Received: 3 November 2021

Revised: 22 September 2022

W) Check for updates

Accepted: 18 October 2022

DOI: 10.1002/spe.3168

RESEARCH ARTICLE

WILEY

xDEVS: A toolkit for interoperable modeling and simulation
of formal discrete event systems

José L. Risco-Martin!?

Patricia Arroba?*

'Department of Computer Science and
Automation, Complutense University,
Madrid, Spain

2Center for Computational Simulation,
Universidad Politécnica de Madrid,
Madrid, Spain

3The MITRE Corporation, McLean,
Virginia, USA

“Integrated Systems Laboratory,
Universidad Politécnica de Madrid,
Madrid, Spain

5Advanced Real-Time Simulation
Laboratory, Carleton University, Ontario,
Canada

Correspondence

José L. Risco-Martin, Department of
Computer Architecture and Automation,
Complutense University, Madrid Spain.
Email: jlrisco@ucm.es

| Saurabh Mittal? | Kevin Henares?!

| Roman Cardenas*> |

Abstract

Employing Modeling and Simulation (M&S) extensively to analyze and develop
complex systems is the norm today. The use of robust M&S formalisms and
rigorous methodologies is essential to deal with complexity. Among them, the
Discrete Event System Specification (DEVS) provides a solid framework for
modeling structural, behavior and information aspects of any complex system.
This gives several advantages to analyze and design complex systems: com-
pleteness, verifiability, extensibility, and maintainability. DEVS formalism has
been implemented in many programming languages and executable on multiple
platforms. In this paper, we describe the features of an M&S framework called
xDEVS that builds upon the prevalent DEVS Application Programming Inter-
face (API) for both modeling and simulation layers, promoting interoperability
between the existing platform-specific (C++, Java, Python) DEVS implementa-
tions. Additionally, the framework can simulate the same model using sequen-
tial, parallel, or distributed architectures. The M&S engine has been reinforced
with several strategies to improve performance, as well as tools to perform model
analysis and verification. Finally, xDEVS also facilitates systems engineers to
apply the vision of model-based systems engineering (MBSE), model-driven
engineering (MDE), and model-driven systems engineering (MDSE) paradigms.
We highlight the features of the proposed XxDEVS framework with multiple
examples and case studies illustrating the rigor and diversity of application
domains it can support.

KEYWORDS

DEVS formalism, discrete events, modeling and simulation tools, parallel simulation, simulation
performance

Abbreviations: API, Application Programming Interface; DEVS, Discrete Event System Specification; DEVSML, DEVS Modeling Language;
DSL, Domain Specific Language; DUNIP DEVS, Unified Process.; M&S, Modeling and Simulation; MBSE, Model-Based Systems Engineering;
MDE, Model-Driven Engineering; MDSE, Model-Driven Systems Engineering; PSM, Platform Specific Model; V&V, Verification & Validation .

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.

© 2022 The Authors. Software: Practice and Experience published by John Wiley & Sons Ltd.

748 wileyonlinelibrary.com/journal/spe

Softw: Pract Exper. 2023;53:748-789.

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

https://orcid.org/0000-0002-3127-6507
https://orcid.org/0000-0002-2637-5316
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/SPE
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.3168&domain=pdf&date_stamp=2022-11-24

RISCO-MARTIN ET AL. 749
WILE Y—I—

1 | INTRODUCTION

Over the last few decades, Modeling and Simulation (M&S) techniques have been used to analyze and develop complex
systems in various application fields. Several approaches have been developed, including formalisms as Petri Nets, Timed
Automata,! and Discrete Event System Specification (DEVS) formalism. DEVS is a general formalism for discrete event
system modeling based on mathematical Set theory.? The DEVS formalism provides a framework for modeling struc-
tural, behavioral and information aspects of any complex system. This gives several advantages to analyze and design
complex systems: completeness, verifiability, extensibility, and maintainability. Once a system is described in terms of the
DEVS theory, it can be easily implemented in a computational environment across multiple platforms. The Classic DEVS
formalism was first published in 1976, followed by other variants like Discrete Event and Differential Equation System
Specification (DEV&DESS, 1990), Dynamic Structure DEVS (DynDEVS, 1995), Parallel DEVS (PDEVS, 1996), General-
ized DEVS (GDEVS, 2001), or Hybrid DEVS (XDEVS, 2022).23 Currently, PDEVS is the prevalent DEVS, implemented
in numerous libraries (e.g., C++, Java, Python). In the following, unless it is explicitly noted, the use of DEVS implies
PDEVS.

The DEVS formalism was invented to bring coherence and unify the field of discrete-event M&S and Systems the-
ory, using a rigorous mathematics and a systems theoretical framework. Despite this underlying coherence and unity,
DEVS remains strongly aligned with the associated platform-dependent simulation engine, implemented using pro-
gramming languages like C++, Python, Java, and so forth. There have been efforts to develop DEVS Domain Specific
Language (DSLs) such as DEVS Modeling Language (DEVSML) that offer promise in bringing focus back to modular
complex systems engineering and illustrate how a DEVS platform independent model could be made executable with dif-
ferent platform specific model implementations.*> DEVSML is by far the only DEVS Domain Specific Language (DSL)
(implemented in DEVSML Studio)® that integrates more than one DEVS implementations. There exist many libraries
and tools within the M&S community that express DEVS models such as aDEVS,” Cadmium,®® PyPDEVS,!* DEVS-
JAVA,'! MS4Me,'? VLE!® and so forth. However, this variety presents a serious difficulty in sharing models, especially
for model reuse and model composition for large complex systems M&S efforts involving paradigms like Model-Based
Systems Engineering (MBSE), Model-Driven Engineering (MDE), and Model-Driven Systems Engineering (MDSE).*!#
As a result, a widely accepted framework is more necessary than ever. Not only to guarantee a universal specification
of models and simulators in a computational environment but also to allow the system designer to address fundamen-
tal issues such as verification, validation, scalability, reliability and so forth, across a family of models developed using
DEVS paradigm.

To tackle this issue, we formally introduce XDEVS, a cross-platform, object-oriented, M&S framework developed at the
Department of Computer Architecture and Automation at the Complutense University of Madrid. The motivation behind
xDEVS framework is to unify the existing DEVS M&S frameworks, and provide optimal performance and deployment of
models in parallel and distributed computing architectures. Although xDEVS started as a Java implementation in 2014
and has been integrated with DEVSML Studio, we have progressively released several upgrades, which brings us to the
following general contributions withing this article:

1. Consolidation of all the recent advances like parallel and distributed simulation, integration of a platform-independent
specification language, called DEVSML,® flattening models and so forth.

2. Incorporation of three different implementations with equivalent DEVS interfaces, the original Java implementation
(xDEVS/Java), a C++ implementation (XDEVS/C++), and a Python implementation (xDEVS/Python); Addition-
ally, xDEVS incorporates wrappers for integrating DEVS models implemented with other simulation engines, which
facilitates DEVS-to-DEVS and DEVS-to-non-DEVS interoperability;

3. Addition of a constraints definition syntax that allows checking arithmetic relations among the port outputs
of a DEVS model, and a unit testing tool that allows obtaining state trajectories easily, facilitating model
verification.

4. Utilities to facilitate the deployment of MBSE, MDE, and MDSE approaches for building executable architectures.

As technical contributions, we aim to offer a common Application Programming Interface (API) for developing DEVS
models in several of the most popular programming languages and provide a renewed push to DEVS Standardization
efforts within the DEVS and M&S as a Service (MSaaS) communities. The development of common API is implemented
through various wrappers. The incorporation of wrappers allow xDEVS to interact with atomic components defined

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

750 RISCO-MARTIN ET AL.
WILEY

TABLE 1 Comparison between some characteristics of several well-known DEVS-based simulation engine Application Programming
Interface (APIs)

aDEVS Cadmium PyPDEVS DEVSJAVA MS4Me VLE xDEVS
Parallel DEVS formalism v v v 4 v v v
DEVS wrappers v 4 4 v
Model flattening v v v 4
Sequential simulation v v v v v v 4
Real-time simulation v v 4 4 4
Parallel simulation /2 4 /2 v
Distributed simulation s v s v
Profiling of the simulation v
Unit testing/debugging v v v

In these cases, the original model requires some extra modifications.

for other simulators (developed in C++, Java, or Python). Further, the XDEVS distributed architecture allows us to
communicate seamlessly within the three xXDEVS platform-specific simulation engines: xDEVS/C++, xDEVS/Java, and
xDEVS/Python. This provides full interoperability between different platform-specific DEVS M&S engines. This interop-
erability effort alleviates the heterogeneity of DEVS implementations and provides a way to compose and execute large
scale models developed in different platform-specific DEVS-based implementations. Around this integral DEVS M&S
engine, we provide additional utilities to improve performance and alleviate the maintainability and scalability for creat-
ing complex models. Table 1 summarizes the main contributions related to API functionalities. The feature list in the first
column is a selective list focusing on the advanced simulation and API capabilities rather than user-centric capabilities
like Graphical User Interfaces and so forth.

xDEVS is available under the GNU General Public License v3.0 license and provides support for specifying and
running classic, parallel, real-time, and distributed DEVS simulations.

To show the complete xXDEVS M&S framework, the paper is organized as follows. Section 2 offers details about the
DEVS formalism. In Section 3, a detailed explanation of the architecture of the xXDEVS M&S framework is provided, as well
as all the features that facilitates the conception, deployment, verification and validation of discrete event system models.
Section 4 describes the benefits of xDEVS in supporting the development of a standardized M&S framework. Section 5
shows a performance comparison of the different xDEVS platform-specific implementations. Several case studies using
the xDEVS framework from diverse application domains are presented in Section 6. Finally, we present some discussion
in Section 7 and conclusions in Section 8.

2 | THE DEVS FORMALISM

DEVS is a general formalism for specifying discrete event complex dynamical systems and is based on mathematical
set theory. As stated earlier, we will be using Parallel DEVS implementation when we refer DEVS in this paper (see
Reference 2, section 4.3). DEVS enables the behavior representation of a system by three mathematical sets and five
characteristic functions: input set (X), output set (Y), state set (S), external transition function (Sex), internal transition
function (8iyt), confluent function (6¢0,), output function (1), and time advance function (ta). It enables the structure
representation of a system by explicit coupling and containment relationships. There are two types of DEVS models:
atomic and coupled. The behavioral aspect of DEVS formalism is handled by the Atomic model and the structural aspect
of a DEVS formalism is handled by the Coupled models. The overall complex system’s behavior emerges when a coupled
model is simulated.

Atomic models are directly expressed through the three mathematical sets and five characteristic functions as spec-
ified above. Atomic DEVS models process input events based on their model’s current state and qualifying conditions,
generates output events and transition to the next state. An atomic model is defined by Equation 1:

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

RISCO-MARTIN ET AL. 751

A= <X, Y7 S, 5ext7 5int7 5c0n’ /1, ta>’ (1)
where:

« X is the set of input events, described in terms of pairs port-value: {p € IPorts,v € Xp} is the set of input ports and
values.

« Y is the set of outputs, also described in terms of pairs port-value: { p € OPorts,v € Yp} is the set of output ports and
values.

« Sisthe set of sequential states.

¢ Bext : QX X? — Sisthe external transition function. It is automatically executed when an external event arrives to one
of the input ports, changing the current state if needed.

- Q= (s,e)ls € S,0 < e < ta(s) is the total state set, where e is the time elapsed since the last transition.
- XP? is the set of bags over elements in X.

e Sint : S — Sis the internal transition function. It is executed right after the output (4) function and is used to change
the state S.

¢ Scon : Qx X — Sis the confluent function, subject to dcon(s, ta(s), @) = in(s). This transition decides the next state in
cases of collision between external and internal events, that is, an external event is received and elapsed time equals
time-advance. Typically, 6con(s, ta(s),X) = Sext(int(s), 0, X).

« A :S— Ybisthe output function. Y? is the set of bags over elements in Y. When the time elapsed since the last output
function is equal to ta(s), then A is automatically executed.

o ta(s) : S— ERg U oo is the time advance function.

Coupled models are the aggregation/composition of two or more atomic and/or coupled models connected by explicit
couplings. The formal definition of a coupled model is described in Equation (2):

M= (X,Y,C,EIC,EOC,IC), 2)
where:

« X is the set of inputs described in terms of pairs port-value: { p € IPorts,v € Xp}.
« Y is the set of outputs, also described in terms of pairs port-value: { p € OPorts,v € YP}.

« Cis a set of DEVS component models (atomic or coupled). Note that C makes this definition recursive. The original
DEVS formalism uses two sets {D, Mycp} to include atomic and coupled components. We use this equivalent notation
because it directly corresponds to the software implementation detailed below.

« EIC is the external input coupling relation, from external inputs of M to component inputs of C.
« EOC is the external output coupling relation, from component outputs of C to external outputs of M.
« IC is the internal coupling relation, from component outputs of ¢; € C to component outputs of ¢; € C, provided that

i #].

Given the recursive definition of M, a coupled model can itself be a part of a component in a larger coupled model
system giving rise to a hierarchical DEVS model construction, as Figure 1 shows.

3 | XDEVS ARCHITECTURE

xDEVS has its basis in defining a universal DEVS API for both modeling and the simulation levels. The API is realized
in three widely used object-oriented programming languages: C++, Java, and Python. The repository is made available
through an API project at Reference 15, where the project has three principal branches (named C++, Java, and Python).

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

752 RISCO-MARTIN ET AL.

Coupled Model Coupled Model

Atomic
Model

Atomic
Model

FIGURE 1 Hierarchical DEVS model with atomic and coupled components and associated couplings

This framework allows the specification and execution of DEVS models. In the following sections, we describe the xDEVS
modeling and simulation application programming interface (APIs) and describe its main features, showing some useful
examples.

3.1 | Application programming interface

xDEVS, based on the DEVS formalism, has a clear separation between the modeling and simulation layers. A class
diagram showing the relationship between these modeling and simulation layers is shown in Figure 2.

DEVS models in XDEVS are created using two main components. Atomic components define the behavior of the
system. Coupled components contains other Atomic and Coupled components, creating a model hierarchy. Both of
them have Ports, that represent input/output information points. To link two components of the model a Coupling
can be created, selecting the source and destination Ports. The information of Coupl ings is contained in the Coupled
elements that wrap the ports to be linked.

The simulation layer is based on the concept of the Abstract Simulator. Following this concept, we divide the simula-
tion entities in Simulators and Coordinators both inheriting from the Abstract Simulator. A Simulator
component instance maps to an Atomic component. Each Coordinator component instance synchronizes with the
corresponding children Simulators and Coordinators, to mirror the hierarchical Coupled model. This results in
an equivalent hierarchy to the one described for the modeling layer.

3.1.1 | Modeling layer

This section provides some implementation examples in the different xXDEVS branches. It presents some basic compo-
nents implementations, both atomic and coupled, and details the salient features of various Application Programming
Interface (APIs).

Component
This is the base component class that creates a black-box with a name, inports and outports. The API is shown" in Listing 1.

interface IComponent {
void initialize() ;
void exit () ;
void addInPort (Port port) ;
void addOutPort (Port port) ;

Listing 1: xDEVS Component API

"For simplicity, getters and setters are omitted.

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL.

