
Synchronization of Hybrid Models
in the Automated Driving Simulation

Wojciech Baron∗, Christoph Sippl†, Kai-Steffen Hielscher∗ Reinhard German∗
∗ Computer Networks and Communication Systems
Friedrich-Alexander-Universität Erlangen-Nürnberg

{wojciech.baron, kai-steffen.hielscher, reinhard.german}@fau.de
† Pre-development of Automated Driving, Audi AG

christoph.sippl@audi.de

Abstract—Developing and testing automated driving functions
on public roads or proving grounds is time-consuming and
expensive. Driving in virtual environments is increasingly seen
as an eligible approach to counteract these drawbacks. The
virtual environment is provided by one or more simulation tools
and is coupled with software modules of the automated driving
function. This results in a feedback loop that controls a virtual
vehicle. Since simulation runs are carried out on off-the-shelf
computers, determinism issues may occur due to race conditions.
However, determinism is a desirable property in order to be
able to reasonably benchmark the automated driving function.
This work identifies execution patterns of software modules and
shows how they can be synchronized by means of mapping to
discrete event semantics. The resulting simulation setup produces
repeatable results independent of the available computing and
network power. The results are demonstrated using an exemplary
driving scenario and compared to paced real-time simulation.

Index Terms—Hybrid Discrete Event, Software-in-the-loop,
Automated Driving Simulation

I. INTRODUCTION

The future of transportation lies in automation. The launch
of highly automated vehicles is facing challenges in imple-
mentation combined with an unprecedented, massive testing
requirement. The testing effort has its origin in the altered role
of the human and the software as the driver of the vehicle.
In the case of advanced driver assistance systems (ADAS),
the human is the main instance responsible for controlling
the vehicle, and he or she is merely supported in performing
the driving task. As the degree of automation increases, the
boundary shifts and the human only forms the fallback level
in the occurrence of a fault, or the driving responsibility is
eliminated entirely [1]. This is also reflected in the automotive
safety integrity level (ASIL) rating. If ASIL D is assumed
(highest safety level), only one safety-critical fault is permitted
every 108 operating hours [2]. For a potential highway pilot
and an average speed of 100km/h, this corresponds to a
distance of 10 billion test kilometers just to determine whether
or not an error occurred in this time frame. From this point of
view, mere safeguarding on public roads or proving grounds
does not seem feasible. It is promising to manage the immense
test effort with data replay or with simulation techniques.
Replay mechanisms have the downside that traffic scenarios
are reproduced statically and only what-if analyses can be

conducted. Despite high relevance, there is no interaction be-
tween the dynamic traffic and the automated driving function
(ADF). This can only be achieved by simulation, in which
driver models actually react dynamically to the behavior of
the ADF and vice versa.

One issue with simulation is certainly its credibility. How
should the driven test kilometers or test scenarios be regarded
or valued in relation to a real drive? A potential variability
in the simulation results is related to the credibility issue and
does not exactly build trust. The variation can be caused e.g.
by the interconnection of distributed simulation and software
and arising synchronization issues. In distributed simulation
systems, synchronization is based on partially or totally or-
dering events by simulation time. For example, conservative
or optimistic synchronization methods for discrete event (DE)
models are used [3]. In contrast, software modules are always
executed in relation to physical time. If the software is
distributed, the physical time can be synchronized by means
of a time synchronization protocol like precision time protocol
(PTP) [4]. The software modules are time- or data-triggered.
Scheduling and synchronization on a physical time basis does
not prohibit determinism issues. It is known that in this case
a distributed real-time simulation is not deterministic due
to causality violations caused by message timing, order or
loss [5]. Conversely, the use of conservative synchronization
algorithms in software modules is not supported because they
are defined solely for DE models. In this work, this problem is
addressed with a Hybrid DE approach by mapping execution
patterns derived from software modules to DE models. This
permits the use of established and upcoming conservative
synchronization algorithms in this kind of setting and thereby
enables deterministic coupling of simulation models and soft-
ware modules.

II. FUNDAMENTALS

For a better understanding of the contribution, the basics of
ADF simulation and DE simulation techniques are introduced.

