
An experiment on the interoperability of DEVS implementations

Stephen Lombardi
Gabriel A. Wainer

Bernard P. Zeigler

Department of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive

Ottawa, ON, K1S 5B6, Canada

slombardi@connect.carleton.ca
gwainer@sce.carleton.ca

ACIMS - Arizona Center for Integrated Modeling and

Simulation
Department of Electrical and Computer Engineering

The University of Arizona,
Tucson, AZ 85715.

zeigler@ece.arizona.edu

ABSTRACT: The DEVS formalism defines a theory for discrete-events systems specification. It is a formal approach to
build the models, using a hierarchical and modular approach. DEVS formal nature showed to be useful for easy reuse
of models that have been validated. In this way, the security of the simulations can be improved, reducing the testing
and maintenance times, and improving the productivity of the development process. The discrete-event nature of the
formalism also allows reducing the execution times of complex simulations. In this work we will discuss the results of an
experiment on the interoperation between two existing DEVS environments (namely, CD++ and DEVS/C#), in an effort
within the DEVS Standardization study group. This work would provide the basis for future discussion on the
standardization effort, by providing an actual experimental result on sharing of DEVS models developed by different
teams using different DEVS simulation engines, permitting discussing the basic issues involved in this effort. We will
present the basic API provided by the engines, how to use them to provide interoperability at the level of the models,
and a detailed discussion on interoperation of the underlying simulators.

1. Introduction

In recent years, we have witnessed tremendous advances
in model building and simulation execution thanks to the
improvements in software and hardware technology. The
definition of the High Level Architecture (HLA) standard
[1] raised fundamental issues, such as model credibility
and interoperation. The HLA focuses on the
interoperation of existing geographically dispersed
simulation assets. However, the HLA does not address
how to solve the problem of creating models to be
executed in the simulation environment. Current practices
in development still use ad-hoc techniques, trying to
encapsulate models, simulators and experimental frames
into tightly coupled packages. As a result, testing,
maintenance and software reuse become difficult tasks
[2].

At present, there is a need to solve these problems,
enabling interoperability (including digital and analog
simulations), model reuse (using centralized or distributed
repositories), while keeping high performance in the
model execution. There are different efforts addressing
these issues, for instance, the Base Object Model
specifications, C4ISR, Extensible Modeling and
Simulation Framework, Simulation Conceptual Modeling,
etc. [3]. Other efforts consider the use of widely used
standards like the UML, or simu lation languages

including support for execution on the RTI. Our proposal,
instead, is based on the use of the DEVS formalism [4].

DEVS (Discrete Event systems Specifications) allows
modular description of models that can be integrated
using a hierarchical approach. DEVS has been proved to
be a universal representation for all discrete event models
and has been successfully used in previous efforts in
model interoperability (see, for instance, [5, 6]) providing
ease for reuse of simulation models. Another advantage of
using DEVS is that different existing techniques (Bond
Graphs, Ce llular Automata, State Charts, Partial
Differential Equations, Petri Nets, Queuing models,
Timed Automata, etc.) have been mapped to DEVS. This
permits sharing information at the level of the model, and
different submodels can be specified using different
techniques, while keeping independence at the level of the
simulation engine. Exis ting DEVS tools have showed
their ability to execute this wide variety of models with
high performance in standalone or distributed
environments.

DEVS has a theoretical foundation which makes it in
principle independent of various programming languages
and hardware platforms. There is a wide variety of groups
working on extensions to the DEVS formalism, with
several modeling tools based on these extensions. The
goal of SISO DEVS Study Group [7] is to find a core of
the DEVS formalism that is suitable for standardization.

Figure 1.1 Standardization at the right level. DTSS:
Discrete Time System Specification; ODESS: Ordinary
Differential Equation System Specification; PDESS:
Partial Differential equation System Specification

The primary objective of this effort is to support
interoperability at the right level. In Figure 1, we can see
that DEVS allows interchange of information at the level
of models developed in different paradigms (Discrete-
Time, Differential Equations, etc). The DEVS
specification model is constructed on top of existing
standard software support (like the HLA). This
organization supports model composability and
technology independence (for instance, we can replace the
software support by a different type of middleware
without modifying the models). This organization has
proved to successfully include all modeling paradigms
that are being widely used in academia, industry and
government, enabling research collaboration between
experts in these different areas.

Such a standard would also allow modelers to reason
about the validity of model composition independently of
the underlying simulation middleware technology.
Similarly, simulation developers can integrate their DEVS
simulation engines using a component based simulation
standard that promotes the construction of verifiable,
large-scale simulation systems. Finally, this standard
would be a stepping stone toward realization of a standard
for expression of DEVS models themselves [8].

