
Orchestrating real-time IoT workflows in a fog computing environment
utilizing partial computations with end-to-end error propagation

Georgios L. Stavrinides1 • Helen D. Karatza1

Received: 26 March 2021 / Revised: 16 May 2021 / Accepted: 31 May 2021
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
With the explosive growth of the Internet of Things (IoT), fog computing emerged as a new paradigm, in an attempt to

minimize network latency. Fog computing extends the cloud to the network edge, closer to where the IoT data are

generated. Typically, fog resources are of limited capacity. On the other hand, IoT applications are becoming more and

more complex and computationally demanding, requiring a certain level of Quality of Service (QoS) within strict time

constraints. In such a real-time setting, it is often more desirable for a job to meet its deadline by producing an approx-

imate—but still of acceptable quality—result, rather than producing an overdue precise result. Based on this concept, in

this paper we examine the orchestration of real-time IoT workflows in a heterogeneous fog computing environment,

utilizing partial computations. When a workflow task produces an imprecise result, the error may be propagated not only to

its immediate child tasks, but also across subsequent successor tasks of the workflow, ultimately affecting its end-result.

The proposed scheduling technique is compared to a baseline algorithm, where partial computations are not used, under

various result precision thresholds and input error propagation probabilities. The simulation results reveal that the proposed

heuristic can provide on average a 32.71% lower deadline miss ratio than the baseline policy, by trading off an average

result precision of 2.43%.

Keywords Fog computing � IoT workflows � Real-time scheduling � Partial computations � Error propagation �
Performance evaluation

1 Introduction

The rapid technological advances continue to contribute to

the ongoing growth of the Internet of Things (IoT). More

and more everyday objects, such as sensors, actuators and

mobile devices are connected to the Internet, generating at

staggering speeds an unprecedented volume and variety of

data. It is often necessary to transfer the generated data

from the IoT layer to centralized cloud data centers.

However, this would lead to heavy data traffic and signif-

icant service delays [8, 33, 51].

In an attempt to tackle this problem, fog computing

emerged as a new paradigm. The fog supplements and

extends the cloud to the network edge, close to where the

IoT data are generated. The data are processed by fog

nodes that are in physical proximity to the IoT layer,

instead of being transferred to the cloud [10, 29]. As fog

computing shares many characteristics with the cloud

computing paradigm, such as resource pooling and virtu-

alization, a fog node can often be a virtual machine (VM)

[19].

IoT data usually require processing within firm deadli-

nes, in a timely manner. In such a real-time setting, the

correctness and usefulness of the computations depend not

only on their logical results, but also on the time at which

the results are produced [5, 47]. Some examples include

weather forecasting, healthcare monitoring, road and air

traffic control, drug discovery, as well as the supervision of

critical infrastructures, such as power grids and water

supply systems [3, 7].

& Georgios L. Stavrinides

gstavrin@csd.auth.gr

Helen D. Karatza

karatza@csd.auth.gr

1 Department of Informatics, Aristotle University of

Thessaloniki, 54124 Thessaloniki, Greece

123

Cluster Computing
https://doi.org/10.1007/s10586-021-03327-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-7289-9682
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-021-03327-y&domain=pdf
https://doi.org/10.1007/s10586-021-03327-y

The data generated by such IoT applications are usually

processed by real-time complex jobs, consisting of tasks

with precedence constraints and data dependencies among

them. Thus, the component tasks of a job typically form a

workflow with an end-to-end deadline, where the output

data of a task are used as input by other subsequent tasks.

An entry task is a workflow task without any parent tasks,

whereas an exit task is a task without any child tasks. In

order to start execution, an entry task requires input data

from the IoT layer. Subsequent tasks cannot start execution

unless all of their parent tasks have been completed. Fur-

thermore, all of their required input data must be trans-

ferred to the fog node where their processing will take

place (if not already locally available) [11].

The effective orchestration and scheduling of such

workloads constitute one of the most important aspects of a

fog computing platform [4]. In its general form, the

scheduling problem in a distributed environment concerns

the assignment of a set of tasks to a set of interconnected

computational resources. Its goal is to process all tasks in

such an order, so that one or more objectives are met [21].

In this general form the scheduling problem is NP-hard.

Therefore, heuristic methods are typically employed in an

attempt to provide a near-optimal solution [14].

1.1 Motivation

Typically, fog resources are of limited capacity. On the

other hand, IoT applications are becoming more and more

complex and computationally demanding, requiring a cer-

tain level of Quality of Service (QoS) within strict time

constraints. In such a real-time setting, it is often more

desirable for a job to meet its deadline by producing an

approximate result, rather than producing an overdue pre-

cise result.

Based on this observation, Lin et al. proposed the partial

(imprecise or approximate) computations technique [22].

According to this approach, a real-time job is allowed to

return imprecise—but still of acceptable quality—results

when its deadline cannot be met [50]. Partial computations

can be utilized especially in the case of applications with

monotone component tasks, where the quality of a task’s

results is improved as more time is spent to produce them

(e.g., statistical estimation and video processing tasks)

[16].

Each monotone task typically consists of a mandatory

part, followed by an optional part. In order for a task to

return an acceptable result of the minimum quality, its

mandatory part must be completed, whereas the optional

part enhances the result produced by the mandatory part

[35]. Consequently, this technique provides flexibility, by

trading off precision for timeliness. It is important to note

that in the case of workflow jobs, when a component task

produces an imprecise result which is then consumed by its

child tasks, the effects of input error should be taken into

account.

Partial computations have only recently been used in fog

computing platforms [25, 26]. Nevertheless, none of these

research efforts took into account the effects of input error.

On the other hand, previous works in non-fog environ-

ments, even though they considered the impact of input

error, they generally assumed that it affected only the

immediate child tasks of the tasks that provided the

imprecise results. That is, they typically considered that the

error could always been compensated by the child tasks

that received it in their input data. However, this is not

always the case. When a workflow component task pro-

duces an approximate result, the error may be propagated

not only to its immediate child tasks, but also across sub-

sequent successor tasks of the workflow, ultimately

affecting its end-result. Consequently, the case of end-to-

end error propagation across the tasks of a workflow, along

with its impact on the processing time of each affected

task, should be investigated.

1.2 Contribution

To this end, in this paper we examine the orchestration of

multiple real-time IoT workflows in a heterogeneous fog

computing environment, utilizing partial computations

with end-to-end error propagation. In this context, we

propose a partial computations and error propagation

model and a dynamic scheduling heuristic. The proposed

scheduling technique also takes into account the impact of

transferring initial IoT input data from the IoT layer to the

fog layer. It is compared to a baseline algorithm, where

partial computations are not used, under various result

precision thresholds and input error propagation probabil-

ities. The experimental evaluation is performed via simu-

lation. Several metrics are employed in order to gain useful

insights into how the proposed approach performs.

To the best of our knowledge, in the context of partial

computations, error propagation across not only the

immediate child tasks, but also subsequent successor tasks

in workflows, while also taking into account its impact on

the processing time of each affected task, has never been

investigated in the literature before—not only in a fog

computing setting, but also in general.

The rest of the paper is organized as follows: Sect. 2

provides an overview of related literature. Section 3 pre-

sents the fog computing environment, the workload model,

as well as the partial computations and error propagation

model. The proposed scheduling heuristic is described in

Sect. 4. Section 5 presents the employed evaluation met-

rics, describes the experimental setup and analyzes the

Cluster Computing

123

simulation results. Finally, Sect. 6 summarizes and con-

cludes the paper, providing directions for future work.

2 Related work

Scheduling in fog computing environments is a relatively

new research area. However, a large body of work has

already been focused on this domain [9, 20, 24, 31]. On the

other hand, only a small number of scheduling method-

ologies that utilized partial computations in fog computing

platforms have been investigated in the literature.

2.1 Scheduling in fog environments
with no partial computations

Our review of previous research efforts on scheduling in

fog environments (with no partial computations) is con-

centrated on three important aspects related to this work:

(a) Whether the workload under study consisted of

workflow jobs.

(b) Whether workload deadlines were taken into

account.

(c) Whether the proposed methodology considered the

performance impact of transferring initial IoT input

data from the IoT layer to the fog layer, which is

typically required in order to start processing the

workload on the fog resources.

2.1.1 Generic efforts

Wu and Lee [48] presented a novel scheduling heuristic

based on an integer linear programming model, in order to

minimize energy consumption in a heterogeneous fog

architecture with IoT jobs. They showed through simula-

tions that the proposed energy minimization scheduling

algorithm could achieve near-optimal energy efficiency

while maintaining fast execution times. However, no

workflows, deadlines or initial IoT input data were

considered.

De Souza Toniolli and Jaumard [12] presented an

adaptation of the path-clustering heuristic in a fog-cloud

environment for the scheduling of multiple workflows. The

objective was to achieve the best tradeoff between work-

flow makespan and monetary cost. The proposed approach

was evaluated with extensive simulations. The results

showed that the proposed heuristic achieved better per-

formance compared to other methods, while keeping

monetary costs at similar levels. Even though workflows

were considered in their study, no deadlines or initial IoT

input data were taken into account.

2.1.2 Efforts considering workflows with deadlines
but no initial IoT input data

Pham et al. [32] proposed a static real-time workflow

scheduling strategy based on the collaboration between fog

and cloud computing. Their goal was to achieve a tradeoff

between performance and monetary cost of the cloud

resources. Their approach considered that both the per-

formance and monetary cost factors had equal weight

during the scheduling process. While workflows and

deadlines were taken into account, no initial IoT input data

were considered.

Xu et al. [49] presented a real-time task scheduling algo-

rithm that took into account the laxity of the tasks, as well as

the energy consumption of the fog and cloud resources. The

proposed approach formulated the scheduling problem as a

constrained optimization problem. An ant colony system

algorithm was utilized for its solution. The experimental

results revealed that the proposed method could lead to energy

savings, while minimizing the number of deadline misses.

Workflows and deadlines were considered. However, initial

IoT input data were not taken into account.

Ahmed et al. [2] proposed an approach for scheduling

multiple scientific workflows with deadlines in a multi-fog

environment, taking into account the effects of Distributed

Denial of Service (DDoS) attacks, which could keep fog

resources busy. A hybrid optimization technique was pro-

posed, based on particle swarm optimization and salp

swarm algorithms. In order to address the effects of DDoS

attacks on the fog resources, they developed two discrete-

time Markov chain models. These models were used for

computing the average available bandwidth and the aver-

age number of available VMs in the fog environments,

respectively. The simulation results revealed that the pro-

posed strategy decreased the number of deadline misses

under DDoS attacks. While the workload consisted of

workflows with deadlines, no initial IoT input data were

taken into account.

