
A CONTEXTUALIZED WEB-BASED LEARNING ENVIRONMENT FOR DEVS 

MODELS 

by 

INTHIRA SRIVRUNYOO 

 

Under the Direction of Xiaolin Hu  

ABSTRACT 

 

 With the advance in applying technology in education, the traditional lecture-driven 

teaching style is gradually replaced by a more active teaching style where the students play a 

more active rule in the learning process. In this paper we introduce a new initiative to provide a 

suite of online tools for learning DEVS model. 

 The uniqueness of this tutorial project is the integration of information technology and 

multimedia into education through the development of an interactive tutorial and the 

characteristic of contextualized learning. The tutorial teaches students about the basic aspects of 

discrete event system and simulation. The interactive tutorial fully utilizes the power of the 

information and multimedia technology, web application and the programming language Java, to 

enhance students’ learning to achieve rich interactivity. The tutorial greatly supports human-

computer collaboration to enhance learning and to satisfy user goals by effectively allowing the 

user to interact. 

 

INDEX WORDS: DEVS, Simulation, Web Application 

 



A CONTEXTUALIZED WEB-BASED LEARNING ENVIRONMENT FOR DEVS 

MODELS 

 

by 

 

INTHIRA SRIVRUNYOO 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

in the College of Arts and Sciences 

Georgia State University 

 

 

 

 

 

2007



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Inthira Srivrunyoo 

2007 



A CONTEXTUALIZED WEB-BASED LEARNING ENVIRONMENT FOR DEVS 

MODELS 

 

by 

 

INTHIRA SRIVRUNYOO 

 

 

 

 

 

   Major Professor: Xiaolin Hu 

   Committee:  Rajshekhar Sunderraman 

      Ying Zhu 

 

 

Electronic Version Approved: 

 

Office of Graduate Studies 

College of Arts and Sciences 

Georgia State University 

Dec 2007 



 iv

ACKNOWLEDGEMENTS 

 I wish to record my sincere thanks to my advisor, Dr. Xiaolin Hu, for his guidance 

insightful suggestions and support. It is great honor for me to be able to work with Dr. Hu and I 

am thankful for having an advisor like him. I would also like to thank Dr. Raj Sunderraman, and 

Dr. Ying Zhu for serving as my advisory committee and taking precious time to review my 

thesis.  

 I wish to use this opportunity to express my thanks to my husband, Piyaphol Phoungphol, 

for his support for without it I would have never been able to achieve this today. I would also 

like to thank my father, Seng Srivrunyoo, and my mother Chamaiphon Srivrunyoo, for 

encouraging me to reach this far. 

 I would like to thank the Computer Science Department for this support during my 

gradate studies. I also thank all my friends and instructors at GSU for making these two years an 

enjoying experience. 

 



 v

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS................................................................................................. iv 

LIST OF TABLES............................................................................................................... vii 

LIST OF FIGURES ............................................................................................................. viii 

LIST OF ABBREVIATIONS.............................................................................................. x 

CHAPTER  

 1.  INTRODUCTION ................................................................................................. 1

 2. RELATED WORK ................................................................................................. 4

  2.1 Related models of DEVS models ................................................................ 4 

  2.2 Web-based learning system ......................................................................... 8 

  2.3 Contextualized learning system ................................................................... 11 

          2.4 Simulation and Gaming for learning............................................................ 13

 3. DEVS BACKGROUND......................................................................................... 16 

  3.1 Discrete Event System Modeling and Simulation ....................................... 16 

  3.2 DEVS Formalism......................................................................................... 19 

 4. THE WEB-BASED LEARNING SYSTEM .......................................................... 24 

          4.1 Traffic Light Controller System................................................................... 24

  4.2 DEVS Formalism of Traffic Light Controller System ................................ 25 

  4.3 Web-based Tutorial Learning Process ......................................................... 36 

 

 



 vi

  4.4 DEVS Resources.......................................................................................... 42 

 5. SYSTEM ARCHITECTURE AND SOFTWARE DESIGN ................................. 44

  5.1 System Architecture..................................................................................... 44 

  5.2 Software Design........................................................................................... 50 

 6. CONCLUSION AND FUTURE WORK ............................................................... 57

REFERENCES .................................................................................................................... 59 

 



 vii

LIST OF TABLES 

Table 2.1 State transition table............................................................................................. 7 

 

 



 viii

LIST OF FIGURES 

Figure 2.1 Example of a Petri Net Model ............................................................................ 5 

Figure 2.2 Finite State Machine........................................................................................... 6 

Figure 2.3 An Interactive Tutorial of Elevator Model......................................................... 8 

Figure 2.4 An Interactive Tutorial of Two Traffic Lights Model........................................ 9 

Figure 2.5 An Applet Tutorial for Petri Net Model ............................................................. 9 

Figure 2.6 A Finite State Machine Explorer........................................................................ 10 

Figure 2.7 Program Code Editors of Alice’s SoftwareTutorial ........................................... 12 

Figure 2.8 Programs in Alice can optionally be displayed with a Java-like syntax ............ 13 

Figure 2.9 A Glimpse of A SimSE Game............................................................................ 14 

Figure 2.10 Object Builder User Interface........................................................................... 15 

Figure 3.1 Basic Entities and Relations ............................................................................... 17 

Figure 3.2 Discrete Event Time Segments .......................................................................... 18 

Figure 4.1 Traffic Flow Simulation ..................................................................................... 25 

Figure 4.2 Traffic light Controller with Input and Output Ports.......................................... 26 

Figure 4.3 A SimView of a Traffic Light Controller Model ............................................... 29 

Figure 4.4 SimView of a Traffic Light Controller System.................................................. 30 

Figure 4.5 Partitioning a Roadway ...................................................................................... 31 

Figure 4.6 Vehicle Time Segments...................................................................................... 32 

Figure 4.7 A Tutorial’s Main Page ...................................................................................... 37 

 

 



 ix

Figure 4.8 A Tutorial web page for Atomic Model ............................................................. 38 

Figure 4.9 A Tutorial web page showing DEVSJAVA Code ............................................. 39 

Figure 4.10 A Tutorial for Coupled Model 1....................................................................... 40 

Figure 4.11 A Tutorial for Coupled Model 2....................................................................... 40 

Figure 4.12 A Tutorial for Coupled Model 3....................................................................... 41 

Figure 4.13 A Tutorial for Coupled Model 4....................................................................... 41 

Figure 4.14 A Tutorial for Coupled Model 5....................................................................... 42 

Figure 5.1 Web Server J2EE Architecture........................................................................... 45 

Figure 5.2 Web Application Development Environment .................................................... 47 

Figure 5.3 Web Application Deployment Environments .................................................... 48 

Figure 5.4 Class Diagram of Web-based Tutorial Software................................................ 50 

Figure 5.5 Subsystem Architecture...................................................................................... 51 

Figure 5.6 Sequence Diagram of Web-based Tutorial Software ......................................... 53 

Figure 5.7 Relationship between Thread objects and DEVS objects .................................. 54 

Figure 5.8 Relationship among three Subsystems ............................................................... 55 

 



 x

LIST OF ABBREVIATIONS 

 
HTML  HyperText Markup Language 

DEVS  Discrete Event System Specification 

  

 



 1

1.  INTRODUCTION 

 Today's advances in technology have provided new tools that allow us to be more 

creative. The purpose of this research is to design and develop a web-based tutorial that will 

facilitate the learning of the DEVS modeling and simulation framework and its underlying 

fundamental modeling concepts. The uniqueness of this tutorial project is not only the integration 

of information technology and multimedia into education through the development of an 

interactive tutorial, but also the characteristic of contextualized learning as we use a traffic light 

controller system simulation as an example. As we know, simulation has become one of the most 

powerful tools for the planning, design, and control of complex processes or systems. The DEVS 

formalism is a system-theory for simulation modeling and design which is theoretically a well-

defined means of expressing hierarchical, modular models in discrete event simulation. A DEVS 

model works as a timed state machine so that state of the system is changed by external or 

internal events with elapsed time. The DEVS environment, based on the DEVS formalism offers 

a library with which users can easily build models in a hierarchical modular way. The coupled 

model in DEVS library is the major class to construct models hierarchically, while atomic 

models are the most basic classes. By using DEVS environment with the hierarchical, object-

oriented feature, Models in the problem space can be developed deep in depth and expandable in 

width, as much as the user desires complex and detail models.  

