
Chapter 10
Ubiquitous Brooks–Iyengar’s Robust
Distributed Real-Time Sensing
Algorithm: Past, Present, and Future

This paper primarily benevolences a two-decade longstanding and most influential
Brooks Iyengar’s hybrid algorithm known as robust distributed computing and
sensing algorithm published in IEEE computing in 1996. The algorithmic architec-
ture establishes foundation principles across various real-time operating systems,
application areas, and fault tolerant schemes. The key highlight of the algorithm is
in the context of sensor applications growing interest in real-time processing and
enhancing their fault tolerance characteristics of the whole system by exploiting the
redundancy. The crucial contribution of the algorithm is majorly found in enhancing
the features of MINIX real-time operating system, the hybrid architecture, and
scalability of the algorithm is proficient enough to encounter the unreliable and
distributed sensors data using the Byzantine [1] agreement and distributed decision-
making process methods. This article emphasizes on inclusion and adoption of most
persuasive long running Brooks Iyengar’s algorithm in MINIX real-time operating
system and their recent enhancement of incorporating the fault tolerant schemes.
Further, the richness of algorithm has acclaimed by millions of vivid category
of users around the globe in their research and computational tasks. USC/ISI.
Additionally, the scalability of algorithm proved to be beneficial to other domains
like cyber physical systems [3], robot merging, high-performance computing,
reliability of software and hardware appliance, and artificial intelligence systems.
In this paper, we attempt to showcase the use cases and real-time deployments
of Brooks–Iyengar’s algorithm in various aspects of distributed computational and
sensor world.
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10.1 Introduction: Brooks–Iyengar Algorithm

The current internet world consist numerous automated systems that must commu-
nicate with dynamic atmospheres. Because these environments are undeterminable,
the systems depend on sensors for the delivery of information in order to perform
the computation. The sensors are unenviable interface across computer systems and
internet world (real world) for the communication of data. The smart intelligence
development and deployment into these automated control systems is arduous
because of limited sensor accuracy, and the noise in data readings recurrently
corrupts the accuracy of data. The Brooks–Iyengar algorithm is widely known as
Brooks–Iyengar hybrid algorithm [4], this algorithm acclaimed for its betterment
in the accuracy of interval measurement engaged by a distributed sensor network.
The key merit of this algorithm is even with the faulty sensor [5] presence the
smart intelligence of sensor network swaps the measured value and precision value
at each node with every peer node. Further provides accuracy in the measured
range value for all the nodes of network. The resilient point of algorithm is
that it is a fault tolerant and distributed, it does not malfunction even if some
sensors transmit faulty data, because of this key feature it is used as sensor fusion
method. Further, accuracy and precision assurance are proved in 2016 [6]. The
algorithm Brooks–Iyengar integrates with Byzantine agreement with sensor fusion
to control the presence of noise in sensor data. The algorithm is designed to
channel the space between Byzantine fault tolerance [1] and sensor fusion. Further
this algorithm is identified as the first algorithm to amalgamate these dissimilar
fields. Principally, it syndicates algorithm of Dolev’s [7] for an imprecise contract
with fast convergence algorithm (FCA) by Mahaney and Schneider’s. The core of
algorithm pretends processing elements (PEs) as N and t of them are assumed to
be faulty and perform malevolently. It accepts both real and unreal values with
noise and uncertainty. However, the output produced by the algorithm is real
value with appropriate stipulated accuracy. The algorithm is further customized
to resemble Crusader’s Convergence Algorithm (CCA) [8], this adoption increases
the bandwidth requirement in processing of algorithm. The benefits of algorithm
are wide spread across domain like high-performance computing [9], distributed
control, software reliability, and real-time MINIX operating systems. The use of
algorithm is not restricted to specific domains and applications we have cited. In
general, all floating-point computations produce inaccuracy and this varies from
machine to machine computing. This hybrid algorithm offers increased scientific
consistency on a distributed system encompassing assorted components. This offers
a novel method of resistance in rounding and skewing the errors generated by
hardware limitations. Today’s cloud based software development and customer
requirements are inconsistent, the cloud based various services like software,
platform, data, network, security, and recovery are different in domain but targets
to produce a common service to customer. In these environments, faults tolerance
and accuracy of services must be assured from end to end terms. The Brooks–
Iyengar’s algorithm is useful and effective in these instances by achieving robust
and distributed accuracy because of the novel intelligence of algorithm. The cluster
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computing involves the critical data and service modules that are important systems
which demand the additional strength and accurateness. Regrettably, data, service,
and security are compromised often between them, nevertheless the usage of
algorithm increases without sacrificing the accuracy of data, service, and security.
The fault tolerance mechanism defined in the algorithm is highly beneficial in
both active and passive cluster computing in primary and disaster computing sites.
With this algorithm, robust distributed computing applications can be developed
and deployed seamlessly. Today’s world is full of Internet of Things (IoT) and
cloud based services in which sensors are vital part computing systems. The
amount of data communication across current dynamic environments is leading to
errors, mechanical failures, and uncertainties in sensors. To avoid this, the backup
mechanism is plugged but fault tolerance and accuracy cannot be managed. Hence,
the Brooks–Iyengar’s algorithm has lower bound and upper bounds, and using this
technique inaccuracy is dealt smartly and specifically. The algorithm is not limited
to a specific domain neither restricted to set of computing and hence the wide spread
smartness of algorithm is enchasing from last 20 years by various researchers,
computing labs, and university training projects. In illustrating an example, a robust
fault tolerant rail door state monitoring system is developed using the Brooks–
Iyengar sensing algorithm to transportation applications [10], in this paper the
author Buke Ao clearly listed the implementations of Brooks–Iyengar algorithm
in variety of redundancy applications by various research studies [11, 12]. The key
identification is Brooks–Iyengar algorithm has prominently extended seamlessly by
connecting the legacy and edge cutting trends of technology variants in software
applications and hardware control systems in cloud and non-cloud systems [10].
The major contribution of algorithm is identified with relevance to Linux and
Android operating systems effectively. Truly, tons of various software applications
and hardware control systems have encapsulated the Brooks–Iyengar algorithm to
offer fault tolerant fusion data across billions of users accessing the various services
through internet and other sources of digital media. Further, algorithm indirectly
benefits across to 99% of world’s top supercomputers and 89% of smart phones and
millions of end users around the globe in various computing ways.

