
Sine Cosine Algorithm for Reducing
Communication Costs of Federated Learning

Ammar Kamal Abasi, Moayad Aloqaily, Mohsen Guizani, and Fakhri Karray

Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
E-mails: {ammar.abasi; moayad.aloqaily }@mbzuai.ac.ae, mguizani@ieee.org, fakhri.karray@mbzuai.ac.ae

Abstract—Federated Learning (FL) is a Machine Learning
(ML) setting in which several clients (e.g., mobile devices) train a
model cooperatively under the direction of a central server (e.g.,
cloud server), while training data is decentralized. Due to the fact
that FL clients frequently have restricted transmission capacity,
communication among clients and servers needs to be reduced
to enhance presentation. FL clients frequently employ Wi-Fi and
must interact in Unstable Network Environments (UNE). Existing
FL aggregation techniques send and receive a huge number of
weights, which dramatically reduces the accuracy of the UNE.
In this paper, we propose a Federated Sine Cosine Algorithm
(FedSCA) to reduce data communication by transferring score
principles rather than all client models’ weights and utilizing the
Sine Cosine Algorithm (SCA) mechanism as a weight updating
technique to improve the clients’ models. This paper reveals that
using FedSCA significantly decreases the quantity of data utilized
in network communication and increases the global model’s
accuracy by an average of 9.87% over FedAvg and 2.29% over
Federated Particle Swarm Optimization (FedPSO). Moreover, in
studies conducted on an unstable network, it demonstrated a
4.3% improvement in comparison to accuracy loss in existing
algorithms.

Index Terms—Sine Cosine Algorithm (SCA), Convolutional
Neural Network (CNN), Federated Learning, Deep Learning,
Optimization.

I. INTRODUCTION

Machine Learning (ML) models are getting more and more
complex with the increase in the size of datasets. This is
why training ML models has become a time-consuming and
challenging task for data scientists [1]. The currently available
ML techniques are designed to be used in highly controlled
environments, such as data centers, in which the distribution of
data between machines occurs in a balanced and Independent
and Identically Distributed (IID) fashion and where high-
throughput networks are available. Recently, Federated Learn-
ing (FL) [2] has been suggested as an alternate ML setting:
a centralized server generates the training of a shared global
model from a federation of participating devices (or clients).
The number of participating devices is often relatively high,
and their internet connections are either poor or unreliable.

A primary motivating example for FL emerges when the
training data is derived from user interactions in mobile
applications [3]. Sharing prediction models is made possible
by FL’s ability to keep all training data on a mobile device,
hence eliminating the need to store training data in a cloud-
based service. To update a global model, users’ mobile devices
are used as nodes for computation according to their data,

which is stored locally on their devices. By moving model
training to the mobile device, this expands the applicability of
local predictive models.

In fact, there are four considerations when leveraging mobile
device data for FL. First, collecting or keeping private infor-
mation raises the probability of data breaches. Second, mobile
device processors lack the computational capacity required
for ML (i.e., low computational capability). Third, as mobile
devices cannot connect to wired networks, maintaining a stable
network environment is difficult because Wi-Fi connections
are prevalent. Finally, there is a considerable cost associated
with acquiring and placing a considerable quantity of source
data on a server to be stored[4].

In order to design a successful ML model, especially for
Artificial Neural Network (ANN) weights using mobile data,
it is essential to minimize the quantity of the gathered data,
enhance the security of the data collected, improve the stability
of an Unstable Network Environment (UNE), and reduce the
number of training parameters. As the ANN is trained, its
back-propagation mechanism adjusts its weights. In order to
address the aforementioned challenges, the research on FL
has consistently progressed, enabling the use of large amounts
of data on mobile devices [5]. The FL technique safeguards
private information by keeping the data in the local IoT
device and not share it with a centralized repository [6].
Furthermore, FL keeps transmission costs to a minimum by
merely uploading the learned models to the server rather than
uploading enormous volumes of source data.

