
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2016, Vol. 92(8) 747–769

� The Author(s) 2016

DOI: 10.1177/0037549716657168

sim.sagepub.com

System entity structure extension to
integrate abstraction hierarchies and
time granularity into DEVS modeling
and simulation

Jean-Francxois Santucci1*, Laurent Capocchi1* and Bernard P Zeigler2,3*

Abstract
The modeling and simulation (M&S) of complex systems often requires models described at different levels of detail
characterized by differences in abstraction hierarchies and/or time granularity. The discrete-event system specification
(DEVS) is a framework based on mathematical systems theory that offers a computational basis for application of M&S
to systems engineering and that has become widely adopted for its support of discrete-event, continuous, and hybrid
applications. A fundamental representation of DEVS hierarchical modular model structures is the system entity structure
(SES), which represents a design space via the elements of a system and their relationships in a hierarchical and axiomatic
manner. As has been described in a number of publications, the SES supports development, pruning, and generation of
DEVS simulation models. The goal of this paper is to propose an extension of SES in order to integrate both the con-
cepts of abstraction hierarchies and time granularity into DEVS. This paper explains in detail: (i) the concepts of abstrac-
tion hierarchies and time granularity; (ii) the extension of SES in order to take into account these concepts; (iii) DEVS
M&S of complex systems according to different levels of detail (abstraction hierarchies and time granularity); (iv) the use
of a Python DEVS simulator (DEVSimPy) to implement the management of abstraction hierarchies and time granularity.
A real case study is given to illustrate the proposed approach, and follow-on research needed to implement the concepts
is discussed.

Keywords
Discrete-event formalism, abstraction hierarchy, time granularity, system entity structure, DEVS, DEVSimPy

1. Introduction

Systems engineering can be viewed as a strategy for the

design of systems where the search space of alternative

designs is practically infinite. A key element in executing

such a strategy is the use of abstraction to simplify the

alternative structures, enabling tractable generation and

testing of smaller combinatorial spaces. Here, abstractions,

or, more concretely, models based on them, are derived by

temporarily ignoring overall system objectives, require-

ments, or constraints in favor of working with more-easily

satisfied formulations of these criteria. Modeling and

simulation (M&S) is an important methodology for system

engineering that supports such abstraction-based search.1

However, it often focuses on the back-end generation and

testing of system models, once developed, for achievement

of (sub-optimal) requirements, rather than on the front-end

development and management of the abstractions underly-

ing such models. However, isolated consideration from

simplified perspectives is not sufficient for achievement of

today’s complex systems’ robust design requirements.

This mandates more effort towards a fully-fledged search

through the infinite space of alternatives. In this paper, we

seek to move towards a new theory for expression, devel-

opment, management, and realization of abstractions in

M&S to support systems engineering as a search strategy

through infinite design spaces.

1Department of Computer Science, University of Corsica, France
2Arizona Center for Integrative Modeling and Simulation, University of

Arizona, USA
3RTSync Corporation, MD, USA
*SCS member.

Corresponding author:

Jean-Francxois Santucci, University of Corsica, Campus Grimaldi, 20250,

Corte, France.

Email: santucci@univ-corse.fr

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


Our approach is based on working with artifacts of

expression in M&S associated with the discrete-event sys-

tem specification (DEVS) formalism.2,3 This is a frame-

work based on mathematical systems theory that offers a

computational basis for application of M&S to systems

engineering and that has become widely adopted for its

support of discrete-event, continuous, and hybrid applica-

tions. A fundamental representation of DEVS hierarchical

modular model structures is the system entity structure

(SES), which represents a design space via the elements of

a system and their relationships in hierarchical and axio-

matic manner. SES is a declarative knowledge representa-

tion scheme that characterizes the structure of a family of

models in terms of decompositions, component taxo-

nomies, and coupling specifications and constraints.4 As

has been described in a number of publications1,5–8 SES

supports development, pruning, and generation of a family

of DEVS simulation models.