Simulation
Clock

time: double

Parallel
Coordinator

Distributed
Coordinator

numThreads: int

Profile
Coordinator

AbstractSimulator

tL: double
tN: double
clock: SimulationClock

+ initialize(): void
+ exit(): void

+ ta(): void

+ lambda(): void
+ deltfen(): void
+ clear(): void

Coordinator

Simulator

RealTime
Coordinator

simulators: AbstractSimulator [*]

model: Coupled

model: Atomic

\
D

timeScale: double

+ buildHierarchy(): void

+ simInject(Port, Object): void

+ simulate(long): void
+ simulate(double): void

Port<E>

name: String
parent: Component
values: E [*]

Coupling

Coupled

Atomic

src: Port
dst: Port

+ addValue(E): void

+ addValues(List<E>): void
+ clear(): void

+ getSingleValue(): E

+ getValues(): List<E>

FIGURE 2

components: Component [*]

eic: Coupling [*]
eoc: Coupling [*]
#ic: Coupling [*]

phase: String
sigma: double

+ addComponent(Component): void
+ addCoupling(Port, Port): void

+ flatten(): void

+ deltint(): void

+ deltext(double): void
+ deltcon(double): void
+ lambda(): void

+ ta(): double

Class diagram of the xDEVS architecture

+ passivate(): void
+ activate(): void

+ holdIn(String, double): void

Component

name: String

parent: Component [0..1]
inPorts: Port [*]

outPorts: Port [*]

+ initialize(): void

+ exit(): void

+ addInPort(Port): void
+ addOutPort(Port): void

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

754 RISCO-MARTIN ET AL.
WILEY

The main member functions included in this class are the following:

Initialization function (initialize): this is executed when the component is initialized, right before the simulation begins.
Finalization function (exit): this is executed when the simulation is finished, to release computing resources.

Finally, addInPort and addOutPort are auxiliary functions to add input and output ports, respectively.

Atomic components

Recall that the behavior of the DEVS models is encapsulated in the atomic components. Each atomic model has a
phase, which is a semantic label capturing the current state of the component, and a sigma, which is the duration
of time remaining in the current phase. The atomic components base their operation on events. An event can be a
time-based event, a variable update input or an external input event. The response to each of these events is defined by
implementing specific abstract methods of the Atomic class. The main events controlled by these constructs are the
following:

External event (deltext): it is activated when one or more messages arrive at any of the input ports of an atomic
component.

Internal event (deltint): it is triggered after the lifetime of the present phase has been consumed (specified by sigma).

Confluent event (deltcon): it is triggered when both the internal and external events are scheduled for a specific sim-
ulation time instant. The corresponding method is already implemented with the most common expected behavior
(execute the internal event method first, and then the external event method). Hence, it only has to be implemented
when an alternative behavior is expected, for example, selection of external input first then the internal event or
ignoring an external event altogether.

Output function (lambda): it is activated before every internal and confluent state transition. All the output values have
to be sent through the output ports in this function.

Time advance function (ta): it is executed internally when the model prescribes a time-to-live for every phase. It returns
the sigma of a phase. Experienced DEVS developers mostly do not implement this as they tend to set the sigma based
on specific events in the deltint, deltext, or deltcon functions.

In addition, there are some utility functions that are non-essential for DEVS formalism but provide ease of use of basic

DEVS functionality:

holdIn(String phase, double sigma): This method holds the model in the provided phase name for sigma duration.
passivate(): This methods holds the phase as passive for sigma = infinity duration.

activate(): This method holds the phase as active for sigma = 0 duration.

The xDEVS modeling API is shown in Listing 2.

interface IAtomic extends IComponent {
// DEVS methods:
void deltint () ;
void deltext (double e);
void deltcon (double e);
void lambda () ;
double tal() ;

// Utility methods

void holdIn(String phase, double sigma) ;
void passivate() ;

void activate () ;

Listing 2: xDEVS Component API

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

RISCO-MARTIN ET AL. 755
WILE Y—I—

Coupled components

Coupled components encapsulate other atomic and coupled components and specify the couplings among them. This
grouping enables development of a hierarchical system. The API for Coupled components deals with developing the
structure of the hierarchical system. It is shown in Listing 3.

interface ICoupled extends IComponent {
void addComponent (IComponent component) ;
void addCoupling (Port outport, Port inport) ;
void flatten() ;

Listing 3: xDEVS Modeling Coupled API

The modeling API for atomic and coupled components described above is implemented in three languages (Java,
C++, and Python) in the current xDEVS distribution and an implementation example is available in Appendix A.

Realizing the DEVS formalism with the xDEV'S API
Given the object-oriented nature of the xDEVS API, there are some structural constructs that are adopted to implement
the DEVS formalism within the Object-oriented paradigm. The class diagram depicted in Figure 2:

« The atomic state set S is defined in the form of phase names and object attributes. The phase names populate the state
set but the quantification of state is done through manipulation of the object attribute variables. As a result, the internal
transition function for instance, does not need arguments: 8in¢(), and not in(S) as in the DEVS formalism. The object
attributes are updated in 6in¢() or Sex() functions per modeler’s design, in addition to tracking the phase.

« Input and output events are directly stored at ports. Each Component object, Coupled or Atomic, has a set of input
and output ports as class attributes, and each port has a linked list of values . The set of values stored at all the input
ports represent the X? DEVS bag, whereas the set of values at the output ports represent the Y? DEVS bag that contains
values without any order of arrival. Thus, to send a value through the output function, the user only has to add a
message value to the corresponding output port; consequently, as the state is intrinsic to the atomic class, the output
function does not need to receive arguments nor return values, it is A() instead of Y « A(S). Equivalently, the external
transition function does not have to receive the set of inputs, or even receive/return the state, according to the previous
point. This is accomplished with reading each input port and check whether there are events stored at them or not, i.e.,
XDEVS uses 6cx;(e) instead of S « 8 (S, e, XP). This is a very important aspect of DEVS formalism that encapsulates
complex state of a modular atomic component as a black box whose behavior is defined strictly through I/O message
sets and the time intervals that are needed to transform input message temporal behavior into output message temporal
behavior. Refer to Zeigler et al.? for a more elaborate description.

« As can be seen in Figure 2, ports include a reference back to their parent components (coupled or atomic). This way,
when defining a coupling relation, only the ports are needed to build the connection (see the addCoupling func-
tion in Listing 3. This is more a design feature rather than a formalism specification and assumes implementation of
unique port names. Some DEVS implementations (e.g., DEVSJAVA) include the associated DEVS component with
the port name.

« There exist two non-DEVS functions: initialize and exit. These functions are executed right before the simula-
tion begins and right after the simulation ends, respectively. Both have been designed to perform some computational
tasks that are outside the DEVS formalism, like opening files before the simulation, closing files after the simulation,
creation and destruction of threads or containers and so forth.

3.1.2 | Simulation layer

This layer defines all the simulation entities necessary to simulate a DEVS model composed of atomic and coupled com-
ponents. Although the modeling and simulation layers communicate with each other at simulation execution, it is worth

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

756 RISCO-MARTIN ET AL.
WILEY

noting that they are completely independent and a categorical feature of any DEVS-compliant architecture. In this way,
the simulation entities only keep references of the models for exchanging the appropriate temporal events and propa-
gate the outputs of the components through the couplings of the model. This categorical separation provides horizontal
scaling of modeling and simulation layers.

The simulation layer is based on the Abstract Simulator defined by Zeigler and Chow.'® It contains two types
of entities: Simulator and Coordinator. A Simulator is attached to an atomic model and is in charge of con-
trolling the atomic model’s behavior through the modeling API. The coordinators are attached to coupled models
and control the management of all their component child simulators (and coordinators in a hierarchical coupled
model).

The Abstract Simulator API is shown in Listing 4. This corresponds to the DEVS atomic model and is responsible for
atomic model’s dynamic behavior.

interface ISimulator ({
void initialize() ;
void exit () ;
void tal() ;
void lambda () ;
void deltfen() ;
void clear () ;

Listing 4: Abstract DEVS Simulator API

Accordingly, the Coordinator API deals with executing a DEVS coupled model over time. The Coordinator API holds
a reference to a hierarchical coupled model and their associated simulators or any coordinators per the hierarchy. The
API is shown in Listing 6.

interface ICoordinator extends ISimulator ({
void buildHierarchy () ;
void simInject (Port port, Object value) ;
void simulate(long iterations) ;
void simulate (double time) ;

Listing 5: DEVS Coordinator API

Based on different use cases for simulation deployment, xXDEVS includes different types of coordinators:

« Coordinator: the default coordinator, runs sequential simulations in virtual time.

« Parallel coordinator (CoordinatorParallel in Figure 2): This coordinator behaves as the sequential coordinator but
uses multiple concurrent threads and is apt for multi-core machines, which are ubiquitous today. This coordinator
distributes the component simulators to different cores on the same local computer for concurrent execution.

« Real-time coordinator (RTCentralCoordinator in Figure 2): This coordinator synchronizes with the operating system
clock to run the simulators in wall-clock time.

« Distributed coordinator (CoordinatorDistributed in Figure 2): this coordinator deploys component simulators on
machines separated over a physical network, across Local Area Network (LAN) or Wide Area Network (WAN) such as
World Wide Web.

« Profile coordinator (CoordinatorProfile in Figure 2): This coordinator can be registered during a simulation session and
saves all the metrics in an external file. Metrics include the number of events triggered, number of times each DEVS
function is executed and time consumed.

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

RISCO-MARTIN ET AL. W] LEY 757
TABLE 2 Features included in the xXDEVS simulation engine
xDEVS/C++ xDEVS/Java xDEVS/Python

Parallel DEVS formalism 4 v 4
DEVS wrappers v v v
Model flattening v v v
Sequential simulation v v v
Real-time simulation v v v
Distributed simulation 4 4 4
Parallel simulation 4 v

Profiling of the simulation 4 4 v/
Memory-shared ports'® v
Constraints definition!’ v v/
Unit testing? v

A typical execution of a DEVS coupled model by the Coordinator API as implemented in Java, C++ and Python is
provided in Appendix B.

3.2 | Main features

The latest XDEVS distribution implements the above application programming interface (APIs) in Java, C++ and
Python. Table 2 shows all the available features. When a new feature is envisioned and scheduled for develop-
ment, usually triggered by different projects requirements, it is first implemented and tested in a particular lan-
guage and then progressively translated to all the xDEVS branches. The API for enhanced utility is accordingly
updated.

As stated earlier, the simulation engine follows the parallel DEVS formalism. Each branch implements wrappers for
different non-xDEVS frameworks. This feature allows us to perform a heterogeneous composition of models inside the
same programming language, for example, with aDEVS, DEVSJAVA, or PyPDEVS. To improve performance, and to easily
deploy distributed simulations, models are flattened by default.

The three branches offer sequential, real-time, and distributed simulation executions. Distributed simulations allow
us to compose simulations combining models of the different branches using the Wrapper design pattern and deploy them
over a computer network. Consequently, the DEVS-to-DEVS interoperability paradigm is fully addressed with respect
to bridging the simulation libraries of aDEVS, DEVSJAVA and PyPDEVS. The parallel simulation is not currently possi-
ble in XDEVS/Python. Additionally, xDEVS allows the profiling of simulations,'” registering the wall-clock time used by
all the DEVS characteristic functions. xDEVS/Python also implements a memory-shared mechanism to improve perfor-
mance in propagating messages, which is a solution to a well-recognized DEVS simulation engine (DSE) performance
bottleneck.

To deal with error, the model and the simulator must comply with a Verification & Validation (V&V) process. The
verification part consists of checking if a simulator is in error, while the validation phase consists of checking if a
model is in error.? Verification must establish that the simulation relation? holds between a simulator and a model.
There are two general approaches to do verification: (i) formal proofs or (ii) extensive testing. When using simulation
engines, the most common verification method is extensive testing. On the other hand, validation must test a model
for validity through modeling relation.> To fulfill this process, input trajectories are typically generated on both the
source system and the model.” Then, the corresponding output trajectories should be equal, according to some terms
of equivalence. To facilitate these two processes, XDEVS includes two utilities: a Unit testing API and a Constraints
checker.

fIn DEVS, this is typically performed following the experimental frame scheme.

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

758 RISCO-MARTIN ET AL.
WILEY

Finally, xDEVS also provides support for MBSE development through a graphical tool called DEVSML Studio. xDEVS
allows the user to execute the model with the advancement of software engineering practices.
In the following, we describe all these features.

3.2.1 | Wrappers

Adding compatibility between different DEVS simulation engines, and more specifically, between DEVS models devel-
oped in the same programming language is the first step to designing a DEVS M&S interoperable framework. Thus,
xDEVS incorporates adapters to interact with other simulation engines.

xDEVS version 1.0.0 includes wrappers for aDEVS 3.3 (in xXDEVS/C++), DEVSJAVA 3 (in xXDEVS/Java) and PyPDEVS
2.4.1 (in xDEVS/Python). The design of the other adapters follows the same pattern. As can be seen in Appendix C, adding
more wrappers is a straightforward process. The target model is added as an attribute, and each DEVS function elaborates
a simple conversion. Using these adapters, xDEVS models can be easily combined with external DEVS libraries, especially
in the C++, Java and Python, as shown in Section 4.

Another important wrapper is Coupled2Atomic, which represents an abstraction of a coupled model with an
atomic model. Due to closure under coupling property of the DEVS formalism (borrowed from Systems theoretical
closure under composition principle), we have an abstraction mechanism by which a coupled model can be executed
like an atomic model. In traditional DEVS hierarchical modeling, a coupled model is merely a container and has
corresponding coupled-simulators (see Figure 3A). Using the closure under coupling property, it can be transformed
into an atomic model with the lowest level atomic simulator (see Figure 3B). This has been accomplished by imple-
menting this adapter, originally proposed in Reference 21. The Coupled2Atomic wrapper takes special relevance in
distributed simulations: when a model is split, and each part is simulated in different machines, a whole part can be
a coupled model. Without this wrapper, partitioning a hierarchical model for distributed deployment is a challenge.
This wrapper allows simulating the whole coupled model hierarchy as a singly atomic model deployed on a specific
machine.

= [

Coupled Model

[Coupled Model] [Atomic Model] [Coordinator] [Simulator]
[Atomic Model] [Atomic Model] [Simulator] [Simulator]
(A)

Coupled Model :> Coordinator

[Atomic Model] ‘ Simulator ’

R

Simulator]

[Atomic Model] [Atomic Model]

'
'
'
'
]
]
'
'
'
'
'
'
'
'
'

1

N Coupled2Atomic ‘

(B)

FIGURE 3 Hierarchical simulator assignment with Coupled2Atomic adapter. (A) Hierarchical simulator assignment for a hierarchical
model, (B) hierarchy of simulators and coordinators

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

RISCO-MARTIN ET AL. 759
WILE Y—I—

Finally, the mechanism of building wrappers is also a powerful tool to provide interoperability between DEVS
and non-DEVS models. For example combining xDEVS/Java models with MATLAB models, was demonstrated
in Reference 22. We do not address this issue formally because there is no standard mechanism to communicate a
DEVS wrapper with a non-DEVS model. The structure of the wrapper completely depends on the implementation of the
non-DEVS model.

3.2.2 | Models flattening

Model flattening is often used to simplify the models for simulation efficiency and reduce the overheads introduced
by message passing between coordinators in complex models with deep hierarchies. This technique takes advantage
of closure under coupling®® to generate an equivalent single level model from the original model. Hence, the interme-
diate coupled models are eliminated, and the message passing happens directly between all the atomic models. This
algorithm has been incorporated in all the xXDEVS branches, being able to perform this transformation when specifying
the simulation root coordinator.