2.1.3 Efforts considering deadlines and initial IoT input
data but no workflows

Gazori et al. [17] focused on the scheduling of fog-based

IoT applications with the objective of minimizing long-

term service delay and computation cost under the resource

and deadline constraints. The proposed approach utilized

the reinforcement learning approach, using the target net-

work and experience replay techniques. The evaluation

results showed that the proposed algorithm outperformed

baseline strategies, in terms of service delay, computation

cost, energy consumption and deadline misses. Even

though deadlines and initial IoT input data were taken into

account, the workload consisted of independent tasks.

Cluster Computing

123

Naha et al. [28] addressed the problem of meeting

deadline-based dynamic user requirements in a fog-cloud

environment through resource allocation and scheduling

algorithms. Resource ranking and provision of resources

were used in a hybrid and hierarchical fashion. The sim-

ulation results demonstrated that the proposed approach

outperformed existing algorithms, in terms of overall data

processing time, monetary cost and network delay. Dead-

lines and initial IoT input data were taken into account.

However, no workflows were considered.

Aburukba et al. [1] proposed an approach to minimize

the overall latency of IoT workload in a fog-cloud envi-

ronment. Integer linear programming was employed in

order to model the minimum service time for IoT requests.

They proposed a heuristic approach that utilized a cus-

tomized genetic algorithm in order to obtain a feasible

solution with a good quality in a reasonable computational

time. However, while deadlines and initial IoT input data

were taken into account, no workflows were considered.

2.1.4 Efforts considering workflows with deadlines
and initial IoT input data

Ding et al. [13] proposed a cost-effective scheduling

strategy for multiple parallel IoT workflows with time

constraints in a fog-cloud environment. They proposed a

novel multi-workflow scheduling policy based on particle

swarm optimization. A fitness function was utilized in

order to evaluate the workflow execution cost under given

deadlines. The experimental results demonstrated that the

proposed technique could significantly reduce the execu-

tion cost of multiple parallel workflows, compared to other

strategies. In this work workflows with deadlines and initial

IoT input data were considered.

In our previous work in [42, 44–46] we considered the

scheduling of real-time IoT workflows in fog computing

platforms. The performance impact of transferring initial

IoT input data from the IoT layer to the fog layer was taken

into account and incorporated into the scheduling heuristic.

In this paper, we consider all of these aspects in our

scheduling approach, along with the utilization of partial

computations with end-to-end error propagation.

2.2 Scheduling workloads with partial
computations

Scheduling workloads with partial computations has been

studied extensively in the literature, with some works

considering the effects of input error. However, only a few

recent research efforts investigated partial computations in

a fog environment, but without considering the effects of

input error. Furthermore, to the best of our knowledge, end-

to-end error propagation across the component tasks of

workflows, while also taking into account its impact on the

processing time of each affected task, has never been dis-

cussed in the literature before, not only in a fog computing

environment, but also in general.

2.2.1 Efforts considering input error in non-fog
environments

Feng and Liu [16] proposed a real-time scheduling tech-

nique utilizing partial computations. They investigated the

impact of input error on the static scheduling of a single

linear workflow of tasks with an end-to-end deadline on a

single processor. When a parent task provided its child task

with imprecise results, the mandatory and optional parts of

the child task were extended, in order to handle and correct

the error. That is, the case where the input error could

propagate along the subsequent tasks of the linear chain

was not considered.

Ravindran et al. [34] presented a heuristic for the

scheduling of real-time workflows with partial computa-

tions on multiprocessors. The objective was to maximize

output quality in the cases where the resources were limited

in terms of time and energy. Even though a simplified

model was proposed for calculating recursively the accu-

mulated output error of the exit tasks, which resulted from

the input error and partial completion of predecessor tasks,

no proper propagation of the input error and its effects on

the processing time of each affected workflow task were

considered.

Esmaili et al. [15] proposed a real-time scheduling

heuristic for workflows with partial computations and end-

to-end deadlines on multiprocessor platforms. Their

approach was evaluated against a mixed integer linear

program formulation of the same problem, which provided

the optimal reference scheduling solutions. The proposed

heuristic was also capable of finding feasible schedules

even under tight energy budgets. Through extensive sim-

ulation experiments, it was demonstrated that in some

cases, the proposed approach yielded the same QoS as the

ones found by the mixed integer linear program. Even

though both strategies took into account the impact of input

error in the case where a parent task’s results were

imprecise, it was considered that the input error could

always be compensated by extending the mandatory part of

each affected child task. Thus no end-to-end error propa-

gation was taken into account.

In all of our previous research efforts

[36, 37, 39–41, 43], even though we considered the impact

of input error on the real-time scheduling of workflows

with partial computations, no end-to-end error propagation

was taken into account. Furthermore, since our approaches

were not applied to a fog computing environment, no initial

IoT input data were considered.

Cluster Computing

123

2.2.2 Efforts considering fog environments but no input
error

Mora Mora et al. [27] proposed an approach that utilized

partial computations in order to provide flexible imple-

mentation frameworks for embedded or mobile devices in

fog-cloud platforms. The proposed real-time scheduling

technique took into account the initial IoT input data of the

workload. However, the workload consisted of independent

tasks and not workflows. Furthermore, in the proposed

framework, the tasks did not have mandatory and optional

parts, but it was assumed that some of the tasks were

mandatory and some optional. Consequently, no input error

or end-to-end error propagation were considered.

Cao et al. [6] investigated the QoS optimization of real-

time applications in fog computing systems equipped with

reusable IoT end devices and powered by hybrid energy of

renewable generations and grid electricity. They proposed a

two-level scheduling approach that utilized partial compu-

tations. At the IoT layer, a local scheduling solution was

produced by consecutively conducting application-level and

component-level energy allocation. At the fog layer, a local-

remote scheduling solution was subsequently derived via

renewable-adaptive computation offloading. This research

effort took into account the initial IoT input data of the

workload. However, the real-time tasks were independent

and no input error or error propagation were considered.

Mo and Kritikakou [25] proposed a mathematical model

for the energy-efficient scheduling of deadline-constrained

workflows in a fog cyber-physical networked system, uti-

lizing partial computations. The problem was first formu-

lated as a mixed integer non-linear programming problem,

due to its complex nature. Subsequently, they provided a

linearization method that resulted in a mixed integer linear

programming formulation, in order to efficiently solve the

problem. The simulation experiments demonstrated the

effectiveness of the proposed approach. However, in this

work, as in an extension of this work by Mo et al. [26], no

initial IoT input data were considered. Furthermore, no

input error or error propagation were considered among the

workflow tasks.

All of the previous works analyzed above are shown in

Table 1. They are categorized according to their charac-

teristics related to this work.

3 Problem definition

3.1 Fog computing environment

The fog computing environment under study is depicted in

Fig. 1. The first layer comprises the IoT sensors and

devices, whereas the second layer consists of the fog

computational resources. The IoT sensors and devices of

the first layer transmit data to the fog resources in the

second layer, in order to be processed. The fog layer

contains a set H ¼ fh1; :::; hjHjg of jHj heterogeneous

physical hosts. Each physical host hi provides a pool of mi

VMs. Collectively, there is a set V ¼ fvmh1

1 ; :::; vm
hjHj
jVj g of

jVj ¼
P

hi2H
mi heterogeneous VMs in the fog layer. The

superscript of each VM in V indicates the physical host that

the particular VM is run on. Hereafter, the superscripts of

the VMs will be omitted for simplicity purposes. Each VM

vmi is assigned a virtual CPU (vCPU) with operating fre-

quency fi. It is noted that each vCPU—and thus each

VM—has its own queue of assigned tasks that need to be

processed.

It is assumed that the processors of the physical hosts,

and thus the provided VMs, support the same instruction

set. Consequently, they require the same number of clock

cycles per instruction. This is a reasonable assumption, as

the VMs utilized by major cloud vendors, such as Micro-

soft Azure, Google Cloud and Amazon Web Services,

typically support the x86-64 instruction set. The VMs in

the fog layer are fully connected by a virtual network.

The data transfer rate between two fog VMs vmi and vmj

is denoted by rfogij and is uniformly distributed in the

interval:

rfogij �U½qfog � ð1 � Hfog=2Þ; qfog � ð1 þ Hfog=2Þ� ð1Þ

where Hfog and qfog are the heterogeneity degree and the

mean data transfer rate, respectively, of the virtual network

in the fog layer.

The data between the IoT and fog layers are transmitted

with a rate rIoT, which is uniformly distributed in the range:

rIoT �U½qIoT � ð1 � HIoT=2Þ; qIoT

� ð1 þ HIoT=2Þ�
ð2Þ

where HIoT is the heterogeneity degree of the network that

connects the IoT and fog layers, whereas qIoT is the mean

data transfer rate between the two layers.

The resource allocation and scheduling of the incoming

workload on the available VMs in the fog layer is per-

formed by a fog orchestrator, running on a dedicated node

in the fog layer. The fog orchestrator has a global waiting

queue where the tasks of all of the workflow jobs that

arrive at the system wait until they become ready to be

scheduled on the VMs. The queueing model of the fog

resources is illustrated in Fig. 2.

3.2 Workload model

The data generated by the IoT sensors and devices in the

first layer of the environment under study require

Cluster Computing

123

processing within specific time constraints. Therefore, the

data are transferred to the fog resources in the second layer,

where they are processed by real-time workflows. Conse-

quently, multiple real-time workflow jobs arrive dynami-

cally at the fog orchestrator, in a Poisson stream with rate

k. Each workflow job is represented by a directed acyclic

graph (DAG) G ¼ ðN ; EÞ, where N is the set of the nodes

of the graph, whereas E is the set of the directed edges

between the nodes. Each node represents a component task

ni of the workflow, whereas a directed edge eij between two

tasks ni and nj represents the data that must be transferred

Table 1 Comparison of the characteristics of previous research efforts to the work presented in this paper

Reference Fog Workflows Deadlines Initial IoT input

data

Partial

computations

Input

error

End-to-end error

propagation

Wu and Lee [48] U

De Souza Toniolli and Jaumard

[12]

U U

Pham et al. [32] U U U

Xu et al. [49] U U U

Ahmed et al. [2] U U U

Gazori et al. [17] U U U

Naha et al. [28] U U U

Aburukba et al. [1] U U U

Ding et al. [13] U U U U

Our previous works [42, 44–46] U U U U

Feng and Liu [16] U U U U

Ravindran et al. [34] U U U U

Esmaili et al. [15] U U U U

Our previous works

[36, 37, 39–41, 43]

U U U U

Mora Mora et al. [27] U U U U

Cao et al. [6] U U U U

Mo and Kritikakou [25] U U U U

Mo et al. [26] U U U U

This work U U U U U U U

Fog resources

IoT sensors and devices

Fig. 1 The fog computing environment under study Fig. 2 The queueing model of the fog resources

Cluster Computing

123

from task ni to task nj. The number of tasks jN j in a

workflow is an integer uniformly distributed in the interval:

jN j�U½Nmin;Nmax� ð3Þ

where Nmin and Nmax are respectively the minimum and

maximum number of tasks in a workflow job.