 Unfortunately, it is known that DEVS has a steep learning curve for beginners, especially 

in the initial stages of the learning. Traditional learning methods of DEVS include lectures and 

tutorials. While these methods are effective in an enforced learning environment such as a 

lecture, their usage and influence are limited by the presence of the instructor and the limitation 

 



 2

of a physical environment. Web-based learning has the potential to influence a wide range of 

learners through the Internet. Current approaches of web-based learning of DEVS models mainly 

include online papers, online PPT slides, and online introduction of different type of DEVS 

applications (See e.g, ACIMS’ website and DEVS Standardization Group website 

(http://www.sce.carleton.ca/faculty/wainer/standard/)). Without an instructor to guide through 

the process, these approaches are ineffective for new beginners. More recently, the WebStarter 

environment is made available through the Internet. 

 The DEVS-JAVA environment is an implementation of the DEVS formalism in Java, 

which enables the modeler to specify models directly in its terms. In the past few years, a 

visualization system known as the SimView was created to help students visualize a hierarchical 

model’s structure and behavior and examine the model’s source code. However, the structure of 

a model which expressed in a mathematical language called formalism is difficult to understand 

for a beginner. Moreover, a deep understanding of model is required in order to generate such a 

good simulator that can carry out the instructions of the model and a good model that can 

represent the real system.  

 Relating instructional content to the specific contexts of learners’ lives and interests, 

known as contextualized learning, is believed to increase motivation to learn. This instructional 

strategy actively involves the learner in the learning process, combines content and context, and 

uses authentic materials. It is application oriented, learner centered, and time flexible. With this 

strategy, the purpose of the learning is explicit, learners share previous knowledge, transference 

of knowledge is explicit and immediately recognizable, and finally learners learn more 

effectively by integrating new knowledge/skills into already existing knowledge. As a result, a 

new form of teaching, contextualized web-based tutorial is developed to help students gain more 

 



 3

clearly understanding of the DEVS formalism. We exemplify the DEVS formalism atomic and 

coupled models using simple traffic light controller system. We implement the traffic simulation 

system based on the DEVS theory. Our model of intersection traffic is a simplified version of 

real-world intersection traffic. This will help students to gain more and more clearly 

understanding of the DEVS formalism by comparing to the real world system. 

 The outline of this thesis is as follows: In chapter 1, we give an introduction to this thesis. 

In chapter 2, we introduce a related works of DEVS model, web-based learning system, and 

contextualized learning system with some examples. In chapter 3, we briefly describe the DEVS 

modeling and simulation methodology. In chapter 4, we explain about the web-based learning 

system including an overview of DEVS and DEVS specification, atomic model, coupled model, 

simView, and advanced traffic system modeling. In chapter 5, we explain about system 

architecture and software design. In chapter 6, the conclusion and possible future works are 

listed. Chapter 7 provides the references.  

 



 4

2. RELATED WORK 

 This chapter briefly describes the background areas of research which served as the bulk 

of the foundation underlying the advances produced by this thesis. Additionally, it gives an 

example of other existing systems that are meant to perform a similar function to that of this 

thesis. 

2.1 Related models of DEVS models 

 This section briefly describes other existing models or systems which are related to 

discrete event simulation model (DEVS). 

2.1.1 Petri net 

 A Petri net [1] is a graphical and mathematical modeling tool. As can be seen in figure 

2.1, a Petri net model consists of places, transitions, and arcs that connect them. Input arcs 

connect places with transitions, while output arcs start at a transition and end at a place. There 

are other types of arcs, e.g. inhibitor arcs. Places can contain tokens; the current state of the 

modeled system is given by the number and type if the tokens are distinguishable of tokens in 

each place. Transitions are active components. They model activities which can occur (the 

transition fires), thus changing the state of the system (the marking of the Petri net).  

 Transitions are only allowed to fire if they are enabled, which means that all the 

preconditions for the activity must be fulfilled (there are enough tokens available in the input 

places). When the transition fires, it removes tokens from its input places and adds some at all of 

its output places. The number of tokens removed / added depends on the cardinality of each arc. 

The interactive firing of transitions in subsequent markings is called token game. 

 

 



 5

 

 

Figure 2.1 Example of a Petri Net 
 
  

 Petri nets are a promising tool for describing and studying systems that are characterized 

as being concurrent, asynchronous, distributed, parallel, nondeterministic, and/or stochastic. As a 

graphical tool, Petri nets can be used as a visual-communication aid similar to flow charts, block 

diagrams, and networks. In addition, tokens are used in these nets to simulate the dynamic and 

concurrent activities of systems. As a mathematical tool, it is possible to set up state equations, 

algebraic equations, and other mathematical models governing the behavior of systems.  

 To study performance and dependability issues of systems it is necessary to include a 

timing concept into the model. There are several possibilities to do this for a Petri net; however, 

the most common way is to associate a firing delay with each transition. This delay specifies the 

time that the transition has to be enabled, before it can actually fire. If the delay is a random 

distribution function, the resulting net class is called stochastic Petri net. Different types of 

transitions can be distinguished depending on their associated delay, for instance immediate 

transitions (no delay), exponential transitions (delay is an exponential distribution), and 

deterministic transitions (delay is fixed).  

 



 6

 The concept of Petri nets has its origin in Carl Adam Petri's dissertation Kommunikation 

mit Automaten, submitted in 1962 to the faculty of Mathematics and Physics at the Technische 

Universität Darmstadt, Germany. 

2.1.2 Finite State Machine (FSM)  
 
 A finite state machine (FSM) [2] or finite state automaton (plural: automata) or simply a 

state machine is a model of behavior composed of a finite number of states, transitions between 

those states, and actions. 

 
 

            Figure 2.2 Finite State Machine 
 

 
 A state stores information about the past, i.e. it reflects the input changes from the system 

start to the present moment. A transition indicates a state change and is described by a condition 

that would need to be fulfilled to enable the transition. An action is a description of an activity 

that is to be performed at a given moment. There are several action types: 

• Entry action which is performed when entering the state  

 



 7

• Exit action which is performed when exiting the state  

• Input action which is performed depending on present state and input conditions  

• Transition action which is performed when performing a certain transition  

 
 A FSM can be represented using a state diagram (or state transition diagram) as in figure 

2.2. Besides this, several state transition table types are used. The most common representation is 

shown below: the combination of current state (B) and condition (Y) shows the next state (C). 

The complete actions information can be added only using footnotes. An FSM definition 

including the full actions information is possible using state tables as in table 2.1. 

 
 

Table 2.1 State transition table 
 

Current State -> 
Condition State A State B State C 

Condition X … … … 

Condition Y … State C … 

Condition Z … … … 

 
  
 
 In addition to their use in modeling reactive systems presented here, finite state automata 

are significant in many different areas, including electrical engineering, linguistics, computer 

science, philosophy, biology, mathematics, and logic. A complete survey of their applications is 

outside the scope of this article. Finite state machines are a class of automata studied in automata 

theory and the theory of computation. In computer science, finite state machines are widely used 

in modeling of application behavior, design of hardware digital systems, software engineering, 

compilers, network protocols, and the study of computation and languages. 

 



 8

2.2 Web-based learning system 
 
 This section strategy employed by other web-based learning systems for depicting the 

structure and behavior of others models that are related to discrete event simulation models.  

Since the set of such systems that is designed to work specifically with DEVS/DEVSJAVA 

models is very limited, the discussion will be expanded to systems that support other 

implementations of others models that are related to discrete event simulation modeling. 

2.2.1 Interactive Tutorials on Petri Nets 
 
 The interactive tutorials [3] introduce Petri nets, state spaces, and place/transition 

invariants. The tutorials are created by Wil van der Aalst, Vincent Almering, and Hermen 

Wijbenga from TU Eindhoven, the Netherlands. Figure 2.3 and 2.4 show the interactive tutorial 

of elevator model and two traffic lights model. 

