
ETRI Journal, Volume x, Number y, Date First Author et al. 1

Embedded software engineers have often relied on the
use of modeling and simulation techniques in order to
make software development tasks manageable. However,
they often embed external components in simulation
models, which may cause model continuity problems.
That is, such models and their simulation artifacts could
be abandoned during the design phase since the models
may not work properly on target platforms or be
transformed into other forms of models or languages. In
this paper, we first propose an approach to formally model
Takagi-Sugeno-Kang fuzzy systems without the use of any
external components. In order to keep the model
continuity, the formal simulation model for a TSK fuzzy
system is comprised of three types of reusable sub-models
involving primitive operations. Thus, the model can be
executed even on a limited computational platform. We
next describe our implementation of simulation models for
fuzzy systems including two other inference models, and of
a visual modeling tool for the fuzzy systems.

Keywords: modeling and simulation, model continuity,

fuzzy logic, discrete event system specification, embedded
systems

I. Introduction

Modeling and simulation (M&S) technologies have been
widely used in industry to assist in system development [1].
M&S technologies let engineers experiment with ‘virtual’
systems, allowing them to explore changes and test dynamic
conditions in risk-free environments [2]. One particular use of
these technologies is in the development of embedded software
systems since they usually have time constraints [3]. The use of
M&S-based software design and implementation combined
with hardware-in-the-loop simulation techniques results in a
faster product development cycle, lower development costs,
and higher overall product quality [1]. Integration of M&S
techniques with embedded software development must
provide model continuity [4], a seamless development where
the same simulation model is used, with minimal change, for
both property analysis and real time execution [5]. This
approach is one of the most beneficial and time saving
applications of M&S [2].

The world of embedded control systems is experiencing a
push into the realm of fuzzy logic due to its simplicity and
effectiveness in solving control problems [6]. Fuzzy logic-
based approaches allow building robust and smooth control
systems starting from heuristic knowledge and qualitative
models, considering imprecise, vague, and unreliable
information, and can integrate symbolic reasoning and numeric
processing in the same framework [7]. Also, fuzzy-based
approaches are well suited for limited computational platforms
(e.g., embedded platforms), as they are intrinsically modular
and computationally simple [8]. Thus, even household
machines are advertised as being intelligent with the help of
built-in fuzzy logic [6].

When modelers build simulation models for embedded

Simulation Modeling of Fuzzy Systems
for Model Contiuity

2 First Author et al. ETRI Journal, Volume x, Number y, Date

fuzzy control systems, they typically embed external fuzzy
components, such as a Fuzzy Logic Toolbox [9], in their
models [10]-[11]. These models, however, may not be used
throughout all of the design phases since M&S environments
do not support the use of some external components [12]; as
shown Fig. 1(a), simulation models may be executed even on
the final target platforms for products [13]. That is, their
continuity may not be kept through the design phase. Therefore,
in order to keep the continuity of models, they need to be built
without the use of external components. If not, the early
models and simulation artifacts could be abandoned when the
development tasks switch towards target platforms [14].
Keeping model continuity is an effective way to manage
software complexity and maintain consistency throughout the
design phase [4]. Also, the use of external components may
make the transformation of simulation models difficult or
impossible [12]. M&S-based approaches have gained
popularity due to the fact that they enable not only interactive
simulations but also a ‘smooth’ transformation, as shown in
Fig. 1(b), from one model to other forms of models or
languages [15]. For example, simulation models can be
automatically transformed into hardware description languages
[16]. However, it would be very difficult or impossible to
properly transform external components into codes. Therefore,
simulation models should not contain any external components
to keep their continuity.

ModelsModels

Models

Simulator

Lightweight Simulator

Models

Target Platform

Engineering Platform
Models or Languages

(a) Model Continuity

(b) Model Transformation

Fig. 1. Model continuity and transformation.

Several research efforts [12,17,18] have been made to build
‘pure’ simulation models, instead of the use of external
components. In [17], Jamshidi et al. proposed an approach to
model Mamdani fuzzy systems [18] together with several soft
computing techniques, in order to support their M&S
environment, V-Lab. The models are constructed in a
hierarchical and modular fashion based on the parallel discrete
event system specification (P-DEVS), which is a formal M&S
methodology invented by Zeigler [19]. The modeling approach
proposed by Lee and Kim [20] can reduce the complexity of
the Mamdani P-DEVS models. The standard additive model
(SAM) fuzzy systems [21] can be built with P-DEVS models
based on the approach proposed in [12]. However, simulation

modeling of Takagi-Sugeno-Kang (TSK) fuzzy systems [22],
[23] has not been addressed yet. TSK fuzzy systems have a
great advantage over other models in terms of representative
power [24]. Also, the existing efforts do not provide user-
friendly visual modeling environments. Thus, the building of
simulation models for fuzzy systems could be a time-
consuming process.

