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Epidemic agent-based models (ABMs) simulate individuals in artificial societies that are

capable of movement, interaction, and transmitting disease among themselves. ABMs have

been used to study the spread of disease at various spatial and temporal scales ranging

from small communities to the world, over days, months, and years. The representations of

space and time often vary between different epidemic ABMs and can be influenced by

factors such as the size of a modeled population, computational requirements, population

environments, and disease-related data. The influence that the representations of space and

time have on epidemic ABMs is difficult to assess. Here we show that the finest represen-

tations of space and time—termed spatial and temporal granularities (STGs)—in a parsi-

monious ABM affect speed, intensity, and spatial spread of a synthetic disease. Specifically,

we found disease spread faster and more intensely as spatial granularity is coarsened,

whereas disease spread slower and less intensely as temporal granularity is coarsened in

a parsimonious ABM. Our study is the first to use the same epidemic ABM to examine the

influence of STGs. Our results demonstrate that STGs influence ABM dynamics including

early disease burnout and that an interrelationship exists between the coarsening of STGs

and the speed and intensity at which disease spreads. Our parsimonious ABM is extended

based on a structured community model and we found STGs also influence ABM dynamics

in a more realistic context that includes hierarchical movement. Broadly, our study serves

as a basis for further inquiry toward the influence of space–time representations on more

realistic models that include multiscale mobility, routine movements (e.g., commuting), and

heterogeneous population distributions.

Introduction

Computational models are formulated to better understand complex spatiotemporal dynamics by

comparing computer simulations to observations and theories. Although previous work in

computational spatial modeling recognizes the importance of the embodiment of space and

time (Bian 2004; Batty 2010; Batty et al. 2012; Manson, Sun, and Bonsal 2012), computational

representations of space and time are often coarsened due to limitations in fine-scale
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understanding, data, and computational capabilities (Riley 2007; Ajelli et al. 2010;

Hagen-Zanker and Jin 2012). This research investigates how the finest representations of space

and time, termed spatial and temporal granularities (STGs), shape model processes—capturing

movements and interactions of agents and environments—that operate within the constraints of

such representations. Motivated by previous studies comparing epidemic models (Kaplan and

Wein 2003; Ajelli and Merler 2008; Xu and Sui 2009; Ajelli et al. 2010), we formulate a novel

modeling approach that makes disease models capable of adjusting to different STGs. We apply

this approach to two disease models, providing a new spatial and temporal lens to critically

examine epidemic models.

Disease spread is a complex, multi-scale process dispersing from an individual to a com-

munity, city, and country over days, weeks, and months. As a result, disease spread can be studied

from a variety of spatial and temporal perspectives ranging from spatially and temporally fine

grained to coarse grained (Fig. 1). Disease maps have long been used to understand disease

spread (Snow 1855; Beyer, Tiwari, and Rushton 2012). Spatial analyses have been applied to

studies of disease spread including for disease detection (Kulldorff and Nagarwalla 1995; Emch

et al. 2012). Multiple studies have conceptualized epidemic disease spread as a wave moving

through space and time to investigate spatial and temporal characteristics of disease spread based

on historical diseases (Cliff and Haggett 2006; Cliff, Haggett, and Smallman-Raynor 2008).

Disease models, including dynamic, cellular-automata, and agent-based ones, rely on simplifying

assumptions to simulate disease spread in a computational model using desktop or high-

performance computing (Hethcote 2000; Parker and Epstein 2011; Bian 2013).

Researchers and policy makers increasingly rely on epidemic agent-based model (ABM)

simulations where individual agents move and interact passing disease among themselves to

understand how communicable diseases such as influenza and smallpox may spread throughout

Figure 1. This figure illustrates a spectrum of spatial and temporal granularities situating fine-

grained agent-based models (ABMs) with dynamic models that often have very coarse or no

spatial representations, disease maps that often have coarse or no temporal representations, and

disease statistics that capture a single spatially and temporally coarsened snapshot of disease.

Different ABMs may lie at different points along this spatiotemporal spectrum.
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a population (Ferguson et al. 2003; Epstein 2009). Comparing the results of these models that

often differ in assumptions and STGs (Bobashev et al. 2007; Halloran et al. 2008; Ajelli et al.

2010) may lead to opposing interpretations (Kaplan and Wein 2003). Therefore, the influence

of STGs on modeling results needs to be better understood in the context of epidemic

modeling.

Our study systematically examines how variations of space–time representations affect the

dynamics of two epidemic ABMs that are capable of adjusting to different STGs using a novel

modeling approach as a first step toward developing techniques to deal with variations of

space–time representations. Methodologically, our study is similar to the work on network-

based epidemic models (Keeling 1999; Keeling and Eames 2005; Shirley and Rushton 2005;

Xu and Sui 2009; Keeling et al. 2010) that seek to understand how alterations in network

connections between agents influence the spread of disease. In both cases, synthetic models

were manipulated to understand how changes in disease-spreading mechanisms (i.e., network

connections or STGs) influence the spread of disease. Although spatial and temporal repre-

sentations in ABMs have received significant attention (e.g., see excellent discussions in Parker

et al. 2003; Batty 2012; Stanilov 2012; Bian 2013), the focus of discussion is often the

scale(s), level(s) of detail, or granularity(ies) in an ABM. For example, O’Sullivan et al. (2012)

introduce the spatial and temporal grain of a model representation to discuss differences in

spatial ABMs such as comparing pedestrian models to land-use change models that operate at

different grains ranging from seconds to years and meters to individual land parcels, respec-

tively. Instead of focusing on a single granularity (or grain), we design an ABM that is capable

of adjusting to different STGs, thus enabling our investigation into the influence of STGs on

simulated disease spread while improving spatial and temporal understanding of modeling

disease dynamics.

Space, time, and processes in epidemic models

A grand challenge for epidemic models is to accurately simulate disease spread in the absence of

exact and complete data, including, for example, the locations of individuals and their homes or

workplaces. Modelers face data limitations for both population and disease data, which are often

coarsened due to concerns such as privacy (Maantay and McLafferty 2011). Data used to assign

persons to workplaces or schools are also often aggregated or largely unavailable (Wheaton et al.

2009). Further, data are often lacking to understand where people may come into contact outside

the home or workplace, termed unstructured contacts (Ajelli and Merler 2008). To compensate

for limitations in data, epidemic models often rely on simplifying assumptions or abstractions,

which may influence simulated disease dynamics including the locations of simulated individuals

or with whom they contact.

Interactions among agents form contact or mixing patterns that are central to understanding

how a disease spreads through populations (Koopman 2004). Mixing patterns include homoge-

neous (i.e., perfectly mixed) or heterogeneous, and are influenced by simplifying assumptions

and model parameters (Mishra, Fisman, and Boily 2011), which often differ among ABMs

including how agents move around and how a disease spreads from agent to agent (Ferguson

et al. 2006; Germann et al. 2006; Atti et al. 2008). Changing spatial patterns of contact or mixing

among agents is shown to influence simulated disease spread (Ajelli and Merler 2008; Ajelli et al.

