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 ABSTRACT The discipline of component-based modeling and simulation offers promising gains in reducing 

cost, time, and the complexity of model development through the (re)use of modular components. 

Modeldriven development suggests 1) the realization of a complex system using a conceptual model; 2) its 

automatic transformation into an executable form using transformation rules, and; 3) its automatic 

verification using a formal analysis technique for an accurate assessment of its correctness. Both approaches 

have numerous complementary benefits in rapid prototyping of complex systems using model reuse. In this 

paper, we propose a framework grounded in a combination of component-based and model-driven 

approaches to promote rapid prototyping of complex systems through the effective reuse of the simulation 

models. Our proposed process allows developers to 1) build or select existing components and compose 

them to formulate the conceptual models of complex systems; 2) automatically transform the conceptual 

models for the rapid implementation and simulation, and; 3) automatically verify them as per the 

requirement specifications. We propose the use of the extended finite-state machine (EFSM) as conceptual 

modeling formalism, anylogic simulation platform for the implementation, and probabilistic model 

checking technique using communicating sequential process (CSP) formalism for the verification. Finally, 

we present a case study of a real-time adaptive cruise control system to demonstrate the functionality of our 

framework. Our proposed component-based model-driven approach facilitates rapid prototyping and 

effective meaningful reuse of complex system models, which further accelerates the modeling, simulation, 

and analysis process of real-time systems and aids in complex engineering designs and implementations. 

 INDEX TERMS Component-based development, model driven engineering, complex systems, anylogic simulation, 

probabilistic model checking, adaptive cruise control system. 

I. INTRODUCTION conclusions about it. According to the definitions of the 

Modeling & Simulation (M&S) provide essential means to U.S. Department of Defense: 

guide the design of complex engineering systems and aid Model: ‘‘a physical, mathematical, or otherwise logical in dealing 

with the increasing complexity involved in their representation of a system, entity, phenomenon, or process’’. development. 

This growing complexity necessitates advances Simulation: ‘‘a method for implementing a model and in the discipline of 

M&S. Modeling concerns with the build- behaviors in executable software’’ [1]. 

ing of a model, through the abstraction of the real system. Modeling real-world complex systems is a challengA simulation, 

on the other hand, is the implementation of the ing task. Complex systems generally have three attributes: model, in an 
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executable environment, to imitate the opera- (i) A complex system has many parts (or units, individtions of the real system, 

over a period of time and to generate uals or subsystems); (ii) There are many relationships, an artificial history of the system, 

which is observed to draw interactions, dependencies or competitions between these parts; (iii) The parts produce combined 

effects (emer- 

The associate editor coordinating the review of this manuscript and gence) that are not easily foreseen and may often be novel approving it 

for publication was Giambattista Gruosso. (desirable) or chaotic (undesirable) [2]. Some examples of 

2169-3536   2019 IEEE. Translations and content mining are permitted for academic research only. 
VOLUME 7, 2019 Personal use is also permitted, but republication/redistribution requires IEEE permission. 67497 

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 

complex systems include, but are not limited to: Earth’s 

atmosphere, organisms, cell biology, human brain, 

ecosystems, economic systems, epidemics, infrastructure 

such as power grid, energy markets, transportation systems, 

communication systems, and the World Wide Web. Main 

elements of complexity in these complex systems include: 

emergence, self-organization, collective behavior, networks, 

evolution & adaptation, pattern formation, nonlinear 

dynamics and nonintuitive system behavior [3]. A major 

challenge is to formulate an appropriate conceptual model 

that allows to represent the static structure and the dynamic 

behavior of a complex system. This include expressing the 

relevant attributes, functions and the states of the system’s 

entities, their inputs and outputs with interconnections, and 

their interfaces to the exogenous systems. Formulating such 

constructs together into an effective, validated, and verified 

model can be daunting. Many real-world complex systems 

exhibit realtime, reactive and probabilistic behavior. In real-

time systems the behavioral correctness depends on the 

logical results as well as the individual and the collective 

physical time constraints for accessing, processing, and 

delivering the computed information [4]. Reactive behavior 

means the system responds or reacts to the external events 

and makes progress to fulfill desired goals [5]. Probabilistic 

systems exhibit nondeterministic behavior for modeling 

random phenomena [6]. A combination of all these 

characteristics makes a system highly complex and difficult 

to model. Implementing these models for simulations, and 

Verification & Validation for ensuring their correctness add 

further intricacies in the process of complex system 

engineering. In this paper, we focus on the model-based 

development of engineered complex systems. 