A. Software-in-the-Loop

The interconnection of simulation and software is referred
to as software-in-the-loop (SIL) simulation. The goal is to
stimulate the software through the simulation so that execution

978-1-6654-8243-1/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 9
5t

h
V

eh
ic

ul
ar

 T
ec

hn
ol

og
y

C
on

fe
re

nc
e

(V
TC

20
22

-S
pr

in
g)

 |
97

8-
1-

66
54

-8
24

3-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

V
TC

20
22

-S
pr

in
g5

43
18

.2
02

2.
98

60
79

8

Authorized licensed use limited to: Carleton University. Downloaded on August 30,2022 at 19:42:09 UTC from IEEE Xplore. Restrictions apply.

S0

U0

ev0@7

ev1@9

...

ev9@90

event list

X0

= 5

tsim

7 w0
int

 (x0) = x0
'

�0 (x0
'
) = m0Uì

ta0(x0
'
) = 2

Y0

(a) single

S0

U0 Y0

ev0@7

ev1@9

...

ev9@90

event list

tsim

7

X0

w0
int

 (x0) = x0
'

�0 (x0
'
) = m0Uì

ta0(x0
'
) = 2�

w1
ext

 (x1) = x1
'

S1

U1 Y1

ev0@8

ev1@9

...

ev7@20

event list

@7

8 w1
int

 (x1
'
) = x1

'Z

�1 (x1
'Z
) = Î

ta1(x1
'Z
) = 1

= 5

X1

= 5

m0Uì

(b) coupled

Fig. 1: Sample execution of DE simulation units (SUs).

outside its usual physical deployment is enabled. Time and
cost expenses can be reduced e.g. due to the lack of dedicated
hardware requirements that result from the execution in a
target environment. In the case of automated driving (AD) the
number of prototype vehicles and test drives on public roads
or proving grounds can be decreased.

In the ADF SIL the ADF controls a virtual vehicle (called
ego) that drives through a virtual world and has to master
designated challenges in so-called scenarios. The ego vehicle
is equipped with sensor models that mimic those in the
prototype vehicle and through which it perceives a restricted
and noisy snapshot of the virtual world. The inertia of the ego
vehicle is replicated by a vehicle dynamics model and the pa-
rameterization corresponds to that of a real vehicle. The virtual
world including road network, traffic signs and other traffic
participants is provided by a submicroscopic traffic simulator.
Depending on the specific use case, additional simulation
models or tools may be coupled, such as network simulation
in the case of cooperative sensing or cooperative driving. This
composite of multiple simulation tools and models is referred
to as co-simulation [6]. Synchronization is required within the
co-simulation to ensure that all simulation events are processed
in a causally consistent order. The need for synchronization
stems, among other things, from the varying run times of
the models in relation to their simulation time progress. The
simulation time progress within the co-simulation must be
coordinated.

The environmental data provided by the co-simulation is
consumed by the ADF that controls the virtual ego vehicle.
The exact implementation of an ADF is up to the intellectual
property of the respective developers. However, all ADFs
share common characteristics. The ADF is a distributed real-
time system. The ADF must withstand real-time guarantees
within its true physical execution environment. It is distributed
because (1) it consists of multiple software modules or tasks
and (2) it performs complex computations that must be carried
out on parallel, distributed or even heterogeneous hardware.
The general operation of the ADF can be explained with robot
architecture models such as the sense-model-plan-act (SMPA)
[7] model. First, the environment is perceived by installed
sensors. The incoming data flows are merged and a unified
model of the environment is constructed. Based on parameters

such as the destination address and the desired speed and
restrictions resulting from the internal environmental model,
the next maneuvers are planned and a target trajectory is
generated. Finally, control variables such as the steering angle
and acceleration are derived from the target trajectory and the
actuators are steered consequently.

B. Discrete Event Simulation

DE simulation units are formally described in the discrete
event system specification (DEVS) [8]. Minor adjustments are
made in [9] to explicitly express that no output needs to be
performed by a DE SU. A DE SU Si is defined as follows:

Si = 〈Xi, Ui, Yi, δ
ext
i , δinti , λi, tai, qi(0)〉
δexti : Qi × Ui → Xi

δinti : Xi → Xi

λi : Xi → Yi ∪ {φ}
tai : Xi → R+

0 ∪∞
qi(0) ∈ Qi

Qi = {(x, e) | x ∈ Xi ∧ 0 ≤ e ≤ tai(x)},

(1)

where Xi denotes the internal state of Si, Ui denotes the
input to Si, Yi denotes the output of Si, and qi(0) denotes
the initial state of Si. The function δexti is referred to as the
external transition function that computes a new state of Si

based on the current total state qi and an input event ui. The
function δinti is referred to as the internal transition function
and computes a new state of Si based on the current state.
The value e denotes the elapsed simulation time since the last
internal or external transition. The total state qi is the tuple
of the internal state xi and the elapsed time e. The function
λi is referred to as the output event function and computes
the output of Si based on the current state. The function tai
is referred to as the time advance function that returns the
simulation time delta until the next internal event of Si.