 

 

 
Figure2.3 An Interactive Tutorial of Elevator Model 

 
 

 



 9

 
Figure2.4 An Interactive Tutorial of Two Traffic Lights Model 

 
2.2.2 Petri net applet 
 
 As can be seen in figure 2.5, this Petri net applet tutorial [4] will allow users to create 

their own Petri net network model by dragging and dropping place and transition. After creating 

the desired places and transitions, arcs can be drawn between places and transitions. After 

completing the network, tokens can be added and then users can start the simulation by pushing 

the button from the applet. This tutorial will help users to learn Petri net model as the token is 

moving along the place and transition during the simulation. 

 
 

Figure 2.5 An Applet Tutorial for Petri Net Model 
 

 



 10

2.2.3 Finite State Machine Explorer 
 
 As the study of theoretical computational machines has always been based around static 

representations, usually on paper, and the complexity of machines being studied increases, it 

becomes increasingly difficult to represent their behavior statically, and therefore 

correspondingly harder to visualize mentally.  

 This finite state machine explorer [5] attempts to rectify this situation through the 

development of an interactive graphical system which supports the construction of the class of 

computational machines known as finite state automata. Animation is then used to dynamically 

illustrate their behavior on given inputs. As can be seen in figure 2.6, user can add states, create a 

connection between states, and simulate the machine. 

 

 
 

Figure 2.6 A Finite State Machine Explorer 
 

 



 11

 Furthermore, powerful manipulation facilities are developed to support the study and 

exploration of automata, including the conversion between equivalent classes of machine, and 

the automatic generation of layouts. Finally, input and output capabilities are provided to enable 

the continued development and reuse of constructed machines. This tutorial was created by Matt 

Chapman and is available at http://www.belgarath.org/java/fsme.html 

2.3  Contextualized learning 
 
 This section strategy is employed by other contextualized learning systems that help 

students to learn about basic and the fundamental of computer science. 

2.3.1 The Alice software programming Tutorial 
 
 The goal of the Alice software programming tutorial [6] is to allow traditional 

programming concepts to be more easily taught and more readily understood.  

 Although computer programming has existed in its modern form for half a century, it still 

eludes all but a small fraction of society. While programming is an inherently difficult activity, 

there are currently many barriers, both mechanical and sociological, that prevent large portions 

of the population from learning to program a computer. 

 Alice addresses both the mechanical and sociological barriers that currently prevent many 

students from successfully learning to program a computer. Alice addresses the mechanical 

barriers to programming by making it much easier for students to create programs. Rather than 

having to correctly type commands according to obscure rules of syntax, students can drag-and-

drop words in a direct manipulation interface. This user interface ensures that programs are 

always well-formed. In addition, Alice reifies object-based programming by providing animated, 

on-screen 3D virtual objects. Figure 2.7 and 2.8 show the graphic user interface of Alice 

software. 

 



 12

 Sociological barriers are far more complex.  Alice addresses the specific needs of the 

subpopulation of middle school girls. By supporting storytelling, an intrinsically motivating 

activity for middle school girls, Alice will make programming a means to an exciting end. 

 This approach allows students to author on-screen movies and games, where the concept 

of an "object" is made tangible via on-screen objects that populate a three-dimensional micro 

world. Students create programs by dragging and dropping program elements (if/then statements, 

loops, variables, etc.) in a mouse-based editor that prohibits syntax errors. The Alice system is a 

powerful, modern programming environment that supports methods, functions, variables, parameters, 

recursion, arrays, and events. They use this strong visual environment to support either an objects-

first or an objects-early approach with an early introduction to events. In Alice, every object is an 

object that students can visibly see. They begin with objects in the very first chapter. 

 
 

 
 

Figure 2.7 Program Code Editors of Alice’s Software Tutorial 
 
 

 



 13

 
 

Figure2.8 Programs in Alice can optionally be displayed with a Java-like syntax  
 
 
2.4 Simulation and Gaming for learning  
 
 This section strategy is employed by other simulation or gaming that help students to 

learn about basic and the fundamental of computer science. 

2.4.1 SimSE 
 
 SimSE [7] is a computer-based simulation environment for teaching the software 

engineering process. The goal is to bridge the gap between the large amount of conceptual 

software engineering knowledge given to students in lectures and the comparably small amount 

of this they actually get to put into practice in an associated "toy" software engineering project.  

 As can be seen from figure 2.9, SimSE allows students to practice a “virtual” software 

engineering process or sub-process in a fully graphical, interactive, and fun setting in which 

 



 14

direct, graphical feedback enables them to learn the complex cause and effect relationships 

underlying the processes of software engineering. 

 

Figure 2.9 A Glimpse of A SimSE Game 

 

 The user interface of SimSE is fully graphical, displaying a “virtual” office in which the 

software engineering process is taking place, including typical office surroundings; employees, 

customers, and project information, as well as representations of software engineering artifacts 

that include such information as that artifact’s completeness, correctness, and other similar 

qualities. Information about the status of individuals is provided through automatic pop-up 

“bubbles” over the heads of individuals and through explicitly querying an individual. Players 

use information gleaned from these sources to make decisions and take actions, driving the 

software engineering process to complete a project within budget, schedule, and at or above the 

customer’s desired quality requirement. 

 



 15

 

Figure 2.10 Object Builder User Interface. 

 

  This model builder completely hides the un-derlying modeling language from the 

modeler, and pro-vides a graphical user interface for specifying the object types, start state, 

actions, rules, and graphics for a model. Figure 2.10 shows the user interface for the object 

builder, the part of the model builder that supports defining object types. For the sake of space, 

the interfaces for the other parts of the model builder are not shown, but they are similar in 

appearance to the object builder in that they all facilitate building a model using buttons, drop-

down lists, menus, and dialog boxes—no programming is required. Once a model is specified, 

the model builder then generates Java code for a complete, executable, customized simulation 

game based on the given model. 

 



 16

3. DEVS BACKGROUND 

 This chapter briefly describes the DEVS modeling and simulation methodology. The 

Discrete Event System Specification [8] (DEVS) formalism provides a means of specifying a 

mathematical object called a system [Zeigler, et. al, 2000]. 

3.1 Discrete Event System Modeling and Simulation 

 Basically, a system has a time base, inputs, states, and outputs, and functions for 

determining next states and outputs given current states and inputs. Discrete event systems 

represent certain constellations of such parameters just as continuous systems do. For example, 

the inputs in discrete event systems occur at arbitrarily spaced moments, while those in 

continuous systems are piecewise continuous functions of time. The insight provided by the 

DEVS formalism is in the simple way that it characterizes how discrete event simulation 

languages specify discrete event system parameters. 

 The conceptual framework underlying the DEVS formalism is shown in Figure 3.1. The 

modeling and simulation enterprise concerns three basic objects:  

• the Real system, in existence or proposed, which is regarded as fundamentally a source of 

data 

• Model, which is a set of instructions for generating data comparable to that observable in 

the real system. The structure of the model is its set of instructions. The behavior of the 

model is the set of all possible data that can be generated by faithfully executing the 

model instructions.  

• Simulator, which exercises the model's instructions to actually generate its behavior. 

 



 17

• Experimental frame, which captures how the modeler’s objectives impact on model 

construction, experimentation and validation. As we shall see later, in DEVJAVA 

experimental frames are formulated as model objects in the same manner as the models 

of primary interest. In this way, model/experimental frame pairs form coupled model 

objects with the same properties as other objects of this kind. It will become evident later, 

that this uniform treatment yields key benefits in terms of modularity and system entity 

structure representation.  

 

 

Figure 3.1 Basic Entities and Relations 

 

The basic objects are related by two relations: 

• Modeling relation linking real system and model, defines how well the model represents 

the system or entity being modeled. In general  terms a model can be considered valid if 

the data generated by the model agrees with the data produced by the real system in an 

experimental frame of interest.  

 

 



 18

• Simulation relation, linking model and simulator, represents how faithfully the simulator 

is able to carry out the instructions of the model.  