In this paper, we first propose an approach to build
simulation models for TSK fuzzy systems based on P-DEVS.
A P-DEVS model of a TSK fuzzy system is a coupled model
consisting of three types of sub-models: an input membership
function model, rule model, and defuzzification model. Since
the models are all pure simulation models involving only
addition and multiplication, they could be executed even on
embedded platforms. Consequently, their continuity can be
maintained. Compared to the existing approaches for the
modeling of fuzzy systems, the proposed approach can model
a TSK fuzzy system with a smaller number of sub-models.
Also, P-DEVS supports the hierarchical and modular model-
composition, so that the sub-models can be easily reused to
implement simulation models of new fuzzy systems.

We next introduce the implementation of simulation models
for fuzzy systems, including Mamdani, SAM, and TSK, for
our M&S environment. For Mamdani and SAM fuzzy systems,
the sub-models were implemented based on [12], and [20]. We
also developed a tool that facilitates the simulation modeling
process through a user-friendly graphical user interface (GUI).
Within the modeling tool, fuzzy systems can be built as P-
DEVS models using the sub-models provided in the tool. The
models of fuzzy systems, generated by the tool, can be directly
used in our simulation environment.

The remainder of the paper is organized as follows: Section
II briefly describes TSK fuzzy systems and P-DEVS. Section
III introduces the proposed approach for simulation modeling
of TSK systems in detail. Section IV discusses the
implementation status of simulation models and our visual
modeling tool. Finally, conclusions and future work are
discussed in section V.

II. Background

In this section, we briefly describe the backgrounds of TSK
fuzzy systems and P-DEVS.

1. TSK fuzzy systems

TSK, which is an additive rule model, was introduced by
Takagi and Sugeno [22]. Later, Sugeno and Kang also worked
on the identification of this type of fuzzy model [23]. In general,
a rule in a TSK model has the following form:

ETRI Journal, Volume x, Number y, Date First Author et al. 3

IF x1 is Ai1 and x2 is Ai2 and ··· and xk is Aik
THEN y = ai0 + ai1 × x1 + ··· + aik × xk,

where x1, x2, ···, xk are input parameters, Ai1, Ai2, ···, Aik are the
membership functions of i-th rule, ai0, ai1, ···, aik are real-valued
parameters, and y is the output parameter. The total output, y, of
the model is given by (1), where αi is the matching degree of
the i-th rule.

∑

∑

=

=

+++
= j

i
i

j

i
kikiii xaxaa

y

1

1
110)(

α

α
. (1)

The great advantage of the TSK model is its representative
power [24]: it can describe a highly nonlinear system using a
small number of rules. Moreover, due to the explicit functional
representation form, it is convenient to identify its parameters
using learning algorithms.

2. Parallel DEVS (P-DEVS)

P-DEVS formalism [20] is a theoretically well-grounded
means of expressing modularly discrete event simulation
models. The basic (the atomic) formalism of a P-DEVS model
is

M = < X, Y, S, δext, δint, δcon, λ, ta >,

where

X is the set of input events,
Y is the set of output events,
S is the set of sequential states,
δext: Q × Xb → S is the external transition function,

where Xb is a set of bags over the elements in X,
δint: S → S is the internal transition function,
δcon: Q × Xb → S is the confluent transition function, subject

to δcon (s, ∅) = δint (s),
λ: S → Yb is the output function, and
ta is the time advanced function,
where

Q = {(s, e) | s ∈ S, 0 < e < ta (s)}, and
e is the elapsed time since the last state transition.

A coupled (digraph) model is defined as follows:

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}>,

where,

X is the set of input events,
Y is the set of output events,
D is the set of component names,

for each i in D,
Mi is an atomic model,
Ii is the set of influencees for I,
for each j in Ii, and
Zi,j is the i-to-j output translation function.

P-DEVS environments support hierarchical and modular
model-building, where the term ‘modular’ describes a model
that has recognized input and output ports through which all
interactions with the external world are mediated. This property
enables the hierarchical construction of models, so that
complex models can be easily developed.

III. P-DEVS Modeling of TSK Fuzzy Systems

In the proposed approach, a TSK fuzzy system containing i
input membership functions and j rules, with k inputs and a
single output is represented as a P-DEVS coupled model with k
input ports and a single output port. The coupled model
contains i + j + 1 P-DEVS atomic models: i input membership
function models, j rule models and a single defuzzification
model. Each input membership function computes a
membership degree for every input. A rule model produces
conclusions of the corresponding rule, based on the input
values of the fuzzy system and membership degrees. The
defuzzification model finally generates outputs of the fuzzy
system using the collection of conclusions of the rules. Figure 2
shows the P-DEVS model of a fuzzy system containing four
input membership functions and four rules with two inputs and
a single output (i.e., i = 4, j = 4, k = 2).

RM1 RM2 RM3 RM4

DM

Quantity

Softness

Cycle

TSK Fuzzy System

IMSmall IMLarge IMSoft IMHard

x1

x2

y

In1 In2 Ind

Fig. 2. A model structure for a TSK fuzzy system.