2010). Although it is known that human mobility (Balcan et al. 2009; Brockmann 2009), agent-

to-agent contacts (Bian 2004; Rahmandad and Sterman 2010), and duration of such contacts

(Smieszek 2009) play an important role in agent-based modeling of disease spread, much less is

Eric Shook and Shaowen Wang Investigating the Influence of STGs on ABMs

3

Eric Shook and Shaowen Wang Investigating the Influence of STGs on ABMs

323



known about how variations of the representations of space and time determine when and where

agents come into contact or the duration of agent contacts. This knowledge gap is considerable

when compared with the field of spatial statistics that have well-developed approaches and

methodologies for detecting and dealing with spatial biases or properties such as spatial depen-

dence (Anselin and Rey 1991; Anselin 1995; Griffith 2006; Gumprecht, Müller, and

Rodríguez-Díaz 2009; Haining, Kerry, and Oliver 2010). Arguably spatial and temporal depen-

dence at the individual level is best understood in an ABM, because every agent interaction is

defined in the computer code of a model. However, applying individual-level understanding to

hundreds of simulations each consisting of thousands of individuals is a significant challenge.

Although ABMs may benefit from new methodologies to deal with spatial biases and properties

such as spatial or temporal dependence, a solid first step may be to shift the focus from designing

ABMs for a single space–time representation to multiple space–time representations and to build

an understanding of their influence.

Disease transmission modeling methods often adopted in spatial models can be categorized

into four common abstractions (Riley 2007). We recast these within an agent-based modeling

context for consistency within our discussion.

(1) Group. Disease transmission among groups of agents can only occur if they share a

connection. Transmission rates among groups can vary, but agents within a group share the

same rate of infection.

(2) Network models disaggregate groups into a network of agents in which transmission can

only occur between connected agents.

(3) Patch. Agents within a patch share the same rate of infection, but disease transmission to

nearby patches may occur at different rates usually based on distance between patches.

(4) Distance is calculated between susceptible and infectious agents to determine a rate of

infection.

Embedded within each of the four abstractions lie distinctive assumptions about the repre-

sentations of space for epidemic modeling that may influence disease spread. Patch and distance

transmission methods explicitly represent space by relying on an agent’s location. Whereas

groups and networks implicitly represent space by relying on spatial characteristics such as

agents’ home, work, or school buildings to establish connections among groups or agents

(Ferguson et al. 2006; Germann et al. 2006). These abstractions also specify different spatial

granularities: coarse to fine grained (group and patch) and very fine grained (network and

distance).

Time representation is critical to ABMs (Liu and Andersson 2004; Crooks and Castle

2012). Epidemic ABMs commonly use two types of time representation, namely continuous

and discrete. Continuous time or event-based models operate on a temporally ordered sequence

of events in which each event may change something in the model (e.g., an agent’s location)

or trigger a new event (Zeigler, Praehofer, and Kim 2000; Wainer and Mosterman 2011).

Discrete–time models operate based on a global clock that ticks at fixed-time intervals (e.g., 6

or 12 h) and enforces agents in a model simulation to be updated simultaneously (Ferguson

et al. 2006; Germann et al. 2006). More epidemic ABMs, particularly at a national or multi-

national scale, use discrete representations of time (Longini et al. 2004; Ferguson et al. 2006;

Germann et al. 2006; Atti et al. 2008; Chao et al. 2010), which can be partially attributed to the

challenges related to reformulating dynamics in terms of discrete events (Perumalla and Seal

2011).
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A parsimonious epidemic ABM

Our study is novel in formulating a new modeling approach to investigate the influence of STGs

on simulated disease spread. Our parsimonious epidemic ABM is capable of adjusting to differ-

ent STGs through the use of a novel modeling approach such that a patch size (spatial granularity)

of 10 × 10 m and time step duration (temporal granularity) of 1 h can be used in one simulation

and a patch size of 500 × 500 m and time step duration of 8 h can be used in second simulation

without modifying the ABM. This capability is distinctly different from other epidemic models

and enables simulation results from the same ABM operating under different STGs to be

compared to elucidate the influence of STGs rather than comparing results of different epidemic

models that may be based on different assumptions or data (Halloran et al. 2008; Ajelli et al.

2010).

We sought parsimony in the design of our ABM to provide clear interpretation of results

aimed toward improved understanding of the influence of STGs on ABM processes. Significant

progress has been made in understanding the simulation of geographic processes (Albrecht 2005;

Reitsma and Albrecht 2005), and we find similarities among prior approaches to coarsening

STGs in the efforts of representing spatial–temporal dynamics in data models (Peuquet 1994;

Yuan 2001; Goodchild and Glennon 2008). For example, Hornsby and Egenhofer (2002)

examine how coarsening the granularity of time affects geospatial lifelines, which capture an

individual’s movement in a data model composed of time-stamped records of locations. Coars-

ening spatial granularities in an ABM aggregates finer grained spatial units into coarser (i.e.,

larger) spatial units, which is related to a well-known problem in the geography literature—the

modifiable areal unit problem (MAUP) (Openshaw 1983). MAUP may occur if small spatial

units (e.g., points or polygons) are aggregated into larger spatial units, whose configuration is

modifiable, and where different configurations lead to different results (Openshaw 1983).

Hornsby and Egenhofer (2002) examine how coarsening the granularity of time affects geospatial

lifelines, which capture an individual’s movement in a data model composed of time-stamped

records of locations. However, the MAUP focuses on the problems related to spatial aggregation

and does not explicitly address spatial processes (Goodchild 2004), and Hornsby and Egenhofer

(2002) do not explicitly look at the influence of coarsening the granularity of time on the

simulation of processes. Goodchild (2004) states that ABMs may be used to better understand

processes by comparing a simulated world with the real world. This study uses simulations with

the finest STGs as a proxy for the real world and compares these simulations with those of

spatially and temporally coarsened simulations to improve understanding of the influence of

STGs on ABM processes in the context of epidemic modeling.

The spatial landscape of our ABM consists of a grid of square patches whose edge length is

controlled by a spatial granularity variable (SG). Several epidemic ABMs use gridded represen-

tations of space (Laskowski et al. 2011; Parker and Epstein 2011; Smieszek et al. 2011). Our

ABM uses regularly sized and shaped patches to enable the systematic study of a range of spatial

granularities from fine- to coarse-grained without complications related to aggregating irregu-

larly shaped patches. The duration of discrete–time step in our ABM is controlled by a temporal

granularity variable (TG). Our ABM adopts a discrete–time representation due to its widespread

use in epidemic modeling (Longini et al. 2004; Ferguson et al. 2006; Germann et al. 2006; Atti

et al. 2008; Chao et al. 2010).

Spatial and temporal extents (SE and TE, respectively) control the size of a spatial landscape

and temporal duration of a simulation, and can be any multiple of SG and TG, respectively. The
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other primary variables in our ABM include the number of agents (N), movement speed (S),

infection radius (R), infection probability (P), infectious period (I), and number of simulations to

execute in spatiotemporal process models (M), which are listed in Table 1. Movement speed

controls how fast agents move across a spatial landscape. Infection radius controls how close two

agents must be able to potentially transmit disease. Infection probability controls the chance of

disease transmission when a susceptible agent is within an infectious agent’s infection radius.

Our ABM adopts a commonly used susceptible, infectious, recovered epidemiological

model to capture primary stages of a disease (Mishra, Fisman, and Boily 2011), which has been

adopted or adapted by several epidemic modeling studies (Hethcote 2000; Xu and Sui 2009;

Roche, Drake, and Rohani 2011). Most agents start each simulation being susceptible to disease.