In this work we will discuss the results of an experiment
on the interoperation between two existing DEVS
environments within the activities of the SISO DEVS SG
(namely, CD++ and DEVS/C#). This work would provide
the basis for future discussion on the standardization
effort, by providing an actual experimental result on
sharing of DEVS models developed by different teams

using different DEVS simulation implementations. This
permits discussing the basic issues involved in this effort.
We show the basic APIs provided by both
implementations, how to use them to provide
interoperability at the level of the models, and how to
integrate the underlying simulators. The models are split
between the two simulators, and they execute in an on-
line fashion, having both engines active and sharing
execution results in real-time.

2. Background
In this section we will explore the theory behind the
formalisms and implementations used in the interfacing of
CD++ and DEVS C#.

A model is a set of rules, instructions, equations and
behaviour reacting to input and generating output
according to those rules, instructions and equations.
Models can be simulated based on a number of different
formalisms, but this case deals with the Discrete Event
System Specification (DEVS) formalism [4]. Models
transition between states based on inputs received or
internal stimuli such as timer expiration. A model’s
behaviour is the set of all possible data generated by
following its rules and instructions.

A simulator is a system with the capability to execute a
model, thereby generating its behavior. Simulators differ
in capability as follows:
(i) dedicated to a model or a small group of closely
related models
(ii) able to simulate the behavior of models belonging to a
related field (for example, plant growth models)
(iii) contain logic to execute models adhering to a single
formalism (the DEVS formalism for instance)
(iv) have the ability to simulate models adhering to more
than one formalism

DEVS is an increasingly accepted framework for
understanding and supporting the activities of modeling
and simulation. DEVS is a sound formal framework based
on generic dynamic systems, including well defined
coupling of components, hierarchical, modular
construction, support for discrete event approximation of
continuous systems and support for repository reuse.
DEVS theory provides a rigorous methodology for
representing models, and presents an abstract way of
thinking about the world withcompletely indepedent of
the simulation mechanisms, underlying hardware and
middleware.

A real system modeled with DEVS is described as a
composite of submodels, each of them being behavioral

(atomic) or structural (coupled). A DEVS atomic model is
can be informally described as in Figure 1.

x

s ' = δ ext (s, e, x)

s s ' = δ int (s)

y

λ (s)

t a(s)

Figure 2.1. Informal description of an atomic model.

A DEVS atomic model has the structure:

taYSXM ext ,,,,,, int λσσ=

Where:
X is the set of inputs
S is the set of states
Y is the set of outputs

i n tδ is the internal transition function

extδ is the external transition function

conδ is the confluent transition function

λ is the output function
ta is the time advance function

The value of the time advance function can be any
positive real number, zero or infinity. If ta is equal to
zero, the system is changing states. If ta is infinity, the
system is in a passive state and will not change states
without external stimuli. The internal transition function
is triggered by an elapsed wait time equal to that supplied
by the ta function. The external transition function is
triggered by input from an external source. When all
models in a simulation are in a passive state, the
simulation has ended. The confluent function allows the
modeler to specify what happens when both an external
input and an internal transition are about to occur.

A coupled model has a composite structure in that it can
be made up of other models. Through these input and
output ports, all interaction between models is mediated.
Coupled models make it possible to model more complex
systems. A coupled model consists of a set of input ports
from which external events are received, a set of output
ports through which the model can send outputs outside
the system

Figure 2.2 Informal description of a coupled model.

Coupled models are defined as a set of basic components
(atomic or coupled), which are interconnected through the
model's interfaces. The model’s coupling defines how to
convert the outputs of a component into inputs for other
peers, and to convert inputs/outputs of the components to
the exterior of the model [4].

CD++ [9] is a modeling environment that was defined
using the specifications presented in the previous section,
and the basic simulation techniques introduced in [4].
DEVS Atomic models can be programmed and
incorporated onto a class hierarchy programmed in C++.
Coupled models can be defined using a built-in
specification language. CD++ makes use of the
independence between modeling and simulation provided
by DEVS, and different simulation engines have been
defined for the platform: a stand-alone version, a Real-
Time simulator, and a Parallel simulator. CD++ is built as
a class hierarchy of models related with simulation
processing entities.

class Atomic : public Model {
public:
virtual ~Atomic(); // Destructor

protected: //Kernel services
Time nextChange();
Time lastChange();
holdIn(AtomicState::State &, Time &);
passivate();
ModelState* getCurrentState() ;
sendOutput(Time &time, Port &port, Value value);

//User defined functions.
initFunction();
externalFunction(ExternalMessage &);
internalFunction(InternalMessage &);
outputFunction(CollectMessage &);
string className() const
}; // class Atomic

Figure2.3 The Atomic Class

DEVS Atomic mo dels can be programmed and
incorporated onto the Model basic class hierarchy using
C++. A new atomic model is created as a new class that
inherits from the Atomic base class. The state of a model
is defined in the AtomicState class. When creating a new
atomic model, a new class derived from Atomic has to be
created. Atomic is an abstract class that declares a model’s
API and defines some service functions the user can use
to write the model. The Atomic class provides a set of
services and requires a set of functions to be redefined:
nextChange()/lastChange() return the time until the
next internal transition/since the last state change;
holdIn(state, Time): tells the simulator that the model
remains in a state during a given Time. It corresponds to
the ta(s) function of DEVS. The passivate() function
sets the next internal transition time to infinity. The model
will only be activated again if an external event is
received, while getCurrentState(): returns the current
model’s phase. The sendOutput(Time, port, value)
transmits an output message through the specified port.