3.2.3 | Sequential, real-time, parallel, and distributed simulations

xDEVS allows model simulation using a traditional and sequential process (Coordinator class), a real-time simula-
tion (RTCentralCoordinator class), multi-threading simulation (CoordinatorParallel class) and distributed
simulation (CoordinatorDistributed class). Due to the categorical separation of the modeling and simulator Appli-
cation Programming Interface (APIs), the deployment of a particular simulator on a specific computational architecture
is transparent to the underlying model implementation, that is, the model behavior and its specification is unaffected by
the underlying computational execution of the simulation engine. This is one of the major advantages of DEVS formalism
that provides mechanisms for simulation engine verification independent of the model specifications. In the sequential,
real-time, and parallel approaches, the Coordinator class is executed in a local main thread on the local machine. In
the distributed simulation, coordinators and simulators must be launched as independent processes that communicate
through sockets. An example on invoking these different coordinators for the same model is shown in Appendix D in
sufficient detail.

Technical details on how to deploy a distributed simulation are quite complex, out of the scope of this paper, since it
requires the deployment of virtual machines, containers, or any distributed infrastructures using complex scripts. How-
ever, for testing purposes, a distributed simulation can be launched into a single computer, running one distributed
coordinator with the configuration file, and two simulators in different terminals with the configuration file as well, and
test a distributed simulation in a single machine, like the following code excerpt shows (Listing 6):

Terminal 1

java -cp xdevs.core.simulation.distributed.CoordinatorDistributed efp.xml

Terminal 2

java -cp xdevs.core.simulation.distributed.SimulatorDistributed efp.xml ef

Terminal 3

java -cp xdevs.core.simulation.distributed.SimulatorDistributed efp.xml processor

Uy Ur r vr r

Listing 6: Execution of a distributed simulation in a single computer

We have demonstrated a containerized deployment of distributed XDEVS in our earlier work® and cloud deployment
of parallel and distributed XDEVS in our most recent work.?*
3.2.4 | Profiling of the simulation

xDEVS provides a special coordinator, named CoordinatorProfile. This coordinator measures the number of calls
and the wall-clock time taken by each invoked function in the simulation layer. Following the scheme given in Figure A1B,

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

760 RISCO-MARTIN ET AL.
WILEY

a set of CoordinatorProfile and SimulationProfile objects are created. CoordinatorProfile registers
number of calls and time consumed by functions like initialize, exit, deltfcn, lambda, propagateOutput
and, while the SimulatorProfile is in charge of similar functions, with the exception of those related to the propa-
gation of events, which is performed by the coordinator. Using these data, a modeler can instrument the time consumed
by each coupled and atomic model, since at the end, a majority of the functions in the simulation layer directly call to
the DEVS functions in the modeling layer. One example is 1ambda, which in a coordinator class calls to all its children’s
lambda functions, and these children, in case they are a Simulator, directly call to the output function of the DEVS
model. In its current version, XDEVS does not perform explicit profiling of the model to avoid excessive intrusion and
overhead in performance.

The root coordinator accumulates data that can be stored in a .csv file. This file can be filtered to analyze the compu-
tational load of the DEVS model. An example is shown in Appendix E. The report shows the class, the number of atomic
models participating in the simulation, the wall-clock time performed by the transition function, the output function,
and the sum of both time values. Finally, the last column shows the time percentage consumed by each atomic class. This
way, the modeler can quickly analyze the model’s bottleneck.

3.2.5 | Memory-shared ports

The Python version of xDEVS implements a modification of the PDEVS abstract simulator algorithm originally proposed
by Chow and Zeigler.'® This alternative XDEVS simulation algorithm, called the chained simulator, aims to improve the
performance of sequential and parallel simulations by using a function-oriented approach instead of message-passing.'8
This algorithm exploits shared memory patterns to avoid unnecessary message propagation. Appendix F provides an
example implementation of the algorithm. The speedup obtained by the chained simulator depends on the structure and
characteristics of the model under study. Generally, models with a high number of couplings and models that generate
more than one event per port simultaneously can benefit the most from this algorithm. The chained algorithm has been
proven to reduce up to 40% of synchronization overhead.!®

3.2.6 | Unit testing

V&V techniques, widely used in the software industry, have limited presence in the M&S field. Ad-hoc techniques are
generally used to verify simulations, and most of the simulation engines lack complete and robust tools for validating their
models. Bringing these software techniques would help to automate the V&V of simulation models in a straightforward
way. As part of this process, we have integrated a unit testing framework in xDEVS? allowing modelers to benefit from
the verification procedures. This framework can easily inject test cases as input data into the models, capture the states
and outputs of their internal components, and compare them against the expected behavior.

For the specification of the test cases, we have defined an XML-based format that allows specifying the information
regarding input generation and behavior verification in a structured manner. Figure 4 shows the structure of these test case
files. They contain two main sections: Generators and States. In the Generators section, we define the generator modules
injecting inputs into the system. Given the object-oriented paradigm used by xDEVS simulation engines, these generators
are defined as classes in the project structure and are dynamically instantiated in the testing procedure. Additionally, since
this unit testing framework was introduced in the Java xXDEVS simulator, each Generator element specifies the classpath
of its generator module and the input port where the produced values have to be injected. Notably, several generators can
be defined, even in different levels of the hierarchical design.

The States section includes information about the variables and outputs at a given simulation time. Each State can
incorporate port outputs and state variables. Port elements must include as the name attribute, the complete path of
the port to be instrumented. This includes both the path of the module containing the port and the port name, in a
fully qualified syntax: componentl.component2.componentN.portName. As seen in Figure 4, it is also possible to inspect
the values of Atomic modules. It is worth mentioning that these variables can be checked even if they are private in
the class design, and internal object attributes can also be inspected following the syntax: object1.object2.attribute_name.
Through this framework, the modeler can add a verification layer to their simulation models, checking their correctness
and behavior. Moreover, the test case files are easily readable and can complement the project documentation. This unit

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

RISCO-MARTIN ET AL WILE Y_lﬂ
<UnitTest>
<Generators>

<Generator name="generator_name" type="path.to.the.generator_class" port="oOut"
connectTo="path.to.other.module_port" />
<ee il =2

</Generators>

<States>
<State time="[TimeStatel]">
<Port name="coupledl.out_portl">
<[OutputType] attri="vall" attr2="val2" />
<[OutputType] attri="val3" attr2="vald" />

S

<[OutputType] attri="valb" attr2="val6" />
</Port>
<Port name="coupledl.atomicl.out_porti"> <!-- ... --> </Port>
<t-— L. =2

<Atomic name="coupledl.atomic2" phase="active" sigma="200" />
<Atomic name="coupledl.coupled2.atomic3" simple_attr="vall"
obj_attr.simple_attr="val2"/>
</State>

<State time="[TimeState2]"> <!-- ... --> </State>
<P-- L ==>
<State time="[TimeStateN]"> <!-- ... --> </State>
</States>
</UnitTest>

FIGURE 4 XML-based syntax to specify test cases. It allows checking port outputs and internal attributes in all the components of the
DEVS simulation

testing framework also includes auxiliary classes that allow fulfilling the testing process directly using programming code,
facilitating the adaptation of the methodology for alternative test case formats or requirements.

3.2.7 | Constraints definition

As part of the efforts made in xXDEVS to enable mechanisms to perform V&V, a constraint-based methodology is imple-
mented in the simulation layer'® that allows the verification of DEVS-based models. Introduced in the C++ XxDEVS
branch, it allows specification of custom JSON-based syntax constraints based on model component’s outcomes. Due
to its placement in the DEVS simulation layer, it is completely decoupled from the model and the simulation engine
syntax. These constraints are specified following a mathematical approach in terms of arithmetic and logical equations.
Their terms can refer to simple and complex data structures, as long as the used operators are defined in such data types.
Figure 5 shows the expected structure of a constraints specification file, containing two main sections, namely vars and
constraints.

The vars section is optional and includes a collection of variables, each of one representing the values con-
tained in a port or the arithmetic combination of the values of several ports. Each variable is expressed as a
pair of <variable_name>: <arithmetic_expression>. The variable name must consist of uppercase and
lowercase letters, numbers, and underscores. Arithmetic expressions are defined using the ports as terms, and
the “+7, “-”, “*” and “/” operators. Ports are referenced following the full DEVS path in the following format:
coupled, .coupled,. ... coupledy.atomic,.port,, where coupled;, atomic,, and port,, are coupled, atomic and port identifiers
specified in the definition of the DEVS model structure.

The constraints section is mandatory and specifies the set of constraints checked in simulation time, expressed as
logical expressions. Each constraint has three main attributes: (i) constraint name, specified with the same restrictions
as the variable names for any programming language, (ii) the logical expression, and (iii) the severity level. The terms

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

762 RISCO-MARTIN ET AL.
WILEY

"vars": {
<variable_namel>: <arithmetic_expril>,
<variable_name2>: <arithmetic_expr2>,

<variable_nameN>: <arithmetic_exprN>

3,

"constraints": {
"constraint_namel": {"expr": <logic_expri>, "level": <"info"/"error'">},
"constraint_name2": {"expr": <logic_expr2>, "level": <"info"/"error'">},

"constraint_nameN": {"expr": <logic_exprN>, "level": <"info"/"error">}

FIGURE 5 Example of a JSON-based constraints file

of these expressions can correspond either to model’s ports or to the previously defined variables. It can also contain
arithmetic and logical operators. Also, some auxiliary functions can be used to deal with arrays, such as sum, len, min,
and max. The severity level of a constraint can be set to ’info’ for generating warnings when the assertion indicated by
the logical expression is not accomplished, or be set to ‘error’ to point critical constraints. These constraints terminate the
simulation execution when their related expression is not fulfilled.

The constraints are always evaluated at the end of each simulation cycle, before the cleaning of the ports, provided that
the implied output ports are not empty. The chosen implementation architecture allows checking mathematical proper-
ties over multiple system components, even if they have been defined at different levels of the DEVS hierarchical structure.
Moreover, as it is conceived as part of the DEVS simulation layer, the verification process is completely orthogonal to the
model design.

The execution time overhead introduced by the Constraints checker is minimal. It is linear with the number of con-
straints, that is, its complexity is O(N) using the Big O notation and being N the number of constraints. On the other
hand, the Unit testing tool complexity mostly depends on the intensity of the input trajectories introduced by the user. In
any case, these two tools do not introduce scalability issues as the model becomes more complex.

3.2.8 | DEVSML Studio

As mentioned above, XDEVS provides support to MBSE through DEVSML Studio (Figure 6).° DEVSML Studio offers a
fully functional textual/visual programming language. This software package, still in development, provides an integrated
development environment based on DEVSML, where various languages can be used at the modeling layer leverag-
ing the modeling API interface. xDEVS is made available as the Platform Specific Model (PSM) of the more abstract
DEVSML.

The execution of model through a simulator is a complete discipline in itself and till date executable UML/SysML are
incomplete as they lack theoretical systems foundation to begin with. MBSE with the help of metamodeling, the use of
domain specific languages and with a profound background on theory on modeling and simulation can bring together
MBSE and MDE as a MDSE in a definitive manner and extend it for application in a netcentric environment. This process
can be integrated into xXDEVS through DEVSML Studio with the use of DEVSML and the DEVS Unified Process (DUNIP).
DUNIP and DEVSML are a methodology and a language for conceptual modeling and engineering of complex systems
that integrates in a single view the functional, structural and procedural aspects of the modeled system using formal yet
intuitive UML graphics that are dynamically generated. For more information about DEVSML and DUNIP, the reader is
referred to References 4,5,25.

DEVSML Studio main features are:

« It is based on Eclipse PDE with Xtext Extended Backus Naur Form (EBNF) grammar underneath as DEVSML
metamodel.

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

RISCO-MARTIN ET AL. W] LEY 763
& Plug-in Development:

File Edit Navigate Search Project Run Window Help

- WHE O Q- BE-I Y G TGO 4

% Packa.. 52 =0 5| stomicsfds £2 | |5 gptfds » = [e PlantUML £2

31 “job. d(H] .
i Job.setId(count) Graphical model of gpAtomics

IRE System Library
e v deltext(s:active, X:[sp]) => S"?ini

B, Plug-in Dependencies deltint(s:Finishing) => 5"? passive

s 3) (Proc)
5} atomics.fds 36 } 'a)
5 entitiesfds 37 GENR TRANSD
= gptfds 5= atomic Proc{
4 @ src-gen - wars(.
= 20 double procTime
i ent L 41 Job job
i gphAtomics 3 } | /
4 i gpCoupled 4 interface10{ i
5 A . agb:iob] A
11} gptjava : input Job jb Vi) [rs:dof)
output Job rs
2 xmlent epiit Job
€3 xml.gpAtomics pe State-time-advance{ S
& uml.gpCoupled 48 passive infinity =5 fanived:JobD Tisolved:Job]
(4 META-INF a9 busy procTime =
i) build.properties . 50 } . s
51 state-nachine{ £ I
1, i 52 start in passive { :
= 53 “procTime = 3.8;"
9= Outline 5 L2E@=0 s) !
4 = atomics = 5 delts).ctb(isz.bpassive » Xz [jb]) => s
4 i gpAtomics “job = J
(B ent” }
—
4 @ Genr £ 59 outfn (S:busy) => Yz [rs]{
4 32 Variables 50 "rs.setTd(job.getTd());
@ double amivTime ol rs.setSolvedAt(clock); esulfl, stop:Ste
@ int count 3
4 pulnputs 64 deltint (S:busy) => S"?passive
) Start i st 5 B
2| Stop i sp 56 }
73 Output; o7
. ffﬂ;_lnb 555 atomic Transd{
» i 6 vars:
4 < State-Time-Advance §"t S
®| passive : Inf 71 int solvedCnt
@ active : arrivTime 2 double observeTine
® finishing : 0.0 7 int jobId L) L
4 ¢ DEVS State Machi g ! -
Lo startin: active « il | » «| w 5
&2 Intemal-Transitio —
5 oo B Console 52 s X% AEEEEE-0--0
i gpt lava Application] C:\Program Fil jre\bin\j (Oct15, 2015, 7:11:34 AM)
. B Fvternal-Trancitin ™ [FINER-main|0:00:01.127]: 1.0 GpCoupled.gpt.t STATE:done, SIGMA:@. @ =
oy u] E 3 Shapz Pro X
Writable Insert 1:1 | s8mofsaiM |

FIGURE 6 Snapshot of DEVSML Studio showing DEVS Behavior State Machines graphical diagrams rendered automatedly from
textual DEVSML description using MDE principles

« It provides textual templates for atomic and coupled models, rich with code-completion and DEVS model validation.

« It provides a visualization plugin for rapid visual inspection of both the atomic and coupled DEVS. The visualization
plugin is based on open-source PlantUML plugin.

« It provides auto-generated compiled Java code for ready execution of DEVSML.
« Itintegrates EclEmma Code Coverage plugin for JVM executable platform-specific code.

« Code-snippets are provided as string and when a model runtime is configured for a DEVSML project, the PSM shows
errors in the generated platform-specific code.

« It shows the hierarchical structure of a DEVS file in the outline view.