One pillar of this research is to propose an extension of

SES in order to integrate the concepts of abstraction hierar-

chies and time granularity into DEVS. To accomplish this

task, we detail the set of actions that have to be performed

based on the previous work9: (i) formally define abstrac-

tion hierarchies and time granularity; (ii) add new abstrac-

tion hierarchy and time granularity aspects to SES; and

(iii) implement abstraction hierarchies and time granularity

into DEVS M&S based on the newly introduced SES

aspects. When dealing with M&S of complex systems, the

first step concerns the definition of models. The develop-

ment of models depends on the knowledge of the designer,

the domain to which it belongs, and the perspective for

which the modeling phase is accomplished. This perspec-

tive is actually a mechanism that allows the designer to

determine the required relevant information.

The concept of abstraction hierarchies makes it possible

to consider information that is relevant by considering

abstractions as a means of selectively hiding elements that

do not reveal what is essential to objectives.10 It can be

noted that the amount of information decreases as the level

increases; a model described at a low level of abstraction

contains more information than a model at a higher a level

of abstraction. ‘‘Determining the correct abstraction level

refers to selecting the quantum of information that must be

included in the model to help address the modeling

goals.’’10 Therefore, properly defining the abstraction

level is an important step in modeling and is often done

very early in the modeling process. A model that contains

different levels of abstraction is called a ‘‘hierarchical

model.’’11 A model described according to several abstrac-

tion levels is designed according to an ‘‘abstraction hierar-

chy’’ scheme. This stratification is intended for gradual

inclusion of details as required by more-incisive objectives

and system design requirements. Thus, this hierarchy

allows for a given level of abstraction to focus on key

system-related data, and to relegate irrelevant information

to other levels of abstraction.

The concept of time granularity is as important as the

abstraction hierarchy in model construction. In many

cases, the systems we are trying to model and simulate

contain elements that are not defined on the same time

base. In order to take into account the disparity between

the elements of a system, we propose the definition of a

temporal hierarchy. This hierarchy provides the opportu-

nity to represent the level of temporal details (more or less

fine). This approach is defined as a contraction or expan-

sion of space–time. We obtain a series of time-scales for

change, depending on the selected temporal level, to con-

sider only the relevant information, in order to obtain effi-

cient results. Thus, an event defined at a given temporal

level (e.g., the hour) is transformed into a set of events at

a finer temporal level (e.g., the second). This approach is

justified by the fact that the model builder does not always

have the information at the same time basis.

The second step involved in M&S of complex systems

concerns the simulation part. In the case of models

described at different levels of abstraction, the simulation

part has to take into account the transfer of information

when going from one level to another. In the same way, in

the case of models described according to several levels of

time granularity, the simulation part has to take into account

the conversion of event messages exchanges when going to

a finer or coarser level of time granularity. Mechanisms

allowing the propagation of events through models

described according to several levels of abstraction or sev-

eral levels of time granularity have to be carefully defined.

The introduction of abstraction hierarchies and time

granularity into both SES and DEVS formalism will be use-

ful when trying to tackle the following problems: multi-

abstraction modeling, approximate DEVS simulations for

increased performance, approximate M&S for lower model

development time, and interoperability between models at

different levels of abstraction. We outline the three most

important components of the challenge tackled in this paper.

� SES extension challenge: SES is used to describe

how a system is decomposed into sub-systems

allowing the representation of different specializa-

tions of a system that might occur. However, inte-

grating both abstraction and time specializations

into SES is still a task that has to be accomplished.

We facilitate addressing this challenge by provid-

ing a framework to deal with both abstraction and

time hierarchy that is based on making it possible

for the user to specify different levels of abstraction

or time hierarchies and how they are communicated

between each other.
� Abstraction hierarchy challenge: Being able to deal

with several levels of abstraction when using a clas-

sical or parallel DEVS (PDEVS) modeling and an

748 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


associated simulation scheme is an important chal-

lenge for the DEVS community. This is becoming

an increasingly significant challenge as systems to

be modeled and simulated using the DEVS formal-

ism are becoming more and more complex. In this

paper we seek a way to integrate abstraction hierar-

chies into DEVS and allow a user to simulate mod-

els described at different levels of abstraction using

the DEVS or PDEVS abstract simulator.
� Time granularity challenge: The issue of time gran-

ularity occurs when there is mismatch between two

interconnected atomic models regarding how often

the information is generated and consumed. For

example, a weather simulation model may be

required to couple models driving weather informa-

tion on an hourly or daily basis. This mismatch of

time granularity makes it ineffective to directly

couple these kinds of models, which are at two dif-

ferent levels of time granularity. In this paper, we

show how to construct and manage time hierarchy

into DEVS and allow a user to simulate models

described at different levels of time granularity.