Any newly defined class should override the following
functions: initFunction() (invoked at the beginning the
simulation), externalFunction (ExternalMessage &)
(δext function), internalFunction(InternalMessage &)
(δint function) and outputFunction(const
CollectMessage&) (λ function of the DEVS formalis m).

Once an atomic model is defined, it can be combined with
others into a multicomponent model using a specification
language specially defined with this purpose. The coupled
model at the higher level is always named [top]. Four
properties must be configured: components, output ports,
input ports and links between models. The following
syntax is used:

Components: name1[@atomicClass1] name2 ... Lists
the components of the coupled model (atomic or
coupled). For atomic models, an instance and a class
name must be specified, allowing a coupled model to use
more than one instance of a given atomic class. For
coupled models, only the model name must be given, and
it must be defined as another group in the same file.

Out: portname1 portname2 ... Enumerates the model’s output ports
(optional clause).

In: portname1 portname2 ... Enumerates the input ports (optional
clause).

Link: source[@model] destination[@model]. It
describes the internal and external coupling scheme. If the
name of the model is not included, the default will be the
coupled model currently being defined.

DEVS C# is a DEVS engine created in the University of
Arizona’s ACIMS laboratory A revised version of the
engine will be released later this year under the new title
DEVS .NET. DEVS C# is a real time, parallel DEVS
engine programmed in C# .NET. Models created in
DEVS C# can be embedded in aspx web pages or exposed
as web services due to .NET’s service-oriented nature.
DEVS C# is a self contained environment that allows
users to easily model systems on a desktop computer.

In DEVS C#, models are written as C# classes that extend
the Atomic class. The Atomic class, as discussed above
contains a set of rules governed by the DEVS formalism’s
atomic level. A DEVS C# model consists of input and
output ports, a constructor function, an initialization
function, internal and external transition functions and an
output function. The initialization function is invoked by
the simulator at the beginning of the simulation and
serves to put the model in its initial state and sets its initial
context. The internal function is invoked when the time
advance expires. The external function is invoked when a
message is received at an input port. The output function
outputs messages on one or more of the model’s output
ports. Similar to CD++, the DEVS C# Atomic class
provides a set of services to all models extending the
class. The hold(time) function tells the simulator that the
model stays in its current state for the time specified. The
passivate() function sets the model’s next internal
transition time to infinity. The TimeNext and TimeLast
properties get/set the time of the next event and the time
of the previous event respectively. The TimeCurrent
property gets/sets the current time, The following is the
code for a simple timer model:

public class SimpleTimer : Atomic{
 public SimpleTimer() { }
 // Initialize the SPTimer

 public override void init(){
 hold(3.3); }
 // Internal transition function.

 public override void delta_int(){
 hold(3.3); }
 // External transition function.

 public override void delta_ext(double e,
 Bag<PortValue> x) {}

 // Output function
 public override void

output_func(Bag<PortValue> y){
 Console.WriteLine("Alarm at " +

 TimeCurrent);
 }
}

Figure 2.4 The Simple Timer model

The above C# class extends the base type Atomic. For
this simple case, the constructor is empty. For more
complex models, member variables may be set and helper
functions can be invoked. In the init function, the
hold(time) function is called specifying when the first
internal transition will occur. The external transition
function is empty in this case, meaning that external
events (messages) are ignored. In this model, state change
only occurs due to timer expiration. The internal
transition function calls the hold(time) helper function,
setting the time until the next internal transition. The
output function displays the time of the alarm, utilizing
the Atomic classes TimeCurrent property to get the
current time.

3. Interfacing CD++ and DEVS C#

As a DEVS simulation proceeds, models in the simulation
change their state based on internal or external events [4].
External events are sent between models as messages.
Messages sent by a model are based on events it has
encountered, both internal and external. These messages
trigger the external transition function of the model
receiving them. The external transition function of the
receiving model could result in more messages being
passed to other models (although not directly [10]).
Simply put, we must have message passing among
models in order to simulate behavior in a system. A
message includes the source model and port names, and
the destination model and port names as well as the
message body.

The simulation in CD++ is carried out by Processors that
drive the simulation by exchanging messages. Two types
of Processors exist:

1. Simulators: drive the simulation of atomic
models, and

2. Coordinators: drive the execution of coupled
components and coordinate the activities of all
their dependant children.

A simulator object manages an associated atomic object,
handling the execution of its δint (internal transition
function), δext (external transition function) and λ (output
function). A coordinator object manages an associated
coupled object.