10.2 Real-Time MINIX Operating System

The Real-Time MINIX operating system is an enhanced version of MINIX oper-
ating system; this was originally programmed by scientist Andrew Tanenbaum
for teaching operating system on ×86 computer system. The research study and
implementation by the author Gabriel Wainer [13, 14] changed the MINIX operating
system to support RT-processing named it “RT-MINIX” by adopting Brooks–
Iyengar algorithm in the areas like scheduling algorithms selection, scheduled
queues, real-time metrics collection, and fault tolerant systems. Before we explain
the deep impact of Brooks–Iyengar algorithm on MINIX operating system, we
intend to detail about the MINIX operating system. The detailed understanding on
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MINIX operating system sets a platform for understanding the Real-Time MINIX
(RT-MINIX) for various applications services and control systems. The MINIX
operating systems drivers, a user and system specific server runs on highest level
on the miniature kernel architecture. The SYS and CLOCK are the two major tasks
responsible to support the user-mode sections of the operating system at higher
levels. Apart from this programming the MMU, CPU, interrupt handling, and IPC
are the other privileged operations of the MINIX kernel. Just like any other operating
system the functionalities like file system (FS), memory management (MM), user
management (UM), and process management (PM) are offered by MINIX. The key
and unique feature of MINIX over other operating system is stealthily this RS server
monitors all the device drivers and various servers inside the operating systems at
all time and fix it automatically when any failure is noticed.

All system calls are focused blatantly by system libraries to right server to
manage the kernel communication. Let us consider a user requests a process to run
an application task, usually a process is initiated by fork () library function when the
process manager approves it by verifying with the memory manager on the process
slots availability. If any slot available, then process manager instructs the kernel
to produce a copy of the process, all this happens transparently without the notice
of the user application task. Just like UNIX the MINIX kernel is responsible of
managing hardware and device drivers. This involves process scheduling, interrupt
management, memory, device I/O, and CPU management. The two major core
components of kernel space SYS and CLOCK are explained here because in later
sections we illustrate how the Brooks–Iyengar algorithm is seminal for the RT-
MINIX enhancement. The SYS control is known as system task, this is vital for
all kernel mode operations for the device drivers and key heartbeat channel for user
segment servers. Any user request to process internally sends a signal to kernel
through the library function; each request is passed to SYS. There are various
categories based on the SYS management on kernel calls, to copy data between
process SYS calls SYS-VIRCOPY and to configure an alarm SYS-SETALARAM
etc. Few new systems call defined in the MINIX are listed below in Fig. 10.1.

