Some auxiliary functions can be used to deal with arrays, such as sum, len,
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min, and max.

• level : it specifies the severity level of the constraint. If is set to info, only warning

messages are produced when the constraint is not accomplished. If is set to error, the

constraint is considered critical and the simulation is stopped when it is not satisfied.

It is worth noting that constraints are evaluated when all the involved ports have pro-

duced an output. Hence, if at least one of the port outputs used as operands is not generated,

the constraint is not evaluated.

Implementation

Model

OutputRules

Simulation

Lambda Int. event

Ext. event

Rules eval.

Cleaning

δcon

Figure 3.9: DEVS simulation layer functioning. A step for evaluating the constraint rules
is introduced before the cleaning phase.

The proposed architecture has been implemented in the C++ branch of the xDEVS

simulation engine. Figure 3.9 depicts a scheme of the final implementation. The set of

constraints is initially given as a JSON file. When the simulation starts, the DEVS engine

performs the following steps: (i) execution of all the output functions (lambda), (ii) prop-

agation of the events produced and execution of the corresponding external, internal (or
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both) transition functions, (iii) evaluation of constraints, and (iv) cleaning of values in all

the input/output ports. Finally, the simulation engine goes to step (i) and starts again, until

the maximum number of iterations or the maximum simulation time limit is reached. As

can be seen, the constraints are repeatedly evaluated at step (iii), when all the events have

been propagated from the output ports to the corresponding input ports. At this point,

the outputs of the ports implied in the specified constraints are examined. Based on these

values and the constraints definition, some mathematical expressions are evaluated. When

a constraint is not satisfied, warning messages are displayed or the simulation is finished

(depending on the severity level of the constraint). Also, as the constraints are checked at

the simulation layer, the execution is transparent to the system engineer and independent

from the model definition. This aspect is very useful when verifying models, since the verifi-

cation process can be tackled once the model has been completely defined. On the contrary,

under a model testing approach implemented at the modeling layer, the verification process

must evolve with the definition of the model, which from our point of view, is not practical.

Also, it is worth noting that all the results of the constraints evaluation are also stored

in an output text file. These logs can be later examined or processed, allowing to generate

statistics about conditions compliance based on the warning messages.

Algorithm 2 shows the complete implementation of the model constraints checking im-

plementation in form of pseudocode. A maximum time of simulation is given as argument

(max_time). The simulation time is initialized at the beginning of the procedure (line 1)

and updated at the end of each iteration (line 20). In this way, the simulation continues

until the simulation time exceeds the specified maximum time. The actual xDEVS imple-

mentation allows us to specify a maximum number of DEVS iterations as well. For each

iteration, all the lambda functions of the model are called recursively (lines 3-7), producing

output values if necessary. Then, the values generated in the output ports are propagated

to the input ports indicated by the couplings (lines 8-9). As stated in Section 2, there are

three types of couplings in a DEVS model: (i) Internal Couplings (IC) connecting compo-
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Algorithm 2 Constraints DEVS M&S implementation
1: sim_time← 0
2: while sim_time <= max_time do
3: for comp ∈ components do
4: if sim_time = comp.next_event() then
5: comp.lambda()
6: end if
7: end for
8: propagateOutput()
9: propagateInput()

10: for comp ∈ components do
11: if sim_time = comp.next_event() then
12: comp.int_event()
13: end if
14: if comp.has_input() then
15: comp.ext_event()
16: end if
17: end for
18: evaluate_constraints()
19: clear_ports()
20: sim_time← next_event()
21: end while

nents that share the same first parent, (ii) External Input Couplings (EIC) connecting the

input ports of coupled modules to one or more of their child components, and (iii) External

Output Couplings (EOC) connecting output ports of components to one or more output

ports of their first parents. Following Algorithm 2, the propagation of values through these

couplings is separated into two functions. Firstly, IC and EOC couplings are propagated

using the propagateOutput function (line 8) following a bottom-up procedure. After this,

values in EIC are propagated using the propagateInput function (line 9) in a top-down way.

This separation ensures a correct propagation of values, grouping the values generated by

the different components in the input ports of the coupled modules to then transmit them to

the corresponding child components and allowing a correct constraint checking. Then, the

suitable transition event functions are called based on the simulation time and the presence

of values in input ports (lines 10-17), and the constraints are evaluated using the information
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present in the models’ ports (line 18). Both the output and input port values are cleared to

prepare the next iteration (line 19).

Motivational example

arr_gen

add_1

mult_3

arr_ops

sum

logger

Figure 3.10: Sample DEVS model. It is composed of a generator producing integer arrays,
some intermediate models performing simple calculations on them, and a logger registering
the results.

Figure 3.11 depicts a complete example of a JSON constraints file. This set of constraints

is applied to the DEVS model example given in Figure 3.10. The example comprises a

generator (arr_gen), that generates arrays of size 5 with random integer numbers. Some

basic operations are applied to those arrays. Inside the arr_ops coupled module, add_1 and

mult_3 atomic modules, respectively, add and multiply all the elements of the input arrays

by constants. The sum module adds up all the elements of the input arrays, returning an

integer as a result. All the outputs of these last three modules are sent to a logger module,

that shows the results.

The first two variables of the constraints file (Figure 3.11) simply get the values of the

two atomic modules inside the arr_ops module. The third one (gen_sum) computes the

sum of the original arrays generated by the arr_gen module. The fourth one (adder_mult)

sums the arrays contained in the first two variables. The last one, (mult_sum_0_3), returns a

scalar with the sum of the three last elements of the mult module output. In the constraints
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{
"vars": {

"arr_adder": "arr_ops.add_1.out[0:5]",
"arr_mult": "arr_ops.mult_3.out[0:5]",
"gen_sum": "sum.out",

"adder_mult": "arr_adder + arr_mult",
"mult_sum_0_3": "sum(arr_ops.mult_3.out[2:5])"

},
"constraints": {

"adder_eq_mult": {"expr": "arr_adder == arr_mult", "level": "info"},
"ms_lt_gs": {"expr": "mult_sum_0_3 < gen_sum", "level": "info"},
"check_mult": {"expr": "arr_mult > {59,61,3,4,5}", "level": "info"},
"check_mult_sum": {"expr": "mult_sum_0_3 >= 100", "level": "error"}

}
}

Figure 3.11: Example of a JSON-based constraints file.

section, four constraints are defined. They specify some basic rules that must be applied

over the system through logical expressions, using the previously defined variables and some

literals. The first three constraints are only informative, so when they are not fulfilled only

warning messages will be displayed. The last one is a critical constraint, and the simulation

will be terminated when it is not accomplished.

3.5 Metamorphic verification of DEVS-based systems

Although there are plenty of testing methodologies, they all examine the System Under

Test’s (SUT) behavior to find potential faults in its functioning. For this purpose, we

usually define a set of test cases containing the system’s inputs, preconditions and postcon-

ditions, and expected outputs. A fundamental aspect of generating these test cases relies

on obtaining the expected outputs based on the system’s input and current state. These

mechanisms are usually referred to in the literature as the test oracle. It can be gener-

ated in multiple ways, including modeling, specifications, or contract-driven developments.

When any technique can be applied for this test oracle’s automation, we have to rely on
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the knowledge directly provided by a domain expert. This is not a desirable situation in all

cases, as automating this test oracle is a critical part of the overall test automation, and the

dependence of domain experts can become a bottleneck in the testing process19.

Moreover, there also exist several types of systems that produce a complex output, and

for which it is difficult to deduce the expected outputs for given inputs and states. Some

examples of these systems are intensive numerical simulations, binary code generated by

compilers, or machine learning models. This problem is referred to as the oracle problem,

and it is recognized as one of the fundamental challenges of software testing8,19,186. In these

cases, instead of relying on specific input-output pairs, several alternative methods are ap-

plied. For instance, in N-version testing, additional implementations are produced covering

partially or totally the SUT’s functionalities. Then, these equivalent implementations are

executed with the same inputs, and the resulting outputs are compared. In this situation,

we know that there is a failure when the outcomes of these systems differ215. As a black-box

method, this testing technique does not allow testing the SUT flow of events148, and cannot

detect certain fault types such as coincidental correctness27. Moreover, its use incurs addi-

tional costs derived from the need to develop several equivalent implementations. Another

approach consists of the introduction of assertions in the SUT source code18. In this way, we

assure several constraints or behaviors in the form of boolean expressions that are checked

during the execution of the SUT. When the assertion expression is not accomplished an

error is raised, reporting a potential failure in the implementation. However, although this

methodology can be more natural than developing oracles from other approaches, it results

in the introduction of overheads in the system execution. It also harms the readability

and maintainability of the source code. In Statistical Hypothesis Testing (SHT), the SUT

is executed several times to obtain a set of outputs, which is aggregated using summary

statistics (e.g. mean, variance)164. These aggregated values are compared to values that

delineate the expected distribution. If there are significant differences we detect that there

is some malfunction. On the contrary, if they do not yield significant differences we can
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suppose that it is behaving correctly. The generalisability of this method is quite limited

since it is only applicable to non-deterministic systems133 and we must know the expected

output distribution132.

Metamorphic testing186 (MT) is a technique that determines the relation between the

input and outputs of a system instead of determining specific input and output pairs. For

instance, for a system reproducing the sin(x) function, instead of determining the exact

value for a specific x, we can take advantage of mathematical property for defining that

sin(x) == sin (pi - x) for each value x. In a system calculating the minimal graph distance

between two nodes A and B, the output must be equal to the case calculating the distance

in inverse order (i.e., from B to A). In an online shopping cart, the total price must increase

when we add an article. With this kind of relations, metamorphic testing not only alleviates

the oracle problem but allows straightforward automation of the testing process.

The basic process for the application of metamorphic testing can be summarized as

follows186:

1. Construction of the metamorphic relations: identifying the properties that relate the

inputs and outputs of the SUT, or several of its outputs. In some cases, these relations

may also include a set of preconditions that must be given before verifying the property.

2. Generation of source test cases: creating a set of test cases based on the identified

metamorphic relations. For this purpose, we can use several approaches, such as

random testing, fuzz testing, or specification-based techniques.

3. Execution of metamorphic test cases: execution of the SUT, checking pre-established

relations for the system’s outcomes. If a case violates the metamorphic relation, the

metamorphic test case is said to have failed.

In the last two decades, there has been a growing interest in metamorphic testing, ap-

plying it for the verification and validation of systems. Based on a survey developed by

Segura et al.186, around half of the contributions on this topic are oriented to the appli-
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cation of metamorphic testing to different problem domains. Among the rest, the most

popular topics address the construction of metamorphic relations (19%), integration with

other testing techniques (10%), and assessment of metamorphic testing (6%). From a soft-

ware perspective, MT has been successfully applied to perform V&V in a great variety of use

cases, such as bioinformatics programs36, machine-learning classifiers221, bug detection for

cybersecurity37, or web services195. In the M&S field MT has had less presence, although

increasing research on this topic is being presented in the last years. For instance, Sim

et al.189 applied metamorphic testing to verify the correctness of the physics equations on

a casting simulation. Lindvall et al.121 developed a framework for automated testing of a

simulated autonomous drone system using metamorphic testing principles combined with

model-based testing. Olsen et al.154 propose a framework and several guidelines to apply

MT for simulation validation, focusing on agent-based and discrete-events simulation mod-

els. Following these research efforts, we describe in the next section our implementation of

a multi-simulator metamorphic testing tool oriented to verify DEVS models.

3.5.1 M&S metamorphic verification tool

To deal with the oracle problem in developing simulation models, we have designed and

implemented a flexible metamorphic verification tool that uses simulators’ traces to check

different metamorphic relations specified with Python functions or external test case files.

Figure 3.12 represents the functioning of this verification tool.

First, the simulator executes the model with a predefined set of inputs. Consequently, the

outcomes are generated and stored in log files following the simulator’s specific traces syntax.

As this metamorphic tool bases its operation on input and output files, it is completely

independent of the simulator. It can be used for any simulator as long as it can store in

external files the simulation outcomes alongside the related simulation times. Hence, it

is neither restricted to DEVS-based environments, allowing the integration of non-DEVS

simulators simply adding a suitable IO parser. However, this flexibility also comes with a
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Figure 3.12: Metamorphic verification tool.

drawback: generating the simulation’s output files must be completed before starting the

metamorphic checking. This is especially relevant when executing large input sets, even

though it can be alleviated by creating smaller input sets and parallelizing the simulator

executions and the metamorphic testing.

Also, we have to define the metamorphic relations. This task that can be done in two

different ways (illustrated in Figure 3.13). On the one hand, we can define the relations

through Python functions, as shown in Figure 3.13a. Each of these functions receives two

dictionaries as arguments, containing the input and outputs of a specific simulation step.

These dictionaries have the port names as keys and their outcomes as values. This infor-

mation is extracted directly from the simulation traces with specific IOParser modules.

The modeler declares one or several assertions based on this information, covering a spe-

cific relation’s scope. To improve readability and maintainability, each relation should be

declared in a different function. To cover only specific cases, the user can filter the checking

requests based on the input and outputs, and even store different auxiliary information in a

per-relation cache. This cache is optionally received as a third parameter and keeps relevant

information among request calls. To save cache changes, the modeler only has to return the

updated dictionary as the output of the function. On the other hand, if the relations do not

need an intermediate cache among requests, we can define them in an external file as shown

in Figure 3.13b. In this case, we use rules in the form: Condition -> Assertion. Both of
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these terms are specified as boolean expressions, using the boolean operators and operands

in the form [in|out]:[port_name]. The first part of these operands defines when the rule has

to be checked. The second part defines the assertion itself, verifying specific properties of

inputs and output relations.

def relation_name(inputs, outputs):
# assertion1
# assertion2
# ...
# assertionN

def relation_name2(inputs, outputs, cache):
# assertion1
# assertion2
# ...
# assertionN

cache["somekey"] = somevar
return cache

(a) Python function.

# alarm_when_some_red_led
out:e1l1 == 1 or out:e2l1 == 1 -> out:alarm == 1

# lights_ir_dependencies_without_alarm
out:alarm == 0 -> out:r1l1 == in:ir1 and out:r2l1 == in:ir2
out:alarm == 0 and out:r1l2 == 1 -> out:r1l1 == 1
out:alarm == 0 and out:r1l2 == 1 -> out:r1l1 == 1

(b) Custom specification format.

Figure 3.13: Syntax for the definition of metamorphic relations.

A sample example using the declaration of metamorphic relations using this tool is shown

in Figure 3.14. It illustrates a simple model developed in CD++ to control a line follower

robot car with four InfraRed (IR) sensors to detect the path and four motors in the wheels

to control the movement. The registered motors’ output indicates their relative intensity,

from 0 to 1. Moreover, this robot’s model is defined so that both of the front motors are

activated at half speed to go straight. To turn, both of the motors of a side are activated at
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full speed, and the contrary front motor is activated at half speed. Hence, when the robot

moves, neither of the front motors can be stopped. The first relation captures this behavior,

checking with four assertions that all the motors are stopped when at least one of the front

motors is off. The second rule shows another relation example, checking that rear motors

are only activated when the corresponding front motors are active.

Figure 3.14: Sample example of metamorphic rules definition through Python functions.

This tool provides a simple and flexible way to define metamorphic tests when we face

the oracle problem. Moreover, its design allows compatibility with different simulators.

For integrating additional simulators, the modeler only has to implement specific IOParser

modules extracting the input and outputs from the traces files. Moreover, a Visualizer

interface is provided to simplify the visualization of simulation’ status over time, using

Python modules like Pillow, Matplotlib, or Seaborn. Several examples of the use of this

tool are available in the Github repository of the project84.
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3.6 Extending the DEVStone definition to objectively
evaluate the performance of Discrete-Event Simula-
tors

Since its introduction in 2005, DEVStone models have been used for analyzing plenty of

DEVS-based simulators. Some authors have used it as a metric to evaluate their DEVS

implementations204,208. Others used it for measuring the impact of original proposals for

performance improvement62. Several works have also compared some of the most relevant

DEVS-based simulators of the state of the art using this benchmark63,175. It can also help

new modelers by giving them a performance insight of the most popular DEVS simulators,

facilitating the task of selecting the simulator that fits best for their interests. Moreover,

it can be used for developers to compare their implementations and to evaluate the perfor-

mance of new proposals and methods for reducing the overhead introduced by the simulation

tools.

However, despite the growing popularity of this benchmark, a common metric has not

been proposed yet. As DEVStone defines different models and allows to parameterize them

to vary their size and complexity, authors have to select specific combinations of models

and parameters for comparing their implementations. In this way, some of them opt to

explore all the combinations in a predefined range. Others establish the reference using a

small set of heterogeneous models. Different DEVStone model variations have also been

presented to explore specific simulation aspects. Risco et al.175 proposed an HOmod model

variation called HOmem, that presents a straightforward mathematical way of incrementing

the traffic of events with respect to the three simpler DEVStone models. Van Tendeloo and

Vangheluwe205 introduced a HI model variation that removes the recursiveness present in the

DEVStone definitions. This alternative model is composed of four atomic models connected

to every other atomic model. Thus, they increment the number of interconnections and

show a quadratic growth in the number of events. In this model, a single parameter is

provided for defining whether or not collisions should happen, being able to measure the
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Model Depth Width

LI
200 200
200 40
40 200

HI
200 200
200 40
40 200

HO
200 200
200 40
40 200

HOmod
20 20
20 4
4 20

Table 3.7: DEVStone unit model set. All the models are configured to have 0 internal and
external transition delay.

bag merging algorithms if this is activated.

