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Embedded software engineers have often relied on the 
use of modeling and simulation techniques in order to 
make software development tasks manageable. However, 
they often embed external components in simulation 
models, which may cause model continuity problems. 
That is, such models and their simulation artifacts could 
be abandoned during the design phase since the models 
may not work properly on target platforms or be 
transformed into other forms of models or languages. In 
this paper, we first propose an approach to formally model 
Takagi-Sugeno-Kang fuzzy systems without the use of any 
external components. In order to keep the model 
continuity, the formal simulation model for a TSK fuzzy 
system is comprised of three types of reusable sub-models 
involving primitive operations. Thus, the model can be 
executed even on a limited computational platform. We 
next describe our implementation of simulation models for 
fuzzy systems including two other inference models, and of 
a visual modeling tool for the fuzzy systems. 
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I. Introduction 

Modeling and simulation (M&S) technologies have been 
widely used in industry to assist in system development [1].  
M&S technologies let engineers experiment with ‘virtual’ 
systems, allowing them to explore changes and test dynamic 
conditions in risk-free environments [2]. One particular use of 
these technologies is in the development of embedded software 
systems since they usually have time constraints [3]. The use of 
M&S-based software design and implementation combined 
with hardware-in-the-loop simulation techniques results in a 
faster product development cycle, lower development costs, 
and higher overall product quality [1]. Integration of M&S 
techniques with embedded software development must 
provide model continuity [4], a seamless development where 
the same simulation model is used, with minimal change, for 
both property analysis and real time execution [5]. This 
approach is one of the most beneficial and time saving 
applications of M&S [2]. 

The world of embedded control systems is experiencing a 
push into the realm of fuzzy logic due to its simplicity and 
effectiveness in solving control problems [6]. Fuzzy logic-
based approaches allow building robust and smooth control 
systems starting from heuristic knowledge and qualitative 
models, considering imprecise, vague, and unreliable 
information, and can integrate symbolic reasoning and numeric 
processing in the same framework [7].  Also, fuzzy-based 
approaches are well suited for limited computational platforms 
(e.g., embedded platforms), as they are intrinsically modular 
and computationally simple [8]. Thus, even household 
machines are advertised as being intelligent with the help of 
built-in fuzzy logic [6]. 

When modelers build simulation models for embedded 

Simulation Modeling of Fuzzy Systems 
for Model Contiuity 

 



2   First Author et al. ETRI Journal, Volume x, Number y, Date 

fuzzy control systems, they typically embed external fuzzy 
components, such as a Fuzzy Logic Toolbox [9], in their 
models [10]-[11]. These models, however, may not be used 
throughout all of the design phases since M&S environments 
do not support the use of some external components [12]; as 
shown Fig. 1(a), simulation models may be executed even on 
the final target platforms for products [13]. That is, their 
continuity may not be kept through the design phase. Therefore, 
in order to keep the continuity of models, they need to be built 
without the use of external components. If not, the early 
models and simulation artifacts could be abandoned when the 
development tasks switch towards target platforms [14]. 
Keeping model continuity is an effective way to manage 
software complexity and maintain consistency throughout the 
design phase [4]. Also, the use of external components may 
make the transformation of simulation models difficult or 
impossible [12]. M&S-based approaches have gained 
popularity due to the fact that they enable not only interactive 
simulations but also a ‘smooth’ transformation, as shown in 
Fig. 1(b), from one model to other forms of models or 
languages [15]. For example, simulation models can be 
automatically transformed into hardware description languages 
[16]. However, it would be very difficult or impossible to 
properly transform external components into codes. Therefore, 
simulation models should not contain any external components 
to keep their continuity. 
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Fig. 1. Model continuity and transformation. 

Several research efforts [12,17,18] have been made to build 
‘pure’ simulation models, instead of the use of external 
components. In [17], Jamshidi et al. proposed an approach to 
model Mamdani fuzzy systems [18] together with several soft 
computing techniques, in order to support their M&S 
environment, V-Lab. The models are constructed in a 
hierarchical and modular fashion based on the parallel discrete 
event system specification (P-DEVS), which is a formal M&S 
methodology invented by Zeigler [19]. The modeling approach 
proposed by Lee and Kim [20] can reduce the complexity of 
the Mamdani P-DEVS models. The standard additive model 
(SAM) fuzzy systems [21] can be built with P-DEVS models 
based on the approach proposed in [12]. However, simulation 

modeling of Takagi-Sugeno-Kang (TSK) fuzzy systems [22], 
[23] has not been addressed yet. TSK fuzzy systems have a 
great advantage over other models in terms of representative 
power [24]. Also, the existing efforts do not provide user-
friendly visual modeling environments. Thus, the building of 
simulation models for fuzzy systems could be a time-
consuming process. 