In standard ANN models, the calculation time is signif-
icantly greater than the communication time, hence several
strategies are employed to minimize the calculation time,
including the use of Graphics Processing Unit (GPU) accel-
erators and the connection of multiple GPUs. Communication
in FL, on the other hand, takes more time than computing.
Therefore, FL’s performance could be increased by reducing
the time for a network connection. FL requires Wi-Fi connec-
tions and connected chargers due to UNE issues [7]. Therefore,
in order to lower FL’s communication costs, it is required to
increase network transmission speed and address UNE issues.
FedAvg is the most common method of incorporating FL into
a model. The goal of this paper is to adapt the Sine Cosine
Algorithm (SCA) [8] strategy to speed up model updates. Due
to the stochastic mechanism used in SCA, the SCA requires
a large number of iterations, which is in line with ML’s

2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom)

978-1-6654-9825-8/22/$31.00 ©2022 IEEE 55

20
22

 IE
EE

 In
te

rn
at

io
na

l M
ed

ite
rr

an
ea

n
Co

nf
er

en
ce

 o
n

Co
m

m
un

ic
at

io
ns

 a
nd

 N
et

w
or

ki
ng

 (M
ed

itC
om

) |
 9

78
-1

-6
65

4-
98

25
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
ED

IT
CO

M
55

74
1.

20
22

.9
92

86
14

Authorized licensed use limited to: Carleton University. Downloaded on November 08,2022 at 16:27:35 UTC from IEEE Xplore. Restrictions apply.

strategy of learning via many reruns [9]. The SCA is well-
suited to settings that are both heterogeneous and dynamic
environments.

This paper aims to reduce network communication costs. As
a way to update global models by using SCA in conjunction
with FL communications. We have created a Federated SCA
(FedSCA) model, which uses scores like accuracy and loss as a
objective function. The FedSCA network cost and accuracy are
also evaluated. By comparison with other algorithms, FedSCA
was shown to be 9.87% and 2.29% more accurate on average
than FedAvg and FedPSO, respectively. Moreover, we used an
UNE to evaluate FedSCA, and the proposed FedSCA showed
a 4.3% decrease in accuracy loss when compared to existing
algorithms.

The remainder of the paper is organized as follows: Section
II examines past research utilizing SCA and FL. Section III
discusses how the proposed method transmits the learned
model from the client to the server. The assessment of our
proposed method is offered in Section IV, followed by the
paper’s conclusion in Section V.

II. BACKGROUND AND RELATED WORK

A. Federated Learning (FL)

Formally, the objective of a Federated Learning (FL) algo-
rithm is to solve a distributed (federated) supervised learning
optimization problem [10]. A collection of k = 1, 2, ...,K
clients seek to concurrently optimize the global model pa-
rameters w ∈ Rd by utilizing their local data {Xk, Yk} of
size Nk from N samples. Clients’ local losses, denoted by
lk(w,Xk, Yk), are pooled to minimize a global cost function
with a finite sum:

minw∈Rd

K∑
k=1

Nk

N
lk(w,Xk, Yk), (1)

FL is a learning approach for distributed datasets suggested
by Konecn [2]. It prevents data leakage when training a model
from datasets dispersed across several devices [11]. FL is
useful since it enhances privacy and decreases communication
expenses [12]. Artificial Neural Network (ANN) models can
learn through federated learning without data or personal
information intrusions. Network traffic and storage costs rise
when data is sent between several devices and then stored on a
centralized server. FL greatly minimizes communication costs
by transmitting just model-training-derived weights. The FL
procedure is outlined in Figure 1 and described below.

1) The learning global model is sent from the server to all
selected clients.

2) The models received on devices are trained using client
data.

3) Each client delivers the server its trained local model.
4) The server processes and integrates the obtained models

into a single updated model.
5) This step is performed for each of the client’s updated

models from the server.

Fig. 1. The Federated Learning protocol.

Federated Stochastic Gradient Descent (FedSGD) is used in
a large number of FL studies. As shown in Figure 1, the fourth
step is accomplished by using FedSGD and Federated Averag-
ing (FedAvg). FedAvg is an algorithm that was developed by
McMahan [2] to address some of the limitations of FedSGD,
such as being unable to scale well with large datasets and
update server-collected model data. All the clients’ parameters
are averaged together to produce global model parameters.
When FedSGD collects weights from the server, it returns
them to the client. In this method, the global model weights
are changed to construct a global model once the gradient
is submitted to the server to determine the average gradient
across clients. FedAvg leverages FedSGD and mini-batches to
immediately update models on the client side while the server
averages weights to produce a new global model.