This variety of references makes it difficult the comparison between works and is contrary

to the concept of the benchmark as such. For overcoming this inconvenience, we performed

a revision of the DEVStone benchmark, in collaborative research with the ARS laboratory

of the Carleton University. This revision aims to solve the heterogeneity of references by

defining a common metric for evaluating DEVS-based simulators. For this purpose, the

concept of DEVStone as a performance unit is introduced, measuring the number of seconds

that a specific DEVS simulator takes for executing a custom model set in a particular

workstation. Table 3.7 summarizes the different model configurations included in this model

set. It contains three model configurations per each DEVStone model type. For the LI, HI,

and HO models there is a first model with a balanced shape that is configured to have

the same value, for both the depth and the width parameters. Moreover, two additional

unbalanced model configurations are included: (i) a deep model, that reduces the width of
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the balanced model to have the 20% of the original width, and (ii) a wide model, that reduces

the depth of the balanced model to have the 20% of the original depth. The three HOmod

models follow a similar pattern. However, due to the higher complexity of these models,

the parameters are reduced to 10% compared to the previous ones. Therefore, they include

a reduced balanced version, and deep and wide versions reducing to 20% each one of these

variables. In all these models, no internal or external transition delays are established. The

execution of each one of the models is triggered by inserting a single integer value in all the

input ports of their main coupled models. Also, it is worth noting that only the simulation

time is taken into account, discarding the model creation and engine set up time.

DEVS-based simulators comparative using the DEVStone benchmark

This section uses the benchmarking definition aforementioned to evaluate the performance

of some popular DEVS-based simulators. For each of them, a DEVStone implementation

has been implemented.

• aDEVS: useful as a reference, as it usually gets the best performance results.

• Cadmium: last simulator presented by the ARS research group, after CD++ and

CDBoost.

• PyPDEVS: it has two simulator implementations: (i) the main simulator that al-

lows more configurations, and (ii) the minimal version, that restricts the simulation

functioning to the basics and presents a higher performance. As recommended by the

authors, the execution has been made with the PyPy Python implementation.

• xDEVS: as it has support for different programming languages, three different im-

plementations have been developed. These languages are C++, Java, and Python.

For the Python implementation, we show the simulation times for the basic simula-

tion mode and include a recent feature for applying shared-memory techniques in the

model ports (the so-called Chained DEVS simulator).
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Engine Version Language
Interpreter /
Compiler

Events
container

Components
container

aDEVS 3.3 C++17 g++ 7.5.0 array std::set
Cadmium 0.2.5 C++17 g++ 7.5.0 std::vector std::vector
PythonPDEVS 2.4.1 Python3 Pypy 7.3.1 dict list
xDEVS (1) 1.20181115 C++11 g++ 7.5.0 std::list std::list
xDEVS (2) 1.20200321 Java OpenJDK 11.0.7 LinkedList LinkedList
xDEVS (3) 1.1 Python3 CPython 3.6.9 deque list

Table 3.8: Summary of simulators versions, main data types and used interpreters / com-
pilers.

All these simulators present port-based implementation. Therefore, the models include

message entry/exit points (ports) that are linked by specifying source-destination links.

(couplings). Some additional details about the simulators and interpreters/compilers used

for executing the simulations are shown in Table 3.8. The Events container column refers

to the data type used by the different simulators to store the set of new messages in the

ports (message bag). The Components container column refers to the data type used to

store the different children components in the coupled models.

DEVStone implementations for all these simulators were run in an Ubuntu 18.04, Intel

Core i7-9700, and 64GB RAM workstation, following the model set presented before. Ten

simulations were performed sequentially (using a single core), with no internal and external

transition delays. The results are shown in Table 3.9. The second column shows the accu-

mulated simulation time for all the models of a DEVStone model set, with a 95% confidence

interval. The third column shows the corresponding DEVStones per minute (i.e. complete

DEVStone model sets that can be executed per minute for each simulator).

The separated times, for each model in the model set, are shown in Tables 3.10 (LI and

HI models) and 3.11 (HO and HOmod models). The times of both tables are also depicted in

Figure 3.15, for a better comparison of the results (only excluding the non-minimal version

of PyPDEVS in the LI models’ subplot due to the high scale difference in comparison with
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Engine
Average seconds /
DEVStone

DEVStones /
minute

aDEVS 2.827 ± 0.016 21.226
Cadmium 77.208 ± 0.292 0.777
PythonPDEVS 130.002 ± 0.482 0.462
PythonPDEVS (min) 30.146 ± 0.11 1.990
xDEVS (C++) 7.61 ± 0.041 7.884
xDEVS (Java) 6.477 ± 0.052 9.264
xDEVS (Python) 73.249 ± 0.171 0.819

Table 3.9: DEVStone results for several popular DEVS M&S simulators.

the rest of the simulators). Based on these times, we can see how the simulators perform for

the different model configurations. aDEVS obtain the best performance in all the included

model configurations, followed by the C++ implementation of xDEVS in the major part

of the configurations. The non-minimal PyPDEVS simulator gets the worse time for LI

models, where performs up to 96.01 slower than the Python implementation of xDEVS

(second-worst time for this model type) and up to 129.55 slower than its minimal simulator

implementation. Also, due to the simple configuration of LI models, we can see that all the

simulators listed here obtain similar times for the deep and wide models. These comparable

results change in HI models, where wide models get times several times higher due to the

extra internal couplings. In the balanced configuration of HI models, we can see how the

C++ and Java implementations of xDEVS get times near the ones produced by aDEVS.

At the other end, we have again the base Python implementations (PyPDEVS and Python

xDEVS), with a reduced time difference for this model. In HO models, consequently with

the specification, wide models also get higher times compared to deeper configurations.

However, we can see how the Java implementation of xDEVS performs better than its

C++ equivalent implementation for the most complex models, including all the HO and

HOmod configurations. This increase in complexity also causes Cadmium to generate times

proportionally higher than the ones obtained in other model types, getting times comparable
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with the ones obtained by the base Python implementations.

In summary, the extended DEVStone benchmark allows to generate individual and ob-

jective performance ratings for specific pairs of DEVS-based simulators and workstations.

This ratings are based in the DEVStone unit, that corresponds to the sum of the simulation

times of a fixed and heterogeneous model set. Also, with the breakdown of simulation times

it is possible to highlight the strengths and weaknesses of the different simulators, which

can help both in the development processes of new implementation strategies and in the

selection of the most appropriate simulators for a specific project.
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Figure 3.15: Comparison of DEVStone simulation times for several simulators.

For a better understanding of how the different DEVStone model types contribute to the

results obtained for each simulator, we also show in Figure 3.16 the accumulated contribution

of each model type in the DEVStone benchmark results. In line with the previous results,

we can see how LI execution times represent a small percentage of the total time for all the

simulators except the PyPDEVS simulator (due to the high initialization and processing

time consumed by its non-minimal simulator). In the same simulator, we also see a small

HOmod time proportion, probably due to that high overhead introduced in the execution

of all the models. On the other hand, Cadmium presents both the minimal HI time and the

maximum HO time among all the simulators. From this fact, it could be deduced that the

increase in EOC couplings has a greater impact on this simulator (possibly related to its

template-based model definition).

In this chapter, we covered different aspects of Discrete Event System Specification

(DEVS), a simulation formalism present in the major part of this thesis contributions.
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Figure 3.16: Accumulated contribution of the different model types in the DEVStone bench-
mark results.

First, a formal definition of DEVS was provided, explaining how the behavior of atomic

models is controlled by a finite set of events, and how the models are combined through

coupled models to specify hierarchical structures. The main DEVS M&S frameworks of

the state of the art were presented, providing a comparison of their main features. Among

them, we dedicated a section to xDEVS, a M&S toolkit on which several contributions of

this thesis have been developed. We discussed its architecture, its different simulators, and

its complementary tools aimed at increasing the reliability and performance of their models.

Among these tools, there are several verification tools developed during the development of

this thesis. These tools bring different methodologies originally proposed in the software

industry to the M&S world, allowing the development of unit testing, constraints-based

verification, and metamorphic testing over simulation models. Finally, we described how

the DEVStone benchmarking definition was extended, enabling an objective analysis and

comparison among different DEVS-based simulator implementations.
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Chapter 4

Model-driven development of IoT
environments

The Internet of Things is a technological revolution that is expected to have a great impact

on the future of computing and communications. Nowadays, different application fields such

as mobility, industry, energy solutions, healthcare, or agriculture are already benefiting from

this revolution78,109,123. Aided by the constant evolution of Smart Cities and the progressive

introduction of intelligent devices in the daily life of individuals, the number of connected

devices is growing at a steady pace. International Data Corporation (IDC) estimates that

there will be 41.6 billion connected IoT devices, or things, generating 79.4 zettabytes (ZB)

of data in 202545.

However, this massive introduction of devices also leads to the appearance of new chal-

lenges. IoT environments are characterized by their heterogeneity, and the things have often

limited resources, including battery capacity, storage resources, or computational capabil-

ities. We can see simple devices like sensors, actuators, and RFID tags, but also complex

devices such as computers, self-driving vehicles, and autonomous robots13. This hetero-

geneity, along with runtime adaptability, reusability, interoperability, data mining, security,

abstraction, automation, privacy, middleware, and architectures are just some of the aspects

we need to consider at both design time and runtime40.

The development of successful IoT scenarios requires previous extensive analysis. Sub-
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optimal application design can reduce the usability of the entire infrastructure, leading to

inconveniences as high latencies or overuse of edge devices76. Controlled simulation en-

vironments allow us to explore different aspects such as application designs, deployment

architectures, and resource management policies.

In this chapter, several aspects of these kinds of simulations are discussed. Section 4.1

describes some of the IoT simulators available in the state of the art. Section 4.2 describes

our collaboration in the development of the SFIDE data center simulator, as part of the

collaboration with the Embedded Systems Laboratory at the EPFL. This simulator focuses

on studying the impact of workload allocation and cooling strategies on the overall power

consumption of the data centers. As a result of the collaboration, three main contributions

have been done: (i) a complete Java-based redesign of the environment, (ii) compatibility

support with the SLURM workload manager, and (iii) extension of the SFIDE environment,

enabling the specification of IoT environments to study the energy footprint derived of the

network communications and final devices. Finally, Section 4.3 describes an optimization

IoT scenario, where we study the impact that the specific locations of Micro Data Centers

have on the energy consumption of the infrastructure. We describe in detail the whole

workflow, including the extraction of the building layouts of the selected urban area, the

modeling of the population behavior, and the implementation of the IoT scenario itself using

a data stream-oriented IoT framework.

4.1 Related work

In this section, we summarize some of the most popular IoT simulators, that allow us to

describe IoT scenarios from many different perspectives.

• CloudSim29 is an open-source simulation framework developed at the Cloud Comput-

ing and Distributed Systems (CLOUDS) laboratory of the University of Melbourne. It

allows modeling, simulation, and experimentation of Cloud computing infrastructures

and application services. It also includes an end-to-end Cloud network architecture
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that utilizes BRITE topology135 for modeling link bandwidth and associated laten-

cies. This framework has been used as a basis to develop a multitude of specialized

frameworks.

• EdgeCloudSim192 is an edge-oriented simulator developed at the Department of

Computer Engineering at the Bogazici University. It extends the functionality of

CloudSim so that it can be used for Edge Computing scenarios. Through a modular

architecture, it provides support for a variety of functionality such as network mod-

eling specific to WLAN and WAN, device mobility model, realistic and tunable load

generator. It also supports the definition of scenarios with several Edge server layers,

properly coordinated with different cloud resources. To facilitate these definitions, it

also includes orchestration modules to model the organization of the different types of

resources.

• EmuFog134 is an an extensible emulation framework for the definition of Fog Com-

puting scenarios. It allows the definition of fog infrastructures and emulates real

applications and workloads by embedding Docker images in the scenario nodes. All

components of EmuFog are extensible and replaceable by custom-built components

designed for specific scenarios. Also, it allows loading the designs performed in net-

work topology generators as BRITE135, facilitating the import of real-world topology

datasets.

• FogNetSim++168 is a toolkit for the modeling and simulation of distributed fog en-

vironments. It is built on the top of OMNeT++, a discrete-event simulator oriented

to the development of network simulators. It allows us to incorporate customized

mobility models and fog node scheduling algorithms, and manage handover mecha-

nisms. It bases the construction of IoT scenarios on three main types of modules:

(i) end devices, (ii) fog nodes, and (iii) brokers. In these scenarios, the end devices

contain the actual sensors and generate the processing requests to upper layers. The
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broker receives these requests and sends them to the suitable fog nodes. The broker

nodes are also connected to a backbone network which connects them to cloud data

centers. FogNetSim++ allows researchers to incorporate their request scheduling and

handover algorithms, simplifying the study of the energetic impact of different delivery

strategies.

• FogTorch28 is a Java tool for the definition of QoS-aware IoT applications to Fog

infrastructures. It divides the definition of the scenario into three levels: (i) IoT

devices, (ii) one or more layers of Fog computing nodes, and (iii) one or more cloud

data centers. The Cloud concept is simplified in the FogTorch simulation model,

understood as a virtually unlimited amount of hardware capabilities. This limitation

constrains the scenario definition, but eliminates the need to describe particular cloud

topologies and infrastructures and simplifies the definition of any SaaS, PaaS, or IaaS

service. FogTorch allows specifying different Quality of Service (QoS) profiles based on

pairs of latency and bandwidth values, associating them with specific network links.

• GloudSim53 is a distributed cloud simulator that aims to reproduce the Google cloud

environment, allowing to define its cluster infrastructures and simulate different types

of events. It allows defining dynamic resource consumption and priority levels for the

emulated jobs and reproducing kill/evict events. It is compatible with the Google

traces format and includes several interfaces and scripts to extract the information

from these CSV trace files. Among other parameters, it allows us to obtain the CPU

and memory consumption, the number of simultaneous active jobs, and the workload

processing ratio. GloudSim has been published under the GNU GPL v3 license.

• iCanCloud151 is a simulation platform aimed to model and simulate cloud comput-

ing systems. The main objective of iCanCloud is to predict the trade-offs between

cost and performance of a given set of applications executed in specific hardware,

and then provide users helpful information about such costs. It allows modeling the
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cloud architecture, includes a hypervisor module for managing and comparing dif-

ferent brokering policies, and enables the extraction of detailed energy consumption

information for each hardware component of the whole infrastructure. We can also

customize our policies to analyze the impact of energy consumption on the overall sys-

tem performance, facilitating the study of trade-offs between performance and energy

consumption.

• iFogSim76 is a toolkit for modeling and simulation of resource management techniques

in the Internet of Things, derived from the CloudSim framework. It allows the study

of different resource management policies applicable to fog environments concerning

their impact on latency (timeliness), energy consumption, network congestion, and

operational costs. It simulates edge devices, cloud data centers, and network links

to measure performance metrics. One of its main contributions is the Sense-Process-

Actuate, which allows defining scenarios where sensors publish data periodically or

based on events, and devices in the fog layer subscribe to these data streams.

• IoTSim231 is a CloudSim-based IoT simulator that allows to specify and execute

IoT big data scenarios. It organizes this specification in six layers: (i) the Core

Simulation Engine Layer provides core functionalities as the creation of cloud elements,

communication among components, and management of the simulation time, (ii) the

CloudSim Simulation Layer provides support for modeling and simulation of Cloud-

based simulation environments, (iii) the Storage Layer includes different storage types

as Amazon S3, Azure Blob Storage, and HDFS, (iv) the Big Data Processing Layer

the processing of the data generated by the IoT devices through Map-Reduce or a

streaming computing model, and (v) the User Code Layer includes several utilities to

facilitate the definition and validation of IoT scenarios.

• Mercury32 is a Modeling, Simulation, and Optimization framework to analyze the

dimensioning and the dynamic operation of real-time fog computing scenarios. It has
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been developed by the Integrated Systems Laboratory at the Technical University of

Madrid, upon the Python xDEVS API. It allows to specify 2D Mobility scenarios

and includes a 5G-based model. It organizes the scenario definition in six layers: (i)

IoT devices layer, (ii) edge federation layer, (iii) Access Points (APs) layer, (iv) radio

interface layer, (v) core network layer, and (vi) Crosshaul layer. It also includes utilities

to ease the process of selecting the APs and Edge Data Centers (EDCs) optimal

location and generating different output plots to study the results of the simulations.

We have used this framework to analyze the power consumption of several data centers

receiving several processing requests of IoT devices in a WBSN. This contribution is

detailed in Section 4.3.

• SFIDE166 is a simulation framework developed by the Embedded Systems Laboratory

at the École polytechnique fédérale de Lausanne (EPFL, Switzerland). It allows the

customization of the data centers architecture, including both the servers arrangement

in the room, the cooling equipment, and the characterization of the workloads to be

executed. The real benefit of SFIDE resides in its capability to implement, test, and

assess arbitrary workload allocation strategies and cooling control policies. During the

development of this thesis we have contributed to the development of this simulator,

adding several new features. We detail these contributions in Section 4.2.

• YAFS (Yet Another Fog Simulator)116 is a fog computing simulator developed at the

Department of Mathematics and Computer Science of the University of the Balearic

Islands (Spain). It is implemented through Simpy, a simulator for the generation

of discrete-event scenarios, and focuses on the analysis of applications design and

deployment through the use of customized and dynamical strategies. YAFS allows

representing the relationships among applications, network connections, and infras-

tructure elements, enabling the integration of application modules, workload location

strategies, and path routing and scheduling. The resulting computational and trans-

mission results can be exported as CSV files.
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Table 4.1 summarizes these IoT simulators, showing some of their features and capabil-

ities. After the simulator name, it is shown the programming language in which they are

implemented, and its support for defining Edge, Fog, and Cloud computing infrastructures.