In this paper, we first propose an approach to build 
simulation models for TSK fuzzy systems based on P-DEVS. 
A P-DEVS model of a TSK fuzzy system is a coupled model 
consisting of three types of sub-models: an input membership 
function model, rule model, and defuzzification model. Since 
the models are all pure simulation models involving only 
addition and multiplication, they could be executed even on 
embedded platforms. Consequently, their continuity can be 
maintained. Compared to the existing approaches for the 
modeling of fuzzy systems, the proposed approach can model 
a TSK fuzzy system with a smaller number of sub-models. 
Also, P-DEVS supports the hierarchical and modular model-
composition, so that the sub-models can be easily reused to 
implement simulation models of new fuzzy systems. 

We next introduce the implementation of simulation models 
for fuzzy systems, including Mamdani, SAM, and TSK, for 
our M&S environment. For Mamdani and SAM fuzzy systems, 
the sub-models were implemented based on [12], and [20]. We 
also developed a tool that facilitates the simulation modeling 
process through a user-friendly graphical user interface (GUI). 
Within the modeling tool, fuzzy systems can be built as P-
DEVS models using the sub-models provided in the tool. The 
models of fuzzy systems, generated by the tool, can be directly 
used in our simulation environment. 

The remainder of the paper is organized as follows: Section 
II briefly describes TSK fuzzy systems and P-DEVS. Section 
III introduces the proposed approach for simulation modeling 
of TSK systems in detail. Section IV discusses the 
implementation status of simulation models and our visual 
modeling tool. Finally, conclusions and future work are 
discussed in section V. 

II. Background 

In this section, we briefly describe the backgrounds of TSK 
fuzzy systems and P-DEVS. 

1. TSK fuzzy systems 

TSK, which is an additive rule model, was introduced by 
Takagi and Sugeno [22]. Later, Sugeno and Kang also worked 
on the identification of this type of fuzzy model [23]. In general, 
a rule in a TSK model has the following form: 
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IF x1 is Ai1 and x2 is Ai2 and ··· and xk is Aik 
THEN y = ai0 + ai1 × x1 + ··· + aik × xk, 

where x1, x2, ···, xk are input parameters, Ai1, Ai2, ···, Aik are the 
membership functions of i-th rule, ai0, ai1, ···, aik are real-valued 
parameters, and y is the output parameter. The total output, y, of 
the model is given by (1), where αi is the matching degree of 
the i-th rule. 
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The great advantage of the TSK model is its representative 
power [24]: it can describe a highly nonlinear system using a 
small number of rules. Moreover, due to the explicit functional 
representation form, it is convenient to identify its parameters 
using learning algorithms. 

2. Parallel DEVS (P-DEVS) 

P-DEVS formalism [20] is a theoretically well-grounded 
means of expressing modularly discrete event simulation 
models. The basic (the atomic) formalism of a P-DEVS model 
is 

M = < X, Y, S, δext, δint, δcon, λ, ta >, 

where 

X is the set of input events, 
Y is the set of output events, 
S is the set of sequential states, 
δext: Q × Xb → S is the external transition function, 

where Xb is a set of bags over the elements in X, 
δint: S → S is the internal transition function, 
δcon: Q × Xb → S is the confluent transition function, subject 

to δcon (s, ∅) = δint (s), 
λ: S → Yb is the output function, and 
ta is the time advanced function, 
where 

Q = {(s, e) | s ∈ S, 0 < e < ta (s)}, and 
e is the elapsed time since the last state transition. 

A coupled (digraph) model is defined as follows: 

DN = <X, Y, D, {Mi}, {Ii}, {Zi,j}>, 

where, 

X is the set of input events, 
Y is the set of output events, 
D is the set of component names, 

for each i in D, 
Mi is an atomic model, 
Ii is the set of influencees for I, 
for each j in Ii, and 
Zi,j is the i-to-j output translation function. 