The following figure shows a sample model with a few
components:

 Coupled Model # 1 (TOP)

Atomic
Model # 1

Atomic
Model # 2

Atomic
Model # 3

Coupled Model # 2

Atomic
Model # 4

Atomic
Model # 5

Figure 2.5 Sample model

The figure shows a sample model whose topmost
component has three atomic submodels (Atomic Models
#1, #2 and #3) and one coupled model (Coupled Model
#2). That inner-coupled component is formed by two
atomic components (Atomic Models #4 and #5). The
corresponding model hierarchy for the depicted sample is
shown below:

Coupled Model # 1

Coupled Model # 2

Atomic Model # 1

Atomic Model # 2

Atomic Mod el # 3

Atomic Model # 4

Atomic Model # 5

Figure 2.6 Hierarchical models’ hierarchy

The processor hierarchy corresponding to this example is
shown in the following figure.

Coordinator # 1

Coordinator # 2
 Simulator # 1

 Simulator # 2
 Simulator # 3

Simulator # 4

 Simulator # 5

Root Coordinator

Figure 2.7. Processors’ hierarchy (hierarchical

approach)

Only one root coordinator exists in a simulation. It
manages global aspects of the simulation. It is involved
with the topmost-coupled component, which has the
highest level in the model hierarchy. Moreover, the root
coordinator maintains the global time, and it starts and
stops the simulation process. Lastly, it receives the output
results that must be sent to the environment.

A split simulation is a source system whose components
have been broken into two or more groups prior to
execution. These groups of components (component
groups hereafter) will run under separate simulators
which may or may not be implemented using the same
simulation engine (CD++ or DEVS C# specifically).
There are different mechanisms that have been used for
making these simulators interact. One way is to split the

execution of the coordinators/simulators between multiple
processors within a single simulation engine. This is the
approach taken by DEVS/HLA [5], DEVS/Corba [11] or
Parallel CD++ [12]. Another alternative is to construct a
model wrapper to make the two distributed simulators
interact at a higher level of communication. This
approach was used in [13], where the author created a
wrapper for CD++ using the HLA as middleware,
enabling multiple CD++ simulation engines to interact at
the level of the top model. A wrapper is a software piece
that hides the component and provides a means of
communication with components modeled in the other
environment.

Here, we extend this concept, permitting to compose a
coupled model consisting of both CD++ and DEVS C#
components and then execute that coupled model in
distributed fashion. Some of the source system’s
components are modeled in CD++ and run in the CD++
simulation environment. The remaining components of
the source system are modeled and simulated in DEVS
C#. Any component that needs to be coupled to a
component modeled in the other environment is
encapsulated in a wrapper. These wrappers communicate
with each other (in this case, via a TCP connection).
Wrappers send messages between components that would
have no means of communication otherwise. These

wrappers make the interfacing of CD++ and DEVS C#
possible. After receiving a message from another
component’s wrapper, the receiving wrapper must pass
the message to its component so that the simulation can
progress. CD++ wrappers and DEVS C# wrappers have
different means of passing a received message to their
encapsulated component. At this point, we have used
TCP/IP sockets as the communication mechanism, as the
focus of our approach is on the modeling aspects of the
experience. This is the first successful effort in making
two independent DEVS engines, developed by completely
isolated teams of developers, to execute simultaneously
and interchanging information in runtime. Mapping the
results of this effort to other middleware (HLA, SOA,
Corba, MPI) is straightforward: we need to adapt the calls
made to the current API, and to incorporate calls to the
corresponding middleware. As these advanced
middleware provide advanced services, an extension
would permit improving the simulation aspects of the
experiments. The following examples serve as a proof of
concepts of these ideas, focusing our experiments at the
modeling level, and leaving advanced simulation aspects
for future implementations.

The following diagram represents a simple split
simulation comprised of two component groups

Figure 3.1 Connection between a CD++ simulation and a DEVS C# model using wrappers.

The component group on the left is modeled in CD++ and
contains 3 atomic models coupled using CD++ coupling.
The component “Atomic Model 3” is encapsulated in a
CD++ wrapper. Atomic Model 3 can send messages to,
and receive messages from, components connected to this
wrapper. In figure 1 a connection exists to “Atomic
Model 1” and “Atomic Model 2” in the DEVS C#
component group. The component group on the right is

modeled in DEVS C# and contains a DEVS C# coupled
model. Both the components in this group are
encapsulated in DEVS C# wrappers in order to
communicate with the CD++ component group. It is
important to mention that wrapped components need not
occur in coupled models, a component group can consist
of just one component. The links shown between

component groups are made with TCP connections over
which messages are passed.