The next columns show if they include a graphical GUI to graphically design the scenarios, if

they include Map-Reduce computing strategies, and if they allow defining the network com-

ponents and links. Finally, the last two columns indicate if the simulators allow extracting

raw data or visualizations related to the power consumption and network communication

latency, respectively.
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4.2 SFIDE: a simulation infrastructure for data centers

The DEVS-based SFIDE (Simulation Framework and Infrastructure for Data cEnters) sim-

ulator166 allows researchers to track and analyze the power consumption and thermal be-

havior of the servers and data centers when running different workload types. SFIDE allows

the customization of the data centers architecture, including the server arrangement in the

room, the cooling equipment, and the characterization of the workloads to be executed. For

defining custom servers, we can extend some of the predefined models or create new models

from scratch. These models define how the servers behave in terms of performance and

power consumption based on the workload type. SFIDE also allows simulating the cooling

both inside the data center room and the overall facility level.

The real benefit of SFIDE resides in its capability to implement, test, and assess ar-

bitrary workload allocation strategies (i.e., algorithms to decide the specific allocation of

incoming jobs to servers) and cooling control policies. These two factors dramatically im-

pact the overall energy consumption of the facility and have been widely analyzed in the

literature4,117,163.

Inside the SFIDE simulation model, there are two main coupled models: (i) the Room,

representing all computing infrastructure and the allocation policies, and (ii) the Cooling,

controlling the temperature of the whole data center and establishing cooling policies. Apart

from that, there are three atomic modules in the root module of the simulator: (i) the Job-

Generator, that loads the characterization of computational jobs, (ii) the Weather module,

that simulates the room temperature variances, and (iii) the EnergyCalculator, that groups

the efficiency and performance stats to generate a report. This components and its inter-

connections are represented in Figure 4.1.

The jobs generated in the JobsGenerator model are directed to the Allocator, inside the

Room. This module has the responsibility of allocating incoming jobs to specific servers.

SFIDE has several types of Allocator modules, each one following a different allocation pol-

icy. It is also possible to implement custom Allocator modules when none of the available
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Figure 4.1: Root view of the SFIDE simulator model.

policies suit a specific use case. When a job is assigned, it goes through the corresponding

IRCs (In-Row Cooling) and Racks until reaching the suitable Servers. There, the consump-

tion is computed, changing parameters as CPU temperature or airflow accordingly. All the

information about the status of the servers is recovered by the Rack modules and is commu-

nicated to the Cooling model. With this grouped information, it takes actions to stabilize

the temperature when needed. For that, it disposes of two Atomic models: a Chiller and a

Pump.

All the data produced both in the Room and the Cooling modules are grouped by the

EnergyCalculator. This model generates reports with the status of the data center for each

simulation step. In this way, it allows analyze and compare several allocation policies and

architecture configurations straightforwardly, without having to test them directly in a real

environment.

Originally, the SFIDE simulator was written in the C++ programming language. How-
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ever, due to specific requirements of some related projects, we reimplemented the whole

model architecture in Java. With this new version, several design aspects were improved,

and two major features were introduced in the simulator. The following sections describe in

detail these improvements. Section 4.2.1 describes how we designed support for allocating

incoming computational tasks via SLURM, one of the most popular workload managers

clusters and data centers. Section 4.2.2 shows how we extended the SFIDE original defini-

tion, allowing the specification of IoT scenarios, connecting the data centers and end nodes

through a network layer. In this way, we can include models representing the intermediate

communication protocols and the behavior of the end nodes. As a result, we obtain more

detailed reports, including information as the power consumption and the data rate in the

intermediate communications, or the tasks requested and processed by the different IoT

devices.

4.2.1 SLURM Workload Manager Integration

SLURM is an open-source, fault-tolerant, and highly scalable cluster management and job

scheduling system for large and small Linux clusters185. Its key functions include (i) resource

access allocation to specific users for a certain duration of time, (ii) a framework for starting,

executing, and monitoring work (normally a parallel job) on the set of allocated nodes, and

(iii) contention for resources arbitration by managing a queue of pending work. Moreover,

its great variety of plugins can be used to extend its basic functionality.

As part of the collaboration with the Embedded Systems Laboratory at EPFL, SLURM

compatibility was added to the SFIDE simulator. This compatibility has been developed

with a co-simulation perspective, using a SLURM simulator extending the original workload

manager190 and synchronizing the simulation times of both simulators. Taking advantage

of the workload allocation encapsulation of the SFIDE environment, a new type of allocator

was created to perform the communications with the SLURM simulator and interpret its

results. The overall process to perform SLURM-based workload allocations is depicted in
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Figure 4.2. First, a SLURM instance has to be configured. For greater ease, a Docker

container with an operative SLURM instance was included in the SFIDE repository. Once

started, this SLURM instance needs to reflect the same data center architecture as the one

present in the SFIDE simulator. This conversion is made through a custom Python script.

The files generated by this script are simply uploaded to the SLURM container, in the

proper SLURM configuration directory.

SLURM ContainerSFIDE

Allocation
Engine

SLURM /
SFIDE

interface

Job
Generation

SLURM
Allocator

Room resources

Job
information

Job ID +
allocation

information
Energy

Calculator
Plugins

UsersResources

Figure 4.2: SLURM workload allocation support in the SFIDE data center simulator.

The communication between the simulators is done through sockets. The open-source

SLURM simulator was modified to listen to workloads specifications in a particular port.

The SFIDE SLURM allocator is configured to send the jobs to that particular port. These

jobs are translated in the SLURM simulator to a proper format and introduced in the

allocation engine, previously configured with a suitable architecture based on the converted

file. The identifier of the workloads, as well as the allocation information, is sent back to

the SFIDE simulator. Based on it, SFIDE allocates the workloads to the specific servers.

The rest of the functions of the SFIDE simulator works as usual, regardless of the chosen
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allocation strategy. If the workloads can not be allocated in a specific simulation time, the

SLURM simulator advances it until enough resources are freed, communicating the new

simulation time for synchronization purposes.

This SLURM compatibility enriches the SFIDE simulator, extending it with the complex

allocation strategies that can be specified in SLURM. In this way, further performance and

power consumption studies can be performed in SFIDE, selecting the best cooling and server

architectures. Moreover, the use of this SLURM module is straightforward, only having to

follow three simple steps: (i) generate the SLURM configuration files with a Python script

based on the SFIDE architecture specification, (ii) configure the SLURM instance with these

files, and (iii) configure the SLURM-based allocator in the SFIDE datacenter.

4.2.2 IoT environment for defining flexible and scalable Edge/Fog/-
Cloud scenarios

As aforementioned, SFIDE was originally developed as a data center simulator. However,

during our collaboration, we proposed to extend this perspective with a more detailed sce-

nario, where IoT devices and data centers can communicate over the network. Therefore,

we distinguish three separate layers: (i) a Data Center Layer, (ii) a Network Layer and,

(iii) a Things Layer. This separation is depicted in Figure 4.3. In this way, we allow the

definition of multiple data centers and end devices, and get some insights relative to the

intermediate communications over the network.

This architecture also allows proposing more complex scenarios where the processing of

the tasks produced by the end nodes is distributed between Edge and Cloud computing.

In this way we can study the performance of the overall system by calibrating the ratio

of tasks sent over the network, analyzing aspects as the IoT device battery life, or the

usability of the service. We can even specify several Micro Data Centers (MDCs) to be

used in hybrid Fog-Cloud scenarios. This allows us to specify scenarios where IoT devices

send processing tasks to the Fog, which in turn may forward some of them to the Cloud,

based on some infrastructure or power requirements restrictions. The intercommunication
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Figure 4.3: Layers of the SFIDE simulation.

of the things and data centers is represented through a network layer. We can configure this

network with different types of connections, that represent different links related to specific

network protocols. This concept is depicted in Figure 4.4. In this example, when Device

1 sends a task to DataCenter 1, it has to go through the C3 and C1 connections. Hence,

the generated delay and energy consumption values will be the sum of the ones generated

by these two connections. Although there are already many available connections in the

framework related to high-level representations of well-known technologies as Bluetooth or

Ethernet, the modeler can customize them or even create new connection definitions that

fit better in a particular use case by using the interfaces provided by SFIDE.

Backbone

Network layer

C2

DataCenter 1
C1

DataCenter 2

C3
Device 1

C3
Device 1

... ...

Figure 4.4: Network interaction among components of the Data Center and Things layer.

In this way, each data center or device is connected to the backbone of the network with

a connection representing a specific link type and network protocol. In this representation,

the Backbone model is only responsible of managing the incoming and outcoming data,
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and registering the delays and power consumption relative to the communication links. In

this SFIDE IoT environments, all the information sent through the network (represented

by the NetModel component) is encapsulated as network packets (NetPacket components).

These packets accept any type of payload and include useful tracing information as packet

identifiers, source and destination nodes, and packet sizes. In a real network, a packet going

from a source node to a destination node goes through several connections. For the sake

of simplification, in this model, a single connection is specified for each end-point node.

These connections link the end nodes, either devices in the Things layer or data centers,

with the network backbone. This Backbone, although is not taken into account in terms of

delays and energy consumption, serves as a centralized point for packet routing and statistics

calculation.

Under this scheme, we can straightforwardly communicate data centers and final devices

among them. In this way, an intermediate fog data center can forward specific tasks to the

cloud when they require further computational resources or the resources are overloaded.

Two end devices of the Thing layer can also connect to each other defining the proper com-

munication protocols (as Bluetooth, ZigBee, SigFox, etc.), exchanging information without

the need of intermediate data centers. If an IoT end device interacts with both a data

center and other devices, several separate connections have to be defined in the network

model representing the different network links.

For the development of the behavior of the things in SFIDE, the modeler has to extend

an interface defining the basic behavior of these devices. It is also possible to extend some

of the predefined IoT devices included in SFIDE as illustrative examples. This things are

highly dependent on the use case and usually have to be customized based on the scenario

specifications. A typical scenario workflow would imply a periodic generation of tasks in the

devices belonging to the things layer. Some examples could be smart cars in a Advanced

Driver-Assistance Systems (ADASs), or monitored patients in Wireless Body Sensor Net-

works (WBSNs). When the end devices want certain tasks to be executed at data centers,
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they encapsulate them as packets using the SFIDE specifications and send them over the

network including the destination device. The data center receives the packet, which is then

forwaded to the server selected by the Allocator model. After processing the task, the

server can generate a response to the source device. For this, the modeler has to specify a

custom behavior in the server definitions based on the workload type and source originator

of the task, overriding a specific method available in the Server interface for this purpose.

As a response, we can also generate multiple packets to notify additional devices of the

scenario of specific events, creating more complex scenarios. The resulting packets would

go back through the network in a similar way to the suitable end devices. All these network

interactions are recorded by the Backbone of the network model, generating reports with

specific information as the simulation time, source and destination devices, packet sizes,

delays, and power consumption.

4.3 Healthcare Infrastructure Optimization Scenarios

When considering the usability and performance of an IoT scenario, several parameters may

be considered. From an end-user point of view, some aspects like the perceived latency, the

battery life of the nodes, and the overall cost, have a critical impact on the acceptance of IoT

products. The optimization of these key aspects can be tackled when developing the IoT

scenario by optimizing the power consumption, the processing workflows, and the required

bandwidth. The application placement, communication protocols, or job allocation policies

are some of the decisions that can alter the usability and performance of the final product.

For instance, assigning more processing responsibilities to the end-nodes can highly reduce

the latency perceived by the users, but significantly impact the battery life and cost of the

product. On the contrary, delegating processing to cloud services can lead to substantial

cost savings and higher reliability and performance, but its use implies the acceptance of

higher latency and more complex system architecture. Usually, fog computing offers a good

trade-off between these two approaches, and it is especially suitable when developing low
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latency or real-time applications. A good example is healthcare IoT systems, which are

usually latency-sensitive, show low response time, and produce a large amount of data146.

As a result, intensive use of fog computing has been made in this area. For instance, Tuli

et al.199 presented a fog-based smart healthcare system for automatic diagnosis of heart

diseases using deep learning techniques. The data coming from different IoT devices is

processed through a fog service for deducing the health status of patients and identify heart

disease severity. Sahoo et al.181 designed a stochastic prediction model to foresee the future

health condition of the groups of correlated patients based on their current health status.

Aazam et al.2 presented a resource management model for IoTs based on MDCs, covering

resource prediction, customer type based resource estimation and reservation, and pricing

estimations. Jararweh et al.101 developed a software-defined based framework to allow

mobile cloud computing (MCC) services to integrate different Software-Defined Systems

(SDSys) in a Mobile Edge Computing context. This software-based specification of systems

abstracts the complexity of large infrastructure deployments and is especially useful for

content delivery networks, crowdsourcing, traffic management, or E-health, among others.

In IoT healthcare systems, one of the most important involved methods is monitoring146.

A typical paradigm in this kind of scenario is the M&S of crowds. The representation of

the behavior of a population or a group of individuals allows the development of realistic

scenarios as a basis for evaluating new technologies or methodologies. Multiple techniques

are used235 to represent this behavior, such as agent-based models, flow-based models, or

particle system models. Currently, several platforms exist to simplify this crowd represen-

tation. Simulation of Urban MObility (SUMO)20 (shown in Figure 4.5b) is an open-source

traffic simulation package including net import and demand modeling components. It pro-

vides direct compatibility with OpenStreetMap shapefiles and allows modeling of vehicles,

public transport, and pedestrians. Pedestrian Dynamics191 is a simulation environment

designed to model pedestrian infrastructures or environments. It allows importing build-

ings geometry from multiple formats and generating 2D, 3D, and VR virtual environments.
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Figure 4.5a shows an scenario example developed with this software. Simulation of such

large scenarios involving crowds usually requires intensive computational resources to be

processed. These resources, in some cases, far exceed the capabilities of single workstations,

being more suitable for its execution in clusters or data centers.

(a) Pedestrian Dynamics. (b) Simulation of Urban MObility (SUMO).

Figure 4.5: Example scenarios designed with urban simulation packages.

4.3.1 Use Case: Optimizing Micro Data Centers location for a
Wireless Body Sensor Network implementation

We consider an ambulatory monitoring system scenario where a group of migraine patients

wearing health monitoring devices sends periodically some hemodynamic information to

Micro Data Centers (MDCs). This information is processed by the MDCs, which calculates

the probability of new pain phases through previously uploaded predictive models. The main

goal of this research consists in the study of the impact that different MDCs geographical

localizations have on the overall power consumed by the data centers.

The architecture of the ambulatory monitoring scenario is represented in Figure 4.6. The

monitoring devices carried by migraine patients periodically obtain several hemodynamic

variables and send them to their smartphones. Through an app and with a predefined

frequency, these data are sent periodically to the MDCs to get the predictions. This con-

nection is performed through a network of Access Points that provides coverage to an entire

metropolitan area. In this way, each phone sends the data through the nearest AP, and
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Figure 4.6: Scenario architecture. A network of Edge Data Centers communicated with a
distributed database provide connectivity to end devices through several Access Points.

each AP is connected with the nearest MDC. The MDCs evaluate the data packet using

per-patient custom models and return the probability of a new migraine pain phase. When

this probability exceeds a threshold, the patient is alerted through the monitoring device.

Moreover, there exists a shared distributed database when the different customized models

are stored. Hence, when an MDC receives a prediction request corresponding to a new

patient it loads the suitable model and performs the inference over it.

Each MDC consists of a set of racks, each one containing several servers. Sometimes,

as part of the efforts to reduce the high energy consumption of data centers, idle servers

are shut down until end-users request extra resources. In our simulation, for simplicity

purposes, we do not use these types of strategies. This facilitates the interpretation of the

results, allowing us to focus on the energy dynamically consumed by the processing units.
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For a realistic characterization of the predictive models, we set some scenario parameters

based on the research conducted by Pagan et al.162 In their study, several types of custom

migraine models have been developed, using algorithms like Subspace State Space System

Identification (N4SID)160 and Grammatical Evolution161 for training the models. For the

generation of these per-patient models, they perform ambulatory monitoring of the patients

during a period from two weeks up to a month. The five variables implied in this process

are: (i) electrodermal activity, (ii) heart rate, (iii) oxygen saturation, (iv) surface skin

temperature, and (v) subjective pain level for each migraine event. This last variable is

registered through an app, where the patient tracks the progress of migraine. The rest of

them are registered with a portable medical monitoring device. After the model is trained

in this offline phase, it is ready to be uploaded to the servers and start generating runtime

predictions of the migraines.