P-DEVS environments support hierarchical and modular 
model-building, where the term ‘modular’ describes a model 
that has recognized input and output ports through which all 
interactions with the external world are mediated. This property 
enables the hierarchical construction of models, so that 
complex models can be easily developed. 

III. P-DEVS Modeling of TSK Fuzzy Systems 

In the proposed approach, a TSK fuzzy system containing i 
input membership functions and j rules, with k inputs and a 
single output is represented as a P-DEVS coupled model with k 
input ports and a single output port. The coupled model 
contains i + j + 1 P-DEVS atomic models: i input membership 
function models, j rule models and a single defuzzification 
model. Each input membership function computes a 
membership degree for every input. A rule model produces 
conclusions of the corresponding rule, based on the input 
values of the fuzzy system and membership degrees. The 
defuzzification model finally generates outputs of the fuzzy 
system using the collection of conclusions of the rules. Figure 2 
shows the P-DEVS model of a fuzzy system containing four 
input membership functions and four rules with two inputs and 
a single output (i.e., i = 4, j = 4, k = 2). 
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Fig. 2. A model structure for a TSK fuzzy system. 

1. Input membership function models (IMs) 

Each input membership function of the fuzzy system is 
represented as an input membership function model (IM) M 
that is defined as 
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M = < XM, YM, S, δext, δint, δcon, λ, ta >, 

where 

InPorts = {“In”}, 
XIn = ℜ, 
XM = {(p, v) | p ∈ InPorts, v ∈ Xp}, 
OutPorts = {“Out”}, 
YOut = [0, 1], 
YM = {(p, v) | p ∈ OutPorts, v ∈ Xp}, 
S = {“passive”, “active”} × ℜ, 
δext (“passive”, d, e, (“In”, x)) = (“active”, μ (x)), 
δint (“active”, d) = (“passive”, d), 
δcon (s, ta (s), x) = δext (δint (s), 0, x) 
λ (“active”, d) = (“Out”, d), 
ta (phase, d) = 0  if phase = “active”; 

∞ otherwise. 

Every IM produces a matching degree of the corresponding 
membership function for each input value. It initially starts with 
its state = (“passive”, d), where d is an arbitrary real value. 
When the IM for an input membership function I receives a 
real value x as an input, it transitions its state from (“passive”, 
d) to (“active”, μI (x)). Immediately, the IM generates the 
membership degree of x in I (i.e., μI (x)) as its output and 
transitions to a passive state. In short, the IM directly generates 
μI (x) as an output for an input value x, as shown in Fig. 3(a). 

Once an IM for a membership function type (e.g., the 
triangular membership function type) has been implemented, it 
can be easily reused just by setting the parameters of the 
membership functions (e.g., a, b and c in an IM for the 
triangular membership function) in the same type. Even if any 
IM for a certain type (e.g., a sigmoid membership function 
type) does not exist, it can be implemented simply by 
redefining the external transition function, δext, of the existing 
one; the only difference between IMs for different membership 
function types is the definition of the external transition 

function. IMs are independent from fuzzy inference models; 
TSK, SAM, and Mamdani use the same IMs in the proposed 
approach [12], [20]. 

2. Rule models (RMs) 

Each if-then rule of the fuzzy system corresponds to a rule 
model (RM). An RM is defined as 

M = < XM, YM, S, δext, δint, δcon, λ, ta >, 

where 

 InPorts = {“In1”, “In2”, ···, “Ink”, “Ind”}, 
XIn1 = XIn2 = ··· = XInk, XInd = ℜ, 
XM = {(p, v) | p ∈ InPorts, v ∈ Xp}, 
OutPorts = {“Out”}, 
YOut = ℜ2, 
YM = {(p, v) | p ∈ OutPorts, v ∈ Xp}, 
S = {“passive”, “active”} × ℜk+3, 
δext (“passive”, a0, a1, ···, ak, b, c, e, ((“In1”, x1), (“In2”, x2), ···, 
(“Ink”, xk), (“Ind”, d1), (“Ind”, d2), ···, (“Ind”, dk)) 

= (“active”, a0, a1, ···, ak, a0 + a1 × x1 + ··· + ak × xk, min (d1, 
d2,···, dk)) 
or 
= (“active”, a0, a1,···, ak, a0 + a1 × x1 + ··· + ak × xk, d1 × d2 × 
··· × dk), 

δint (“active”, a0, a1,···, ak, b, c) = (“passive”, a0, a1, ···, ak, b, c), 
δcon (s, ta (s), x) = δext (δint (s), 0, x) 
λ (“active”, a0, a1, ···, ak, b, c) = (“Out”, (b × c, c)), 
ta (phase, a0, a1, ···, ak, b, c) = 0  if phase = “active”; 

∞ otherwise. 