A. COMPONENT BASED DEVELOPMENT 

The discipline of Component-based development has been 

identified as a key enabler in the design and development of 

complex systems through the (re)use of prefabricated model 

components [7]. The extensive use (and reuse) of modular 

components, offers numerous advantages including 

reduction in development cost, time, and system complexity 

and allows logical partitioning of complex systems [8]. A 

‘model component’ is an independent building block that 

conforms to a standard, has well defined interfaces 

(inputs/outputs), functionality (process) and the dynamic 

behavior (states). The interfaces describe its communication 

with other components whereas its internal behavior is 

specified using a formal specification [9]. The behavior of a 

system is usually described using a formal specification such 

as: Finite state machines, Timed Automata, Petri Nets, 

communicating sequential processes (CSP), or similar 

formalism depending on the nature of the system being 

modeled. In this paper, we choose Extended Finite State 

machines [10] for the formal description of the model 

components. As opposed to conventional finite state 

machine, an EFSM captures complex behavior with more 

expressive transitions including: events, trigger conditions, 

triggered actions, and data operations on the internal 

variables. EFSM is also suitable for distributed and 

concurrent systems. 

A model component is not built as a standalone element, 

but can be independently deployed, and it is subject to third 

party composition with or without modifications. The model 

components are composable if their inputs match the outputs. 

However, in order to build a meaningful composition, such 

that they will perform correctly according to the desired 

requirements, their composition is verified at a semantic 

level. This requires an in depth analysis of ‘model 

composability’ [11]. Composability was identified as a key 

objective and a daunting research challenge in early 2000 

and is still being described as ‘‘biggest simulation challenge’’ 

[12]. Model composability is the capability to select and 

assemble model components in various combinations to 

satisfy specific user requirements [13]. 

We consider Composability as a problem of model 

verification,becauseitistheprocessofdeterminingthecorrectne

ss of a model with respect to its specifications [14]. 

Verification is concerned with the correctness of the model, 

i.e., a model with no errors, bugs or defects in its 

specification, design, and implementation [15]. Correctness 

of a composed model is therefore relative to its specifications, 

as its constituting components are required to possess precise 

structural and behavioral properties in order to fulfill given 

requirements. Requirement specification are the set of 

property, representing the goals and or the constraints of the 
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model that must be fulfilled. Goals of the model can be 

considered as the final state(s) of the composed model or the 

desirable outputs produced collectively by the composed 

model which cannot be produced alone by the individual 

components. Similarly, the property constraints are the 

system properties that must be satisfied [16]. In this paper we 

present the use of Composability Verification approach for 

evaluating the correctness of a composed model with respect 

to its requirement specification using model checking to 

show that the selected components are composeable at 

dynamic level. 

B. MODEL DRIVEN ENGINEERING 

Model driven engineering (MDE) is a software development 

methodology [17] that focuses on the development of 

conceptual models, which mainly aim at the abstract 

structural and behavioral representations of a particular 

application domain, and automatic realization and 

deployment of these conceptual models into the executable 

models through rule based transformations [18]. A 

conceptual model is an abstraction of a real system and is 

expressed using a formal specification, based on given 

requirements and modeling objectives. It is later 

implemented and deployed in the form of a concrete 

computer program called executable model [19]. Our 

proposed framework is based on three types of MDE — 

Meta models: 

1) CONCEPTUAL MODEL 

Formal specification is used to express the structural and 

behavioral syntax, semantics and pragmatics of complex 

systems. In this paper, we use Extended Finite State machine 

(EFSM) formalism as a conceptual modeling framework to 

define model components and their composition [10]. A 

brief description of EFSM formalism in given in Appendix-

A. EFSM is a powerful method of describing the behavior of 

a complex system with real-time specifications, conditional 

transitions, variable manipulations and data operations. 

EFSM is used to best capture the additional modalities of the 

structure and behavior of a system, which are not available 

in ordinary finite state-machines. It models a system at a 

higher-level of abstraction than a program and may contain 

many interleaved computations. Therefore it makes sense to 

decompose the system’s complexity into modular parts and 

recombine them in a hierarchal fashion, in order to achieve 

reduction in logical complexity and an increase in the reuse 

[20]. We propose the use of EFSM formalism as our 

Conceptual Model Specification, where an EFSM-based 

model component encapsulates its structure and behavior 

using a set of states, transitions, guards, actions and state 

variables; and exposes its interfaces through a set of 

send/receive events. A set of model components 

communicate with each other through these interfaces and 

hence are composed together to form a meaningful whole 

system. 

2) EXECUTABLE MODEL 

We use Anylogic simulation platform for the executable 

deployment of EFSM models. A brief description about the 

Anylogic Simulation environment is given in Appendix-B. 

We propose a transformation tool to automatically transform 

individual EFSM components into executable specifications 

of Anylogic platform, while preserving the pattern of their 

composition. Once the EFSM-based conceptual model is 

completely transformed into an executable model, the 

modelers can simulate it using Anylogic Integrated 

development environment (IDE) or in standalone run time 

environment, and visualize the simulation results. This step 

allows the modeler to validate their conceptual model by 

comparing the simulation results with the results of the real 

system. 

3) VERIFICATION MODEL 

For the purpose of analyzing the correctness of a composed 

model, it is desirable to transform it into a specification that 

is compliant with the targeted model verification approach. 