1. Input membership function models (IMs)

Each input membership function of the fuzzy system is
represented as an input membership function model (IM) M
that is defined as

4 First Author et al. ETRI Journal, Volume x, Number y, Date

M = < XM, YM, S, δext, δint, δcon, λ, ta >,

where

InPorts = {“In”},
XIn = ℜ,
XM = {(p, v) | p ∈ InPorts, v ∈ Xp},
OutPorts = {“Out”},
YOut = [0, 1],
YM = {(p, v) | p ∈ OutPorts, v ∈ Xp},
S = {“passive”, “active”} × ℜ,
δext (“passive”, d, e, (“In”, x)) = (“active”, μ (x)),
δint (“active”, d) = (“passive”, d),
δcon (s, ta (s), x) = δext (δint (s), 0, x)
λ (“active”, d) = (“Out”, d),
ta (phase, d) = 0 if phase = “active”;

∞ otherwise.

Every IM produces a matching degree of the corresponding
membership function for each input value. It initially starts with
its state = (“passive”, d), where d is an arbitrary real value.
When the IM for an input membership function I receives a
real value x as an input, it transitions its state from (“passive”,
d) to (“active”, μI (x)). Immediately, the IM generates the
membership degree of x in I (i.e., μI (x)) as its output and
transitions to a passive state. In short, the IM directly generates
μI (x) as an output for an input value x, as shown in Fig. 3(a).

Once an IM for a membership function type (e.g., the
triangular membership function type) has been implemented, it
can be easily reused just by setting the parameters of the
membership functions (e.g., a, b and c in an IM for the
triangular membership function) in the same type. Even if any
IM for a certain type (e.g., a sigmoid membership function
type) does not exist, it can be implemented simply by
redefining the external transition function, δext, of the existing
one; the only difference between IMs for different membership
function types is the definition of the external transition

function. IMs are independent from fuzzy inference models;
TSK, SAM, and Mamdani use the same IMs in the proposed
approach [12], [20].

2. Rule models (RMs)

Each if-then rule of the fuzzy system corresponds to a rule
model (RM). An RM is defined as

M = < XM, YM, S, δext, δint, δcon, λ, ta >,

where

 InPorts = {“In1”, “In2”, ···, “Ink”, “Ind”},
XIn1 = XIn2 = ··· = XInk, XInd = ℜ,
XM = {(p, v) | p ∈ InPorts, v ∈ Xp},
OutPorts = {“Out”},
YOut = ℜ2,
YM = {(p, v) | p ∈ OutPorts, v ∈ Xp},
S = {“passive”, “active”} × ℜk+3,
δext (“passive”, a0, a1, ···, ak, b, c, e, ((“In1”, x1), (“In2”, x2), ···,
(“Ink”, xk), (“Ind”, d1), (“Ind”, d2), ···, (“Ind”, dk))

= (“active”, a0, a1, ···, ak, a0 + a1 × x1 + ··· + ak × xk, min (d1,
d2,···, dk))
or
= (“active”, a0, a1,···, ak, a0 + a1 × x1 + ··· + ak × xk, d1 × d2 ×
··· × dk),

δint (“active”, a0, a1,···, ak, b, c) = (“passive”, a0, a1, ···, ak, b, c),
δcon (s, ta (s), x) = δext (δint (s), 0, x)
λ (“active”, a0, a1, ···, ak, b, c) = (“Out”, (b × c, c)),
ta (phase, a0, a1, ···, ak, b, c) = 0 if phase = “active”;

∞ otherwise.

Each RM produces a conclusion of the corresponding rule,
based on input values: all input values of the fuzzy system and
the membership degrees from the associated IMs. It has k input
ports, “In1”, “In2”, ···, “Ink”, used to receive the k input values,
x1, x2, ···, xk, of the fuzzy system; an additional input port, “Ind”,

IMIx

RM

x1

d = μI (x)

(b, c)

DM b1 + b2 + ··· + bj
c1 + c2 + ··· + cj

(a)

(b)

(c) (b1, c1), (b2, c2), ···, (bj, cj)

x2

xk
···

d1, d2, ···, dk

c = min (d1, d2, ···, dk),
or
c = d1 × d2 × ··· × dk.
b = (a0 + a1 × x1 + a2 × x2 + ··· + ak × xk) × c
a0, a1, ···, ak are constants

c = min (d1, d2, ···, dk),
or
c = d1 × d2 × ··· × dk.
b = (a0 + a1 × x1 + a2 × x2 + ··· + ak × xk) × c
a0, a1, ···, ak are constants

In1
In2

Ink

Ind

Out

In Out

In Out

Fig. 3. Sub-models for TSK fuzzy systems.

ETRI Journal, Volume x, Number y, Date First Author et al. 5

used for k membership degrees, d1, d2, ···, dk, from the
associated IMs; and a single output port, “Out,” as shown in
Figs. 2 and 3(b). The RM corresponding to rule R starts with
the initial state = (“passive”, a0, a1, ···, ak, b, c), where a0, a1, ···,
ak are the constant values defined in the consequent part (i.e.,
then-part) of R, and b and c are arbitrary real values. When the
RM receives x1, x2, ···, xk, through the ports “In1”, “In2”, ···,
“Ink”, respectively, and d1, d2, ···, dk through the port “Ind”, it
stores b = a0 + a1 × x1 + ··· + ak × xk and c = min (d1, d2, ···, dk).
Typically, its rule matching degree, c, is computed using the
‘min’ operator, but the product operator can be also used.
Finally, the RM outputs (b × c, c) via the output port and
transitions to a passive state.