Fig. 1 provides an example of how the theoretical construct
works. Internal events are denoted as evi@t, where i is the
event index and t is the simulation timestamp of the event.
External events can be regarded as messages and are denoted
as mi,j@t, where i is the receiver’s input port index, j is
the message index, and t is the simulation timestamp. In

Authorized licensed use limited to: Carleton University. Downloaded on August 30,2022 at 19:42:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 1a, the operation of a single DE unit is first outlined.
The DE SU S0 has two input ports, two output ports, an
internal state, an event list and a simulation clock. S0 is
located in simulation time 5. The event list contains the next
internal events to be executed, sorted in ascending order by
their simulation timestamp. The next internal event ev0 takes
place at simulation time 7. An external state transition by
δext0 is not possible because S0 is unconnected and cannot
receive external events. At simulation time 7, an internal state
transition occurs using δint0 due to ev0. The internal state
changes from x0 to x

′

0. The output function λ0 produces the
output event m0, which is however unconnected. The event
ev0 is removed from the event list and new internal events
can be generated and enqueued in the event list, but this is
not the case in this example. Finally, the time advance ta0,
which describes the relative time to the next internal event, is
set to 9− 7 = 2.

The second example in Fig. 1b is an extension of the first
example. S0 is unchanged, except that an output port of S0

is connected to an input port of S1. The sequence starts
identically to the one from the first example, because the next
internal event of S0 is earlier than of S1. This time, the event
m0 is consumed by S1 at time 7 and leads to an external
state transition by δext1 that modifies the internal state from
x1 to x

′

1. At simulation time 8, S1 performs an internal state
transition. S1 emits no output events and the output function
λ1 returns an empty set.

C. Synchronization

The above example shows a sequential solution to the
co-simulation problem. Parallel Discrete Event Simulation
(PDES) research [10] is concerned with the parallel yet
causally correct execution of the coupling problem. The execu-
tion is considered valid if the parallel execution yields the same
results as the sequential execution or if all internal and external
events of each SU are executed in ascending simulation time
order. There are two classes of synchronization algorithms:
conservative and optimistic [3]. In optimistic algorithms, regu-
lar state saving is performed. Detected causality violations lead
to a rollback and reset the simulation to a state from the past.
With conservative algorithms, blocking occurs when correct
execution cannot be ensured. The simulation units know when
to block and wait for possibly incoming events based on a
threshold value called lower bound timestamp (LBTS). It is
calculated from the commitment of each simulation unit to
send only outgoing events with a minimum simulation time.
In addition, scrambling of individual messages may occur.
However, since these must be presented as input values in
ascending simulation time order, a timestamp order (TSO)
queue is frequently used.

The operation of the TSO queue is illustrated in Fig. 2. Two
messages reside in the upper receive buffer. The message m1,0

in the bottom receive buffer is in transit. The message in transit
has a lower simulation timestamp than the messages already
received. So consuming these messages would be erroneous.
This is prevented by the LBTS and the TSO queue. The

S0

U0 Y0

ev0@9

ev1@12

...

ev9@90

event list

m
0

,1
@

1
1

m
0

,0
@

8

m
0

,1
@

1
1

m
0

,0
@

8

tso queue

@6

m1,0

ta0LBTS0Añ

safeunsafe

Fig. 2: DE SU with a TSO queue in a blocked state.

TSO queue contains all received messages sorted in ascending
simulation time order. In addition, the ta0 and LBTS0 values
are marked. The LBTS value in this case is 5 and is therefore
smaller than all messages in the TSO queue. The messages
are thus considered unsafe to consume, since messages with a
simulation timestamp greater than 5 can still be received. The
time advance ta0 is also greater than LBTS0 and thus unsafe,
so S0 must block until new messages arrive and the LBTS is
increased.