FL implies a distributed mobile device environment. Mobile
devices have the drawback of learning in a wireless network
environment rather than a stable wired network connection [7].
Because of unreliable network conditions, a trained model may
not be able to transfer its entire dataset when it is submitted
to the network for evaluation.

B. Sine Cosine Algorithm (SCA)

Generally, random solutions are usually used as a start-
ing point for population-based optimization algorithms [13].
The objective function and search guidelines form the basis
of an optimization process, which continually evaluates and
improves this random set of solutions [14]. There is no
guarantee that a solution will be obtained in a single run
due to the fact that population-based optimization algorithms
search for optimum solutions to optimization problems in a
random way (i.e., stochastic) [15]. However, the possibility
of finding the global optimum increases as the optimization
steps (iterations) and number of random solutions increase.
Although stochastic population-based optimization has many
algorithmic variants, the optimization process is commonly
separated into two stages: exploration and exploitation [16].
Optimization algorithms first combine random solutions with
a high degree of unpredictability in order to obtain interesting
regions in the search space. Exploration and exploitation are

2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom)

56Authorized licensed use limited to: Carleton University. Downloaded on November 08,2022 at 16:27:35 UTC from IEEE Xplore. Restrictions apply.

two distinct phases, and random solutions are progressively
altered throughout exploitation.

SCA is a new meta-heuristic algorithm that employs the
sine and cosine functions’ mathematical features. In 2015,
Mirjalili developed this algorithm [8]. This population-based
optimization algorithm starts with a random distribution of
solutions. The following equations are then applied to each
individual solution.

CXitr+1
i

= CXitr
i

+C1 × sin(C2)× | C3GBitr
i

−CXitr
i

| (2)

CXitr+1
i

= CXitr
i

+C1 × cos(C2)× | C3GBitr
i

−CXitr
i

| (3)

where CXitr
i

is a current solution at itr iteration in the ith
dimension, GBitr

i
is the best solution attained up to iteration

itr. The values of C2 and C3 are completely random. The
search space region around the current solution can be deter-
mined by the coefficient C1. There is no definitive boundary
between GBitr

i
and CXitr

i
in the search space. Using the C1

parameter, it is easier to explore and exploit the search space
during the search. The coefficient C1 is devoted to exploring
the search space in half of the maximum number of possible
iterations and then uses the second half of iteration count for
exploiting the search space. C1 is defined in terms of the
following mathematical formula:

c1 = a− itri
a

Maxitr
(4)

The maximum number of SCA iterations Maxitr is used
as a termination criteria, and a is a constant (two in this
paper). It is possible for C1 to point towards or outside GBitr

i
,

depending on the present solution’s moment direction. There
are two weights in C1 one for exploring (C1 >1) and one for
exploiting (C1 < 1). C1 also avoids premature convergence
at the end of each iteration. A smooth transition from sine to
cosine functions, and vice versa, can be achieved using the
coefficient C1. Here is how SCA makes use of the previous
two equations:

CXitr+1
i

=

{
CXitr

i
+ C1 × sin(C2)× | C3GBitr

i
− CXitr

i
| r4 < 0.5

CXitr
i

+ C1 × cos(C2)× | C3GBitr
i

− CXitr
i

| r4 ≥ 0.5
(5)

The SCA algorithm’s phases are explained in depth in
Algorithm 1.

C. Related Work

There is a lot of work on how to improve FL performance
through better communication with clients. Numerous prob-
lems arise when the UNE of mobile devices is used, including
group shifting, significant server load, frequent node crashes,
and increasing latency. Furthermore, multi-layer models have
been employed to enhance learning accuracy. However, as the
layers become deeper, the number of weights for the nodes
also increases. FL is restricted by the amount of data because
it increases the size of the network transmission between the
server and the client.

Algorithm 1: Pseudocode of the SCA algorithm
1: Input: the SCA parameters (a, c1, Number of dimensions, Number of solutions,

Number of iterations Maxitr).
2: Create the population of solutions.
3: while The current iteration itri less than the maximum number of iterations

Maxitr do
4: Compute the objective function for each solution.
5: Determine the best solution G

Bitr
i

.