In order to verify composability at this level we propose the 

use of Probabilistic Model Checking technique using 

Communicating Sequential Process (CSP) formalism [21] 

[22], a model description language for our Verification 

Model specification,which is executed and verified in 

Process Analysis Toolkit (PAT) [23], and propose an 

automated transformation of model components into CSP, 

for formal verification. A brief overview of Modeling 

Checking and primitives used in CSP formalism are 

described in Appendix-C. 

C. COMPONENTBASED MODEL DRIVEN APPROACH 

In this paper we propose a rapid prototyping framework for 

engineering complex systems. It combines the benefits of 

Component-based development and Model driven approach. 

The basic idea is to allow modelers to develop and reuse 

model components using a specification formalism. In this 

paper, we propose EFSM as a specification formalism. 

However, more formalisms suchas DEVS, PetriNets, SysML 

can be used to extend our approach. Modelers build and store 

these model components in a repository. When needed, they 

can search, discover, match and compose required 

components to form a conceptual model as per given 

requirements. The details of discovery, matching and 

composition (DMC) paradigm are given in [9]. When a 

conceptual model is formulated it is automatically 

transformed into an executable model and is deployed on an 

executable platform. We propose the use of Anylogic 

Simulation Platform [24], being an industrial standard, with 

a robust run time environment and support of event driven, 
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real time, probabilistic and reactive modalities. During this 

transformation, the elements of each model component such 

as: states, transitions, guards, events, actions, data variables 

are translated into the corresponding elements of the Any 

logic primitives using transformation rules. The composition 

pattern and the coupling of the model components is also 

translated into the ports and connections in Anylogic. Once 

the transformation is complete, an Anylogic file is generated 

which can be either opened in the Anylogic IDE or can 

directly be executed using Anylogic standalone run time. A 

modeler can simulate it and view the simulation results. To 

the best of our knowledge, a run time environment for 

executable EFSM has not been implemented before and 

therefore our contribution may help the community revive 

the use of EFSM formalism in modeling, simulation and 

verification of complex systems. In order to verify the 

correctness of the conceptual model, we propose the use of 

Model checking approach using Process Analysis Toolkit 

[23], which uses Communicating Sequential Processes (CSP) 

as the verification model formalism. We choose this 

platform because PAT toolkit supports probabilistic 

verification. It also allows the use of time constraints for 

timebased probabilistic systems. It is to note that classical 

EFSM specification doesn’t include the notions of time, 

therefore we propose an extension to include time constructs 

for allowing modelers to conceptualize time-based systems. 

When the model is transformed into CSP specification, it can 

be verified using PAT model checker using Probabilistic 

Linear Temporal Logic (PLTL) assertions. These assertions 

are taken as input from the modelers for verifying the model 

composability. 

Lastly, we provide a case study of an adaptive cruise 

control system, as an example of a real-time 

nondeterministic reactive system for the proof of concept of 

our proposed approach. Our case study explains the process 

of: (i) Developing and composing EFSM based conceptual 

model; (ii) Transforming the conceptual model into an 

executable model and its simulation using Anylogic runtime 

environment; (iii) and verifying the composed model using 

model checking technique, with respect to given requirement 

specifications. A verified composed model conforms to its 

requirement specifications by successfully reaching its goal 

state(s) and by satisfying given constraints. Hence, we can 

easily say that a verified composed model developed through 

the systematic process of model driven engineering, asserts 

meaningful reuse of model components, helps reduce cost, 

time and complexity of model development and therefore 

achieves the goal of rapid prototyping of complex systems. 

It further allows domain experts to focus more on the domain 

specific conceptual modeling instead of dealing with the 

intricacies of the platform specific code implementations and 

therefore increase the productivity in Modeling & 

Simulation community. 

The rest of the paper is organized as follows: Section 2, 

briefly discussed the background concepts and definitions 

used in this paper and provides a literature survey; Section 3 

describes our proposed framework; Section 4 provides a case 

study of an Adaptive Cruise Control System and finally; 

Section 5 frames the summary, conclusion & the future work. 

II. RELATED WORK 

In this section, we discuss the literature review, divided in 

the following categories: 

A. COMPONENT-BASED APPROACHES 

A variety of component-based approaches such as Discrete 

Event System Specification (DEVS) [25] and Petri net [26] 

can lend themselves to specify and simulate system structure 

and behavior in terms of modular, hierarchical 

componentbased models. Similarly, methods such as Linear 

Temporal Logic (LTL) [27] and Timed Automata (TA) [28] 

can specify property constraints that can be verified. 

Ongoing research also places strong focus on mixed 

continuous and discrete models (e.g., [29], [30]). These 

works share key common concepts and methods with those 

examined next with respect to the proposed Component-

based Model Driven Approach. 

B. MODEL DRIVEN ENGINEERING 

A ‘‘value-driven engineering’’ approach is proposed in the 

simulation process, where the design concept along the 

lifecycle is aggregated to a value function. This multi-level 

simulation framework links Anylogic simulation platform 

with CAD modeling tools [31]. Another approach presents 

an automatic transformation from the UML activity 

diagrams to AnyLogic in order to generate an executable 

simulation model, that identifies performance issues early in 

an engineering design process [32]. Another approach 

presents the practices of three large industrial participants 

and proposes the use of MDE on the development of large 

and complex systems. MDE has been presented useful for 

the abstractions of complex systems at varied perspectives in 

order to build domain specific models, for the simulation, 

testing, and the analysis of performance-related decision 

support. Anylogic simulation software has been used in one 

of the case studies [33]. 