Each RM produces a conclusion of the corresponding rule, 
based on input values: all input values of the fuzzy system and 
the membership degrees from the associated IMs. It has k input 
ports, “In1”, “In2”, ···, “Ink”, used to receive the k input values, 
x1, x2, ···, xk, of the fuzzy system; an additional input port, “Ind”, 
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Fig. 3. Sub-models for TSK fuzzy systems. 
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used for k membership degrees, d1, d2, ···, dk, from the 
associated IMs; and a single output port, “Out,” as shown in 
Figs. 2 and 3(b). The RM corresponding to rule R starts with 
the initial state = (“passive”, a0, a1, ···, ak, b, c), where a0, a1, ···, 
ak are the constant values defined in the consequent part (i.e., 
then-part) of R, and b and c are arbitrary real values. When the 
RM receives x1, x2, ···, xk, through the ports “In1”, “In2”, ···, 
“Ink”, respectively, and d1, d2, ···, dk through the port “Ind”, it 
stores b = a0 + a1 × x1 + ··· + ak × xk and c = min (d1, d2, ···, dk). 
Typically, its rule matching degree, c, is computed using the 
‘min’ operator, but the product operator can be also used. 
Finally, the RM outputs (b × c, c) via the output port and 
transitions to a passive state. 

Consider a RM corresponding to the following rule: 

IF x1 is P AND x2 is Q 
THEN y = a0 + a1 × x1 + a2 × x2. 

When the RM receives x1, x2, μP (x1) and μQ (x2) as inputs, it 
promptly generates ((a0 + a1 × x1 + a2 × x2) × min (μP (x1), μQ 
(x2)), min (μP (x1), μQ (x2))), or ((a0 + a1 × x1 + a2 × x2) × μP (x1) 
× μQ (x2), μP (x1) × μQ (x2)) as an output. The computation of a 
conclusion is done within the external transition function. 

The RM can be reused repeatedly once it has been 
implemented; no further implementation for every RM is 
necessary. The reuse can be done simply through the creation 
of RM instances and assigning k + 1 parameters  a0, a1, ···, ak, 
of each instance. 

3. Defuzzification model (DM) 

A defuzzification model (DM) is an application-independent 
atomic-model that generates the outputs of a fuzzy system. It is 
formally defined as 

M = < XM, YM, S, δext, δint, δcon, λ, ta >, 

where 

InPorts = {“In”}, 
XIn = ℜ2 
XM = {(p, v) | p ∈ InPorts, v ∈ Xp}, 
OutPorts = {“Out”}, 
YOut = ℜ, 
YM = {(p, v) | p ∈ OutPorts, v ∈ Xp}, 
S = {“passive”, “active”}  ,　　  
δext (phase, y, e, (b1, c1), (b2, c2), ···, (bj, cj)) 

= (“active”, (b1 + b2 + ··· + bj) / (c1 + c2 + ··· + cj)), 
δint (“active”, y) = (“passive”, y), 
λ (“active”, y) = (“Out”, y), 
ta (phase, y) = 0  if phase = “active”; 

∞ otherwise. 

The DM produces a final conclusion of the fuzzy system 
based on the collection of conclusions of the rules. It starts with 
the passive state = (“passive”, y), where y is an arbitrary real 
value. When the DM receives (b1, c1), (b2, c2), ···, (bj, cj) from 
all RMs, it transitions its state to (“active”, (b1 + b2 + ··· + bj) / 
(c1 + c2 + ··· + cj)). That is, the final conclusion is computed 
when the external transition occurs. Then, the DM outputs y 
and transitions its state back to the passive state, as shown in 
Fig. 3(c). 

Since any implementation of the DM is application-
independent, it is reused for every TSK fuzzy system. Also, it is 
identical to the DM of SAM described in [12], so that 
simulation models for TSK and SAM use the same DM. 