Consider a RM corresponding to the following rule:

IF x1 is P AND x2 is Q
THEN y = a0 + a1 × x1 + a2 × x2.

When the RM receives x1, x2, μP (x1) and μQ (x2) as inputs, it
promptly generates ((a0 + a1 × x1 + a2 × x2) × min (μP (x1), μQ
(x2)), min (μP (x1), μQ (x2))), or ((a0 + a1 × x1 + a2 × x2) × μP (x1)
× μQ (x2), μP (x1) × μQ (x2)) as an output. The computation of a
conclusion is done within the external transition function.

The RM can be reused repeatedly once it has been
implemented; no further implementation for every RM is
necessary. The reuse can be done simply through the creation
of RM instances and assigning k + 1 parameters a0, a1, ···, ak,
of each instance.

3. Defuzzification model (DM)

A defuzzification model (DM) is an application-independent
atomic-model that generates the outputs of a fuzzy system. It is
formally defined as

M = < XM, YM, S, δext, δint, δcon, λ, ta >,

where

InPorts = {“In”},
XIn = ℜ2
XM = {(p, v) | p ∈ InPorts, v ∈ Xp},
OutPorts = {“Out”},
YOut = ℜ,
YM = {(p, v) | p ∈ OutPorts, v ∈ Xp},
S = {“passive”, “active”} ,　　
δext (phase, y, e, (b1, c1), (b2, c2), ···, (bj, cj))

= (“active”, (b1 + b2 + ··· + bj) / (c1 + c2 + ··· + cj)),
δint (“active”, y) = (“passive”, y),
λ (“active”, y) = (“Out”, y),
ta (phase, y) = 0 if phase = “active”;

∞ otherwise.

The DM produces a final conclusion of the fuzzy system
based on the collection of conclusions of the rules. It starts with
the passive state = (“passive”, y), where y is an arbitrary real
value. When the DM receives (b1, c1), (b2, c2), ···, (bj, cj) from
all RMs, it transitions its state to (“active”, (b1 + b2 + ··· + bj) /
(c1 + c2 + ··· + cj)). That is, the final conclusion is computed
when the external transition occurs. Then, the DM outputs y
and transitions its state back to the passive state, as shown in
Fig. 3(c).

Since any implementation of the DM is application-
independent, it is reused for every TSK fuzzy system. Also, it is
identical to the DM of SAM described in [12], so that
simulation models for TSK and SAM use the same DM.

4. Model couplings

In the proposed approach, a TSK fuzzy system is represented
as a P-DEVS coupled model consisting of atomic models (sub-
models): j IMs, k RMs, and a DM. Each of them is coupled
with other atomic models within the coupled model or the
coupled model, based on fuzzy if-then rules. The coupled
model has i input ports and a single output port. Each of the
input ports is connected with the associated input ports (e.g.,
input port “In1” for input x1, “In2” for x2, ···) of all RMs. The
port is also coupled with the input ports of the associated IMs.
Consider the following fuzzy if-then rules of a TSK fuzzy
system that receives quantity x1 and softness x2:

IF x1 is Small and x2 is Soft
THEN y = 1 + x1 + x2,
IF x1 is Large and x2 is Soft
THEN y = 1 + 2· x1 + 2· x2,
IF x1 is Small and x2 is Hard
THEN y = 1 + x1 + 2· x2,
IF x1 is Large and x2 is Hard
THEN y = 1 + 2· x1 + 4· x2.

In the above example, the port that receives x1 (quantity
value) would be connected with the input ports of IMSmall and
IMLarge. Note that each IM has a single input port “In”. The
output port “Out” of each IM is coupled with input port “Ind”
of each associated RMs. In the example, “Out” of IMSmall
would be connected with “Ind” of RM1 and RM3, which have a
linguistic variable ‘Small’ in the if-part. The output port of
every RM is coupled with the input port of the DM. And the
output port of the DM is connected with that of the coupled
model.

5. Fuzzy inference example

Figure 4 shows a simulation model of a toy washing

6 First Author et al. ETRI Journal, Volume x, Number y, Date

machine controller based on the TSK inference model. When
the coupled model (corresponding to the fuzzy controller)
receives two normalized values x1 (Quantity) and x2 (Softness),
they would be delivered to the associated IMs and all RMs
according to the couplings of the model. Each IM produces
matching degrees for the inputs. As shown in Fig. 4(a), for x1,
IMSmall and IMLarge would generate μSmall (x1) and μLarge (x1),
respectively. For x2, μSoft (x2) and μLarge (x1) are produced by
IMSoft and IMHard, respectively. Every matching degree
produced by an IM is delivered to the associated RMs, based
on the couplings.