C. FORMAL SPECIFICATIONS AND VERIFICATION 

Some works have been aimed at the use of formal 

specifications for both simulation and model-checking. 

Examples include transforming RTA-DEVS to TA [34]. The 

goal is to verify DEVS models through manually 

transforming them to a subset of TA which can then be 

executed in UPPAAL. In another work, Finite-Deterministic 

DEVS models are mapped into non-deterministic automata. 

Then, the DEVS/MS4 Me tool [34] is used for validation and 
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the SPIN/PROMELA tool [35] is used for verification. 

These works, as in the proposed framework in this paper, 

employ different modeling methods with manual model 

transformations and separately developed tools. Considering 

Petri net, the bounded Read Arc Timed Petri net capable of 

checking the presence of tokens without consuming them 

has been developed [36]. This variant of Petri net is 

computationally equal to Timed Automata. The underlying 

tactic behind these works is to support design through 

loosely related simulation and model-checking methods. 

Although the proposed framework has the same aim as the 

others, it provides the EFSM and LTL models with model 

transformations. These modeling methods offer an 

alternative framework supported with the Anylogic [24] and 

Process Analysis Tool (PAT) [23] tools. A similar work 

focusses on the modeling and verification of hybrid systems, 

using Hybrid Communicating Sequential Processes (HCSP) 

[37]. Another work focuses on the translation of 

Simulink/State flow-based control-oriented block-diagram 

formalism into the hybrid-state process calculus HCSP, for 

full formal verification using the Isabell/HOLbased 

interactive verifier [38]. In contrast to the above, a unified 

modeling framework has been proposed where both 

simulation and model-checking share a common 

mathematical formalism [39]. In this approach, the parallel 

DEVS simulation models are systematically augmented so 

that desired properties can be specified. To support 

verification, the Constraint DEVS along with experiments 

allow defining and testing properties. A verification 

algorithm capable of verifying stochastic properties of the 

Constrained DEVS models has been developed. The 

verification is achieved by DEVS transducer models that 

evaluate the verification models that are subject to a finite 

set of inputs from DEVS generator models. Model-checking 

specification with an execution protocol is supported in the 

DEVS-Suite simulator [40], thus allowing unified model 

validation and verification in a single framework. In contrast 

to this work, the proposed Componentbased Model Driven 

Approach offers a strong separation between simulation and 

model-checking as detailed next. 

III. COMPONENT BASED MODEL DRIVEN APPROACH 

This section discusses the salient features of our proposed 

frameworkpresentedinthispaper.Inthissection,wedescribe 
TABLE 1. Proposed time constraints for EFSM. 

 

 

FIGURE 1. Requirement specification template. 

our proposed component-based model driven framework 

which consists of the phases, as shown in Figure 2. 

In this paper, we focus on the model development of 

realtime complex systems, therefore further propose a set of 

time constraints as extensions in the modeling elements of 

EFSM formalism to allow the modelers to express time 

elements and constraints in EFSM models. We define three 

types of time constraints, which can be assigned to a 

transition as shown in Table 1. 

A. PHASE-I: DEFINING THE SIMULAND 

In the first phase, a Simuland is given as input. Simuland is 

the body of knowledge of the real system that is to be 

simulated [13]. We assume the modelers use any informal 

technique to describe the Simuland, for example natural 

language or UML diagrams. 

B. PHASE-II: REQUIREMENT SPECIFICATION 

When the Simuland is acquired, it is used to initiate the 

process of requirement engineering for the formulation of 

the requirement specifications. In this paper, we consider 

requirement specifications as a set of goals and constraints 

shown in Figure 1. 

In modeling terms, an objective oi ∈ O is defined as a 

property that represents certain ‘‘Reachable final state’’, a 

desirable output or an emergent effect produced by the 

composed model or any of its components. A system 

constraint si ∈ S is defined as a property that must be satisfied 
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(or falsified), e.g., a good state; which must be reached or a 

bad state; which must be avoided (never be reached) during 

the execution. For details and examples readers are referred 

to [16]. 

C. PHASE-III: CONCEPTUAL MODEL 

Conceptual Model is developed through the use and reuse of 

EFSM based components. We propose an XML notation to 

define components in EFSM format. Another XML notation 

is proposed to define the EFSM component composition. 

The schema and examples of our XML notations are 

available at GitHub.1 

1) DISCOVERY, MATCHING & COMPOSITION (DMC) 

A modeler defines basic components and store them in a 

repository. These components are searched using the 

information given in the simuland. When the candidate 

components are discovered, they are matched and filtered by 

the modelers. The components are compared from the 

simuland and requirement specifications and the most 

suitable selection of the candidate components are picked. 