Both CD++ and DEVS C# send messages between
simulations in a similar manner. In each atomic model’s
output function, in addition to sending the message to the
simulator, the message is passed to the component’s
wrapper which will forward it to another wrapper. This
creates an explicit, loose coupling between the component
groups. The following code fragment from a generator
component modeled in DEVS C# shows how this
coupling is achieved:

// Output function
public override void output_func(Bag<PortValue>

y){
 y.Add(new PortValue(portOut,

m_count.ToString()));
 m_wrapper.send(portOut.Name, “transducer”,

“arriv”,
 m_count.ToString());
}

Figure 3.2 DEVS C# output finction

First, the bag of port values (here called “y”) passed by
reference to the function is appended to include a message
from the generator’s “portOut” port containing the job
number that has been generated. The DEVS C# simulator
will use the coupling defined to deliver this message to all
of its intended recipients. Next, we have a message being
sent from the wrapped component to a component in
another component group. This is done by invoking the
wrapper’s send function. When a component modeled in
CD++ needs to send a message to another component
group, a similar call is made from the component’s output
function to its wrapper. The setWrapper(Wrapper)
function is invoked when a split simulation will be run.
This function encapsulates the model in the Wrapper.

Received messages are handled differently in CD++
wrappers than they are in DEVS C# wrappers. In CD++
wrappers, all messages are routed from the wrapper
directly to the atomic model. The wrapper calls the atomic
model’s external function, passing the received message
as the argument. The following is a fragment of the CD++
wrapper’s receive function, showing how received
messages are handled:

m_model.externalFunction(receivedMessage);

The variable m_model is the component encapsulated by
the wrapper. The variable receivedMessage is the
message received from another wrapper.

In contrast, DEVS C# wrappers have a reference to their
component’s simulator. This means messages can be
injected directly into the simulation by the wrapper. This
results in the receipt of the message by its intended
recipient models. The following is a fragment from the
DEVS C# wrapper’s listen function, which listens for and
handles messages as they arrive:

PortValue pv = new PortValue(port, value);
m_wrappedSim.inject(pv);

The first line shows the creation of a PortValue, using the
port and value received from the other wrapper. The
second line shows the injection of the PortValue into the
simulator, here named m_wrappedSim.

Prior to initiating the split simulation, each of the DEVS
C# wrappers must know the IP address of the CD++
wrapper to which they will connect. Currently, only the
default of localhost is used (this means all component
groups are running on the same computer.) Upon
execution of the DEVS C# simulation, each wrapper will
try to connect to the CD++ wrapper specified. If a
connection fails, the DEVS C# wrapper retries to connect
until the user aborts the attempt or until a connection is
made. When a connection can be made, two sockets are
created with the CD++ wrapper. Two sockets are used so
that there can be asynchronous communication between
the two models (i.e. both models can be sending a
message at the same time). Upon execution of a CD++
wrapper, two listening sockets are created and the
wrapper waits for a connection from a DEVS C# wrapper.
After a connection has been established and both sockets
are ready for communication, the simulation is initiated
and started. Messages are passed between the wrappers
until the simulation is completed. At this time, the model
where completion has been decided or detected sends out
a termination message and all wrapper connections are
closed.

4. AN EXAMPLE OF APPLICATION

The Generator, Processor, Transducer (GPT) model is a
simple coupled model composed of three atomic models
(components) each with a simple purpose. The generator
component creates jobs and sends them out on the out
port. The processor accepts jobs on an input port,
processes them for a given time and then forwards them
on an output port. The transducer accepts jobs from the

generator on the arrived input port and notes the
generation time. Jobs processed by the processor are
forwarded to the transducer’s solved input port. The
transducer notes the time the job was solved and
calculates the elapsed time. This time is used later when
calculating throughput. In this simple coupled model the
internal coupling is as follows: the generator’s output port
is coupled to the processor’s input port and the
transducer’s arrived port. The processor’s output port is
coupled to the transducer’s solved port. The transducer’s

output port is coupled to the generator’s stop port. The
GPT model also has external coupling to receive events
from other systems and provide events to other systems.
The GPT model’s start and stop ports are coupled to the
generator to control job generation. The coupled model’s
out port is coupled to the processor’s out port so that jobs
are forwarded externally as well as to the transducer. The
coupled model’s result port is coupled to the transducer’s
out port so that the simulation’s final result will be
forwarded to other systems.