 The basic items of data produced by a system or model are time segments. These time 

segments are mappings from intervals defined over a specified time base to values in the ranges 

of one or more variables. The variables can either be observed or measured. An example of a 

data segment is shown in Figure 3.2.  

 

Figure 3.2 Discrete Event Time Segments 

 

 The structure of a model may be expressed in a mathematical language called formalism. 

The discrete event formalism focuses on the changes of variable values and generates time 

segments that are piecewise constant. Thus an event is a change in a variable value, which occurs 

instantaneously. 

 In essence the formalism defines how to generate new values for variables and the times 

the new values should be take effect. An important aspect of the formalism is that the time 

intervals between event occurrences are variable (in contrast to discrete time where the time step 

is a fixed number).  

 



 19

3.2 DEVS Formalism 

 The DEVS (Discrete Event System Specification) [9] formalism is derived from generic 

dynamic systems theory and has been applied to both continuous and discrete phenomena. It 

provides a formal modeling and simulation (M&S) framework with well-defined concepts of 

coupling of components, and hierarchical modular model construction. DEVS has been 

operationalized to serve as a practical simulation and execution tool in a variety of 

implementations [8, 10, 11].  

 There are two kinds of DEVS models: atomic model and coupled model. Atomic models 

are the basic components. Coupled models have multiple sub-components and can be 

constructed in a hierarchical way. 

3.2.1 Atomic Model 

 In the DEVS formalism, one must specify: 

1) Basic models from which larger ones are built, and  

2) How these models are connected together in hierarchical fashion.  

 To specify modular discrete event models requires that we adopt a different view than 

that fostered by traditional simulation languages. As with modular specification in general, we 

must view a model as possessing input and output ports through which all interaction with the 

environment is mediated. In the discrete event case, events determine values appearing on such 

ports. More specifically, when external events, arising outside the model, are received on its 

input ports, the model description must determine how it responds to them. Also, internal events 

arising within the model change its state, as well as manifesting themselves as events on the 

output ports to be transmitted to other model components.  

 An atomic model of a standard DEVS is a structure: 

 



 20

M = (X,S,Y,δint,δext,λ,ta) 

where, 

X is the set of inputs 

S is a set of states 

Y is the set of outputs 

δint : S  S is the internal transition function 

δext: Q x X  S is the external transition function, where 

λ : S  Y  is the output function 

ta : S  R+
0,œ is the time advance function 

Q = {(s,e) | s ε S, 0 ≤ e ≤ ta(s)} is the total state set 

e is the time elapsed since last transition  

An atomic model contains the following information:  

• the set of input ports through which external events are received  

• the set of output ports through which external events are sent 

• the set of state variables and parameters: two state variables are usually present, “phase” 

and “sigma” (in the absence of external events the system stays in the current “phase” for 

the time given by “sigma”)  

• the time advance function which controls the timing of internal transitions – when the 

“sigma” state variable is present, this function just returns the value of “sigma”. 

• the internal transition function which specifies to which next state the system will transit 

after the time given by the time advance function has elapsed 

• the external transition function which specifies how the system changes state when an 

input is received – the effect is to place the system in a new “phase” and “sigma” thus 

 



 21

scheduling it for a next internal transition; the next state is computed on the basis of the 

present state, the input port and value of the external event, and the time that has elapsed 

in the current state. 

• the confluent transition function which is applied when an input is received at the same 

time that an internal transition is to occur –the default definition simply applies the 

internal transition function before applying the external transition function to the 

resulting state. 

• the output function which generates an external output just before an internal transition 

takes place. 

 The interpretation (semantic) of these elements is briefly described below. The input 

event set defines all possible inputs that may occur on the input ports; the output set consists of 

all possible outputs the atomic model may send out. External inputs received on the input ports 

invoke a model’s external transition function, which determines how the model changes its state 

based on the inputs and model’s current state. The model remains in a state for an amount of 

time that is determined by the time advance function. When this time has expired the output 

function is invoked, which sends output on the output ports. Following the invocation of the 

output function, the internal transition function is invoked to transit the model to a new state. The 

confluent transition function is invoked when extern events and internal events happen at the 

same time. 

3.2.2 Coupled Models 

 Atomic models may be coupled in the DEVS formalism to form a coupled model. A 

coupled model tells how to couple (connect) several component models together to form a new 

model. This latter model can itself be employed as a component in a larger coupled model, thus 

 



 22

giving rise to hierarchical construction. Two major activities involved in coupled models are 

specifying its component models and defining the couplings which create the desired 

communication networks. A coupled model is defined as follows: 

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}> 

where,  

 X : set of external input events;  

 Y : a set of outputs;  

 D : a set of components names;  

   for each i in D,  

       Mi is a component model 

       Ii is the set of influencees for i  

for each j in Ii,  

      Zi,j is the i-to-j output translation function 

A coupled model contains the following information:  

• the set of components  

• the set of input ports through which external events are received 

• the set of output ports through which external events are sent 

These components can be synthesized together to create hierarchical models having external 

input and output ports. 

The coupling specification consisting of:  

• the external input coupling which connects the input ports of the coupled to model to one 

or more of the input ports of the components — this directs inputs received by the 

coupled model to designated component models 

 



 23

• the external output coupling which connects output ports of components to output ports 

of the coupled model- thus when an output is generated by a component it may be sent to 

a designated output port of the coupled model and thus be transmitted externally 

• the internal coupling which connects output ports of components to input ports of other 

components- when an input is generated by a component it may be sent to the input ports 

of designated components (in addition to being sent to an output port of the coupled 

model) 

 

 



 24

4. THE WEB-BASED LEARNING SYSTEM 

4.1 Traffic Light Controller System.  

 For the purposes of this project we will use a modeling problem that most everyone will 

understand. We implement the traffic simulation system based on the DEVS theory. Our model 

of intersection traffic is a somewhat simplified version of real-world intersection traffic. We do 

not allow cars to turn, all cars begin traveling roughly the same speed, and all traffic lights only 

have three signal; red, green, and flashing red. These simplifications make the implementation a 

lot easier but do not detract from the fundamental challenges of our goal. Since we are trying to 

create a web-based tutorial which will allow the users to learn the DEVS modeling and 

simulation framework, it is not unreasonable to assume that each vehicle is always trying to 

travel at the speed limit. Additionally, almost every vehicle in production is capable of attaining 

the speed limit of any road, so this assumption is not a far stretch. Another reason why we 

choose a traffic light controller system as our modeling example is that the ability to model 

transport scenarios through simulation has already proven an effective tool in traffic management 

and infrastructure planning. Many researches have been done through out this area for the past 

few years as traffic congestion have become a very serious problems. The intelligence traffic 

light controllers based on various algorithms have been proposed among those researches. 

 Although using an implementation of DEVS to develop a prototype of the traffic model 

does not cover all kinds of roads and crossing and traffic conditions, we can implement modules 

which can be used to simulation some simple traffic systems. Based on the prototype developed

 



 25

we can conduct a case study to study and analyze the traffic light controller system or even an 

intelligence traffic light controller system. 

 

 

Figure 4.1 Traffic Flow Simulation 
 
 

 Figure 4.1 shows the simulation of traffic flow using Java programming language.  It 

takes advantage of multithread, a unique feature function in Java and DEVS Java, a powerful 

modeling & simulation language. All of the traffic light controllers are controlled by DEVS. Two 

threads operate concurrently with DEVS to represent the cars and people walking across the 

street. 

4.2 DEVS Formalism of Traffic Light Controller System 
 
 In this section we discuss our traffic light controller system as an example. We then 

explain how to coupling atomic models together to create a coupled model for our traffic light 

controller system. Finally, we discuss an advanced traffic system modeling. 

 



 26

4.2.1 Example – A Traffic Light Controller 
 
 A DEVS model of a traffic light controller has two input ports, one for button and the 

other for signal, and one output port. 