4. Model couplings 

In the proposed approach, a TSK fuzzy system is represented 
as a P-DEVS coupled model consisting of atomic models (sub-
models): j IMs, k RMs, and a DM. Each of them is coupled 
with other atomic models within the coupled model or the 
coupled model, based on fuzzy if-then rules. The coupled 
model has i input ports and a single output port. Each of the 
input ports is connected with the associated input ports (e.g., 
input port “In1” for input x1, “In2” for x2, ···) of all RMs. The 
port is also coupled with the input ports of the associated IMs. 
Consider the following fuzzy if-then rules of a TSK fuzzy 
system that receives quantity x1 and softness x2: 

IF x1 is Small and x2 is Soft 
THEN y = 1 + x1 + x2, 
IF x1 is Large and x2 is Soft 
THEN y = 1 + 2· x1 + 2· x2, 
IF x1 is Small and x2 is Hard 
THEN y = 1 + x1 + 2· x2, 
IF x1 is Large and x2 is Hard 
THEN y = 1 + 2· x1 + 4· x2. 

In the above example, the port that receives x1 (quantity 
value) would be connected with the input ports of IMSmall and 
IMLarge. Note that each IM has a single input port “In”. The 
output port “Out” of each IM is coupled with input port “Ind” 
of each associated RMs. In the example, “Out” of IMSmall 
would be connected with “Ind” of RM1 and RM3, which have a 
linguistic variable ‘Small’ in the if-part. The output port of 
every RM is coupled with the input port of the DM. And the 
output port of the DM is connected with that of the coupled 
model. 

5. Fuzzy inference example 

Figure 4 shows a simulation model of a toy washing 
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machine controller based on the TSK inference model. When 
the coupled model (corresponding to the fuzzy controller) 
receives two normalized values x1 (Quantity) and x2 (Softness), 
they would be delivered to the associated IMs and all RMs 
according to the couplings of the model. Each IM produces 
matching degrees for the inputs. As shown in Fig. 4(a), for x1, 
IMSmall and IMLarge would generate μSmall (x1) and μLarge (x1), 
respectively. For x2, μSoft (x2) and μLarge (x1) are produced by 
IMSoft and IMHard, respectively. Every matching degree 
produced by an IM is delivered to the associated RMs, based 
on the couplings. 

Conclusions of the rules for the inputs (including the 
matching degrees) are computed by RMs. When RM1 
corresponding to Rule 1, “IF x1 is Small and x2 is Soft THEN y 
= a10 + a11·x1 + a12·x2,” receives x1 via the port “In1,” x2 via the 
port “In2,” and μSmall (x1) and μSoft (x2) via the port “Ind,” it then 
generates (b1, c1) = ((a10 + a11·x1 + a12·x2) × μSmall (x1) × μSoft (x2), 
μSmall (x1) × μSoft (x2)) as the output (Fig. 4(b)). Also, (b2, c2) = 
((a20 + a21·x1 + a22·x2) × μLarge (x1) × μSoft (x2), μLarge (x1) × μSoft 
(x2)), (b3, c3) = ((a30 + a31·x1 + a32·x2) × μSmall (x1) × μHard (x2), 
μSmall (x1) × μHard (x2)), and (b4, c4) = ((a40 + a41·x1 + a42·x2) × 
μLarge (x1) × μHard (x2), μLarge (x1) × μHard (x2)) are generated by 
RM2, RM3, and RM4, respectively. Note that multiplication is 
used for the computation of rule matching degrees in this 
example. However, a ‘min’ operator can be also be used to 
compute the rule matching degrees. The conclusions are then 
forwarded to the DM. 

As shown in Fig. 4(c), the DM collects the conclusions of the 
RMs and generates y = (b1 + b2 + b3 + b4) / (c1 + c2 + c3 + c4) as 
the output, which is equal to the results given by (1). Finally, 
the coupled model outputs y, as the fuzzy system’s product. 
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Fig. 4. Fuzzy inference through sub-models. 