Figure 4.1 The GPT model and its internal and external connections

The following excerpts show the Generator/Processor and
Transducer component groups as they defined in their
respective DEVS environments. The Transducer
component group is defined in DEVS C# as follows:

m_transducer = new Transd(observationTime,
"transducer");

DevsThSim sim = new DevsThSim(m_transducer);
Wrapper wrap = new Wrapper(9998, 10000,

m_transducer.Name, sim);
m_transducer.setWrapper(wrap);

The first lines deal with the creation of the simulator
containing the transducer component. First a transducer is
created, then a simulator is created to simulate the
transducer’s behavior. The final two lines show the
integration between this component group and the
Generator/Processor component group. First a wrapper is
created by setting the TCP ports it will send and receive
on, the source model’s name and a reference to the
simulator controlling the model. Then, a reference to the
newly created model is set in the transducer, so that the

wrapper’s functions (send for instance) can be invoked by
the transducer. The Generator/Processor component group
is defined in CD++ as follows:

[top]
components : Generator@Generator Processor@CPU
Out: out

Link : out@Generator in@Processor
Link : out@Processor out

[Generator]
distribution : poisson
mean : 10

[Processor]
distribution : exponential
mean : 10

The top section defines the component’s highest level,
which contains a Generator, a CPU and an output port
named out. This section also defines the couplings

between the two components in this group. The Generator
and Processor sections of the component group’s
definition define the details of their respective
components.

Now that we have seen how coupled models are defined
in CD++ and DEVS C#, we can see why it is possible to
construct a wrapper that has a reference to the simulator,
allowing messages to be injected directly into it. In the
DEVS C# definition, the simulator and wrapper are
defined on separate lines and the simulator is passed to

the wrapper’s constructor so a reference can be made. In
contrast, CD++ coupled models are defined using a high
level script, parsed by helper classes. It is not possible to
define the wrapper in this script, but rather the wrapper is
created and initialized in the CD++ atomic model’s
constructor.

The following figure shows the GPT model as it has been
created through the interfacing of DEVS C# and CD++
components:

Figure 4.2 The split GPT model

The following sections will cover the steps involved in
simulating the system using both CD++ and DEVS C#.
Please note that for this experiment, the simulations are
run in real time.

4.1 Initialization

The generator/processor application is started and the
CD++ wrappers wait for a connection from another
wrapper (in this particular case from the transducer’s
wrapper). The transducer application is started and
sockets are opened to the generator and processor
wrappers. After the socket initialization is complete, the
simulation can begin.

4.2 Job Generation

The generator creates a job (in this case it is an integer
starting at 0 and incrementing by 1 with each job created.)
The job is sent from the generator to the processor via the

CD++ coupling and to the transducer via the wrapper.
Upon receiving a job, the transducer adds a timestamp
which will be used for calculation when completed job
messages arrive. Time-stamping a message at arrival
rather than prior to sending it has advantages and
disadvantages. The main disadvantage is that a lost or
delayed message will have a timestamp that indicates the
job was generated far later than it actually was. However,
in order to attach a timestamp prior to sending the
message, we must have synchronized simulation clocks.
This means that both simulation engines must have timers
that use s imilar units of time.

- RE�) URP � * HQHUDWRU�WR�7UDQVGXFHU

&' : UDSSHU

* HQHUDWRU

&' 0 HVVDJH�
WR�SURFHVVRU

RXW

' (9 6 �& : UDSSHU

7UDQV
GXFHU

DUULYHG

: UDSSHU�
0 HVVDJH

$�MRE�LV�JHQHUDWHG

* HQHUDWHG�MRE�LV�VHQW�
WR�SURFHVVRU�YLD�&'
FRXSOLQJ�DQG�WR�WKH�
ZUDSSHU�DV�DUJXP HQWV�RI�
WKH�VHQG�IXQFWLRQ

7KH�JHQHUDWRU¶V�
ZUDSSHU�WUDQVP LWV�WKH�
MRE�WR�WKH�WUDQVGXFHU¶V�
ZUDSSHU

7KH�WUDQVGXFHU¶V�
ZUDSSHU� D�' (96�&
ZUDSSHU LQMHFWV�WKH�
UHFHLYHG�MRE�LQWR�WKH�
VLPXODWRU

7KH�VLPXODWRU�SDVVHV�
WKH�MRE�WR�WKH�WUDQVGXFHU�
RQ�WKH�DUULYHG�SRUW

Figure 4.3 Path a job takes from the generator to the

transducer through the wrappers.

4.3 Job Processing

3URFHVVHG�- RE�WR�7UDQVGXFHU

&' : UDSSHU

3URFHVVRU

' (9 6 �& : UDSSHU

7UDQV
GXFHU

VROYHG

: UDSSHU�
0 HVVDJH

7KH�MRE�LV�SURFHVVHG

7KH�SURFHVVHG�MRE�LV�
VHQW�WR�WKH�SURFHVVRU¶V�
ZUDSSHU�DV�DUJXP HQWV�RI�
WKH�VHQG�IXQFWLRQ

7KH�SURFHVVRU¶V�
ZUDSSHU�WUDQVP LWV�WKH�
MRE�WR�WKH�WUDQVGXFHU¶V�
ZUDSSHU

7KH�WUDQVGXFHU¶V�
ZUDSSHU�LQMHFWV�WKH�
SURFHVVHG�MRE�LQWR�WKH�
VLPXODWRU

7KH�VLP XODWRU�SDVVHV�
WKH�SURFHVVHG�MRE�WR�WKH�
WUDQVGXFHU�RQ�WKH�VROYHG�
SRUW

RXW

Figure 4.4. Path a processed job takes from the

processor to the transducer.