 
Figure 4.2 Traffic light Controller with input and output ports 

 
 
 

 A traffic light controller is modeled as a DEVS, as shown in Figure 4.2.  The input port 

“button” is for receiving an input from people who want to walk across an intersection while the 

traffic light is in green. The input port “signal” is for receiving a message or an output  from the 

other traffic lights. The traffic light has three phases; red, green, and flashing red. The traffic will 

be in red for some period of time and then change to green. After staying in green for some 

period of time, it will change back to red and so on. When the traffic light is in green and receive 

a message from input port “button” or “signal”, it will change to red for some period of time and 

then send out a message through output port “out” to the other traffic light. A DEVS 

specification of a basic traffic light controller can be described as follows: 

 DEVStraffic light    =      (X,S,Y,δint,δext,λ,ta) 

where 

 X = {“button”, “signal”} 

 Y = {“signal to the other traffic lights} 

 S  =  {“red”, “green”, “flashing red”} 

out  
Light 

button 

signal 

 



 27

 δint (“red”,σ)  = (“green”, 7) 

 δint (“green”,σ) = (“red”, 7) 

 δext (“green”,σ,e,x) = (“red”, 5) 

 δext (“red”,σ,e,x) = (“red”, 5) 

 ,λ (“red”, σ) = “signal to the other traffic lights” 

  ta (phase, σ) = σ  

4.2.2 DEVSJAVA Implementation of the Traffic Light Controller. 

 The implementation of the traffic light controller in DEVSJAVA is presented as follows: 

public class trafLight extends ViewableAtomic{ 
 
public trafLight(String name, int time, String initS){ 
  super(name); 
  addInport("button");  
    addInport("signal");  
    addOutport("out"); 
} 
 
public void initialize(){ 
 holdIn(green, 7); 
} 
 
public void  deltext(double e,message x) 
{ 
 Continue(e); 
 
 if (somethingOnPort(x, "button")) { 
 
  if (phaseIs(“green”)) { 
   holdIn(“red”,5); 
  }else if(phaseIs(“red”)){ 
   holdIn(“red”,5);  
  } 
 
 } else if (somethingOnPort(x, “signal”)){ 
 
  if (phaseIs(“green”)) { 
   holdIn(“red”,5); 
  }else if(phaseIs(“red”)){ 
   holdIn(“red”,5);  
  } 

 



 28

 } 
} 
 
public void  deltint( ) 
{ 
 if(phaseIs("red")){ 
  holdIn("green",7);  
 } 
 
 else if(phaseIs("green")){ 
  holdIn("red",7);  
 } 
 
} 
 
public message out( ) 
{ 
 message  m = new message(); 
 if(phaseIs("red")){ 
  m = new message(); 
  content con = makeContent("out", new entity("signal")); 
  m.add(con); 
 } 
  return m; 
} 
}  
 
4.2.3 Simulation Viewer 

 The Simulation Viewer [12] , known as SimView was crafted as an extension to the 

DEVSJAVA simulation framework, which in turn is an implementation of the DEVS formalism. 

It helps users to visualize a hierarchical model’s structure and behavior during the running of the 

simulation. Figure 4.3 shows the DEVSJAVA Simulation Viewer of an atomic traffic light 

model with an initial state “green” and sigma equal to 4. It has two input ports; “button” and 

“signal” and one output port “out”. 

 

 



 29

 

Figure 4.3 SimView of a Traffic Light Controller Model 

 

 Figure 4.4 shows the DEVSJAVA Simulation Viewer of a coupled model representing 

our traffic light controller system. Our traffic light controller system has three traffic lights 

coupling together. The output port “out” of the first traffic light is coupling to an input port 

“signal” of the second traffic light. Similarly, an output port “out” of the second traffic light is 

coupling to an input port “signal” of the third traffic light. All traffic lights initialized with green 

phase and have different time elapse as can be defined by users. The first traffic light will be in 

green for 4 sec. Then an internal transition function will be called and the first traffic light will 

change to red. After staying in red for 7 sec., an output function will be called and the message 

will be send out through output port “out” into input port “signal” of the second traffic light. 

 



 30

 
 

Figure 4.4 SimView of a Traffic Light Controller System 
 
 

 
4.2.4 Advanced Traffic System Modeling 
 
 A traffic light controller can be modeled using DEVS continuous system [13] which 

results in a model that is closer to a real world traffic light controller system. In discrete time 

modeling, there is a state transition function which computes the state at the next time instant 

given the current state and input. In DEVS continuous system using an approach of differential 

equations, the state transition relation is quite different.  For differential equation models, we do 

not specify a next state directly but instead, use a derivative function to specify the rate of change 

of the state variables. At any particular time instant on the time axis, given a state and an input 

value, we only know the rate of change of the state. The state at any point in the future must 

compute from this information. 

 



 31

 Consider modeling traffic. The basic element is a one way roadway such as a highway or 

street lane between intersections. We divide the roadway into segments as illustrated in Figure 

4.5. The speed of a vehicle in such as segment is to be determined by the number of vehicles in 

its segment as well as the number in the segment ahead.  Roughly, the more congested the road 

ahead the slower a driver must go.  

 

2
1

4

in (vehicle)

number
ahead

out (vehicle)

number

 

Figure 4.5 Partitioning a Roadway 

 

 We can represent the roadway as a one-dimensional cellular space where the cells 

represent segments. Each cell keeps track of the positions and speeds of the vehicles within it. 

When a vehicle reaches the end of a segment it is added to the following segment. Thus, one 

output port of a cell signals the occurrence of a vehicle at the far boundary of the associated 

segment.  The other output port will transmit the number of the vehicles in the segment to the 

rear segment. 

 The time line of a vehicle can be depicted as in Figure 4.6.  Because the number of 

vehicles in a segment changes discretely, the speed (v) of a vehicle changes in a step-like 

(piecewise constant) fashion. The distance along the segment (s) therefore increases in line 

segments as illustrated.  When the vehicle reaches the end of the segment it is transferred to the 

next segment. This is represented by the output (y) which is zero until the  segment boundary is 

 



 32

crossed, at which point it becomes 1.  The number of vehicles in the segment is also computed 

and transmitted to the predecessor cell at this time as well. 

 The Euler approach can be used to update the vehicle positions along the way.  

s(t+h) = s(t) + v(t)*h 

where v(t) is speed of the vehicle at time t as computed from the number of vehicles in this 

segment and the one ahead.   Since there may be a number of vehicles within a segment at any 

one time, we need a container to hold them.  To make this possible, we defined a derived class of 

entity: 

class vehicle extends entity{ 

    public double position, speed; 

    public vehicle(double Position, double Speed){ 

         position = Position; 

         speed = Speed; 

   } 

} 

 

v

s

Y

t

t

t
Seg. length

 

Figure 4.6 Vehicle Time Segments 

 



 33

Following the approach to DEVS implementation of cellular automata, we define a subclass of 

cell to update the vehicles in the segment it represents: 

public class vehicleStep extends cell{ 
    protected set vehicles,crossed; 
    protected double time_step,segLength; 
    protected numberAhead; 
 
public vehicleStep (){ 
super("vehicleStep "); 
phases.add("active");  
inports.add(“numberAhead”); 
outports.add(“number”); 
initialize(); 
} 
public void initialize(){ 
     passivate(); 
     vehicles = new set(); 
     crossed = new set();  
     segLength = 100; 
     time_step = .1; 
     numberAhead = 0; 
     super.initialize(); 
} 
public void  deltext(double e,message   x) 
{ 
    Continue(e); 
 for (int i=0; i< x.get_length();i++){ 
  if (message_on_port(x,"numberAhead",i)) { 
      entity ent = x.get_val_on_port("numberAhead",i); 
      intEnt d = (intEnt)ent; 
      numberAhead = d.getv(); 
  } 
 } 
 for (int i=0; i< x.get_length();i++){ 
  if (message_on_port(x,"in",i)) //comes with posn & speed 
      vehicles.add(x.get_val_on_port("in",i)); 
      //add all vehicles before updating 
} 
  update(); // new + old vehicles for next time step 
  nextCrossed();//determine next crossings for output 
  hold_in("active”,time_step); 
} 
public void update(){ 
 
for (entity   p = vehicles.get_head();p != null;p= p.get_right()){ 
       entity   ent = p.get_ent(); 
       vehicle v = (vehicle)ent; 
       double newSpeed = 
computeSpeed(vehicles.get_length(),numberAhead); 