OpenStreetMaps

Pedestrian
Dynamics

Fog
Simulator

Madrid
OpenData

HOT Export
Tool

KML map

CityGML map

Autodesk
Map 3D

Madrid Metro
Stations

Madrid Health
Centers

Pedestrians
Dataset

Allocation
Manager

Clustered
APsS3: Nearest

hospitals

S2: All public
hospitals

S4: Clustered
EDCs

S1: Single hospital

MDCs locations Simulation 
results

Mercury framework

Figure 4.7: Information workflow used in the process of modeling and simulating the pedes-
trians scenario.
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Figure 4.7 summarizes the information workflow followed in the modeling and simulation

of these scenarios. We start extracting an urban area for our scenario from OpenStreetMaps

(OSM)1. This collaborative project gives access to detailed information of map data across

much of the world, containing information such as the layout of roads and paths, buildings

topology, place names, and points of interest. For these scenarios, we have selected a

metropolitan area of 75km2 belonging to Madrid, Spain’s capital city. Although OSM

provides a native mechanism to extract its data, it is limited to 50000 map nodes. As

this scenario corresponds to a large metropolitan area, we have used the web platform

HOT Export Tool to obtain a dataset containing the layout of all the buildings in the

selected area as a KML map file. This map is then converted for compatibility reasons to

CityGML113, an open standardized data model and exchange format to store digital 3D

models of cities and landscapes, using Autodesk Map 3D. This CityGML definition is then

loaded into Pedestrian Dynamics, a simulation environment designed to model pedestrian

infrastructures or environments.

The information of these buildings is used in the simulations as obstacles that the pedes-

trians have to avoid to reach their goals. The main streets and parks of the remaining

space are manually marked as activity areas. These areas are used by Pedestrian Dynamics

to determine the locations to which the pedestrians go during the simulation. Moreover,

139 stops of the Madrid metro network extracted from the Madrid Open Data portal were

included in the map as entry/exit points. With these infrastructures already loaded into

Pedestrian Dynamics, we configured the pedestrians’ simulation as follows. Every 180 sec-

onds, 200 pedestrians agents are instantiated in the entry/exit points, simulating the arrival

of new trains in the metro stations. Each of these pedestrians is configured to walk until

a random location included in the main streets or parks defined before, wait for a few sec-

onds, and exit the scenario for the nearest metro stop. This simulation is performed until

10 hours of simulation time are completed. As a result, we obtain a dataset containing the

XY coordinates of each pedestrian agent for each simulation time step, that can be used as
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(a) Map view. (b) Simulation scenario.

Figure 4.8: Geographical area considered for the simulation. It corresponds to Madrid
(Spain), has an area of around 75km, and includes 8 hospitals.

a reference to model the behavior of the population.

The 10-hour dataset generated using Pedestrian Dynamics is then loaded into the Mer-

cury DEVS framework32. Apart from the modules involved in the IoT scenarios simulation

itself, this framework also includes some basic tools to generate datasets with optimized lo-

cations of APs and MDCs. Firstly, this allocation method partitions the scenario map using

a grid, registering the maximum presence of pedestrians in each cell considering a specific

time window and grid resolution. Then it sets the location of the APs and MDCs applying

KMeans clustering over this grid. We use this method for placing the APs location, which

is common to all the scenarios. For this study, we define four alternative scenarios:
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(a) C3 scenario: APs and MDCs are allocated
using KMeans clustering.

(b) H3 scenario: MDCs are moved to the closest
hospitals to the C3 clusters.

Figure 4.9: Scenarios considered in the simulation.

• Clustering scenario (C3): both the APs and the MDCs are allocated based on the

KMeans clustering. The resulting locations of these elements are depicted in Fig-

ure 4.9a. This Figure depicts the paths chosen by the pedestrians with points of

different colors, corresponding with the coverage area of each MDCs. The different

APs representing the mobile communication network are drawn as squares and the

MDCs as circles. As a reference, public hospitals of this metropolitan area are marked

with crosses. In this scenario we consider a fixed amount of 3 MDCs to illustrate the

validity of the analysis.

• Central hospital (H1): only one MDC is placed in the scenario, corresponding with the
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nearest hospital to its center. As a result, all the tasks generated by the monitorization

devices are sent to this single data center in this scenario.

• Nearest hospitals (H3): the MDCs of the clustering scenario (C3) are moved to the

nearest hospitals. Figure 4.9b represent the resulting scenario.

• All the hospitals (H9): an MDC is placed in each of the nine hospitals present in the

selected metropolitan area.

As we aim to compare how the power consumption is distributed among the MDCs

of these scenarios, we preserve the same configuration for all the MDCs. Each MDC is

composed of 10 processing units (PUs), allocated in a single rack. Each of these PUs

represents an Intel Core i9900K processor, operating at 3.6 GHz and composed of 8 cores

(16 threads). For the calculation of the power consumption of the PUs, we selected the

IdleActive power model included in the Mercury framework. This simple model considers

two different power consumption. The idle power consumption applies when no task is being

executed in a specific PU. The active power consumption specifies the power consumption

registered when the PU is executing one or more tasks. In this case, according to the

selected processor, the idle power is set to 47W and the active power to 95W. Moreover, it

is worth noting that the selected dispatching strategy searches sequentially the first PU with

enough free resources to allocate new tasks. Therefore, a PU does not receive a task until

the previous PU is unable to allocate it. Besides, although Mercury allows configuring the

shutdown of inactive processing units, all the PUs are powered on during all the simulations

to reduce variability and facilitate the interpretation of the results.

Table 4.2: Statistics of the monitoring devices services.

Service
Generation
period

PU Util.
(%)

Operation
time (s)

Packet payload
size (B)

Total packet
size (B)

Inference 60s 6.25 1.17 65 119
Training unif(1s, 1d) 6.25 18 20 74
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For each pedestrian in the 10-hour dataset, an agent is created in the simulation. For this,

Mercury sorts the entry points of all the agents and creates and destroys them dynamically

so that only the active agents are loaded in memory. We consider that all these pedestrian

agents are carrying a monitoring device, and configure two types of services. The inference

service requests periodically to the nearest MDC an updated estimation of the probability

of a new onset of pain, based on the previously trained predictive models. The training

service requests a new training of the patient model and aims to iteratively generate more

efficient models with the updated patient data. Table 4.2 shows more detailed information

of these services. The inference service requests each minute an updated probability of

pain onset, while the next training request is calculated with a uniform distribution from 1

second to 1 day. Both services use 6.25% of a PU, since they fully use one of its 16 threads.

The operation times for the inference and training services, 1.17s and 18s respectively, were

extracted from real training times of migraines models using similar processors. The packet

payload size is determined according to the BSON encoding of the dictionaries exemplified

in Figure 4.10. Both of them contain the patient identifier and a boolean indicating to the

data center if new training is needed. Additionally, the inference packet contains the average

values of the last minute for the implied hemodynamic variables. The total packet size of

Table 4.2 simply corresponds to the sum of the payload size and the headers included in the

TCP packet (fixed to 54B).

{
"id":348345,
"train":false,
"spo2":98,
"eda":19.7,
"temp":34.23,
"hr":67

}

(a) Inference service sample payload.

{
"id":348345,
"train":true

}

(b) Training service sample payload.

Figure 4.10: Sample packets generated by the simulation services.
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The four scenarios defined in the previous section were executed in the ETNA cluster

of the Arcuitecture and Technology of Computing Systems (ArTeCS) research group of the

Complutense University of Madrid. As a result, we obtained a report with the evolution

of the MDCs power consumption and utilization ratios. Figure 4.11 shows how the average

utilization of each MDCs evolves as simulation time progresses, and includes shaded areas

whose edges indicate the minimum and maximum utilization over time. In this Figure, the

solid lines represent the evolution of the utilization factor, and the dashed line represents

the evolution in the number of simultaneously monitored pedestrians. We can see how

the H1 hospital gets quickly overloaded, being unable to serve all incoming requests. This

situation is depicted in Figure 4.12, showing its number of rejected sessions over time. H3

and C3 scenarios produce very similar results, being its evolution lines overlapped in the

plot. Finally, because the requests are distributed among a greater number of MDCs, the

H9 scenario obtains the least average utilization factor.

For a better understanding of how the requests are distributed over the MDCs, we

represent in Figure 4.13 the percentage of utilization of the individual MDCs with respect

to the total utilization of each scenario. In the case of H3 and C3 scenarios, we can see an

even distribution of the requests, sending about a third of them to each MDC. As expected,

the percentage of individual usage differs considerably in the H9 scenario since the distance

among data centers is not optimized. As a result, a third of data centers have less than 3%

usage while the two most used data centers add up to around 44%.

Figure 4.14 depicts the mean power consumption for the different MDCs after 15000s

of simulation time, when the number of simultaneous pedestrians is stabilized. The blue

bars indicate the power consumption derived from the infrastructure itself, while the orange

ones represent the consumption due to the execution of the training and inference services.

Consequently with the utilization ratios, we can see how H3 and C3 scenarios present an

equivalent power consumption. Also, we can see how around a third of the power consump-

tion corresponds to the execution of the services. While looking at the H1 scenario, it is
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Figure 4.11: MDCs average utilization for the different scenarios, compared with the number
of simultaneous pedestrian agents. H3 and C3 produce similar results (overlapped).
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Figure 4.12: Sessions rejected by the MDC of the H1 scenario due to resource overload .

worth noting that even though the energy consumption only represents around 47% com-

pared to the H3 and C3 scenarios, its MDC gets quickly overloaded before reaching a third

of the total simulation time. Hence, this scenario does not provide a suitable service to the

training and inference tasks and does not accomplish the requirements of the scenario. The

H9 scenario is not a good solution either, since it presents a total consumption almost 2.5

times higher than the scenarios with 3 MDCs. Moreover, as its processing units present a

less exhaustive use, the resulting non-idle power consumption is 45% than the H3 and C3

scenarios.

The presented M&S-driven methodology can be used as a tool for analyzing and deploy-

ing IoT infrastructures for healthcare systems. It is particularly useful when dealing with

moving agents generating computational tasks, as is the case of a monitored patient network.
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Figure 4.13: Distribution of power consumption over the different Micro Data Centers.

We have simulated the movement of patients using a well-known crowd simulator, over an

urban scenario based on actual building layouts and metro stops. The structure and behav-

ior of data centers has been modeled through the Mercury framework, defining specific APs

over the city to serve as intermediate connection infrastructures for the communication be-

tween monitoring devices and data centers. We have compared different scenarios, analyzing

the differences in terms of energy consumption among several clusterized and hospital-based

MDC locations. As a result, we have obtained several comparisons of utilization ratios and

power consumption, providing insights that can help in decision-making when optimizing

the location of IoT infrastructures.
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Figure 4.14: Average power consumption of the different scenarios after the number of
simultaneous pedestrians is stabilized (after 15000s of simulation time).

In this chapter, several aspects regarding IoT scenarios analysis and deployment were

discussed. First, we presented a comparison of some of the most popular environments for

the simulation of IoT environments. Also, we present two research projects aiming to pro-

vide tools and methodologies to study the large-scale deployment of predictive models. One

of them implies our contributions in the development of the SFIDE simulator, allowing it to

interoperate with the popular SLURM workload manager from a co-simulation perspective,

and define IoT scenarios where different devices send workload requests to a set of data

centers through a basic network definition modeling the latency and energy consumption of

the intermediate network links. On the other hand, we developed an optimization scenario

aiming to find the best location for a set of Micro Data Centers (MDCs) receiving several

types of processing workloads in a healthcare monitoring context. We build an urban sce-

nario upon actual data of building layouts and metro stops, reproducing the pedestrians’

behavior using the Pedestrian Dynamics software, and simulating the workload distribution

and execution through the Mercury framework.
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Chapter 5

Modeling and Simulation in Healthcare

In the last years, we have seen how modeling and simulation gained popularity for the

development of healthcare applications, services, and infrastructures, while the systems to

develop became more and more complex. This M&S acceptance, supported by the develop-

ment of other complementary technologies like the Internet of Things and Machine Learning,

enabled the deployment of multiple applications that seemed infeasible some decades ago.

Nowadays we can quickly respond to events as unexpected as a pandemic, quickly developing

models to study and analyze the best procedures for mitigating its spread, estimating the

outcomes and the socioeconomic impact, and developing optimal vaccination strategies. We

also have Decision Support Systems (DSS) capable to diagnose some diseases with the same

or even better success ratio than the medical staff, or the development of auxiliary models

able to estimate the outcomes and key features of some diseases shortly after the patient

is connected to a medical unit. The development of Cloud and Fog infrastructures opened

the door to more independent scenarios, where the patients can be constantly monitored

using unintrusive devices generating periodical requests to these infrastructures with high

computing power. This methodology comes with new opportunities, as the development of

predictive systems able to detect key events in symptomatic diseases and the automated

creation of knowledge bases allowing more detailed studies of different phenomena and ill-

nesses. All this results both in a significant reduction in medical expenses and a considerable

improvement in the quality of life of the population.
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This section discusses some contributions made in the definition of models for the study,

analysis, and optimization of healthcare scenarios. It is organized as follows. Section 5.1

introduces some relevant concepts developed in the rest of the section. Section 5.2 describes

the development of a highly-configurable epidemic model developed following the DEVS and

cellular automata principles. Section 5.3 describes a M&S-driven Field-Programmable Gate

Array (FPGA) implementation of a healthcare monitoring system able to anticipate the

pain phases of migraine patients. Finally, Section 5.4 discusses a modular methodology that

aims to simplify the creation of predictive modeling systems, using the related framework

to face the categorization and outcome prediction in the early stages of stroke crises.

5.1 Background

In this section, we discuss some contextual background concerning the healthcare scenarios

and tools developed during the thesis. Section 5.1.1 describes some common approaches

to model epidemiology diseases. The SIR model is described and some common variants

are explained. Section 5.1.2 describes some relevant factors concerning the development of

Healthcare Monitoring Systems (HMS), including the desired features of a successful HMS

and the importance that the use of FPGAs has had in the development of these devices.

5.1.1 Numerical methodologies for modeling epidemiology diseases

Epidemiology models use several kinds of methodologies for modeling infectious diseases.

These methodologies include different approaches, such as deterministic and stochastic dy-

namics, discrete and continuous time, or agent-based or compartmental models. Susceptible-

Infected-Recovered (SIR) models are one of the most popular. They classify the individuals

of a population into a finite number of mutually-exclusive disease stages. These compart-

mental models have their origin in the work of Kermack and McKendrick108, who classify

the population into three main groups:

• S(t): Population susceptible to the virus in time t. They have no immunity, and
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therefore can be infected if they are exposed to infectious agents.

• I(t): Population infected with the virus in time t. They can transmit the infection to

individuals of the susceptible group when they are in contact.

• R(t): Population removed in time t. It includes both the individuals that have acquired

immunity to the virus and the ones deceased because of the infection.

According to these definitions, the total population is constant and satisfies the following

equation for any time t: N(t) = S(t) + I(t) + R(t). In these models, usually, two more

parameters are considered: (i) an infection rate (λ), which specifies how much the infection

is transmitted in each step, and (ii) the recovery rate (γ), which determines the portion of

the infected individuals that recover from the disease. Hence, the progression of the infection

can be expressed formally as:

S(t+ 1) = S(t)− λ ∗ S(t) (5.1a)

I(t+ 1) = I(t) + λ ∗ S(t)− γ ∗ I(t) (5.1b)

R(t+ 1) = R(t) + γ ∗ I(t) (5.1c)

Due to the success of this model, different authors have proposed several extensions. The

Susceptible-Exposed-Infected-Recovered (SEIR) model118 adds an extra group (Exposed)

that introduces infected individuals unable to transmit the disease. Susceptible-Infected-

Recovered-Deceased (SIRD) models130 separate explicitly the recovered individuals, who

acquire immunity to the disease, and the ones that passed away. SIS models35 add the

possibility of becoming susceptible again after being infectious. MSIR models introduce

maternally-derived immunity (passive immunity), where new-born babies remain immune

to the disease for the first few months of life due to protection from maternal antibodies. The

combination of these extended models results in a great variety of specifications (e.g. SEIIR,

SIRS, SEIRS, SIRDS, SEIRDS, MSEIR, or MSEIRS), in which the population individuals

are translated from one class to another based on differential equations.
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This type of model has been used frequently for the study of epidemics, adapting the

models to the particularities of each disease and the socioeconomic and governmental con-

texts. For instance, Acemoglu et al.3 presented a multi-risk SIR model (MR-SIR) in which

the infection, hospitalization, and fatality rates vary between a limited set of age groups.

This categorization allowed them to perform finer grade simulations and find optimal poli-

cies differentially targeting risk/age groups. Fernández-Villaverde et al.59 adapted a SIRD

model to study the spread of the COVID-19 in different countries, establishing time-varying

contact rates to capture behavioral and policy-induced changes associated with social dis-

tancing. As a result, they obtained daily deaths per million evolution forecasts for different

USA states and countries. Biswas et al.24 studied the vaccination planning based on com-

partmental SEIR models with the introduction of state variables constraints. They obtained

several models estimating the optimal vaccination schedules and control strategies based on

cost-effectiveness metrics.

5.1.2 Model-Driven development of Healthcare Monitoring Sys-
tems

There are multiple types of Healthcare Monitoring Systems (HMSs) supporting medical and

healthcare services and applications. These devices can be used as a tool to automatically

collect data from patients, which can be used by medical staff for patient monitoring. This

results in lower working loads of physicians and increased efficiency in patient management.

Also, grouping historical data of a multitude of patients opens the door to extract hidden

patterns and conclusions related to the development and outcomes of different diseases.

In the development of a successful HMS several factors must be considered. To be well

accepted by patients, these devices should be small, easy-to-use, lightweight and portable.

Moreover, a critical development factor is the cost-effectiveness of the proposal. To reduce

the costs, devices should limit their components based strictly on the expected functions,

and consider using accessible, widely used, and fully configurable components. Among

these, programmable components like Field-programmable gate arrays (FPGAs) are a great
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choice when developing an HMS. These devices allow reconfiguring their internal functional

logic using Hardware Description Languages (HDLs). Based on these specifications, the

interconnections of the FPGAs programmable logic blocks are altered. It results in low-level

representations of the systems, implying reduced power consumption and high efficiency.