Conclusions of the rules for the inputs (including the
matching degrees) are computed by RMs. When RM1
corresponding to Rule 1, “IF x1 is Small and x2 is Soft THEN y
= a10 + a11·x1 + a12·x2,” receives x1 via the port “In1,” x2 via the
port “In2,” and μSmall (x1) and μSoft (x2) via the port “Ind,” it then
generates (b1, c1) = ((a10 + a11·x1 + a12·x2) × μSmall (x1) × μSoft (x2),
μSmall (x1) × μSoft (x2)) as the output (Fig. 4(b)). Also, (b2, c2) =
((a20 + a21·x1 + a22·x2) × μLarge (x1) × μSoft (x2), μLarge (x1) × μSoft
(x2)), (b3, c3) = ((a30 + a31·x1 + a32·x2) × μSmall (x1) × μHard (x2),
μSmall (x1) × μHard (x2)), and (b4, c4) = ((a40 + a41·x1 + a42·x2) ×
μLarge (x1) × μHard (x2), μLarge (x1) × μHard (x2)) are generated by
RM2, RM3, and RM4, respectively. Note that multiplication is
used for the computation of rule matching degrees in this
example. However, a ‘min’ operator can be also be used to
compute the rule matching degrees. The conclusions are then
forwarded to the DM.

As shown in Fig. 4(c), the DM collects the conclusions of the
RMs and generates y = (b1 + b2 + b3 + b4) / (c1 + c2 + c3 + c4) as
the output, which is equal to the results given by (1). Finally,
the coupled model outputs y, as the fuzzy system’s product.

RM1 RM2 RM3 RM4

DM

Quantity

Softness

Cycle

IMSmall IMLarge IMSoft IMHard

In: x1

Out: μSmall(x1)

Out: (b1, c1)
c1 = μSmall(x1)·μSoft(x2)

b1 = (a10 + a11·x1 + a12·x2)·c

In: (b1, c1), (b2, c2),
(b3, c3), (b4, c4),

Out: (b1 + b2 + b3 + b4)
/ (c1 + c2 + c3 + c4)

In1: x1
In2: x1

Ind: μSmall(x1), μSoft(x2)

(a)

(a)

(b)

(b)

(c)

(c)

x1

x2

In: x2

Out: μSoft(x2)

(a)

(a)

Fig. 4. Fuzzy inference through sub-models.

6. Overhead analysis

Table 1 shows an overhead analysis for the proposed
approach and the three existing approaches [12], [17], [20].
Each fuzzy system consists of i input membership functions, j
rules, and l output membership functions (in SAM and
Mamdani fuzzy systems), with k inputs and a single output. In
the proposed approach, a coupled model for a fuzzy system
contains i + j + 1 atomic models, while a higher number of sub-
models is required to build a coupled model for a fuzzy system
in other approaches. The complex couplings among the sub-
models in the proposed approach make the communications
overhead (i.e., the number of messages generated for inter-
communications) increase. However, the overhead of the
proposed approach is still smaller than that of [17]. Moreover,
TSK can describe a highly nonlinear system using a small
number of rules [24]. That is, j of TSK could be much smaller
than that of SAM or Mamdani. While Mamdani fuzzy systems
are widely used, they usually involve complex operations, such
as the clipping and merging of membership functions and
finding their centroids. Such complex operations might be too
heavy on resource-constrained systems. Similar to [12], the
proposed approach can model TSK fuzzy systems, which
involve only primitive operations. Thus, the proposed approach
will be suitable for the M&S-based engineering of embedded
software systems.

Table 1. Overhead in four modeling approaches.

Overhead
TSK

(Proposed)
SAM
[12]

Mamdani
[17]

Mamdani
[20]

Sub-Models i + j + 1
i + j + l +

1
j × k + 2j +

2
i + j + l + 2

Communications
i + 2j × k +

+ j + 1
i + j × k +
j + k + 1

2j × k + 2j
+ 2

i + j × k + j
+ l + 2

Inference
Multiply +

Add
Multiply

Find a minimum
+ Clip or scale a MF

Combining Add Merge MFs

Defuzzification Multiply
Find the mean of the

maximum or the
centroid of an area

IV. Implementation Status

In this section, we will describe the implementation status of
the simulation models and our visual modeling tool prototype.