The component tasks of a workflow are considered to be

non-preemptible, as preemption in a real-time context may

eventually lead to performance degradation [5]. An

example of a workflow job with three entry tasks and five

exit tasks, is depicted in Fig. 3. The number in each node

denotes the average computational cost of the task. The

number on each edge denotes the average communication

cost between the two component tasks it connects. The

arrows pointing to the entry tasks of the graph denote their

required initial input data, which are transferred from the

IoT layer to the fog layer.

3.2.1 Computational characteristics

Each component task ni of a workflow job has a weight wi,

which denotes its computational volume. The computa-

tional volume of each task is expressed as the number of

clock cycles required to execute the instructions of the

particular task. It is exponentially distributed with mean x.

Hence, the computational cost of task ni on a VM vmk is

given by:

Compðni; vmkÞ ¼ wi=fk ð4Þ

where fk is the operating frequency of vmk.

3.2.2 Communication characteristics

An edge eij between two component tasks ni and nj has a

weight zij, which represents its communication volume. The

communication volume of each edge is expressed as the

number of GB of data required to be transferred between

the two tasks it connects. It is exponentially distributed

with mean f. The communication cost of the edge eij is

incurred when data are transferred from task ni, scheduled

on VM vmk, to task nj, scheduled on VM vml. It is defined

as:

Commððni; vmkÞ; ðnj; vmlÞÞ ¼ zij=rfogkl ð5Þ

where rfogkl is given by (1) and is the data transfer rate of

the communication link between the two VMs, vmk and

vml. It is noted that in case both tasks ni and nj are

scheduled on the same VM or on VMs that run on the same

physical host, the communication cost of the edge eij is

considered negligible.

Each entry task of a workflow job requires initial input

data that are generated by the sensors and devices in the

IoT layer. The input data size di of an entry task ni is

exponentially distributed with mean c and is expressed in

GB. The communication cost incurred by transferring the

required input data from the IoT layer to an entry task ni
scheduled on a VM vmk in the fog layer, is given by:

Commðni; vmkÞ ¼ di=rIoT ð6Þ

where rIoT is given by (2) and is the rate of transferring data

from the IoT layer to the fog layer.

3.2.3 Other workload characteristics

The communication to computation ratio CCR of a work-

flow job is the ratio of its average communication cost to its

average computational cost on the target environment. It is

defined as:

CCR ¼
P

eij2E CommðeijÞ
P

ni2N CompðniÞ
ð7Þ

where N and E are the sets of the nodes and edges of the

workflow job, respectively. CommðeijÞ is the average

communication cost of the edge eij over all of the com-

munication links that connect the fog VMs, whereas

CompðniÞ is the average computational cost of task ni over

all of the VMs in the fog layer.

The makespan M of a workflow job is its total pro-

cessing time. It is defined as:

n1 n2

n5 n6

4

1
n9

2 3

7

3

9
n4

n10

8

5

6

7

3

7
n13

4 3
n14

3 7

2

6

5

4

8

5

9

n3

n8 n11

n12

n15

4

6

3

6

2 2 1

2

8

3

6

9

n7

5

Fig. 3 A workflow job represented by a directed acyclic graph with

three entry tasks and five exit tasks

Cluster Computing

123

M ¼ FT � ST ð8Þ

where FT is the finish time of the job, i.e., the time its last

component task finished execution. On the other hand, ST

is the start time of the job, i.e., the time its first component

task started execution.

The response time RT of a workflow job is the time

interval between the arrival of the job at the fog orches-

trator and the completion of its last component task. It is

given by:

RT ¼ FT � AT ð9Þ

where AT is the arrival time of the job.

3.2.4 Real-time constraints

Each workflow job has a firm end-to-end deadline D within

which all of its component tasks must finish processing. It

is defined as:

D ¼ AT þ RD ð10Þ

where AT is the arrival time of the job, whereas RD is its

relative deadline. The latter, is uniformly distributed in the

range:

RD�U½CPL; 2CPL� ð11Þ

where CPL is the critical path length of the graph—i.e., it

is the length of the longest path from an entry task to an

exit task in the graph. The length of a path in the graph is

the sum of the average computational and communication

costs of all of the tasks and edges, respectively, on the path,

including the input data communication cost of the

respective entry task on the particular path. The critical

path of the example workflow job in Fig. 3 is depicted with

thick arrows.

3.3 Partial computations and error propagation
model

The end-to-end deadline of each workflow job that arrives

at the fog orchestrator must be met, otherwise its results

would be useless. In case the deadline of a job is reached

and not all of its component tasks have finished execution,

the job would normally be considered lost and its unfin-

ished component tasks would be discarded from the sys-

tem. However, this can be addressed by trading off result

precision for timeliness, using partial computations. Partial

computations can allow a component task of a workflow

job to be partially completed. In order to utilize partial

computations, it is considered that the computational vol-

ume wi of each workflow component task ni consists of a

mandatory part mpi, followed by an optional part opi:

wi ¼ mpi þ opi ð12Þ

where 0\mpi\wi.

A task is completed when at least its mandatory part has

been completed. The task can either complete its optional

part entirely, partially or it may skip its whole optional

part, depending on the decision of the orchestrator. The

results of a partially completed task ni are imprecise and

therefore the task has output error. Since the output data of

the task are used as input by its child tasks, the input data of

the child tasks contain input error. Furthermore, there is a

chance that a child task may not be able to correct the error

in its input data (e.g., by performing more computations)

and thus its input error is propagated to its output. This is

determined by the input error propagation factor of the

task.

Consequently, the output error of a task ni is given by:

OEi ¼
di
opi

þ /i � IEi ð13Þ

where di is the discarded fraction of the optional part opi of

the task, whereas /i is the input error propagation factor of

the task. The output error of a task takes values in the

interval [0, 1], i.e.:

0�OEi � 1 ð14Þ

The value of /i is determined by the input error propa-

gation probability p, such that:

/i ¼
1; with probability p

0; with probability 1 � p

�

ð15Þ

From (13) and (15) it is inferred that in case a task ni has

non-zero input error IEi, there is a chance that its output

error OEi will be non-zero, even when it completes its

whole optional part opi, i.e., even when di ¼ 0. From (13),

(14) and the fact that the discarded fraction of the optional

part of task ni must be di [¼ 0, it follows that:

0� di � opi � 1 � /i � IEið Þ ð16Þ

This indicates that the fraction of the optional part of the

task that can be omitted is dependent on the input error of

the task that is going to be propagated to its child tasks.

The input error of a task ni is considered to be equal to

the average output error of its parent tasks, i.e.:

IEi ¼
X

nj2Pi

OEj

jPij ð17Þ

where Pi is the set of the parent tasks nj of task ni. From

(14) and (17) it follows that:

0� IEi � 1 ð18Þ

If a task has input error, then there is an impact on its

Cluster Computing

123

execution time. Additional computations (i.e., instructions

and thus clock cycles) are required in order to handle the

error and produce an acceptable result. For this reason, in

such a case the mandatory part of the task is extended.

Specifically, the mandatory part extension of a task ni due

to its input error is defined as:

mpei ¼ mpi � IEi ð19Þ

The mandatory part extension of the task is added to its

initial mandatory part. It is noted that the optional part of

the task is not affected by its input error.

The result precision of a task ni is defined as:

RPi ¼ RPT þ ð1 � RPTÞð1 � OEiÞ ð20Þ

where RPT is the universal result precision threshold,

under which the results of a task are not acceptable. Con-

sequently, RPT constitutes an aspect of the required QoS

level. The result precision of a task takes values in the

interval [RPT, 1], i.e.:

RPT �RPi � 1 ð21Þ

The result precision of a job is considered to be equal to the

average result precision of its exit tasks, i.e.:

RP ¼
X

ni2N exit

RPi

jN exitj ð22Þ

where N exit is the set of exit tasks of the job.

From (13) and (20) it can be inferred that even when the

whole extended computational volume of a task ni is

executed (i.e., di ¼ 0), if there is propagated input error

into the output of the task (i.e., /i � IEi [0), then the

results of the task will still be imprecise (i.e., RPi\1).

Hence, the input error of a task cannot always be com-

pensated by the additional computations performed by the

task due to its extended mandatory part. In case there is no

propagated input error into the output of the task (i.e.,

/i � IEi ¼ 0), then the result precision threshold is equal to

the ratio of the task’s mandatory part over its computa-

tional volume, i.e.:

RPT ¼ mpi=wi ð23Þ

It is noted that according to this partial computations and

error propagation model, when a workflow task produces

an imprecise result, its output error may be propagated not

only to its immediate child tasks, but also across subse-

quent successor tasks of the workflow, ultimately affecting

the end-result of the workflow job (i.e., there is end-to-end

error propagation). The error propagation across the tasks

of a workflow is measured by the input error propagation

index, which is defined as:

IEPI ¼ jE0j þ jN 0
exitj

jEj þ jN exitj
ð24Þ

where E0 is the set of edges that convey propagated input

error from a parent task to a child task, N 0
exit is the set of

exit tasks that give results containing propagated input

error, E is the set of edges, whereas N exit is the set of exit

tasks of the workflow job.

Consequently, in the case of partial computations, when

the deadline of an uncompleted job is reached, the job is

not always considered lost. In case the uncompleted tasks

of the job are all exit tasks and all of them have completed

their mandatory part and their output error is less than or

equal to 1 (i.e., condition (14) holds), then the job is con-

sidered completed. In this case, even though the results of

the job are imprecise, they are still of acceptable quality.

4 Scheduling methodology

A dynamic two-phased scheduling strategy is proposed for

the orchestration of the workflow jobs onto the fog VMs,

comprising a task prioritization phase and a VM selection

phase. The component tasks of all of the workflow jobs that

arrive at the system are first placed into the global waiting

queue of the fog orchestrator. A task waits in the global

waiting queue until it becomes ready to be scheduled. This

happens when the task has either no predecessor tasks (i.e.,

it is an entry task of its respective workflow job) or all of its

predecessor tasks have finished execution.

Whenever a task becomes ready to be scheduled, the

orchestrator performs the two phases of the scheduling

heuristic described below. The proposed method utilizes

partial computations and idle schedule gaps in order to

trade off result precision for timeliness. Its objective is to

meet the deadline of each workflow job, providing results

of acceptable quality—i.e., with precision above the

defined result precision threshold RPT. Furthermore, the

scheduling approach takes into account the impact of input

error propagation on the execution time and output of the

tasks.

4.1 Task prioritization phase

The ready tasks in the global waiting queue of the fog

orchestrator are prioritized according to the end-to-end

deadline D of their respective workflow job. The ready task

with the earliest respective deadline has the highest priority

for selection. Consequently, tasks are prioritized according

to the Earliest Deadline First (EDF) policy. In case two or

more tasks have the same respective deadline, the task with

the largest average computational cost Comp is selected

Cluster Computing

123

first. We use this tie-breaking rule, as it has been show-

cased in [30] that this method, when applied to the EDF

policy, gives better results than other methods, such as

random selection.