Upon disease transmission, agents become infectious and transmit disease to nearby susceptible

agents for a fixed period, after which agents permanently recover from disease and are no longer

susceptible.

Spatiotemporal process models

Processes in ABMs operate within the constraints of space–time representations, capturing

spatiotemporal dynamics both implicitly and explicitly (Batty et al. 2012). Simplifying assump-

tions are often embedded in the processes designed to model dynamics to compensate for actions

or behaviors that cannot be explicitly captured (Sattenspiel and Dietz 1995; Grimm et al. 2006;

Riley 2007). For example, homogeneous mixing in epidemic models is commonly used (Ajelli

et al. 2010; Mishra, Fisman, and Boily 2011) to grossly approximate individuals moving around

and interacting at home, work, school, or a grocery store. Rather than explicitly simulating an

infectious individual moving around in a school or workplace and infecting nearby students or

coworkers, homogeneous mixing allows an infectious individual to attempt to infect every

susceptible individual within a one mile radius. As STGs are coarsened, ABM processes may

become increasingly challenged to explicitly capture dynamics such as movements and interac-

tions within a simulation, instead relying on simplifying assumptions such as homogeneous

mixing to implicitly capture dynamics. Within the context of spatially explicit epidemic ABMs,

there is limited understanding of how commonly used simplifying assumptions (e.g., homoge-

neous mixing among agents) in ABM processes affect simulation results when STGs vary. This

study formulates a novel approach—spatiotemporal process model—that helps to examine the

influence of STGs on ABM processes.

Table 1 Primary Model Variables

Parameter Name Examples

SE Spatial extent 16 × 16, 1,024 × 1,024

TE Temporal extent 16, 64, 1,024

SG Spatial granularity 1, 4, 16, 64, 256, 1,024

TG Temporal granularity 1, 2, 8, 32, 128, 512

N Number of agents 128, 1,024

S Movement speed 1, 2

R Infection radius 1, 2

P Infection probability 20%, 50%, 70%

I Infectious period 20, 64, 128

M Spatiotemporal process model executions 10,000 or 1,000,000
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A spatiotemporal process model contextualizes an ABM process within space and time

allowing the influence of simplifying assumptions on simulation results to be examined as STGs

are coarsened in ABMs. Defining a spatiotemporal process model enables modelers to specify

how every variable, equation, and algorithm used in a process is situated in space and time. The

modelers ask themselves, for example, how an infection probability variable that dictates the

chance a susceptible agent is infected by an infectious agent should change if the duration of a

discrete–time step (e.g., temporal granularity) is coarsened from 2 to 4 h. For example, modelers

may question whether the infection probability variable should be doubled if the time step

duration doubles to 4 h or perhaps be nominally increased by a certain amount given the fact that

agents may part ways before the end of the fourth hour. Similarly, they ask how an infection

probability variable should change if the spatial granularity of a lattice is coarsened from 10 km

to 20 or 50. For example, modelers may question whether the infection probability variable

should be decreased and by what amount when the spatial granularity is coarsened, because a

larger patch size will likely result in an infectious agent interacting with greater numbers of

susceptible agents. These questions help to reveal implicitly captured dynamics embedded in

model assumptions such as an infection probability variable implicitly capturing agent move-

ments and interactions as STGs are coarsened due to the inability of a model to explicitly

represent the movements of an infectious and susceptible agent parting ways or coming into

contact. The answers to these questions help to make these dynamics explicit, represented in a

spatiotemporal process model. The undertaking of addressing these often-difficult questions

deepens our knowledge of ABM processes by bringing to light their underpinning assumptions

of space and time.

A spatiotemporal process model generates as output a set of probability matrices, each

represented as a two-dimensional array P. Each cell in P represents the probability of a

process occurring in a spatiotemporal region that surrounds the relative location of an indi-

vidual agent, and whose size corresponds to a STG of a simulation (e.g., the size of a patch

and duration of a time step). A probability matrix, for example, may be used by an ABM to

define probabilities for an agent that is walking to remain in the same patch or move to a

nearby patch each time step. Although spatiotemporal process models are not limited to proba-

bilistic processes or two spatial dimensions, we use them as examples in this article. Each

spatiotemporal process model may simulate a spatially and temporally explicit process

such as agent–agent interactions, agent–environment interactions, or agent movements thou-

sands of times in order to derive probabilities of process occurrence in a spatiotemporal region.

Multiple probability matrices may be constructed for complex processes such as capturing

differing probabilities of interaction among agents in different age categories (Germann et al.

2006).

Spatiotemporal process models do not eliminate simplifying assumptions or deal with

properties such as spatial and temporal dependence; rather they provide a mechanism to examine

how those assumptions and properties influence simulation results as STGs are coarsened in

ABMs providing a first step toward developing methodologies to overcome them. In much the

same way as spatial analysts appreciate the impact of spatial scales due to issues such as the

MAUP (Wong 2009) and spatial dependence (Gumprecht, Müller, and Rodríguez-Díaz 2009;

Haining, Kerry, and Oliver 2010), agent-based modelers appreciate the impact of spatial and

temporal scales on their models (Bian 2004; Batty et al. 2012; Manson, Sun, and Bonsal 2012).

However, as previously stated, due to limitations in fine-scale understanding, data, and compu-

tational capabilities ABMs often coarsen STGs (Riley 2007; Ajelli et al. 2010; Hagen-Zanker and
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Jin 2012) and as a result often employ simplifying assumptions in a model based on a single

spatial and temporal scale. By contextualizing ABM processes in spatiotemporal process models,

ABMs become capable of adjusting to different STGs using constructed probability matrices.

Different STGs correspond to different-sized spatiotemporal regions, which may change the size

of probability matrices (e.g., number of regions) or the probabilities associated with particular

regions. For example, the probabilities of an infectious agent transmitting disease to a susceptible

agent residing in the same patch will likely be higher if the patch size is small, because the two

agents will tend to be closer to each other providing more opportunities to transmit disease. If the

patch size is very large, the agents will tend to be farther away reducing the chance of disease

transmission. In other words, if a contagious person sits next to someone in a large stadium it is

fair to say that the person sitting next to the contagious person has a higher chance of being

infected due to spatial proximity compared with another person who is randomly seated any-

where in the stadium. To help illustrate how spatiotemporal process models can be used to

examine the influence of STGs on model processes, we provide two concrete examples in the

following sections.

Agent movement

Our ABM uses spatiotemporal process models to address a challenging question in modeling

random agent movement in patch-based spatial representations: when should an agent move from

one patch onto another? Previous approaches, including island, meta-population, and stepping-

stone models, control movement largely through user-defined parameters, commuting, or travel

data (Kareiva, Mullen, and Southwood 1990; Balcan et al. 2010; Keeling et al. 2010; Balcan and

Vespignani 2012). In the absence of such data, particularly at spatial scales of a neighborhood or

building complex, new approaches are needed for systematically determining agent movement

across patches.