1. Simulation model implementation

The P-DEVS models for TSK systems described in section
III were implemented in C++ for our simulation environment,
the DEVS Object C++ (DOC++) environment. The IM for the
triangular membership function type was implemented as an
IMTraingle class. The RM and DM were implemented as

ETRI Journal, Volume x, Number y, Date First Author et al. 7

TSKRM and SAMDM classes, respectively. As shown in Fig. 5,
these classes inherit the atomic of DOC++ class, which
corresponds to the basic model of P-DEVS. The essential
member functions of atomic are ext_tn_fn (the
implementation of δext), int_tn_fn (δint), and output (λ).
By overriding these functions, the behavior of a subclass is
determined. The FuzzyMessage class is used for internal
communications between the atomic models of fuzzy systems.

atomic
sigma : timetype
phase : phasetype

+ ext_tn_fn (e : timetype, x : message *)
+ int_tn_fn ()
+ output () : message *

IMTriangle
m_dA, m_dB, n_dC : double
m_dMembershipDegree : double

GetMembershipDegree

SAMDM
m_dDefuzzifiedValue : double

TSKRM
m_iK : int
m_pConstants : double *
m_dFirstValue : double
m_dSecondValue : double

SetConstants (dA0 : double, …)

TSKFuzzyController

+ Initialize ()

1..*

1..*

1

FuzzyMessage
m_dFirstValue : double
m_dSecondValue : double

+ GetFirstValue () : double
+ GetSecondValue () : double

digraph
- Coupling : coup_rel

+ Add_Coupling (c1 : model *,
p1 : port, c2 : model, p2 : port)

Fig. 5. Simplified UML diagrams of TSK simulation models.

void IMTriangle::ext_tn_fn (timetype e, message * x)
{
// compute ‘mu’ value for input value (x)
GetMembershipDegree
(static_cast <FuzzyMessage *> (x->read (0)->Get_Val ())->GetFirstValue ());
Hold_In ("active", 0);

}

void IMTriangle::int_tn_fn()
{ Hold_In ("passive", INFINITY); }

message * IMTriangle::output ()
{
// output ‘mu’ value
message * y = new message ();
y->Add_Content
(new content (& m_oOutPort, this, newFuzzyMessage (m_dMembershipDegree)));
return (y);

}
Fig. 6. Simplified implementation of IM behavior.

A triangular membership function is determined by three
parameters: a, b and c. The internal state of an IM is comprised
of ‘phase’ (e.g., “passive” or “active”) and membership degree,
described in section III. Therefore, IMTriangle class, an
implementation of an IM, has four member variables: three for
a, b and c, and one for membership degree. Note that phase
is defined as a member variable of atomic since it is a
common state of P-DEVS atomic models. Figure 6 shows a
simplified definition of the essential functions for
IMTriangle. When an instance of IMTriangle receives

an input value, ext_tn_fn is executed. That is, an external
transition occurs. During the transition, the membership degree
for the input is computed by the member function
GetMembershipDegree. The instance then transitions to
an “active” state for 0 time units. That is, after 0 time units have
elapsed (i.e., immediately), output and int_tn_fn are
sequentially executed. The output produces the membership
degree as an output. Finally, the instance transitions into a
“passive” state by int_tn_fn. The state continues until the
instance receives other inputs.

void SAMDM::ext_tn_fn (timetype e, message * x)
{
int iCount = x->Get_Count ();
double dNumerator = 0, dDenominator = 0;
FuzzyMessage * pMessage;
// collect rules’ conclusions (b1, c1), (b2, c2), …
// compute final conclusion based on rules’ conclusions
while (iCount --)
{
pMessage = static_cast <FuzzyMessage *> (x->read (iCount)->Get_Val ());
dNumerator += pMessage->GetFirstValue ();
dDenominator += pMessage->GetSecondValue ();

}
m_dDefuzzifiedValue = dNumerator / dDenominator;
Hold_In ("active", 0);

}

void SAMDM::int_tn_fn ()
{ Hold_In ("passive", INFINITY); }

message * SAMDM::output ()
{
// output final conclusion (y)
message * y = new message ();
y->Add_Content
(new content (& m_oOutPort, this, newFuzzyMessage (m_dDefuzzifiedValue)));
return (y);

}
Fig. 7. Simplified implementation of DM’s behavior.

The SAMDM class is the implementation of the DM. The DM
has a single member variable to store a final conclusion of the
fuzzy system. No additional member function is required.
Figure 7 shows a simplified definition of the essential functions
for SAMDM. Its instance can be created without any initial
parameters and is used for all TSK and SAM fuzzy systems.
When ext_tn_fn of an instance is executed (i.e., when the
instance receives some inputs), the final conclusion (Σbi / Σci)
of the fuzzy system is computed and stored in the member
variable. Then, the instance transitions to an “active” state. An
output is immediately called after the external transition and
produces the conclusion as an output. Finally, int_tn_fn
makes the instance transition into a “passive” state. The
instance does nothing until the arrival of the next inputs.