4.2 VM selection phase

Each ready task ni is selected by the fog orchestrator

according to its priority and is allocated to the VM vmk that

can provide it with the earliest estimated finish time EFT,

which is defined as:

EFTðni; vmkÞ ¼max tdataðni; vmkÞ; tidleðni; vmkÞf g
þ Compðni; vmkÞ

ð25Þ

The term tdataðni; vmkÞ indicates the time at which all input

data of the ready task ni will be available on vmk. It is noted

that in case ni is an entry task of its respective workflow

job, the term tdataðni; vmkÞ concerns its initial IoT input data

that should be transferred from the IoT layer to the fog

layer. In all other cases, tdataðni; vmkÞ concerns the data

generated by ni’s parent tasks. The term tidleðni; vmkÞ pro-

vides an estimation of the time at which vmk will be able to

execute task ni, according to the current state of its queue.

In order to determine the term tidleðni; vmkÞ, the fol-

lowing steps are performed:

1. First, we find the position at which the ready task ni
would be placed in the queue of vmk, according to its

priority. The term tidleðni; vmkÞ is initially calculated

based on this potential position.

2. In case all of the required input data of the ready task ni
are already available on vmk, we check whether a

schedule gap exists. A schedule gap is formed when

vmk is idle and the task nq placed at the head of vmk’s

queue is still in the process of receiving its required

input data from other hosts or from the IoT layer. The

capacity g of the schedule gap is given by:

g ¼ tdataðnq; vmkÞ � tcurrent ð26Þ

where tdataðnq; vmkÞ is the time at which all of the

required input data of task nq will be received, whereas

tcurrent is the current time.

3. If a schedule gap exists, we determine the maximum

possible discarded fraction dmax
i of ni’s optional part,

according to (16), i.e.:

dmax
i ¼ opi � 1 � /i � IEið Þ ð27Þ

In case ni is an exit task of its respective workflow job,

we consider that dmax
i ¼ 0. This is due to the fact that

exit tasks ultimately determine the result precision of

their respective jobs. Consequently, their whole com-

putational volume should be allowed to be processed.

4. Subsequently, we try to fill in the schedule gap with the

ready task ni:

4:1 First, we check whether the whole task fits into

the schedule gap, i.e.:

g�wi=fk ð28Þ

where wi is the computational volume of task ni,

whereas fk is the operating frequency of vmk. In

case condition (28) holds, ni can be inserted into

the gap. In this case the whole computational

volume wi of task ni will be processed. The term

tidleðni; vmkÞ is recalculated based on ni’s new

position.

4:2 In case the whole task does not fit into the

schedule gap (i.e., condition (28) does not hold),

we try to insert only a part of it, utilizing partial

computations. Specifically, we check whether the

minimum possible part of ni fits into the schedule

gap:

g� wi � dmax
i

� �
=fk ð29Þ

Additionally, we check whether the processing

time that can be saved by skipping a fraction of

the ready task ni’s optional part equal to dmax
i , is

greater than or equal to the total average addi-

tional processing time that would be imposed by

the extended mandatory part of ni’s child tasks,

which is calculated by also considering ni’s

output error:

dmax
i =fk �

X

nj2Ci

X

vml2V

mpj � IE0
j

� �
=fl

jVj
ð30Þ

where Ci is the set of the child tasks nj of the

ready task ni. IE
0
j is the potential input error of a

child task nj. It is given by:

IE0
j ¼ IEj þ

dmax
i =opi þ /i � IEi

jPjj
ð31Þ

where IEj is the current input error of child task

nj, whereas Pj is the set of its parent tasks. In

case both conditions (29) and (30) hold, only a

part of the ready task ni can be inserted into the

schedule gap. The part of the task that would be

processed in this case would be equal to its

computational volume w0
i that fits into the gap,

i.e.:

w0
i ¼ g� fk ð32Þ

It is noted that we allow the maximum possible

part (that fits into the schedule gap) of ready task

ni to be processed, in an attempt to minimize ni’s

Cluster Computing

123

output error. The term tidleðni; vmkÞ is recalcu-

lated based on ni’s new position. In case the

ready task ni has to wait for input data or it does

not fit into a schedule gap or a schedule gap does

not exist, the position of task ni in vmk’s queue—

and thus the term tidleðni; vmkÞ—is determined

only by ni’s priority (i.e., as in step 1).

The pseudocode for the proposed partial computations

(PC) scheduling technique is given in Algorithm 1.

Schedule gaps are also utilized in the following cases, in

the same manner as in the steps 2-4 of the VM selection

phase:

(a) in the case where a task waiting in the queue of a VM

has finished receiving its required input data,

(b) in the case where the processing of a task on a VM

has been completed, and

(c) in the case where the deadline of a job is reached and

thus its component tasks that are in service or

waiting for data in VM local queues are discarded.

In case (a), if a schedule gap exists, we examine whether

the particular task waiting for service can fit into the gap. In

cases (b) and (c), if a schedule gap exists, it is utilized by a

task waiting for service in the respective VM queue (eli-

gible tasks are examined starting from the head of the

queue).

Cluster Computing

123

For comparison purposes, a baseline policy is defined as

a simplified version of the proposed heuristic, PC.

Specifically, the baseline strategy has the same task pri-

oritization phase as the proposed technique, but in the VM

selection phase it utilizes schedule gaps only in the case

where the whole task fits into the gap (i.e., only the steps

1-4.1 of the VM selection phase are performed). Hence, the

baseline policy does not utilize partial computations.

5 Performance evaluation

The proposed scheduling technique, PC, was examined

under several input error propagation probabilities p and

result precision thresholds RPT. Specifically, we investi-

gated the performance of the proposed heuristic for each

combination of the following values of the two parameters,

p ¼ f0; 0:25; 0:5; 0:75; 1g and

RPT ¼ f0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g. It is noted

that in the case of the baseline scheduling policy, which

was used for comparison purposes, the completed work-

flow jobs always gave precise results, since partial com-

putations were not used. The particular baseline policy,

through its comparison to the proposed heuristic, enabled

us to focus on the impact of partial computations and

propagated input error on the performance of the frame-

work under study.

5.1 Evaluation metrics

In order to evaluate the performance of the proposed

approach, the following metrics were employed:

1. Deadline miss ratio: It is the ratio of the number of

workflow jobs that could not be completed within their

deadline—and thus lost—over the number of jobs that

arrived at the fog orchestrator during the observed time

period.

2. Weighted average result precision: It is the weighted

average result precision of the workflow jobs that were

completed within the observed time period. The result

precision of each completed workflow job was

weighted using the number of exit tasks of the

particular workflow.

3. Weighted average makespan: It is the weighted aver-

age makespan of the workflow jobs that were com-

pleted within the observed time period. The makespan

of each completed workflow job was weighted using

the critical path length of the particular workflow.

4. Weighted average response time: It is the weighted

average response time of the workflow jobs that were

completed within the observed time period. The

response time of each completed workflow job was

weighted using the critical path length of the particular

workflow.

Furthermore, in order to gain additional insights into how

other aspects of the proposed approach affected the

framework under study, the following statistics were also

calculated:

1. Average percentage of tasks placed in schedule gaps: It

is the average percentage of tasks of completed

workflow jobs that were placed in schedule gaps for

processing by the fog orchestrator, within the observed

time period.

2. Weighted average input error propagation index: It is

the weighted average input error propagation index of

workflow jobs that were completed within the observed

time period. The input error propagation index of each

completed workflow job was weighted using the total

number of edges and exit tasks of the particular

workflow.

3. Percentage of partially completed jobs: It is the

percentage of completed workflow jobs that had at

least one exit task partially completed upon deadline

expiration—giving imprecise, but still acceptable re-

sults—during the observed time period.

4. Average percentage of exit tasks with imprecise

results: It is the average percentage of exit tasks of

completed workflow jobs that gave imprecise results,

during the observed time period.

5. Average percentage of exit tasks with imprecise results

containing propagated input error: It is the average

percentage of exit tasks of completed workflow jobs

that gave imprecise results containing propagated input

error, during the observed time period.

5.2 Experimental setup

The performance evaluation of the proposed heuristic was

performed using simulation rather than analytical methods.

Analytical solutions would require several simplifying

assumptions that would ultimately lead to misleading

results. Even though simulation packages are available for

fog environments, such as iFogSim [18] and FogWork-

flowSim [23], we decided to implement our own custom

discrete-event simulation program in C??, due to the

complexity of the framework under study and in order to

have full control over all of the model parameters. Syn-

thetic workload was used instead of available traces, in

order to obtain unbiased results, not restricted to only a

particular type of workload.

The workflows were generated using our own random

DAG generator, as described in [38]. Specifically, each

generated DAG was a weakly connected graph, having a

Cluster Computing

123

path between any pair of tasks, without taking into account

the direction of the edges. In the case where a graph had

more than one task, there was at least one entry and one

exit task in the graph. In order to generate a DAG, we first

determined the number of tasks jN j in the graph, as in (3),

where the minimum and maximum number of tasks were

Nmin ¼ 1 and Nmax ¼ 64, respectively. In case jN j[1, we

determined the number of entry tasks jN entryj in the graph,

which was uniformly distributed in the interval

½1; jN j � 1�.
Subsequently, the first entry task n1 was created, fol-

lowed by the jN j � jN entryj non-entry tasks of the graph.

The non-entry tasks were created one by one. At each step,

a non-entry task ni was created and connected to its parent

tasks, which were randomly selected from the already

created tasks, forming a set Pi. The number of a non-entry

task’s parent tasks jPij was uniformly distributed in the

interval ½1; jN createdj�, where jN createdj was the number of

tasks that had already been created in the previous steps.

After creating the jN j � jN entryj non-entry tasks (which

some of them ended up being exit tasks), in case

jN entryj[1, the construction of the DAG continued, by

creating the rest jN entryj � 1 entry tasks, one by one. At

each step, an entry task nk was created and connected to its

child tasks, which were randomly selected from the non-

entry tasks created in the previous steps, forming a set Ck.
The number of an entry task’s child tasks jCkj was uni-

formly distributed in the interval ½1; jN j � jN entryj�. The

uniform distribution was used in the various steps of the

generation of the task graphs, so that all DAG structures

were equally probable. The pseudocode for the DAG

generator is given in Algorithm 2.

