
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/354460239

An Integrated Modeling, Simulation and Analysis Framework for Engineering

Complex Systems

Article · September 2019

CITATIONS

0

1 author:

Wyatt Iavarone

University of Georgia

12 PUBLICATIONS 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Wyatt Iavarone on 09 September 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/354460239_An_Integrated_Modeling_Simulation_and_Analysis_Framework_for_Engineering_Complex_Systems?enrichId=rgreq-fb09231c3daef9a416322eee8cdaf8de-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQ2MDIzOTtBUzoxMDY1OTQ4NTU1NTMwMjQxQDE2MzExNTMzNDgxMjE%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/354460239_An_Integrated_Modeling_Simulation_and_Analysis_Framework_for_Engineering_Complex_Systems?enrichId=rgreq-fb09231c3daef9a416322eee8cdaf8de-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQ2MDIzOTtBUzoxMDY1OTQ4NTU1NTMwMjQxQDE2MzExNTMzNDgxMjE%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fb09231c3daef9a416322eee8cdaf8de-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQ2MDIzOTtBUzoxMDY1OTQ4NTU1NTMwMjQxQDE2MzExNTMzNDgxMjE%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wyatt-Iavarone?enrichId=rgreq-fb09231c3daef9a416322eee8cdaf8de-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQ2MDIzOTtBUzoxMDY1OTQ4NTU1NTMwMjQxQDE2MzExNTMzNDgxMjE%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wyatt-Iavarone?enrichId=rgreq-fb09231c3daef9a416322eee8cdaf8de-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQ2MDIzOTtBUzoxMDY1OTQ4NTU1NTMwMjQxQDE2MzExNTMzNDgxMjE%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Georgia?enrichId=rgreq-fb09231c3daef9a416322eee8cdaf8de-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQ2MDIzOTtBUzoxMDY1OTQ4NTU1NTMwMjQxQDE2MzExNTMzNDgxMjE%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wyatt-Iavarone?enrichId=rgreq-fb09231c3daef9a416322eee8cdaf8de-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQ2MDIzOTtBUzoxMDY1OTQ4NTU1NTMwMjQxQDE2MzExNTMzNDgxMjE%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wyatt-Iavarone?enrichId=rgreq-fb09231c3daef9a416322eee8cdaf8de-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQ2MDIzOTtBUzoxMDY1OTQ4NTU1NTMwMjQxQDE2MzExNTMzNDgxMjE%3D&el=1_x_10&_esc=publicationCoverPdf

Received April 21, 2019, accepted May 11, 2019, date of publication May 20, 2019, date of current version June 5, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2917652

An Integrated Modeling, Simulation and Analysis

Framework for Engineering Complex Systems

IMRAN MAHMOOD, TAMEEN KAUSAR1, HESSAM S. SARJOUGHIAN2,

ASAD WAQAR MALIK 1,3, AND NAVEED RIAZ1
1Center for Research in Modeling and Simulation (Crimson), School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and

Technology (NUST), Islamabad 44000, Pakistan
2Arizona Center for Integrative Modeling and Simulation (ACIMS), School of Computing, Informatics, and Decision Systems Engineering, Arizona State University,

Tempe, AZ 85281, USA
3Department of Information Systems, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia

Corresponding author: Imran Mahmood (imran.mahmood@seecs.edu.pk)

 ABSTRACT The discipline of component-based modeling and simulation offers promising gains in reducing

cost, time, and the complexity of model development through the (re)use of modular components.

Modeldriven development suggests 1) the realization of a complex system using a conceptual model; 2) its

automatic transformation into an executable form using transformation rules, and; 3) its automatic

verification using a formal analysis technique for an accurate assessment of its correctness. Both approaches

have numerous complementary benefits in rapid prototyping of complex systems using model reuse. In this

paper, we propose a framework grounded in a combination of component-based and model-driven

approaches to promote rapid prototyping of complex systems through the effective reuse of the simulation

models. Our proposed process allows developers to 1) build or select existing components and compose

them to formulate the conceptual models of complex systems; 2) automatically transform the conceptual

models for the rapid implementation and simulation, and; 3) automatically verify them as per the

requirement specifications. We propose the use of the extended finite-state machine (EFSM) as conceptual

modeling formalism, anylogic simulation platform for the implementation, and probabilistic model

checking technique using communicating sequential process (CSP) formalism for the verification. Finally,

we present a case study of a real-time adaptive cruise control system to demonstrate the functionality of our

framework. Our proposed component-based model-driven approach facilitates rapid prototyping and

effective meaningful reuse of complex system models, which further accelerates the modeling, simulation,

and analysis process of real-time systems and aids in complex engineering designs and implementations.

 INDEX TERMS Component-based development, model driven engineering, complex systems, anylogic simulation,

probabilistic model checking, adaptive cruise control system.

I. INTRODUCTION conclusions about it. According to the definitions of the

Modeling & Simulation (M&S) provide essential means to U.S. Department of Defense:

guide the design of complex engineering systems and aid Model: ‘‘a physical, mathematical, or otherwise logical in dealing

with the increasing complexity involved in their representation of a system, entity, phenomenon, or process’’. development.

This growing complexity necessitates advances Simulation: ‘‘a method for implementing a model and in the discipline of

M&S. Modeling concerns with the build- behaviors in executable software’’ [1].

ing of a model, through the abstraction of the real system. Modeling real-world complex systems is a challengA simulation,

on the other hand, is the implementation of the ing task. Complex systems generally have three attributes: model, in an

https://orcid.org/0000-0003-0138-7510
https://orcid.org/0000-0003-3804-997X

67498 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

executable environment, to imitate the opera- (i) A complex system has many parts (or units, individtions of the real system,

over a period of time and to generate uals or subsystems); (ii) There are many relationships, an artificial history of the system,

which is observed to draw interactions, dependencies or competitions between these parts; (iii) The parts produce combined

effects (emer-

The associate editor coordinating the review of this manuscript and gence) that are not easily foreseen and may often be novel approving it

for publication was Giambattista Gruosso. (desirable) or chaotic (undesirable) [2]. Some examples of

2169-3536 2019 IEEE. Translations and content mining are permitted for academic research only.
VOLUME 7, 2019 Personal use is also permitted, but republication/redistribution requires IEEE permission. 67497

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

complex systems include, but are not limited to: Earth’s

atmosphere, organisms, cell biology, human brain,

ecosystems, economic systems, epidemics, infrastructure

such as power grid, energy markets, transportation systems,

communication systems, and the World Wide Web. Main

elements of complexity in these complex systems include:

emergence, self-organization, collective behavior, networks,

evolution & adaptation, pattern formation, nonlinear

dynamics and nonintuitive system behavior [3]. A major

challenge is to formulate an appropriate conceptual model

that allows to represent the static structure and the dynamic

behavior of a complex system. This include expressing the

relevant attributes, functions and the states of the system’s

entities, their inputs and outputs with interconnections, and

their interfaces to the exogenous systems. Formulating such

constructs together into an effective, validated, and verified

model can be daunting. Many real-world complex systems

exhibit realtime, reactive and probabilistic behavior. In real-

time systems the behavioral correctness depends on the

logical results as well as the individual and the collective

physical time constraints for accessing, processing, and

delivering the computed information [4]. Reactive behavior

means the system responds or reacts to the external events

and makes progress to fulfill desired goals [5]. Probabilistic

systems exhibit nondeterministic behavior for modeling

random phenomena [6]. A combination of all these

characteristics makes a system highly complex and difficult

to model. Implementing these models for simulations, and

Verification & Validation for ensuring their correctness add

further intricacies in the process of complex system

engineering. In this paper, we focus on the model-based

development of engineered complex systems.