This covers one of the fundamental challenges of HMSs. These systems require a high level

of integration due to the necessary portability. High power efficiency is needed for systems

that are truly portable and thus battery-operated.

For these reasons, FPGAs have proven to be more convenient than the traditional

microprocessors-based implementations in a variety of applications38,170,223. Also, the in-

crease in the complexity of systems over the years has reduced the suitability of microcon-

trollers in some aspects. Unfortunately, simply switching to a bigger microcontroller only

helps to a certain extent as the focus is usually on more memory and general-purpose pins

rather than I/O modules. Adding more microcontrollers complicates the overall system de-

sign due to the communication overhead. FPGAs, in contrast, do not have these limitations.

Also, FPGAs allow high parallelization rates, helping to speedup a lot of implementations

whose performance would be more limited in other architectures.

5.2 CellDEVS-based SIRDS model for studying the evo-
lution of epidemics

During the collaboration with the ARS group at the Carleton University, several epidemiol-

ogy models were developed. This section describes one of these, a SIRDS model, developed

with the Cell-DEVS formalism. This variant of DEVS combines cellular automata mech-

anisms with the discrete-event specification. It allows representing grid-based scenarios

whose behavior is defined by a finite set of rules. Also, it allows linking the behavior of

specific cells to external DEVS models, expanding the possibilities offered by pure cellular

automata models. First, the CD++ modeling toolkit was used to develop the model (as

it was the main platform supporting the implementation of Cell-DEVS models). However,
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the model was later ported to Cadmium, the latest DEVS-based simulator developed by the

ARS group (as it added also Cell-DEVS support, extending the functionalities offered by

CD++).

This particular SIRDS model aims to be a highly-configurable tool for defining and

studying epidemiology scenarios, extending and adapting other model configurations of the

state of the art216,234. It represents the population as a grid of cells. At time t, each

cell (i, j) has a number of individuals Ni,j and a several ratios indicating the percentage of

individuals present in the different categories of the SIRDS model: susceptible (Sti,j), infected

(I ti,j), recovered (Rt
i,j), and deceased (Dt

i,j). At the beginning of the simulations, the majority

of cells population is susceptible to the disease, including only a small infected percentage

in one or a few cells. When infected, individuals remain ill from 1 to TI days. After this

infection, they become immune for a fixed period of TR days, and then they return to the

susceptible category.

Both the infected and the recovery categories are broken down in different states, indi-

cating how many days have been in that category. Hence, (I ti,j) and (Rt
i,j) are calculated as

follows:

I ti,j = {I ti,j(p)|p ∈ {1, ..., TI}} (5.2)

Rt
i,j = {Rt

i,j(p)|p ∈ {1, ..., TR}} (5.3)

, where p is the number of consecutive days that the population has been in each state.

These states are depicted in Figure 5.1. As shown, for each infected state p, individuals

have a probability γ(p) of recovering from the disease. Individuals that do not recover

in previous states reach the immunity after the last infected state. Moreover, there is

a probability ϕ(p) of decease while being infected. As the γ and ϕ probabilities can be

specified for each infected state, this model can easily be configured for adding the exposed

or latent category. This category, often included in other epidemiology models of the state

of the art, usually describes the first stage of infection, where people become infected but
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Figure 5.1: States flow of the SIRDS model.

are not infectious yet. Also, by calibrating these probabilities, it is possible to configure

more complex scenarios where the probability of infections evolves over time.

The ratio of new infected individuals (i.e. individuals in the first infected state) at time t

(iti,j) is described in Equation 5.4. This ratio directly depends on the proportion of infected

individuals in the neighboring cells and the population density ratio between neighboring

cells and the origin cell.

iti,j = min(St−1i,j , S
t−1
i,j ·

∑
(α,β)∈V,p∈{1,...,TI}

(c
(α,β)
i,j ·m(α,β)

i,j ·λ(p) · Ni+α,j+β

Ni,j

· I t−1i+α,j+β(p)) · (1−ϕ(p))))

(5.4)

As show in this equation, this model also considers the following parameters:

• Connectivity factor (ci,j): factor representing how many connections are between two

neighboring cells, including mobility infrastructures and transportation facilities.

• Mobility factor (mi,j): the probability of an individual in a cell (i+ α, j + β) to move

to cell (i, j).

• Infection rate (λ(p)): probability of susceptible individuals becoming infected when in

contact with the infection.
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Equation 5.4 takes into account the subgroups of individuals that surpass the disease in

each neighbor cell. Consequently, the rest is the ratio of new deceased individuals, defined

as follows:

dti,j =
∑

p∈{1,...,TI}

(I t−1i,j (p) · ϕ(p)) (5.5)

Regarding to the susceptible population, the calculation of the next step is represented in

Equation 5.6. The new infected individual ratio is subtracted from the susceptible population

of the previous step, while the population that stop being immune are added.

Sti,j = St−1i,j − iti,j +Rt−1
i,j (TR) (5.6)

The states transition for the infected steps is calculated as shown in Equation 5.7. For

the first infected state, the value corresponds to the ratio of newly infected individuals.

For each transition, this value is propagated to the next infected states, removing the suit-

able percentage of deceased and recovered individuals for each step (based on the γ and ϕ

parameters).

I ti,j(p) =

{
iti,j , if p = 1

I t−1i,j (p− 1) · (1− ϕ(p− 1)) · (1− γ(p− 1)) , if 1 < p ≤ TI
(5.7)

Similarly, the first recovered state is calculated for each transition as the sum of the

recovered individuals in each infected state. In the last infected state, ITI , γ is always

considered as 1 (i.e. all the individuals in the last infected step are forced to move to

the first recovered state). For the rest of the recovered states, the ratio is simply taken

from the previous recovered state, until reaching the last one. After this, the population is

again considered to be susceptible to the disease. The calculation of recovered population

is represented in Equation 5.8.

Rt
i,j(r) =

{∑
p∈{1,...,TI}(γ(p) · I t−1i,j (p)) , if r = 1

Rt−1
i,j (r − 1) , if 1 < r ≤ TR

(5.8)
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The output of these models can be visualized in several ways. For generating evolution

plots, several Jupyter notebooks were developed. A sample of these visualizations can be

seen in Figure 5.2. It shows three subplots, considering: (i) the evolution of the three main

categories (susceptible, infected, and recovered), (ii) the ratios of new infected and recovered

individuals, and (iii) the evolution of deceased population.

Figure 5.2: Sample visualization generated based on the SEIRD model results.

Moreover, Cadmium simulations produce logs containing states and outputs traces that

can be used to study graphically the results of the simulation. The online tool Cell-DEVS

Web-viewer115 allows us to easily visualize these results by uploading the definition and log

files and displays cell information and activity according to our style definitions. Figure 5.3

shows some sample visualizations produced with this tool. These four scenarios correspond

to the same epidemic model and initial state, but vary parameters as the infection rate and

the virulence of the epidemic. As a result, the number of immune (represented in green)

and deceased (represented in black) population changes drastically for the same period.

These visualizations can help us to analyze and understand the spread of the epidemics,

becoming a great tool for the study of palliative measures and the estimation of epidemics’

repercussions.

The model presented here can be easily adapted to represent the behavior of complex
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Figure 5.3: Sample Cell-DEVS Web-Viewer visualization. It corresponds to four scenarios
of the same epidemic model in the same simulation time but with different virulence and
infection rates. The colors of the cell grid corresponds to the susceptible (white), infected
(yellow), immune (green), and deceased (black) population.

epidemic scenarios, reflecting government measures and changes in the population behavior.

Along with the presentation of the model33, we showed an example of dynamic scenario

implementation, proposing a sample scenario using some data extracted from the spread

of the SARS-CoV-2 in South Korea (including actual infection and recovery rates). We

configured a 50x50 grid, with a population of Ni,j = 100 individuals per cell. We set the

connectivity factor at 1 and the mobility factor to 0.6 for the neighboring cells. We used the

cell in the middle to trigger the epidemic (with an infection ratio I25,25 = 0.3, a susceptible

ratio S25,25 = 0.7, and a recovery ratio R25,25 = 0). We set the infection phase length TI to 22

days. The individuals experience the first symptoms on the 4th day and isolate themselves

on the 8th day. Until this event, we establish a fixed infection rate λ = 0.15. For the rest of

the period they are considered isolated, and their λ is reduced to 0.01. The recovery rate γ

is set to 0.07 for all the infected states. Figure 5.4 show the evolution of this spread in the

cellular automata-based grid scenario. At the beginning of the progression (Figure 5.4a),

we can see a majority of susceptible individuals (darker grey) and the core of the epidemic,

representing the first infected (black) and exposed individuals (lighter grey). In the next

captured simulation time (Figure 5.4b), we can see how the infection spreads, leaving behind

a trail of immunized individuals. As no data regarding the immunity period were available

for the COVID-19 at the moment of developing the model, this field was decided to be filled
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with a small value, producing a single infection wave and making the individuals rapidly

transition to the susceptible state again. It is worth noting that this decision aims to describe

how the model can be configured to describe short-immunity epidemics and does not try to

reproduce the actual SARS-CoV-2 immunity period. Finally, Figures 5.4c and 5.4d, show

how the epidemic grows until reaching the edges of the scenario, causing the end of the

epidemic wave (facilitated by the immune individuals’ barrier).

(a) (b) (c) (d)

Figure 5.4: Infected rate reported by simulations at day (a) 5, (b) 11, (c) 42, and (d) 60.

The implementation of this model is publicly available178, and several simulation sce-

narios, including the ones presented here, can be accessible online114.

A different use example is depicted in Figure 5.5. In this case, we used the epidemic

model (before adding the deceased mechanisms) to study how the disobedient population

(i.e. people not following the government protection measures against the epidemic) impacts

the ratio of infected population, and the distribution of the infected population over time.

For this, we implemented a 10-4 model106, where the population follows a cyclic schedule

of 4-day work and 10-day lockdown. This restriction tries to prevent the resurgence of the

epidemic while providing part-time employment, considering that a patient is not contagious

to others for some days after they are infected. In the two top plots in Figure 5.5 we see

how a specific epidemic scenario behaves when no restrictions are set over the population.

We can see how the epidemic, although it is present for a shorter time, has a high infection

ratio peak. Such a ratio would probably result in the collapse of medical infrastructures,

being one of the main concerns when facing an epidemic as it would unnecessarily increase
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the number of resulting deaths. The next pair of plots show how the 10-4 model helps to

mitigate the impact of the epidemic, maintaining considerably lower rates of the infected

population overtime at the cost of lengthening the duration of the epidemic. In the following

cases, we increment the disobedience ratio to 20%, 50%, and 80%. Comparing the outcomes

for these scenarios, it is possible to see how as disobedience increases, the infected curve

looks more and more like the scenario without measures.

These examples show some insights of the value that these models have in the decision-

making and the development of countermeasures when a new epidemic appears. This was

again checked with the recent COVID-19 outbreak, after which a large number of models

were developed around the world to face the spread10,11,88,102,222. Through them, several

critical factors as the lockdown policies, mobility restrictions, or vaccination strategies were

studied, resulting in more effective procedures and a better evolution of the epidemic.

5.3 HMS Model-Aided Design

This section describes the development of a model-aided design of a VHDL implementation

of a Healthcare Monitoring System (HMS) able to predict pain episodes in migraine crises

up to 45 minutes before the onset of pain. Section 5.3.1 discusses the socioeconomic impact

that the migraine disease has in our societies, as well as various relevant peculiarities of

this disease that had to be taken into account when developing the system. Section 5.3.2

explains in detail the VHDL implementation of the system, described the adapted system

architecture and the synchronization mechanisms of the device.

5.3.1 Migraine disease impact

Migraine is one of the most disabling neurological diseases. It affects around 10% of popu-

lation worldwide120 and 15% in Europe194. Also, migraine sufferers are more prone to suffer

from other diseases such as fatigue, anxiety, or cardiovascular problems, which leads to high

costs for private and national health systems. In Europe, it is estimated that migraine leads
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Figure 5.5: Comparison of the progression of a sample epidemic scenario, showing the
evolution differences without applying any restriction, and imposing a 10-4 strategy with
different disobedience levels.

to direct and indirect costs of e1,222 per patient per year120.

Apart from the pain phase, migraine disease includes other less-known symptoms. Pre-
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monitory or prodromic symptoms may occur from three days to hours before the pain

starts69. They are subjective, varied, and include changes in mood, appetite, sleep, etc.

Auras occur in one-third of the cases153 and appear within 30 minutes before the onset of

pain. It consists of a short period of visual disturbance. Postdromes are symptoms that

occur after the headache. Some of the most common are tiredness, head pain, or cognitive

difficulties. They are present in 68% of the patients and they have an average duration of

25.2 hours107.

It is difficult to estimate the onset of pain to make an effective intake of drugs. The

time response of the pharmacokinetics of the drugs (the mechanisms of absorption and

distribution of substances in an organism) does not match the long times of the vague

predictive symptoms, or the short times of the urgent auras. So, most migraine sufferers

wait until the onset of pain to take the rescue medication. The delayed intake reduces the

effectiveness of the treatment.

5.3.2 Use Case: Migraine Prediction System

In this section, we show the model-driven development of an HMS capable of predict mi-

graine pain episodes. The implementation of the HMS firmware was developed in VHDL

using a Zynq-7000 FPGA as the target device, and it is based on the model presented by

Pagan et al.159. This simulation describes a system able to predict pain episodes in migraine

crises up to 45 minutes before the onset of pain, following the predictive methodology de-

scribed in85. The modular and hierarchical nature share by the simulation formalism and

the hardware specification language makes suitable this model-driven workflow, simplifying

the development and reducing the implementation times. In this way, only a few changes

have been introduced to adapt the simulation model to the hardware implementation, in-

cluding the addition of a module to centralize shared data and a replacement of the N4SID

prediction algorithm for an Auto-Regressive model with eXogenous inputs (ARX) model.

It is worth noting that, because of the modular structure of the system, this change of
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prediction algorithm does not imply changes in the predictive methodology. The prediction

module is implemented as an easily interchangeable component and was only changed in

the hardware implementation because the chosen ARX model presents a lower complexity

and power consumption compared to the N4SID algorithm.

The following sections describe the development of this HMS. First, original predictive

simulation on which we base the work is summarized. Then, the particularities of the

VHDL implementation are presented, including a description of the main components and

synchronization signals of the system. Finally, we show how the system was validated, using

real data of migraine patients.

Migraine Prediction Simulation Model

This model-driven implementation was developed based on the DEVS simulation model pre-

sented by Pagan et al. for migraine prediction159. The system allows the capture of different

hemodynamic variables and generates alarms to warn the migraine patients of the proximity

of pain episodes up to 45 minutes in advance. Moreover, this robust model can continue

generating these alarms even if errors are present in one of the input signals. For this, it

trains different sets of models: one using all the variables, and some extra models trained

to work without one of them. The system has eight inputs. Four of them correspond to

the hemodynamic variables. They are autonomous nervous system-related signals, captured

through in-body sensors. They measure the body temperature, electrodermal activity, heart

rate, and oxygen saturation. The remaining four inputs correspond to restoration buttons,

activated by the users when the sensor activity is restored after an error appears. The

system can detect three types of errors: (i) saturation, (ii) fall, and (iii) noise. To study

the response of the system to these errors, the simulation model includes ErrorInductor

components that emulate these failures. These components receive the actual sensors data

stored in log files and modify them simulating this kind of error, before entering the predic-

tion system. These error inductors adapt the signals to reproduce several issues that affect

sensors in real life (noise, saturation, and disconnections). As outputs, it has the alarm
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signal itself and four LEDs indicating the presence of any error in the input signals.

The work presented by Pagan et al. included the possibility of using different types of

predictive mathematical models such as Grammatical Evolutionary algorithms and state-

space models. In the implementation of the HMS, we considered the latter, a Subspace State

Space System Identification (N4SID) model to generate the prediction of the new pain onset

probability. N4SID is a state-space-based algorithm203, which describes immeasurable states

and specifies differential equations that relate future outputs with current and past inputs.

It is formally described in Equations 5.9 and 5.10:

xk+1 = Axk +Buk + wk (5.9)

yk = Cxk +Duk + vk (5.10)

where uk are the U = 4 hemodynamic inputs—body temperature, sweating, heart rate,

oxygen saturation—at time k. yk is the output at time k. In this project, it corresponds to

the predicted pain level. A, B, C, and D are the state-space matrices. vk and wk represent

white immeasurable noises160.

From DEVS prototype to VHDL implementation

Figure 5.6 shows the root component resulting to adapt this DEVS system159 as an VHDL

implementation. Its main components include:

• Drivers: able to read the input of the sensors (interpreting the appropriate protocols),

calculate the corresponding physical magnitude, convert the obtained measurements

to the appropriate data type and send them to the synchronizer (Sync).

• Sync: it packs the input values of the different sensors into a unified data structure.

Each minute it receives a pulse signal and averages the values received for each variable.

It receives 180 samples of temperature and sweating and 60 of heart rate and oxygen

saturation per minute. That information is sent to the Sensor Status Detectors (SSDs).
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Figure 5.7: SSD module. It detects errors in the input signal and recovers it (with the ARX
module) while it is not restored.

Figure 5.8: Predictor module. It generates predictions of new pain episodes. The SDMS2
module controls the predictions generation and the LinearCombiner group them together
to produce a single output.