It is important to highlight that integrating the concept

of abstraction hierarchies and time granularity into DEVS

allows the management of levels of hierarchies into DEVS

without any involvement of SES. Furthermore, it is impor-

tant to point out that the proposed approach fits within both

classic and parallel DEVS formalism.

The rest of the paper is organized as follows. The fol-

lowing section presents the context of the work.

Specifically, the notions of abstraction hierarchies and

time granularity are presented. The SES as well as the

DEVS formalism and the DEVSimPy framework are also

introduced. Section 3 first provides related work and the

main contribution of the paper. Then, it deals with the

integration of abstraction hierarchies and time granularity

in the framework of both the SES and the DEVS formal-

ism. The implementation of the proposed approach is pre-

sented in Section 4. The notions of levels of abstraction

and levels of time granularity are introduced in the

DEVSimPy software framework. We also describe a real

case study dealing with behavior of a watershed, which is

used in order to validate the implementation. The SES and

the DEVSimPy M&S results are presented in detail.

Section 5 concludes and proposes future work.

2. Background
2.1. DEVS formalism and DEVSimPy framework

The DEVS formalism was introduced by Zeigler in the

seventies2 for modeling discrete-event systems in a hier-

archical and modular way. DEVS formalizes what a model

is, what it must contain, and what it does not contain

(experimentation and simulation control parameters are

not contained in the model). Moreover, DEVS is universal

and unique for discrete-event system models. Any system

that accepts events as inputs over time and generates

events as outputs over time is equivalent to a DEVS.

DEVS allows automatic simulation on multiple different

execution platforms, including those on desktops (for

development) and those on high-performance platforms

(such as multi-core processors). With DEVS, a model of a

large system can be decomposed into smaller component

models with couplings between them. DEVS formalism

defines two kinds of models: (i) atomic models that repre-

sent the basic models, providing specifications for the

dynamics of a sub-system using function transitions; (ii)

coupled models that describe how to couple several com-

ponent models (which can be atomic or coupled models)

together to form a new model. This hierarchy, inherent to

the DEVS formalism, can be called a ‘‘description hierar-

chy’’ by allowing the definition of a model using a hier-

archical decomposition. It should be pointed out that this

kind of hierarchy does not involve any abstraction level

definition since the behaviors of all implied models are

defined at the same level of abstraction. However, as a

hierarchy of description, the hierarchical decomposition in

DEVS may still be regarded a kind of abstraction: in top-

down design, modelers are able to consider couplings and

interfaces between models without considering details of

internal components.

An atomic DEVS model can be considered as an auto-

maton with a set of states and transition functions allowing

the state change when an event occurs or not. When no

events occurs, the state of the atomic model can be chan-

ged by an internal transition function noted dint. When an

external event occurs, the atomic model can intercept it

and change its state by applying an external transition

function noted dext. The lifetime of a state is determined

by a time advance function called ta. Each state change

can produce output message via an output function called

l. A simulator is associated with the DEVS formalism in

order to exercise instructions of coupled model to actually

generate its behavior. The architecture of a DEVS simula-

tion system is derived from the abstract simulator concepts

associated with the hierarchical and modular DEVS form-

alism. The PDEVS12 extends the classic DEVS essentially

by allowing bags of inputs to the external transition func-

tion. Bags can collect inputs that are built at the same date,

and process their effects on the outputs, which will result

in new bags. This formalism offers a solution to managing

simultaneous events that could not be easily managed with

classic DEVS.

DEVSimPy (https://github.com/capocchi/DEVSimPy)

(Python Simulator for DEVS models)13 is a user-friendly

interface for collaborative M&S of DEVS systems imple-

mented in the Python (http://python.org) language.