If the required components are not discovered and do not 

exist in the repository, then they are constructed from the 

scratch and are ingested in to the repository for later use. 

Figure 3 illustrates the DMC process. Similar approaches of 

DMC paradigm and the semantic discovery, matching and 

composition of components have been proposed [41]–[43]. 

D. PHASE-IV: EXECUTABLE MODEL 

A conceptual model is only a formal representation of a real 

system. In order to be able to develop its implementation and 

simulate it, we need to transform the conceptual model into 

an executable model. In this paper, we propose to use the 

runtime environment of Anylogic simulation software for 

the implementation of the EFSM formalism. We have 

developed a transformation tool that takes each member 

EFSM component of the conceptual model as input, parse its 

XML and transform it into a corresponding implementation 

using Anylogic code snippet [44]. When all the member 

components of the XML EFSM are transformed, they are 

composed together using the Anylogic ports and connectors, 

according to the composition pattern given in the XML 

specification of the conceptual model. When the 

transformation process is successfully completed, the 

complete Anylogic file (.alp) is generated which can be 

opened using Anylogic IDE and can be executed. Our 

transformation tool uses the elements of EFSM and 

transform them into Anylogic elements as shown in Table 2. 

E. PHASE-V: ANALYSIS TECHNIQUE 

 
1
 https://github.com/ModelDrivenFramework 

In this phase, the EFSM components are transformed into the 

corresponding CSP components. A preliminary 

transformation algorithm for UML state-charts is proposed 

in [45] which discusses the operational semantics of the 

transformation. We propose additional transformation rules 

to generate 
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FIGURE 3. Discovery, matching & composition. 

a CSP specification from EFSM as shown in Table 3. A basic 

example of Executable EFSM to CSP transformation is 

presented in Figure 4, which shows how the elements of an 

executable-EFSM are transformed into CSP code. We have 

developed a transform tool that takes each EFSM model 

components as input, and outputs corresponding CSP 

processes using PAT description language. All the CSP 

processes collectively represent our verification model and 

undergoes model checking for composability verification. 

The requirement specifications (objectives and constraints) 

are manually translated into LTL properties and passed 

through the model checking process for verification. If all 

the properties of the requirement specifications are satisfied, 

the model composability is evaluated as correct, and 

confirms the correct reuse of composed components in order 

to represent a real-time complex system. 

1) MODEL CHECKING USING PAT MODEL CHECKER 

When the Executable EFSM model is successfully 

transformed into CSP specification, a file is generated which 

can be opened in the PAT toolkit IDE. Then the properties 

in the requirement specifications are manually translated into 

CSP# assertions, which is a Linear Temporal Logic (LTL), 

Real-Time LTL (RLTL) and Probabilistic LTL (PrLTL) 

specification format for constructing various types of 

verification queries. We use PAT assertion syntax to 

translate the objectives and constraints of the requirement 

specifications, defined in Phase II. Table 4 illustrates the 

syntax of the CSP# assertions. 

When an assertion is defined using a correct syntax, it is 

given as input into the PAT model checker, which in turn 

will present the verification results. If the assertion is 

satisfied the verification is successful otherwise a counter 

example will be highlighted, showing the exact trace where 

the assertion is failed. Model checking will help analyze the 

composability of the automatically transformed model by 

evaluating goal reachability and constraint satisfaction. If all 

the goals are reached and all the constraints are satisfied, we 

verify that the components used (or re-used) in the 

conceptual model are correctly composed, and their 

behaviour is consistent with respect to the requirement 

specification. If any counter example is observed, it will help 

the modelers repeat the 

 

FIGURE 2. Proposed framework using component-based model driven approach. 
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TABLE 2. EFSM to anylogic transformation rules. 

entire process by selecting a more suitable component and 

therefore ensure correctness and meaningful reuse. 

F. PERFORMANCE EVALUATION 

A thorough assessment and performance evaluation of our 

proposed framework for its ability to support industrial scale 

engineering prototypes of complex systems necessities an in-

depth study which is beyond the scope of this paper. It not 

only demands a quantitative measure of the process involved, 

but also a qualitative metrics in terms of Adaptability and 

Composability degree. Adaptability is the degree to which 

framework can be extended to support multiple modeling, 

execution and verification formalisms. The degree to which 

the framework supports syntactic, semantic and pragmatic 

reuse of models in various context is called composability 

degree. For the purpose of the quantitative measure of the 

process, our framework is inherently dependent on the 

performance of Anylogic and PAT tool kit. The execution 

performance of Anylogic is further dependent on the 

platform being used and scales up with the migration from 
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common desktops to high-performance computing platforms. 

Model Checking technique is also scalable since it relies on 

the usage of PAT tool which can handle about 107 states in a 

reasonable amount of time [46]. This should be sufficient for 

the verification of most industrial scale system models. 

IV. CASE STUDY: ADAPTIVE CRUISE CONTROL SYSTEM 

MODEL 

In this section we present a case study of Adaptive Cruise 

Control System in order to explain our proposed approach. 