Our ABM assumes agents move around a spatial landscape by changing their direction

randomly each step, commonly referred to as a random walk (Pearson 1905). Random walk, due

to its jarring random changes in direction, distorts pedestrian movement at the finest spatial and

temporal scales (Batty 2003). However, epidemic ABMs are often designed for coarser spatial

and temporal scales, and random walk has been shown to capture human movement patterns at

national scales (Brockmann, Hufnagel, and Geisel 2006) as well as on street networks (Jiang,

Yin, and Zhao 2009). We adopt random walk as a mechanism for agents to move, similar to other

epidemic models’ adoption of random movement for agents (Epstein et al. 2008; Keeling et al.

2010).

We use a spatiotemporal process model, hereafter referred to as a movement model, to

construct a probability matrix, hereafter referred to as a movement_matrix, that defines the

probabilities for a randomly walking agent to remain in the same patch or move to a nearby patch

each time step in our ABM. The spatially and temporally explicit movement model simulates a

random walk process thousands of times to represent fine-grained agent movements that are used

to construct a movement_matrix. Initially in the movement model, an agent is randomly assigned

to a point-based location within an area the same size of a patch (e.g., spatial granularity) in an

ABM simulation. The agent takes a number of steps in a random walk, proportional to the

temporal granularity of a simulation. The random walk process is repeated numerous times, and

each time the final location of the agent is recorded. Then, based on the final locations of each

random walk and the STG of an ABM simulation, the movement model calculates the probabili-

ties that agents remain within a same patch or move to a nearby patch. Probabilities derived from
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these simulations are used to construct a movement_matrix, which is used by our ABM to
probabilistically move agents during a spatially and temporally coarsened simulation.

Movement matrices can be used by ABMs to facilitate probabilistic agent movement. In the
simplest case, agents may be free to move to any location in a landscape, but in more complex
cases environment barriers such as walls or water bodies may restrict agent movement. In these
cases the movement process can be retried every time an agent attempts to move past a barrier
such as a wall until a valid location is found (Fig. 2a). A similar process could be applied to
walking paths, which could constrain agent movements to remain on patches associated with a
walking path (Fig. 2b). If an environment barrier does not align with a patch edge, then traditional
rasterization techniques can be used to determine whether a patch is inside or outside an
environment barrier.

Agent infection
Agent infection in epidemic ABMs is a complex process involving multiple real-world dynamics
(Ferguson et al. 2006; Germann et al. 2006; Atti et al. 2008). In temporally coarse ABMs,
infection processes often implicitly capture agent movement through parameters, equations, and
probabilities, because the duration of a time step (e.g., 6 or 8 h) is too long to explicitly capture
finer grained movements (Ferguson et al. 2006; Germann et al. 2006). In spatially coarse ABMs,
infection processes often capture disease transmission implicitly by assuming homogeneous
mixing among agents within coarsened spatial landscapes (Mishra, Fisman, and Boily 2011). As
STGs are refined, ABMs explicitly capture agent movement, and agent infection begins to match
our understanding of disease transmission (Laskowski et al. 2011).

We use a spatiotemporal process model, hereafter referred to as an infection model, to
construct a probability matrix, hereafter referred to as an infection_matrix, that facilitates agent
infection in our ABM. The infection model is used to determine the probabilities of infection for
susceptible agents in an ABM simulation based on whether they share the same patch or a nearby

Figure 2. (a,b) This figure illustrates how agent movement using a 5 × 5 movement probability
matrix may be constrained based on environmental barriers such as walls or walking path
boundaries (thick black lines). If an agent attempts to walk to an area beyond a barrier (hatched
gray lines), the movement process is restarted until a valid location is selected (illustrated as
white patches in each figure). Notice in these figures that the same environmental barrier can be
used in different contexts to restrict movement within a building and outside a building.
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patch with one or more infectious agents. Similar to the movement model, the infection model

randomly places agents within areas the same size as a patch, and uses a random walk process to

represent fine-grained agent movements. Unlike the movement model, the infection model

simulates two agents, in which an infectious agent attempts to infect a susceptible agent if it is

within an infection radius, R, after each step in a random walk. The movement model simulates

numerous pairs of agents to calculate the probabilities of infection if a susceptible agent is located

within a same patch or nearby patch of an infectious agent in our patch-based ABM. Using a

concrete example, we illustrate the design and application of our ABM, movement model, and

infection model in the following section.

Illustration of models

We illustrate a straightforward example of our ABM consisting of five agents walking around a

spatial landscape of size 8 × 8. We compare two cases: a spatial landscape is represented as a 4

× 4 grid of smaller patches in one case and a 2 × 2 grid of larger patches in the second case (i.e.,

SG = 2 or SG = 4, respectively). The agents in our illustration—labeled A, B, C, D, E—are each

randomly assigned to a patch and randomly walks around the landscape, transmitting disease

with 90% probability to susceptible agents within a distance of 0.8 while infectious. One

randomly selected agent is infected at the beginning of a simulation. The duration of a time step

is 2 (e.g., temporal granularity) and walking speed for all agents is 0.3. We detail a (a) movement

model; (b) infection model; and (c) parsimonious epidemic ABM for the SG = 2 cases and then

repeat the steps for the SG = 4 cases demonstrating our approach and providing two concrete

scenarios to compare.

Before a simulation begins, our patch-based ABM uses a spatially and temporally explicit

movement model that simulates a fine-grained random walk process (Fig. 3a) numerous times to

derive probabilities of agent movement across patches based on the spatial granularity, temporal

granularity, and movement speed. In the SG = 2 cases, the movement model calculates that agents

remain in the same patch 77% of the time, move to an adjacent patch approximately 5% of

the time or to a cornering patch 0.3% of the time based on one thousand random walks (Fig. 3b).

The movement model constructs a probability matrix named movement_matrix based on these

probabilities.

Similarly, our patch-based ABM uses a spatially and temporally explicit infection model that

simulates two randomly walking agents—one infectious trying to infect the other that is suscep-

tible (Fig. 4a)—numerous times to derive probabilities of infection for susceptible agents occu-

pying patches nearby infectious agents (Fig. 4b). The infection model is repeatedly executed,

each time initially locating a susceptible agent in a different nearby area corresponding to a patch

in our ABM (Fig. 4c). In each infection model simulation, the two agents proceed to randomly

walk, and after each step, the infectious agent attempts to infect the susceptible agent if it is near.

In the SG = 2 cases, the infection model calculates that susceptible agents have a 51% probability

to become infected if they share a patch with an infectious agent, approximately 6% if they are

in an adjacent patch or 0.6% in a cornering patch to an infectious agent based on thousands of

simulated agent pairs. The infection model constructs a probability matrix named infection_ma-

trix based on these probabilities.

Following the construction of probability matrices, movement_matrix and infection_matrix,

our parsimonious ABM begins executing a simulation. First, our ABM assigns each of

the five agents to a randomly selected patch and infects a random agent (agent E in our

example) (Fig. 5a). Next, the ABM executes a series of iterations (TE/TG) that (a) use the
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movement_matrix to probabilistically move each agent (Fig. 5b) and (b) use the infection_matrix
to probabilistically infect susceptible agents near infectious agents (Fig. 5c). Notice, in Fig. 5c
that agent E has 6% and 0.6% probability of infecting agents B and D, respectively, and that
agents A and C cannot be infected, because they cannot be reached by agent E given the walking
speed, temporal granularity, infection radius, and their locations. In the next time step, both
agents E and B use the infection_matrix to try to infect nearby susceptible agents.

