
Simulation and Test of UAV Tasks With
Resource-Constrained Hardware in the Loop

Andrea Augello∗, Salvatore Gaglio∗†, Giuseppe Lo Re∗, and Daniele Peri∗
∗{andrea.augello01, salvatore.gaglio, giuseppe.lore, daniele.peri}@unipa.it

∗ Department of Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
†ICAR-CNR, 90146 Palermo, Italy

Abstract—Simulations are indispensable to reduce costs and
risks when developing and testing algorithms for unmanned
aerial vehicles (UAV) especially for applications in high risk sce-
narios like search and rescue (SAR) operations and post-disaster
damage assessment. Many UAV applications require real-time
tasks for which the timeliness of computations is fundamental.
However, standard simulation tools are not guaranteed to run in
sync with real-time events, leading to unreliable assessments of
the ability of the target hardware to perform specific tasks. In this
work we present a simulation and test system able to run UAV
tasks on resource-constrained target hardware possibly adopted
in these applications. The system allows for hardware-in-the-loop
simulations in which a virtual UAV provided with virtual sensors
is controlled by the software under test (SUT) running on the
target hardware, while simulated and real time are kept in sync.
We provide experimental results from the execution of several
increasingly difficult tasks in the system.

I. INTRODUCTION

In an emergency scenario, it can be hazardous for human

rescuers to enter a building as the layout may be unknown,

and there could be to harmful substances present. Instead,

unmanned aerial vehicles (UAVs) can explore and map un-

known emergency areas also detecting potential dangers in

search and rescue (SAR) operations and post-disaster damage

assessment [1]. These maps can also be annotated with data

from a wide array of sensors [2], both on-board and distributed

in the environment, as in the case of smart buildings [3], that

could also hold important information about the health status

of the people inside [4].

UAV-based systems for indoor SAR missions often need

to access GNSS-denied areas lacking communication infras-

tructure. Communication with external computers is not guar-

anteed, so UAVs need to operate autonomously, with enough

onboard processing power for control and decision-making [5].

Developing and testing these systems in realistic physical

environments can be expensive and dangerous. For this reason,

simulations are indispensable tools to aid in the design and test

of UAV indoor navigation and exploration systems [6].

Energy management is a crucial aspect in UAV applica-

tions [7] that imposes constraints on the choice of the onboard

computer.

As not every hardware can provide the computational power

needed to perform the predefined tasks correctly, hardware-in-

the-loop (HIL) simulations are necessary to assess the strict

constraints of these mission-critical applications accurately.

Many robot simulation systems have been used for UAVs.

Some of the most popular are CoppeliaSim [8], Webots [9],

and Gazebo [10]. Matlab and Simulink are also often used to

simulate the kinematics of UAVs in the development of control

systems due to their real-time capabilities [11], [12].

The possibility of simulating a wide array of sensors and

its ease of use alongside ROS [13] make Gazebo one of the

most popular simulators. Gazebo is often used in conjunction

with ROS-compatible boards for HIL simulations of UAVs

to evaluate the performance of specialized hardware on com-

putationally complex tasks [14]. In addition, through the use

of multiple boards with distinct ROS nodes, HIL simulations

of multi-UAV systems can be performed [15]. These swarm

applications for cooperative missions are often coupled with an

external ground control station [16] like QGroundControl for

mission coordination and planning [17]. We adopted Gazebo

in this work.

An accurate simulation of message exchanges among UAVs

requires a more complex approach: thoroughly testing dis-

tributed protocols in WSNs is fundamental [18]. The network

characteristics in this context are very variable, so it is not

straightforward to simultaneously use a network simulator and

a UAV dynamics simulator. The naive solution is to run the

flight simulation first, logging the position of each UAV and

using those positions in a network simulator. This approach,

however, is not sufficient when the received messages influ-

ence the UAV trajectory as those messages could contain high-

level executable code [19], [20] to make the UAVs perform

distributed processing [21]. In [22] this issue is addressed us-

ing intermediate controllers in the synchronized co-simulation

of UAV flight simulators and a network simulator.