Figure 6 shows how DEVSML Studio can be used to develop the traditional GPT DEVS academic example, combining
some of the features enumerated above.

4 | XDEVS STANDARDIZATION AND INTEROPERABILITY

The DEVS theoretical foundations guide implementations in different programming languages across different hardware
platforms, as can be seen in Section 3.1. This forms the basis of developing an M&S Standard that would align various
implementations. This section discusses the fundamentals on achieving a DEVS M&S Standard with the help of the
xDEVS M&S APL

One of the main features to highlight is the direct consequence of separating the model from the simulator: this results
in multiple ways to write a simulator for the same model, albeit, guided by the constraints of the simulation protocol
that defines the interactions between a DEVS-compliant model and a DEVS-compliant simulator. For instance, there are
virtual-time simulators (where the simulator can skip from one event time to the next without traversing the intervening
time interval) and real-time simulators (where time is interpreted as wall clock readings, so the simulator must wait for
the time to its next scheduled event to expire before handling the event). In addition to the different combinations of
model-type/simulation-software, an M&S standard facilitates the selection of a specific simulator for a corresponding

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

764 RISCO-MARTIN ET AL.
WILEY

Transformation

: ' :
Layer ! . :
v 4 :
Modeling DSEI/A DSE2/B xDEVS/* DEVS Non-DEVS
Layer FIM
Simulation DSEI/A DSE2/B xDEVS/*
Layer

Simulation [Sequenlial, Parallel, Distributed, ...

Protocol Virtual time, Real time, ...

FIGURE 7 Conceptual architecture of the DEVS Standard (a)

model component/architecture (e.g., sequential vs. parallel/distributed, and within the latter, conservative vs. optimistic
time advance for virtual-time as well as centralized vs. noncentralized time control in real-time execution).

The standard will facilitate simulator execution over different platforms, such as Windows versus UNIX; different pro-
gramming languages such as C++ versus Java; and further guides inclusion of different networking protocols like sockets
vs the message-passing interface for exchanging messages between participating simulators. A standard M&S API will,
therefore, harmonize both the model and simulator interfaces across various implementations. For example, the same
model may be simulated in virtual-time and real-time, and can be executed in a distributed and a local, non-distributed
fashion.

In summary, the proliferation of DEVS-based M&S engines would benefit from such standardized DEVS API, facil-
itating model’s extended reuse and interoperability at-large, especially in distributed simulation use cases. The DEVS
formalism specifies the abstract simulation protocol that accurately simulates DEVS atomic and coupled models. Inter-
preted in a distributed simulation environment, the DEVS abstract simulator gives rise to a universal abstract simulation
protocol with specific mechanisms for communicating with other simulators, that is, the federates. It also specifies how
federates interact in an iterative cycle that controls how time advances when federates exchange messages and per-
form internal state updating. A significant feature compared to simulation based on the HLA standard is if the federates
are DEVS-compliant, and the federation runtime correctly simulates the DEVS-compliant models, then closure under
coupling guarantees a well-defined resultant behavior from concurrent interactions.

We present Figure 7 as the initial conceptual architecture of the standard. This architecture is divided into four layers:
the simulation protocol (parallel, distributed, etc.), the simulation layer, the modeling layer, and the transformations layer.
This is a simpler form of the DEVSML 3.0 Stack.’> A DEVS simulation engine (DSE) is labeled in Figure 7 for instance as
DSE1/A, being DSE1 the simulation engine 1, which uses the programming language A. xDEVS has been explicitly labeled
because it will be used to interoperate between different DSEs. The programming language of xDEVS has been denoted
as “*”, since xXDEVS supports several programming languages (C++, Java, and Python). It is worthwhile to mention that
the in a large number of simulation applications, models are always coupled to their corresponding simulation engines.
There are no mechanisms to decouple models and simulators: (a) through the use of wrappers or (b) using a standard
modeling language and transformations. In the following, we describe this concept that separates the model specification
layer with the simulator implementation layer.

4.1 | Platform independent models

Standardizing DEVS model representation as a Platform Independent Model (PIM) allows a model to run on any DSE.
An example of a DEVS PIM is implemented in DEVSML Studio.® This is powerful because a model can be retrieved not
only from a persistent storage but can integrate DEVS with other domain specific languages (DSLs). It provides PIMs and
DSLs to interoperate with DEVS semantics once the transformations are developed. Different groups have used PIMs as
a mechanism for interchanging model information. Once a PIM specification has been defined, several mechanisms to
verify the correctness of the model can be elaborated.

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

RISCO-MARTIN ET AL. 765
WILE Y—I—

Figure 7 shows a DEVS PIM standard definition framework. Once a DEVS PIM definition is broadly accepted, its
model can be transformed to any other DSE, implementing the corresponding transformation. Several DEVS PIM pro-
posals can be found in the literature. We highly recommend DEVSML 3.0,° due to its simplicity as a DEVS-compliant
DSL and its code-generation capabilities to generate an executable xDEVS/Java application.

4.2 | DSE1l/A to DSE2/A interoperability for the same programming language

As stated in Section 2, there are many libraries for expressing DEVS models. All have efficient implementations for exe-
cuting the DEVS protocol. To find an interoperable DEVS M&S framework using XDEVS, we must design compatibility
between different DSEs and xDEVS, that is, a model implemented using either DSE/A or DSE/B should be able to be
simulated in XDEVS/A or XDEVS/B, respectively. In addition, the root coupled model should be able to be simulated in
xDEVS. As explained in Section 3, xDEVS incorporates some adapters of other DSEs (e.g., aDEVS, DEVSJAVA, PyPDEVS),
and other adapters from the remaining DEVS engines in the community can be easily implemented. With the current
implementation, xDEVS allows interoperability among different DEVS simulation engines. As a result, we can com-
bine different DSEs with wrappers, as long as they are implemented in the same programming language (C++, Java, or
Python). It is worth mentioning that coupled models do not represent an obstacle since they can be easily converted to
atomic models using xDEVS using the flattening feature.

4.3 | DSE to non-DEVS interoperability

The best way of including a non-DEVS model into DEVS simulations is with the use of the same wrapper design pattern.
However, as we mentioned in Section 3, building an adapter or wrapper for a non-DEVS model requires ad-hoc solutions,
but is still possible. This relies on the aspect that the DEVS modeler needs to be familiar with the non-DEVS model. For
instance, in Reference 4 authors define a barrel-filler model combining DEVS models with MATLAB models through a
wrapper.

4.4 | DSE/A to DSE/B interoperability between different programming languages

A model and its simulator are considered as two distinct elements in the DEVS theory. The simulation protocol describes
how a DEVS model should be simulated, whether in a standalone fashion or in a federated manner. Such a proto-
col is implemented by an algorithm in the simulation layer that executes the model. To reach DEVS interoperability
between DSEs implemented in different programming languages, we must address it at the simulation layer (as it is
transparent to the modeling layer.?! Thus, in XDEVS we focus on implementing a simulation architecture that allows
the simulation of any DSE/* model. This is done by taking advantage of the xXDEVS distributed simulation architec-
ture. Since all the messages are passed in an XDEVS standard format (using sockets and serialized to Javascript Object
notation (JSON)), xDEVS/Java simulators can be combined with xXDEVS/C++ or xXDEVS/Python simulators (as any
DEVS-compliant simulation implements the same abstract DEVS simulation protocol).

Figure 8 shows a simulation of a generator-processor transducer (GPT) DEVS model.? The example is described in
Appendix A. In this example, the root GPT coupled model has been defined using the configuration file described in
Appendix A (see Figure D1) and an xXDEVS/Java coordinator. The Generator model is implemented using another DEVS
simulation engine implementated in the C++ programming language (called DSE1/C++). The Processor model is devel-
oped using a third DSE implemented using Python programming language (called DSE2/Python). Finally, the Transducer
atomic model is implemented in xDEVS/Java. A non-DEVS model can be incorporated as long as the wrapper is imple-
mented. The simulation does not have to be distributed whether the localhost is used in all the models. As can be seen,
when all the model adapters are implemented, the simulation of heterogeneous models as the one presented in Figure 8
is thereby, achieved.

To summarize, using XDEVS, the conceptual architecture of the standard is presented in Figure 9, where both the
modeling and simulation layers are completely unified at the API level for different DSEs through xXDEVS wrappers. We
presented several ways to implement a DEVS standard protocol using the xDEVS simulation engine. In the modeling
layer, we can provide interoperability between different DEVS M&S platforms using the well-known wrapper pattern.

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

766 RISCO-MARTIN ET AL.
WILEY
—~
GPT: 192.168.1.1; xDEVS/Java
Model
xDEVS/Java configuration _{ Generator: 192.168.1.2; DSE1/C++
file

Coordinator

Processor: 192.168.1.3; DSE2/Python
Transducer: 192.168.1.4; xDEVS/Java

~

XDEVS/C++ (XDEVS/Python *>{ XDEVS/Java }—/
|\ J
I 1]
1 I]
1 !]
s ' N e ' N
xDEVS/C++ xDEVS/Python xDEVS/Java
(Transducer)
DSE1/C++ DSE2/Python

(Generator) (Processor)

A =/ AS /)

Y

FIGURE 8 Federation of DEVS simulators with heterogeneous DSEs and the xDEVS common distributed interface

Transformation e memmmmmmemmmmmmammema—a—an .
Layer Y !
4 N\ h
xDEVS/* !
Modeling
Layer DSEI/A DSE2/B Non-DEVS LIERT
PIM
A 4
s + N
Simulation <DEVS/*
Layer
. v,
1
1
4 Y
Simulation |Sequential, Parallel, Distributed, ...
Protocol Virtual time, Real time, ...
| § J

FIGURE 9 AnImplementation of the conceptual architecture of DEVS Standard using XDEVS

The DEVS standard can be easily implemented in the simulation layer using the xDEVS distributed simulation archi-
tecture to provide a unified simulation layer. As we have seen, the simulation process using the xXDEVS M&S API
is straightforward since this architecture already provides the unified translation of messages, or in another way, the
implementation of a standard message format.

The DEVS formalism has been in existence for more than four decades and has been implemented in almost all pro-
gramming languages. Recently, it has been extended to incorporate various PIMs and DSLs. The DEVS Community has
thought over these issues over the years and it is only recently that the work on DEVSML Stack and the current xDEVS
engine provides an integrative view of bringing various DEVS implementations together. Undoubtedly, the DEVS the-
ory already had the conceptual constructs such as DEVS simulation protocol and Levels of Systems specification that
facilitated the development of such a standard but the missing link was the incorporation of the latest in composable soft-
ware engineering and metamodeling concepts that surfaced in the last decade. Together, with xDEVS meta-architecture,
application programming interface (APIs) and implementations in Java/C++/Python, a Standard is thus realized.

5 | PERFORMANCE ANALYSIS

The Java branch of XDEVS, as the first implementation of this framework, has already been compared with other state
of the art DEVS simulators, showing robust performance.?® In this section, we analyze the performance of the entire
framework, including the C++ and Python implementation through the set of DEVStone benchmarks.

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL. W] LEY 767
5.1 | DEVStone

DEVStone?’ is a synthetic benchmark devoted to automate the evaluation of DEVS-based simulation approaches. It allows
the generation of different types of models, each of them specialized in measuring specific aspects of simulation. This
benchmark has become popular over the years, and has been used by plenty of authors of the state of the art to evaluate
and compare the performance of different DEVS simulators.?®?%2° DEVStone describes several synthetic models that
can be configured to vary their size and complexity. For this, they present a recursive structure with configurable depth
where all the levels contains the equivalent components and interconnections. The customization of the models is done
through the use of four parameters: (i) width, that affects to the number of components per layer, (ii) depth, that specifies
the number of nested coupled models, (iii) internal transition delay, and (iv) external transition delay. These two types
of delays execute CPU-intensive operations a fixed amount of time in the internal and external events of the atomic
components.
DEVStone describes four types of models (depicted in Figure 10):

« LI model: it is the simplest model, with a low level of interconnections in their coupled models.
« HI model: similar to the LI model, but increases the number of internal couplings.

« HO model: variation of the HI models where all the atomic components in each coupled module are connected to the
coupled output port.

« HOmod model: it reproduces an exponential level of coupling and outputs model.

5.2 | xDEVS engines comparative analysis

In Figure 11 we can see a plot matrix representing a comparison of aDEVS vs. xXDEVS DEVStone simulation times.
aDEVS stands for a Discrete EVent System simulator, a C++ library for constructing discrete-event simulations based on
the Parallel DEVS and Dynamic DEVS formalisms, developed at Oak Ridge National Laboratory (ORNL) by Jim Nutaro.
We selected aDEV'S because it is the fastest DEVS simulator, and is typically used as a baseline for performance anal-
ysis. In Figure 11, each row corresponds to one of the DEVS implementations (aDEVS, XDEVS/C++, XDEVS/JAVA,
and xDEVS/Python), and each column represents a specific DEVStone model class (LI, HI and HO). We have not
included HOmod because the large amount of memory demanded by this DEVStone model class forces us to use
a low range of HOmod instances, and as a consequence HOmod does not allow us to perform a fair comparison
(see e.g., Reference 26). For each specific pair of these implementations and DEVStone models, a plot contrast-
ing the simulation times is shown. The X and Y axes represent the DEVStone width and depth parameters used
in the simulations. The color corresponds to the execution time of each DEVS simulator for the given DEVStone
model instance. This execution time includes the loading of the model, the initialization of the coordinator and the
simulation time.

Taking into account the heat maps illustrated in Figure 11, aDEVS is still the fastest simulation engine. However,
xDEVS/C++ offers equivalent execution times, reaching better peak performance values as the DEVStone instances
are made more complex. In fact, for HO, xDEVS/C++ shows a better peak performance. Appendix G shows that, in
average, aDEVS is finally better than xXDEVS/C++, but XDEVS/C++ is an excellent alternative, given the wide range
of features enumerated in Table 2. The same happens with xDEVS/Java. This engine is slower than xDEVS/C++
and aDEVS, mainly produced by the extra resources needed by the Java Virtual Machine. However, as happens with
xDEVS/C++, the performance with respect to aDEVS is improved as the DEVStone model gains in complexity, reach-
ing a similar peak performance in DEVStone large HO models (see Table G2 for more details). Parallel and distributed
simulations with xDEVS/JAVA have an straightforward deployment, in comparison to xDEVS/C++. Thus, we may con-
sider xDEVS/JAVA as the right choice when the model complexity is high and parallelization is mandatory. Finally,
the Python version of xXDEVS is the slowest one. Some models were impossible to load and were assigned the worst
execution overall time. This was expected as Python is an interpreted language. However, since Python libraries have
excellent toolboxes for data analysis and management, we consider that xDEVS/Python can be the best option for data
scientists.