Upon arrival at the processor, the job is “worked on” for a
set amount of time. In reality, the processor sleeps for the
amount of processing time set during initialization. Upon
completion of processing, the processor forwards, via the
wrapper the job message to the transducer. Upon arrival at
the transducer an elapsed time for the job is calculated.
This will aid in statistics calculation later.

4.4 Simulation Termination

Upon the expiration of its simulation timer, the transducer
sends a message on its out port which is delivered to
systems external to the simulation. A termination message
is sent to the generator via the wrappers, and the DEVS
C# simulation is terminated. The termination message is
received by the generator’s wrapper, which terminates the
CD++ simulation.

7HUP LQDWLRQ

&' : UDSSHU

7UDQV
GXFHU

&' 0 HVVDJH�
WR�H[WHUQDO�
V\VWHPV

UHVXOW

' (9 6 �& : UDSSHU

* HQHUDWRU
DUULYHG

: UDSSHU�
0 HVVDJH

7KH�HQG�RI�WKH�
WUDQVGXFHU¶V�REVHUYDWLRQ�
LV�UHDFKHG

7KH�WUDQVGXFHU�VHQGV�
LW¶V�UHVXOWV�WR�WKH�FRQVROH�
DQG�RXWSXWV�WKHP � RQ�WKH�
UHVXOW�SRUW

7KH�WUDQVGXFHU�VHQGV�
D�WHUP LQDWLRQ�P HVVDJH�
WR�WKH�JHQHUDWRU�YLD�LWV�
ZUDSSHU

7KH�JHQHUDWRU¶V�
ZUDSSHU�UHFHLYHV�WKH�
WHUP LQDWLRQ�P HVVDJH�
DQG�WHUP LQDWHV�WKH�
UXQQLQJ�VLPXODWLRQ

Figure 4.4. Steps in the termination of a split simulation

The GPT model was implemented in CD++ and
DEVS/C# following the description presented in the
previous section. The following figures show output from
the two environments for a short period of simulation of
the split GPT model.

I/00:000/Root(00) to top(01)
I/00:000/top(01) to generator(02)
I/00:000/top(01) to processor(03)
D/00:000/generator(02) / 00:00:00:000 to top(01)
D/00:000/processor(03) / ... to top(01)
D/00:000/top(01) / 00:00:00:000 to Root(00)
*/00:000/Root(00) to top(01)
*/00:000/top(01) to generator(02)
Y/00:000/generator(02) / out / 0 to top(01)
D/00:000/generator(02) / 00:00:10:000 to top(01)
X/00:000/top(01) / in / 0 to processor(03)
D/00:000/processor(03) / 00:00:10:000 to top(01)
D/00:000/top(01) / 00:00:10:000 to Root(00)
*/10:000/Root(00) to top(01)
*/10:000/top(01) to generator(02)
Y/10:000/generator(02) / out / 1 to top(01)
D/10:000/generator(02) / 00:00:10:000 to top(01)
X/10:000/top(01) / in / 1 to processor(03)
D/10:000/processor(03) / 00:00:10:000 to top(01)
D/10:000/top(01) / 00:00:10:000 to Root(00)
*/20:000/Root(00) to top(01)
*/20:000/top(01) to generator(02)
Y/20:000/generator(02) / out / 2 to top(01)
D/20:000/generator(02) / 00:00:10:000 to top(01)
X/20:000/top(01) / in / 2 to processor(03)
D/20:000/processor(03) / 00:00:10:000 to top(01)
D/20:000/top(01)/00:00:10:000 to Root(00)

Figure 4.4 CD++ Results of a short split simulation

The above figure shows the output generated by CD++
representing the message chatter of the
Generator/Processor component group or the first 20
seconds of simulation. Please note that the time stamp has
been truncated for space constraints and is usually
formatted as follows: hh:mm:ss:ms. The first messages
we see are of type I. These messages are initialization
messages. First, the root coordinator sends an
initialization message to the external model (top). The
external model is responsible for distributing messages
between the processor and generator and forwards the
initialization message to them. The second set of
messages are of type D. These are done messages in reply
to the initialization messages. First the models reply to the
external model, then the external model replies to the root
coordinator. Along with the reply, the models send the
time until their next event. The external model forwards
the time until the first event to the root coordinator. In this
case it is 0 seconds. The reply from the root coordinator is
a * message. It is sent to imminent children (to the
external model, then forwarded to the generator). The
imminent children simulate and their simulators return Y
and done messages. The root coordinator decides which
output from a model needs to be distributed to other
models and responds with x messages. This flow of
events repeats until the simulation is terminated.