As fog resources are typically limited and heteroge-

neous, we considered that there were jHj ¼ 5 physical

hosts in the fog layer, providing a total of jVj ¼ 64

heterogeneous VMs. The computational characteristics of

the physical hosts were based on real-world processors, as

shown in Table 2. Each VM was assigned a vCPU, cor-

responding to a host’s physical core. Since the workload in

fog environments is usually communication intensive, the

communication to computation ratio of the workflow jobs

was chosen to be CCR ¼ 2. For the same reason, the mean

entry task input data size was selected to be c ¼ 1 GB. Due

to the fact that IoT workflows processing vast amounts of

data are also computationally intensive, the mean compu-

tational volume of the workflow component tasks was

selected to be equal to x ¼ 8:93 � 1011 clock cycles, so

that on average, a task would take 5 minutes to execute on

a fog VM. The mean edge communication volume was

calculated using (7) and was equal to f ¼ 44:74 GB.

In order for the fog resources to be stable, the arrival rate

of the workflow jobs was selected to be k ¼ 0:0045. The

network heterogeneity degree in the IoT and fog layers was

chosen to be equal to 0.5 (i.e., HIoT ¼ 0:5 and Hfog ¼ 0:5),

since typically most networks feature moderate hetero-

geneity. On the other hand, since the data transfer rate

Cluster Computing

123

between the IoT and fog layers is usually lower than that

between the fog resources, the mean data transfer rate

between the two layers was selected to be qIoT ¼ 50 Mbps,

whereas the mean data transfer rate of the fog virtual net-

work was chosen to be higher, at qfog ¼ 1 Gbps. All of the

input parameters and their respective values used in our

simulation model are shown in Table 3. Table 4 includes

all of the notations used in this paper.

The simulation experiments were conducted using the

independent replications method. Specifically, we con-

ducted 30 replications of the simulation for each set of

input parameters, using different seeds of random numbers

in each run. Each replication was terminated when 3 � 104

workflow jobs had been completed. We found by experi-

mentation that this simulation run length was enough to

minimize the effects of warm-up time. For every mean

value, a 95% confidence interval was calculated. The half-

widths of all of the confidence intervals were less than 5%
of their respective mean values. Furthermore, in order to

examine whether the differences between the obtained

mean values were statistically significant, a 95% confi-

dence interval was also calculated for the difference

between each pair of mean values. The calculated confi-

dence intervals did not include 0, which proved that the

difference between each pair of mean values was statisti-

cally significant.

5.3 Simulation results analysis

The comparison between the proposed heuristic, PC, and

the baseline policy, under various input error propagation

probabilities p and result precision thresholds RPT, with

regard to the deadline miss ratio metric, is shown in Fig. 4.

It can be observed that, in all of the examined cases, the

proposed approach, which leveraged partial computations,

outperformed the baseline strategy, which did not utilize

partial computations. Especially for low result precision

thresholds, the deadline miss ratio decrease was more

significant (up to 80.74%), as shown in Table 5. This was

due to the fact that lower result precision thresholds

allowed the proposed algorithm to utilize more effectively

the schedule gaps by placing more (partial) tasks into them,

compared to the baseline policy. Therefore fewer workflow

jobs missed their deadline.

In contrast, for higher result precision thresholds, the

difference in schedule gaps utilization between the two

scheduling algorithms was less significant. However, still

more gaps were utilized by the PC policy than the baseline

strategy. This is illustrated in Fig. 5. In terms of the impact

of input error propagation probability on the performance

of the proposed heuristic, based on the simulation results

shown in Fig. 4 and Table 5, it can be concluded that, in

general, for higher values of p, more jobs missed their

deadline. Nevertheless, even in the cases where there was

always input error propagation across the component tasks

of a job (i.e., p ¼ 1), still more deadlines were met by the

proposed approach than the baseline policy. This shows

that the proposed heuristic was resilient to the effects of

input error propagation among the component tasks of the

workflows.

In Fig. 5, it can also be observed that for higher input

error propagation probabilities, fewer tasks were placed in

schedule gaps by the proposed policy. This can be

explained by the fact that in the VM selection phase of the

proposed heuristic, fewer tasks met the conditions defined

in (29) and (30), since there was a greater chance that the

output error of a task would propagate as input error to its

child tasks. However, even for the highest input error

propagation probability (p ¼ 1), PC utilized more schedule

gaps than the baseline policy, taking advantage of the

flexibility provided by partial computations, which allowed

the fog orchestrator to place partial tasks into the gaps. On

the other hand, according to the baseline strategy, a

schedule gap was utilized only when it could accommodate

the whole task.

Figure 6 shows the comparison between the two

scheduling approaches with respect to the weighted aver-

age result precision metric. With the PC heuristic, for lower

result precision thresholds and higher input error propa-

gation probabilities, the result precision of the jobs that met

their deadline was lower (but still above the required

threshold). Specifically, for RPT ¼ 0:1 and p ¼ 1 (i.e., the

Table 2 Characteristics of the

physical hosts used in the fog

resources model

Host Real-world processor host was based on No. of cores Oper. freq. No. of VMs

h1 Intel Xeon Gold 5318H 18 2.5 GHz 18

h2 Intel Xeon Gold 6226R 16 2.9 GHz 16

h3 Intel Xeon Platinum 8354H 18 3.1 GHz 18

h4 Intel Xeon Gold 6144 8 3.5 GHz 8

h5 Intel Xeon Platinum 8256 4 3.8 GHz 4

Cluster Computing

123

case where there was always input error propagation), the

proposed approach yielded a weighted average result pre-

cision 21.11% lower than the baseline policy, which

always gave precise results as it did not utilize partial

computations. However, as shown in Table 6, as the result

precision threshold increased, the difference between the

two scheduling strategies became more insignificant. For

example, for RPT ¼ 0:9, the decrease in the quality of the

results was only 0.01%, compared to the baseline policy.

The reason behind this was that when higher result preci-

sion thresholds were imposed, the optional part of the tasks

was smaller, and hence the fraction of the optional part that

could be discarded by the proposed approach was smaller

as well.

Taking into account the simulation results in Figs. 4

and 6, it can be observed that the proposed heuristic traded

off result precision for timeliness. However, the decrease in

the job result precision was relatively insignificant com-

pared to the decrease in deadline misses. Specifically, as

shown in Tables 5 and 6, for the lowest result precision

threshold (RPT ¼ 0:1), the average deadline miss ratio

decrease was 77.71%, whereas the average decrease in

result precision was much smaller, at 8.83%. Similarly, for

the highest result precision threshold (RPT ¼ 0:9), the

average deadline miss ratio decrease was 2.77%, which

was still several orders of magnitude larger than the aver-

age decrease in result precision, which was 0.01%. Con-

sequently, for a relatively insignificant loss in result

quality, the proposed heuristic allowed more jobs to meet

their deadline, compared to the baseline policy.

Figures 7 and 8 show the performance of the two

scheduling algorithms with respect to the weighted average

makespan and weighted average response time metrics,

respectively. It can be observed that the two metrics fol-

lowed a similar pattern: as the result precision threshold

increased, the makespan and response time of the jobs

increased in the case of the proposed heuristic. This was

due to the fact that with higher result precision thresholds,

fewer tasks could be placed in schedule gaps (as shown in

Fig. 5) and therefore the total processing time of the jobs—

and thus their response time—increased.

It can also be observed that for higher result precision

thresholds, the PC strategy under some input error propa-

gation probabilities yielded a slightly larger makespan (and

thus response time) than the baseline policy. However, the

maximum difference between the two approaches was

negligible compared to the average makespan and average

response time of the workflows. It was only 0.80 minutes in

the case of makespan and only 0.72 minutes in the case of

response time, whereas the average makespan and average

Table 3 Simulation input

parameters
Parameter Value

Fog Environment

IoT Layer

IoT-fog mean data transfer rate qIoT ¼ 50 Mbps

IoT-fog network heterogeneity degree HIoT ¼ 0:5

Fog Layer

Number of physical hosts jHj ¼ 5

Number of fog VMs jVj ¼ 64

Fog VM vCPU operating frequency f ¼ f2:5; 2:9; 3:1; 3:5; 3:8g GHz

Fog virtual network mean data transfer rate qfog ¼ 1 Gbps

Fog virtual network heterogeneity degree Hfog ¼ 0:5

Workload Characteristics

Number of completed workflows 3 � 104

Workflow arrival rate k ¼ 0:0045

Minimum number of tasks per workflow Nmin ¼ 1

Maximum number of tasks per workflow Nmax ¼ 64

Mean entry task input data size c ¼ 1 GB

Communication to computation ratio CCR ¼ 2

Mean task computational volume x ¼ 8:93 � 1011 clock cycles

Mean edge communication volume f ¼ 44:74 GB

Result precision threshold RPT ¼ f0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9g
Input error propagation probability p ¼ f0; 0:25; 0:5; 0:75; 1g

Cluster Computing

123

Table 4 List of notations

Notation Definition

H Set of physical hosts in the fog layer

jHj Number of physical hosts in the fog layer

hi A physical host in the fog layer

mi Number of VMs running on host hi

V Set of VMs in the fog layer

jVj Number of VMs in the fog layer

vmi A VM in the fog layer

fi Operating frequency of VM vmi

rfogij Data transfer rate between fog VMs vmi and vmj

Hfog Fog virtual network heterogeneity degree

qfog Fog virtual network mean data transfer rate

rIoT Data transfer rate between IoT and fog layers

HIoT IoT-fog network heterogeneity degree

qIoT IoT-fog network mean data transfer rate

k Arrival rate of workflow jobs

G ¼ ðN ; EÞ A workflow job represented as a DAG

N Set of tasks of a workflow job

jN j Number of tasks of a workflow job

Nmin Minimum number of tasks per workflow job

Nmax Maximum number of tasks per workflow job

N entry Set of entry tasks of a workflow job

jN entryj Number of entry tasks of a workflow job

N exit Set of exit tasks of a workflow job

jN exitj Number of exit tasks of a workflow job

N 0
exit

Set of exit tasks of a workflow job that give results containing propagated input error

jN 0
exitj Number of exit tasks of a workflow job that give results containing propagated input error

N ready Set of ready tasks of a workflow job

jN readyj Number of ready tasks of a workflow job

N created Set of created tasks of a workflow job (during workflow generation)

jN createdj Number of created tasks of a workflow job (during workflow generation)

E Set of edges of a workflow job

jEj Number of edges of a workflow job

E0 Set of edges of a workflow job that convey propagated input error from a parent task to a child task

jE0j Number of edges of a workflow job that convey propagated input error from a parent task to a child task

ni A task of a workflow job

eij An edge between tasks ni and nj of a workflow job

Pi Set of parent tasks of task ni

jPij Number of parent tasks of task ni

Ci Set of child tasks of task ni

jCij Number of child tasks of task ni

wi Computational volume of task ni

w0
i Computational volume of task ni that fits into a schedule gap

x Mean task computational volume

Compðni; vmkÞ Computational cost of task ni on VM vmk

zij Communication volume of edge eij

f Mean edge communication volume

Commððni; vmkÞ; ðnj; vmlÞÞ Communication cost of edge eij when ni is scheduled on VM vmk and nj is scheduled on VM vml

di Input data size of entry task ni

Cluster Computing

123

response time of the workflows were 101.63 and 102.80

minutes, respectively. Moreover, in the case of real-time

workloads, meeting deadlines is of the utmost importance.