DEVSimPy is an open source project available under the

Santucci et al. 749

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


GPL V3 license and its development is supported by the

University of Corsica ‘‘Pasquale Paoli’’ Computer Science

research team. The DEVSimPy project uses the Python pro-

graming language for providing a graphical user interface

(GUI) (based on the wxPython (http://www.wxpython.org)

graphic library) for the PyDEVS and PyPDEVS (http://msdl.

cs.mcgill.ca/projects/DEVS/PythonPDEVS,14 the PDEVS

implementation of PyDEVS) application programming

interfaces (APIs). DEVSimPy has been set up to facilitate

both the coupling and the reusability of the PyDEVS clas-

sic DEVS models and the PyPDEVS Python PDEVS

models. Moreover, the DEVSimPy architecture is based

on an model-view-controller (MVC) pattern coupled with

the aspect-oriented programing concept, which renders

the user interface and the simulation kernel (PyDEVS or

PyPDEVS) independent. Users can select the desired

simulation kernel for DEVSimPy models that are compa-

tible with (a wrapper is provided for this) the Py(P)DEVS

simulators. In this way, when the simulators’ code

sources are updated, the DEVSimPy GUI part is not

affected. It should be noted that PyDEVS and PyPDEVS

are also used in the excellent multi-modeling GUI soft-

ware named ATOM3, and its excellent and promising

successor ATOMPM.15

With DEVSimPy, models can be stored in a library in

order to be reused and shared (1 in Figure 1). More specifi-

cally, a DEVSimPy model is a compressed file composed

by a Python file (behavioral specifications according to

Py(P)DEVS specifications) and a text file (graphical view

according to wxWidgets API). When a model is instan-

tiated, the corresponding compressed file is extracted and:

(i) the graphical representation is constructed from the text

file (ii) and the behavior is instantiated from the Python

file. Thus, the view and the behavior of a model are split,

and a user can change a behavior of a model (by changing

the Python file) without changing its graphical view. The

same strategic storing approach was taken in Fard and

Sarjoughian16 where the data for every atomic model is

stored in two flat files (‘‘domain’’ and ‘‘diagram’’ files). A

set of DEVSimPy models constitutes a shared library due

to the fact that all models can be loaded or updated from

an external location such as a file server (Dropbox,

GoogleDrive, GitHub, etc.), which could be also consid-

ered as a kind of ‘‘online model store’’. However, it should

be stated that this concept of model store can be signifi-

cantly extended with the concept of model repositories, as

discussed in Chapter 16 of Zeigler and Sarjoughian1 or in

Sarjoughian and Elamvazhuthi,17 where CoSMoS stores the

behavioral model (‘‘domain’’ file) with its corresponding

structural model in a database repository. Then, it generates

visual representations of the models using a set of rules.

Nevertheless, a Python file with Py(P)DEVS specifica-

tions is embedded by DEVSimPy, which transforms it into

an object with a default graphical view when it is dropped

in the interface (2 in Figure 1). The creation of dynamic

libraries composed with DEVS components is easy, since

the user is coached by dialogs and wizards during the

building process. With DEVSimPy, complex systems can

be modeled by a coupling of DEVS models (2 in Figure 1)

and the simulation is performed in an automatic way.

Moreover, DEVSimPy allows the extension (or the over-

ride) of their features in using special plug-ins managed in

a modular way.18

In order to implement the abstraction hierarchy and

time granularity concepts proposed in this paper, a new

branch has been developed from the master branch of the

Figure 1. DEVSimPy general graphical interface.

750 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


DEVSimPy GitHub repository (https://github.com/capoc-

chi/DEVSimPy/tree/Hierarchy). From the modeling point

of view, a model that embeds the abstraction hierarchy or

the time granularity encapsulates new files (since it is a

compressed file in a dynamic library) that isolate this

information from the rest of the model specifications

(behavior and view). Concerning the interoperability of

models with different time granularities, and at different

levels of abstraction, it is possible to include models

belonging to different libraries. The composition and the

level of abstraction/granularity is defined by the user dur-

ing the instantiation of the models. If the user wants to

implement a new level of detail (abstraction or time), it

will be shared with other users once it is saved in the

dynamic library.