• SSDs (Figure 5.7): they check if different types of errors are present in the input signal

(saturation, fall or noise). If one of them is detected, the status signal raises, so that

the patient can restore the sensor. While the sensor is not restored, the system tries

to repair the signal temporarily. An ARX module is used for that purpose. It generates

estimations of the input using previous samples of both the controlled variable and

the exogenous ones. When it has passed too much time since the error detection,
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an Elapsed Time Exceeded (ETE) signal is raised. That signal points out that the

variable implied can not be used reliably to generate predictions, so the Predictor

module will discard it. The SSDs are connected to the output of the Sync , instead of

going after the Drivers . That is because error detection and signal repair capabilities

have to operate over data separated by minutes. In the DEVS simulation, the input

data was already stored by minutes. Conversely, in the VHDL implementation, the

synchronizer is in charge of doing this task.

• BufffersHandler: it stores and handles previous inputs of the system, used by the

different ARX modules present in the SSDs.

• Predictor (Figure 5.8): it generates a prediction of occurrence of a new pain episode.

For that, it contains 5 sets of models160. Each one of them is related to a different

group of three or four input variables. Each set has 3 predictive models whose results

are combined to refine the prediction. These models are trained for different prediction

horizons. In this way, when a sensor fails or recovers, the suitable set of models used to

generate predictions is selected. In this way, the system can generate predictions when

all the variables are fine or when there is an error in only one of them. With less than

three variables the prediction is not considered representative and is not supported by

the system. The management of the state-space models is done by a unique model in

the Predictor (SSME). In this way, the SDMS2 module is responsible for selecting the

correct models and requesting the generation of the three predictions, which will be

carried out sequentially.

• Decider: activates the alarm when the output generated by the Predictor module

exceeds a certain threshold (trained previously with several hours of data).

System synchronization is controlled by a set of clock and pulse signals. These can be

seen in Figure 5.9 and are the following:
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Figure 5.9: Clock and pulse signals used to synchronize the prediction system.

• Main clock: reference clock used in the Drivers for controlling the communications

and in the generation of all the remaining clocks and pulses.

• Operations clock: used for the synchronous components of the system to control its

operation (except Drivers). The clock frequency is 100 kHz.

• Timestamp clock: used to generate pulses each minute. That pulses are used to cause

the Sync to generate new packets.

• Drivers pulses: used to notify the Sync of a new reading.

• Sync pulses: after the preparation of a new packet a pulse is generated to communicate
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that fact to the SSD. Later, it waits a given number of cycles and generates another

pulse that informs the Predictor and BuffersHandler modules of the presence of the

new data. That delay corresponds to the processing time spent in the ARX modules to

regenerate the signal (if necessary).

To deal with decimal numbers in VHDL the FLOAT32 data type was firstly used, as in

the original DEVS model. However, when the system was synthesized it needed too many

resources to handle the operations. For this reason, a fixed precision data type was used

instead. For assuring that all the operations can be supported without the appearance of

overflows, auxiliary fixed data types were used. The size of these customized data types is

adapted taking into account the different operations that are performed in the system, thus

avoiding the appearance of overflows.

Validation of the HMS

To implement the migraine prediction system, the design software Xilinx ISE 14.7 has been

used, and a Zynq-7000 FPGA has been established as target FPGA (XC7Z010 device,

CLG400 package). The components of the system were simulated using the ISE simulator

(ISim).

To validate the system, data acquired from real patients are used. They were monitored

in ambulatory conditions with a Wireless Body Sensor Network (WBSN), as described in160.

They are saved so that a value for each of the variables is available per minute.

Figure 5.10 reflects how the errors are managed in the SSD modules. Figure 5.10a shows

how the FallDetector module behaves. When it detects a fall, the signal oDetected is

raised, notifying the new error. Once this signal has been activated, it remains in a high

state until the data in the buffer are valid or the reset signal (iRst) is raised. When the

module resets, the buffer is emptied and has to be refilled before detecting new errors in

the signal. This situation occurs when the patient presses a restoration button after being

informed of the failure of one of the signals. The SaturationDetector and NoiseDetector
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(a) FallDetector, which detects falls in the signal

(b) AnomalyDetector, which manages the errors provided by the detectors

Figure 5.10: Error handling in the SSD.

modules present a similar behavior. The outputs of those three detectors are attached to the

AnomalyDetector module. That module manages two output signals: oSensorStatus, which

will be activated when at least one error is detected in the signal, and oETE, which will

be activated when an error lasts for a certain time. Figure 5.10b shows the aforementioned

situation.

When the oSensorStatus output of the AnomalyDetector is raised, the ARX enables.

Figure 5.11a depicts the response of this module to a saturation error. Once the error is

detected, the ARXmodule corrects the signal and approximates the values the variable should

take if it were fully operational.

These signals, after going through the SSD modules, reach the Predictor. In that

module, a set of three state-space models are selected based on the ETE signals of the

four SSDs. After that, three predictions are generated, one for each model of the selected

model set. Those predictions are unified by making an average. Figure 5.11b illustrates

the predictions generated by the system in response to a known episode. Those predictions
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Figure 5.11: Outputs of the predictive system.

Figure 5.12: General view of the system simulation.

are compared with the subjective pain curve, generated with patient data. The prediction

oscillates over the reference curve and triggers an alarm when the migraine event occurs.

This trigger is based on a threshold over the generated prediction, obtained by studying
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the previous data. When the prediction goes over that threshold it is considered that the

pain episode will occur in the next few minutes. The generated prediction curve has a fit of

83.63% with respect to the original one.

Finally, Figure 5.12 shows a simulation of the root component of the system. It shows

the four hemodynamic variables data corresponding to a real episode, stored previously, and

the prediction generated by the system. In this way, it can be seen how the oAlarm signal is

raised when the prediction provided by the corresponding predictors set exceeds a threshold

(32 in this example). Consequently, the alarm signal is set low when the value goes back

below that threshold.

5.4 Modular DEVS-based methodology for developing
robust prediction systems

Over the years, more and more data-collection devices have been created and acquired by

both individuals and institutions. These data are usually accumulated in different types

of data stores and, adequately combined and processed, can lead to useful insights and

conclusions. However, before having the information in a unified format, several critical

tasks have to be performed. This includes importing, filtering, normalizing, and merging

the data coming from heterogeneous data sources. Such procedures lead to the emergence

of several challenges. In these cleaning stages some data are discarded or transformed,

having to deal with specific problems as duplicated or contradictory values, naming conflicts,

inconsistent timings, or structural inconsistencies9,171.

Once all the heterogeneous data sources are processed and unified, the resulting infor-

mation can be adapted and used to generate specific models and systems. For that, different

machine learning techniques can be applied, including kernel methods, classification, regres-

sion, and neural networks. Despite the number of variants, there is a well-known and widely

used subset of machine learning techniques. They are usually present in the literature and

implemented in a variety of machine learning software and libraries165,219. When applying
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these techniques to a specific use case, several machine learning algorithms are chosen based

on the data types and problem description. This process of training, validating, evaluating,

and comparing different sets of models is usually a repetitive and time-consuming task. By

applying appropriate M&S techniques, the whole process can be automated, allowing better

control and analysis of the parameters involved in each model.

Aiming to contribute to the automation of these tasks, a model-based methodology has

been created, encapsulating the main filtering, processing, and modeling operations. In

the following sections, some of its features and possibilities are explained. First, the main

aspects of the structure and components of the methodology are discussed. Second, some

data importing mechanisms are outlined. Then, the process of describing the system through

XML files is explained. Finally, a use case applying this methodology for predicting stroke

types and outcomes is shown.

5.4.1 Prediction systems development workflow

The goal of the methodology is the automatic creation of predictive models, based on spec-

ification files. Figure 5.13 shows the common phases followed when creating these types of

models. First, data from one or several data sources are collected (Data sources element

in Figure 5.13). These data are initially filtered following some common criteria, to assure

their quality and discard wrong or incomplete records. Also, feature selection procedures

can be performed in this stage if necessary. Both tasks are performed in the Filter mod-

ule. Second, normalization operations are applied to the Normalize module according to

the specific needs of the use case. This stage is especially important when heterogeneous

data sources are taken into account. It includes unifying the units of the variables, catego-

rization tasks, and adjustments in the implied values or distributions. At the end of this

stage, all the sources have to be unified in a single format. Hence, each data source may

need different processing to convert their data to this common view. Third, some trans-

formations may have to be applied in the pre-processing stage to adapt the data format
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to the use case (Pre-Process module in Figure 5.13). For example, in the health domain,

single samples coming from a patient monitoring device can be too granular to be directly

related to the event to predict. In this situation, it is common to split clinical data into

time-windows of a predefined size so that a certain number of consecutive samples matches

with the class to predict. Next, the Pre-Process module separates the input data into sev-

eral datasets: train datasets, which are used to fit the model, and validation/test datasets,

which are used to adjust the models and select the best ones. Once the separation is done,

different sets of models are generated with the training dataset using the suitable machine

learning algorithms in the Train module. The set of algorithms to use depends as much

on the problem characteristics as on the data types. They can include classification and

regression algorithms, neural networks, and kernel methods, among others. Once trained,

models are verified and compared using the previously separated validation/test datasets

in the Validation/Test module. The selected models will be subsequently evaluated to

generate valuable information of the domain to be modeled. New samples can be used both

to evaluate the models and to feed the data sources. This allows us to generate new models

periodically so that their accuracy can be increased over time.

In the presented M&S methodology, the main operations performed in each stage are

encapsulated and implemented in the set of modules described above. Each of these mod-

ules has a set of parameters that can be modified to adapt the transformations performed

according to the nature of both the input data and the predictive models. In this way, the

processing of the data goes through a chain of modules, starting from the data sources and

finishing with the generation and evaluation of the models, as Figure 5.13 depicts. Hence,

the design and implementation of the proposed methodology include a set of instances of

these modules (with the suitable parameters) and a set of couplings. Within a DEVS con-

text, these couplings link output and input ports, which represent the input/output points

of the modules.

All the stages involved in the data processing and model definition depicted in Figure 5.13
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Figure 5.13: Global view of the modular methodology oriented to the generation of predictive
models.

are configured with metadata related to the corresponding dataset, represented at the top of

the Figure. This includes datasets and modules identifiers, specific configurations established

for each of the modules to adjust the performed transformations, and custom tags reflected

in the specification.Through this metadata, all the modules of the system are aware of all

the transformations made in each dataset. Following this idea, modules can auto-adapt

their operations based on the transformations performed by previous modules and other

metadata (or even request configuration changes in other modules).

As a result, this modular methodology favors the reusability of the systems and modules.

It also facilitates the creation of subsystems and, therefore, the generation of distributed

systems, for scalability purposes. Furthermore, the main techniques and procedures are

encapsulated in predefined modules, allowing us to specify, using configuration files, the
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structure and operation of the system, instead of directly coding its behavior.

In particular, the definition of this M&S framework for a given neurological disease is

performed through the support of XML files. These files include the structure and behavior

of the abstract M&S method illustrated in Figure 5.13, but focused on a particular disease,

with its features and objectives. We have developed a framework that parses these XML files,

and automatically generates the set of DEVS models that describes the behavior depicted in

Figure 5.13, but for the specific disease. All the information propagated through the whole

system is encapsulated into a special custom structure called MetaFrame. It contains both

a table of data and metadata accumulated by all the modules included in the data path.

5.4.2 Importing data from different heterogeneous sources

To ease the process of integrating heterogeneous data from a variety of data sources, the

framework includes an XML-based definition that allows importing and unifying data of

multiple sources. This mechanism, depicted in Figure 5.14, creates and fills a database

based on two XML specifications files. The first one defines the attributes and restrictions

present in the dataset that the user wants to use. Here it is possible to introduce the

data types for each attribute and some basic restrictions for their values. In the second

one, these attributes are mapped to the actual data sources, allowing to create of the

resulting datasets with the data present in several data sources. Among them, it allows

importing data from Comma-Separated Values (CSV), Microsoft Excel spreadsheet files

(XLS/XLSX), and several relational databases engines (as PostgreSQL, MySQL, Oracle,

Microsoft SQL Server, or SQLite). Moreover, several popular protocols are supported for

retrieving the information from files, including File Transfer Protocol (FTP), Secure Shell

(SSH), or Hypertext Transfer Protocol (HTTP). It is worth to note that the mechanism

represented in Figure 5.14 is based on a set of Python scripts, and is independent of the

DEVS-based workflow manager presented in Section 5.4.3.

As aforementioned, the specification files define the structure of the information that
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Figure 5.14: Importing data from heterogeneous sources. The specification file describes
the information and the mapping file connect it with the actual data sources.

is contained in the database. This database can be used later as the main information

source in the modeling part. As shown in Figure 5.15, this structure is divided in datasets.

Each dataset can define one or more attributes, and corresponds to a database table. These

attributes can include several restrictions and correspond to table columns. The following

restrictions can be included:

• key : indicates if an attribute is part of the dataset key. Key attributes allow to

uniquely identify registers in the dataset and are specified as primary keys in the

resulting database.

• type: specifies the data type of an attribute. When mapping the data, the different

imported values are transformed to the suitable data types based on these types.

• min, max : minimum and maximum values for an attribute, respectively. They are
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<datasets name="datasets">
<dataset name="dataset1" key="key_attribute_name" key_type="int">

<var name="attribute_name1" type="text" />
<var name="attribute_name2" type="date" format="%d/%m/%Y" required="true" />
<var name="attribte_name3" type="enum" values="H,M" />
<var name="attribte_name4" type="int" min="0" max="25" />
<var name="attribte_name5" type="boolean" />

</dataset>

<dataset name="dataset2" extension="dataset1">
<!-- ... -->

</dataset>

<dataset name="dataset3" parent="dataset2">
<!-- ... -->

</dataset>
</datasets>

Figure 5.15: Dataset specification file format. It allows to define the attributes of the
datasets that the user wants to create, including data types and restrictions.

used to introduce constraints in the database tables definition.

• required : indicates if an attribute must always have a value. When it is set to false

the corresponding table column accepts NULL values.

• date_format : specifies the format of the input dates.

• enum_values : specifies the different values of an enum structure, represented with a

comma-separated string.

Additionally, when specifying the different datasets, several keywords can be used to

include dependence relations (exemplified in Figure 5.16). The extension attribute allows

extending a previous dataset definition. Thus the extended dataset contains all the variables

defined in both datasets. The parent attribute allows to specify a parent dataset. By

specifying it, the information in the child dataset is identified by a combination of both

datasets.

After defining the datasets, an XML mapping file is specified for linking them to the

actual data sources. The structure of this mapping file is shown in Figure 5.16. Inside
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<mapping>
<connections>

<connection name="database" type="db" host="..." user="..." pwd="..."
db_name="..."/>

<connection name="ssh_server" type="ssh" host="..." user="..." pwd="..."/>
<connection name="ftp_server" type="ftp" host="..." user="..." pwd="..."/>

</connections>

<sources>
<!-- Local sources -->
<source name="source1" type="csv" path="path/to/the/file.csv"/>
<source name="source2" type="xls" path="path/to/the/file2.xls"/>

<!-- Remote sources-->
<source name="source3" type="db_table" conn="db" table_name="..." />
<source name="ftp_test" type="csv" conn="ftp"

path="/remote/path/to/the/file.csv" />
<source name="ssh_test" type="csv" conn="ssh"

path="/remote/path/to/the/file2.csv" />
</sources>

<datasets>
<dataset name = "dataset1" source="source1,source2"

join_on="source1.attr1=source2.attr2">
<var name="attribute_name1" from="source1.attr1" />
<var name="attribute_name2" from="source2.attr2" />
<var name="attribute_name3" from="attr3" />
<!-- ... -->

</dataset>

<dataset name = "dataset2" source="source2">
<!-- ... -->

</dataset>
</datasets>

</mapping>

Figure 5.16: Mapping file format. It defines the relation between the datasets definition and
the actual data sources.

a root mapping element, there are three main children: (i) connections, for defining the

remote access points, (ii) sources, for defining specific locations of both local and remote

data sources, and (iii) datasets, which links the information defined in the specification file

with the one contained in the data sources.

The connections element contains zero or more connection children, with the following

attributes:
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• name: identifies the connection. This name is referenced in the sources section to use

specific connections.

• type: specifies the type of the connection. It supports FTP servers (ftp), SSH servers

(ssh), and relational databases (db).

• host : specifies the server related with the connection, with the corresponding IP or

host name.

• port (optional): specifies the port used in the connection. If not specified, the default

one is used for each protocol (21 for FTP, 22 for SSH, and 3306 for databases).

• user : user name to login in the server.

• pwd : password to login in the server.

• db_name (only for databases): selects a specific database in the server.

The sources element contains one or more source children, and specifies the location of

specific local and remote data sources. Each source element contains the following attributes:

• name: identifies the data source. This name is used in the datasets section to reference

specific sources.

• type: specifies the data source type (csv, xls, or db_table)

• conn (optional): specifies a remote connection, with the name used in one of the

connection elements. If no connection is specified, it is assumed to be a local data

source.

• path (only for data files): path of the data source in the file system.

• table_name (only for databases): name of a specific table of the selected database.
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Finally, the datasets element maps datasets attributes (as defined in the specification

file) with fields present in the data sources. It contains one or more dataset elements, whose

var children corresponds to the attributes defined in the datasets description. Each dataset

defines one or more sources in the source element. If more than one source is specified, a

join condition has to be added in the join_on attribute (as it can be seen in the dataset1

element in Figure 5.16. For each var element, two attributes are required:

• name: identifier of the attribute, as defined in the specification file.