Adaptive Cruise Control (ACC) System is a 

TABLE 3. EFSM to CSP transformation rules. 
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dynamic cruise control system for automobiles, which adjusts ACC vehicle and is calculated as: 

vehicle’s speed according to the traffic situation. It consists of 

a ‘Sensor’ that maintains a safe distance by detecting the 

DistACC 

speed of the leading vehicle, distance (also called clearance) Tgap = and time gap, i.e., the time 

interval between the leader and SpeedACC 
TABLE 4. PAT LTL assertions. 

 

 
If the sensor detects that the leading vehicle is slowing down 

or speeding up, it sends message to controller to 

communicate with actuator in order to adjust speed to 

maintain a standard lower bound time gap of 2 seconds to 

avoid collision [45]. 

Our task is to build the conceptual model of the adaptive 

cruise control real-time system using pre-developed 

components, and use our proposed framework to implement, 

simulate and model-check it. We will show how all the 

components work together to accomplish common goals and 

avoid safety constraints. In this section we present all the 

phases of our framework. 

A. DEFINING THE SIMULAND 

Wedefinethesimulandofanadaptivecruisecontrolreal-time 

system as follows: 

a) Sensor: It detects the distance between two cars and 

communicates it to the controller in order to maintain 

the safe distance/time gap. 

b) Controller: It receives periodic data from the Sensor 

and controls the speed of the car accordingly 

c) Actuator: It accelerates or decelerates the speed of car 

as per instructions of controller. 

d) Environment: It is the external environment of the 

system and is used to generate input data 

B. REQUIREMENT SPECIFICATION 

Based on the scenario, we define requirements of the ACC 

system as shown in Figure 6. 
FIGURE 6. ACC requirement specification. 

C. ACC CONCEPTUAL MODELS 

Starting in phase III, we search and discover suitable EFSM 

components from the repository using the simuland 

description and requirement specifications. We matched and 

selected three components namely: Sensor, Controller, 

Actuator, and Environment from the list of candidate 

components. 

1) SENSOR 

Sensors observes the environment and sense the distance and 

speed of the front car. Sensor consists of two states: 

Receiving and Processing. Receiving is an initial state which 

means sensor is active and waiting to receive data from the 

environment. When an event ‘Update’ is received, the 

message parameters: ‘current distance’ and ‘speed’ are 
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obtained to calculate time gap, and the sensor jumps to the 

Processing State. At the processing state, if time gap is 

greater than a standard time gap, an ‘accelerate’ event is sent 

to the controller. Otherwise, a ‘decelerate’ event is sent. 

EFSM specification of the sensor is shown in Table 5. 

2) CONTROLLER 

The main job of the controller is to control the speed by 

updating the actuator, according to the data received from 

the 

sensorandensurethesatisfactionofthemaximumspeedlimit 

constraint. Controller consists of three states ‘active’, 

‘accelerating’, ‘decelerating’. ‘active’ is an initial state. An 

event named ‘accelerate’, sent by the sensor moves 

component from active to ‘accelerating’ if the current speed 

is less than the maximum speed limit. While a ‘decelerate’ 

event moves it from active to ‘decelerating’ state. EFSM 

specification of the controller is shown in Table 6. 

3) ACTUATOR 

Actuator controls the actual speed of the car. It has three 

states ‘fixSpeed’, ‘Brake’ and ‘Pedal’. ‘fixSpeed’ is an initial 
FIGURE 8. Controller EFSM executable in anylogic. 

TABLE 5. EFSM specification of sensor component. 
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state of the component. On receiving ‘accelerate’ event from 

the controller, it jumps to ‘pedal’ and increment the speed by 

1 unit and returns back to the ‘fixSpeed’. Similarly, on 

receiving ‘decelerate’ it jumps to ‘brake’ state and 

decrements the speed by 1 unit and returns. EFSM 

specification of the actuator is shown in Table 7. 

4) ENVIRONMENT 

It is the external environment that provides random inputs: 

speed and distance of the front car to the sensor by sending 

‘update’ event with parameters: speed & distance. EFSM 

specification of the environment is shown in Table 8. 

5) COMPOSED MODEL 

All the EFSM models are composed to form the conceptual 

model. Each component is connected to another component 

using ‘⊕’ operator and the send and receive transitions are 

mapped using ‘‘!’’ send or ‘‘?’’ receive operators, as shown 

in IV-D. The detailed descriptions and the XML code of the 

individual EFSM components and their composed 

specification are available at Github. 

2
We assume that the front car changes its speed using a triangular 

distribution with min=15, max = 38 and most likely =26 

D. ACC EXECUTABLE MODEL 

In the next phase, all the EFSM components are transformed 

into corresponding executable models, using our 

transformation tool, according to the rules specified in Table 

2. Finally, they are (automatically) composed together to 

form the executable ACC composed model. The Anylogic 

implementation of each component is show in Figure 7 to 

Figure 11: 

E. ACC MODEL EXECUTION 

TABLE 7. EFSM specification of actuator component. 
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Two scenarios of adaptive cruise control model in Anylogic 

were simulated: (i) Success Scenario, where the goal is 

achieved and the safety constraint is satisfied, showing that 

the selected components in the composition are consistent 

with respect to the requirement specification. (ii) Counter 

example,wherethegoalisnotachieved,meaningoneormore 

components are not consistent in order to achieve mutual 
TABLE 10. Comparative studies. 