The following figure shows the DEVS C# output for the
transducer component group over the same 20 second
period. Information for each messages is formatted to take
2 lines. The first line shows the time of the event, the
name of the model and the function triggered (internal,

external or confluent). The second line shows the
previous state, the port name and value on the port and the
new state. For this example the states are blank since the
transducer has only one non-passive state and it is
unnamed. Following termination, the transducer displays
its results, showing the end time of the simulation, the
number of arrived and solved jobs, the total and average
time advance and the processor’s throughput.

0 transducer's ext:
 -- {portAriv:0} -->
10 transducer's ext:
 -- {portSolv:0} -->
10 transducer's ext:
 -- {portAriv:1} -->
20 transducer's ext:
 -- {portSolv:1} -->
20 transducer's ext:
 -- {portAriv:2} -->

End Time : 20
Jobs Arrived : 3
Jobs Solved : 2
Total TA : 20
Average TA : 10
Throughput : 0.1

Figure 4.5 DEVS C# results for the split simulation

5. Conclusion

We have presented the results of an experiment on the
interoperation between two existing DEVS environments
(namely, CD++ and DEVS/C#), in an effort within the
DEVS Standardization study group. The DEVS
formalism defines a theory for discrete-events systems
specification, which permits building formal models using
a hierarchical and modular approach. DEVS formal nature
showed to be useful for easy reuse of models that have
been validated.

Although this interface between CD++ and DEVS C# is
done through explicit coupling via a set of interconnected
wrappers, it serves as a proof of concept. At present, we
are working on the definition of a central coordinator to
provide synchronization between simulations using SOA
services, and adding managed coupling, rather than
explicit wrapper coupling. By having the simulator
sending the messages to a different peer rather than a
specific wrapper, the model programming becomes easier
for the user. This is one of the main strenghts of the
approach: the DEVS simulation protocol is the same
indepdendent of the way the models are expressed. The

DEVS coordinator (for CD++ or DEVS-C# will be used
and interfaced to simulators for the two groups).

This work provides the basis for future discussion on the
standardization effort, by providing an actual
experimental result on sharing of DEVS models
developed by different teams using different DEVS
simulation engines, permitting discussing the basic issues
involved in this effort. It provides a framework to conduct
experiments, and to address the main issues of our
standardization effort, namely, in which way a DEVS
simulation engine can be standardized to provide
simulation services to multiple modeling environments,
which would later influence a higher level definition for a
standard modeling mechanism to share modeling
information at the level of the DEVS model.

REFERENCES

[1] IEEE standard for Modeling and Simulation (M&S)

High Level Architecture (HLA) Framework and
Rules. IEEE Std. 1516-2000, 2000.

[2] G. Wainer, B. Zeigler, H. Sarjoughian, J. Nutaro:
“DEVS Standardization Study Group Terms of
Reference”, Simulation Interoperability Standards
Organization, 2004.

[3] “SISO Product Development Activity.” URL:
http://www.sisostds.org/stdsdev/index.cfm.
Last accessed: Nov. 1, 2005.

[4] B. Zeigler, H. Praehofer, T.G. Kim: ”Theory of
modeling and simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems .”,
Academic Press, San Diego, CA, second edition,
2000.

[5] H. Sarjoughian, B. Zeigler: “DEVS and HLA:
Complimentary Paradigms For M&S?", Transactions
of the SCS Vol. 17, pp. 187-197, 2000.

[6] Y. Kim, T.G. Kim: “A Heterogeneous Simulation
Framework Based on the DEVS BUS and the High
Level Architecture”, Proceedings of the Winter
Simulation Conference, Washington, DC. 1998.

[7] SISO SIW DEVS Study Group. URL:
http://www.sce.carleton.ca/faculty/wainer/standard/
Last Accessed: November 5, 2005

[8] J. Nutaro: “A middleware based standard for DEVS
simulator interoperability”, Proceedings of SISO
SIW 2004. Arlington, VA. 04F-SIW-114. 2004.

[9] G. Wainer: "CD++: a toolkit to define discrete-event
models ", Software, Practice and Experience, Vol. 32,
pp. 1261-130, November 2002.

[10] H. Sarjoughian, B. Zeigler: “Introduction to DEVS
Modeling & Simulation with JAVA: Developing
Component-based Simulation Models”, URL:
http://acims.arizona.edu/SOFTWARE/devsjava_licen
sed/CBMSManuscript.zip. Last accessed: December
28, 2005.

[11] Kim, D., S. J. Buckley, and B. P. Zeigler.1999. Distributed
supply chain simulation in a DEVS/CORBA execution
environment. In Proceedings of the 1999 Winter Simulation
Conference. Phoenix, AZ. 1999.

[12] Troccoli, A.; Wainer, G. “Implementing Parallel CD++”.
Proceedings of the Annual Simulation Symposium.
Orlando, FL. 2003.

[13] C. Zhang. “Integrating existing DEVS simulations
with the HLA”. M.A.Sc. Thesis (Supervisor: T.
Pearce). Carleton University. 2004.