A. COMPONENT BASED DEVELOPMENT

The discipline of Component-based development has been

identified as a key enabler in the design and development of

complex systems through the (re)use of prefabricated model

components [7]. The extensive use (and reuse) of modular

components, offers numerous advantages including

reduction in development cost, time, and system complexity

and allows logical partitioning of complex systems [8]. A

‘model component’ is an independent building block that

conforms to a standard, has well defined interfaces

(inputs/outputs), functionality (process) and the dynamic

behavior (states). The interfaces describe its communication

with other components whereas its internal behavior is

specified using a formal specification [9]. The behavior of a

system is usually described using a formal specification such

as: Finite state machines, Timed Automata, Petri Nets,

communicating sequential processes (CSP), or similar

formalism depending on the nature of the system being

modeled. In this paper, we choose Extended Finite State

machines [10] for the formal description of the model

components. As opposed to conventional finite state

machine, an EFSM captures complex behavior with more

expressive transitions including: events, trigger conditions,

triggered actions, and data operations on the internal

variables. EFSM is also suitable for distributed and

concurrent systems.

A model component is not built as a standalone element,

but can be independently deployed, and it is subject to third

party composition with or without modifications. The model

components are composable if their inputs match the outputs.

However, in order to build a meaningful composition, such

that they will perform correctly according to the desired

requirements, their composition is verified at a semantic

level. This requires an in depth analysis of ‘model

composability’ [11]. Composability was identified as a key

objective and a daunting research challenge in early 2000

and is still being described as ‘‘biggest simulation challenge’’

[12]. Model composability is the capability to select and

assemble model components in various combinations to

satisfy specific user requirements [13].

We consider Composability as a problem of model

verification,becauseitistheprocessofdeterminingthecorrectne

ss of a model with respect to its specifications [14].

Verification is concerned with the correctness of the model,

i.e., a model with no errors, bugs or defects in its

specification, design, and implementation [15]. Correctness

of a composed model is therefore relative to its specifications,

as its constituting components are required to possess precise

structural and behavioral properties in order to fulfill given

requirements. Requirement specification are the set of

property, representing the goals and or the constraints of the

VOLUME 7, 2019 67499

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

model that must be fulfilled. Goals of the model can be

considered as the final state(s) of the composed model or the

desirable outputs produced collectively by the composed

model which cannot be produced alone by the individual

components. Similarly, the property constraints are the

system properties that must be satisfied [16]. In this paper we

present the use of Composability Verification approach for

evaluating the correctness of a composed model with respect

to its requirement specification using model checking to

show that the selected components are composeable at

dynamic level.

B. MODEL DRIVEN ENGINEERING

Model driven engineering (MDE) is a software development

methodology [17] that focuses on the development of

conceptual models, which mainly aim at the abstract

structural and behavioral representations of a particular

application domain, and automatic realization and

deployment of these conceptual models into the executable

models through rule based transformations [18]. A

conceptual model is an abstraction of a real system and is

expressed using a formal specification, based on given

requirements and modeling objectives. It is later

implemented and deployed in the form of a concrete

computer program called executable model [19]. Our

proposed framework is based on three types of MDE —

Meta models:

1) CONCEPTUAL MODEL

Formal specification is used to express the structural and

behavioral syntax, semantics and pragmatics of complex

systems. In this paper, we use Extended Finite State machine

(EFSM) formalism as a conceptual modeling framework to

define model components and their composition [10]. A

brief description of EFSM formalism in given in Appendix-

A. EFSM is a powerful method of describing the behavior of

a complex system with real-time specifications, conditional

transitions, variable manipulations and data operations.

EFSM is used to best capture the additional modalities of the

structure and behavior of a system, which are not available

in ordinary finite state-machines. It models a system at a

higher-level of abstraction than a program and may contain

many interleaved computations. Therefore it makes sense to

decompose the system’s complexity into modular parts and

recombine them in a hierarchal fashion, in order to achieve

reduction in logical complexity and an increase in the reuse

[20]. We propose the use of EFSM formalism as our

Conceptual Model Specification, where an EFSM-based

model component encapsulates its structure and behavior

using a set of states, transitions, guards, actions and state

variables; and exposes its interfaces through a set of

send/receive events. A set of model components

communicate with each other through these interfaces and

hence are composed together to form a meaningful whole

system.

2) EXECUTABLE MODEL

We use Anylogic simulation platform for the executable

deployment of EFSM models. A brief description about the

Anylogic Simulation environment is given in Appendix-B.

We propose a transformation tool to automatically transform

individual EFSM components into executable specifications

of Anylogic platform, while preserving the pattern of their

composition. Once the EFSM-based conceptual model is

completely transformed into an executable model, the

modelers can simulate it using Anylogic Integrated

development environment (IDE) or in standalone run time

environment, and visualize the simulation results. This step

allows the modeler to validate their conceptual model by

comparing the simulation results with the results of the real

system.

3) VERIFICATION MODEL

For the purpose of analyzing the correctness of a composed

model, it is desirable to transform it into a specification that

is compliant with the targeted model verification approach.

In order to verify composability at this level we propose the

use of Probabilistic Model Checking technique using

Communicating Sequential Process (CSP) formalism [21]

[22], a model description language for our Verification

Model specification,which is executed and verified in

Process Analysis Toolkit (PAT) [23], and propose an

automated transformation of model components into CSP,

for formal verification. A brief overview of Modeling

Checking and primitives used in CSP formalism are

described in Appendix-C.

C. COMPONENTBASED MODEL DRIVEN APPROACH

In this paper we propose a rapid prototyping framework for

engineering complex systems. It combines the benefits of

Component-based development and Model driven approach.

The basic idea is to allow modelers to develop and reuse

model components using a specification formalism. In this

paper, we propose EFSM as a specification formalism.