 



 34

       v.position = v.position + newSpeed*time_step; 
       v.speed = wSpeed; 
     } 
} 
public void nextCrossed(){ 
   if (speedAhead <= 0.01)return; 
     for (entity   p = vehicles.get_head();p != null;p= 
p.get_right()){ 
       entity   ent = p.get_ent(); 
       vehicle v = (vehicle)ent; 
       if (v.position >= segLength){ 
            v.position = v.position - segLength; 
            vehicles.remove(ent); 
            crossed.add(ent); 
     } 
} 
} 
public void  deltcon(double e,message   x){ 
 
//same as deltext() 
 … 
 
 crossed = new set();//empty after outputting 
 
… 
} 
 
public void  deltint( ) 
{ 
if (!vehicles.empty()){ 
  update(); 
  crossed = new set();//empty after outputting 
  nextCrossed(); 
  hold_in("active", time_step); 
  } 
else passivate(); 
} 
public message  out( ) 
{ 
  message   m = new message(); 
if (phase_is("active")){ 
     m.add(make_content_address("number", 
        new intEnt(vehicles.get_length()), 
           new addrclass(my_location.i-1, 
                           my_location.j, my_location.k))); 
 for (entity  p = crossed.get_head(); p!=null;p=p.get_right()) 
         m.add(make_content_address("out",p.get_ent(), 
                        new addrclass(my_location.i+1, 
                           my_location.j, my_location.k))); 
} 
 return m; 
} 

 



 35

} 
 Note that we predict what the state and output will be at the next time step. When that the 

time of the step elapses we the output is emitted and the next state and output are recomputed. 

 Compute Speed is function that embodies our hypotheses about how traffic “cloud” 

around a driver influences his/her speed. There is obviously an approximation here in that most 

of experience driving decisions in terms of the more detailed behavior of the cars immediately 

surrounding us on the highway.  

 We embed a row of such cells into a block model with a traffic generator: 

public class roadSeg extends block { 
 
public roadSeg(String nm) 
{ 
   super(nm); 
 
cell g  = new trafficGenr("g",10,new addrclass (0,0,0)); 
add(g); 
 
for (int i = 1; i <= 4;i++) 
 add(new vehicleStep("v"+i,new addrclass(i,0,0))); 
 
  add_coupling("out","in"); 
  add_coupling("myNumber","numberAhead"); 
  initialize(); 
} 
} 
 
 Once we make the assumption, as in the traffic model above, that the input and output of 

a component are piecewise constant, a much more efficient implementation of the internal 

dynamics becomes possible. Instead of the piecewise constant speed input we have discrete event 

inputs that provide the new values when the speed changes. Indeed, any piecewise constant time 

segment can be represented in this manner.  

 When a vehicle first enters the segment, its position is zero and the time it will take to 

reach the far end is easily predicted: 

Tcross  = segLength/v 

 



 36

where v is the speed at the time of entry. Now we can schedule an internal event to occur at that 

time – this would enable a cell to produce the same output at the same time as computed in the 

discrete time approach – provided no additional inputs arrive.  What do we do when such an 

external event occurs? In the external transition function we update the position to where it 

would be had we been updating it at every discrete time step. Then from this new current 

position, we recomputed the time to reach the far end.  In other words, at time ti+1 when the i+1 

input arrive, we have: 

si+1  = si + vi *e 
 

Tcross,i+1    = segLength - si+1  / vi+1 
 

Notice that we use the old speed, vi to update the position to its current value, but we use the new 

speed, vi+1 and new position to predict the next crossing time. 

4.3 Web-based Tutorial Learning Process 

 The website can be divided into two main parts. The first part is a basic traffic light 

controller system which allows users to play with DEVS model. The second part is an advanced 

traffic light system modeling which was described in the previous section. 

 The first part is basically the main part of our tutorial. This tutorial is divided into a 

tutorial for an atomic model and a tutorial for a coupled model. As can be seen from figure 4.7, 

the main menu is located on the left hand side of the web page. Users are able to select the type 

of model that they want to play with. On the right hand side of the web page, we gives user an 

overview of a traffic light controller system, DEVS model, external transition function, internal 

transition function, and examples of DEVSJAVA code. 

 



 37

 

Figure 4.7 A tutorial’s main page 

4.3.1 Atomic Model 

 Figure 4.8 shows a tutorial web page for atomic model. There are two input ports; button 

and signal. User is able to adjust the car’s speed as well as frequency for both directions.  By 

select the drop down list and input parameters to text boxes, user can define: 

• initialization function 

• internal transition function 

• external transition function 

• output function 

• confluent function  

 At the beginning, the simulation is running by the default model. Once user clicks on the 

submit button, all parameters defined by the users will be submitted to the server. A new 

 



 38

DEVS object will be created at the backend as well as the simulation will be refresh and 

running representing the new DEVS model. 

 

 

Figure 4.8 A Tutorial web page for Atomic Model 

 At the bottom of the web page, there is a link “View Java Simulation Code” which will 

allow the users to see all of the DEVSJAVA source code that is running behind the scene as can 

be seen in figure 4.9.  

 



 39

 

Figure 4.9 A tutorial web page showing DEVSJAVA code. 

4.3.2 Coupled Model 

 A tutorial for coupled model will be different from atomic model. In order to help user to 

gain an idea how to coupling atomic models together to create a system, our tutorial starts with 

no traffic lights at all.. As can be seen from figure?, all cars are moving across each of the 

intersections without stopping. Users then will be able to add traffic light to the system and 

coupling each of the traffic lights together. For each traffic light, users are able to change car’s 

speed and frequency along with, like atomic model, defining all of the functions that need to 

create each of an atomic model representing one traffic light.  

 The following step explains how to play with our tutorial with an example model: 

 Step 1.  Figure 4.10 shows that the tutorial webpage starts with no traffic light at all. 

  

 



 40

 

Figure 4.10 A Tutorial for Coupled Model 1 

 

 Step 2.  As can be seen in figure 4.11, user adds LIGHT1 and LIGHT3 and couplings 

them together through input port “SIGNAL” and output port “OUT” 

 

Figure 4.11 A Tutorial for Coupled Model 2 

 

 



 41

 Step 3. Then, for each of the traffic lights, user will define all of the functions that need to 

be implemented in order to create each of the atomic models. 

 

Figure 4.12 A Tutorial for Coupled Model 3 

 

 Step 4. Click on the “submit” button and the new simulation begins. 

 

Figure 4.13 A Tutorial for Coupled Model 4 

 



 42

 Step 5. Click on the link “View Java Simulation Code”. User will be able to see all of the 

source code of DEVSJAVA running on the server.  

 

Figure 4.14 A Tutorial for Coupled Model 5 

 

4.4 DEVS Resource 

Useful Links: 

• ACIMS website -  http://www.acims.arizona.edu/ 

• Download DEVSJAVA - http://www.acims.arizona.edu/SOFTWARE/software.shtml 

• DEVS Tools - http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm 

• DEVS Modeling and Simulation Tutorials - 

http://www.acims.arizona.edu/EDUCATION/education.shtml#c.sim 

Papers & Slides: 

• Introduction to DEVS Modeling & Simulation with JAVA, Bernard P. Zeigler, Hessam S. 

Sarjoughian, Arizona Center of Integrative Modeling and Simulation, 2003 - 

 



 43

http://www.acims.arizona.edu/EDUCATION/ECE575Fall03/notes/Manuscript_MSDJ_0

90903.pdf 

• Introduction to Modeling and Simulation with DEVS, Gabriel A. Wainer, Carleton 

University. - http://www.cs.gsu.edu/DEVS/TutorialSpringSim.ppt 

• DEVS Introduction - 

www.acims.arizona.edu/EDUCATION/ECE575Fall03/Notes/Ch1Intro.ppt 

Textbook: 

• Zeigler, B.P., T.G. Kim, and H. Praehofer.: Theory of Modeling and Simulation. 2 ed. 