Despite its popularity, a ROS-based approach is not always

optimal. Especially in multi-robot wireless contexts, such

as swarms of UAVs, variability in message delay, limited

bandwidth, and jitter introduce significant issues [23]. In ad-

dition, message scheduling can be an impediment to real-time

operations [24]. Moreover, ROS requires the Linux operating

system and is not suitable for applications with strict real-

time requirements unless specific ad hoc implementations are

made [25]. For these reasons, in this work, ROS is not used.

Standard simulation tools cannot accurately assess the strict

time constraints typical of mission-critical applications as

they do not guarantee a constant execution speed. If a HIL

simulation system uses such tools, evaluating the ability of the
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target hardware to meet time constraints becomes problematic.

Specifically, a simulator where the simulation is slower than

real-time violates the local causality constraint [26] according

to which events must be processed according to their times-

tamp. In a simulation lagging behind real-time, commands sent

from the software under test (SUT) to the UAV affect the

simulation at a time before they were sent, overestimating the

speed at which the target hardware completes its computations.
In this work, we present a HIL simulation and testing system

that, through sensor virtualization, enables the evaluation of

the ability of resource-constrained hardware to effectively

complete its tasks, both in terms of correctness and timeliness.

This system treats HIL simulations as distributed parallel sim-

ulations and performs synchronization operations considering

the SUT and the simulator as separate logical processes (LP).
The rest of the paper is structured as follows: Section II

describes the proposed system, in Section III we present the

SUTs analyzed with our test system, in Section IV we try

and assess how closely the simulation system matches reality,

Section V shows the experimental results, finally, Section VI

concludes the paper by discussing improvement areas and

future development plans.

II. PROPOSED SYSTEM

Since we are interested in evaluating whether the compu-

tational power of a target is adequate for the tasks at hand,

we opt for a distributed simulation system as running the sim-

ulation on the target hardware is oftentimes not feasible and

would excessively burden it. The distributed simulation system

consists of a host machine, and the target hardware. The host

machine runs an instance of the Gazebo [10] simulator (Fig. 1),

with a virtual UAV equipped with virtual sensors and a replica

of the environment the UAV is supposed to operate in.

Fig. 1. A snapshot of a running simulation including a UAV and a landmark
in an indoor environment.

The host machine also runs a coordinator program that
acquires data from the simulation, provides it to the SUT, and

forwards commands from the SUT to the virtual UAV. Both

the coordinator and the SUT are written in C++. The SUT is

executed by the target hardware, and it communicates with the

coordinator via a wired TCP connection as shown in Fig. 2.

Moreover, the TCP connection uses the TCP_NODELAY op-

tion, disabling Nagle algorithm to reduce jitter and delays [27].

In our setup the target hardware is a Raspberry Pi 4.

Real Hardware

Software under test

Host

Simulator Coordinator
TC
P

Fig. 2. Structure of the proposed system

The simulation is not guaranteed to be in sync with real

time. In fact, the execution speed may not even be constant.

Hence, for a realistic test of an algorithm performance on a

specific target hardware a synchronization technique is needed.

In this work we opted for a conservative synchronization

technique [28]. This approach avoids causality violations by

preventing logical processes from processing events where

it is not possible to ensure that a message with an earlier

timestamp may be received in the future. In particular, barrier

synchronization techniques block the execution of every LP on

a specified point of execution until all of them have reached

it.

In our model, the simulation time (ST) provided by the

simulator acts as a global clock, providing the timestamp

for every message from the coordinator. Real time is tracked

separately. To associate a timestamp with every message from

the SUT a timer is started when the SUT connects to the

coordinator, pausing it every time the SUT is forced in an idle

state to perform synchronization operations. What is being

tracked, then, is the time the SUT was allowed to execute

freely (ET), which would correspond to the real time if the

target hardware was connected to a real UAV.