6: Compute c1 using Eq (4).
7: Generate c2, c3, and c4.
8: for each solution CXitr

do
9: for each decision variable i in CXitr

do
10: Update the current solution using Eq (5).
11: end for
12: end for
13: end while
14: Output: Return G

Bitr
i

, which is the best solution.

There are two ways to reduce the uplink communication
costs proposed by Konecny et al. [5] including: sketched up-
dates, by learning the full model update and then compressing
it using a combination of quantization, random rotation, and
subsampling prior to sending it to the server; and structured
updates, by learning an update from a smaller set of variables
in a more restricted space, e.g., by using a low-rank space or
random masks. The proposed methods by [5] achieved lower
communication costs by two orders of magnitude on recurrent
and convolutional networks.

Prior to the work presented in [5], the majority of past
research has concentrated on improving client communication
and global optimization in FL. Data transmission in FL’s UNE
has never been studied in depth. In addition, the SCA has never
been used to increase the global model performance through
improved network communication.

III. FEDERATED SINE COSINE ALGORITHM

Adding extra model layers is a common way to improve
the accuracy of Artificial Neural Network (ANN) models.
An ANN with many parameterized layers is known as a
”deep Neural Network”. The number of weight parameters
that must be learned grows as the number of layers increases.
A considerable rise in network communication costs occurs
when a model trained on a client is moved to a server in a
global FL. Consequently, we propose the FedSCA approach
to transport a model, independent of its size, while delivering
the best loss or accuracy (i.e., score) to the server.

Before discussing the FedSCA, we will explain the FL
algorithm used in previous research (i.e., FedAvg). Algorithm
2 shows the implementation of the FedAvg in FL. Line 4
selects the client who will participate in the round. Finally, the
client’s weight values are obtained in Lines 5 and 6. Weights
acquired in Line 8 are averaged, and the global model weights
are computed when the step in Line 8 has been completed. The
client receives the server’s global weights in Lines 10–13.

In the proposed algorithm, the FedSCA gets the model
weights from the client who provided the highest score,
avoiding the need to receive model weights from all clients.
Figure 3 depicts the weight updating process of FedSCA.
Using client training’s lowest loss value, the best score is

2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom)

57Authorized licensed use limited to: Carleton University. Downloaded on November 08,2022 at 16:27:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Weighted aggregation processes like FedAvg receives an average of
the Wt values that K clients transmit to the server and send an average of
the updated Wt + 1 weights back to clients.

Algorithm 2: Pseudocode of the FedAvg algorithm
1: Function CLOUDSERVEREXECUTES :
2: Initialize global model (w0).
3: for each iteration itr = 1, 2, 3...Maxitr do
4: Sitr= set of maximum clients.
5: for each client k ∈ S do
6: wt + 1=LocalClientUpdate(k,wt)
7: end for
8: wt + 1=average the weights
9: end for

10: Function LocalClientUpdate(k,wt) :
11: for each client epoch i=1,2,3...E do
12: Execute the learning procedure to client k.
13: end for
14: update w.
15: return w to server.

achieved. Four bytes are all that is needed for this loss value.
As a result, FedSCA adjusts its weighted array using the
current solution value for each member of the optimum model.

In light of the fact that the ANN weight values have
been updated in Eq (5), the FedSCA weight values can be
represented as follows.

Cwitr+1
i

=

{
Cwitr

i
+ C1 × sin(C2)× | C3GBwitr

i
− Cwitr

i
| r4 < 0.5

Cwitr
i

+ C1 × cos(C2)× | C3GBwitr
i

− Cwitr
i

| r4 ≥ 0.5
(6)

, where Cwitr+1
i

is denoted to next layer (l) weight value,
Cwitr

i
is the current layer (l) weight value, and GBwitr

i
is the

global model layers’ weight values.
In Eq (6), the current ANN solution contains a weighted

value assigned to each layer. Adding CXitr
i

to the prior step
weight wt−1 yields the current step weight wt.