2.2. What are abstraction hierarchies?

The purpose of abstraction hierarchies is to hide informa-

tion and manage complexity. To be useful, individuals

must be able to work independently at each level of the

hierarchy. Abstraction hierarchies are a human invention

designed to assist people in engineering very complex sys-

tems by ignoring unnecessary details. If, instead, an

abstraction hierarchy is specified, it allows the designer of

a complex system to ignore some of the implementation

details and focus only on the high-level design issues.

Engineers in all disciplines take advantage of abstraction

hierarchies to design and build complicated systems. One

of the most difficult tasks in the field of M&S of complex

systems is to choose a good level of detail. In all domains,

models are built at a precise abstraction level. The abstrac-

tion level of a model determines the amount of informa-

tion, which is contained in the model.

We have to point out that this concept of abstraction

hierarchies is quite different from the hierarchy of descrip-

tion inherent to the DEVS formalism. The notion of DEVS

coupled models involving DEVS atomic or coupled

models allows the definition of models using a hierarchy

of description. Such a notion of hierarchy is only a means

to easily define models. Each level of description is inde-

pendent (there is no relation between levels) and the corre-

sponding coupled model interface (input/output ports

configuration) is unchanged. In that case, a flattened model

can be easily generated from this hierarchy of description.

In contrast, it is not as easy to derive a flattened model

when dealing with models involved in abstraction hierar-

chies, since data transfers have to be performed.

The left-hand side of Figure 2 illustrates the concept of

the hierarchy of abstraction. It highlights how a model

Node N can be defined at several different levels of

abstraction. At level N, this model has two input ports 1

and 2. At level N+ 1, these two input ports are duplicated

into four ports 1.1, 1.2, 2.1 and 2.2. A typical example of

this concept is the transition from byte to bit in the appli-

cation field of microelectronics. Obviously the information

managed by nodes Na1, Na2 and Na3 at level N+ 1 is

more precise than the information managed by Node N

at level N.

We have to explicitly highlight the difference between

the concept of abstraction hierarchies and the concept of

hierarchy of description (found in the DEVS formalism

when dealing with coupled models). The right-hand side

of Figure 2 describes the concept of the hierarchy of

description, with each level further decomposing one or

more components at the level below it. We note that, in

contrast to the abstraction hierarchy, the interface (inputs

ports) is the same for a component at each level of its

description. The main differences between the two kinds

of hierarchies concerns the fact that, in the hierarchy of

description, the same information is expressed indepen-

dently of the level of hierarchy. In contrast, for the hierar-

chy of abstractions, going from one level of hierarchy to

another does imply an increase in the information (addi-

tion of detail), which has to be transferred (disaggregated)

from ports at level N to corresponding ports at level N+ 1

Figure 2. Hierarchy of description and abstraction for the model ‘‘Node N’’.

Santucci et al. 751

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


(the interface is modified). Conversely, the information at

the output ports of components at level N+ 1 must be

reduced (aggregated) to appear at corresponding ports at

level N. A way of looking at this is that, in the description

hierarchy, flattening the model (removing its hierarchical

structure)2 will not change its behavior – showing that all

information is ultimately in the atomic models and their

interactions. In contrast, flattening is not appropriate for

abstraction hierarchies since different information (in

abstracted form) resides at each level.

2.3. What is time granularity?

Another kind of hierarchy concerns the temporal aspect. A

temporal position can be described at various levels of

granularity of time depending on the required accuracy or

the available system knowledge. This not only means that

we can use different units of time when performing M&S

to represent and manipulate quantities of time in a given

model, but it involves moving from one level to a finer/

coarser level of time granularity. For example, a modeler

can describe a system considering days as the unit of time,

but might need for some specific parts of the model to

switch to a finer time granularity, such as seconds, and for

some other parts to switch to a coarser level, such as

weeks. Such a capability to provide temporal representa-

tions on different ‘‘levels grains’’ is a major requirement

for many simulation applications. We can mention a set of

temporal granularity approaches proposed in the literature:

the set theory developed by Bettini et al.19 and the logical

approach systematically studied by Montanari et al.20,21

for quantitative time, Euzenat22 for qualitative time granu-

larity. To represent time in several levels of detail, a tem-

poral granular representation is proposed in Euzenat.