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

768 Wl LEY RISCO-MARTIN ET AL.
Coupled #1 Coupled #1
in out in out
e Coupled #2 —> > e Coupled #2 —>—>
> Atomic #1 > Atomic #1 —
> Atomic #2 y > Atomic #2 —
> Atomic #(w-1) Y 5 Atomic #w - 1)
(A) (B)
Coupled #1
Coupled #1 LN > out
Coupled #2 —>—>
in out
—> —>——>
in2 Coupled #2 out2 ! I !
) > Atomic # Atomic # | ... Atomic
(1,1) (1,2) #(1,w-1)
1 1 1
> Alomichi] Atomic # Atomic # ... | Atomic #
2,1) (2,2) (2,w-1)
Y_ :
> Atomic #2 A Atomic # | | Atomic #
(3,2) (3,w-1)
I *
i
Y o . Atomic #
» Atomic #(w - 1) (W?1r?vl\::-1)
© (D)

FIGURE 10 DEVStone models. (A) Low level of Interconnections model (LI), (B) high Input couplings model (HI), (C) HI model with
numerous outputs model (HO), (D) exponential level of coupling and outputs model (HOmod)

Overall, we may conclude that aDEVS or xDEVS/C++ simulation engines are the appropriate choice for small models,
whereas xXDEVS/C++ and xXDEVS/JAVA are adequate for complex models where we want to reach a competitive perfor-
mance, that can also be enhanced with parallelization or distribution. Given the varied set of features offered by xDEVS,
this makes our proposed simulation toolkit an excellent alternative for interoperable modeling and simulation of formal
discrete event systems.

6 | CASE STUDIES

Since the creation of a basic Java implementation of xDEVS in 2012, xDEVS/Java, and the final M&S architecture pre-
sented in this work, the framework has been used in various research works, in fields as diverse as Cloud/IoT,%3!
medicine,>3% Smart Grid,>* military applications®? or netcentric system of systems engineering.* Several recent case stud-
ies exist that highlight the impact of these features to bring the benefit of integrated M&S in complex systems engineering
life cycle. In fact, it is the pursuit of having a cohesive framework which led to development of various unifying features

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL. W] LEY 769
LI: aDEVS HI: aDEVS HO: aDEVS
1200 3.2 1200 rT 2000 1200 =T 2800
2.8 + 1750 L 2400
1000 1000 1000 4
2.4 t 1500 L 2000
800 A 2.0 800 A t 1250 800 A
= t 1600 ©
2 1.6 + 1000 g
A 600 600 4 600 4 L1200 £
F1.2 + 750
4007 Ho.8 4001 L 500 400 + 800
L L + 400
200 4 0.4 200 4 250 200 4
. . . . - L o.0 - Lo . . . T " Lo
200 400 600 800 1000 1200 200 400 600 800 1000 1200 200 400 600 800 1000 1200
LI: xDEVS/C++ HI: xDEVS/C++ HO: xDEVS/C++
1200 3.5 1200 rT 2100 1200 =T 2400
L3 L1 t 2100
1000 30 1000 800 10001
L2.5 L 1500 [1800
800 800 - 800 t 1500
s t2.0 + 1200 @
2 F 1200 ¢
A& 600 L1s 600 4 L 900 600 4 E
+ 900
400 r1o 400 r 600 400 4 L 600
to.s + 300 L
200 4 200 4 200 4 300
. . . . - o0 - Lo T . . T " Lo
200 400 600 800 1000 1200 200 400 600 800 1000 1200 200 400 600 800 1000 1200
LI: xDEVS/JAVA HI: xDEVS/JAVA HO: xDEVS/JAVA
1200 mr 10.5 1200 o7 2800 1200 w2800
1000 4 o0 1000 4 2490 1400 [2400
7.5 + 2000 + 2000
800 1 800 1 800 1
< 6.0 - 1600 1600 &
& g
Qo 6001 las 600 t 1200 600 b 1200 £
400 r3.0 400 r 800 400 r 800
t1s t 400 t 400
200 4 200 4 200 4
T T T T T 0.0 T T T T T o T T T T T =
200 400 600 800 1000 1200 200 400 600 800 1000 1200 200 400 600 800 1000 1200
LI: xDEVS/Python HI: xDEVS/Python HO: xDEVS/Python
1200 24 1200 8000 1200 - 7000
21 7000 6000
1000 1000 1000 4
18 6000 5000
800 1 15 800 1 5000 800 1
< 4000 &
[12 4000 g
& 600 600 1 600 4 3000 (£
9 3000
400 6 400 2000 400 2000
1000
200 4 3 200 4 1000 200 4
200 400 600 800 1000 1200 200 400 600 800 1000 1200 200 400 600 800 1000 1200
Width Width Width

FIGURE 11 DEVStone simulation times comparison between the different xDEVS implementations

(described in Section 3) as demanded by these case studies. In this section, we provide a few such notable real world
examples of complex systems demonstrating the applicability of xDEVS M&S framework. At the end of each example, we
provide a brief discussion enumerating the main xXDEVS characteristics that were developed and eventually used for that
particular case.

6.1 | Migraine prediction system
In this model,*? Pagan et al. use the XDEVS/Java to adapt a methodology for predictive modeling of symptomatic crises

in chronic diseases presented in their research® to address the prediction of pain episodes in the migraine disease.
The resulting system allows capturing different hemodynamic variables and produce alarms to warn the migraines

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

770 RISCO-MARTIN ET AL.

WILEY

TEMP EDA
Status Status

TEMP TEMP TEMP TEMP
Sensor Error Inductor Driver SSD

A

TEMP
Manual Status

it

Sensor Error Inductor Driver SSD
A

[EDA EDA EDA EDA

EDA
Manual Status

Sync Predictor Decider

HR
Manual Status

HR HR
Sensor Errorinductor

Spo2
Manual Status

PP

&

i

Sp0O2
Error Inductor

SpO2 Sp0O2
Driver SSD

Spo2
Sensor

e

A 4
Sp0O2 HR
{ Statvs J [Status J @

FIGURE 12 Root view of the migraine prediction system DEVS model

patients of the proximity of a pain episode as early as 45 min before the onset of pain. The methodology incorporates
training of different sets of models, that are activated based on the available signals (being able to generate predic-
tions if the predictive model has three or four available signals). Its root component is shown in Figure 12. It has eight
inputs, four of which from the Autonomous Nervous System related signals, captured through in-body sensors. These
inputs are provided by the TEMP (body temperature), EDA (electrodermal activity), HR (heart rate) and Sp0O2 (oxygen
saturation) and go through ErrorInductor components before entering the prediction system. The corresponding
error inductors adapt the signals to reproduce several issues that affect sensors in real life (noise, saturation, and dis-
connections). The four Manual Status inputs are used to notify the restoration of damaged sensors and reset its
operation. As outputs, it has the alarm signal itself and four LEDs indicating if there is some kind of error in the
input signals.

Each pair of sensor and the reset component go to a Driver. These components are intended to put timestamps to the
captured data, based on a shared clock. The resulting data is directed to Sensor Status Detector (SSD) coupled components.
Inside them, there are several atomic components in charge of abnormal behaviors detection. Also, when a failure in a sys-
tem is detected, a signal to the Predictor component is raised and an internal Gaussian-based signal-reparation atomic
component is activated. This components generate a predicted signal based on values buffered before the sensor failure.
To assure its reliability, this signal is generated only for a limited time. Its worth to note that as the signal-generation
behavior is encapsulated in an atomic component, it could be easily interchangeable by other methodologies. In Figure 13,
we can see how the SSD activates the generation of a predicted signal when an error occurs and keeps the original signal
when there is no error detected.

The outputs of all the SSD goes to the Sync component, that synchronizes and buffers the data for simultaneously
supplying the values for the four variables. Its output is received by the Predictor. This coupled component selects the

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL. 771

WILEY
41
Saturation —— Noise
39
SDMS2
37

{‘g\f)w\/ﬁ

Temperature (°C')
30
&

29 I Confidence (95%)

) M 1 Reset
27 © GPML Disconnection — altlal ese
25
180 200 220 240 260 280 300 320 340 360 380 400
Time (min)
(A)
100 - T
/g Original output 1 I|
g Prediction without noise (fit: 87.8%) : :
G Prediction with noise (fit: 60.0%) : :
= 50 - - = Migraine alarm signal : !
L 1
2
=)
P o—=
180 200 220 240 260 280 300 320 340 360 380 400
Time (min)
B)

FIGURE 13 Response of the migraine prediction system against failures. (A) System events against failures in the temperature signal,
(b) system’s output and alarm event

suitable set of models based on the available signals and generate a value predicting the probability that a pain episode is
approaching. When this probability exceeds a predefined threshold, the Decider raise an alarm to warn the patient. In
Figure 13 we can see the response of the system against failures in the sensor. Figure 13A shows a temperature signal that
is affected by several types of errors (disconnection, saturation, and noise). When any of them are detected, a Gaussian
Process for Machine Learning (GPML) module is activated, generating predictions for a limited time until the user presses
the Manual Status button. When the GPML cannot generate more reliable predictions, the signal is discarded until
recovery, changing the set of models used for the generation of the alarm. Figure 13B shows the response of the system
facing different conditions. The blue line represents the actual pain level registered by the patient, while the green and red
lines compare the output of the system with and without the presence of noise. Finally, the dashed line indicates when
the alarm goes off based on that predictions.

6.1.1 | Impactof xDEVS architecture and features

The main impact of the XDEVS framework was at the V&V stage in the Migraine Prediction System engineering lifecycle.
This project developed a conceptual model, simulated with a local coordinator, which was then upgraded to distributed,
real-time coordinator for its design and transition to a real-world system, without changing the model (due to the categori-
cal DEVS separation of modeling and simulation layers). The final objective was to build a hardware device to perform the
functionality described above. The developed DEVS model was faithfully reproduced and deployed into the real device
demonstrating the entire MBSE workflow. To verify the model, both the timing constraints and the numerical results
were carefully analyzed. The modeled DEVS transition delays were equivalent to those specified for the final hardware
device, to assure the fulfillment of hardware timing constraints. In addition, the data was validated against actual results.
Real time xDEVS coordinators were used to mirror the behavior of the device in a real scenario. Some xXDEVS wrappers

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

772 RISCO-MARTIN ET AL.

Edge Fed. Core Network

2 e

Crosshaul

%

Access Points

2

Radio Interface

@

IoT Devices

FIGURE 14 Mercury computing model

were also adapted to communicate the XDEVS model with numerical tools like MATLAB (R). At the end, the model was
synthesized in an FPGA, obtaining the expected results. More details were reported in Reference 36.

6.2 | Mercury: A framework for modeling data stream-oriented Internet of Things (IoT)
applications

Mercury?! is a modeling, simulation, and optimization framework to analyze various dimensions and the dynamic oper-
ation of real-time Fog computing scenarios, developed with the xXDEVS/Python implementation. It allows specifying 2D
Mobility scenarios and includes a 5G-based model. Figure 14 presents a general view of the computing model of the
Mercury framework. It is divided into six layers:

o IoT Devices layer: This includes the user equipment (UE) devices of the scenario. This devices are often data
stream-oriented that delegate some processing tasks to the cloud due to their computational and energetic
limitations. In Mercury, each UE may implement one or more applications that generate data streams to be
processed.

« Edge Federation layer: This is composed of a set of edge data centers (EDCs), communicated through a specific radio
access network (RAN). These include the actual processing units, where the UE tasks are computed. It follows a
Functions-as-a-Service (FaaS) concept, where the resources are not reserved to a particular application. Instead, the
infrastructure starts a process only when a client makes a service request.

« Access Points (AP) layer: This specifies the particular AP where the UE can connect to communicate to the EDCs.
« Radio Interface layer: This includes the resources that connect the UEs with the different APs of the scenario.

« Core Network layer: This assumes the role of an internet service provider (ISP), enforcing access control policies in the
RAN and configuring the Crosshaul layer.

« Crosshaul layer: This interconnects the EDCs, APs and core networks.

The framework also includes utilities to ease the process of selecting the APs and EDCs’ optimal location and gener-
ating useful output plots to study the results of the simulations. The objective here is to determine the optimal locations
of these elements to (a) provide a good quality of service in an advanced driver assistance system (ADAS), where cars are
continuously sending data to the EDCs to analyze the environment and driver condition, trying to avoid accidents, and (b)
reduce the energy consumed by these EDCs, and in consequence reduce the ecological footprint and costs. In Figure 15,
we can see some examples analysis of EDCs location.

Figure 15A depicts the result of executing an automatic allocation of EDCs and APs based on the density of movement
of geolocalized UE (cars in this case). Here, the EDCs are represented with small squares (in orange, green and blue
colors) and the their respective APs are represented with stars. Also, the areas covered by each one of the EDCs are

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

RISCO-MARTIN ET AL. 773
WILEY
San Francisco Bay Area s Uplink bandwidth and bit rate (EMA alpha=0.1)
1.6
- —— bandwidth [Hz]
§ o 1.4 bitrate [bps]
%
=4 [| 1.2 1
wy
(o]
g * 1.0 A
(=3
—_ [9\]
é 0.8
(=3
-~ O
wy
- * 0.6
S *
=] 0.4 -
s *
2 * 024 " n I I
< 0.0
0 500 1000 1500 2000 2500 0 100 200 300 400 500 600
x [m] time [s]
(A) (B)

FIGURE 15 Examples of output plots generated by the mercury framework. (A) EDCs and APs automatic allocation, (B) upload
bandwith and bit rate

shown. Figure 15A shows the evolution of the uplink and bit rate for a specific scenario. Similar plots are generated for
the downlink bandwith and bit rate. Apart from the ones seen here, additional plots are available, showing the uplink
spectral efficiency, EDC’s power consumption comparisons and UE’s perceived delay comparison.

6.2.1 | Impact of xXDEVS architecture and features

This use case was developed using the xXDEVS/Python. The IoT ADAS model is a complex model, needing more than
20 min to simulate 10 s of the real world. As a consequence, continuous profiling, one of the xDEVS features, was essential
to locate the bottlenecks and improve execution speed. To address the performance issue, two actions were taken: (1) Some
principles of multi-resolution modeling allowed us to have several equivalent versions of the same model, replacing the
hierarchical atomic models acting as bottleneck with others, with simpler in structure (using the closure-under-coupling
DEVS property to encapsulate some complex models, formed by many atomics, into one single atomic model), and with
a coarse-grain time resolution. This allowed the mapping of wall-clock simulation times to the real-world time resolu-
tion. More details were reported in Reference 37, and (2) the architecture of the XxDEVS/Python simulation engine was
improved, incorporating the memory-shared ports technique listed in Table 2, obtaining an even higher speed-up (see
Appendix F, for more details). This use case leverage advanced instrumentation, profiling, model flattening and memory
optimization techniques for scalability.

6.3 | Unmanned aerial vehicles (UAVs) in hostile environments

This simulation,* developed using the xDEVS/Java implementation, presents a scenario with military conflicts. In this
research, offensive UAVs send missiles to objective (target) points, and Air Defense Units (ADUs) try to block the UAV
attacks. For each launched missile, the position, velocity, and Euler angles are tracked. In the model, UAV modules share
targets information with the ADUs to check if a radar has detected the corresponding target or a missile has hit upon it.
ADUs send information to UAVs regarding the state of the missiles (for example, if they have been exploded). The root
model of this simulation is depicted in Figure 16. As it can be seen, there are two types of Radar modules inside the ADUs,
one for detecting the missiles and a second one to track UAVS’ positions. Although the UAVs follow a precomputed path
initially, they can modify their path when some unknown threat appears. Details about the behavior design of UAVs and
Missiles are provided in Appendix H.