III. RELATED WORK

There are numerous related works presenting frameworks
or evaluating case studies for AD in simulation. For the most
part, the type of synchronization applied is only discussed
marginally. In [11] high-severity real-world collision scenarios
are reproduced in simulation and human-driven drivers are re-
placed with an ADF. The simulation runs are not deterministic
and from several simulation runs the worst-case is selected.
Riedmaier et al. propose a validation approach for simulation-
based testing of ADFs [12]. Multiple simulation runs are
performed for each scenario and it is shown that the simulation
results do not differ significantly. In [13] experiences in using
the popular Robot Operating System (ROS) framework in the
context of AD are shared. The authors remark on problems
concerning determinism, which they attribute to execution
reordering, non-atomic message delivery and dropped data.
These examples indicate that reproducible simulation runs
cannot be assumed to be granted. As a solution, the means
of choice is typically to perform multiple simulation runs.
Finally, in [14] a relative time synchronization approach for
SIL simulations is proposed. The approach is based on a global
logical clock but only supports periodic execution units.

The combination of miscellaneous models of compuation
(MoCs) within one simulation system is a prevalent research
topic. Extensions to the function mock-up interface (FMI)
standard are proposed that enable the support of continuous
time (CT) and DE simulation [15]. This is achieved for
instance with flags that indicate, whether an event is active
or absent. In the survey of Gomes et al. [9] many other works
are listed, which couple CT and DE simulation techniques.
Two main approaches have been identified: Hybrid DE and
Hybrid CT. A DE or CT orchestration is used respectively
and all non-compliant simulation units are wrapped to behave
in accordance with the orchestrator. A popular example of
the Hybrid DE methodology is [16]. The work connects the

Authorized licensed use limited to: Carleton University. Downloaded on August 30,2022 at 19:42:09 UTC from IEEE Xplore. Restrictions apply.

most widespeard CT and DE standsrds FMI and High Level
Architecture (HLA) and the HLA run-time infrastructure (RTI)
orchestrates the simulation system in a timestepped manner.
In [17] statecharts, i.e. DE elements, are integrated into an
FMI simulation. This requires state saving and restoration as
multiple simulation step sizes are trialed. The research frame-
work Ptolemy II [18] takes a completely different approach.
It allows the combination of hybrid domains with continuous
and discrete properties through the utilization of standardized
execution models such as kahn process network (KPN) or
synchronous dataflow (SDF). The approaches usually con-
sider only the combination of DE and CT simulation and
no software. Ptolemy’s approach is promising, but restrictive
because all elements must be designed according to a standard
execution model, which is often not the case.

Last but not least, this work is inspired by the work
of McLean et al. [5]. The authors discuss why real-time
distributed simulations cannot be assumed to be deterministic.
They identify non-determinisms sources lying in issues with
message loss, message ordering and message timing. To solve
this problem, code blocks are assigned a virtual latency.
Subsequently, synchronization within the system is performed
with reference to the simulation time. However, this work does
not address different MoCs.

The contribution of this paper is a Hybrid DE approach that
allows deterministic coupling of simulation components with
software components. This is accomplished by the adoption of
conservative synchronization and an algorithm for determining
the time advance of data-triggered software components.

IV. METHODOLOGY

ADF software modules are stimulated by simulation signals
and feed their output values back into the simulation. A
simulation system is not a real-time system and through the
distribution, causality violations such as (1) message timing,
(2) message order, and (3) message loss faults may occur,
making the overall system non-deterministic and thus non-
reproducible. Conversely, the simulation must also wait for
control values from the software. Synchronization is required.
The proposed approach is to use conservative synchronization
approaches from DE simulation. These allow parallel execu-
tion of individual modules and still guarantee determinism.