The second core object is CLOCK by which kernel manages the process
scheduling, timers, cron services, hardware clock, and CPU usage. The interrupt
handler will initiate a timer moment when a MINIX system is power on, since then
each tick is countered using this interrupt timer. In general, the cooperating servers
are created by modulating the operating system; the native MINIX operating system
allows third party device driver un-trusted code to run and communicate with kernel,

Fig. 10.1 Privileged SYS calls to kernel
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the MINIX is smart and manages the spreading of failures. A tight coupling of
devices and library functions are created to intact the seamless communication in
the low-level kernel operations. In this paper we are describing MINIX operating
system in deep to prove how the Brooks–Iyengar algorithm is influencing the fault
tolerant and robust distributed control systems in RT-MINIX.

10.3 Influence of Brooks–Iyengar Algorithm

Brooks and Iyengar’s; the name is all over the globe from last two decades, this
algorithm is considered to be the all-time best robust algorithm for precision, fault
tolerance, and isolation of errors across software applications and hardware control
systems. In this segment we narrate the Brooks–Iyengar algorithm’s influence in
various domains like MINIX operating system, sensor networks, software applica-
tion development, real-time extensions, virtualization, physical cyber systems, and
cloud computing. To begin with we explain the development and deployment of a
distributed sensing algorithm that has major influence on computing systems.

10.3.1 Brooks–Iyengar’s Algorithm on MINIX Operating
System

The MINIX operating system powered by Tanenbaum’s [15] was enhanced to Real-
Time (RT) MINIX operating system and services by Wainer and it is identified
as RT-MINIX [13, 14]. Further, more recent features were added to shape up an
academic real-time operating system called as MINIX v2. This architecture of
design was proposed to train the RTOS with few major topics:

– System architecture
– Handling interrupt
– Process management
– Scheduling of process
– Fault tolerance
– Isolation of errors

The research study by Gabriel Weiner also mentioned that many other control sys-
tems, computer application, and real-time systems are created based on the services
offered by Brooks–Iyengar algorithm. The services provided by the algorithm on
real-time systems, computer applications, and various systems are vaguely different
from traditional systems and they are unique and different from the native operating
system.

Figure 10.2 describes novel features added to MINIX operating system by
Gabriel and Team in creation of RT-MINIX by using the intelligence of Brooks–
Iyengar algorithm. The programming of the MINIX source code [13] was dedicated
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Fig. 10.2 Block structure view of Brooks–Iyengar algorithm influence

to provide the real-time controls on various services. Many real-time services
were added, to begin with rate-monotonic scheduling [16], earliest deadline first
processor, and fault tolerance are programmed. To make these new changes in
the source code of the kernel, the code flow and data structures are slightly
modified based on the new updates, specifically, sensor, timers, schedule, and
criticality. Further, to adapt live-tasks with interactive CPU bound tasks a multi-
queue is developed. The below listed data structure is modified in lieu of RT-MINIX
evaluation (Fig. 10.3).

All these changes are tested with various feasibility of MINIX for the real-
world challenges for real-time development. Numerous works were done using
Brooks–Iyengar robust distributed computing algorithm from the testing of novel
scheduling procedures to kernel alterations. In the meantime new version of MINIX
was released and hence to sync the RT-MINIX version with MINIX version, some
changes were made. The analog to digital conversion [17], in this update the
target was to acquire data from analogic environment as many real-time systems
are employed to handle the real process like chemical and a production line. In
this requirement the Brooks–Iyengar algorithm’s sensor management intelligence is
effectively used for sensing the real-world data, to control the noise and to manage
the faulty sensors. The interface used for game ports was used to provide the signals
from the sensors, this was considered and a device driver for port is developed. The
changing environment relies on poor performance of integral systems of RT-MINIX
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Fig. 10.3 Updated MINIX data structure using the Brooks–Iyengar algorithm