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

774 RISCO-MARTIN ET AL.
WILEY

targetToMissile

ittt / [Nooem

ADU

Y
targetToRadar Detection
[nopE1] [T Radars
UAV Missiles

Tracking
Radars

environmentMissilelnfo J

FIGURE 16 DEVS root coupled model for UAVs simulation

Experiment Type D Eﬂ?‘ETimEﬂt Type C

M 5 .
SR _-I e

121

y [Km]

LAY ‘ . . S P o
313] an 0 [o 120 140) [ED IED 20 22 240 260 M0 30 320 340 3ED
x [Kml ¥ [Km]

FIGURE 17 Eagle eye view of UAVs simulations scenarios

Several scenarios were modeled. The one depicted in Figure 16 leverages the distributed capabilities of xDEVS/Java.
The UAVs and the ADUs were simulated in different workstations, sending intermediate communications over the net-
work (shown with dashed lines). Some sample scenarios are shown in Figure 17. Blue dashed lines encloses the area
covered by ADUs, risky to fly over them, but not critical. Red solid lines correspond to critical areas covered by tracking
radars. The trajectories of the UAVs are represented with the black dashed lines. Waypoints are depicted with asterisks,
and prohibited zones with rectangles.

This case study also used the interoperability standard included in the DEVS M&S framework to execute this military
scenario in Java and .NET DEVS-based simulators. The DEVS/SOA standard?' embodies service oriented architecture
(SOA) utilizing Web Service Description Language (WSDL) standard to describe the simulator and coordinator interfaces
and SOAP standard to support communication operations between them. This allows the execution of models without
local access to modeling components. The detailed execution is described in the text by Mittal and Martin.*

6.3.1 | Impactof XDEVS Architecture and features

This use case was one of the main applications of the XDEVS Application Programming Interface (APIs) distributed simu-
lation application, first reported as a chapter in Reference 4. As mentioned above, the distributed simulation was initially

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL. 775
WILE Y—I—

supported by the SOAP standard, using the concept of Simulation as a Service (SaaS), with memoryless atomic models
and the server-side storing the state of the atomic models. This was essential to compose a fully operative distributed
simulation with persistent state capability. After the evolution of Cloud computing and availability of Infrastructure as a
Service (IaaS) from providers like Amazon, Google, or Microsoft, the XDEVS distributed architecture evolved into a much
simple architecture using traditional sockets and automation in containerized simulation deployment using Docker. The
current design described in Appendix D facilitates the distributed deployment of simulations using cloud services. The
performance analysis in a cloud environment will be reported in our future work. Additionally, the complexity of these
UAV-based scenarios forced us to leverage the xDEVS profiling framework (see Appendix E) and debugging mechanisms,
to mitigate model bottlenecks, establish constraints and conduct unit testing.

6.4 | Synopsis

This section described the three most significant case studies that were developed using xDEVS infrastructure over a
decade. Each case study highlighted the impact of xDEVS architecture and the xXDEVS feature set that was used in the
project. Actually, it was the case study itself that put a forcing function to advance the xDEVS feature set! The current
feature set described in Section 3 provides a robust capability set for an M&S framework that can contribute to digital twin
engineering in a cloud-based IoT environments that can support interoperability between heterogeneous components.
The full set of current xXDEVS features are enumerated in Table 2 and provide robust testing and evaluation of model
execution to optimize the model design, which eventually will be traced back to the physical system design requirements.

7 | DISCUSSION

Modeling and simulation are distinct activities. Modeling facilitates understanding of phenomena (both natural and
artificial) and helps develop an understanding (both personal and shared). This understanding when coupled with tradi-
tional systems and software engineering practices gave way to the development of MBSE in its current state. Simulation
subsumes modeling, that is, simulation is operational only when there exists a model to execute on a platform (e.g., men-
tal, collaborative, computational). This execution affords experimentation with the model and provides opportunities to
experience the “model” in various settings (e.g., Live, Virtual and Constructive environments. MBSE without simulation,
henceforth, involves effort spent in the development of only the model. The model may or may not be executable. It is
certainly not simulatable.

In System of Systems (SoS) engineering or complex systems engineering (CSE) settings, due to a large number of
stakeholders, this activity takes on a whole new meaning where developing a shared understanding is an achievement
in itself. IT-enabled modeling environments and tools commercially available (e.g., IBM Rhapsody, NoMagic Cameo)
provide the needed centralized repository and model editing environments to facilitate model development. The prime
objective of this activity is to bring the stakeholders on the same page. In this regard, MBSE can exploit the immer-
sive powers of storytelling to convey an evolving system design and concept of operations to technically unsophisticated
stakeholders.

Between the MBSE without simulation and MBSE with simulation is the realm of executable models. Formal meth-
ods are applied in this model, which lead to software implementation. This enables testing and verification of systems
under investigation during the model runtime, that is, the dynamic behavior in a simulation execution. While they are
not supported by experimentation infrastructure, indeed they do allow experience with the system under study. MBSE
with simulation affords experimentation and experience with the model. Simulation engineering requires an advanced
computer science theory, methods and techniques to provide a computational substrate for the model to execute. When
simulation engineering is coupled with systems theory and software engineering to develop the computational platform,
we get a composable M&S platform. Application of DEVS theory and Software/Systems Engineering principle to develop
xDEVS framework is such an example. In SoS, CSE and so forth. settings, the computational platform becomes an explicit
engineering exercise as new domains are brought in the simulation environment. The prime objective of this activity is
to experiment with the model and gain experience in understanding model’s behavior. Combining M&S with MBSE can
enhance the ability of models in virtual worlds to foster discovery of previously unknown interactions and dependencies
among system elements and between the system and the environment.

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

776 RISCO-MARTIN ET AL.
WILEY

MBSE, even with simulation, is inadequate to support complex systems engineering. Complexity Science principles
incorporating concepts like nonlinearity, emergent behavior, network connectivity and so forth. is being brought in to
augment MBSE practices with DEVS*!438 and all the case studies described in Section 6 demonstrate a comprehensive
methodology for their application to next generation complex systems such as Internet of Things (IoT), Cyber Physical
Systems (CPS) and Military wargaming.

8 | CONCLUSIONS

xDEVS is a modeling and simulation framework that allows the specification and execution of models that conform to the
DEVS formalism. This formal definition improves the quality of the models that describe discrete event dynamic systems,
and reduces the ambiguity in specification, development times and release cycles. This facilitates model reusability and
sharing, leading to building complex hierarchical, modular and interoperable models.

xDEVS provides a single API specification and three different implementations with equivalent syntax, allowing the
definition of models that use three of the most well-known and popular object-oriented programming languages (C++,
Java, and Python). Moreover, it includes several verification tools and additional features that improve both the modeling
and simulation experience.

We described the xXDEVS API and architecture in detail with some representative code examples and case studies.
As each xDEVS implementation adheres to the abstract simulator concept, the framework includes several interchange-
able Coordinator definitions based on the same base Coordinator interface. This makes the process of changing between
sequential, parallel, and real-time simulation execution, without the need for changing the model. Indeed, this is the hall-
mark of the DEVS theory that the same model is can be tested and evaluated in sequential, parallel, real-time, faster than
real-time or distributed or any combination of such coordinators.

On the performance side, the experiments conducted on different xDEVS engines have shown that aDEVS is still
the fastest DEVS simulation engine. However, xDEVS/C++ offered equivalent execution times, reaching better peak
performance values as the DEVStone instances became more complex. Similarly, xDEVS/Java produced comparable peak
performance values in DEVStone large HO models. Given the broad set of xXDEVS features, this makes our proposed
simulation toolkit an excellent alternative for interoperable modeling and simulation of formal discrete event systems.

Over the years, xDEVS has been used to simulate a great variety of applications in disparate domains. A sample of these
case studies was briefly discussed that provide the evidence about the flexibility and robustness of both the formalism and
its implementation, and how this M&S framework improves the development workflows by allowing the construction of
safe, fully instrumented and profiled complex system models. We discussed three case studies that have been real-world
projects that leverage the advanced xDEVS API, feature set and infrastructure. All the three projects have been reported
in literature and are in continuous development.

MBSE in its current state is very much tied to traditional systems engineering and needs to be expanded to incorpo-
rate complex systems engineering practices, latest software modeling and engineering practices, and formal and rigorous
M&S infrastructure engineering. It seems clear that we need to get a better handle on the whole SoS life-cycle with a more
deliberate combined MBSE/DEVS approach. XDEVS integration with DEVSML Studio and the DEVS Unified Process*
extends its feature set with the broader system of systems engineering discipline. xXDEVS is available at a public reposi-
tory"® under the GNU GPL license and contains an example models set that can be used to facilitate the learning of model
definition.

This paper summarizes the decade long work on XDEVS that began around 2011 (during our first book*) and reports
its current feature set, its impact on significant case studies, toolsets that were developed along the way and its potential
impact to multiple communities, especially, the DEVS Community and the MBSE Community by demonstrating the
applicability of DEVS constructs to engineer hardware/software M&S environments that are open to fundamental V&V
methods and large scale model composability.

AUTHOR CONTRIBUTIONS

Conceptualization, methodology, writing-original draft preparation, José L. Risco-Martin and Kevin Henares;
validation, Roman Cardenas and Patricia Arroba; formal analysis, José L. Risco-Martin and Saurabh Mittal;
investigation, Saurabh Mittal and Roman Cardenas; resources, funding and acquisition, project administration,

85U8017 SUOWILIOD BAIIERID 8|cedldde 8y Aq peusenob afe saoile YO 8sn JO S3|nJ oy Areiq1T8UlJUO AB|IAA UO (SUORIPUOO-pUB-SWLBY/LI0O" A3 1M ARe.q [l |uO//SdNL) SUORIPUOD Pue SWB | 8U 88S *[£202/20/60] U0 AReiqi8ulluo 48] ‘UOSINOID BpeUeD aueIyo0D Aq 89TE @ds/Z00T 0T/I0p/L0o" A8 | ARelq1[eul|uo//Sdny Woly papeo|umod ‘¢ ‘€202 X20L60T

RISCO-MARTIN ET AL. 777
WILE Y—I—

José L. Risco-Martin and Patricia Arroba; review and editing, José L. Risco-Martin, Saurabh Mittal, Roman Car-
denas, and Kevin Henares; supervision, Saurabh Mittal and Patricia Arroba; all authors have read and agreed to
the published version of the manuscript.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
José L. Risco-Martin ‘© https://orcid.org/0000-0002-3127-6507
Kevin Henares ' https://orcid.org/0000-0002-2637-5316

REFERENCES

1.

Srba J. Comparing the expressiveness of timed automata and timed extensions of petri nets. International Conference on Formal Modeling
and Analysis of Timed Systems; 2008:15-32.

Zeigler BP, Muzy A, Kofman E. Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations. Academic
Press; 2018.

Xie K, Zhang L, Laili Y, Wang X. XDEVS: a hybrid system modeling framework. Int J Model Simulat Sci Comput. 2022;13(2):2243001.
doi:10.1142/S1793962322430012

4. Mittal S, Martin JLR. Netcentric System of Systems Engineering with DEV'S Unified Process. 1st ed. CRC Press; 2013.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Mittal S, Risco-Martin JL. DEVSML 3.0 stack: rapid deployment of DEVS farm in distributed cloud environment using microservices and
containers. Proceedings of the 2017 Spring Simulation Multiconference; 2017:19:1-19:12.

Mittal S, Risco-Martin JL. DEVSML studio: a framework for integrating domain-specific languages for discrete and continuous hybrid
systems into DEVS-Based M&S Environment. Proceedings of the 2016 Summer Simulation Multiconference; 2016.

Nutaro J. ADEVS (a discrete EVent system simulator). Arizona Center for Integrative Modeling & Simulation (ACIMS). University of
Arizona. Available at: http://www.ece.arizona.edu/nutaro/index.php; 1999.

Wainer G. CD++: a toolkit to develop DEVS models. Soft Pract Exp. 2002;32(13):1261-1306.

Cardenas R, Henares K, Arroba P, Risco-Martin JL, Wainer GA. The DEVStone metric: performance analysis of DEVS simulation engines.
ACM Trans Model Comput Simul. 2022;32(3):1-20. d0i:10.1145/3543849

Bolduc JS, Vangheluwe H. A Modeling and Simulation Package for Classic Hierarchical DEVS. MSDL, School of Computer McGill
University, Tech. Rep; 2002.

Sarjoughian HS, Zeigler B. DEVSJAVA: basis for a DEVS-based collaborative M&S environment. Simulat Series. 1998;30:29-36.

Seo C, Zeigler BP, Coop R, Kim D. DEVS modeling and simulation methodology with MS4 me software tool. SpringSim (TMS-DEVS);
2013:33.

Quesnel G, Duboz R, Ramat E. The virtual laboratory environment — an operational framework for multi-modelling, simulation and
analysis of complex dynamical systems. Simulat Modell Pract Theory. 2009;17:641-653.

Zeigler B, Mittal S, Traoré M. MBSE with/out simulation: state of the art and way forward. Systems. 2018;6:40. doi:10.3390/systems6040040
Risco-Martin JL. xDEV'S: A Cross-Platform Discrete Event System Simulator; 2014 Accessed at: https://github.com/iscar-ucm/xdevs.
Chow AC, Zeigler BP, Kim DH. Abstract simulator for the parallel DEVS formalism. Fifth Annual Conference on Al and Planning in High
Autonomy Systems; 1994:157-163.

Martin A, Marangozova-Martin V. Automatic benchmark profiling through advanced workflow-based trace analysis. Soft Pract Exp.
2018;48(6):1195-1217.

Cérdenas R, Henares K, Arroba P, Wainer G, Risco-Martin JL. A DEVS simulation algorithm based on shared memory for enhancing
performance. 2020 Winter Simulation Conference (WSC); 2020:2184-2195.

Henares K, Risco-Martin JL, Zapater M. Definition of a transparent constraint-based modeling and simulation layer for the management
of complex systems. 2019 Spring Simulation Conference (SpringSim); 2019:1-12.

Henares K, Risco-Martin JL, Ayala JL, Hermida R. Unit testing platform to verify DEVS models. Proceedings of the 2020 Summer Simulation
Conference; 2020:1-11.

Mittal S, Risco-Martin JL, Zeigler BP. DEVS-based simulation web services for net-centric T&E. Proceedings of the 2007 Summer Simulation
Multiconference; 2007:357-366.

Moreno A, Risco-Martin JL, Besada E, Mittal S, Aranda J. DEVS/SOA: towards DEVS interoperability in distributed M&S. 2009 13th
IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications; 2009:144-153.

Zeigler BP. Closure under coupling: concept, proofs, DEVS recent examples (WIP). Proceedings of the 4th ACM International Conference
of Computing for Engineering and Sciences; 2018:1-6.

Martin J, Henares K, Mittal S, Almendras L, Olkoz K. A unified cloud-enabled discrete event parallel and distributed simulation
architecture. Simulat Modell Pract Theory. 2022;118:102539.

Risco-Martin JL, Mittal S. Cloud-Based M&S for Cyber-Physical Systems Engineering. Springer; 2020:3-23.

Risco-Martin JL, Mittal S, Fabero Jiménez JC, Zapater M, Hermida Correa R. Reconsidering the performance of DEVS modeling and
simulation environments using the DEVStone benchmark. Simulation. 2017;93(6):459-476.