We repeated the aforementioned steps, while coarsening the spatial granularity to SG = 4 and
show an example of agents as being randomly assigned to one of the four patches in Fig. 5d. The
movement_matrix and infection_matrix for the SG = 4 cases are shown in Fig. 5e and 5f,
respectively, for comparison. We draw the reader’s attention to the exposure of all susceptible
agents to infection from agent E due to a coarsened spatial granularity, as well as different
infection probabilities for B and D and movement probabilities for all agents. Further, in the next
time step agent C will attempt to infect the remaining susceptible agents in addition to agent E,
raising the chance of infection for agents A, B, and D. The remainder of this article elucidates
how coarsening STGs influence model processes and disease spread dynamics.

Experimental results

The goals of this study are to understand the influence of STGs on model processes and to build
a foundation of spatial and temporal knowledge of epidemic simulations. Our goals are similar
to those of network-based epidemic model studies that gain new insights into how disease spreads
across networks of varying configurations, and whose results show that network configurations

Figure 3. Illustration of a movement model that calculates probabilities of agents moving across
patches based on the spatial and temporal granularities of an agent-based model (ABM) simu-
lation using a random walk process. The parameter configurations in this illustration limit agent
movements to adjacent and cornering patches, but certain parameter configurations may result in
agents walking to non-adjacent patches (e.g., two, three, or more patches away) and thus the
probability matrix will increase in size from 3 × 3 to 5 × 5 or 7 × 7, for example. (a) Randomly
select an explicit point-based location for an agent within a spatial area the size of a patch (i.e.,
2 × 2). Randomly walk the agent, moving it distance S = 0.3 in a random direction TG = 2 times
(i.e., the duration of a time step in our ABM). The duration of a time step in our ABM determines
the number of steps in a random walk. (b) Repeat 3a M = 1,000 times, counting the number of
agents that moved to nearby areas or remained within the initial area to derive probabilities of
agents moving to nearby patches or remaining within the same patch, which are used to construct
a probability matrix named movement_matrix to be used by our ABM. Probabilities are truncated
for brevity.
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can significantly influence disease spread dynamics (Keeling 1999; Keeling and Eames 2005;
Shirley and Rushton 2005; Xu and Sui 2009; Keeling et al. 2010). Our study assesses changes in
speed, intensity, and spatial spread of a synthetic disease to investigate the influence of STGs on
model processes in an ABM. Following the methodologies used in the network-based studies, we
sought parsimony in the design of a synthetic model, rather than focusing on matching population
distributions, disease characteristics, and movement patterns (see, e.g., Grassly and Fraser 2008
and Prieto et al. 2012). Conceptually, a simulation of our synthetic model may represent disease
spread at various spatial or temporal scales ranging from a national, state, county, city, or building
scale spanning years, months, days, or hours based on the parameters used.

We use the following baseline parameters for our study and conduct sensitivity analysis
altering these baseline parameters to understand their influence. We construct a scenario for
conceptual exploration consisting of 1,024 agents that may represent more than one individual on
a landscape with spatial extent 128 × 128 km and temporal extent of 512 h (approximately 21
days). One randomly assigned agent is infected at the beginning of a simulation. Infectious agents
infect susceptible agents within a radius of 5 km with 20% probability of infection for 16 h (i.e.,
infectious period). Agents randomly walk at a speed of 5 km/h, the average walking speed for
humans. The results are averaged over 10,000 simulations for each parameter configuration. Due
to the large number of simulations per parameter configuration, we re-use movement and
infection matrices for 2,000 ABM simulations (M = 1,000,000), which has little influence on
simulation results. We examine six spatial granularities with edge lengths equal to 1, 2, 4, 8, 16,
and 32 km and four temporal granularities with time step durations equal to 15, 30, 60, and

Figure 4. Illustration of an infection model that calculates probabilities of infection for suscep-
tible agents occupying patches nearby infectious agents based on the spatial and temporal
granularities of an agent-based model (ABM) simulation. Certain parameter configurations may
result in calculating infection probabilities for larger numbers of patches (e.g., 5 × 5 or 7 × 7). (a)
Randomly select explicit point-based locations for one susceptible (blue) and one infectious
agent (black) within a spatial area the size of a patch (i.e., 2 × 2). Randomly walk each agent,
moving them distance S = 0.3 in a random direction TG = 2 times. For each step, if the agents are
within distance R = 0.8 (red area), then probabilistically transmit disease P = 90%. Notice
potential infection after first step (i.e., agents are within infectious radius R). (b) Repeat 4a M =
1,000 times, counting the number of infections between the pairs to derive infection probabilities
for susceptible agents occupying the same patch as an infectious agent. (c) To calculate prob-
abilities of infection for susceptible agents not sharing a patch with an infectious agent, initially
locate the susceptible agent in a nearby area corresponding to an adjacent or cornering patch, for
example, and repeat the process in panels (a) and (b). Execute the model for all nearby areas and
calculate probabilities of infection for each area to construct a probability matrix named infec-
tion_matrix to be used by our ABM. Probabilities are truncated for brevity.
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120 min. The finest grained simulations with a spatial granularity of 1 × 1 km and temporal
granularity of 15 m are used as a proxy for the real world, which are compared with spatially and
temporally coarsened simulations.

A movement and an infection spatiotemporal process model construct movement and infec-
tion probability matrices, respectively, enabling our ABM to adjust to different STGs in our
experiments. To construct a movement probability matrix, first an agent is randomly placed in an
area the size of a patch ranging from 1 × 1 km to 32 × 32 km. The agent randomly walks for the

Figure 5. Illustration of the steps in our patch-based agent-based model comparing SG = 2 (a–c)
and SG = 4 (d–f). Movement and infection probabilities for agent E are shown in the steps for
comparison. (a) Randomly assign each agent (A–E) to a patch. Randomly infect one agent (agent
E in our example). (b) Move each agent based on the probabilities defined in the movement_ma-
trix. Movement probabilities to nearby patches for agent E are shown. (c) For each infectious
agent, probabilistically infect nearby susceptible agents (e.g., B) based on infection_matrix. (d)
Randomly assign each agent (A–E) to a patch. Note that patch size has changed from 2 × 2 to 4
× 4 reducing the number of patches from 16 to 4. (e) Probabilistically move each agent based on
a movement_matrix constructed for a 4 × 4 patch size. If an agent attempts to walk beyond a
landscape boundary, then retry random movement. (f) For each infectious agent, probabilistically
infect nearby susceptible agents (e.g., C) based on infection_matrix, which is constructed by
simulating the infection model with a 4 × 4 patch size.
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duration of a time step ranging from 15 to 120 min at a speed of 5 km/h. The final location of the

agent is recorded and the process is repeated 1,000,000 times. The probabilities that an agent will

remain on the same patch or move to nearby patches are calculated based on the final locations

of the agents and are used to construct a movement probability matrix. The construction of the

infection probability matrix is similar to the movement probability matrix. Through the use of

spatiotemporal process models, the same spatial processes (e.g., movement and infection) based

on the same parameters (e.g., walking speed, infection radius, and infection probability) are used

for all simulations enabling the examination of the influence of STGs in our parsimonious

epidemic ABM.