Assuming that at a certain moment ET and ST are both

equal to ti, true at least for ti = 0, the simulation and the
SUT can proceed independently until an interaction between

the two happens when ET equals to ti+1. Since the simulation

will always lag behind real time, ST will be ti+1 − ε and
ti+1 is a lower bound on the timestamp for all other future

interactions.

Since ET is ahead by ε, every simulation step is guaranteed
to be a safe event. Moreover, since all communication is

initiated by the SUT, all its computation up to an interaction

does not depend from the state of the simulation from ti to
ti+1 and can be considered safe.

As we need to enforce the local causality constraint, com-

mands given at time ti+1 cannot be processed until every other

event with a smaller timestamp has been processed. Doing

otherwise would affect the simulation at a time preceding the

moment the message was sent, and a reply cannot be sent with

a timestamp preceding the request.

The execution of the SUT, alongside the ET timer, is paused

until ST catches up with ET and every step of the simulation

up to that point can be considered a safe event.

Since the SUT is expecting a reply from a TCP socket, this
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SUT Coordinator

Request

ε

ET paused

ET resumed
Response

Fig. 3. General format of an interaction between the SUT and the coordinator.
ε is measured relative to ST, not real time.

blocking call can be exploited by the coordinator to pause the

execution by delaying the reply until ST reaches ti+1 as shown

in Fig. 3.

A qualitative graph showing the trend of ST and ET is

shown in Figure 4.

t0

t1

t2

Real time

Simulation time

Execution time

Fig. 4. Trend of ET and ST compared with real time. The marked points
correspond to the interactions between SUT and coordinator.

III. TASKS

We characterize the SUT in terms of tasks. A task is a self-
contained operation that can be split into three phases:

• an initialization phase;
• a task loop that repeats a sequence of operations ranging
from the acquisition of sensor data to some computation

on the acquired data and sending control commands to

the UAV, iterated until a termination condition is reached;

• a finalization phase where, upon reaching the termination
condition, control is given back to the process that started

the task.

A task can also include lower-level tasks, and may start

other tasks as a step of its execution in any phase.

The UAV operates in an environment populated by other

entities, some of these can be known in advance and have

some useful properties associated with them (e.g. shape, size,

position), and can be used or interacted with during a task, as

in Algorithm 2.

The execution of a task does not necessarily imply that the

UAV moves or acts on the environment: it is also possible

to define diagnostic tasks like the sensor characterization task

detailed in Algorithm 1.

Algorithm 1 Sensor characterization task
1: Initialization :
2: Turn sensors on / connect to simulator

3: start_time ← get_time()
4: Task loop :
5: for i = 1 to 100 do
6: acquire_sensor_data()

7: end for
8: Finalization :
9: end_time ← get_time()
10: return end_time - start_time

Algorithm 2 Compute relative position task
Input: anchor
1: Initialization :
2: set_tracked_object(anchor)

3: Task loop :
4: while the tracking algorithm does not converge do
5: image ← acquire_image()
6: roi ← get_object_roi(image)
7: end while
8: Finalization :
9: return (angle(roi), distance(roi))

The following tasks concern vision-based navigation in

indoor environments. For this reason, in Algorithm 2, we

define a task to compute the relative position of an object

used as an anchor point through its ROI obtained using the

camshift algorithm [29]. This task is a building block of other

tasks. If the SUT is operating in the virtual environment the

images are acquired from the simulated camera sensor (Fig. 5),

when the same SUT controls a physical UAV, the camera feed

is provided by an onboard sensor.

Fig. 5. Images acquired from the virtual camera, the anchor box is drawn in
blue.

The “face anchor” task, described in Algorithm 3, consists

in having the UAV turn until an anchor point is in the middle

of the UAV camera FOV, as shown in Fig. 6, eventually

reverting its rotation if it overshoots the anchor. This task is

computationally intensive and the rate at which the SUT can

process image samples directly reflects into the performance.