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

https://orcid.org/0000-0002-3127-6507
https://orcid.org/0000-0002-3127-6507
https://orcid.org/0000-0002-2637-5316
https://orcid.org/0000-0002-2637-5316
info:doi/10.1142/S1793962322430012
http://www.ece.arizona.edu/nutaro/index.php
info:doi/10.1145/3543849
info:doi/10.3390/systems6040040
https://github.com/iscar-ucm/xdevs

778 RISCO-MARTIN ET AL.
WILEY

27. Glinsky E, Wainer G. DEVStone: a benchmarking technique for studying performance of DEVS modeling and simulation environments.
Ninth IEEE International Symposium on Distributed Simulation and Real-Time Applications; 2005:265-272.

28. Franceschini R, Bisgambiglia PA, Touraille L, Bisgambiglia P, Hill D. A survey of modelling and simulation software frameworks using
discrete event system specification. 2014 Imperial College Computing Student Workshop; 2014.

29. Van Tendeloo Y, Vangheluwe H. The modular architecture of the python (P) DEVS simulation kernel. Proceedings of the 2014 Symposium
on Theory of Modeling and Simulation (TMS-DEVS); 2014:387-392.

30. Penas]I, Zapater M, Risco-Martin JL, Ayala JL. SFIDE: a simulation infrastructure for data centers. Proceedings of the Summer Simulation
Multi-Conference; 2017;1-12.

31. Cardenas R, Arroba P, Blanco R, Malagén P, Risco-Martin JL, Moya JM. Mercury: a modeling, simulation, and optimization framework
for data stream-oriented IoT applications. Simulat Modell Pract Theory. 2020;101:102037.

32. Pagan J, Moya JM, Risco-Martin JL, Ayala JL. Advanced migraine prediction simulation system. Proceedings of the Summer Simulation
Multi-Conference; 2017:24.

33. Henares K, Risco-Martin JL, Hermida R, Roselld6 GR, Cardenas R. Modular framework to model critical events in stroke patients.
Proceedings of the 2019 Summer Simulation Conference; 2019:48.

34. Pérez-Vilarelle L, Risco-Martin JL, Ayala JL. Modeling and simulation of wind energy production in the smart-grid scenario. Proceedings
of the Symposium on Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems; 2018:2.

35. Henares K, Pagin J, Ayala JL, Zapater M, Risco-Martin JL. Cyber-physical systems design methodology for the prediction of symptomatic
events in chronic diseases. Complexity Challenges in Cyber Physical Systems: Using Modeling and Simulation (M&S) to Support Intelligence,
Adaptation and Autonomy; 2019:223-253.

36. Henares K, Pagan J, Ayala JL, Risco-Martin JL. Advanced migraine prediction hardware system. Proceedings of the 2018 Summer
Simulation Multionference; 2018.

37. Cardenas R, Arroba P, Moya JM, Risco-Martin JL. Multi-faceted Modeling in the analysis and optimization of IoT complex systems.
Proceedings of the 2020 Summer Simulation Conference; 2020.

38. Mittal S. Emergence in stigmergic and complex adaptive systems: a formal discrete event systems perspective. Cognitive Syst Res.
2013;21:22-39.

How to cite this article: Risco-Martin JL, Mittal S, Henares K, Cardenas R, Arroba P. xXDEVS: A toolkit for
interoperable modeling and simulation of formal discrete event systems. Softw: Pract Exper. 2023;53(3):748-789.
doi: 10.1002/spe.3168

APPENDIX A. XDEVS APIIMPLEMENTATION EXAMPLE FOR EFP MODEL

Figure Al depicts how these layers are structured using the Experimental Frame - Processor (EFP) model as an
example. The EFP model is a common reference model where a Generator component generates Jobs with an
specific period. The Processor receives these Jobs and simulates some internal processing. Usually, the gen-
eration time is configured to be less than the processing time in this model, and the Processor only accepts
Jobs when it is in the idle state. The Transducer is the component in charge of counting the number of gen-
erated and processed jobs and computing the ratio of processed jobs. As shown in Figure AlA, the Generator
and the Transducer are grouped in the EF coupled component. Also, there is a root coupled model that con-
tains the EF and the Processor components. This modeling hierarchy is also followed in the simulation layer (as
can be seen in Figure A1B). A coordinator is created for each coupled component, and a simulator is created for
each atomic component. The arrows depict the dependencies among the simulation entities. These dependencies
between coordinators and simulators are the same as those expressed between the coupled and atomic components of
the model.

In the following, we present the implementations of the Processor component of the EFP example (shown in the
previous section) for the three available XDEVS Application Programming Interface (APIs). This component starts with a
passive state (set in the initialize method) and waits until a Job arrives at its input port. When that happens, the external
event method is activated. In this method, if the Processor is idle at that simulation time, the component changes its
state to active and sets its sigma to the processing time. All the jobs received while the Processor is in this state are
discarded. When the time specified in sigma is consumed, the output function (lambda) is activated, and the Job is sent
through the output port. Right after that, the internal event method is invoked, which changes the status to passive again,
indicating that it is available for processing new jobs.

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL.

Coordinator #0

/ EF-Processor (EFP) \
/ Experimental \

Frame (EF)
Coordinator #1 Simulator #0

Transducer

il

/ Simulator #1 Simulator #2

S =] | G

(A) (B)

FIGURE Al Experimental frame-processor (EFP) model. (A) Structure of the model, (B) hierarchy of simulators and coordinators

We can see the Processor in the Java branch of XDEVS in Listing 7. It can be seen how the ports are added to
the atomic component in the constructor, and a processingTime parameter is received. This parameter is saved and used
later in the external event method (deltext) to specify the duration of the active state. When this time is consumed, the
lambda and deltint methods are called. First, lambda outputs the suitable values (in this example, the original input
job), and then deltint calls the passivate method. This is a shortcut for specifying the passive phase with an infinity dura-
tion. In this way, the component only can be activated again due to an external event. It is worth noting that both the
active and passive phases do not have any special behavior and are used in some auxiliary methods only for usability
reasons.

In the Python implementation of Listing 8, we can see how both the structure and the nomenclature are equivalent
to the Java one. However, the format of the method names is changed to snake case to comply with the well-accepted
nomenclature conventions of the Python language. Also, the lambda output method is renamed to lambdaf to avoid
overwriting the Python lambda keyword. In C++ (Listing 9), although it keeps the camel case nomenclature, for the API
methods, it introduces the Event additional object for the message passing. This wrapper object creates a shared pointer
to the memory address of the actual message to release it when it is no longer used, simplifying the memory management
of the values.

public class Processor extends Atomic

protected Port<Job> in = new Port<>("in");
protected Port<Job> out = new Port<>("out");
protected Job currentJob = null;

protected double processingTime;

public Processor (String name, double processingTime) {
super (name) ;
super.addInPort (in) ;
super.addOutPort (out) ;
this.processingTime = processingTime;

}

@Override
public void initialize() { super.passivate(); }

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

780 W I

@Overr

RISCO-MARTIN ET AL.

LEY

ide

public void exit() {}

@Overr

ide

public void deltint() { super.passivate(); }

@Overr

ide

public void lambda () { out.addvalue (currentJob); }

@Overr

ide

public void deltext (double e) {
(super.phasels ("passive")) {

currentJob = in.getSingleValue () ;
super.holdIn("active", processingTime) ;

if

Listing 7: Atomic module definition in XDEVS (Java)

class Processor (Atomic) :

def init (self, name, proc_time):
super (). init (name)
self.in = Port (Job, "in")
self.out = Port (Job, "out")
self.add in port(self.in)
self.add out port (self.out)
self.current job = None
self.proc_time = proc_time

def initialize(self):
self .passivate ()

def exit (self):
pass

def deltint (self):
self .passivate ()

def deltext (self, e):
if self.phase == PHASE PASSIVE:

self.current job = self.in.get ()

def

self .hold in(PHASE ACTIVE, self.proc time)

lambdaf (self) :

self.

out.add (self.current job)

Listing 8: Atomic module definition in XDEVS (Python)

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL. 781
WILEY
class Processor : public Atomic {
protected:
Event nextEvent;
double processingTime;
public:
Port in;
Port out;
Processor (const std::string & name, double processingTime) :
Atomic (name), nextEvent (), processingTime (processingTime), in("in"), out ("out") {
this->addInPort (&in) ;
this->addOutPort (&out) ;
}
~Processor () {}

virtual void initialize() { Atomic::passivate(); }
virtual void exit () {}

virtual void deltint () { Atomic::passivate(); }
virtual void lambda() { out.addvalue (nextEvent); }

virtual void deltext (double e)
if (Atomic::phasels("passive")) {
nextEvent = in.getSingleValue() ;
Atomic: :holdIn("active", processingTime) ;

Listing 9: Atomic module definition in xDEVS (C++, header)

As an example of coupled components implementation in XDEVS, we show the definition of the EFP component
shown in Figure A1A. In Listing 10 we can see Java implementation of this component. It does not have to imple-
ment special methods, so only the constructor is defined. The internal components (Generator and Transducer) are
instantiated and added as part of the coupled component. After that, the suitable links are established using the addCou-
pling method. These actions are repeated in the Python (Listing 11) and C++ (Listing 12) versions with no remarkable
changes.

public class Efp extends Coupled

public Efp(String name, double generatorPeriod, double processorPeriod, double transducerPeriod) ({
super (name) ;

Ef ef = new Ef("ef", generatorPeriod, transducerPeriod) ;
super.addComponent (ef) ;

Processor processor = new Processor ("processor", processorPeriod) ;
super.addComponent (processor) ;

super.addCoupling(ef.out, processor.in);
super.addCoupling (processor.out, ef.in);

Listing 10: Coupled module definition in xDEVS (Java)

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

782 RISCO-MARTIN ET AL.
WILEY

class Efp(Coupled) :
def init (self, name, generator period, processor period, transducer period) :
super (). init (name)

ef = EF("ef", generator period, transducer period)
proc = Processor ("processor", processor_period)

self.add component (ef)
self.add component (proc)

self.add coupling(ef.out, proc.in)
self.add coupling(proc.out, ef.in)

Listing 11: Coupled module definition in XDEVS (Python)

class Efp : public Coupled {
protected:
Ef ef;
Processor processor;
public:
Efp(const std::string& name, const double& generatorPeriod, const double& processorPeriod,
const double& transducerPeriod): Coupled(name),
ef ("ef", generatorPeriod, transducerPeriod),
processor ("processor", processorPeriod) ({
Coupled: :addComponent (&ef) ;
Coupled: :addComponent (&processor) ;
Coupled::addCoupling (&ef, &ef.out, &processor, &processor.in);
Coupled: :addCoupling (&processor, &processor.out, &ef, &ef.in);

~Efp () {}

Listing 12: Coupled module definition in xDEVS (C++, header)

APPENDIX B. EXAMPLE FOR COORDINATOR API FOR EFP MODEL

The Coordinator API is invoked for EFP model for the three languages: Java, C++, and Python (Listings 13-15).

Efp efp = new Efp("efp", 1, 3, 1000);
Coordinator coordinator = new Coordinator (efp) ;
coordinator.initialize () ;
coordinator.simulate (Long.MAX VALUE) ;
coordinator.exit ()

Listing 13: Launching a simulation in xDEVS (Java)

efp = Efp("efp", 1, 3, 1000)
coord = Coordinator (efp)
coord.initialize()
coord.simulate time (INFINITY)
coord.exit ()

Listing 14: Launching a simulation in xXDEVS (Python)

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL. 783

Efp efp("efp", 1, 3, 1000);
Coordinator coordinator (&efp) ;
coordinator.initialize () ;
coordinator.simulate ((long int)10000) ;
coordinator.exit () ;

Listing 15: Launching a simulation in XDEVS (C++)

APPENDIX C. EXAMPLE WRAPPER FOR ATOMIC ADEVS

Listing 16 shows the aDEVS wrapper. This wrapper wraps the aDEVS model for execution with xXDEVS simulation engine.

AtomicADEVS: :AtomicADEVS (const std::string& name,
adevs: :Atomic<PortValue>* model,
const std::list<int>& in ports,

const std::list<int>& out ports) : Atomic (name) {
this->model = model;
for (int port : in ports) {

Component : :addInPort (new Port (std::to_string(port)));
}
for (int port: out ports) {

Component : :addOutPort (new Port (std::to_string(port)));

}
}

AtomicADEVS: : ~AtomicADEVS () {
delete model;

}

void AtomicADEVS::initialize() { }
void AtomicADEVS::exit () { }

double AtomicADEVS::ta() {
double sigmaAux = model->taf() ;
if (sigmaAux >= DBL MAX) {
sigmaAux = std::numeric limits<double>::infinity () ;

}

return sigmaldux;

}

void AtomicADEVS::deltint () {
model->delta int () ;

}

void AtomicADEVS::deltext (double e)
adevs: :Bag<PortValue> msg = buildMessage() ;
model->delta ext (e, msg);

}

void AtomicADEVS::deltcon(double e)
adevs: :Bag<PortValue> msg = buildMessage() ;
model->delta_conf (msg) ;

}

void AtomicADEVS::lambda () {
adevs: :Bag<PortValue> msg;
model->output func (msg) ;

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

® | WILEY

RISCO-MARTIN ET AL.

std::list<Port *> ports = this->getOutPorts() ;

for (auto port adevs : msg) {
for (auto port xdevs : ports) {
if (port_adevs.port==std::stoi (port xdevs->getName ())) {
port xdevs->addvValue (port adevs.value) ;

}
}
}
}

adevs: :Bag<PortValue> AtomicADEVS::buildMessage () {
adevs: :Bag<PortValue> msg;
std::list<Port *> ports = getInPorts();

for (auto port : ports)
const std::string& port name = port->getName () ;
const std::list<Event>& events = port->getValues();
for (auto event : events)
PortValue pv(std::stoi(port_name), event);
msg.insert (pv) ;
}
}

return msg;

}

Listing 16: aDEVS wrapper implemented in xXDEVS/C++

APPENDIX D. COORDINATOR INVOCATIONS FOR SEQUENTIAL, REAL-TIME, PARALLEL

AND DISTRIBUTED EXECUTION FOR EFP

The following code excerpt shows how straightforward it is to define a sequential, real-time, and parallel coordinator and
perform simulation through the respective paradigm. The real-time coordinator has a time-scale attribute that can be
modified to change the resolution of the simulation clock, defining time in seconds, milliseconds and so forth. The parallel
coordinator also uses by default a number of threads equal to the number of cores in the simulation entity.* In an xDEVS
parallel simulation, the transition functions and the output functions are equally distributed among all the threads and
executed in parallel. The modeler can always create particular mechanisms to distribute transition and output functions

better (Listing 17).

// Sequential coordinator

coordinator = new Coordinator (new Gpt("gpt", 1, 100));
coordinator.initialize () ;
coordinator.simulate (Long.MAX VALUE) ;
coordinator.exit () ;

// Real-time coordinator

coordinator = new RTCentralCoordinator (new Gpt ("gpt", 1, 100));
coordinator.initialize() ;
coordinator.simulate (Long.MAX VALUE) ;
coordinator.exit () ;

// Parallel coordinator

coordinator = new CoordinatorParallel (new Gpt("gpt", 1, 100)); // The number of threads is equal to

coordinator.initialize () ; // the number of cores by default.
coordinator.simulate (Long.MAX VALUE) ;
coordinator.exit () ;

Listing 17: Use of sequential, real-time, and parallel coordinators in xDEVS

*With entity we refer to a computer, virtual machine, container and so forth. Any virtual or physical device able to simulate an XDEVS model.