However, more formalisms suchas DEVS, PetriNets, SysML

can be used to extend our approach. Modelers build and store

these model components in a repository. When needed, they

can search, discover, match and compose required

components to form a conceptual model as per given

requirements. The details of discovery, matching and

composition (DMC) paradigm are given in [9]. When a

conceptual model is formulated it is automatically

transformed into an executable model and is deployed on an

executable platform. We propose the use of Anylogic

Simulation Platform [24], being an industrial standard, with

a robust run time environment and support of event driven,

67500 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

real time, probabilistic and reactive modalities. During this

transformation, the elements of each model component such

as: states, transitions, guards, events, actions, data variables

are translated into the corresponding elements of the Any

logic primitives using transformation rules. The composition

pattern and the coupling of the model components is also

translated into the ports and connections in Anylogic. Once

the transformation is complete, an Anylogic file is generated

which can be either opened in the Anylogic IDE or can

directly be executed using Anylogic standalone run time. A

modeler can simulate it and view the simulation results. To

the best of our knowledge, a run time environment for

executable EFSM has not been implemented before and

therefore our contribution may help the community revive

the use of EFSM formalism in modeling, simulation and

verification of complex systems. In order to verify the

correctness of the conceptual model, we propose the use of

Model checking approach using Process Analysis Toolkit

[23], which uses Communicating Sequential Processes (CSP)

as the verification model formalism. We choose this

platform because PAT toolkit supports probabilistic

verification. It also allows the use of time constraints for

timebased probabilistic systems. It is to note that classical

EFSM specification doesn’t include the notions of time,

therefore we propose an extension to include time constructs

for allowing modelers to conceptualize time-based systems.

When the model is transformed into CSP specification, it can

be verified using PAT model checker using Probabilistic

Linear Temporal Logic (PLTL) assertions. These assertions

are taken as input from the modelers for verifying the model

composability.

Lastly, we provide a case study of an adaptive cruise

control system, as an example of a real-time

nondeterministic reactive system for the proof of concept of

our proposed approach. Our case study explains the process

of: (i) Developing and composing EFSM based conceptual

model; (ii) Transforming the conceptual model into an

executable model and its simulation using Anylogic runtime

environment; (iii) and verifying the composed model using

model checking technique, with respect to given requirement

specifications. A verified composed model conforms to its

requirement specifications by successfully reaching its goal

state(s) and by satisfying given constraints. Hence, we can

easily say that a verified composed model developed through

the systematic process of model driven engineering, asserts

meaningful reuse of model components, helps reduce cost,

time and complexity of model development and therefore

achieves the goal of rapid prototyping of complex systems.

It further allows domain experts to focus more on the domain

specific conceptual modeling instead of dealing with the

intricacies of the platform specific code implementations and

therefore increase the productivity in Modeling &

Simulation community.

The rest of the paper is organized as follows: Section 2,

briefly discussed the background concepts and definitions

used in this paper and provides a literature survey; Section 3

describes our proposed framework; Section 4 provides a case

study of an Adaptive Cruise Control System and finally;

Section 5 frames the summary, conclusion & the future work.

II. RELATED WORK

In this section, we discuss the literature review, divided in

the following categories:

A. COMPONENT-BASED APPROACHES

A variety of component-based approaches such as Discrete

Event System Specification (DEVS) [25] and Petri net [26]

can lend themselves to specify and simulate system structure

and behavior in terms of modular, hierarchical

componentbased models. Similarly, methods such as Linear

Temporal Logic (LTL) [27] and Timed Automata (TA) [28]

can specify property constraints that can be verified.

Ongoing research also places strong focus on mixed

continuous and discrete models (e.g., [29], [30]). These

works share key common concepts and methods with those

examined next with respect to the proposed Component-

based Model Driven Approach.

B. MODEL DRIVEN ENGINEERING

A ‘‘value-driven engineering’’ approach is proposed in the

simulation process, where the design concept along the

lifecycle is aggregated to a value function. This multi-level

simulation framework links Anylogic simulation platform

with CAD modeling tools [31]. Another approach presents

an automatic transformation from the UML activity

diagrams to AnyLogic in order to generate an executable

simulation model, that identifies performance issues early in

an engineering design process [32]. Another approach

presents the practices of three large industrial participants

and proposes the use of MDE on the development of large

and complex systems. MDE has been presented useful for

the abstractions of complex systems at varied perspectives in

order to build domain specific models, for the simulation,

testing, and the analysis of performance-related decision

support. Anylogic simulation software has been used in one

of the case studies [33].

C. FORMAL SPECIFICATIONS AND VERIFICATION

Some works have been aimed at the use of formal

specifications for both simulation and model-checking.

Examples include transforming RTA-DEVS to TA [34]. The

goal is to verify DEVS models through manually

transforming them to a subset of TA which can then be

executed in UPPAAL. In another work, Finite-Deterministic

DEVS models are mapped into non-deterministic automata.

Then, the DEVS/MS4 Me tool [34] is used for validation and

VOLUME 7, 2019 67501

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

the SPIN/PROMELA tool [35] is used for verification.

These works, as in the proposed framework in this paper,

employ different modeling methods with manual model

transformations and separately developed tools. Considering

Petri net, the bounded Read Arc Timed Petri net capable of

checking the presence of tokens without consuming them

has been developed [36]. This variant of Petri net is

computationally equal to Timed Automata. The underlying

tactic behind these works is to support design through

loosely related simulation and model-checking methods.

Although the proposed framework has the same aim as the

others, it provides the EFSM and LTL models with model

transformations. These modeling methods offer an

alternative framework supported with the Anylogic [24] and

Process Analysis Tool (PAT) [23] tools. A similar work

focusses on the modeling and verification of hybrid systems,

using Hybrid Communicating Sequential Processes (HCSP)

[37]. Another work focuses on the translation of

Simulink/State flow-based control-oriented block-diagram

formalism into the hybrid-state process calculus HCSP, for

full formal verification using the Isabell/HOLbased

interactive verifier [38]. In contrast to the above, a unified

modeling framework has been proposed where both

simulation and model-checking share a common

mathematical formalism [39]. In this approach, the parallel

DEVS simulation models are systematically augmented so

that desired properties can be specified. To support

verification, the Constraint DEVS along with experiments

allow defining and testing properties. A verification

algorithm capable of verifying stochastic properties of the

Constrained DEVS models has been developed. The

verification is achieved by DEVS transducer models that

evaluate the verification models that are subject to a finite

set of inputs from DEVS generator models. Model-checking

specification with an execution protocol is supported in the

DEVS-Suite simulator [40], thus allowing unified model

validation and verification in a single framework. In contrast

to this work, the proposed Componentbased Model Driven

Approach offers a strong separation between simulation and

model-checking as detailed next.

III. COMPONENT BASED MODEL DRIVEN APPROACH

This section discusses the salient features of our proposed

frameworkpresentedinthispaper.Inthissection,wedescribe
TABLE 1. Proposed time constraints for EFSM.

FIGURE 1. Requirement specification template.

our proposed component-based model driven framework

which consists of the phases, as shown in Figure 2.

In this paper, we focus on the model development of

realtime complex systems, therefore further propose a set of

time constraints as extensions in the modeling elements of

EFSM formalism to allow the modelers to express time

elements and constraints in EFSM models. We define three

types of time constraints, which can be assigned to a

transition as shown in Table 1.