The RM was implemented as a TSKRM class. The class has
four membership variables: one to store the number of inputs
(i.e., k), one as a pointer for the parameters of the rule (i.e., a0,
a1, ···, ak), and two, as the numerator and denominator, for the
conclusion of the rule. A simplified implementation of RM is

8 First Author et al. ETRI Journal, Volume x, Number y, Date

shown in Fig. 8. In ext_tn_fn, the conclusion of a rule as a
vector is computed from the collected inputs: the external input
values of the fuzzy system and the membership degrees from
the associated IMs. The conclusion is immediately produced as
the output of the rule by output. The member variables are
then initialized for the next input arrivals in int_tn_fn.
Finally, the instance transitions into a passive state.

void TSKRM::ext_tn_fn (timetype e, message * x)
{
int iCount = x -> Get_Count (), i;
while (iCount --)
{
// collect ‘mu’ values and compute ‘b’ value (multiplication of ‘mu’ values)
if (x->is_on_port (iCount, & m_oInPortD))
{
m_iDReceived ++;
m_dSecondValue *=
static_cast <FuzzyMessage *> (x->read (iCount)->Get_Val ())->GetFirstValue ();

}
// collect input values (x1, x2, …)
else
{
for (i = 0; i < m_iK; i ++)
{
if (x->is_on_port (iCount, m_pInPortX + i))
{
m_iXReceived ++;
m_dFirstValue +=
m_pConstants [++ i] *
static_cast <FuzzyMessage *> (x->read (iCount)->Get_Val ())->GetFirstValue ();
break;

}
}

}
}
// transitions when received all
if (m_iXReceived == m_iK && m_iDReceived == m_iK)
{ Hold_In ("active", 0); }

}

void TSKRM::int_tn_fn ()
{
m_iXReceived = m_iDReceived = 0;
m_dFirstValue = m_pConstants [0];
m_dSecondValue = 1;
Hold_In ("passive", INFINITY);

}

message * TSKRM::output ()
{
// output rule’s conclusion (b, c)
message * y = new message ();
y->Add_Content
(new content (& m_oOutPort, this,
new FuzzyMessage (m_dFirstValue * m_dSecondValue, m_dSecondValue)));
return (y);

}

Fig.8. Implementation of RM’s behavior.

The implementation for the frame of a TSK fuzzy system is
TSKFuzzyController, which inherits the digraph
class of DOC++. The diagraph corresponds to the P-DEVS
coupled model. Thus, it has the coupling information as a
member variable. An instance of TSKFuzzyController
has j instances of IM implementation, k instance of TSKRM,
and an instance of SAMDM. These sub-models are initialized in
the membership function Initialize of
TSKFuzzyController and logically connected based on

the coupling information inherited from the superclass. P-
DEVS models for other fuzzy inference models (i.e., Mamdani
and SAM) and the IM for the trapezoid membership function
were also implemented in DOC++. Consequently, MAMCM,
MAMOM, MAMUM, MAMDM, SAMRM, SAMOM, and
IMTrapezoid classes were written.

The simulation modeling of fuzzy systems can be done with
ease using our modeling tool described in the next section.
However, they can also be manually constructed without the
use of the tool, thanks to the hierarchical and modular model-
composition provided by the P-DEVS environments. A P-
DEVS coupled model M for a new TSK fuzzy system
containing i input membership functions and j rules with k
inputs and a single output can be constructed using the
following steps:

1. Make i instances of the IM implementation based on the
membership function types of the inputs (e.g.,
IMTriangle) and set their parameters if necessary.
Then put them into M.

2. Make j instances of TSKRM. Set the parameters of the
instance and put them into M.

3. Put an instance of SAMDM into M.
4. Couple these models based on the if-then rules of the

fuzzy system.

2. Modeling tool prototype implementation

In order to facilitate the modeling process, we have also
developed a prototype of a visual modeling tool. Figure 9
shows a screenshot of the prototype. The atomic models for
fuzzy systems and input/output stubs can be placed into
coupled models through a GUI. The user can assign or modify
their parameters in dialogs. The coupling process can be easily
done within the tool. As shown in Fig. 10, the tool can also
generate models (codes) for the DOC++ simulation
environment from the modeled fuzzy systems. The generated
models can be directly executed on the DOC++ environment.
Within the visual modeling tool and DOC++ environment, the
user can construct the target system models that employ fuzzy
logic by coupling the system model with the fuzzy models
generated by the tool.

ETRI Journal, Volume x, Number y, Date First Author et al. 9

V. Conclusions and Future Work

In this paper, we presented an approach for representing P-
DEVS models of TSK fuzzy systems without the use of any
external components. Exclusion of external components from
simulation models would improve the continuity of the models
so that the user can efficiently manage software complexity
and maintain consistency throughout the design phase. A P-
DEVS model of a fuzzy system is comprised of easy-to-reuse
atomic models: IMs, RMs, and a DM. Since each atomic
model involves primitive operations, such as addition or
multiplication, the model works on target platforms and can be
smoothly transformed into other forms of models or languages.
A coupled model for a TSK fuzzy system requires a smaller
number of sub-models, compared to that of a Mamdani or
SAM fuzzy system. Thus, it will be more compatible with
embedded platforms. We implemented P-DEVS models for
fuzzy systems, including TSK, SAM, and Mamdani, for a
DOC++ environment. To facilitate the modeling of fuzzy
systems, a GUI-based modeling tool prototype was developed.
The tool supports the generation of models that can be directly
used in the environment. We will implement the models for
other DEVS environments, such as eCD++ [3], [13]. We will
also study the simulation modeling of other artificial
intelligence techniques.