6. Overhead analysis 

Table 1 shows an overhead analysis for the proposed 
approach and the three existing approaches [12], [17], [20]. 
Each fuzzy system consists of i input membership functions, j 
rules, and l output membership functions (in SAM and 
Mamdani fuzzy systems), with k inputs and a single output. In 
the proposed approach, a coupled model for a fuzzy system 
contains i + j + 1 atomic models, while a higher number of sub-
models is required to build a coupled model for a fuzzy system 
in other approaches. The complex couplings among the sub-
models in the proposed approach make the communications 
overhead (i.e., the number of messages generated for inter-
communications) increase. However, the overhead of the 
proposed approach is still smaller than that of [17]. Moreover, 
TSK can describe a highly nonlinear system using a small 
number of rules [24]. That is, j of TSK could be much smaller 
than that of SAM or Mamdani. While Mamdani fuzzy systems 
are widely used, they usually involve complex operations, such 
as the clipping and merging of membership functions and 
finding their centroids. Such complex operations might be too 
heavy on resource-constrained systems. Similar to [12], the 
proposed approach can model TSK fuzzy systems, which 
involve only primitive operations. Thus, the proposed approach 
will be suitable for the M&S-based engineering of embedded 
software systems. 

Table 1. Overhead in four modeling approaches. 

Overhead 
TSK 

(Proposed)
SAM 
[12] 

Mamdani
[17] 

Mamdani
[20] 

Sub-Models i + j + 1 
i + j + l + 

1 
j × k + 2j + 

2 
i + j + l + 2

Communications
i + 2j × k + 

+ j + 1 
i + j × k + 
j + k + 1 

2j × k + 2j 
+ 2 

i + j × k + j 
+ l + 2 

Inference 
Multiply + 

Add 
Multiply 

Find a minimum 
+ Clip or scale a MF 

Combining Add Merge MFs 

Defuzzification Multiply 
Find the mean of the 

maximum or the 
centroid of an area 

IV. Implementation Status 

In this section, we will describe the implementation status of 
the simulation models and our visual modeling tool prototype. 

1. Simulation model implementation 

The P-DEVS models for TSK systems described in section 
III were implemented in C++ for our simulation environment, 
the DEVS Object C++ (DOC++) environment. The IM for the 
triangular membership function type was implemented as an 
IMTraingle class. The RM and DM were implemented as 
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TSKRM and SAMDM classes, respectively. As shown in Fig. 5, 
these classes inherit the atomic of DOC++ class, which 
corresponds to the basic model of P-DEVS. The essential 
member functions of atomic are ext_tn_fn (the 
implementation of δext), int_tn_fn (δint), and output (λ). 
By overriding these functions, the behavior of a subclass is 
determined. The FuzzyMessage class is used for internal 
communications between the atomic models of fuzzy systems. 

atomic
# sigma : timetype
# phase : phasetype

+ ext_tn_fn (e : timetype, x : message *) 
+  int_tn_fn ()
+ output () : message *

IMTriangle
# m_dA, m_dB, n_dC : double
# m_dMembershipDegree : double

# GetMembershipDegree

SAMDM
# m_dDefuzzifiedValue : double

TSKRM
# m_iK : int
# m_pConstants : double *
# m_dFirstValue : double
# m_dSecondValue : double

# SetConstants (dA0 : double, …)

TSKFuzzyController

+ Initialize ()

1..*

1..*

1

FuzzyMessage
# m_dFirstValue : double
# m_dSecondValue : double

+ GetFirstValue () : double
+ GetSecondValue () : double

digraph
- Coupling : coup_rel

+ Add_Coupling (c1 : model *,
p1 : port, c2 : model, p2 : port)

 
Fig. 5. Simplified UML diagrams of TSK simulation models. 

void IMTriangle::ext_tn_fn (timetype e, message * x)
{
// compute ‘mu’ value for input value (x)
GetMembershipDegree
(static_cast <FuzzyMessage *> (x->read (0)->Get_Val ())->GetFirstValue ());
Hold_In ("active", 0);

}

void IMTriangle::int_tn_fn()
{ Hold_In ("passive", INFINITY); }

message * IMTriangle::output ()
{
// output ‘mu’ value
message * y = new message ();
y->Add_Content
(new content (& m_oOutPort, this, newFuzzyMessage (m_dMembershipDegree)));
return (y);

}  
Fig. 6. Simplified implementation of IM behavior. 