• from: source field used to fill that attribute. If only one source is used, or the field

name is unique for among several sources, the field name is enough. However, if the

same field name appears in different sources, it is required to define it in the following

format: source_name.field_name. This can be seen in the first two var elements in

the dataset1 (Figure 5.16).

Both the specification and the mapping files are validated using XML Schema Definitions

(XSD). This format, recommended by the World Wide Web Consortium (W3C), allows to

formally describe the elements in an XML document. In this way, it is possible to warn the

user when errors are found in the input files and improve the usability of the system.

5.4.3 Defining subsystems to format the input data and generate
predictive models

The different systems composing a predictive platform are also described in this framework

through XML specifications. In these specifications, the configuration of the different com-

ponents is described, as well as the appropriate couplings connecting them. The framework

includes multiple modules for each of the stages shown in Figure 5.13, facilitating the process

of data processing and model training. Also, it provides a programming interface to imple-

ment new modules when needed, which can be easily reused in later projects. Moreover,

due to the distributed capabilities of the xDEVS Python implementation, it also allows the

communication of the different subsystems over the network in a straightforward way.
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Figure 5.17 shows the XML structure for the definition of a predictive system. As it can

be seen, it has four main sections: (i) Nodes, describing the access points of other subsystems,

(ii) Modules, including all the modules that compose the system and their configurations,

(iii) Couplings, which specify how these components are connected, and (iv) ServedPorts,

which enumerates the ports of the modules exposed over the network to receive information

from other subsystems.

<Root>
<Nodes>

<Node name = "node1" host = "..." port = "..." />
</Nodes>

<Modules>

<[ModuleName] name = "module1"
param1 = "..."
param2 = "..."
tag = "..." />

<[ModuleName] name = "module2"
param1 = "..."
param2 = "..." />

</Modules>

<Couplings>
<Coupling src = "module1.out_port" dst = "module2.in_port" />
<!-- ... -->

</Couplings>

<ServedPorts>
<Port name = "module1.in_port" />
<!-- ... -->

</ServedPorts>

</Root>

Figure 5.17: Systems specification format in the modular predictive framework. It includes
nodes, modules, and couplings specification.

A system described using this framework is typically distributed into several subsystems.

Communications among them can be performed directly with socket-based connections,
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or with a database as an intermediary. By breaking down the different main tasks of

the processing workflow, it is possible to easily assign the execution of specific tasks to

certain levels of the IoT infrastructure. In this way, the initial processing and the model

training could be assigned to a powerful workstation in the Cloud, while the inference could

be located in the Fog or Edge layers. For communicating with each other, the different

subsystems include a Nodes section specifying the access points of the nodes to which they

send information. These access points are specified with Port elements in the ServedPorts

section, as show in Figure 5.17.

The Modules section declares different types of processing modules. As described in Sec-

tion 5.4.1, these modules process and transform the information using a data structure called

MetaFrame, which combines the popular DataFrame of the Python pandas module with ad-

ditional auxiliary metadata related to the previous processing and characteristics of the

contained data. Among these metadata, we found MetaFrame identifiers, user-defined tags

(introduced by specific modules), and the transformations performed over the MetaFrame

by previous modules.

Among the predefined modules, the framework includes input/output modules (to im-

port data from different data sources, or to export the resulting information or models),

visualization modules (for generating plots with the results), processing modules (to per-

form operations like filters, transformations, splits, joins, etc.), and training/testing modules

(for generating and validating the models). Although their behavior is customizable through

parameterization, the modeler can create its own modules if needed. A complete list of the

modules contained in this framework, as well as the parameters available for each one, can

be accessed in the official repository documentation83.

Finally, the Couplings section specifies how to link the modules of the system. This

specification is done with Coupling elements containing pairs of source/destination ports

(as shown in Figure 5.17). When communicating with remote systems, a local output

module port can be communicated with a remote input port following the notation: [Re-
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moteNodeName].[ModuleName].[PortName].

5.4.4 Use case: Anticipating stroke types and outcomes for new
crises

In this section, our modular predictive framework is applied to address the specification of

a stroke prediction system, similar to the one manually developed by García-Temza et al.65.

First, a brief context is given about stroke disease and its impact on our society. Second,

a description of the data flow and the architectures of the subsystems that compose the

predictive system is presented. Finally, some results generated by this example system are

shown.

Impact of the stroke disease

Stroke is the third most common cause of death in developed countries, exceeded only by

Coronary Heart Disease (CHD) and cancer218. Annually, fifteen million people worldwide

suffer a stroke. Among these people, one third die, and another third became dependent,

placing a burden on family and community. Survivors can experience loss of vision and/or

speech, paralysis, and confusion, among others218. There exist two main types of strokes.

Ischemic stroke appears as a result of an obstruction within a blood vessel supplying blood to

the brain. It corresponds to 87% of all stroke cases. On the other hand, a hemorrhagic stroke

occurs when a weakened blood vessel ruptures14. The Stroke Alliance For Europe (SAFE)

estimated the total stroke cost in 2015 at e45 billion. Of them, e20 billion corresponds to

direct costs for in-hospital care and therapy. The rest corresponds to indirect costs from

informal care costs and productivity loss57. Multiple techniques are used to diagnose stroke.

However, they are usually complex and are conducted by the medical staff. Hence, they are

not accessible everywhere. This is especially important in non-urban areas. Moreover, for

stroke diseases, time is critical89. These special situations make necessary to find alternatives

that allow the generation of accurate diagnoses without incurring a significant delay in the

treatment. We propose a system that generates predictions based on different sets of models,

154



generated using several Machine Learning algorithms.

Data flow and system architecture

For this system, a dataset obtained from the Stroke Care Unit of the Princess University

Hospital (Madrid, Spain) is used. It includes information about 118 stroke patients, col-

lected from March to July 2017. Of them, 104 correspond to ischemic strokes, and the

remaining 14 to hemorrhagic strokes. This coincides with the usual proportion of ischemic

and hemorrhagic strokes. Following the general scheme provided in Figure 5.13, two types

of models are generated: one to diagnose the stroke type and other to predict the exitus risk,

both in the early stages after the episode. These predictions are intended to be generated

when monitoring new stroke attacks, before conclusive tests have been done. In this way,

the system could be used in ambulances, during the patient transportation from a rural area

to his reference hospital, or upon arrival at the health center, and serve as a first diagnosis

to facilitate the treatment of patients.

EvaluatorEvaluator

MU_1

DB
MU_2

Filter & Pre-Process
System

MU_N

Training
System

Evaluator
Systems

...

Diagnoses / results
Monitored
variables

Best
models

Predictions

Figure 5.18: Top-View of the stroke prediction system. Both the monitoring units and the
medical staff add the information to the system. The DEVS-based subsystems preprocess
it and generate the models and the predictions.
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A top view of the data flow of this system is shown in Figure 5.18. This system centralizes

all the information in a database. It is used to store the information generated by the data

sources, Monitoring Units (MU) and the medical staff, as well as to store the intermediate

data and the models generated by the subsystems. These MUs are associated with each

one of the hospital stretchers and include a Philips IntelliVue Information Center iX (PIIC

iX). This device collects information related to ECG signal, perfusion, respiratory rate,

and oxygen saturation. These data are sent to the central database (labeled as DB in

Figure 5.18). When the diagnosis and the resulting status of the patients are clear, the

medical staff introduces additional information into the database. These data are associated

with each stroke event and include variables like the recurrence, the stroke type, and the

exitus. This categorization is used to train predictive models, which could be used as a

reference in the early stages of stroke events suffered by other patients.

Following the general view illustrated in Figure 5.13, this particular system needs five of

the six subsystems to separate the processing stages. In this use case, the module of data

normalization was not considered necessary due to the use of a single data source and the

intrinsic characteristics of the input data. First, both the Filter & Pre-Process systems

(labeled with the same names but as a single block in Figure 5.18) discards the episodes

that do not accomplish several fixed criteria to assure the quality of input data. Some

corrections and transformations are also applied in this stage to adapt the original data

to the next procedures. Second, the Training System generates different models that can

be used to generate predictions. It considers variations in the input parameters and uses

several well-known classification algorithms. These models are uploaded to the database,

including information about their fitness and error. Finally, the Evaluator Systems load

the models with the best accuracy from the common database and generate predictions. An

Evaluator System can be deployed for instance into an ambulance monitoring equipment

or in a patient stretcher. The resulting predictions are sent to the medical staff and may be

used to facilitate the diagnosis and treatment of the stroke events.
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In order to manage all the information, several intermediate database tables are auto-

matically created (represented in Figure 5.19). First, the Filter & Pre-Process system

loads the Raw data table, which contains the data gathered by the Information Centers. It

adequately formats them and recovers damaged signals (if any). Then, it saves the results in

several intermediate tables (Processed data). Finally, the Training System combines these

tables with the diagnoses of the medical staff, also stored in the database (Diagnoses table),

to generate both stroke type and exitus sets of predictive models.

Processed
data Diagnoses

Raw  
data

Stroke type
classifiers 

Exitus
classifiers 

(Filter & Pre-Process
system)

(Training system)

Figure 5.19: Tables implied in the database of the stroke prediction system.

Figure 5.20 shows the structure of the Filter & Pre-Process system more in detail. This

module loads the original data generated by the MUs and splits them so that aMetaFrame is

generated for each patient. Then, invalid patients are discarded using the Filter module.

A patient is considered to be invalid when he/she does not have at least 45 minutes of

monitoring data or when the percentage of null values in some of the variables of the first 45

minutes exceeds 20% of the total. On the used dataset, 14 of the 118 patients are discarded

in accordance with the filtering rules. After the filter, the first 45 minutes of each valid

patient’s data are selected and they are re-directed to the Filler module of Figure 5.20. In
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it, null values that appear in the monitoring variables are filled based on previous and next

valid data.

WindowGen_10

WindowGen_20

WindowGen_30

DBLoader Spliter Trans_45

Filler

Filter

DBSaver_10 
 Joiner_10

Joiner_20

Joiner_30

DBSaver_20 
 

DBSaver_30 
 

(proc_10)

(proc_20)

(proc_30)

Figure 5.20: Filter & Pre-Process system. It pre-process the monitoring data and repairs
possible failures.

Next, as Figure 5.20 shows, each resulting MetaFrame goes through three WindowGen

modules. These modules group the patient’s data using windows. An example of this process

is illustrated in Figure 5.21, where a generic window structure of size 3 is created. That

means that each row of the resulting structure is composed of three samples of the original

one and the class related to the last one. In the case of the presented system, the variables

on the left are the periodic measurements of a specific patient and the class (in the right)

is the stroke type or the exitus value. Each one of the WindowGen modules is configured to

group the packet with a different window length (10, 20, and 30 samples per row). The use

of these structures is due to the data nature. Each monitoring sample is too granular to

perform predictions separately, but a consecutive set of samples can represent a significant

trend that can be used to recognize patterns. After that, the resulting structures are joined

in the Joiner module to group the data relative to each patient in new MetaFrames.

Finally, this information is saved in three tables of the central database (one for each win-

dow length). It is worth mentioning that our framework generates several predictive models

in parallel (using different algorithms, window sizes, cross-validation type, etc). Thus, all
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Figure 5.21: Example of grouping information using windows.

data are automatically pre-processed in all the needed formats to avoid the execution of this

procedure each time that new models are being created. That subsystem is executed every

12 hours, to check if there are newly available data buffered to process. After several tests,

we have concluded that 12 hours is enough to gather new relevant data and update existing

models or generate new ones.

Details of the Training System are depicted in Figure 5.22. This module is in charge of

generating updated models periodically. It is executed every 24 hours and replaces all the

models stored in the database if new data are available (i.e. when the Filter & Pre-Process

system adds new data to the intermediate tables or the medical staff tag previous episodes

in the Diagnoses table). It also sends pulses to all the active Evaluator Systems to update

their models if needed.

CVScores 
(Exitus) 

DBSaver 

Counter

Joiner_15

Joiner_30

CVScores 
(Stroke Type) 

DBSaver 

Trans_Sel_1 
(Exitus) 

Trans_Sel_2 
(Stroke type) 

(classifiers_stroke_type)

(classifiers_exitus)

DBLoader_10 

DBLoader_20 

DBLoader_30 

(proc_10)

(proc_20)

(proc_30)

VJoiner

DBLoader_Diag 
 (diagnostics)

Spliter Trans_15

Trans_30

Trans_Add_Meta 

Trans_Add_Meta 

Figure 5.22: Training System. It generates models based on the processed patients info
generated by the Filter & Pre-Process system.

This system starts loading the pre-processed data generated for the Filter & Pre-Process

system. Each one of the three resulting MetaFrames is joined with the information present
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in the Diagnoses table, using a VJoiner module. With that, all the tagged episodes are

recovered. The patient’s data that have not been still tagged by the medical staff are

discarded in this module.

Next, each one of the MetaFrames is used to generate three new ones: one taking into

account the first 15 minutes of monitoring, a second that uses the first 30 minutes, and a

third one that uses the first 45 minutes. To this end, a Splitter module is used to separate

the patients and two Transformers are used to cut the information in pieces of 15 and 30

minutes. The group of 45 minutes does not need to be cut because it was already saved

with this length in the Filter & Pre-Process system.

After that, the resulting structures are joined in the Joiner module to group the data

relative to each patient in new MetaFrames. Finally, this information is saved in three

tables of the central database (one for each window length). As above, it is saved in this

pre-processed format to avoid executing this procedure each time that new models are being

created. That subsystem is executed every 12 hours, to check if there are new available valid

data to process.

At this point, nine packets are generated combining three different window sizes and

three sample lengths. Each packet is used to create several custom prediction models, using

well-known classification algorithms. For doing that, they are injected into two models in

charge of selecting the classes of the data (one of them selects the stroke type, and the

other the exitus risk). Each output goes to the corresponding CvScores module. These

coupled components generate sets of models using several classifiers included in the sklearn

Python library. Specifically, the following Machine Learning algorithms are used: Ada Boost,

Bagging, Extra Tree, Decision Tree, Gradient Boosting and Random Forest. As output, a

MetaFrame is obtained containing the name of each classifier, the generated models, its

score, and its error. The score corresponds to the average fit values obtained in a 5-fold

cross-validation process. Next, this information is tagged with the window size and the

monitoring length used in each combination (using a Transformer module and getting this
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information from the metadata of the packets). Finally, the models are saved in two tables

of the central database (classifiers_stroke_type and classifiers_exitus) to be used by the

Evaluator System. The Counter is used to notify the Evaluator Systems of the existence of

updated models. This is done by generating and sending a pulse after the 9 sets of models

have been uploaded.

The Evaluator Systems are the ones in charge of loading the most suitable models from

the database and use them to generate predictions about the stroke type and the exitus

of new stroke attacks, evaluating the models with the real-time monitoring of the patient.

The structure of this system can be seen in Figure 5.23. It is centered two DBClassifiers

modules, which start loading the best models among the ones trained with samples of 15

minutes. This model will be updated when one of these two conditions happen: (i) it arrives

a pulse from the Training system, indicating that the models have been updated, or (ii) the

Counter modules detect that enough data have been collected to use another set of models.

This occurs when the monitoring device collects data for 30 and 45 minutes. When the model

has been updated, the DBClassifiers modules generate a MetaFrame with the information

of the new model. This packet is modified with a Transformer module to generate a special

packet that alters the window length used in the corresponding WindowBuffer module.

These modules are responsible for generating the appropriate packets to be evaluated in

the models, grouping the input data using windows of the same length as the ones used in

training.

The input of that system is generated by a StreamLoader module, which simulates the

operation of the monitoring units. In this way, each output packet contains only one value for

each measured variable (as they were measured in real-time). In the following Transformer

the suitable variables are selected (the ones that are used in the training phase). The Logger

module receives the predictions generated by the two DBClassifiers and display them so

that it can be seen by the medical staff.

As a result of the execution of the system, several models are generated and stored in
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Figure 5.23: Evaluator system. It downloads and evaluates the best models and display the
predictions.

the database. Specifically, 54 models are generated to diagnose the stroke type (Figure 5.24)

and other 54 models correspond to exitus predictions (Figure 5.25). The fit score of each one

of them, generated with different combinations of sample size in minutes (m) and window

lengths (s), can be seen in both Figures. With regard to stroke type predictions, the best

fit (0.824 ± 0.001060) is achieved by a Gradient Boosting model with a sample size of 30

minutes and a window length of 30 samples. The best exitus prediction model corresponds

to a Random Forest with a sample size of 45 minutes, and a window length of 30 samples

It achieves a fit of 0.936 ± 0.000342.

The presented abstract methodology can be used to provide support to estimate future

risks in several neurological diseases, or other clinical scenarios where the patient is con-

tinuously being monitored. By using this methodology, it is possible to straightforwardly

generate predictive models centered on key aspects of the diseases. Moreover, it helps to

reduce developing time and costs, and can be easily integrated as a part of decision support

systems to provide assistance to the work of the medical staff.

In this chapter, we exemplify the benefits that the use of M&S methodologies can bring to
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Figure 5.24: Fit of the stroke type prediction models, generated with different combinations
of sample size in minutes (m) and number of samples used in the size of the window (s).