Speed and intensity of disease

Attack rate curves plot new infections across the duration of an epidemic, capturing disease

spread over time. They are often characterized by their peaks, termed peak attack rate (PAR), and

when the peak occurred, termed time of peak attack rate (TPAR) (Ferguson et al. 2006; Xu and

Sui 2009; Ajelli et al. 2010). The PAR and TPAR help to quantify the intensity and speed of

disease spread, describing the maximum number of individuals infected in a single period, at

which point the disease has saturated the population, and how quickly the disease reaches

saturation. The spatially and temporally finest grained simulations—a proxy for the real world in

our study—result in a relatively low PAR infecting only 1.18% of the population at peak with a

TPAR occurring at 102 h (approximately 4 days) on average. In general, we find that coarsening

spatial granularity results in significantly higher PAR, infecting almost 8% of the population at

peak, whereas coarsening temporal granularity results in comparatively lower increase in PAR

infecting around 5% of the population at peak (Fig. 6). We also examine the percentage of agents

that became infected during a simulation, termed cumulative attack rate (CAR), and find that

coarsening spatial granularity in our simulations influences PAR, TPAR, and CAR more than

coarsening temporal granularity overall (Fig. 7). However, space and time remain interwoven

based on our simulation results, and generally, TPAR in spatially fine-grained simulations occurs

earlier if temporal granularity is more coarse, whereas TPAR in spatially coarse-grained simu-

lations occurs earlier if temporal granularity is fine (Fig. 7b), which was also observed in other

parameter combinations not included in the article. Interestingly, we found a non-linear relation-

ship between PAR and TPAR when coarsening STGs (Fig. 8a) compared with a linear relation-

ship found in reconfiguring links in small-world network-based epidemic simulations (Xu and

Sui 2009). Further studies may help to elucidate these differences, potentially adding value to

recent work in studying contact networks that seek to bridge spatial proximity and networks

(Salathé and Jones 2010).

Understanding how coarsening STGs influence early disease spread (Ferguson et al. 2003) is

important to understanding the chance that a disease becomes an epidemic or burns out, infecting

a few individuals but not spreading to the larger population (Rahmandad and Sterman 2010). In

general, we find that coarsening spatial granularity reduces the chance of early disease burnout

in simulations in some cases to 2.5% whereas coarsening temporal granularity increases the

chance of early disease burnout in some cases to more than 6% (Fig. 9a). Coarsening spatial

granularity also speeds the initial spread of disease to 1% of the population from an average

simulated time of almost 13 h compared with almost 18 h (Fig. 9b). We modify the measure for

early disease burnout in Rahmandad and Sterman (2010), from failing to infect 10% of the

population or less to failing to infect 1% of the population or less, and remove the results from

these simulations from further analyses. We use the time to infect 1% of the population as a
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Figure 6. The four attack rate curves plot new infections every 2 h as a percentage of total
population for different spatial and temporal granularity configurations. The real-world proxy
representing a spatial granularity (SG) of 1 km and temporal granularity (TG) of 15 min is
located in the upper left plot.

Figure 7. (a) Peak attack rate (PAR), (b) time of PAR, and (c) cumulative attack rate as spatial
granularity is coarsened from 1 to 32 km and temporal granularity is coarsened from 15 min to
2 h.
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measure of initial speed of disease spread similar as used in Danon, House, and Keeling (2009).
We found initial spread to 10% of the population to have similar trends as 1%. Our results are
consistent with network-based modeling results (Keeling 1999) in showing that increased spatial
structure, in our case finer spatial granularities, and their case increased numbers of shared
neighbors, play an important role in determining the chance of success or failure of an epidemic
early in a simulation of disease spread.

We conducted sensitivity analysis (Table 2) and plot the relationship between PAR and
TPAR for all parameter combinations (Fig. 8b). Sensitivity analysis shows a non-linear relation-
ship between PAR and TPAR. In general, a lower PAR will peak at a later simulation time, except
when PAR is below a certain threshold (e.g., approximately 1% of the population) in which case
it occurs earlier. The peak is so small below this threshold that it becomes increasingly more
likely to peak earlier in the simulation. When comparing maximum PAR of all STG combinations
against our baseline simulations (7.7%), we find that increasing walking speed (S) from 5 to
6 km/h increases maximum PAR to 7.9%, infection radius (R) from 5 to 6 km results in increases

Figure 8. The two plots illustrate the relationship between average peak attack rate (PAR) and
time of PAR for all configurations of spatial and temporal granularities (STGs) tested (a) and a
sensitivity analysis (b). (a) Each sample represents one STG configuration as spatial granularity
is coarsened from 1 to 32 km and temporal granularity is coarsened from 15 min to 2 h. (b) Each
sample represents one parameter and STG configuration. Each parameter configuration shares
the same symbol to illustrate the influence as STGs are coarsened.

Figure 9. The two plots illustrate the influence of spatial and temporal granularities (STGs) on
early disease spread dynamics. (a) Illustrates the percentage of simulations in which disease
failed to infect at least 1% of a population. These simulations were removed from further
analyses. (b) Average simulation time to infect 1% of a population.
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to 11%, and infection probability (P) from 20 to 25% increases maximum PAR to 9.8%. We

reduced each of the three variables (S, R, and P) to 4 km/h, 4 km, and 15%, which resulted in

maximum PAR of 7.0, 4.1, and 5.4%, respectively.

Although the influence of STGs on the speed and intensity of disease is stark, it is not a

complete picture. Attack rate curves are commonly used to capture disease spread in epidemic

model simulations, but only provide a temporal view of disease spread. To fully understand

disease dynamics and the underlying causes of peaks and valleys in attack rate curves, we also

investigate spatial characteristics of disease spread.

Spatial spread of disease

Disease spread unfolds in both time and space, and so we spatially contextualize our results using

a swash-backwash model, which is designed to capture and analyze the leading and trailing edges

of disease spread (Cliff and Haggett 2006). A swash-backwash model divides a spatial area (e.g.,

simulated landscape) into subareas. For each subarea, a swash-backwash model records the time

of the first infection occurrence (leading edge of disease spread) and last infection occurrence

(trailing edge). For each time period, the model subtracts the number of trailing edge subareas by

leading edge subareas. Spatial spread of disease is visualized by plotting the difference in leading

and trailing areas over time.

We apply a swash-backwash model to our simulation results, dividing the 128 × 128 km

simulated landscape into 8 × 8 km sized subareas and plot the difference in leading and trailing

areas (Fig. 10). At the beginning of a simulation, new infections increase leading edge areas

(positive values) as disease spatially spreads. As agents recover from disease, there are fewer new

infections and trailing edge areas (negative values) increase leading to an overall decline in

spatial area until the disease dies out.

We use a swash-backwash model to understand why coarsening spatial granularity increases

PAR and CAR (Fig. 7a and 7c, respectively). The swash-backwash model results show that

coarsening spatial granularity generally leads to a higher peak in leading edge area (Fig. 10). Two

factors contribute to higher peaks in leading edge area. First, coarsening spatial granularity

influences the movement process by obscuring fine-grained precision of an agent’s location and

as a result, agents may move longer distances each time step. Acknowledging that agents may

reside along an edge of a patch and thus each time step may move to an adjacent patch, the patch

size can influence the distance an agent can travel each time step. If an agent travels across two

adjacent patches, for example, the distance can be significantly different if the spatial granularity

is 2 × 2 km compared with 32 × 32 km (i.e., 2 km compared with 64 km travelled, respectively).