A triangular membership function is determined by three 
parameters: a, b and c. The internal state of an IM is comprised 
of ‘phase’ (e.g., “passive” or “active”) and membership degree, 
described in section III. Therefore, IMTriangle class, an 
implementation of an IM, has four member variables: three for 
a, b and c, and one for membership degree. Note that phase 
is defined as a member variable of atomic since it is a 
common state of P-DEVS atomic models. Figure 6 shows a 
simplified definition of the essential functions for 
IMTriangle. When an instance of IMTriangle receives 

an input value, ext_tn_fn is executed. That is, an external 
transition occurs. During the transition, the membership degree 
for the input is computed by the member function 
GetMembershipDegree. The instance then transitions to 
an “active” state for 0 time units. That is, after 0 time units have 
elapsed (i.e., immediately), output and int_tn_fn are 
sequentially executed. The output produces the membership 
degree as an output. Finally, the instance transitions into a 
“passive” state by int_tn_fn. The state continues until the 
instance receives other inputs. 

void SAMDM::ext_tn_fn (timetype e, message * x)
{
int iCount = x->Get_Count ();
double dNumerator = 0, dDenominator = 0;
FuzzyMessage * pMessage;
// collect rules’ conclusions (b1, c1), (b2, c2), …
// compute final conclusion based on rules’ conclusions
while (iCount --)
{
pMessage = static_cast <FuzzyMessage *> (x->read (iCount)->Get_Val ());
dNumerator += pMessage->GetFirstValue ();
dDenominator += pMessage->GetSecondValue ();

}
m_dDefuzzifiedValue = dNumerator / dDenominator;
Hold_In ("active", 0);

}

void SAMDM::int_tn_fn ()
{ Hold_In ("passive", INFINITY); }

message * SAMDM::output ()
{
// output final conclusion (y)
message * y = new message ();
y->Add_Content
(new content (& m_oOutPort, this, newFuzzyMessage (m_dDefuzzifiedValue)));
return (y);

}  
Fig. 7. Simplified implementation of DM’s behavior. 

The SAMDM class is the implementation of the DM. The DM 
has a single member variable to store a final conclusion of the 
fuzzy system. No additional member function is required. 
Figure 7 shows a simplified definition of the essential functions 
for SAMDM. Its instance can be created without any initial 
parameters and is used for all TSK and SAM fuzzy systems. 
When ext_tn_fn of an instance is executed (i.e., when the 
instance receives some inputs), the final conclusion (Σbi / Σci) 
of the fuzzy system is computed and stored in the member 
variable. Then, the instance transitions to an “active” state. An 
output is immediately called after the external transition and 
produces the conclusion as an output. Finally, int_tn_fn 
makes the instance transition into a “passive” state. The 
instance does nothing until the arrival of the next inputs. 

The RM was implemented as a TSKRM class. The class has 
four membership variables: one to store the number of inputs 
(i.e., k), one as a pointer for the parameters of the rule (i.e., a0, 
a1, ···, ak), and two, as the numerator and denominator, for the 
conclusion of the rule. A simplified implementation of RM is 
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shown in Fig. 8. In ext_tn_fn, the conclusion of a rule as a 
vector is computed from the collected inputs: the external input 
values of the fuzzy system and the membership degrees from 
the associated IMs. The conclusion is immediately produced as 
the output of the rule by output. The member variables are 
then initialized for the next input arrivals in int_tn_fn. 
Finally, the instance transitions into a passive state. 

void TSKRM::ext_tn_fn (timetype e, message * x)
{
int iCount = x -> Get_Count (), i;
while (iCount --)
{
// collect ‘mu’ values and compute ‘b’ value (multiplication of ‘mu’ values)
if (x->is_on_port (iCount, & m_oInPortD))
{
m_iDReceived ++;
m_dSecondValue *=
static_cast <FuzzyMessage *> (x->read (iCount)->Get_Val ())->GetFirstValue ();

}
// collect input values (x1, x2, …)
else
{
for (i = 0; i < m_iK; i ++)
{
if (x->is_on_port (iCount, m_pInPortX + i))
{
m_iXReceived ++;
m_dFirstValue +=
m_pConstants [++ i] *
static_cast <FuzzyMessage *> (x->read (iCount)->Get_Val ())->GetFirstValue ();
break;

}
}

}
}
// transitions when received all
if (m_iXReceived == m_iK && m_iDReceived == m_iK)
{ Hold_In ("active", 0); }

}

void TSKRM::int_tn_fn ()
{
m_iXReceived = m_iDReceived = 0;
m_dFirstValue = m_pConstants [0];
m_dSecondValue = 1;
Hold_In ("passive", INFINITY);

}

message * TSKRM::output ()
{
// output rule’s conclusion (b, c)
message * y = new message ();
y->Add_Content
(new content (& m_oOutPort, this,
new FuzzyMessage (m_dFirstValue * m_dSecondValue, m_dSecondValue)));
return (y);

}
 

Fig.8. Implementation of RM’s behavior. 