Software modules have a lot in common with DE simulation
modules. Likewise, they possess input ports, output ports, and
an internal state. What distinguishes them, however, is when
they perform calculations and that they do not provide a time
advance, which is essential for conservative synchronization.
Software modules can be time- or data-triggered, i.e. they are
activated after a time interval has elapsed or upon arrival
of certain input data. Because time-triggered modules can
be treated like timestepped simulation modules, the coupling
of data-triggered models is a greater challenge. For time-
triggered modules, computation takes place periodically and
the time advance ta can therefore be set to the period. For data-
triggered modules, no restrictions are made with regard to the
activation. For example, activation could occur on each new

input data sample, on multiple samples of input data, when
the input data meets certain criteria, or on any combination of
these criteria. Thus, the activation function α(m) is a function
of the received input data samples mi,j ∈ M and it returns
a boolean value {false, true} ∈ B, which indicates whether
the computation has been activated:

α : M→ B. (2)

SUs and software units (SWUs) have in common that input
and output ports can be defined for both of them. They also
both have an internal state. What differentiates them, espe-
cially with regard to the use of conservative synchronization
algorithms, is that SWUs are unable to provide a known
time advance. This makes conservative time synchronization
infeasible. In this paper, it is shown how to compute the time
advance ta using a declared activation function α. This allows
the use of conservative time synchronization for SWUs and
thus the deterministic operation of these in a SIL simulation.

There are several challenges in combining the co-simulation
and the distributed real-time software. The co-simulation de-
fines its causal correctness in a simulation time reference and
the software in a physical time reference. Co-simulation may
not be able to stimulate the ADF software fast enough or with
adequate timing because it cannot reliably keep up with real-
time progress. Besides, the software itself is not executed on
its actual target hardware, but on simulation machines, which
affects its timing behavior. Thus, a coupling to a simulation
time reference instead of a physical time reference seems
more appropriate and flexible. Here, however, the problem
opens up that the coupling of data-triggered software modules
with existing simulation synchronization algorithms is not
well-defined. The proposed approach exactly addresses this
problem.

The evaluation of the activation function α is best done
by examining the data samples in a given TSO queue. This
is because the TSO queue is divided into safe and unsafe
data samples by the LBTS. Consideration of the unsafe
data samples can be excluded, as this would lead to non-
determinisms. Thus, only the safe data samples from the TSO
queue are considered. If all the safe data samples do not fulfill
the activation function α, which corresponds to a false return
value, the SWU must block and hold back the time advance.
This in turn also blocks all subsequent SWUs. When checking
the safe data samples, the smallest possible data sample set
that satisfies the activation function must be found. Thus, the
activation function is first applied to the oldest safe data sample
and the considered set is increased by one data sample at a
time until the SWU is activated, or until the TSO queue no
longer contains any safe data samples. If the SWU is activated
by the activation function, the computation of the SWU is
triggered and a time advance is announced. The time advance
corresponds to the timestamp of the most recent data sample
(maximum simulation timestamp) from the minimum set of
data samples that have activated the SWU.

Authorized licensed use limited to: Carleton University. Downloaded on August 30,2022 at 19:42:09 UTC from IEEE Xplore. Restrictions apply.

SWU0

U0 Y0

m
0
,0
@
8

m
1
,0
@
3
2 m
1
,0
@
3
2

m
0
,0
@
8

@21

m0,1

LBTS0=10
ta0=Î

r0(m0,0)

(a) blocked

SWU0

U0 Y0

m
0
,1
@
2
1

m
0
,0
@
8

m
1
,0
@
3
2 m
1
,0
@
3
2

m
0
,1
@
2
1

m
0
,0
@
8

LBTS0=40

ta0=32

r0(Mtest)

(b) unblocked

Fig. 3: Sample operating of the time advance determination algorithm.

Algorithm 1 DetermineT imeAdvance(lbts,Mtso)

1: ta← ∅
2: Mtest ← ∅
3: Msafe ← {(mi, ti) ∈Mtso|ti < lbts}
4: n← |Msafe|
5: for (i← 0; i < n; i← i+ 1) do
6: Mtest ← (Mtest, dequeue(Msafe))
7: if (α(Mtest)) then
8: ta← max(mi,ti)∈Mtest

ti
9: break

10: end if
11: end for
12: return ta

The concept for determining the time advance is presented
in more detail in Algorithm 1. The return value of the time
advance ta is predefined with an empty set. If the conditions
of the activation function are not met, no time advance can be
returned and the SWU blocks. The data samples of interest
Msafe are solely the safe samples from the TSO queue.
Considering the unsafe data samples as well would trigger
the activation more quickly, but it would not be deterministic
or reproducible. Testing for activation occurs at most as many
times n as there are safe samples in the TSO queue. The
test samples Mtest for the activation function α start with
the oldest data sample from the safe sample set Msafe. If
no activation takes place, one safe sample after the other is
gradually added to the test sample set Mtest and activation is
checked each time. If the activation function α is triggered,
the time advance ta is set to the simulation time of the most
recent data sample from the test sample set Mtest and the
time advance is returned. This leads on the one hand to the
activation of the computation of the SWU and on the other
hand to the unblocking of subsequently interconnected SUs
or SWUs and thus to a simulation time progress in the overall
SIL simulation system.