Algorithm 3 presents the FedSCA conceptual algorithm
according to the weight update in Eq 6. Based on Algorithm
2, the algorithm is expanded using SCA. In contrast to typical
methods, the Function CLOUDSERVEREXECUTES receives
just the best values and does not request w from the clients
in Line 6. Lines 7 and 8 carry out the process of identifying
the client with the minimal best value among those obtained.
Function LocalClientUpdate proceeds the ANN applying the
SCA. CXitr is calculated in lines 17-19 and supplied to the
server. For each epoch i, repeat the iterations (training) from
lines 20 to 23. Function The GetBestModel method (lines

Fig. 3. The process of updating the weights of the FedSCA algorithm. The
client with the best score value receives a request from the server to be used
as the global model after the server receives the scores from all clients.

25–28) asks the server for the model with the best score. The
code is available in the FedSCA GitHub [17].

Algorithm 3: Pseudocode of the FedSCA algorithm
1: Set the SCA parameters (a, c1, Number of dimensions, Number of solution,

Number of iterations Maxitr).
2: Function CloudServerExecuts :
3: Initialize global model (w0), G

Bitr
i

, GB id.

4: for each iteration itr = 1, 2, 3...Maxitr do
5: for each client k do
6: GB id=LocalClientUpdate(k,GB id)
7: Update G

Bitr
i

8: Update GB id

9: end for
10: wt+1=GetBestModel(GB id)
11: end for
12: Function LocalClientUpdate(k,GB id) :
13: Initialize CXitr

, a, c1.
14: B= split data into batches.
15: Compute c1 using Eq (4).
16: Generate c2, c3, and c4.
17: for each layer l=1,2,3... do
18: Update the current solution using Eq (6).
19: end for
20: for each client epoch i=1,2,3...E do
21: for batch b ∈ B do
22: Update w.
23: end for
24: end for
25: Return CXitr

.
26: Function GetBestModel((GB id):
27: Request to Client(GB id)
28: Receive w from Client
29: Return w to server.

IV. EXPERIMENTS

We tested FedSCA’s accuracy and convergence speed, as
well as conducted tests in an Unstable Network Environment
(UNE), to determine its effectiveness. We wanted to see
whether the FedSCA had sufficient convergence speed and

2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom)

58Authorized licensed use limited to: Carleton University. Downloaded on November 08,2022 at 16:27:35 UTC from IEEE Xplore. Restrictions apply.

accuracy, given its smaller amount of network communication
than FedAvg. Furthermore, we compared the proposed algo-
rithm with another population-based optimization algorithm
(i.e., FedPSO). On the other hand, we looked at the client-
server data connection costs using the CIFAR-10 dataset [18]
as an accuracy criterion for the three techniques. FedAvg,
FedPSO, and FedSCA were put to the test under different
network conditions to determine their accuracy.

A. Experimental Setup
A CPU of 2.50 GHz (2 processors) with 128 gigabytes (128

gigabytes usable), Xeon(R), an Intel(R) and 465 gigabytes
of memory was used for the experiments. Experiments were
conducted using TensorFlow 2.3.0 and Keras 2.4.3.

A new data format was sent from the client to the server,
and the distributed model’s weights were altered as a result.
The CNN model architecture was taken from [10] (the first
with 32 channels, the second with 64 channels, each followed
by 2 x 2 maximum pooling). Table I provides a breakdown of
the model’s layers.

TABLE I
CNN PARAMETER SETTINGS

ID Shape Layer
1 5 x 5 x 32 Conv2D
2 32 Conv2D
3 5 x 5 x 64 Conv2D
4 64 Conv2D
5 1024 x 512 Dense
6 512 Dense
7 512 x 10 Dense
8 10 Dense

The experiment was carried out using the CIFAR-10 dataset.
For image classification, CIFAR-10 is a popular dataset. Train-
ing and test images are included, with 32 x 32-pixel images
from ten different categories, such as automobiles and planes.
The CIFAR-10 dataset was shuffled, assigned to K clients, and
distributed to each client to proceed with training. With the
exception of the dropout layer, no independent tuning method
was applied to increase the accuracy during training. FedSCA
and FedAvg client training had a learning rate of 0.0025. Table
II displays the hyperparameter values that were employed in
this work.