DOC++ Environment

System Model

Fuzzy Model

Visual Modeler

Fig. 10. Model generation for a DOC++ simulation environment.

References

[1] X. Hu, A Simulation-Based Software Development
Methodology for Distributed Real-Time Systems, Doctoral
Dissertation, The University of Arizona, 2004.

[2] M. Moallemi and G. Wainer, “A Simplified Real-Time
Embedded DEVS Approach Towards Embedded and
Control Design,” Proc. WinterSim, 2009.

[3] M. Moallemi, J.M. Gutierrez-Alcaraz, and G. Wainer,
“ECD++ A DEVS Based Real-Time Simulator for
Embedded Systems,” Proc. SpringSim, 2008.

Output

IM

In
pu

ts

RM

DM

Output

Inputs Sub-Models DOC++ Generation
Parameters

Fig. 9. Fuzzy system modeling tool prototype.

10 First Author et al. ETRI Journal, Volume x, Number y, Date

[4] X. Hu and B.P. Zeigler, “Model Continuity to Support
Software Development for Distributed Robotic Systems:
A Team Formation Example,” Journal of Intelligent and
Robotic Systems, vol. 39, no. 1, 2004, pp. 71-87.

[5] A. Furfaro and L. Nigro, “A Development Methodology
for Embedded Systems Based on RT-DEVS,” Innovations
in Systems and Software Engineering: A NASA Journal,
vol. 5, no. 2, 2009, pp. 117-127.

[6] F. Farkas and S. Halasz, “Embedded Fuzzy Controller for
Industrial Applications,” Acta Polytechnica Hungarica, vol.
3, no. 2, 2006, pp. 41-63.

[7] I. Baturone, F.J. Moreno-Velo, S. Sanchez-Solano, et al.,
“Embedded Fuzzy Controllers on Standard DSPs,” Proc.
IEEE-ISIE, 2006, 1197-1202.

[8] N. Zhang, D. Beetner, D.C. Wunsch II, et al., “An
Embedded Real-Time Neuro-Fuzzy Controller for Mobile
Robot Navigation,” Proc. FUZZ-IEEE, 2005, pp. 319-323.

[9] The Fuzzy Logic Toolbox.
http://www.mathworks.com/products/fuzzylogic/

[10] A.M. Garcia, B. Baumgartner, U. Schreiber, et al.,
“AutoMedic: Fuzzy Control Development Platform for a
Mobile Heart-Lung Machine,” IFMBE Proceedings, vol.
25, no. 7, 2009, pp. 685-688.

[11] M. Muruganandam and M. Madheswaran, “Modeling and
Simulation of Modified Fuzzy Logic Controller for
Various Types of DC Motor Drives,” Proc. INCACEC,
2009, pp. 1-6.

[12] H.Y. Lee, S.M. Park, and T.H. Cho, “Simulation Modeling
of SAM Fuzzy Logic Controllers,” IEICE Transactions on
Information and Systems.

[13] Y.H. Yu and G. Wainer, “eCD++: An Engine for Executing
DEVS Models in Embedded Platforms,” Proc. SCSC,
2007, 323-330.

[14] T. Pearce, “Simulation-Driven Architecture in the
Engineering of Real-Time Embedded Systems,” Proc.
RTSS-WIP, 2003.

[15] H. Shang and G. Wainer, “Dynamic Structure DEVS:
Improving the Real-Time Embedded Systems Simulation
and Design,” Proc. ANSS, 2008, pp. 271-278.

[16] Y.M. Lee, H.B. Kim, J.S. Hong, et al., “Translation from
DEVS Models to Synthesizable VHDL Programs,” Proc.
IEEE TENCON, 1996, pp. 252-255.

[17] M. Jamshidi et al., “V-LAB – A Distributed Intelligent
Discrete-Event Environment for Autonomous Agents
Simulation,” Intelligent Automation and Soft Computing,
vol. 9, no. 3, 2003, pp. 181-214.

[18] E.H. Mamdani, “Application of Fuzzy Algorithms for
Control of Simple Dynamic Plant,” IEEE Proceedings, vol.
121, 1974.

[19] B.P. Zeigler, T.G. Kim, and H. Praehofer, Theory of

Modeling and Simulation, 2nd Ed., Academic Press, 2000.
[20] H.Y. Lee and H.J. Kim, “Reducing the Complexity of

DEVS-Based Mamdani Models for Enhancing Privacy,”
Proc. ISIS, 2009.

[21] B. Kosko, Fuzzy Engineering, Prentice Hall, 1997.
[22] T. Takagi and M. Sugeno, “Fuzzy Identification of

Systems and Its Application to Modeling and Control,”
IEEE Transactions on Systems, Man, and Cybernetics, vol.
15, 1985.

[23] M. Sugeno and K.T. Kang, “Structure Identification of
Fuzzy Model,” Fuzzy Sets and Systems, vol. 28, 1988.

[24] J. Yen and R. Langari, Fuzzy Logic: Intelligence, Control,
and Information, Prentice Hall, 1999.