An example of the operation of the algorithm is given in
Fig. 3. The activation function for the SWU0 component is
α0 = u0 ∧ u1. This means that the SWU0 is triggered when
one data sample from each of the two input ports is present.
In Fig. 3a, SWU0 is in a state where it has received a data

sample on each of its two input ports. There is in addition a
transient message for the first input port that has not yet been
received. The LBTS is 10 and is thus located between the two
received messages. Thus, only the message m0,0 belongs to
the safe samples and is therefore checked with the activation
function. The activation function does not trigger and SWU0

blocks.
In Fig. 3b there are two changes compared to the previous

state: (1) the transient message has been received and (2) the
LBTS has been increased to 40. Due to the increased LBTS,
all 3 data samples now classify as safe samples. The activation
function is called three times with {m0,0}, {m0,0,m0,1} and
{m0,0,m0,1,m1,0}. The activation is successful on the third
call, since there is now one sample from each of the two input
ports in the test set. The time advance ta is set to the value
32, since this corresponds to the value of the most recent data
sample m1,0 of the successful test sample set. The data from
the successful test sample set is delivered and the computation
of SWU0 is scheduled.

V. IMPLEMENTATION

We have implemented the concepts described above on
top of the framework Functional Engineering Platform (FEP).
FEP is a scalable execution environment for distributed real-
time and simulation systems and aims to cover all X-in-the-
Loop (XIL) use cases [19]. The concepts were implemented
on top of the FEP version 2.3.0. Since version 3.0.0b1 FEP
is open source and available to the public. FEP utilizes
Data Distribution Service (DDS) at its communication layer.
DDS [20] is a data-centric publish-subscribe (DCPS) com-
munication middleware known from many applications with
soft real-time requirements. Efforts are being made to use
DDS for applications with hard real-time requirements. The
architecture of DDS consists of domain participants, which can
exchange data via topics. For this purpose, domain participants
have publishers to offer data and subscribers to manage data
subscriptions. A data writer is created in the publisher for each
offered data set and a data reader is created in the subscriber
for each subscribed data set. We represent SUs and SWUs as
domain participants with one publisher and one subscriber.

1FEP3 SDK: https://github.com/cariad-tech/fep3 sdk, accessed 01-04-2022

Authorized licensed use limited to: Carleton University. Downloaded on August 30,2022 at 19:42:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: The examined car-following scenario.

The subscriptions for the input ports are managed by the
subscriber. The reception of data samples at specific input
ports is performed by a data reader each. The same applies
to the output ports. The publisher manages the publications
and the sending at specific output ports is performed by a
data writer each. In [21], we have presented a conservative
synchronization algorithm, that allowed distributed simulation
with time- and event-triggered simulation models on top of
this framework. In this paper, the extension to support data-
triggered software modules is presented. The data-triggered
SWUs are a derivative of event-driven SUs that contain an
activation function and set their time advance based on the
presented algorithm. The following case study is conducted
on this foundation.

VI. CASE STUDY

The presented methodology is evaluated by means of a case
study. A car-following scenario is analyzed, the simulation
execution of which is performed with two different synchro-
nization mechanisms: (1) the proposed Hybrid DE approach
HDE and (2) a paced real-time approach PRT . In the PRT
approach the simulation time progress correlates with the real-
time progress. A real-time factor can speed up or slow down
the simulation speed linearly. In the proposed HDE approach
there is no relationship between simulation time and real time.
The simulation runs as fast as causality violations can be
excluded.