A. PHASE-I: DEFINING THE SIMULAND

In the first phase, a Simuland is given as input. Simuland is

the body of knowledge of the real system that is to be

simulated [13]. We assume the modelers use any informal

technique to describe the Simuland, for example natural

language or UML diagrams.

B. PHASE-II: REQUIREMENT SPECIFICATION

When the Simuland is acquired, it is used to initiate the

process of requirement engineering for the formulation of

the requirement specifications. In this paper, we consider

requirement specifications as a set of goals and constraints

shown in Figure 1.

In modeling terms, an objective oi ∈ O is defined as a

property that represents certain ‘‘Reachable final state’’, a

desirable output or an emergent effect produced by the

composed model or any of its components. A system

constraint si ∈ S is defined as a property that must be satisfied

67502 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

(or falsified), e.g., a good state; which must be reached or a

bad state; which must be avoided (never be reached) during

the execution. For details and examples readers are referred

to [16].

C. PHASE-III: CONCEPTUAL MODEL

Conceptual Model is developed through the use and reuse of

EFSM based components. We propose an XML notation to

define components in EFSM format. Another XML notation

is proposed to define the EFSM component composition.

The schema and examples of our XML notations are

available at GitHub.1

1) DISCOVERY, MATCHING & COMPOSITION (DMC)

A modeler defines basic components and store them in a

repository. These components are searched using the

information given in the simuland. When the candidate

components are discovered, they are matched and filtered by

the modelers. The components are compared from the

simuland and requirement specifications and the most

suitable selection of the candidate components are picked.

If the required components are not discovered and do not

exist in the repository, then they are constructed from the

scratch and are ingested in to the repository for later use.

Figure 3 illustrates the DMC process. Similar approaches of

DMC paradigm and the semantic discovery, matching and

composition of components have been proposed [41]–[43].

D. PHASE-IV: EXECUTABLE MODEL

A conceptual model is only a formal representation of a real

system. In order to be able to develop its implementation and

simulate it, we need to transform the conceptual model into

an executable model. In this paper, we propose to use the

runtime environment of Anylogic simulation software for

the implementation of the EFSM formalism. We have

developed a transformation tool that takes each member

EFSM component of the conceptual model as input, parse its

XML and transform it into a corresponding implementation

using Anylogic code snippet [44]. When all the member

components of the XML EFSM are transformed, they are

composed together using the Anylogic ports and connectors,

according to the composition pattern given in the XML

specification of the conceptual model. When the

transformation process is successfully completed, the

complete Anylogic file (.alp) is generated which can be

opened using Anylogic IDE and can be executed. Our

transformation tool uses the elements of EFSM and

transform them into Anylogic elements as shown in Table 2.

E. PHASE-V: ANALYSIS TECHNIQUE

1
 https://github.com/ModelDrivenFramework

In this phase, the EFSM components are transformed into the

corresponding CSP components. A preliminary

transformation algorithm for UML state-charts is proposed

in [45] which discusses the operational semantics of the

transformation. We propose additional transformation rules

to generate

VOLUME 7, 2019 67503

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

FIGURE 3. Discovery, matching & composition.

a CSP specification from EFSM as shown in Table 3. A basic

example of Executable EFSM to CSP transformation is

presented in Figure 4, which shows how the elements of an

executable-EFSM are transformed into CSP code. We have

developed a transform tool that takes each EFSM model

components as input, and outputs corresponding CSP

processes using PAT description language. All the CSP

processes collectively represent our verification model and

undergoes model checking for composability verification.

The requirement specifications (objectives and constraints)

are manually translated into LTL properties and passed

through the model checking process for verification. If all

the properties of the requirement specifications are satisfied,

the model composability is evaluated as correct, and

confirms the correct reuse of composed components in order

to represent a real-time complex system.

1) MODEL CHECKING USING PAT MODEL CHECKER

When the Executable EFSM model is successfully

transformed into CSP specification, a file is generated which

can be opened in the PAT toolkit IDE. Then the properties

in the requirement specifications are manually translated into

CSP# assertions, which is a Linear Temporal Logic (LTL),

Real-Time LTL (RLTL) and Probabilistic LTL (PrLTL)

specification format for constructing various types of

verification queries. We use PAT assertion syntax to

translate the objectives and constraints of the requirement

specifications, defined in Phase II. Table 4 illustrates the

syntax of the CSP# assertions.

When an assertion is defined using a correct syntax, it is

given as input into the PAT model checker, which in turn

will present the verification results. If the assertion is

satisfied the verification is successful otherwise a counter

example will be highlighted, showing the exact trace where

the assertion is failed. Model checking will help analyze the

composability of the automatically transformed model by

evaluating goal reachability and constraint satisfaction. If all

the goals are reached and all the constraints are satisfied, we

verify that the components used (or re-used) in the

conceptual model are correctly composed, and their

behaviour is consistent with respect to the requirement

specification. If any counter example is observed, it will help

the modelers repeat the

FIGURE 2. Proposed framework using component-based model driven approach.

67504 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

TABLE 2. EFSM to anylogic transformation rules.

entire process by selecting a more suitable component and

therefore ensure correctness and meaningful reuse.

F. PERFORMANCE EVALUATION

A thorough assessment and performance evaluation of our

proposed framework for its ability to support industrial scale

engineering prototypes of complex systems necessities an in-

depth study which is beyond the scope of this paper. It not

only demands a quantitative measure of the process involved,

but also a qualitative metrics in terms of Adaptability and

Composability degree. Adaptability is the degree to which

framework can be extended to support multiple modeling,

execution and verification formalisms. The degree to which

the framework supports syntactic, semantic and pragmatic

reuse of models in various context is called composability

degree. For the purpose of the quantitative measure of the

process, our framework is inherently dependent on the

performance of Anylogic and PAT tool kit. The execution

performance of Anylogic is further dependent on the

platform being used and scales up with the migration from

VOLUME 7, 2019 67505

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

common desktops to high-performance computing platforms.

Model Checking technique is also scalable since it relies on

the usage of PAT tool which can handle about 107 states in a

reasonable amount of time [46]. This should be sufficient for

the verification of most industrial scale system models.

IV. CASE STUDY: ADAPTIVE CRUISE CONTROL SYSTEM

MODEL

In this section we present a case study of Adaptive Cruise

Control System in order to explain our proposed approach.

Adaptive Cruise Control (ACC) System is a

TABLE 3. EFSM to CSP transformation rules.

67506 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

dynamic cruise control system for automobiles, which adjusts ACC vehicle and is calculated as:

vehicle’s speed according to the traffic situation. It consists of

a ‘Sensor’ that maintains a safe distance by detecting the

DistACC

speed of the leading vehicle, distance (also called clearance) Tgap = and time gap, i.e., the time

interval between the leader and SpeedACC
TABLE 4. PAT LTL assertions.