2000, New York, NY: Academic Press 

• [Zeigler, B.P. and H.S. Sarjoughian. 2003. Introduction to DEVS Modeling & Simulation 

with JAVA: Developing Component-based Simulation Models, Technical Document, 

University of Arizona. 

• Y. K. Cho, X. Hu, and B. P. Zeigler: The RTDEVS/CORBA Environment for 

Simulation-Based Design Of Distributed Real-Time Systems, Simulation: Transactions 

of the Society for Modeling and Simulation International, 2003, Volume 79, Number 4 

• Zeigler, B.P., Y. Moon, D. Kim, J.G. Kim. 1996. DEVSC++: A high performance 

modelling and simulation environment. Proceedings of the 29th Annual Hawaii 

International Conference on System Sciences, 1996 

 

 



 44

5. SYSTEM ARCHITECTURE AND SOFTWARE DESIGN 

 This chapter describes the system architecture and software design. The system 

architecture will include Web Server, Servlet, APPLET , and DEVSJAVA. We also explain how 

web application is implemented and embeded to this tutorial project.  

5.1 System Architecture 
 
 The uniqueness of this tutorial project is the integration of information technology and 

multimedia into education through the development of an interactive tutorial. The tutorial, 

developed to include multimedia modules that are interactive and knowledge-based, teaches 

users about the basic aspects of discrete event system and simulation. The interactive tutorial 

fully utilizes the power of the information and multimedia technology, web application and the 

programming language Java, to enhance students' learning to achieve rich interactivity. The 

tutorial contains an applet to enhance the delivery of information. The tutorial greatly supports 

human-computer collaboration to enhance learning and to satisfy user goals by effectively 

allowing the user to interact with the system in real time like a private tutor. 

 The advent of the World Wide Web (WWW) has provided researchers with a wealth of 

new techniques for sharing, displaying, navigating and indexing information. Portable and highly 

intuitive user interfaces can be easily built using HTML and the Java language.  

 The field of Software Engineering has much to gain from the WWW. Many of the goals 

of the field can be achieved in a better way by utilizing the facilities provided by the web. 

Providing access by the developers, for example, is greatly facilitated by the familiar user 

interface of well-known web browsers. Architectural diagrams of software systems can "come 

 



 45

alive" with the use of clickable maps.  

 
 

Figure 5.1 Web Server J2EE Architecture 

 
 There are a lot of reasons why web technology has undergone such an impressive growth 

in the past few years. One of the main reasons is the fact that developing software for the web is 

a standardized procedure, in that it uses common notations and tools, such as HTML, Java and 

CGI scripts. This in turn makes the software easier to develop and more portable. Also, the 

standardized user interface makes web software easier to access. Other reasons include the fact 

that no installation is required (other than a standard web browser), as well as the hot links 

between documents that make it easier to acquire a better overview of the subject of interest. 

This project benefited from all these factors, which helped in approaching the developers and 

getting feedback on how to improve our display of architectural information.  

 Web applications generate dynamic HTML-based WebPages accessed through a web 

browser. Since WebObjects applications are object-oriented and written in Java, the application 

SERVLET 

Request 
….. 
….. 

 USERS SERVER 

Response 
….. 
….. 

APPLET 

DEVS 

 



 46

generates WebPages by creating instances of web components. A web component is a 

combination of a Java subclass of WOComponent and an HTML template. Our web components 

contain standard HTML elements and components including JavaScript programs, and Java 

to the users (browser). 

 set of 

APIs. Java Servlet can also run on numerous platforms and HTTP servers without change. 

 

Applets. 

 As can be seen from figure 5.1, a user first clicks a link in the browser. Browsers will 

format the request and sends it to the server. Server finds the requested page. In our application 

the request Html page will contain components of Web pages, Java applet, Java Servlet and 

DEVSJAVA objects. Then, server formats the response and sends it back 

Finally, browser gets the HTML and renders it into a display for the user. 

 This tutorial, we use Java Servlet to develop and build our web application. The Java 

Servlet architecture [14] provides an excellent framework for server-side processing. Because 

Java is are written in Java, they can take advantage of Java's memory management and rich

 

 

 

 

 

 

 

 

 

 



 47

 
 

Figure 5.2 Web Application Development Environment 

My Thesis 

Applet Web Tutorial 

 
 

 

Java 
Files 

lib 

web 

classes 

build 

Class 
Files 

web.xml 

thesis web Web 
Content

src 

Html 
Files 

web 

Java 
Files 

Class 
Files 

 



 48

 
 

Figure 5.3 Web Application Deployment Environments 

Tomcat 

webapps 

Web Tutorial 

 
 

 Further, the Servlet architecture solves the major problem of the CGI architecture: a 

Servlet request spawns a lightweight Java thread, while a CGI request will spawn a complete 

HTML 
Files 

lib 

web 

classes 

JScript WEB-INF Files 

web.xm
l 

Applet 
.jar 

Servlet 
Class 
Files 

 



 49

process. Unless the project has a large budget for high-end Java-based application server 

projects, Servlet offers the best technology to develop server-side components and Web-based 

plica

 dynamic view components like HTML files, Java Script 

older is Application-

 must be put immediately under WEB-INF/classes.   

hem. Our objective is to create web-based 

tutorial that integrates an APPLET and DEVSJAVA.  

 

ap tions. 

 Apache Tomcat is the Servlet container that is used in the official Reference 

Implementation for the Java Servlet. It has been used as the web server for our web application. 

Figure 5.2 shows Web Application Development Environment [15]. In fact, there are lots of 

ways we could organize the development directory structure, but this is recommended for small 

– and medium – sized projects. All of the Java code will be under the src directory. The lib folder 

is where we put all JAR files. The directory structure under classes folder is derived when we 

compile our Java classes. All static and

files or JSP files will go to web folder. 

 As can be seen in figure 5.3, Web Application Deployment Environment [15], deploying 

a web app involves both Container-specific rules and requirements of the Servlets specifications. 

The first three folders on top are Tomcat – specific. This part of the directory structure is 

required by Tomcat, and it must be directly inside the Tomcat home directory. Everything below 

this but above web folder is the webapp which is part of the Servlets specification, and will be 

the same regardless of the container vendor. Everything below classes f

specific. This package

5.2 Software Design 

 This part describes the software design specification. We also discuss about the structure 

of our web application and the relationships between t

 



 50

 
 

Figure 5.4 Class Diagram of Web-based Tutorial Software 
 
 

 Figure 5.4 shows a class diagram describing the structure of all the web application.  The 

whole web application system contains six classes; one Servlet class, three applet classes, and 

two DEVS classes. 

 

People 

Car 

Web Tutorial 
 
doGet ( ) 
doPost ( ) 

Graph 
 

panel: GraphPanel 
 
init ( ) 
start ( ) 
stop ( ) 

Node 
 

x 
y 
road 
dx 
dy 
carW 
carL 

GraphPanel 
 

run ( ) 
relax ( ) 
paintNodes ( ) 
paintLights ( ) 
paintRoad ( ) 
update ( ) 
start ( ) 
stop ( ) 

trafLightSys 
 

trafLightSysConstruct ( ) 
getLightArray ( ) 
extractString ( ) 
extractAddModelString ( ) 
extractAddCoupleString ( ) 

trafLight 
 

initialize ( ) 
deltext ( ) 
deltint ( ) 

1 1..*

deltCon ( ) 
out ( ) 

 



 51

 
 

Web Server

WebTutorial 

Figure 5.5 Subsystem Architecture 
 
 
 As can be seen in figure 5.5, the system is composed of three subsystems. The system has 

been implemented in a dynamic web application (Java and Jscript in Active Server Pages on an 

Internet Information Server). The system architecture has been designed with emphasis on a high 

level of flexibility among subsystems. 

 During the system design phase, the main idea is the separation of Presentation (user 

interface) from business logic. 

 

Applet 

Graph GraphPanel 

Node 

trafLightSys trafLight 

Devs 

 



 

 

52

Web Server Subsystem 

• Web Tutorial (Servlet) – is module of Java code that run in a server application and 

service HTTP requests as it implements the javax.servlet.Servlet interface. 