The car-following scenario is depicted in Fig. 4. The au-
tomated ego vehicle is equipped with two sensors to detect
surrounding vehicles and environment. The front and rear
vehicles alternately accelerate and decelerate, shifting the
target gap for the ego vehicle. This scenario is particularly
well suited for testing synchronization approaches because it
is transparent and still meets all the characteristics of a SIL
simulation: (1) divergent data flows from the traffic simulator
to the sensor models, (2) merging data flows from the sensor
models to the ADF and (3) feedback loop from the ADF
back to the traffic simulator. The simulation step of the traffic
simulator is set to 10ms and the sensor models have a period
of 40ms. The ADF is regarded as one software unit and
operates data-triggered on the arrival of each new sensor value.

For both PRT and the proposed HDE approach, the
number of occured causality violations within a simulation
run is measured. For the PRT approach, the real-time factor
is varied between 0.1 and 2.0 in steps of 0.1 and the measure-
ment is taken in each case. This corresponds to 20 simulation
runs. The HDE is conducted in a as-fast-as-possible manner.

(a) PRT

(b) HDE

Fig. 5: The occurrence of causality violations within the SIL.

The scenario is stopped after a simulation time of 100s. The
results are presented in Fig. 5. No causality violations due to
message loss occur in either case because the underlying DDS
protocol is configured to be reliable.

For PRT , no causality violations occur only in the case of a
real-time factor of 0.1. For this purpose, time synchronization
and scheduling with scaled real-time is compared with the pro-
posed approach. An exponential relationship can be observed
between increasing the real-time factor and thus the simulation
speed and causality violations due to incorrect timing of
messages. This makes sense in so far as the computational
share of SUs and SWUs decreases proportionally with an
increased simulation speed compared to the idle share. In the
idle share, however, the messages are transmitted. Since this
interval is smaller, it is more likely that messages arrive late.
With a real-time factor of 2.0, the proportion of messages with
incorrect timing is already close to 10%. No correlation can
be observed between the simulation speed and changes in the
order of messages. The message order can change regardless
of the message frequency and proportion of the idle share.

For HDE, a simulation speed with a real-time factor of 1.29
is established. All types of causality violations are successfully
prevented. Any real-time factor smaller than the maximum
value of 1.29 can be achieved by combining HDE with PRT
and additional waiting for the physical clock. A simulation
speed greater than a real-time factor of 1.29 is impossible to
obtain with HDE.

Now we qualitatively examine 8 runs of the PRT approach
with one run of the HDE approach. With the HDE approach,
only one simulation run is necessary because it always pro-

Authorized licensed use limited to: Carleton University. Downloaded on August 30,2022 at 19:42:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Covered track of the ego vehicle.

duces the same results. In Fig. 6 the driven distance of the
ego vehicle is examined. The repetitions of the PRT runs
differ from the HDE run. Moreover they also differ among
one another. In Fig. 6b the HDE run is taken as the baseline
and the deviation of the PRT repetitions to the baseline is
formed. The deviations between the repetitions have different
magnitudes in each case. With increasing simulation time, we
could not detect any divergence behavior. However, this is
also related to the investigated scenario. In a car-following
scenario the leading vehicle sets the pace for the ego vehicle.
For general scenarios, divergence cannot be precluded.

VII. CONCLUSION

In a SIL with distributed simulation and software modules,
causality violations cannot be excluded for a paced real-time
execution. Known synchronization algorithms from simula-
tion can prevent violations, but are not defined for software
modules. The presented HDE approach closes this gap by
deriving a time advance with the help of a TSO buffer. In
a case study it is shown that this eliminates all causality
violations and thus determinism can be guaranteed. Future
work will investigate what proportion of causality violations
also translate into actual errors. It will also be investigated
whether a timestepped synchronization approach can also lead
to success and how this relates to simulation performance.

ACKNOWLEDGMENT

This research is supported by AUDI AG.

REFERENCES

[1] P. Koopman and M. Wagner, “Challenges in Autonomous Vehicle
Testing and Validation,” SAE International Journal of Transportation
Safety, vol. 4, no. 1, p. 15–24, Apr 2016.

[2] A. Höfer and M. Herrmann, Scenario-based approach for developing
ADAS and automated driving functions. Springer Fachmedien Wies-
baden, 2017, p. 215–225.

[3] S. Jafer, Q. Liu, and G. Wainer, “Synchronization methods in parallel and
distributed discrete-event simulation,” Simulation Modelling Practice
and Theory, vol. 30, p. 54–73, Jan 2013.

[4] “IEC/IEEE International Standard - Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems,” IEC
61588:2009(E), pp. 1–292, 2009.