This does not necessarily mean minimizing at the same

time the makespan and response time of the workload [5].

Consequently, in this context, the decrease in the deadline

miss ratio provided by the proposed heuristic was signifi-

cantly more important than the slight increase in the

makespan and response time of the jobs, compared to the

baseline policy.

Figure 9 shows the percentage of partially completed

jobs in the case of the proposed scheduling heuristic, PC. A

partially completed job occurred when its exit tasks could

not be fully processed before the job’s deadline. For lower

result precision thresholds, due to the utilization of

schedule gaps by the intermediate tasks of the workflows,

the makespan of the jobs was smaller. Therefore, there was

a greater chance for their exit tasks to be fully completed

before their deadline. On the other hand, as the result

precision threshold increased, it became less likely for the

jobs to be fully completed upon their deadline. Hence, the

number of partially completed jobs increased.

However, it can be observed that for moderate to high

result precision thresholds, the percentage of partially

completed jobs decreased. The reason behind this was that

in those cases, the makespan of the jobs increased since

Table 4 (continued)

Notation Definition

c Mean entry task input data size

Commðni; vmkÞ Communication cost of IoT input data of entry task ni scheduled on VM vmk

CCR Communication to computation ratio of a workflow job

CommðeijÞ Average communication cost of edge eij over all of the communication links that connect the fog VMs

CompðniÞ Average computational cost of task ni over all of the fog VMs

AT Arrival time of a workflow job

ST Start time of a workflow job

FT Finish time of a workflow job

M Makespan of a workflow job

RT Response time of a workflow job

D End-to-end deadline of a workflow job

RD Relative deadline of a workflow job

CPL Critical path length of a workflow job

mpi Mandatory part of task ni

opi Optional part of task ni

mpei Mandatory part extension of task ni

OEi Output error of task ni

IEi Input error of task ni

IE0
i Potential input error of task ni

di Discarded fraction of the optional part of task ni

dmax
i Maximum possible discarded fraction of the optional part of task ni

/i Input error propagation factor of task ni

p Input error propagation probability

RPi Result precision of task ni

RP Result precision of a workflow job

RPT Result precision threshold

IEPI Input error propagation index of a workflow job

EFTðni; vmkÞ Estimated finish time of ready task ni on VM vmk

tdataðni; vmkÞ Estimated time at which all input data of ready task ni will be available on VM vmk

tidleðni; vmkÞ Estimated time at which VM vmk will be able to execute ready task ni

tcurrent Current time

g Capacity of a schedule gap

Cluster Computing

123

less intermediate tasks could be placed in schedule gaps, as

shown in Figs. 7 and 5, respectively. Therefore, it was less

likely that the remaining unprocessed tasks of a job upon

its deadline would be only exit tasks. Even in those cases

where the remaining unprocessed tasks were all exit tasks,

it was less likely to meet the higher result quality criteria

imposed by the higher values of RPT. Consequently, more

jobs could not be partially completed and thus missed their

deadline.

Figure 10 shows the change in the weighted average

input error propagation index for the proposed approach.

As expected, for higher input error propagation probabili-

ties, the input error propagation index increased, as their

was a greater chance for the input error of a task to be

propagated to its successor tasks. On the other hand, for

higher result precision thresholds the input error

propagation index decreased, because fewer tasks could be

placed in schedule gaps, as shown in Fig. 5.

The average percentage of exit tasks with imprecise

results in the case of the proposed policy is shown in

Fig. 11. In this case, the same explanation applies as in the

case of Fig. 9. Figure 12, which shows the average per-

centage of exit tasks with imprecise results containing

propagated input error, follows a similar pattern to Fig. 11

with respect to the result precision threshold. However, in

terms of the input error propagation probability, it shows

that the higher the value of p was, more exit tasks conveyed

in their results propagated input error from their prede-

cessor tasks. This can be justified by the fact that the input

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)
%(

oitarss i
m

enil da eD

RPT

Baseline PC (p=0) PC (p=0.25) PC (p=0.5) PC (p=0.75) PC (p=1)

Fig. 4 Deadline miss ratio vs. result precision threshold (RPT), for

baseline and partial computations (PC) scheduling techniques. PC

was examined under input error propagation probability

p ¼ f0; 0:25; 0:5; 0:75; 1g

Table 5 Deadline miss ratio % decrease (PC vs. Baseline)

RPT p ¼ 0 p ¼ 0:25 p ¼ 0:5 p ¼ 0:75 p ¼ 1 Avg

0.1 80.74 80.29 78.15 75.28 74.07 77.71

0.2 67.83 66.06 65.45 63.11 58.71 64.23

0.3 52.31 52.21 51.42 48.76 45.10 49.96

0.4 39.78 37.22 37.50 37.34 34.03 37.18

0.5 28.67 27.48 26.87 25.29 25.51 26.76

0.6 18.90 18.57 18.26 17.92 18.39 18.41

0.7 12.01 12.00 11.39 11.13 12.15 11.74

0.8 6.63 5.47 5.11 5.94 4.94 5.62

0.9 4.04 2.30 2.62 2.29 2.62 2.77

Overall Avg: 32.71

0

2

4

6

8

10

12

14

16

18

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ni
decalpsks atfo

e gatne crep
egarevA

)
% (s pag

e lud ehcs

RPT

Baseline PC (p=0) PC (p=0.25) PC (p=0.5) PC (p=0.75) PC (p=1)

Fig. 5 Average percentage of tasks placed in schedule gaps vs. result

precision threshold (RPT), for baseline and partial computations (PC)

scheduling techniques. PC was examined under input error propaga-

tion probability p ¼ f0; 0:25; 0:5; 0:75; 1g

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

noisicerp tluser
e gareva

dethgie
W

RPT

Baseline PC (p=0) PC (p=0.25) PC (p=0.5) PC (p=0.75) PC (p=1)

Fig. 6 Weighted average result precision vs. result precision thresh-

old (RPT), for baseline and partial computations (PC) scheduling

techniques. PC was examined under input error propagation proba-

bility p ¼ f0; 0:25; 0:5; 0:75; 1g

Cluster Computing

123

error propagation index was higher in those cases, as

shown in Fig. 10.

6 Conclusions and future directions

In this paper, we investigated the orchestration of multiple

real-time IoT workflows in a heterogeneous fog computing

environment, using partial computations. We proposed a

dynamic scheduling algorithm, PC, which leveraged partial

computations in order to utilize schedule gaps, by trading

off result precision for timeliness. The proposed heuristic

took into account the effects of end-to-end error propaga-

tion among the component tasks of the workflow jobs. PC

was compared to a baseline policy, which did not utilize

partial computations, under various result precision

thresholds and input error propagation probabilities.

The simulation results demonstrated that the proposed

heuristic outperformed the baseline policy in terms of the

deadline miss ratio, for a relatively insignificant loss in

result quality. Specifically, PC provided an average dead-

line miss ratio decrease of 32.71%, compared to the

baseline policy, while the average decrease in the precision

of the results was only 2.43%. Furthermore, the simulation

results showcased that the proposed approach was resilient

to the effects of input error propagation across the tasks of

the workflows.

Table 6 Weighted average result precision % decrease (PC vs.

Baseline)

RPT p ¼ 0 p ¼ 0:25 p ¼ 0:5 p ¼ 0:75 p ¼ 1 Avg

0.1 0.19 3.01 7.06 12.79 21.11 8.83

0.2 0.22 2.05 4.66 8.33 13.78 5.81

0.3 0.24 1.32 2.87 4.96 8.19 3.52

0.4 0.21 0.83 1.64 2.78 4.46 1.99

0.5 0.16 0.47 0.88 1.40 2.17 1.02

0.6 0.13 0.25 0.41 0.62 0.94 0.47

0.7 0.07 0.12 0.17 0.25 0.33 0.19

0.8 0.03 0.05 0.06 0.07 0.09 0.06

0.9 0.01 0.01 0.01 0.01 0.01 0.01

Overall Avg: 2.43

88

90

92

94

96

98

100

102

104

106

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

napseka
m

egareva
de thgie

W
)ni

m(

RPT

Baseline PC (p=0) PC (p=0.25) PC (p=0.5) PC (p=0.75) PC (p=1)

Fig. 7 Weighted average makespan vs. result precision threshold

(RPT), for baseline and partial computations (PC) scheduling

techniques. PC was examined under input error propagation proba-

bility p ¼ f0; 0:25; 0:5; 0:75; 1g

88

90

92

94

96

98

100

102

104

106

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(
e

mit
esnopser

eg areva
deth gie

W
m

in
)

RPT

Baseline PC (p=0) PC (p=0.25) PC (p=0.5) PC (p=0.75) PC (p=1)

Fig. 8 Weighted average response time vs. result precision threshold

(RPT), for baseline and partial computations (PC) scheduling

techniques. PC was examined under input error propagation proba-

bility p ¼ f0; 0:25; 0:5; 0:75; 1g

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

)
%(sboj

de tel p
m oc

ylla itrap f o
e gatnecreP

RPT

Baseline PC (p=0) PC (p=0.25) PC (p=0.5) PC (p=0.75) PC (p=1)

Fig. 9 Percentage of partially completed jobs vs. result precision

threshold (RPT), for baseline and partial computations (PC) schedul-

ing techniques. PC was examined under input error propagation

probability p ¼ f0; 0:25; 0:5; 0:75; 1g

Cluster Computing

123

Our future work plans include the incorporation of the

proposed scheduling algorithm into a three-tier environ-

ment, where an additional cloud layer is present. This will

enable us to combine our approach with cloud bursting,

i.e., the utilization of supplementary cloud resources for the

scheduling of IoT workflows in cases of workload spikes.

Moreover, we will consider the implementation of the

proposed approach in a real-world environment, utilizing

profiling and statistical techniques for the calculation of the

computational and communication characteristics of the

workload. A real testbed will also allow us to investigate

the overhead introduced by the proposed orchestration

mechanism.

References

1. Aburukba, R.O., AliKarrar, M., Landolsi, T., El-Fakih, K.:

Scheduling Internet of Things requests to minimize latency in

hybrid fog-cloud computing. Future Gen. Comput. Syst. 111,

539–551 (2020). https://doi.org/10.1016/j.future.2019.09.039

2. Ahmed, O.H., Lu, J., Ahmed, A.M., Rahmani, A.M., Hossein-

zadeh, M., Masdari, M.: Scheduling of scientific workflows in

multi-fog environments using Markov models and a hybrid salp

swarm algorithm. IEEE Access 8, 189404–189422 (2020).

https://doi.org/10.1109/ACCESS.2020.3031472

3. Al-Bzoor, M., Al-assem, E., Alawneh, L., Jararweh, Y.: Auton-

omous underwater vehicles support for enhanced performance in

the internet of underwater things. Trans. Emerg. Telecommun.