Second, coarsening spatial granularity influences the infection process by increasing the size of

patch and nearby patches, thereby exposing more susceptible agents to potential infection by

infectious agents. As the patch sizes increase from 1 × 1 km to 32 × 32 km, the number of agents

Table 2 Sensitivity Analysis Parameters

Parameter Start value End value Increment

Infection probability (P) 15% 25% 5%

Walking speed (S) 4 km/h 6 km/h 0.5 km/h

Infection radius (R) 4 km 6 km 0.5 km

We executed 5,000 simulations for each parameter configuration.
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that share a patch or nearby patch tends to increase (e.g., the average number of agents per patch

ranges from
1

16
to 64), which is evident when comparing a suite of maps at the TPAR for

simulations that range from spatially fine grained to coarse grained (Fig. 11). Returning to the
illustration of our infection model, agent C becomes infected in the SG = 4 cases (Fig. 5f). Yet,
in the SG = 2 cases agent C cannot be infected (Fig. 5c), because the additional spatial informa-
tion provided by finer spatial granularities establishes agent C as being too far away to be infected
by agent E. In summary, the influence of coarsening spatial granularity on the two processes—
movement and infection—results in faster spatial spread of disease as measured by higher peaks
in leading edge areas, which in turn exposes more susceptible agents to disease and increases
PAR and CAR.

We use a swash-backwash model to understand why coarsening temporal granularity gen-
erally increases the chance of disease burnout and slows down the speed of initial disease spread
(Fig. 9a and 9b, respectively). The swash-backwash model results show that coarsening temporal

Figure 10. Swash-backwash model curves plotting increases in leading edge areas of disease
spread as positive and increases in trailing edge areas of disease spread as negative for 8 × 8 km
sized subareas.
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granularity for a given spatial granularity generally leads to slower growth in leading edge areas
(Fig. 10). Two factors contribute to this slower growth. First, temporally fine simulations enable
agents to move further distances across a spatially coarsened landscape of patches. Because it is
possible for an agent to move to an adjacent patch every time step, an agent may move across
eight adjacent patches if temporal granularity is one compared with a single patch in the same
time if temporal granularity is eight. The larger the patch size the greater distances an agent is
potentially able to move in temporally fine-grained simulations compared with temporally
coarse-grained simulations, which results in faster leading edge growth (Fig. 10). Second, coars-
ening temporal granularity introduces a temporal lag that affects subsequent infections as part of
the infection process, which is analogous to compounding interest in a savings account. For
example, a bank account with monthly compounding interest will earn less money over time
compared with an account with daily compounding interest, because the earnings have fewer
opportunities to compound on themselves each month compared with each day. Similarly,
infectious agents have fewer opportunities to spread disease if temporal granularity is coarsened,
and as a result, coarser temporal granularities in our experiments often exhibit slower initial

Figure 11. Maps at the time of peak attack rate for a suite of simulations with a temporal
granularity of 15 m and spatial granularities (SG) ranging from 1 to 32 km. The average number

of agents per patch ranges from 1

16
to 64. Each patch in the map is drawn as a ratio of infected

agents (red) to recovered agents (blue) on a black background.
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disease spread as seen in cumulative attack curves that plot the accumulated number of infections
across the duration of a simulation (Fig. 12). Generally, the influence of coarsening temporal
granularity on the two processes leads to a decrease in the initial spatial spread as measured in
leading edge area exposing fewer agents to disease, which slows the initial spread of disease
(Fig. 9b) and in turn increases the chance of disease burnout (Fig. 9a). In summary, we find that
coarsening STGs plays a significant role in influencing model processes that alter disease spread
in epidemic ABMs.

Realistic community
To further examine the influence of STGs on disease spread dynamics in a more realistic context,
we design a synthetic community ABM based on a widely used community-level population
structure (Halloran et al. 2002; Longini et al. 2004; Germann et al. 2006). Our community ABM
consists of 2,000 agents each associated with a household and either work, high school, middle
school, elementary school, or daycare building. Agent and building populations are stochastically
generated.

Figure 12. Cumulative attack rate curves plot accumulated infections as a percentage of total
population. Simulation time for the first 72 h shown to illustrate initial disease spread.
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The ABM community is organized into four non-overlapping neighborhoods each contain-

ing roughly 500 agents. Households are assigned to a neighborhood and consist of at least one

adult, and no more than seven individuals with approximately 33% being occupied by a single

adult. Working adults (∼70% of population) are randomly assigned to 1 of 70 work buildings of

approximately 20 people. A community-wide high school (∼155 students) and middle school

(∼128 students) service all neighborhoods. Two elementary schools (∼79 students) each service

two neighborhoods. Preschool children are assigned to one of two daycare centers in their

neighborhood each having approximately 20 children.

To construct a spatially explicit community ABM, we use the following parameters not

originally defined in Germann et al. (2006). The spatial extent of the community is 8 × 8 km to

approximate the average population density of the United States. Each building is randomly

located within a neighborhood and is sized based on the type of building (household, work, or

school) and the number of occupants. We derive household sizes by multiplying the total number

of persons in the household by 750 square feet based on the median square feet per person

reported in an American Household Survey of the United States (Department of Housing and

Urban Development 2011). We derive the size of a work building by multiplying the total number

of workers in the building by 193 square feet based on findings in a Workspace Utilization and

Allocation Benchmark that determined the private sector has a median 193 usable square feet per

worker, which is comparable with a Federal benchmark of 190 usable square feet per worker

(U.S. General Services Administration 2012). We derive the size of school and daycare buildings

by multiplying the total number of students in the building by 154 square feet based on averaging

the median square foot per student for elementary, middle, and high schools built in 2012 (School

Planning and Management 2013).

Agents go to work, school, or daycare for 12 h and stay at home for 12 h as in Germann et al.

(2006). This movement pattern is characteristic of daily commuting and is more realistic com-

pared with the random walk process used in our parsimonious ABM. Each building may be

situated on one or more patches depending on the size and location of a building and the spatial

granularity (i.e., patch size). If a building is situated on more than one patch, then agents residing

in the building will randomly select and move to one of the patches each time step. To provide

an opportunity for random neighborhood contacts as described in Germann et al. (2006), our

community ABM enables agents to leave their building and enter nearby buildings for 15-min

time periods throughout the day and evening to meet colleagues, family, and friends, which is

modeled as a random walk process from a starting patch on which the agent resides to nearby

patches using the same infection model described in Agent Infection section. The combination of

movement between home and work, school, or daycare (e.g., leaps through space) and nearby

buildings provides hierarchical movement to our community ABM that was not present in our

parsimonious ABM.

We use the following parameters for our community ABM experiments. Our community

ABM simulates 2,000 agents for 30 days to explore early disease spread dynamics. Ten randomly

selected agents are infected at the beginning of each simulation. Our community ABM uses a

widely adopted epidemiological model of disease progression with four stages: susceptible,

exposed, infectious, and recovered (Hethcote 2000). We set exposed and infectious periods of 4.1

and 1.2 days, respectively, as is used in Germann et al. (2006). Infectious agents attempt to infect

susceptible agents within a radius of 2 m to approximate the distance of infection for influenza-

like illness (Fiore et al. 2011) with 15% probability of infection. We examine three spatial

granularities with edge lengths equal to 20, 40, and 80 m and three temporal granularities with
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time step durations equal to 15, 30, and 60 min. The results are averaged over 100 simulations for
each parameter configuration using 1,000,000 spatiotemporal process model executions.