[5] T. McLean and R. Fujimoto, “Repeatability in Real-Time Distributed
Simulation Executions,” in Proceedings Fourteenth Workshop on Paral-
lel and Distributed Simulation. IEEE Comput. Soc, 2000, p. 23–32.

[6] G. Schweiger, G. Engel, J. Schoeggl, I. Hafner, C. Gomes, and
T. Nouidui, “Co-Simulation – an Empirical Survey: Applications, Recent
Developments and Future Challenges,” in MATHMOD 2018 Extended
Abstract Volume. ARGESIM Publisher Vienna, 2018, p. 125–126.

[7] J. Hertzberg, K. Lingemann, and A. Nüchter, “Roboterkontrollarchitek-
turen,” in Mobile Roboter. Springer, 2012, pp. 317–333.

[8] Y. Van Tendeloo and H. Vangheluwe, “An Introduction to Classic
DEVS,” ArXiv, May 2018.

[9] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe,
“Co-Simulation: A Survey,” ACM Comput. Surv., May 2018.

[10] R. M. Fujimoto, R. Bagrodia, R. E. Bryant, K. M. Chandy, D. Jefferson,
J. Misra, D. Nicol, and B. Unger, “Parallel discrete event simulation:
The making of a field,” in 2017 Winter Simulation Conference (WSC).
IEEE, Dec 2017, p. 262–291.

[11] J. M. Scanlon, K. D. Kusano, T. Daniel, C. Alderson, A. Ogle, and
T. Victor, “Waymo Simulated Driving Behavior in Reconstructed Fatal
Crashes within an Autonomous Vehicle Operating Domain,” 2021.

[12] S. Riedmaier, D. Schneider, D. Watzenig, F. Diermeyer, and B. Schick,
“Model Validation and Scenario Selection for Virtual-Based Homolo-
gation of Automated Vehicles,” Applied Sciences, vol. 11, no. 1, p. 35,
Dec 2020.

[13] N. Valigi, Lessons Learned Building a Self Driving Car on ROS,
ser. Studies in Computational Intelligence. Springer International
Publishing, 2021, vol. 895, p. 127–155.

[14] S. Lee, B. I. Hwang, K.-B. Seo, and W. J. Lee, “Relative Time
Synchronization of Distributed Applications for Software-in-the-Loop
Simulation,” in 2016 IEEE Intl Conference on Computational Science
and Engineering (CSE). IEEE, Aug 2016, p. 753–756.

[15] F. Cremona, M. Lohstroh, D. Broman, E. A. Lee, M. Masin, and
S. Tripakis, “Hybrid co-simulation: it’s about time,” Software & Systems
Modeling, vol. 18, no. 3, p. 1655–1679, Jun 2019.

[16] M. U. Awais, P. Palensky, A. Elsheikh, E. Widl, and S. Matthias, “The
High Level Architecture RTI as a master to the Functional Mock-up
Interface components,” in 2013 International Conference on Computing,
Networking and Communications (ICNC). IEEE, Jan 2013, p. 315–320.

[17] J. Denil, B. Meyers, P. De Meulenaere, and H. Vangheluwe, “Explicit
Semantic Adaptation of Hybrid Formalisms for FMI Co-Simulation,” in
Proceedings of the Symposium on Theory of Modeling & Simulation:
DEVS Integrative M&S Symposium, ser. DEVS ’15. San Diego, CA,
USA: Society for Computer Simulation International, 2015, p. 99–106.

[18] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng,
“Heterogeneous Concurrent Modeling and Design in Java,” EECS De-
partment, University of California, Berkeley, Tech. Rep. UCB/EECS-
2008-28, Apr 2008.

[19] C. Stadler and T. Gruber, Functional Engineering Platform — A Contin-
uous Approach Towards Function Development. Springer International
Publishing, 2016, p. 69–84.

[20] G. Pardo-Castellote, “OMG Data-Distribution Service: Architectural
Overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings. IEEE, 2003, p. 200–206.

[21] W. Baron, C. Sippl, K. Hielscher, and R. German, “Repeatable Simula-
tion for Highly Automated Driving Development and Testing,” in 2020
IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 2020.

Authorized licensed use limited to: Carleton University. Downloaded on August 30,2022 at 19:42:09 UTC from IEEE Xplore. Restrictions apply.