The task described in Algorithm 4 makes use of the previous

task inside its loop. Here the UAV moves in a predetermined

direction while keeping a line of sight with an anchor point

until perpendicular to the motion direction, as shown in Fig. 7.
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Algorithm 3 Face anchor task
Input: anchor, precision
1: Initialization :
2: stop()

3: angle ← relative_position(anchor).angle
4: rotate towards anchor

5: Task loop :
6: while angle > precision do
7: new_angle← relative_position(anchor).angle
8: if different_sign(angle, new_angle) then
9: change rotation direction

10: slow down

11: end if
12: angle ← new_angle
13: end while
14: Finalization :
15: stop()

1

4

2

5

3

6

Fig. 6. “Face anchor” task. The gray area is the camera FOV. The UAV
rotates towards the anchor until it occupies the center of the image.

This task can be used when trying to acquire images of an

object from multiple different angles, or as a visual odometry

technique.

Algorithm 4 Task to move forward while facing an anchor,
until perpendicular to start direction

Input: anchor, precision
1: Initialization :
2: starting_yaw, yaw ← get_yaw()
3: move_direction(0)

4: Task loop :
5: while |yaw-starting_yaw| < π/2 do
6: angle ← relative_position(anchor).angle
7: if angle > required precision then
8: face_anchor(anchor, precision) {lower-level task}

9: end if
10: yaw ← get_yaw()
11: move_direction( starting_yaw - yaw )

12: end while
13: Finalization :
14: stop()

The tasks in the previous three algorithms assume that the

anchor point is visible from the UAV. We assume indoor use

and a wide enough camera angle. If it were not the case, the

initialization phase should include a subtask to reach the same

elevation of the anchor point to properly track it.

Fig. 7. “Move forward” task. The circle is an anchor point, the triangles show,
from left to right, the position and orientation of the UAV in time during this
task.

The task in Algorithm 5 is a diagnostic task. The UAV

moves along a closed path updating its position estimate based

on the IMU data. After the UAV completes the path, the SUT

evaluates the error in the position estimate by measuring the

relative displacement from an anchor point.

Algorithm 5 Task to move along a closed path and evaluate
final positioning error

Input: anchor, distance
1: Initialization :
2: start_pos ← relative_position(get_image(), anchor)
3: move_direction(0)

4: Task loop :
5: for all angle in{0, 1

2π, π,
3
2π, 2π} do

6: move_direction(angle)

7: l← 0
8: while l < distance do
9: l← update_travelled_distance(l, get_imu_data())
10: end while
11: end for
12: Finalization :
13: stop()

14: end_pos ← relative_position(get_image(), anchor)
15: return distance(start_pos, end_pos)

IV. SENSOR CHARACTERIZATION

Since sensor data is sent through a TCP connection rather

than being directly acquired from onboard sensor, the average

time required to transfer data and the time that would be

needed to acquire data from the real sensors can be very

different.

As previously stated, tasks can also have a diagnostic

purpose, so we used the sensor characterization task in Al-

gorithm 1 to assess this difference.

Table I reports the comparison of the average delay when

acquiring sensor data from onboard sensors with the delay

when accessing the simulated ones, both on the same computer

hosting the simulation and on the target hardware. The average

was computed over ten experiments for each setup.

TABLE I
SENSOR CHARACTERIZATION RESULTS

Data origin SUT location Rangefinder Camera

Real sensor Target 0.0977 0.0374
Virtual Target 0.0492 0.2510
Virtual Host 0.0441 0.0561
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The simulated rangefinder data was obtained faster than

the physical equivalent, while the camera was an order of

magnitude slower when accessed from the target.

By controlling the simulation execution, it can be made to

proceed only for the time the data acquisition from a real

sensor would have delayed the computation (Fig. 8).

SUT Coordinator

Request Real
delay

Simulation
paused

Data

ACK Simulation
resumed

Fig. 8. Scheme to simulate the correct sensor delay.

Table II reports the performance of the “relative position”

task in Algorithm 2 when executed with onboard sensors

and with virtual sensors. The distance ground truth with the

onboard camera is obtained with a VL53L1X infrared depth

sensor [30], while in the simulated environment it is obtained

directly from the simulator ground truth. In both cases the an-

gle error was computed comparing the automatically detected

ROI with a hand annotated one. The average time required

was computed over the course of ten experiments for each

setup.