TABLE II
EXPERIMENT HYPERPARAMETERS

ID Parameter FedSCA FedAvg
1 Batch 10 10
2 Client-epoch 5 5
3 Epoch 30 30
4 C - 0.1, 0.2, 0.5, 1.0
5 Client 10 10

B. Experimental Results for Accuracy
Experimental results for accuracy using the CIFAR-10

dataset are depicted in Figure 4 and Table III. For curve,

we used a test accuracy as our basis. FedSCA’s accuracy
was better (72.41%) than FedAvg’s at all 30 epochs, and
it was superior from the start. C = 1.0 was FedAvg’s most
accurate setting, with a best accuracy of 67%. In FedAvg
training, C is a constant between 0 and 1, which restricts
the number of clients used. Clients who scored at least C in
each communication round were chosen from the rest of the
group. As the value of C increases in Figures 4 and 5, the
more accurate data is transferred between server and client,
the larger the data size transmitted. At C = 0.5, where data
transfer costs are equivalent, the accuracy disparity widens
(65.00% for FedSCA).

Fig. 4. A comparison of the test accuracy of different algorithms.

Fig. 5. A comparison of the communication cost of different algorithms.

TABLE III
TEST ACCURACY COMPARISONS

Algorithm Accuracy (Testing)
FedAvg,C = 0.1 51.39%
FedAvg,C = 0.2 59.07%
FedAvg,C = 0.5 65.00%
FedAvg,C = 1.0 67.14%
FedPSO 70.12%
FedSCA 72.41%

2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom)

59Authorized licensed use limited to: Carleton University. Downloaded on November 08,2022 at 16:27:35 UTC from IEEE Xplore. Restrictions apply.

C. Experimental Results for Unstable Network Environments

We then simulated an UNE. In each communication cycle,
random data transmissions from client to server were lost. We
used data discarded in ranges of 0%, 10%, 20%, and 50% to
validate the accuracy discrepancy between the two methods.
In order to ensure the experiments’ validity, all 10 trials were
done until the average value was reached. Table IV depicts the
outcome of discarding data at random for FedAvg when C =
1.0, FedPSO, and FedSCA. FedAvg demonstrates an average
accuracy reduction of 6.43 % due to random data dropouts.
The same table displays the findings for FedSCA, which
had a 2.43 % decline in average accuracy. In an experiment
evaluating the model in an UNE where the data cannot be
delivered in its whole, FedSCA’s accuracy reduction was 4 %
better than FedAvg.

TABLE IV
ACCURACY AGAINST COMMUNICATION FAILURE PROBABILITY.

Algorithm Failure Rate
50% 20% 10% 0%

FedAvg,C = 1.0 59.55% 61.09% 61.48% 67.14%
FedPSO 65.47% 68.41% 69.18% 70.12%
FedSCA 66.37% 68.37% 71.39% 72.41%

V. CONCLUSION

In this paper, the Sine Cosine Algorithm (SCA) is used
to improve the FL’s network communication performance by
utilizing the SCA mechanism to update the weights of learned
models as well as reducing the amount of data being sent
from clients to servers. The server-trained model’s score value
is distributed in the proposed method, which aggregates the
results. The server receives the trained model from the highest-
scoring client. A two-layer Convolutional Neural Network
(CNN) is created to test the proposed algorithm on the CIFAR-
10 dataset. The proposed FedSCA algorithm had an accuracy
improvement of 9.87% and 2.29% on average than FedAvg
and FedPSO, respectively. Additionally, FedSCA is on average
4% more resilient than FedAvg and FedPSO when the com-
munication data is randomly dropped. We want to use a range
of SCA implementations in the future in order to improve
network connection. It is possible to avoid local minima by
using dynamic multiple swarm SCA and P2P-SCA client
communication. We plan to use a range of network protocols,
including the gossip protocol, due to the high frequency of
client drop-offs and the restricted network capacity. This is in
addition to the fact that when the ANN layer count increases,
the size of the model also increases. Eventually, we will
conduct an experiment to see if the results can be replicated
in a model with deeper layers.

ACKNOWLEDGEMENTS

This work was supported by the Machine Learning De-
partment, Mohamed Bin Zayed University of Artificial In-
telligence (MBZUAI), UAE under grants No: 8481000015,
8481000021.

REFERENCES

[1] M. Milicevic and S. Eybers, “The challenges of data analytics implemen-
tations: A preliminary literature review,” in Proceedings of International
Conference on Data Science and Applications. Springer, 2022, pp. 27–
36.