Technol. 32(3), e4225 (2021). https://doi.org/10.1002/ett.4225

4. Alizadeh, M.R., Khajehvand, V., Rahmani, A.M., Akbari, E.:

Task scheduling approaches in fog computing: a systematic

review. Int. J. Commun. Syst. 33(16), e4583 (2020). https://doi.

org/10.1002/dac.4583

5. Buttazzo, G.C.: Hard Real-Time Computing Systems: Pre-

dictable Scheduling Algorithms and Applications, 3rd edn.

Springer, Berlin (2011). https://doi.org/10.1007/978-1-4614-

0676-1

6. Cao, K., Zhou, J., Xu, G., Wei, T., Hu, S.: Exploring renewable-

adaptive computation offloading for hierarchical QoS optimiza-

tion in fog computing. IEEE Trans. Comput. Aid. Des. Integr.

Circuits Syst. 39(10), 2095–2108 (2020). https://doi.org/10.1109/

TCAD.2019.2957374

7. Chen, Y.: Service-Oriented Computing and System Integration:

Software, IoT, Big Data, and AI as Services, 7th edn. Kendall

Hunt Publishing, Dubuque (2020)

8. Chen, Y., Hu, H.: Internet of Intelligent Things and Robot as a

Service. Simul. Model. Pract. Theor. 34, 159–171 (2013). https://

doi.org/10.1016/j.simpat.2012.03.006

9. Choudhari, T., Moh, M., Moh, T.S.: Prioritized task scheduling in

fog computing. In: Proceedings of the 2018 Annual ACM

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

rorretupni
egareva

dethgie
W

xedn i
noita gaporp

RPT

Baseline PC (p=0) PC (p=0.25) PC (p=0.5) PC (p=0.75) PC (p=1)

Fig. 10 Weighted average input error propagation index vs. result

precision threshold (RPT), for baseline and partial computations (PC)

scheduling techniques. PC was examined under input error propaga-

tion probability p ¼ f0; 0:25; 0:5; 0:75; 1g

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

hti
wsksattix efo

egatn ecrep
e ga revA

)
%(stlus er

esicerp
mi

RPT

Baseline PC (p=0) PC (p=0.25) PC (p=0.5) PC (p=0.75) PC (p=1)

Fig. 11 Average percentage of exit tasks with imprecise results vs.

result precision threshold (RPT), for baseline and partial computations

(PC) scheduling techniques. PC was examined under input error

propagation probability p ¼ f0; 0:25; 0:5; 0:75; 1g

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

hti
wsksattix efo

egatn ecrep
e ga revA

d eta ga porp
gnini at no cs tl user

esicer p
mi

)
%(rorretup ni

RPT

Baseline PC (p=0) PC (p=0.25) PC (p=0.5) PC (p=0.75) PC (p=1)

Fig. 12 Average percentage of exit tasks with imprecise results

containing propagated input error vs. result precision threshold (RPT),

for baseline and partial computations (PC) scheduling techniques. PC

was examined under input error propagation probability

p ¼ f0; 0:25; 0:5; 0:75; 1g

Cluster Computing

123

https://doi.org/10.1016/j.future.2019.09.039
https://doi.org/10.1109/ACCESS.2020.3031472
https://doi.org/10.1002/ett.4225
https://doi.org/10.1002/dac.4583
https://doi.org/10.1002/dac.4583
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1007/978-1-4614-0676-1
https://doi.org/10.1109/TCAD.2019.2957374
https://doi.org/10.1109/TCAD.2019.2957374
https://doi.org/10.1016/j.simpat.2012.03.006
https://doi.org/10.1016/j.simpat.2012.03.006

Southeast Conference (ACMSE’18), pp. 22:1–22:8 (2018).

https://doi.org/10.1145/3190645.3190699

10. Cisco: Fog computing and the Internet of Things: extend the

cloud to where the things are. Tech. Rep. C11-734435-00, Cisco

Systems, Inc. (2015)

11. De Maio, V., Kimovski, D.: Multi-objective scheduling of

extreme data scientific workflows in fog. Future Gen. Comput.

Syst. 106, 171–184 (2020). https://doi.org/10.1016/j.future.2019.

12.054

12. De Souza Toniolli, J.L., Jaumard, B.: Resource allocation for

multiple workflows in cloud-fog computing systems. In: Pro-

ceedings of the 12th IEEE/ACM International Conference on

Utility and Cloud Computing Companion (UCC’19 Companion),

pp. 77–84 (2019). https://doi.org/10.1145/3368235.3368846

13. Ding, R., Li, X., Liu, X., Xu, J.: A cost-effective time-constrained

multi-workflow scheduling strategy in fog computing. In: Pro-

ceedings of the 16th International Conference on Service-Ori-

ented Computing (ICSOC’18), pp. 194–207 (2018). https://doi.

org/10.1007/978-3-030-17642-6_17

14. Drozdowski, M.: Scheduling for Parallel Processing, 1st edn.

Springer, Berlin (2009). https://doi.org/10.1007/978-1-84882-

310-5

15. Esmaili, A., Nazemi, M., Pedram, M.: Energy-aware scheduling

of task graphs with imprecise computations and end-to-end

deadlines. ACM Trans. Des. Autom. Electron. Syst. 25(1),

11:1–11:21 (2019). https://doi.org/10.1145/3365999

16. Feng, W.C., Liu, J.W.S.: Algorithms for scheduling real-time

tasks with input error and end-to-end deadlines. IEEE Trans.

Softw. Eng. 23(2), 93–106 (1997). https://doi.org/10.1109/32.

585499

17. Gazori, P., Rahbari, D., Nickray, M.: Saving time and cost on the

scheduling of fog-based IoT applications using deep reinforce-

ment learning approach. Future Gen. Comput. Syst. 110,

1098–1115 (2020). https://doi.org/10.1016/j.future.2019.09.060

18. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim:

A toolkit for modeling and simulation of resource management

techniques in the Internet of Things, edge and fog computing

environments. Softw. Pract. Exp. 47(9), 1275–1296 (2017).

https://doi.org/10.1002/spe.2509

19. Iorga, M., Feldman, L., Barton, R., Martin, M.J., Goren, N.,

Mahmoudi, C.: Fog computing conceptual model. Tech. Rep.

500-325, National Institute of Standards and Technology, U.S.

Department of Commerce (2018). https://doi.org/10.6028/NIST.

SP.500-325

20. Kabirzadeh, S., Rahbari, D., Nickray, M.: A hyper heuristic

algorithm for scheduling of fog networks. In: Proceedings of the

21st Conference of Open Innovations Association (FRUCT’17),

pp. 148–155 (2017). https://doi.org/10.23919/FRUCT.2017.

8250177

21. Kołodziej, J.: Evolutionary Hierarchical Multi-Criteria Meta-

heuristics for Scheduling in Large-Scale Grid Systems, 1st edn.

Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-

28971-2

22. Lin, K.J., Natarajan, S., Liu, J.W.S.: Imprecise results: utilizing

partial computations in real-time systems. In: Proceedings of the

8th IEEE Real-Time Systems Symposium (RTSS’87),

pp. 210–217 (1987)

23. Liu, X., Fan, L., Xu, J., Li, X., Gong, L., Grundy, J., Yang, Y.:

FogWorkflowSim: An automated simulation toolkit for workflow

performance evaluation in fog computing. In: Proceedings of the

34th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE’19), pp. 1114–1117 (2019). https://doi.

org/10.1109/ASE.2019.00115

24. Matrouk, K., Alatoun, K.: Scheduling algorithms in fog com-

puting: A survey. Int. J. Netw. Distr. Comp. 9(1), 59–74 (2021).

https://doi.org/10.2991/ijndc.k.210111.001

25. Mo, L., Kritikakou, A.: Mapping imprecise computation tasks on

cyber-physical systems. Peer-to-Peer Netw. Appl. 12(6),

1726–1740 (2019). https://doi.org/10.1007/s12083-019-00749-9

26. Mo, L., Kritikakou, A., Sentieys, O., Cao, X.: Real-time impre-

cise computation tasks mapping for DVFS-enabled networked

systems. IEEE Internet Things J. 8(10), 8246–8258 (2021).

https://doi.org/10.1109/JIOT.2020.3044910

27. Mora Mora, H., Gil, D., Colom López, J.F., Signes Pont, M.T.:

Flexible framework for real-time embedded systems based on

mobile cloud computing paradigm. Mob. Inf. Syst. 2015,

652462:1–652462:14 (2015). https://doi.org/10.1155/2015/

652462
28. Naha, R.K., Garg, S., Chan, A., Battula, S.K.: Deadline-based

dynamic resource allocation and provisioning algorithms in fog-

cloud environment. Future. Gen. Comput. Syst. 104, 131–141

(2020). https://doi.org/10.1016/j.future.2019.10.018

29. OpenFog: OpenFog Architecture Overview. Tech. Rep.

OPFWP001.0216, OpenFog Consortium Architecture Working

Group (2016)

30. Park, M., Han, S., Kim, H., Cho, S., Cho, Y.: Comparison of tie-

breaking policies for real-time scheduling on multiprocessor. In:

Proceedings of the 2004 International Conference on Embedded

and Ubiquitous Computing (EUC’04), pp. 174–182 (2004).

https://doi.org/10.1007/978-3-540-30121-9_17

31. Pham, X.Q., Huh, E.N.: Towards task scheduling in a cloud-fog

computing system. In: Proceedings of the 18th Asia-Pacific

Network Operations and Management Symposium

(APNOMS’16), pp. 1–4 (2016). https://doi.org/10.1109/

APNOMS.2016.7737240

32. Pham, X.Q., Man, N.D., Tri, N.D.T., Thai, N.Q., Huh, E.N.: A

cost- and performance-effective approach for task scheduling

based on collaboration between cloud and fog computing. Int.

J. Distrib. Sens. Netw. 13(11), 1–16 (2017). https://doi.org/10.

1177/1550147717742073

33. Puliafito, C., Mingozzi, E., Longo, F., Puliafito, A., Rana, O.: Fog

computing for the Internet of Things: A survey. ACM Trans.

Internet Technol. 19(2), 18:1–18:41 (2019). https://doi.org/10.

1145/3301443

34. Ravindran, R., Krishna, C.M., Koren, I., Koren, Z.: Scheduling

imprecise task graphs for real-time applications. Int. J. Embed.

Syst. 6(1), 73–85 (2014). https://doi.org/10.1504/IJES.2014.