If the sensor detects that the leading vehicle is slowing down

or speeding up, it sends message to controller to

communicate with actuator in order to adjust speed to

maintain a standard lower bound time gap of 2 seconds to

avoid collision [45].

Our task is to build the conceptual model of the adaptive

cruise control real-time system using pre-developed

components, and use our proposed framework to implement,

simulate and model-check it. We will show how all the

components work together to accomplish common goals and

avoid safety constraints. In this section we present all the

phases of our framework.

A. DEFINING THE SIMULAND

Wedefinethesimulandofanadaptivecruisecontrolreal-time

system as follows:

a) Sensor: It detects the distance between two cars and

communicates it to the controller in order to maintain

the safe distance/time gap.

b) Controller: It receives periodic data from the Sensor

and controls the speed of the car accordingly

c) Actuator: It accelerates or decelerates the speed of car

as per instructions of controller.

d) Environment: It is the external environment of the

system and is used to generate input data

B. REQUIREMENT SPECIFICATION

Based on the scenario, we define requirements of the ACC

system as shown in Figure 6.
FIGURE 6. ACC requirement specification.

C. ACC CONCEPTUAL MODELS

Starting in phase III, we search and discover suitable EFSM

components from the repository using the simuland

description and requirement specifications. We matched and

selected three components namely: Sensor, Controller,

Actuator, and Environment from the list of candidate

components.

1) SENSOR

Sensors observes the environment and sense the distance and

speed of the front car. Sensor consists of two states:

Receiving and Processing. Receiving is an initial state which

means sensor is active and waiting to receive data from the

environment. When an event ‘Update’ is received, the

message parameters: ‘current distance’ and ‘speed’ are

VOLUME 7, 2019 67507

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

obtained to calculate time gap, and the sensor jumps to the

Processing State. At the processing state, if time gap is

greater than a standard time gap, an ‘accelerate’ event is sent

to the controller. Otherwise, a ‘decelerate’ event is sent.

EFSM specification of the sensor is shown in Table 5.

2) CONTROLLER

The main job of the controller is to control the speed by

updating the actuator, according to the data received from

the

sensorandensurethesatisfactionofthemaximumspeedlimit

constraint. Controller consists of three states ‘active’,

‘accelerating’, ‘decelerating’. ‘active’ is an initial state. An

event named ‘accelerate’, sent by the sensor moves

component from active to ‘accelerating’ if the current speed

is less than the maximum speed limit. While a ‘decelerate’

event moves it from active to ‘decelerating’ state. EFSM

specification of the controller is shown in Table 6.

3) ACTUATOR

Actuator controls the actual speed of the car. It has three

states ‘fixSpeed’, ‘Brake’ and ‘Pedal’. ‘fixSpeed’ is an initial
FIGURE 8. Controller EFSM executable in anylogic.

TABLE 5. EFSM specification of sensor component.

67508 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

state of the component. On receiving ‘accelerate’ event from

the controller, it jumps to ‘pedal’ and increment the speed by

1 unit and returns back to the ‘fixSpeed’. Similarly, on

receiving ‘decelerate’ it jumps to ‘brake’ state and

decrements the speed by 1 unit and returns. EFSM

specification of the actuator is shown in Table 7.

4) ENVIRONMENT

It is the external environment that provides random inputs:

speed and distance of the front car to the sensor by sending

‘update’ event with parameters: speed & distance. EFSM

specification of the environment is shown in Table 8.

5) COMPOSED MODEL

All the EFSM models are composed to form the conceptual

model. Each component is connected to another component

using ‘⊕’ operator and the send and receive transitions are

mapped using ‘‘!’’ send or ‘‘?’’ receive operators, as shown

in IV-D. The detailed descriptions and the XML code of the

individual EFSM components and their composed

specification are available at Github.

2
We assume that the front car changes its speed using a triangular

distribution with min=15, max = 38 and most likely =26

D. ACC EXECUTABLE MODEL

In the next phase, all the EFSM components are transformed

into corresponding executable models, using our

transformation tool, according to the rules specified in Table

2. Finally, they are (automatically) composed together to

form the executable ACC composed model. The Anylogic

implementation of each component is show in Figure 7 to

Figure 11:

E. ACC MODEL EXECUTION

TABLE 7. EFSM specification of actuator component.

VOLUME 7, 2019 67509

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

Two scenarios of adaptive cruise control model in Anylogic

were simulated: (i) Success Scenario, where the goal is

achieved and the safety constraint is satisfied, showing that

the selected components in the composition are consistent

with respect to the requirement specification. (ii) Counter

example,wherethegoalisnotachieved,meaningoneormore

components are not consistent in order to achieve mutual
TABLE 10. Comparative studies.

FIGURE 9. Actuator EFSM executable in anylogic.

FIGURE 10. Environment EFSM executable in anylogic.

goals. In both scenarios, we assume the internal behaviour of

the environment component has a leading car moving on an

arbitrary random speed using Triangular Distribution [min =

15, max = 38, mode = 26] and is changing its speed at

different intervals. Due to this varying speed the follower car

has to adjust itself by calculating time gap and sending

accelerate or brake messages to the controller.

FIGURE 11. ACC composed model - executable in anylogic.

1) SIMULATION SCENARIO I

In this scenario, the selected sensor was configured at a

refresh rate of 100 milli-seconds and the controller is

guarded with conditions to remain within the speed limit,

therefore resulting into a success scenario. Figure 12 shows

the simulation results of the scenario (i).

The Figure 12 shows that the lower bound time-gap is:

Tgap ≥ 1.99 sec and doesn’t go lower than that. Since we

modeled a stochastic system, each time it is simulated, it will

produce different results. However, we will show in the

Analysis phase that using probabilistic model checking, we

can gain a confidence on the goal reachability if it is within

an acceptable threshold. According to a study conducted in

[47] effects of time-gap settings of ACC car were inspected.

Thirty professional bus drivers drove on the simulator with

the scenario of highway traffic flow under 12 random time-

67510 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

gap settings: from 0.64 to 2.40 seconds. The general concept

is to maintain the safe time gap or safe distance from the

leading

carinordertoavoidthecollision.Itwasrevealedthatthesafer

time gaps for different situations were longer than 1.60 sec.

Thisconfirmsthegoalreachabilityi.e.;ACCcarshouldadapt its

speed such that it always remains within a threshold of

standard time gap. Similarly, figure 12 c shows that the ACC

car always remain within the maximum speed limit

FIGURE 14. Goal reachability.

(i.e.., 33.3 m/s = 120 KM/Hr.) even though the speed of the

leader car exceeds the limit. This shows that the satisfaction

of the constraint in the requirement specification.

2) SIMULATION SCENARIO II

In this scenario, the refresh rate of the discovered sensor was

500 milli-seconds and the controller chosen was not guarded

with max speed limit, thus resulted into a counter example.

Figure 13 shows the simulation results of the scenario (ii). It

can be noticed that the ACC car is violating the time-gap

limit multiple times during the simulation, as it goes as low

as 0 i.e., Tgap ≥ 0, therefore it fails to reach the goal. It is also

evident from Figure 13 (c) that the ACC car violates

maximum speed limit (i.e.., 33.3 m/s) and therefore violates

safety constraint.