TABLE II
PERFORMANCE OF THE “RELATIVE POSITION” TASK.

Data origin SUT location
Error Time

Angle (deg) Distance(m) required (s)

Real sensor Target, real-time 0.285 0.083 0.558
Virtual Target 0.158 0.112 0.644
Virtual Host 0.269 0.071 0.513

V. EXPERIMENTAL EVALUATION

To assess the impact of the reduced computational power

on the ability of the SUT to effectively complete a given task,

we performed multiple tasks with the same SUT, executing

it on both the host and the target. Moreover, to assess the

impact of a simulator slower than real-time on the perceived

performances, we executed the SUT on the target both with

and without synchronization. Every configuration was tested

for ten experiments, in every experiment the ground truth from

which we show the results is acquired from the simulator,

moreover, the reported time is ST, not the real time.

Table III reports the performance of the SUT for the task

detailed in Algorithm 3, with the anchor point located at the

edge of the camera FOV. The performance was evaluated based

on the time required to complete the task and on the number

of times the UAV rotated too much because it could not timely

detect that it had gone past the anchor. It can be seen that the

reduced rate at which the SUT could track the anchor point,

greatly impacted the reliability, in terms of both time required

for completion and accuracy.

TABLE III
PERFORMANCE OF THE “FACE ANCHOR” TASK

SUT location
Oscillations Time required (s)

mean std. dev. mean std. dev.

Host 0 0 2.480 0.033
Target 1 1.612 9.242 13.767
Target, no sync 0 0 2.504 0.108

Table IV reports the performance for the task described

in Algorithm 4. We evaluated the performance based on the

required time to complete it and the distance from the position

the simulated UAV stopped at from the correct one. The anchor

is placed on a wall in a corridor at 8 meters from the start

position.

In this case the time required for the task is similar in all

the configurations, as it mainly depends on speed. On the

other hand, the position error was noticeably smaller when

the SUT was executed by the host and increased when the

image-processing-heavy task was executed on the resource-

constrained target. Moreover, without the forced synchro-

nization the SUT would have shown significantly better, if

misleading, performance values.

TABLE IV
PERFORMANCE OF THE “MOVE FORWARD” TASK

SUT location
Position error (m) Time required (s)
mean std. dev. mean std. dev.

Host 0.027 0.0187 59.689 0.800
Target 0.106 0.0440 58.484 0.517
Target, no sync 0.046 0.0454 59.014 0.960

The performance for the task described in Algorithm 5 is

reported in Table V. We evaluated the performance based on

the time required to complete the task, the distance from the

start position at the end of the task, and the error on the

position estimate.

The time required for the task depends mainly on speed,

and thus little variation was measured across the setups. The

estimate error was computed in static conditions, as such it

is also independent from the setup. The position error shows

a different pattern from all the previous measurements: the

bottleneck was the 20 Hz update rate of the IMU. The task

loop is very lightweight, hence the reduced computational

power of the target did not have a negative impact on the

performance.

VI. CONCLUSIONS

In this work we showed a limitation of most current HIL

systems relying on an external simulator and proposed a

method to overcome this issue in the case of single-threaded

SUTs. Moreover, we assessed the impact that synchronization

with the simulation time, or lack thereof, can have when
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TABLE V
PERFORMANCE OF THE “CLOSED PATH” TASK

SUT location
Position error (m) Estimate error (m) Time required (s)
mean std. dev. mean std. dev. mean std.dev

Host 0.320 0.256 0.218 0.131 27.816 1.242
Target 0.359 0.301 0.211 0.195 27.121 1.815
Target, no sync 0.328 0.262 0.245 0.122 26.899 1.596

evaluating the capability of some target hardware to execute

a given task.

Future work will extend the system to test multiple UAVs

virtualized on a single hardware target. SUTs will also be pro-

vided with energy-awareness. In addition, the testing platform

will be extended to support development and test of high-level

task descriptions including time constraints.
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