060919

35. Shioura, A., Shakhlevich, N.V., Strusevich, V.A.: Preemptive

models of scheduling with controllable processing times and of

scheduling with imprecise computation: A review of solution

approaches. Eur. J. Oper. Res. 266(3), 795–818 (2018). https://

doi.org/10.1016/j.ejor.2017.08.034

36. Stavrinides, G.L., Karatza, H.D.: Scheduling multiple task graphs

with end-to-end deadlines in distributed real-time systems uti-

lizing imprecise computations. J. Syst. Softw. 83(6), 1004–1014

(2010). https://doi.org/10.1016/j.jss.2009.12.025

37. Stavrinides, G.L., Karatza, H.D.: The impact of input error on the

scheduling of task graphs with imprecise computations in

heterogeneous distributed real-time systems. In: Proceedings of

the 18th International Conference on Analytical and Stochastic

Modelling Techniques and Applications (ASMTA’11),

pp. 273–287 (2011). https://doi.org/10.1007/978-3-642-21713-5_

20

38. Stavrinides, G.L., Karatza, H.D.: Scheduling multiple task graphs

in heterogeneous distributed real-time systems by exploiting

schedule holes with bin packing techniques. Simul. Model. Pract.

Theor. 19(1), 540–552 (2011). https://doi.org/10.1016/j.simpat.

2010.08.010

39. Stavrinides, G.L., Karatza, H.D.: Scheduling real-time DAGs in

heterogeneous clusters by combining imprecise computations and

bin packing techniques for the exploitation of schedule holes.

Cluster Computing

123

https://doi.org/10.1145/3190645.3190699
https://doi.org/10.1016/j.future.2019.12.054
https://doi.org/10.1016/j.future.2019.12.054
https://doi.org/10.1145/3368235.3368846
https://doi.org/10.1007/978-3-030-17642-6_17
https://doi.org/10.1007/978-3-030-17642-6_17
https://doi.org/10.1007/978-1-84882-310-5
https://doi.org/10.1007/978-1-84882-310-5
https://doi.org/10.1145/3365999
https://doi.org/10.1109/32.585499
https://doi.org/10.1109/32.585499
https://doi.org/10.1016/j.future.2019.09.060
https://doi.org/10.1002/spe.2509
https://doi.org/10.6028/NIST.SP.500-325
https://doi.org/10.6028/NIST.SP.500-325
https://doi.org/10.23919/FRUCT.2017.8250177
https://doi.org/10.23919/FRUCT.2017.8250177
https://doi.org/10.1007/978-3-642-28971-2
https://doi.org/10.1007/978-3-642-28971-2
https://doi.org/10.1109/ASE.2019.00115
https://doi.org/10.1109/ASE.2019.00115
https://doi.org/10.2991/ijndc.k.210111.001
https://doi.org/10.1007/s12083-019-00749-9
https://doi.org/10.1109/JIOT.2020.3044910
https://doi.org/10.1155/2015/652462
https://doi.org/10.1155/2015/652462
https://doi.org/10.1016/j.future.2019.10.018
https://doi.org/10.1007/978-3-540-30121-9_17
https://doi.org/10.1109/APNOMS.2016.7737240
https://doi.org/10.1109/APNOMS.2016.7737240
https://doi.org/10.1177/1550147717742073
https://doi.org/10.1177/1550147717742073
https://doi.org/10.1145/3301443
https://doi.org/10.1145/3301443
https://doi.org/10.1504/IJES.2014.060919
https://doi.org/10.1504/IJES.2014.060919
https://doi.org/10.1016/j.ejor.2017.08.034
https://doi.org/10.1016/j.ejor.2017.08.034
https://doi.org/10.1016/j.jss.2009.12.025
https://doi.org/10.1007/978-3-642-21713-5_20
https://doi.org/10.1007/978-3-642-21713-5_20
https://doi.org/10.1016/j.simpat.2010.08.010
https://doi.org/10.1016/j.simpat.2010.08.010

Future Gen. Comput. Syst. 28(7), 977–988 (2012). https://doi.org/

10.1016/j.future.2012.03.002

40. Stavrinides, G.L., Karatza, H.D.: A cost-effective and QoS-aware

approach to scheduling real-time workflow applications in PaaS

and SaaS clouds. In: Proceedings of the 3rd International Con-

ference on Future Internet of Things and Cloud (FiCloud’15),

pp. 231–239 (2015). https://doi.org/10.1109/FiCloud.2015.93

41. Stavrinides, G.L., Karatza, H.D.: Energy-aware scheduling of

real-time workflow applications in clouds utilizing DVFS and

approximate computations. In: Proceedings of the IEEE 6th

International Conference on Future Internet of Things and Cloud

(FiCloud’18), pp. 33–40 (2018). https://doi.org/10.1109/FiCloud.

2018.00013

42. Stavrinides, G.L., Karatza, H.D.: Cost-effective utilization of

complementary cloud resources for the scheduling of real-time

workflow applications in a fog environment. In: Proceedings of

the 7th International Conference on Future Internet of Things and

Cloud (FiCloud’19), pp. 1–8 (2019). https://doi.org/10.1109/

FiCloud.2019.00009

43. Stavrinides, G.L., Karatza, H.D.: An energy-efficient, QoS-aware

and cost-effective scheduling approach for real-time workflow

applications in cloud computing systems utilizing DVFS and

approximate computations. Future Gen. Comput. Syst. 96,

216–226 (2019). https://doi.org/10.1016/j.future.2019.02.019

44. Stavrinides, G.L., Karatza, H.D.: A hybrid approach to schedul-

ing real-time IoT workflows in fog and cloud environments.

Multimed. Tools Appl. 78(17), 24639–24655 (2019). https://doi.

org/10.1007/s11042-018-7051-9

45. Stavrinides, G.L., Karatza, H.D.: Cost-aware cloud bursting in a

fog-cloud environment with real-time workflow applications.

Concurr. Comput. Pract. Exp. (2020). https://doi.org/10.1002/cpe.

5850

46. Stavrinides, G.L., Karatza, H.D.: Orchestration of real-time

workflows with varying input data locality in a heterogeneous fog

environment. In: Proceedings of the Fifth International Confer-

ence on Fog and Mobile Edge Computing (FMEC’20),

pp. 202–209 (2020). https://doi.org/10.1109/FMEC49853.2020.

9144824

47. Wainer, G., Moallemi, M.: Designing real-time systems using

imprecise discrete-event system specifications. Softw. Pract. Exp.

50(8), 1327–1344 (2020). https://doi.org/10.1002/spe.2831

48. Wu, H.Y., Lee, C.R.: Energy efficient scheduling for heteroge-

neous fog computing architectures. In: Proceedings of the 42nd

IEEE Annual Computer Software and Applications Conference

(COMPSAC’18), pp. 555–560 (2018). https://doi.org/10.1109/

COMPSAC.2018.00085

49. Xu, J., Hao, Z., Zhang, R., Sun, X.: A method based on the

combination of laxity and ant colony system for cloud-fog task

scheduling. IEEE Access 7, 116218–116226 (2019). https://doi.

org/10.1109/ACCESS.2019.2936116

50. Yao, S., Hao, Y., Zhao, Y., Shao, H., Liu, D., Liu, S., Wang, T.,

Li, J., Abdelzaher, T.: Scheduling real-time deep learning

services as imprecise computations. In: Proceedings of the IEEE

26th International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA’20), pp. 1–10

(2020). https://doi.org/10.1109/RTCSA50079.2020.9203676

51. Yu, K.P., Tan, L., Aloqaily, M., Yang, H., Jararweh, Y.: Block-

chain-enhanced data sharing with traceable and direct revocation

in IIoT. IEEE Trans. Ind. Inf. (2021). https://doi.org/10.1109/TII.

2021.3049141

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Georgios L. Stavrinides received

the B.Sc. degree in Informatics

from Aristotle University of

Thessaloniki, Greece in 2006

and the M.Sc. degree in

Advanced Computing from

Imperial College London, UK in

2007. He received the Ph.D.

degree in Computer Science

from Aristotle University of

Thessaloniki, Greece in 2014.

He is currently a postdoctoral

researcher in the Department of

Informatics of the Aristotle

University of Thessaloniki,

Greece, under the supervision of Professor Emeritus Helen D. Kar-

atza. His research interests include: scheduling algorithms, real-time

distributed systems, fog and cloud computing, modeling, simulation

and performance evaluation of large-scale distributed systems.

Helen D. Karatza is a Professor

Emeritus in the Department of

Informatics at the Aristotle

University of Thessaloniki,

Greece. Her research interests

include: computer systems

modeling and simulation, per-

formance evaluation, fog and

cloud computing, real-time dis-

tributed systems, resource allo-

cation and scheduling. She is

the Editor-in-Chief of the Else-

vier journal ‘‘Simulation Mod-

elling Practice and Theory’’.

She has been Guest Editor of

special issues in multiple international journals.

Cluster Computing

123

https://doi.org/10.1016/j.future.2012.03.002
https://doi.org/10.1016/j.future.2012.03.002
https://doi.org/10.1109/FiCloud.2015.93
https://doi.org/10.1109/FiCloud.2018.00013
https://doi.org/10.1109/FiCloud.2018.00013
https://doi.org/10.1109/FiCloud.2019.00009
https://doi.org/10.1109/FiCloud.2019.00009
https://doi.org/10.1016/j.future.2019.02.019
https://doi.org/10.1007/s11042-018-7051-9
https://doi.org/10.1007/s11042-018-7051-9
https://doi.org/10.1002/cpe.5850
https://doi.org/10.1002/cpe.5850
https://doi.org/10.1109/FMEC49853.2020.9144824
https://doi.org/10.1109/FMEC49853.2020.9144824
https://doi.org/10.1002/spe.2831
https://doi.org/10.1109/COMPSAC.2018.00085
https://doi.org/10.1109/COMPSAC.2018.00085
https://doi.org/10.1109/ACCESS.2019.2936116
https://doi.org/10.1109/ACCESS.2019.2936116
https://doi.org/10.1109/RTCSA50079.2020.9203676
https://doi.org/10.1109/TII.2021.3049141
https://doi.org/10.1109/TII.2021.3049141

	Orchestrating real-time IoT workflows in a fog computing environment utilizing partial computations with end-to-end error propagation
	Abstract
	Introduction
	Motivation
	Contribution

	Related work
	Scheduling in fog environments with no partial computations
	Generic efforts
	Efforts considering workflows with deadlines but no initial IoT input data
	Efforts considering deadlines and initial IoT input data but no workflows
	Efforts considering workflows with deadlines and initial IoT input data

	Scheduling workloads with partial computations
	Efforts considering input error in non-fog environments
	Efforts considering fog environments but no input error

	Problem definition
	Fog computing environment
	Workload model
	Computational characteristics
	Communication characteristics
	Other workload characteristics
	Real-time constraints

	Partial computations and error propagation model

	Scheduling methodology
	Task prioritization phase
	VM selection phase

	Performance evaluation
	Evaluation metrics
	Experimental setup
	Simulation results analysis

	Conclusions and future directions
	References