Figure 5.25: Fit of the exitus prediction models, generated with different combinations of
sample size in minutes (m) and number of samples used in the size of the window (s).

the development of predictive healthcare systems and models with the presentation of diverse

modeling use cases and utilities. First, we describe some background aspects regarding

numerical methodologies for modeling epidemiology diseases and model-driven development

of healthcare monitoring systems. Then, we describe the related contributions, including a

Cell-DEVS SIRDS epidemiological model, a model-driven design of a healthcare monitoring

system, and a modular methodology to automate predictive modeling workflows. Also, the

development of these heterogeneous systems also serves to show the potential of DEVS-based

developments, and present the benefits of model-driven designs.
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Chapter 6

Conclusions and future work

The main goal of this thesis was to study and optimize the design and implementation of

complex systems in an IoT-healthcare context. M&SBSE has been used as a driving force

to achieve this goal, using discrete-event modeling and simulation techniques to increase

the reliability and robustness of our work. The resulting contributions can be grouped into

three main categories: (i) optimization and improvement of DEVS-based M&S frameworks,

(ii) MBSE-based development of predictive systems, (iii) scaling and deployment of these

systems in an IoT context.

6.1 Conclusions

The main conclusions drawn as a result of this research are listed below, categorized into

the main topics of this dissertation.

Modeling and simulation of complex systems

• With the dawn of the data era, we have seen how data generated worldwide is in-

creasing exponentially, and more devices are connected to the network every year.

The complexity of systems increases accordingly, incorporating many heterogeneous

components and combining knowledge of several disciplines. This trend has also been

favored with the rise of different technologies as Machine Learning, the Internet of

Things, and Big Data. M&S formalisms have proven to have an essential role in man-
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aging this complexity, providing clear, reusable, and unambiguous specifications that

help overcome its inner challenges. During the thesis development of the thesis, we

contributed to the development of a DEVS framework, xDEVS, with (i) the imple-

mentation of a Python simulator, (ii) the development of an algorithm to reduce the

overhead introduced by the traditional DEVS implementation approach, and (iii) the

incorporation of several V&V tools.

• Verification and Validation techniques play a crucial role in the development of com-

plex systems. Although the software industry places great emphasis on the inclusion

of testing procedures in their development flow, most M&S frameworks still present a

lack of robust tools that can be used to perform testing over the simulation models.

Their V&V is often performed with ad-hoc methodologies and without any standard-

ization. We contributed to overcoming this problem, developing several tools for the

verification of discrete-events models. These tools have been designed so that the

testing specifications do not affect the model’s structure itself, which allows its defi-

nition in parallel or even before the model development. These contributions enable

verifying DEVS models through the unit and metamorphic testing, and a constraints

simulation layer, allowing to check arithmetic properties over the model output ports

values.

• There are many DEVS-based simulators implemented in different programming lan-

guages and with different possibilities. Sometimes, when selecting the suitable M&S

toolkit for developing specific scenarios or introducing implementation changes in these

simulators, it is required to analyze and compare their performance objectively and

with a common metric. These comparisons have been traditionally performed by de-

signing custom sample models, executing them in several simulators, and comparing

their execution times. This approach complicates the comparison of results between

studies and supposes a subjective metric dependent on the chosen model’s specific char-

acteristics. As part of this thesis, we have presented an extension of the DEVStone
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benchmark, defining a specific model set covering heterogeneous model configurations

to be used as a reference for comparing DEVS-based simulators.

Internet of Things deployments

• The Internet of Things is a technological revolution that will greatly impact the future

of computing and communications. From now, we have to optimize the processes and

infrastructures to deal with the huge amount of processing and storing needs that this

paradigm brings. Controlled IoT simulation environments widely help in this task, al-

lowing us to explore different aspects of application design, architecture deployment,

and resource management policies optimization. In this thesis, we contributed to one

of these simulation environments, SFIDE, which helps implementing, testing, and as-

sessing workload allocation strategies for data centers. Also, it allows to track and

analyze the power consumption and thermal behavior of data center infrastructures

when running different workload types. We have redesigned the entire environment,

adding compatibility support with the popular SLURM workload manager and ex-

tending the simulator’s original perspective to implement IoT environments where the

devices can communicate over a network layer.

• When designing and implementing an IoT environment, we need to focus on critical

aspects such as power consumption, the processing workflows, and the required band-

width. Based on them, we must optimize the application placement, communication

protocols, and job allocation policies to improve the final product’s usability and per-

formance. A common trend in the last years consists of using Fog Computing to obtain

a trade-off between the processing capabilities traditionally given by the Cloud and

the small latency of Edge computing. We have followed this trend in the development

of an IoT scenario aiming to study the impact that the location of Micro Data Centers

(MDCs) has on the overall power consumption of the system. These MDCs receive

processing requests from a network of connected migraine patients intended to predict
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their next pain phases. We extracted the layout of the buildings in a central area of

Madrid, Spain, and the location of the metro stops. We performed a crowd simula-

tion with this information, where migraine patients use the metro stops as entry/exit

points and perform certain tasks in the city’s main passable areas. Finally, we have

modeled the MDCs, characterized the training and inference services, and performed

several simulations comparing the optimal locations of the data centers with several

hospital configurations to assess the impact of the location on the resulting power

consumption of the system.

Healthcare modeling trends

• M&S and IoT are having an increasing acceptance in healthcare. Although a wide

range of applications, services, and infrastructures are being developed, healthcare

trends with more potential involve patients’ continuous monitoring through non-

intrusive networked sensors. This approach makes possible the collection of useful

data that can be used to obtain relevant conclusions at the early stages of the dis-

eases, favoring the prognosis over the classical post-facto diagnose-and-treat reactive

paradigm. In this regard, we developed a M&SBSE-aided HMS implementation from

a DEVS-based migraine prediction model. The resulting VHDL system was loaded

into an FPGA, and can continuously monitor four hemodynamic variables of migraine

patients from medical-precision sensors and generating predictions of the proximity of

new pain phases. This use case highlighted the suitability of DEVS for designing and

developing complex systems, especially when the final implementation is intended to

be based on a modular language as VHDL.

• The huge data generation ratio in this data era opens the door for many possibilities

and comes with some drawbacks. One of these is the heterogeneity of the generated

data. It is common to see similar information in plenty of different formats and

with different scales and units. When integrating several external datasets to create
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knowledge, we must implement an intermediate step to unify and normalize their data

before creating models and platforms. As part of this thesis, we have developed a

framework that facilitates the implementation of entire predictive scenarios based on

XML specifications, covering the extraction of data from a multitude of sources, their

filtering, integration and transformation, as well as the generation and verification of

classification and regression predictive models. We have illustrated its use with the

development of a decision support system to determine the stroke type and exitus

probability at early stages of new crises, based on previous stroke patient monitoring

data and diagnoses provided by the medical staff.

6.2 Future work

In the following, we discuss some limitations in these research lines that enable additional

future work:

• The multi-platform metamorphic testing tool presented in this thesis provides a flexible

way to integrate new simulators and define the metamorphic relations. However, the

tester still has to generate the inputs of the system manually. To fully automate the

metamorphic testing process, several additional testing strategies can be incorporated

into this tool to cover the generation of input test cases. Some examples are (i)

random testing, which produces random and independent test inputs, (ii) fuzzy testing,

intended to generate invalid and unexpected input data to verify the correct response

of the system in edge cases, and (iii) specification-based testing, where a description

of the system is used to create input test cases based on its expected values.

• The DEVStone benchmark offered a standard specification for defining testing mod-

els and studying the DEVS-based simulators’ performance. We extended the original

concept, providing a standard model set to deal with the current heterogeneity of se-

lected configurations and enabling the direct performance comparison among studies.
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However, this metric is centered on measuring the overhead introduced by the simu-

lator itself, avoiding the introduction of delays in the internal and external transitions

of the atomic modules. In subsequent versions, it would be convenient to include

the possibility of executing several types of computational workloads in the transition

functions, allowing us to represent the performance of programming languages when

dealing with specific tasks, and giving the modelers a better idea of which simulators

are most convenient for designing new systems.

• One major concern in M&S is the interoperability among simulation models. Nowa-

days, there exist significant number of M&S frameworks, including a wide range of

features and tools, implemented in different programming languages and providing

diverse APIs. However, they usually do not include compatibility mechanisms to inte-

grate external models. Hence, models tend to be implemented as islands of knowledge,

hard to reuse and interconnect. xDEVS has made some efforts to improve this inter-

operability, developing a SOA interface to communicate different models. We want to

extend this concept, developing wrappers for the most popular DEVS-based simulation

frameworks and improving its web-service-based interconnection, further facilitating

the creation of hybrid models.

• The modular healthcare framework presents a way to create information systems and

predictive scenarios based on XML specifications. Although the first can be done

automatically, the modeler still has to manually specify the modules and connections

for creating processing, training, and inference systems. We want to automatize this

process further, generating full architectures based on the disease and patient infor-

mation.

• The SFIDE environment allows the study of workload location strategies in data cen-

ters. For deploying a scenario, both the data center architecture and the workload

characterization must be specified in configuration files. Also, the modeler has to
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instance and link all the network and computing models when specifying an IoT en-

vironment. Hence, it would greatly benefit from integrating network simulators such

as OMNeT++, allowing it to leverage the modeler task and graphically design both

the data center architecture and the scenario components structure.

171





Appendix A

xDEVS models definition and simulation

This section provides some implementation examples in the different xDEVS branches. It

presents some basic components implementations, both atomic and coupled, and details the

particularities of the different APIs.

A.1 Atomic components

The behavior of the DEVS models is encapsulated in the atomic components. Each compo-

nent has a phase, which is the label of the current state of the component, and a sigma, that

is the duration of the current state. The atomic components base their operation on events.

The response to each of these events is defined by implementing specific abstract methods

of the Atomic class. The main events controlled by these components are the following ones:

• External event (deltext): it is activated when one or more messages arrive at any of

the input ports of an atomic component.

• Internal event (deltint): it is triggered after the lifetime of the present state has been

consumed (specified by sigma).

• Confluent event (deltcon): it is activated when both the internal and external events

are scheduled for a specific simulation time. The corresponding method is already

implemented with the most common expected behavior (execute the internal event
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method first, and then the external event method). Hence, it only has to be imple-

mented when an alternative behavior is expected.

• Output function (lambda): it is activated before every internal event. All the output

values have to be sent through the output ports in this function.

Also, following the xDEVS Atomic interface, modelers must implement two additional

methods to control the initialization and destruction of the objects: initialize and exit,

respectively.

In the following, we present the implementations of the Processor component of the

EFP example (shown in the previous section) for the three available xDEVS APIs. This

component starts with a passive state (set in the initialize method) and waits until a Job

arrives to its input port. When that happens, the external event method is activated. In

this method, if the Processor is idle at that simulation time, the component changes its

state to active and sets its sigma to the processing time. All the jobs received while the

Processor is in this state are discarded. When the time specified in sigma is consumed, the

output function (lambda) is activated and the Job is sent through the output port. Right

after that, the internal event method is invoked, which changes the status to passive again,

indicating that it is available for processing new jobs.

We can see the Processor in the Java branch of xDEVS in Listing A.1. It can be seen

how the ports are added to the atomic component in the constructor, and a processingTime

parameter is received. This parameter is saved and used later in the external event method

(deltext) to specify the duration of the active state. When this time is consumed, the lambda

and deltint methods are called. First, lambda outputs the suitable values (in this example,

the original input job), and then deltint calls the passivate method. This is a shortcut for

specifying the passive phase with an infinity duration. In this way, the component only can

be activated again due to an external event. It is worth to note that both the active and

passive phase do not have any special behavior, and are used in some auxiliary methods

only for usability reasons.
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In the Python implementation of Listing A.2, we can see how both the structure and

the nomenclature are equivalent to the Java one. However, the format of the method

names is changed to snake case to comply with the well-accepted nomenclature conventions

of the Python language. Also, the lambda output method is renamed to lambdaf to avoid

overwriting the Python lambda keyword. In C++ (Listing A.3), although it keeps the camel

case nomenclature, for the API methods, it introduces the Event additional object for the

message passing. This wrapper object creates a shared pointer to the memory address of

the actual message to release it when it will no longer be used, simplifying the memory

management of the values.

public class Processor extends Atomic {

protected Port<Job> iIn = new Port<>("iIn");
protected Port<Job> oOut = new Port<>("oOut");
protected Job currentJob = null;
protected double processingTime;

public Processor(String name, double processingTime) {
super(name);
super.addInPort(iIn);
super.addOutPort(oOut);
this.processingTime = processingTime;

}

@Override
public void initialize() { super.passivate(); }

@Override
public void exit() {}

@Override
public void deltint() { super.passivate(); }

@Override
public void lambda() { oOut.addValue(currentJob); }

@Override
public void deltext(double e) {

if (super.phaseIs("passive")) {
currentJob = iIn.getSingleValue();
super.holdIn("active", processingTime);

}
}

}

Listing A.1: Atomic module definition in xDEVS (Java)
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class Processor(Atomic):
def __init__(self, name, proc_time):

super().__init__(name)

self.i_in = Port(Job, "i_in")
self.o_out = Port(Job, "o_out")

self.add_in_port(self.i_in)
self.add_out_port(self.o_out)

self.current_job = None
self.proc_time = proc_time

def initialize(self):
self.passivate()

def exit(self):
pass

def deltint(self):
self.passivate()

def deltext(self, e):
if self.phase == PHASE_PASSIVE:

self.current_job = self.i_in.get()
self.hold_in(PHASE_ACTIVE, self.proc_time)

def lambdaf(self):
self.o_out.add(self.current_job)

Listing A.2: Atomic module definition in xDEVS (Python)

class Processor : public Atomic {
protected:

Event nextEvent;
double processingTime;

public:
Port iIn;
Port oOut;
Processor(const std::string& name, double processingTime):

Atomic(name), nextEvent(), processingTime(processingTime), iIn("in"), oOut("out") {
this->addInPort(&iIn);
this->addOutPort(&oOut);

}

~Processor() {}
virtual void initialize() { Atomic::passivate(); }
virtual void exit() {}
virtual void deltint() { Atomic::passivate(); }
virtual void lambda() { oOut.addValue(nextEvent); }

virtual void deltext(double e) {
if (Atomic::phaseIs("passive")) {

nextEvent = iIn.getSingleValue();
Atomic::holdIn("active", processingTime);
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}
}

};

Listing A.3: Atomic module definition in xDEVS (C++, header)

A.2 Coupled components

Coupled components encapsulate another atomic and coupled components and define the

couplings among them. This grouping facilitates the reusability of the models and allows us

to define the hierarchy of the system. As an example of coupled components implementation

in xDEVS, we show the definition of the EF component shown in Figure 3.3a. In Listing A.4

we can see Java implementation of this component. It does not have to implement special

methods, so only the constructor is defined. The internal components (Generator and

Transducer) are instantiated and added as part of the coupled component. After that, the

suitable links are established using the addCoupling method. This actions are repeated in

the Python (Listing A.5) and C++ (Listing A.6) version with no remarkable changes.

public class Efp extends Coupled {

public Efp(String name, double generatorPeriod, double processorPeriod, double
transducerPeriod) {
super(name);

Ef ef = new Ef("ef", generatorPeriod, transducerPeriod);
super.addComponent(ef);
Processor processor = new Processor("processor", processorPeriod);
super.addComponent(processor);

super.addCoupling(ef.oOut, processor.iIn);
super.addCoupling(processor.oOut, ef.iIn);

}
}

Listing A.4: Coupled module definition in xDEVS (Java)

class Efp(Coupled):
def __init__(self, name, generator_period, processor_period, transducer_period):

super().__init__(name)

ef = EF("ef", generator_period, transducer_period)
proc = Processor("processor", processor_period)
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self.add_component(ef)
self.add_component(proc)

self.add_coupling(ef.o_out, proc.i_in)
self.add_coupling(proc.o_out, ef.i_in)

Listing A.5: Coupled module definition in xDEVS (Python)

class Efp : public Coupled {
protected:

Ef ef;
Processor processor;

public:
Efp(const std::string& name, const double& generatorPeriod, const double& processorPeriod,

const double& transducerPeriod): Coupled(name),
ef("ef", generatorPeriod, transducerPeriod),
processor("processor", processorPeriod) {

Coupled::addComponent(&ef);
Coupled::addComponent(&processor);
Coupled::addCoupling(&ef, &ef.oOut, &processor, &processor.iIn);
Coupled::addCoupling(&processor, &processor.oOut, &ef, &ef.iIn);

}

~Efp() {}
}

Listing A.6: Coupled module definition in xDEVS (C++, header)

A.3 Simulation layer

This layer defines all the simulation entities that are necessary to carry out the simulation

with the previously defined models. Although the modeling and simulation layers communi-

cate with each other to perform the simulation, it is worth noting that they are completely

decoupled. In this way, the simulation entities only keep references of the models to activate

the proper events and propagate the outputs of the components through the couplings of

the model.

Efp efp = new Efp("efp", 1, 3, 1000);
Coordinator coordinator = new Coordinator(efp);
coordinator.initialize();
coordinator.simulate(Long.MAX_VALUE);
coordinator.exit()

Listing A.7: Launching a simulation in xDEVS (Java)

efp = Efp("efp", 1, 3, 1000)
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coord = Coordinator(efp)
coord.initialize()
coord.simulate_time(INFINITY)
coord.exit()

Listing A.8: Launching a simulation in xDEVS (Python)

Efp efp("efp", 1, 3, 1000);
Coordinator coordinator(&efp);
coordinator.initialize();
coordinator.simulate((long int)10000);
coordinator.exit();

Listing A.9: Launching a simulation in xDEVS (C++)

xDEVS is available at a public repository128 under the GNU LGPL license. Moreover,

it contains an example models set that can be used to facilitate the learning of models

definition.
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