F. RESULTS VALIDATION

We compared our simulation results with the existing studies

shown in Table 10. It can be seen that the time gaps

FIGURE 12. Success scenario. (a) Time gap. (b) Leader and follower distance. (c) Leader and follower speed.

FIGURE 13. Counter example. (a) Time gap. (b) Leader and ACC car distance. (c) Leader and ACC car speed.

VOLUME 7, 2019 67511

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

computed during the simulations of these studies are

comparable with the time gap presented in Figure 12.

G. ANALYSIS TECHNIQUE

In this phase we use Model Checking approach for the

verification of the ACC composed model. This section

presents the steps of transformation of Executable ACC

Composed model

TABLE 11. Transformation of EFSM to CSP.

67512 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

VOLUME 7, 2019 67513

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

TABLE 12. Assertion I.

into the CSP-based verification model and the formal

verificationusingPATanalysistoolkit.Theexecutablecompon

ents are transformed using the proposed transformation rules.

The composed model is executed and verified using

PAT model checker. At first, we translated the requirement

3
The functions: uniformDist and traingularDist are not automatically

transformed as there is no built-in support for these functions in PAT.

specifications into PAT assertions as shown below:

‘Assertion-I’ uses a PLTL construct to verify that the ACC

car maintains a standard time-gap. If assertion1 is satisfied,

it shows that time gap between cars is standard and

maintained to avoid collision. The result of PAT model

checker in Figure 14 shows that the goal state is reachable as

the assertion is satisfied with a confidence factor of 81% –

99%. This is not 100% because the model is
TABLE 13. Assertion II.

stochastic and on occasions the time-gap of the ACC car has

dropped slightly below 2 as can be seen in Figure 12. On the

other hand, the goal reachability in the counter example is

failed as shown in Figure 15. ‘Assertion-II’ uses a PLTL

construct to verify that speed of the ACC car does not exceed

the maximum speed limit. The verification results of

67514 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

‘Assertion-II’ in Figure 16 suggest the ACC will never

violate the safety constraint. Whereas the results of

‘Assertion-II’ in the counter example are not satisfied as

shown in Figure 17.

V. SUMMARY AND CONCLUSION

In this paper, we propose a framework using

Componentbased Model Driven Approach to promote rapid

development and effective reuse of complex simulation

models. Our proposed process allows developers to build,

select and compose components to formulate conceptual

models of complex systems; (re)use them for automatic

deployment of executable simulations; and automatically

verify them as per the requirement specifications. We

propose the use of Extended Finite State-machine (EFSM)

as conceptual modeling formalism, Anylogic Simulation

platform for the executable deployment, and Model

Checking technique with Communicating Sequential

Processes (CSP) formalism for the verification. Lastly, we

present a case study of a real-time adaptive cruise control

system to demonstrate EFSM-based components for

developing conceptual models, transforming conceptual

models into executable Anylogic simulations, and (ii)

transforming executable models into CSP for the model

checking. Two scenarios of the ACC model were presented.

In the success scenario the composed model was evaluated

to be correct as it reached its goal, i.e., the adaptive behavior

was within a given time-gap limit and satisfied its constraint,

i.e., the ACC car didn’t exceed its speed limit. In the counter

example, both the goal and the constraint were not satisfied

due to a faulty composition.

Our proposed component-based model driven approach

facilitates rapid prototyping and effective meaningful reuse

of complex system models. There are several benefits of our

proposed framework as it uses the Discovery, Matching and

Composition paradigm to construct EFSM-based conceptual

models through component reuse. It provides tools for rapid

implementation through automated transformation into an

executable form, and allows the modeler to use Anylogic to

build and simulate dynamic models followed by validating

the simulation results for the given simuland. It further

provides composability verification through the integration

of Model Checking with Anylogic as an automated tool for

evaluating the correctness of the composed model with

respect to the given requirement specifications. A verified

composed model guarantees the satisfaction of its objectives

and required constraints through the consistent structure and

coherent behavior of the composites. We believe these key

contributions presented in this paper will assist academics

and industrialists in the modeling, simulation, and analysis

of real-time systems and further aid in complex engineering

designs and implementations.

In future, we intend to explore the model composition and

reuse of heterogeneous formalisms for conceptual modeling,

multiple targeted executable modeling specifications and

integration of broader range of verification tools and formal

approaches for the composability verification.

APPENDIX

A. EXTENDED FINITE STATE MACHINES

The idea of EFSM was ignited by Cheng & Krishnakumar in

1993 [50]. EFSM is different from conventional finite state

machine. As opposed to a conventional FSM, an EFSM

model has complex transitions. ‘‘A transition λ is said to

occur if the system is in a state q, an event e occurs, and the

guard g is satisfied, then action a will be executed and the

system will transit to the next state q0. An event is uniquely

identified by an event name, has a set of parameters where

each parameter is of primitive data-types, and is either of the

type send or receive. A send event is an outgoing event

whereas a receive event is an event expected from other

EFSMs. During the firing of transition λ ∈ 3 the

statevariables {vin}∈V are used as input and the state

variables {vout}∈V are used as output. This means that values

of input variables are read when λ transition is being fired

and is given as input to the action a, whereas the out

variables are updated after the transition is fired by the action

a. The state-variables could be of primitive types (e.g.,

Boolean, Integer, String) and or complex types (e.g., list, set,

and map). A complex type is a combination of basic types,

defined in form of tuples’’. Formally, an EFSM is defined

by the tuple shown in Table 14.

B. ANYLOGIC EXECUTABLE ENVIRONMENT

Anylogic Simulation Software [24] provides a user-friendly

executable environment with an efficient simulation engine

for quickly creating and simulating models of complex

systems. Anylogic provides a Java-based development

environment and a set of multipurpose component libraries,

which all
TABLE 14. Formal definition of extended finite state machine.

together help to speed up the modeling process. We propose

to use the built-in libraries to create executable EFSM

VOLUME 7, 2019 67515

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

models and use the Anylogic Simulation engine, animation

tool and graph visualization features to run and display

simulation results, using different experiment configurations.

C. MODEL CHECKING

Model checking is used for the formal verification of our

composed model. It is defined as: ‘‘Model checking is an

automated technique that, given a finite-state model of a

system and a formal property, systematically checks whether

this property holds for that model’’ [51].

In formal logic, ‘‘model checking designates the problem

of determining whether a formula or a correctness property

φ defined using Linear Temporal Logic (LTL),

Computational Tree Logic (CTL) or similar property

specification formalism, evaluates to true or false in an

interpretation of a system K, written as K |H φ’’ [27].

Readers are referred to [27], [51] for the details of LTL &

CTL constructs and their use. In this paper we use PAT

(Process Analysis Toolkit) model checker. PAT is designed

to analyze system models using various model checking

techniques [46].