 

FIGURE 9. Actuator EFSM executable in anylogic. 

 

FIGURE 10. Environment EFSM executable in anylogic. 

goals. In both scenarios, we assume the internal behaviour of 

the environment component has a leading car moving on an 

arbitrary random speed using Triangular Distribution [min = 

15, max = 38, mode = 26] and is changing its speed at 

different intervals. Due to this varying speed the follower car 

has to adjust itself by calculating time gap and sending 

accelerate or brake messages to the controller. 

 

FIGURE 11. ACC composed model - executable in anylogic. 

1) SIMULATION SCENARIO I 

In this scenario, the selected sensor was configured at a 

refresh rate of 100 milli-seconds and the controller is 

guarded with conditions to remain within the speed limit, 

therefore resulting into a success scenario. Figure 12 shows 

the simulation results of the scenario (i). 

The Figure 12 shows that the lower bound time-gap is: 

Tgap ≥ 1.99 sec and doesn’t go lower than that. Since we 

modeled a stochastic system, each time it is simulated, it will 

produce different results. However, we will show in the 

Analysis phase that using probabilistic model checking, we 

can gain a confidence on the goal reachability if it is within 

an acceptable threshold. According to a study conducted in 

[47] effects of time-gap settings of ACC car were inspected. 

Thirty professional bus drivers drove on the simulator with 

the scenario of highway traffic flow under 12 random time-
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gap settings: from 0.64 to 2.40 seconds. The general concept 

is to maintain the safe time gap or safe distance from the 

leading 

carinordertoavoidthecollision.Itwasrevealedthatthesafer 

time gaps for different situations were longer than 1.60 sec. 

Thisconfirmsthegoalreachabilityi.e.;ACCcarshouldadapt its 

speed such that it always remains within a threshold of 

standard time gap. Similarly, figure 12 c shows that the ACC 

car always remain within the maximum speed limit 

FIGURE 14. Goal reachability. 

(i.e.., 33.3 m/s = 120 KM/Hr.) even though the speed of the 

leader car exceeds the limit. This shows that the satisfaction 

of the constraint in the requirement specification. 

2) SIMULATION SCENARIO II 

In this scenario, the refresh rate of the discovered sensor was 

500 milli-seconds and the controller chosen was not guarded 

with max speed limit, thus resulted into a counter example. 

Figure 13 shows the simulation results of the scenario (ii). It 

can be noticed that the ACC car is violating the time-gap 

limit multiple times during the simulation, as it goes as low 

as 0 i.e., Tgap ≥ 0, therefore it fails to reach the goal. It is also 

evident from Figure 13 (c) that the ACC car violates 

maximum speed limit (i.e.., 33.3 m/s) and therefore violates 

safety constraint. 

F. RESULTS VALIDATION 

We compared our simulation results with the existing studies 

shown in Table 10. It can be seen that the time gaps 

 

FIGURE 12. Success scenario. (a) Time gap. (b) Leader and follower distance. (c) Leader and follower speed. 

 

FIGURE 13. Counter example. (a) Time gap. (b) Leader and ACC car distance. (c) Leader and ACC car speed. 
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computed during the simulations of these studies are 

comparable with the time gap presented in Figure 12. 

G. ANALYSIS TECHNIQUE 

In this phase we use Model Checking approach for the 

verification of the ACC composed model. This section 

presents the steps of transformation of Executable ACC 

Composed model 

TABLE 11. Transformation of EFSM to CSP. 
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TABLE 12. Assertion I. 

into the CSP-based verification model and the formal 

verificationusingPATanalysistoolkit.Theexecutablecompon

ents are transformed using the proposed transformation rules. 

The composed model is executed and verified using 

PAT model checker. At first, we translated the requirement 

3
The functions: uniformDist and traingularDist are not automatically 

transformed as there is no built-in support for these functions in PAT. 

specifications into PAT assertions as shown below: 

‘Assertion-I’ uses a PLTL construct to verify that the ACC 

car maintains a standard time-gap. If assertion1 is satisfied, 

it shows that time gap between cars is standard and 

maintained to avoid collision. The result of PAT model 

checker in Figure 14 shows that the goal state is reachable as 

the assertion is satisfied with a confidence factor of 81% – 

99%. This is not 100% because the model is 
TABLE 13. Assertion II. 

stochastic and on occasions the time-gap of the ACC car has 

dropped slightly below 2 as can be seen in Figure 12. On the 

other hand, the goal reachability in the counter example is 

failed as shown in Figure 15. ‘Assertion-II’ uses a PLTL 

construct to verify that speed of the ACC car does not exceed 

the maximum speed limit. The verification results of 
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‘Assertion-II’ in Figure 16 suggest the ACC will never 

violate the safety constraint. Whereas the results of 

‘Assertion-II’ in the counter example are not satisfied as 

shown in Figure 17. 