[2] J. Konečnỳ, B. McMahan, and D. Ramage, “Federated optimiza-
tion: Distributed optimization beyond the datacenter,” arXiv preprint
arXiv:1511.03575, 2015.

[3] S. Banabilah, M. Aloqaily, E. Alsayed, N. Malik, and Y. Jararweh,
“Federated learning review: Fundamentals, enabling technologies, and
future applications,” Information Processing Management, vol. 59,
no. 6, p. 103061, 2022.

[4] S. Park, Y. Suh, and J. Lee, “Fedpso: federated learning using particle
swarm optimization to reduce communication costs,” Sensors, vol. 21,
no. 2, p. 600, 2021.

[5] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[6] M. Aloqaily, I. Al Ridhawi, and M. Guizani, “Energy-aware blockchain
and federated learning-supported vehicular networks,” IEEE Transac-
tions on Intelligent Transportation Systems, 2021.

[7] V. Balasubramanian, M. Aloqaily, and M. Reisslein, “Fedco: A federated
learning controller for content management in multi-party edge systems,”
in 2021 International Conference on Computer Communications and
Networks (ICCCN). IEEE, 2021, pp. 1–9.

[8] S. Mirjalili, “Sca: a sine cosine algorithm for solving optimization
problems,” Knowledge-based systems, vol. 96, pp. 120–133, 2016.

[9] G. Wainer, M. Aloqaily et al., “Machine learning-based indoor lo-
calization and occupancy estimation using 5g ultra-dense networks,”
Simulation Modelling Practice and Theory, vol. 118, p. 102543, 2022.

[10] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[11] V. Balasubramanian, M. Aloqaily, M. Reisslein, and A. Scaglione,
“Intelligent resource management at the edge for ubiquitous iot: an sdn-
based federated learning approach,” IEEE network, vol. 35, no. 5, pp.
114–121, 2021.

[12] O. Bouachir, M. Aloqaily, Ö. Özkasap, and F. Ali, “Federatedgrids:
Federated learning and blockchain-assisted p2p energy sharing,” IEEE
Transactions on Green Communications and Networking, vol. 6, no. 1,
pp. 424–436, 2022.

[13] Z. A. A. Alyasseri, O. A. Alomari, S. N. Makhadmeh, S. Mirjalili, M. A.
Al-Betar, S. Abdullah, N. S. Ali, J. P. Papa, D. Rodrigues, and A. K.
Abasi, “Eeg channel selection for person identification using binary grey
wolf optimizer,” IEEE Access, vol. 10, pp. 10 500–10 513, 2022.

[14] A. K. Abasi, A. T. Khader, M. A. Al-Betar, S. Naim, S. N. Makhadmeh,
and Z. A. A. Alyasseri, “An improved text feature selection for clustering
using binary grey wolf optimizer,” in Proceedings of the 11th national
technical seminar on unmanned system technology 2019. Springer,
2021, pp. 503–516.

[15] O. A. Alomari, S. N. Makhadmeh, M. A. Al-Betar, Z. A. A. Alyasseri,
I. A. Doush, A. K. Abasi, M. A. Awadallah, and R. A. Zitar, “Gene
selection for microarray data classification based on gray wolf optimizer
enhanced with triz-inspired operators,” Knowledge-Based Systems, vol.
223, p. 107034, 2021.

[16] A. K. Abasi, A. T. Khader, M. A. Al-Betar, S. Naim, S. N. Makhadmeh,
and Z. A. A. Alyasseri, “A novel ensemble statistical topic extraction
method for scientific publications based on optimization clustering,”
Multimedia Tools and Applications, vol. 80, no. 1, pp. 37–82, 2021.

[17] A. K. Abasi, M. Aloqaily, and M. Guizani, 2022.
[Online]. Available: https://github.com/Artifitialleap-MBZUAI/
Sine-Cosine-Algorithm-for-Reducing-Communication-Costs-of-Federated-Learning

[18] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.edu/
∼kriz/cifar.html

2022 IEEE International Mediterranean Conference on Communications and Networking (MeditCom)

60Authorized licensed use limited to: Carleton University. Downloaded on November 08,2022 at 16:27:35 UTC from IEEE Xplore. Restrictions apply.