REFERENCES

[1] R. Fujimoto, C. Bock, W. Chen, E. Page, and J. H. Panchal, Research

Challenges in Modeling and Simulation for Engineering Complex Systems.

New York, NY, USA: Springer, 2017.
[2] R. B. Northrop, Introduction to Complexity and Complex Systems. Boca

Raton, FL, USA: CRC Press, 2014.
[3] Y. Bar-Yam, ‘‘General features of complex systems,’’ in Encyclopedia of

Life Support Systems. Oxford, U.K.: UNESCO, Eolss Publishers, 2002, p.

1.
[4] K. Popovici and P. Mosterman, Real-Time Simulation Technologies:

Principles, Methodologies, and Applications. Boca Raton, FL, USA: CRC

Press, 2013.
[5] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, and J. Srba, Reactive Systems:

Modelling, Specification and Verification. New York, NY, USA:

Cambridge Univ. Press, 2007.
[6] E.-R.OlderogandH.Dierks,Real-TimeSystems:FormalSpecificationand

Automatic Verification. Cambridge, U.K.: Cambridge Univ. Press, 2008.
[7] R. G. Bartholet, D. C. Brogan, P. F. Reynolds, Jr., and J. C. Carnahan, ‘‘In

search of the philosopher’s stone: Simulation composability versus

component-based software design,’’ in Proc. Fall Simulation

Interoperability Workshop, 2004.
[8] O. Balci et al., ‘‘Model reuse, composition, and adaptation,’’ in Research

Challenges in Modeling and Simulation for Engineering Complex Systems,

R. Fujimoto, C. Bock, W. Chen, E. Page, and J. Panchal, Eds. Cham,

Switzerland: Springer, 2017, pp. 87–115.
[9] I. Mahmood, ‘‘A verification framework for component based modeling

and simulation: ‘Putting the pieces together,’’’ Ph.D. dissertation, Dept.

Softw. Comput. Syst., KTH Roy. Inst. Technol., Stockholm, Sweden, 2013.
[10] V. S. Alagar and K. Periyasamy, Specification of Software Systems. London,

U.K.: Springer, 2011.
[11] H. S. Sarjoughian, ‘‘Model composability,’’ in Proc. Winter Simulation

Conf., Dec. 2006, pp. 149–158.
[12] S. J. E. Taylor et al., ‘‘Grand challenges for modeling and simulation:

Simulation everywhere—From cyberinfrastructure to clouds to citizens,’’

Simulation, vol. 19, no. 7, pp. 648–665, Jul. 2015.
[13] M. D. Petty and E. W. Weisel, ‘‘A composability lexicon,’’ in Proc.

Simulation Interoperability Workshop, 2003, pp. 181–187.
[14] M. D. Petty, ‘‘Verification, validation, and accreditation,’’ in Modeling and

Simulation Fundamentals: Theoretical Underpinnings and Practical

Domains. Hoboken, NJ, USA: Wiley, 2010.

[15] O. Balci, J. D. Arthur, and W. F. Ormsby, ‘‘Achieving reusability and

composability with a simulation conceptual model,’’ J. Simul., vol. 5, no.

3, pp. 157–165, 2011.
[16] I. Mahmood, R. Ayani, V. Vlassov, and F. Moradi, ‘‘Verifying dynamic

semantic composability of BOM-based composed models using colored

petri nets,’’ in Proc. ACM/IEEE/SCS 26th Workshop Princ. Adv. Distrib.

Simul., Jul. 2012, pp. 250–257.
[17] T. Mens and P. Van Gorp, ‘‘A taxonomy of model transformation,’’

Electron. Notes Theor. Comput. Sci., vol. 152, pp. 125–142, Mar. 2006.
[18] M. Brambilla, J. Cabot, and M. Wimmer, ‘‘Model-driven software

engineering in practice,’’ Synth. Lectures Softw. Eng., vol. 3, no. 1, pp. 1–

182, 2017.
[19] S. Robinson, R. Brooks, K. Kotiadis, and D.-J. Van Der Zee, Conceptual

Modeling for Discrete-Event Simulation. Boca Raton, FL, USA: CRC Press,

2011.
[20] K. Androutsopoulos, D. Clark, M. Harman, R. M. Hierons, Z. Li, and L.

Tratt, ‘‘Amorphous slicing of extended finite state machines,’’ IEEE Trans.

Softw. Eng., vol. 39, no. 7, pp. 892–909, Jul. 2013.
[21] C. A. R. Hoare, ‘‘Communicating sequential processes,’’ Commun. ACM,

vol. 26, no. 1, pp. 100–106, 1983.
[22] C. A. R. Hoare, ‘‘Communicating sequential processes,’’ Commun. ACM,

vol. 21, no. 8, pp. 666–678, 1978.
[23] PAT: Process Analysis Toolkit. Accessed: Aug. 20, 2018. [Online].

Available: http://pat.comp.nus.edu.sg/
[24] Anylogic. (2019). Anylogic Simulation Platform. Accessed: Aug. 20, 2008.

[Online]. Available: https://www.anylogic.com/
[25] B. P. Zeigler, T. G. Kim, and H. Praehofer, Theory of Modeling and

Simulation, 2nd ed. Orlando, FL, USA: Academic, 2000.
[26] J. Peterson, Petri Net Theory and the

 Modeling of Systems.
Upper Saddle River, NJ, USA: Prentice-Hall, 1981.

[27] N. Navet and S. Merz, Modeling and Verification of Real-Time Systems:

Formalisms and Software Tools, 1st ed. Hoboken, NJ, USA: Wiley, 2008.
[28] R. Alur and D. L. Dill, ‘‘A theory of timed automata,’’ Theor. Comput. Sci.,

vol. 126, no. 2, pp. 183–235, Apr. 1994.
[29] R. Alur, Principles of Cyber-Physical Systems. Cambridge, MA, USA:

MIT Press, 2015.
[30] C. Ptolemaeus, System Design, Modeling, and Simulation Using Ptolemy

II, vol. 1. Berkeley, CA, USA: Ptolemy.org, 2014.
[31] M. Panarotto, J. Wall, M. Bertoni, T. Larsson, and P. Jonsson,

‘‘Valuedriven simulation: Thinking together through simulation in early

engineering design,’’ in Proc. 21st ICED, Vancouver, BC, Canada, vol. 4,

2017, pp. 513–522.
[32] X. Fu, Y. Ma, and Tao Lin, "A Novel Image Matching Algorithm Based on

Graph Theory", Computer Applications and Software, vol. 33, no. 12, pp.

156-159, 2016. Shanghai Computer Society.
[33] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernandez, B. Nordmoen,

and M. Fritzsche, ‘‘Where does model-driven engineering help?

Experiences from three industrial cases,’’ Softw. Syst. Model., vol. 12, no.