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL. 785
WILEY——2
EF-P EFP: 192.168.1.1
configuration
file EF: 192.168.1.2 => Coupled2Atomic(EF)
Processor: 192.168.1.3
e
. 1
Coordinator Simulator Simulator
(EFP) (EF) (Processor)

cmd:lambda ' !
»-

lambda

cmd:lambda_ok

cmd:propagate

cmd:propagate_ok

cmd:deltfcn

4__| deltext

cmd:deltfcn_ok

ta ta
tN

FIGURE D1 Sequence diagram of the XDEVS distributed simulation

In the distributed simulation, every simulation entity must have installed the xDEVS simulation engine and at least
the part of the model being simulated into each entity. Each simulation entity is identified by its IP address. A text config-
uration file defines which entity is simulating each atomic or coupled model. An entity can simulate one or more atomic
models. If a coupled model is linked to an IP address, that model is transformed into an atomic model using the Cou-
pled2Atomic class and simulated witha SimlutadorDistributed class. Otherwise, the coupled model is flattened
and distributed among the simulation entities specified in the atomic models through their IP addresses.

Figure D1 illustrates a brief description of the distributed simulation sequence. The configuration file is uploaded
to each simulation entity. In the particular example of Figure D1, the experimental frame processor (EFP) model? is
being simulated, where the experimental frame (labeled as EF) is located at simulation entity 192.168.1.2. Thus, the
Coupled2Atomic wrapper encapsulates this coupled model that is handled as an atomic model. Next, the processor is
being simulated at the simulation entity 192.168.1.3. Three different processes are executed independently, in an infinite
loop. Each simulator is waiting for commands coming from the coordinator.

First, the coordinator commands, via sockets, the execution of the output function. Each simulator listens to this
command and runs the output function of their respective atomic models.¥ Second, the coordinator commands the prop-
agation of the output, sent and executed by all the simulators. After that, the execution of the transition function is
requested, and each simulator tests if the transition function must be the external, internal, or confluent function, depend-
ing on the current simulation time and the state at the input ports. Finally, the next time event (¢{N in Figure D1) is
requested to start the DEVS simulation loop again. This is executed until the number of DEVS iterations is reached, or all
the models enter into a passive state (i.e., ¢ = o).

APPENDIX E. EXAMPLE FOR PROFILING A DEVS SIMULATION

Table F1 illustrates an example. It shows the results of a profiling report of a complex Search And Rescue (SAR) mission
model. In these cases, data is grouped by atomic models that belong to the same modeling class.

$1is executed if and only if the simulation clock is equal to the next time event, accordingly to the DEVS formalism.

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

786 RISCO-MARTIN ET AL.
WILEY

APPENDIX F. EXECUTION OF CHAINED ALGORITHM FOR SPEEDUP USING SHARED
MEMORY

Figure F1 illustrates how the chained algorithm works with the EFP model. Figure F1A depicts the EFP model, while
Figure F1B represents the chained simulator manages the system’s memory.

If the Generator model outputs a new event when executing its output function 4, this event is written in a mem-
ory region reserved for this model’s port. Figure F1B represents this memory region as Gdata. The simulator in charge
of the Generator model returns to its parent coordinator a reference to every nonempty output port of its atomic model.
For this example, Figure F1B depicts this reference as G, which is pointing to the Gdata memory region. Then, the
coordinator in charge of the Experimental Frame (EF) coupled model creates chained references to G,,; according to the
internal and external output couplings which source port is G,y In this example, there is an internal coupling to the
arrived port of the Transducer model and an external output coupling to the out port of the EF model. These chained
references are represented by Tgpiveq and EF,,, in Figure F1B. Chained references of external output couplings are for-
warded to the parent coordinator. In this way, the coordinator in charge of the EFP model (i.e., the root coordinator) is
able to create a chained reference for the input port of the Processor model (P;, in Figure F1B). By doing so, the Proces-
sor model will be able to read output events directly from the original source by simply resolving the chained references
to Gdata.

TABLE F1 Profiling of a simulation, grouped by class

Class # t(6.) t(A) 6+ 4) %

DynamicSensorPayload 100 1849.408 5.933 1855.341 34.0
DynamicTargetControl 50 2774.442 6.276 2780.718 50.0
EvaluatorFunction 50 274.078 2.007 276.085 5.0
SensorMotion 100 15.300 12.763 28.063 1.0
StaticSensorPayload 50 315.514 2.580 318.094 6.0
TargetMotion 50 9.594 114.581 124.175 2.0
UavControl 100 26.886 4.953 31.839 1.0
UavMotion 100 16.523 46.070 62.593 1.0

Experimental Frame — Processor (EFP)

Pin —> EF oy \
Gout >
Tarrived G data
Gstop —> Tout >
T data
Tsolvea—> EFin —> Poyt >
P data
5 ; Memory

A) (B)

FIGURE F1 Example of memory management in the chained DEVS simulator. (A) Experimental frame-processor model, (B) chained
simulator memory management

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL. 787
WILE Y—I—

APPENDIX G. DEVSTONE PERFORMANCE DATA

For measuring the performance of xXDEVS we ran all the DEVStone models with a wide range of depth and width for
each xDEVS implementation. These experiments were run sequentially in a n1-standard-1 Google Cloud Platform virtual
machine, with Debian 10, Intel(R) Xeon(R) CPU @ 2.30 GHz, and 3.75 GiB RAM. For LI, HI, and HO, the combinations
from 100 to 1200 with step 50 have been generated for both of the parameters. The resulting simulation times have been
compared against those generated by a DEVStone implementation developed in the aDEVS simulator. Table G1 shows
information of the used engines and environments. Specifically, it includes the engine version and programming lan-
guage, as well as the interpreters or compilers used to run or compile the DEVStone implementations. Also, it is worth
noting that these simulation times does include the model creation and engine set-up times, evaluating all the aspects of
the simulation engine.

Table G2 shows the performance values for specific balanced configurations, for each model type and implementation.
As can be seen XDEVS/C++ offers similar execution times to aDEVS, whereas xDEVS/Java is slower, typically because
the Java Virtual Machine demands more resources and have an extra loading time. However, this deficit is compen-
sated with the parallel and distributed facilities of the Java programming languages. Finally, the xDEVS/Python engine
is the slowest one, since this is an interpreted language, mainly. However, the Python version also offers some advan-
tages like its facilities to use a distributed simulation or the huge amount of resources provided by Python libraries for
data analysis.

In order to have a single metric comparing all the simulation engines, Table G3 show the averages for each DEVStone
model class. The conclusions are similar to those obtained with the previous table, but with a more condensed infor-
mation. aDEVS is the fastest simulation engine, closely followed by xXDEVS/C++, and then by xDEVS/Java and finally
xDEVS/Python.

TABLE G1 Engine versions and environments used for the DEVStone simulations

Engine Version Programming language Interpreter/Compiler
adevs 33 C++17 g++ 7.5 (-03)

xDEVS (1) 1.0.0 C++11 g++ 7.5 (-03)

xDEVS (2) 1.1.0 Java OpenJDK 11.0.7
xDEVS (3) 1.1 Python3 CPython 3.6.9

TABLE G2 Simulation times for specific DEVStone balanced configurations

Model Depth Width aDEVS XxDEVS/C++ xDEVS/JAVA xDEVS/Python
LI 400 400 0.27 0.35 1.60 2.16
600 600 0.63 0.79 3.17 4.80
800 800 1.12 1.83 4.84 8.49
1000 1000 1.74 2.21 7.57 13.08
1200 1200 2.55 3.27 9.24 18.97
HI 400 400 36.34 49.37 72.09 332.21
600 600 128.06 258.26 249.30 1088.55
800 800 338.94 431.46 795.57 2649.91
1000 1000 745.52 826.01 1272.91 5312.32
1200 1200 1462.11 1463.87 2340.96 7879.57
HO 400 400 60.43 62.12 81.12 351.48
600 600 185.54 213.82 274.17 1197.56
800 800 392.61 558.46 712.02 2864.07
1000 1000 1252.72 1030.42 1401.38 6554.49
1200 1200 2553.18 2004.62 2613.55 6554.49

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

788 Wl LEY RISCO-MARTIN ET AL.
TABLE G3 Simulation time averages for all the DEVStone configurations
Simulator LI HI HO
aDEVS 0.77 269.51 318.47
XDEVS/C++ 0.96 304.02 375.49
xDEVS/Java 3.39 443.31 483.18
xDEVS/Python 5.57 1853.30 1942.80

APPENDIX H. UAVS DEVS MODEL

For this use case, each example is constructed upon multiple DEVS atomic components that exemplify UAV dynamics
and behavior, together with multiple DEVS coupled components that characterize the line of action of an ADU. This
Appendix shows the Finite State Machine (FSM) design of two key components: UAV and Missile.

UAVs are models that receive states of tracking radars and missiles of each ADU correspondingly. They also send
their state out. A UAV keeps an internal state variable with an array of these UAV states reflecting the UAV dynamics.
Whenever a UAV realizes that it has been detected by an ADU, if possible, it starts an evasive maneuver to escape from
the ADU firepower range and prevent being shot down. Basically, the UAV FSM model works in the following way. Every
time the internal time event function is triggered (simulation time is equal to sigma), the next necessary collection of
states is computed, unless this collection is not empty or the UAV has reached the end of the trajectory. These states
store intermediate values of position, orientation, and velocity that describe the UAV’s movement across the current
coordinate to the next trajectory point. Then, sigma (time of next internal time event) is updated to the next computed
time or set to infinity only if the UAV reached the end of the assign path. Whenever the external transition is executed
(received an input), the UAV verifies if any radar is tracking its path and whether the distance from a missile aimed at
overthrowing it is less than the established minimum. If the former case is positive, the UAV attempts to escape through an
intersecting trajectory to flee away from the corresponding ADU and afterward updates sigma. If the latter is positive and
according to a certain probability of destruction, the UAV is destroyed and sigma is set to infinity. On every occasion that
the output function is activated, the current UAV state is sent thought the output port. Figure H1A and Table H1 depict
this behavior.

As an illustrative example, Listing 18 shows the source code of the internal xXDEVS transition function.

EXPLODED
(o=c0)

FINNISH
(o=x0)

DESTROYED
(o=20)

DESTROYED
(o=00)

(A) (B)

FIGURE H1 Example of (A) UAV and (B) Missile state diagrams

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

RISCO-MARTIN ET AL.

TABLE H1 UAV State Transitions

Sk
T1 STOP
T2 FLYING
T3 FLYING
T4 FLYING
T5 STOP
Té6 STOP

Sk+1 Sint

FLYING States is NOT empty
FLYING States is NOT empty
FINISH States is empty
DESTROYED

DESTROYED

FINISH States is empty

Dist. to missile is > MIN

Dist. to missile is < MIN

public void deltint () {
boolean finish = false;

if (super.phasels (phases[FINISH]))

finish = true;

if (uavStates.isEmpty () &&

'finish)

finish = uavModel.update (uavStates, refUavState.t, dt, refUavState) ;

if (luavStates.isEmpty())

double t0 = refUavState.t;

refUavState = uavStates.remove() ;

if (finish)

super.holdIn (phases [FINISH], refUavState.t - tO0);

else

super.holdIn (phases [FLYING], refUavState.t - tO0);

}

else

super.holdIn (phases [FINISH], Constants.INFINITY) ;

Listing 18: UAV internal transition

Missile models accept states of UAVs intended to be blown down, and pass these UAVS’ state to the next missile only
if their status is fired, and another output port to communicate its state to the UAVs so that they can check whether
they are destroyed or not. Like UAVs, they also keep an internal state variable with an array of missile states (same as
UAVs) reflecting changes in time of the missile dynamics. Essentially, as seen in Figure H1B and Table H2, missiles
wait for an external command from any tracking radar model of its corresponding ADU to shift from the initial state
stop to be fired. Then, sigma is updated from infinity to the next immediate state time. Afterward, every time the inter-
nal time event function is triggered, it jumps to the next computed state. Sigma is updated to the next computed time,
unless the array of states is empty and the missile has reached its goal or exceeded its limits, or the distance sigma is

set to oo.

TABLE H2 Missile state transitions

Sk
T1 STOP
T2 FIRED
T3 FIRED
T4 FIRED

Sk+1 Bint

FIRED

FIRED States is not empty
EXPLODED

DESTROYED

Bext

NO assigned target
Assigned target
Reached goal

Exceeds limits or distance

85U80|7 SUOWWOD 3A 81D 3(cedljdde aup Aq peusenob ase ssppie YO ‘88N JO s8Nl 10} ArIqiT8UIUO 8|1 UO (SUOPUCD-pUR-SLUBIALI0D A8 1M AeIq 1 BU [UO//SANY) SUOIPUOD pue swie | 8y 88S *[£202/20/60] U0 AfeiqTauljuO 3|1 ‘UOSINOIG BpeeD aueIL0D AQ 89TE8dS/Z00T OT/I0p/W0D A8 | ImAleIq Ul uo//:Sdny Wwolj pepeojumod ‘€ ‘€202 ‘X¥20.60T

	xDEVS: A toolkit for interoperable modeling and simulation of formal discrete event systems
	1 INTRODUCTION
	2 THE DEVS FORMALISM
	3 XDEVS ARCHITECTURE
	3.1 Application programming interface
	3.1.1 Modeling layer
	Component
	Atomic components

	Coupled components

	Realizing the DEVS formalism with the xDEVS API
	3.1.2 Simulation layer
	3.2 Main features
	3.2.1 Wrappers
	3.2.2 Models flattening
	3.2.3 Sequential, real-time, parallel, and distributed simulations
	3.2.4 Profiling of the simulation
	3.2.5 Memory-shared ports
	3.2.6 Unit testing
	3.2.7 Constraints definition
	3.2.8 DEVSML Studio

	4 XDEVS STANDARDIZATION AND INTEROPERABILITY
	4.1 Platform independent models
	4.2 DSE1/A to DSE2/A interoperability for the same programming language
	4.3 DSE to non-DEVS interoperability
	4.4 DSE/A to DSE/B interoperability between different programming languages

	5 PERFORMANCE ANALYSIS
	5.1 DEVStone
	5.2 xDEVS engines comparative analysis

	6 CASE STUDIES
	6.1 Migraine prediction system
	6.1.1 Impact of xDEVS architecture and features

	6.2 Mercury: A framework for modeling data stream-oriented Internet of Things (IoT) applications
	6.2.1 Impact of xDEVS architecture and features

	6.3 Unmanned aerial vehicles (UAVs) in hostile environments
	6.3.1 Impact of xDEVS Architecture and features

	6.4 Synopsis

	7 DISCUSSION
	8 CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT
	ORCID
	References
	APPENDIX A. XDEVS API IMPLEMENTATION EXAMPLE FOR EFP MODEL
	APPENDIX B. EXAMPLE FOR COORDINATOR API FOR EFP MODEL
	APPENDIX C. EXAMPLE WRAPPER FOR ATOMIC ADEVS
	APPENDIX D. COORDINATOR INVOCATIONS FOR SEQUENTIAL, REAL-TIME, PARALLEL AND DISTRIBUTED EXECUTION FOR EFP
	APPENDIX E. EXAMPLE FOR PROFILING A DEVS SIMULATION
	APPENDIX F. EXECUTION OF CHAINED ALGORITHM FOR SPEEDUP USING SHARED MEMORY
	APPENDIX G. DEVSTONE PERFORMANCE DATA
	APPENDIX H. UAVS DEVS MODEL