Fig. 10.4 MINIX kernel and Brooks–Iyengar algorithm

with novel techniques. The Brooks–Iyengar’s algorithm adopted fast convergence
algorithm (FCA) [18] to increase the convergence ratio. According the Pablo Ragina
and Gabrile Weiner, the algorithm [19] is used extensively to extend RT-MINIX with
possibility of several sensors from a fault tolerance perception. At the outset, the
complete coding was performed based on all the four algorithms of hybrid Brooks–
Iyengar. The next immediate phase was to integrate the smart capability to make
use of the real-time data, to do this four potentiometers were used to sense the
signals/data from analogic inputs from the joystick port. These sensor positions are
arranged with actual positions for a simulation based robotic arm. An accurate and
precise functionality of algorithm was noticed by providing an exclusive value from
the simulated sensors in spite of faulty, at the same time users were offered open
chance to modify the data by varying the potentiometers. At last, all the updated
code is test for various feasibilities and real-time constraints and then the novel
algorithm intelligence is united into MINIX kernel. Figure 10.4 shows the RT-
MINIX Kernel and new feature additions with Brooks–Iyengar algorithm.
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The software developers were given a set of functions to work with intellectual
sensors, using these it was possible to generate many new services and devices
like/dev/js0 and after that smart sensors were able to read data in the presence of
faulty sensors. Once the operating system is enhanced with RT services, the demand
ascended for various computing tools and applications. The Brooks–Iyengar’s
algorithm needed a test on the novel techniques applied on kernel, in order to
evaluate the data structure through vivid system and library calls.

10.3.2 Case Study: Open MPI + Virtualization

The Brooks–Iyengar algorithm was further implemented on Linux using the Open-
MPI [20], this is an open source project created to pass message through interface.
This is a collaborative consortium of industry partners, research community, and
groups of academic. Hence, the OpenMPI is powerful and smart because the
knowledge, technology, and resources are shared from various communities. The
libraries of MPI provide support to software developers and researchers of computer
science and operating researchers.

A classical problem in distributed computing is Byzantine generals problem,
introduced in the 1982 white paper of the same name. It attempted to formalize
a definition for faulty (traitorous) nodes in a cluster and how for the system to
mitigate it. Solutions such as majority voting or signed messages were suggested.
Majority voting requires that all generals have the same information, a suggestion
that is not always possible. Signed messages are a good to verify that it was the
correct node in communication, even if it does not verify that the content itself is
correct. Both are good suggestions, but it would be more interesting to have an
algorithm that can survive a traitorous order every now and then. Enter the Brooks–
Iyengar algorithm as an attempt to solve this problem. This algorithm uses sensor
fusion to mathematically eliminate the faulty sensors. In short, this is achieved by
taking measurements over an interval, the measured interval is then shared between
all sensors on the network. The fusion step then happens, by creating a weighted
average of the midpoints of all the intervals. At this point you can eliminate any
sensors with high variance or use heuristics to choose the reliable nodes. It runs in
O(N logN) time and can handle up to N /3 faulty sensors (Fig. 10.5).

To conclude the obtained results it is better to consider the dumb average because,
noise generated from real and faulty sensors are from undeviating distribution. If
the algorithm has not performed better then the noise would have been twisted
and tremendous in one direction causing the red line curve aggressive over the
green line. Overall, the algorithm is very difficult to implement as there were no
framework/library and demands precision of coding and adequate infrastructure to
achieve best results. The results proved that Brooks–Iyengar’s algorithm is smart
and scalable across various domains like cyber physical system.
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Fig. 10.5 OpenMPI methods implemented using Brooks–Iyengar

10.4 Conclusion

In this article the acceleration, effectiveness, and liveliness of two decade old
Brooks–Iyengar algorithm is illustrated. Since today’s technology does not guar-
antee success and safety in all situations, the Brooks–Iyengar algorithm can
significantly improve the fault tolerance of systems by providing a greater margin
of safety for operations. This algorithm provides the robust implementation and
seamless scalability under faulty sensor conditions for various domains. Finally, the
algorithm “Stand the Test of Times” from last two decades and hope it continues the
successful journey further.
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