Euzenat22 Such a representation manages temporal entities

using different hierarchically organized spaces (called

‘‘granularities’’). The management of such entities requires

the definition of conversion operators between two granu-

larity levels in order to use the same temporal entity under

different granularities.

Figure 3 gives an example of such granularities. The

‘‘Week’’ granularity is a coarser level relative to the

‘‘Day’’ granularity since ‘‘Day’’ groups into ‘‘Week’’

while ‘‘Week’’ partitions into ‘‘Day’’. This means that

two conversion operators are required in order to manage

such granularity: the ‘‘Week’’ granularity can be generated

by applying a group conversion to the granularity ‘‘Day’’,

while the ‘‘Day’’ granularity can be generated by applying

a partition conversion operator to the granularity ‘‘Week’’.

In this paper we use the concept of time granularity23 in

order to model time information with respect to different

temporal domains. This means that one can use different

time units, e.g., days and weeks, to represent time quanti-

ties with different temporal domains of a layered temporal

model and of switching from one domain to a coarser/finer

one. For example, in order to specify the temporal evolu-

tion of a dam, the hydrologic experts usually use days:

‘‘During rainy weeks, the level of the dam increases by 1

meter a day’’. The description of the control device’s beha-

vior may use microseconds: ‘‘When an alarm comes from

the level sensors, send an acknowledgment signal in 50

microseconds’’. Systems of such a type have different time

granularities, and it is unnatural and sometimes impossible

to obtain a modeling scheme of these systems by using a

unique time granularity in order to describe the behavior of

all the components. Obviously, there are situations in

which the event should not be aggregated even though the

time granularity is different. For example, considering the

rise and fall of the sun in each day, there would be two

events whatever the granularity level (hour, second). In

this case, it is an event-to-event mapping and time granu-

larity is not required.

2.4. The SES ontology framework

SES24,25 is a formal ontology framework, axiomatically

defined, to represent the elements of a system (or world)

and their relationships in a hierarchical manner, making a

family of hierarchical DEVS models.

Figure 4 provides a quick overview of the elements and

relationships involved in a SES. Entities represent things

that have existence in a certain domain. They can have

variables, which can be assigned a value within given

range and types. An aspect expresses a way of decompos-

ing an object into more-detailed parts and is a labeled

decomposition relation between the parent and the chil-

dren. Multi-aspects are aspects for which the components

are all of the one kind. Specializations represent

Figure 3. Day-to-week and week-to-day time granularity example.

752 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


categorizes or families of specific forms that a thing can

assume. It is a labeled relation that expresses alternative

choices that a system entity can take on.

The concept of SES is illustrated with an example

where we consider the way a book is constructed from

physical pieces (frontcover, backcover and pages in

Figure 5) and content (preface and mainbody in Figure 5).

An aspect denotes the relationship between the object and

the parts into which it has been broken. Thus, we can label

the aspect representing the physical construction (respec-

tively content construction) of a book, physicalDec

(respectively contentDec). Figure 5 depicts the two items,

physicalDec and contentDec, as aspects of the entity book.

In terms of natural language, we can write: From the
physical perspective, a book is made of a
front cover, pages and a back cover ; from
the content perspective, a book is made of a
preface and a main body. In addition, it is impor-
tant to note that an aspect is used when you want to
represent sub-things of a thing – where ‘‘and’’ denotes

the necessity that all of the sub-things must appear
together to comprise the thing.

A specialization denotes the relationship between a gen-

eral object and its variants belonging to a given category.

In Figure 5 the colorSpec (respectively materialSpec) spe-

cialization denotes the colors (respectively materials) that

a back cover can take on. In the restricted natural language

we can write: A back cover can be red or black in
color; a back cover can be cardboard or paper
in material. It is important to note that a
Specialization is used when you want to represent an
‘‘or’’ connective among sub-string of a thing – where
the ‘‘or’’ denotes the fact that a choice of one of the var-
iants can replace the original.

Concerning multi-aspects, we will consider the core of

the book to consist of a collection of pages. In natural lan-

guage, this can be expressed as: From the physical per-

spective, pages are made up of more than one page. The

multi-aspect, physicalMultiAsp, captures the relationship

between the entity, namely, pages, and its constituents,

which are all instances of the same entity, namely, page. It

is important to note that a Multi-Aspect is used for the

same objective as an aspect except that the components

are all from the same class.