3, pp. 619–639, 2013.
[34] H. Saadawi, G. Wainer, and M. Moallemi, ‘‘Principles of DEVS model

verication for real-time embedded applications,’’ in Real-Time Simulation

Technologies: Principles, Methodologies, and Applications. Boca Raton,

FL, USA: CRC Press, 2011, pp. 63–96.
[35] R. Gerth. (2007). Concise Promela Reference. Accessed: Aug. 20, 2008.

[Online]. Available: https://spinroot.com/spin/Man/Manual.html
[36] P. Bouyer, S. Haddad, and P.-A. Reynier, ‘‘Timed Petri nets and timed

automata: On the discriminating power of zeno sequences,’’ Inf. Comput.,

vol. 206, no. 1, pp. 73–107, Jan. 2008.
[37] J. Liu et al., ‘‘A calculus for hybrid CSP,’’ in Proc. Asian Symp. Program.

Lang. Syst., 2010, pp. 1–15.
[38] C. Zhong, Tao Lin, and P. Liu, “A Cyber Security Data Triage Operation

Retrieval System”, Computers & Security, 2018.
[39] S. Gholami and H. S. Sarjoughian, ‘‘Modeling and verification of

networkon-chip using constrained-DEVS,’’ in Proc. Symp. Theory

Modeling Simulation, Apr. 2017, p. 9.
[40] ACIMS. (2018). DEVS-Suite Simulator 4.0.0. Accessed: Aug. 20, 2018.

[Online]. Available: https://acims.asu.edu/software/devs-suite/

67516 VOLUME 7, 2019

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

[41] F. Moradi, R. Ayani, and I. Mahmood, ‘‘An agent-based environment for

simulation model composition,’’ in Proc. 22nd Workshop Princ. Adv.

Distrib. Simul., Jun. 2008, pp. 175–184.
[42] F. Moradi, R. Ayani, S. Mokarizadeh, G. H. A. Shahmirzadi, and G. Tan,

‘‘A rule-based approach to syntactic and semantic composition of BOMs,’’

in Proc. 11th IEEE Int. Symp. Distrib. Simulation Real-Time Appl., Oct.

2007, pp. 145–155.
[43] Tao Lin, Xue Fu, Fu Chen, Luqun Li, “A novel approach for code smells

detection based on deep learning”, EAI International Conference on

Applied Cryptography in Computer and Communications, 2021.
[44] A. Borshchev, The Big Book of Simulation Modeling: Multimethod

Modeling With Anylogic 6. Chicago, IL, USA: Logic North America

Chicago, 2013.
[45] S. J. Zhang and Y. Liu, ‘‘An automatic approach to model checking UML

state machines,’’ in Proc. 4th Int. Conf. Secure Softw. Integr. Rel.

Improvement Companion, Jun. 2010, pp. 1–6.
[46] J. Sun, Y. Liu, and J. S. Dong, ‘‘Model checking CSP revisited: Introducing

a process analysis toolkit,’’ in Leveraging Applications of Formal Methods,

Verification and Validation. Berlin, Germany: Springer, 2008, pp. 307–322.
[47] T.-W. Lin, S.-L. Hwang, and P. A. Green, ‘‘Effects of time-gap settings of

adaptive cruise control (ACC) on driving performance and subjective

acceptance in a bus driving simulator,’’ Saf. Sci., vol. 47, no. 5, pp. 620–

625, 2009.
[48] I. A. Ntousakis, I. K. Nikolos, and M. Papageorgiou, ‘‘On microscopic

modelling of adaptive cruise control systems,’’ Transp. Res. Procedia, vol.

6, pp. 111–127, Jan. 2015.
[49] L. Xiao et al., ‘‘Realistic car-following models for microscopic simulation

of adaptive and cooperative adaptive cruise control vehicles,’’ Transp. Res.

Rec., vol. 2623, no. 1, pp. 1–9, Jan. 2017. doi: 10.3141/2623-01.
[50] K.-T. Cheng and A. S. Krishnakumar, ‘‘Automatic functional test

generation using the extended finite state machine model,’’ in Proc. 30th

ACM/IEEE Design Automat. Conf., Jun. 1993, pp. 86–91.
[51] C. Baier and J.-P. Katoen, Principles of Model Checking (Representation

and Mind Series). Cambridge, MA, USA: MIT Press, 2008.

IMRAN MAHMOOD received the master’s and
Ph.D. degrees in computer systems from the

School of Information and Communication

Technology (ICT), KTH Royal Institute of

Technology, Sweden, in 2007 and 2013,

respectively. He is currently an Assistant Professor

with the

DepartmentofComputing,SchoolofElectricalEngineering and Computer

Science, National University of Sciences and Technology, Pakistan. He is

also serving as the Director of the Center for Research
in Modeling and Simulation (CRIMSON). His current research interests

include applied modeling, simulation, analysis, and formal verification of

complex systems. He can be reached at imran.mahmood@seecs.edu.pk.

TAMEEN KAUSAR is currently pursuing the master’s degree in information

technology with the Department of Computing, School of Electrical

Engineering and Computer Science, National University of Sciences and

Technology, Pakistan. Her current research interests include model

composability and modeling of complex systems. She can be reached

attkausar.msit15seecs@seecs.edu.pk.

HESSAM S. SARJOUGHIAN is currently an
Associate Professor of computer science and

computer engineering with the School of

Computing, Informatics, and Decision Systems

Engineering(CIDSE),ArizonaStateUniversity(ASU), Tempe, AZ, USA, and

the Co-Director of the Arizona Center for Integrative Modeling and

Simulation (ACIMS). His research interests include model theory, poly-

formalism modeling, collaborative modeling, simulation for complexity sci-
ence, and M&S frameworks/tools. He is the Director of the ASU Online

Masters of Engineering in Modeling and Simulation Program. He can be

contacted at hessam.Sarjoughian@asu.ed.

ASAD WAQAR MALIK received the Ph.D. degree

in parallel and distributed simulation/systemsfrom

the National University of Science and

Technology (NUST), Pakistan, in 2012, where he

is currently an Assistant Professor with the

Department of Computing (DOC), School of

Electrical Engineering and Computer Science

(SEECS). He is also a Senior Lecturer with the

Department of Information Systems, Faculty of

Computer Science and Information Technology,

University of Malaya, Malaysia. His primary areas of interest include

distributed simulation, cloud/fog computing, and the Internet of Things. He

can be reached at asad.malik@seecs.edu.pk.

http://dx.doi.org/10.3141/2623-01

VOLUME 7, 2019 67517

I. Mahmood et al. : Integrated Modeling, Simulation and Analysis Framework for Engineering Complex Systems

NAVEED RIAZ received the Ph.D. degree in

computer engineering from the Graz University of

Technology, Austria. He is with the Department of

Computing, School of Electrical Engineering and

Computer Science, National University of

Sciences and Technology, Pakistan. His main

research interests include software debugging,

formal verification, and software engineering. He

can be reached at naveed.riaz@seecs.edu.pk.

View publication statsView publication stats

https://www.researchgate.net/publication/354460239