The implementation for the frame of a TSK fuzzy system is 
TSKFuzzyController, which inherits the digraph 
class of DOC++. The diagraph corresponds to the P-DEVS 
coupled model. Thus, it has the coupling information as a 
member variable. An instance of TSKFuzzyController 
has j instances of IM implementation, k instance of TSKRM, 
and an instance of SAMDM. These sub-models are initialized in 
the membership function Initialize of 
TSKFuzzyController and logically connected based on 

the coupling information inherited from the superclass. P-
DEVS models for other fuzzy inference models (i.e., Mamdani 
and SAM) and the IM for the trapezoid membership function 
were also implemented in DOC++. Consequently, MAMCM, 
MAMOM, MAMUM, MAMDM, SAMRM, SAMOM, and 
IMTrapezoid classes were written. 

The simulation modeling of fuzzy systems can be done with 
ease using our modeling tool described in the next section. 
However, they can also be manually constructed without the 
use of the tool, thanks to the hierarchical and modular model-
composition provided by the P-DEVS environments. A P-
DEVS coupled model M for a new TSK fuzzy system 
containing i input membership functions and j rules with k 
inputs and a single output can be constructed using the 
following steps: 

1. Make i instances of the IM implementation based on the 
membership function types of the inputs (e.g., 
IMTriangle) and set their parameters if necessary. 
Then put them into M. 

2. Make j instances of TSKRM. Set the parameters of the 
instance and put them into M. 

3. Put an instance of SAMDM into M. 
4. Couple these models based on the if-then rules of the 

fuzzy system. 

2. Modeling tool prototype implementation 

In order to facilitate the modeling process, we have also 
developed a prototype of a visual modeling tool. Figure 9 
shows a screenshot of the prototype. The atomic models for 
fuzzy systems and input/output stubs can be placed into 
coupled models through a GUI. The user can assign or modify 
their parameters in dialogs. The coupling process can be easily 
done within the tool. As shown in Fig. 10, the tool can also 
generate models (codes) for the DOC++ simulation 
environment from the modeled fuzzy systems. The generated 
models can be directly executed on the DOC++ environment. 
Within the visual modeling tool and DOC++ environment, the 
user can construct the target system models that employ fuzzy 
logic by coupling the system model with the fuzzy models 
generated by the tool. 
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V. Conclusions and Future Work 

In this paper, we presented an approach for representing P-
DEVS models of TSK fuzzy systems without the use of any 
external components. Exclusion of external components from 
simulation models would improve the continuity of the models 
so that the user can efficiently manage software complexity 
and maintain consistency throughout the design phase. A P-
DEVS model of a fuzzy system is comprised of easy-to-reuse 
atomic models: IMs, RMs, and a DM. Since each atomic 
model involves primitive operations, such as addition or 
multiplication, the model works on target platforms and can be 
smoothly transformed into other forms of models or languages. 
A coupled model for a TSK fuzzy system requires a smaller 
number of sub-models, compared to that of a Mamdani or 
SAM fuzzy system. Thus, it will be more compatible with 
embedded platforms.  We implemented P-DEVS models for 
fuzzy systems, including TSK, SAM, and Mamdani, for a 
DOC++ environment. To facilitate the modeling of fuzzy 
systems, a GUI-based modeling tool prototype was developed. 
The tool supports the generation of models that can be directly 
used in the environment. We will implement the models for 
other DEVS environments, such as eCD++ [3], [13]. We will 
also study the simulation modeling of other artificial 
intelligence techniques. 

DOC++ Environment

System Model

Fuzzy Model

Visual Modeler

 
Fig. 10. Model generation for a DOC++ simulation environment. 
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