V. SUMMARY AND CONCLUSION 

In this paper, we propose a framework using 

Componentbased Model Driven Approach to promote rapid 

development and effective reuse of complex simulation 

models. Our proposed process allows developers to build, 

select and compose components to formulate conceptual 

models of complex systems; (re)use them for automatic 

deployment of executable simulations; and automatically 

verify them as per the requirement specifications. We 

propose the use of Extended Finite State-machine (EFSM) 

as conceptual modeling formalism, Anylogic Simulation 

platform for the executable deployment, and Model 

Checking technique with Communicating Sequential 

Processes (CSP) formalism for the verification. Lastly, we 

present a case study of a real-time adaptive cruise control 

system to demonstrate EFSM-based components for 

developing conceptual models, transforming conceptual 

models into executable Anylogic simulations, and (ii) 

transforming executable models into CSP for the model 

checking. Two scenarios of the ACC model were presented. 

In the success scenario the composed model was evaluated 

to be correct as it reached its goal, i.e., the adaptive behavior 

was within a given time-gap limit and satisfied its constraint, 

i.e., the ACC car didn’t exceed its speed limit. In the counter 

example, both the goal and the constraint were not satisfied 

due to a faulty composition. 

Our proposed component-based model driven approach 

facilitates rapid prototyping and effective meaningful reuse 

of complex system models. There are several benefits of our 

proposed framework as it uses the Discovery, Matching and 

Composition paradigm to construct EFSM-based conceptual 

models through component reuse. It provides tools for rapid 

implementation through automated transformation into an 

executable form, and allows the modeler to use Anylogic to 

build and simulate dynamic models followed by validating 

the simulation results for the given simuland. It further 

provides composability verification through the integration 

of Model Checking with Anylogic as an automated tool for 

evaluating the correctness of the composed model with 

respect to the given requirement specifications. A verified 

composed model guarantees the satisfaction of its objectives 

and required constraints through the consistent structure and 

coherent behavior of the composites. We believe these key 

contributions presented in this paper will assist academics 

and industrialists in the modeling, simulation, and analysis 

of real-time systems and further aid in complex engineering 

designs and implementations. 

In future, we intend to explore the model composition and 

reuse of heterogeneous formalisms for conceptual modeling, 

multiple targeted executable modeling specifications and 

integration of broader range of verification tools and formal 

approaches for the composability verification. 

APPENDIX 

A. EXTENDED FINITE STATE MACHINES 

The idea of EFSM was ignited by Cheng & Krishnakumar in 

1993 [50]. EFSM is different from conventional finite state 

machine. As opposed to a conventional FSM, an EFSM 

model has complex transitions. ‘‘A transition λ is said to 

occur if the system is in a state q, an event e occurs, and the 

guard g is satisfied, then action a will be executed and the 

system will transit to the next state q0. An event is uniquely 

identified by an event name, has a set of parameters where 

each parameter is of primitive data-types, and is either of the 

type send or receive. A send event is an outgoing event 

whereas a receive event is an event expected from other 

EFSMs. During the firing of transition λ ∈ 3 the 

statevariables {vin}∈V are used as input and the state 

variables {vout}∈V are used as output. This means that values 

of input variables are read when λ transition is being fired 

and is given as input to the action a, whereas the out 

variables are updated after the transition is fired by the action 

a. The state-variables could be of primitive types (e.g., 

Boolean, Integer, String) and or complex types (e.g., list, set, 

and map). A complex type is a combination of basic types, 

defined in form of tuples’’. Formally, an EFSM is defined 

by the tuple shown in Table 14. 

B. ANYLOGIC EXECUTABLE ENVIRONMENT 

Anylogic Simulation Software [24] provides a user-friendly 

executable environment with an efficient simulation engine 

for quickly creating and simulating models of complex 

systems. Anylogic provides a Java-based development 

environment and a set of multipurpose component libraries, 

which all 
TABLE 14. Formal definition of extended finite state machine. 

 

together help to speed up the modeling process. We propose 

to use the built-in libraries to create executable EFSM 
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models and use the Anylogic Simulation engine, animation 

tool and graph visualization features to run and display 

simulation results, using different experiment configurations. 

C. MODEL CHECKING 

Model checking is used for the formal verification of our 

composed model. It is defined as: ‘‘Model checking is an 

automated technique that, given a finite-state model of a 

system and a formal property, systematically checks whether 

this property holds for that model’’ [51]. 

In formal logic, ‘‘model checking designates the problem 

of determining whether a formula or a correctness property 

φ defined using Linear Temporal Logic (LTL), 

Computational Tree Logic (CTL) or similar property 

specification formalism, evaluates to true or false in an 

interpretation of a system K, written as K |H φ’’ [27]. 

Readers are referred to [27], [51] for the details of LTL & 

CTL constructs and their use. In this paper we use PAT 

(Process Analysis Toolkit) model checker. PAT is designed 

to analyze system models using various model checking 

techniques [46]. 
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