Applet Subsystem 

• Graph and GraphPanel – extend the Applet class. GraphPanel also implements Runnable. 

These applet classes are used to provide interactive simulation to web applications. They 

are executed by web browser and run on client side.  

• Node – is a regular class that is used to represent cars and people. 

DEVS Subsystem 

• trafLight – extends ViewableAtomic and represents one Atomic model in DEVS 

specification. 

• trafLightSys – extends ViewableDigraph and represents a system or a group of atomic 

models in DEVS specification. 

 
 Figure 5.6 is a sequence diagram of our web application describing the relationship and 

interactions among a set of objects. From the user interface (Web Tutorial), once users input 

applicable parameters and click on the “submit” button, an applet (Graph) is initialized and pass 

all parameters to DEVS object (trafLightSys), as well as initialize another applet (GraphPanel).



 

 

53

 
Figure 5.6 Sequence Diagram of Web-based Tutorial Software 

 



 54

 The Node objects are generated from this applet as well as the system DEVS object 

(trafLightSys). Then, the trafLightSys object will create all applicable trafLight objects by 

passing all parameters that are specified by users to the constructor of trafLight class. 

 During the simulation, an applet GraphPanel which implements Runnable will keep an 

applet Graph refresh which causes all nodes moving as well as changing the traffic light’s color 

as a thread is running throughout the simulation.  

 

 
 

Figure 5.7 Relationship between Thread objects and DEVS objects 
 
 
 
 
 
 
 
 
 
 
 

  
LIGHT 

 
OBJECT 

 
 

 

CARS 
 
 
 
 

PEOPLE 
 
 

THREAD DEVS 

light.getPhase ( ); 

 
 

PAINTING 
LIGHTS 

 



 55

 
 

Figure 5.8 Relationship among three Subsystems. 

SERVLET 

 
 

public class trafLight extends ViewableAtomic{ 
 
 public trafLight (p1,p2,p3,p4,…..) { ….; ….} 
} 
public class trafLightSys extends ViewableDigraph { 
  
 initState1; 
 … 
 public trafLightSys( ) { 
  light 1 = new trafLight(initState1,…….) ; 
 } 
} 

public class Graph extend Applet { 
 
 public void init ( ) { 
 
  trafLightSys.initState1 = getParameter (“param1”) ; 
  … 
 } 
} 

DEVS JAVA 

protected void doGet ( ) { 
 
 var1 = request.getParameter (“…”); 
 
 <APPLET CODE = …> 
  <PARAM name = ‘param1’ value = ‘var1'> 
  … 
 </APPLET> 
 
 <form> 
  … 
 </form> 

APPLET 

} 

 



 56

 As all nodes are moving through out the simulation and passing all traffic lights at each 

intersections, light.getPhase ( ) will be called to determine if the node should stop or keep going 

as be illustrated in figure 5.7. Not only this method is used by Node object, all traffic lights will 

also call light.getPhase ( ) to indicate their color (red, green, or flashing red).  

 As can be seen in Figure 5.8, the sample of codes shows us how the parameters are 

passed from the client side user interface which is a Servlet class ‘WebTutorial’ through an 

applet class ‘Graph’ which then pass it  to the DEVS object ‘trafLightSys’.  Finally, the new 

traffic light objects are created. This happens every time user clicks on the ‘submit’ button. 

 

 

 

 



 57

6. CONCLUSION AND FUTURE WORK 

 In this thesis, we introduce a new initiative to provide a suite of online tools for learning 

DEVS model. This project consists of HTML, JavaScript, Servlet, DEVSJAVA, and Java Applet 

which is used for interactive animation and simulation. This project is specifically concerned 

with the teaching and learning process in DEVS model and this program of work has addressed 

some of these problems through the development of interesting and appealing interactive web-

based software to stimulate and facilitate student learning in DEVS model. Another strategy 

known as contextualized learning has been integrated to the tutorial in order to increase 

motivation to learn. With this strategy, learners learn more effectively by integrating new 

knowledge/skills into already existing knowledge. As a result, a new form of teaching, 

contextualized web-based tutorial is developed to help students gain more clearly understanding 

of the DEVS formalism. We exemplify the DEVS formalism atomic and coupled models using 

simple traffic light controller system. We implement the traffic simulation system based on the 

DEVS theory. Our model of intersection traffic is a simplified version of real-world intersection 

traffic. This will help students to gain more and more clearly understanding of the DEVS 

formalism by comparing to the real world system. 

 There are many issues remaining for future work that should be addressed, and many 

improvements are needed to increase quality of this tutorial. 

1) The implementation of DEVSJAVA Webstart, a web-enabled DEVSJAVA simulation 

environment: This will definitely help users to gain more understanding by comparing 

SimView and the simulation interface. Even though, users are able to easily see how the 

 



 58

2) state is changed, and how to inject an input but they are unable to see the remaining time 

and the message passing between models by looking at the simulation interface.  

3) Have two-stage learning for the Atomic model. First stage is the basic ones. Second stage 

will learn two more things which are elapse time (e) and remaining time sigma (w) in 

external transition function.  

4) Have an animated view of state-time, elapse time-time, input-time, and output-time. 

5) Have an analysis window to show the statistics of the simulation

 



 59

REFERENCES 

[1] Petri Nets World (2005). Retrieved October 10th, 2007, from http://www.informatik.uni-

hamburg.de/TGI/PetriNets/ 

[2] Wikipedia, “Finite State Machine” (2007). Retrieved October 10th, 2007, from 

http://en.wikipedia.org/wiki/Finite_state_machine 

[3] Wil van der Aalst, V. Almering, and H. Wijbenga (2005). Interactive Tutorials on Petri 

Nets. Retrieved October 4th, 2007, from http://www.informatik.uni-

hamburg.de/TGI/PetriNets/introductions/aalst/ 

[4] Volker Guth  (2000). Petri Net Applet. Retrieved October 5th, 2007, from 

http://is.tm.tue.nl/staff/wvdaalst/pn_applet/pn_applet.html 

[5] Matt Chapman (1996).Finite State Machine Explorer. Retrieved September 15th, 2007, 

from http://www.belgarath.org/java/fsme.html 

[6] Carnegie Melon University (1999). The Alice software programming Tutorial. Retrieved 

September 7th, 2007, from http://www.alice.org/ 

[7] University of California (2007). SimSE Online: an educational software engineering 

simulation environment. Retrieved September 27th, 2007, from 

http://www.ics.uci.edu/~emilyo/SimSE/ 

[8] Zeigler, B.P. and H.S. Sarjoughian (2005). Introduction to DEVS Modeling & Simulation 

with JAVA: Developing Component-based Simulation Models, Technical Document, 

University of Arizona. 

[9]  Zeigler, B.P., T.G. Kim, and H. Praehofer (2000). Theory of Modeling and Simulation. 2 

ed. New York, NY: Academic Press

 



 60

  [10]      Y. K. Cho, X. Hu, and B. P. Zeigler (2003). The RTDEVS/CORBA Environment 

for       Simulation-Based Design Of Distributed Real-Time Systems, Simulation: 

Transactions of the Society for Modeling and Simulation International Volume 

79, Number 4 

[11] Zeigler, B.P., Y. Moon, D. Kim, J.G. Kim. (1996). DEVSC++: A high 

performance modeling and simulation environment. Proceedings of the 29th 

Annual Hawaii International Conference on System Sciences, 1996.9 

[12]     Jeff Mather (2003). The DEVSJAVA Simulation Viewer: A modular GUI that 

visualizes the structure and behavior of hierarchical DEVS models.  

[13] B. P. Zeigler (2003). DEVS Continuous Systems.  Retrieved September 27th, 

2007, from 

http://www.acims.arizona.edu/EDUCATION/ECE575Fall03/notes/DEVSContinu

ousSys.doc 

[14] Servlet Essentials (2005). Retrieved September 27th, 2007, from 

http://www.novocode.com/doc/servlet-essentials/chapter1.html 

[15] B. Basham, K. Sierra, B. Bates (2004). Head First Servlets & JSP, O’Reilly 

 