Unlike the results of our parsimonious ABM, the attack rate curves for our community ABM
show that coarsening spatial granularity generally reduces PAR and TPAR occurs earlier in a
simulation (Fig. 13). We find that CARs for our community ABM also decline as spatial granu-
larities are coarsened from an average of 63% (SG = 20 m) to 46% (SG = 40 m) and 37%
(SG = 80 m). Differences in the influence of coarsening spatial granularities are partially attrib-
uted to hierarchical movement in our community ABM. Environmental constraints (e.g., agents
residing within buildings) limit the distance an agent may travel when coarsening STGs com-
pared with unconstrained random walks, which influence the spatial spread of disease (see
previous discussion in Spatial Spread of Disease section). Unlike the results of our parsimonious
ABM, the swash-backwash model results from our community ABM generally show little early
spatial growth as disease spreads among family members and coworkers increasing the number
of infected individuals, but not spatial area. At approximately day 8, there is considerable spatial
growth for all simulations as disease begins to spread to new households, workplaces, and

Figure 13. Plots experimental results for the community agent-based model including daily
attack rates (left) and swash-backwash model results (right).
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schools, which is followed by an oscillation pattern of spatial growth that is attributed to

differences between agents being at home and work or school including number of occupants,

neighborhood associations, and building sizes. Interestingly, when comparing daily attack rate

curves and swash-backwash model results, we find that disease spatially spreads very little in our

community until approximately PAR, at which point it begins to spatially spread indicating a

promising direction to explore spatially targeted intervention strategies. Coarsening temporal

granularity results in a slight reduction in PAR for spatially fine-grained simulations and a slight

increase in PAR for spatially coarse-grained simulations, and results in more extreme oscillation

patterns in the swash-backwash model results (Fig. 13). Coarsening temporal granularity length-

ens the time step duration providing infectious agents more time to infect nearby susceptibles in

a single time step, which influences disease spread dynamics differently based on context

including whether agents are at home with few family members to infect or school with many

classmates leading to more extreme oscillation patterns.

Concluding discussion

We formulate spatiotemporal process models as a new approach to contextualize ABM processes

within space and time and to enable our ABMs to adjust to different STGs. In the context of

epidemic ABMs, our approach transforms a distance-based disease model to a patch-based one

(Riley 2007), enabling the assumption of homogenously mixed populations (Hethcote 2000) to

be relaxed by refining spatial granularities, similar to the way network-based epidemic models

enable fully mixed populations to be relaxed by introducing network structure (Ferrari et al.

2011). This capability enables us to examine the results of simulations ranging from spatially and

temporally coarse grained to fine grained, to understand the influence of not only spatial granu-

larity, but also temporal granularity on model processes without the drawbacks of comparing

models with differing assumptions (Kaplan and Wein 2003; Ajelli et al. 2010). Our study used

simple processes as examples, but spatiotemporal process models can be designed for different

spatial representations (e.g., polygons) or more complex processes such as spatial transmission

kernels (Ajelli and Merler 2008) or improved pedestrian movement (Kerridge, Hine, and Wigan

2001).

Our study represents the first critical examination of how the representations of both space

and time in a single epidemic ABM shape processes that operate within the constraints of such

representations. The results of our study show that coarsening STGs influence model processes

and subsequently disease spread in a parsimonious epidemic ABM. Specifically, we found that

coarsening spatial granularity increases PAR by more than 6.5% and speeds TPAR by three times,

which is consistent with related studies that observe increased attack rates with reduced spatial

structure (Bobashev et al. 2007; Ajelli et al. 2010). Further, the chance of disease die-off (infect-

ing less than 1% of a population) is reduced by more than two times. We also found that

coarsening spatial granularity in our parsimonious ABM dramatically increases the speed of

spatial spread of disease as measured by a swash-backwash model. On the other hand, we found

that coarsening temporal granularity generally had the opposite effect resulting in decreased

PAR, slowed down TPAR and initial spread of disease, and increased the chance of disease

die-off.

We compare the results of our parsimonious and community ABMs and found differences in

the influence of STGs. In our community ABM, coarsening spatial granularity decreases PAR by

2.2% and reduces the speed of spatial spread. Coarsening temporal granularity had less influence
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on PAR and TPAR, but resulted in more extreme oscillation patterns in spatial growth as agents

moved between home and work. The findings suggest that space–time representations may have

complex interactions with spatial processes embedded in epidemic ABMs with certain represen-

tations potentially leading to increases in the number of infections in one context and decreases

in another context. Epidemic ABMs designed for a single space–time representation are ill suited

to realize these differences. In the future, ABMs may be designed to include space–time repre-

sentations as variable parameters similar to walking speed or infection probability. In this way,

modelers may use parameter fitting and sensitivity analysis to select the most appropriate

space–time representation for their ABM.

Our study synergistically integrates both spatial and temporal perspectives to deepen under-

standing of the influence of STGs on epidemic ABM processes by spatially situating attack rate

curves using the results of a swash-backwash model. This study is a first step in addressing a

long-standing problem in epidemic modeling literature, namely how to systematically vary and

study spatial structure (e.g., spatial granularities) in spatially explicit epidemic models while

opening new opportunities to study temporal granularities, which until now have received little

attention. As a first step, we sought parsimony in our ABM to gain systematic understanding of

how changes in STGs impact disease spread similar to those works in network-based epidemic

models (Keeling and Eames 2005; Xu and Sui 2009; Rahmandad and Sterman 2010). We

extended our parsimonious ABM to a community ABM to examine the influence of STGs in a

more realistic scenario to further improve our understanding, and plan to continue to build on this

understanding in future studies. Our study found non-linear relationships between TPAR and

PAR when varying STGs, whereas another study found linear relationships when altering

network topologies (Xu and Sui 2009), and understanding these differences may improve under-

standing in contact network-based research (Salathé and Jones 2010; Cauchemez et al. 2011;

Emch et al. 2012). Spatiotemporal process models may also be a first step toward designing new

approaches and methodologies for ABMs to better handle spatial and temporal dependence.

Our future studies will also investigate the sensitivity of intervention strategies to STGs,

elucidating any relationships between them, which Prieto et al. (2012) discusses with respect to

simplifying assumptions and we briefly discussed in Realistic Community section. Generally,

intervention strategies whether medical or mobility (McLafferty 2010) limit the potential distance

of infection (e.g., travel restrictions) or the number of potential susceptibles (e.g., mass or targeted

immunizations). Similarly, coarsening temporal granularity affects our movement process by

reducing the number of patches infectious agents may move to, and refining spatial granularity

affects our infection process by dividing larger spatial areas into many small areas limiting the

number of potentially nearby susceptibles leading to a delay and decrease in PAR. It is therefore

possible that simulations executed with certain STGs may over- or underestimate the effectiveness

of an intervention due to their influence on model processes (e.g., discussed with respect to

homogeneous mixing in Ferguson et al. 2003), which may help explain why three spatially

structured ABMs respond differently to various intervention strategies (Halloran et al. 2008). An

improved understanding of the influence of STGs on simulated intervention effectiveness could

provide new insights for scholars and policy makers when faced with a future epidemic.
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