A SES specifies a family of hierarchical, modular simula-

tion models, each of which corresponds to a complete pruning

of the SES. Pruning of the SES selects a particular member

of the family of models to be synthesized. The mapping from

SES to DEVS formalism is depicted in Figure 6, and the

transformation rules are summarized in Table 1.

A SES entity can be an atomic or coupled DEVS model.

If an entity of an aspect itself has an aspect, this leads to

the transformation of the corresponding component into a

coupled model specified by the second aspect (due to

Figure 5. System entity structure (SES) representation of a book.

Figure 4. Overview of system entity structure (SES) items and
relationships.

Santucci et al. 753

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


closure under coupling3 of DEVS). Aspect represents the

decomposition rules and the coupling between correspond-

ing to the DEVS models children. Concerning the

multiAspect, the mapping is similar to that for an aspect

except that all models correspond to the entities generated

by the multiAspect’s generating entity. Specialization pro-

vides a family of alternatives for a DEVS model corre-

sponding to the parent entity. If one entity has more than

one aspect, their offer alternative decomposition that can

be employed to construct coupled DEVS model corre-

sponding to the parent entity. Thus, a DEVS coupled

model is made by pruning a SES, choosing one aspect and

one specialization for each entity.

3. Abstraction and time hierarchies Into
SES and DEVS

In this paper we show how to extend SES with both

abstraction and time hierarchies; we also define how to

simulate DEVS models involving several levels of abstrac-

tion as well as several levels of time granularities. Even if

very little work deals with SES extension towards abstrac-

tion or time hierarchies, we can find in the literature a set

of work belonging to the two last areas of research: how

to manage abstraction hierarchies in the DEVS formalism,

and how to deal with time granularities using DEVS. The

present section provides an overview, and we propose a

comparison of our approach with existing work.

3.1. Related work

The M&S of complex systems with multiple levels of

abstraction was introduced several years ago.3,11 Gradually

over the years, and as indicated in Tekinay et al.,26

research activities have been carried out to study and prove

the importance of developing and maintaining multi-level

models for complex systems. Concerning the DEVS form-

alism, the ML-DEVS (multi-level discrete-event system

specification) has been introduced as a variant of the

DEVS formalism27 in order to deal with variable

(dynamic) structure models. Initially envisaged for biolo-

gical systems, the ML-DEVS formalism is based on

macro- and micro- DEVS models used in order to extend

the atomic and coupled original DEVS models. The main

difference between the scheme proposed by ML-DEVS

and DEVS is that macro models (coupled model for

DEVS) have a state, but also and above all, a behavior and

special functions (upward/downward) that fit the behavior

of the macro level with the behavior at the micro level.

Furthermore, the abstract simulator of ML-DEVS is close

to a simplified version of the PDEVS simulator, and it has

been modified from the original abstract DEVS simulator.

In terms of implementation, ML-DEVS has been proposed

in the general and open framework JAMES II28 and it is

often used for agent modeling. In Mittal,29 the author pre-

sents the origin of the ML-DEVS formalism and also

details the evolution of DEVS formalism. The author

demonstrates that ‘‘Micro-DEVS is unsuitable for

Table 1. Mapping system entity structure (SES) elements to discrete event system specification (DEVS) models.

SES element DEVS model
Entity Atomic or coupled DEVS model

Aspect Decomposition of a coupled model into DEVS models corresponding to the aspect’s children. Specifies the
connexion of input and output ports for information flow among the atomic/coupled models corresponding
to the aspect’s children

multiAspect Decomposition of a coupled model into corresponding DEVS models, each of which is derived from the
aspect’s single children entity

Specialization A family of alternative ‘‘plug-ins’’ for a DEVS model corresponding to the parent entity
Variables Variables, including state variables and parameters, of the DEVS model to the entity

Figure 6. System entity structure (SES) to discrete event system specification (DEVS) models transformation (from Zeigler and
Hammonds24).

754 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


modeling complex adaptive system (CAS)’’ due to the fact

that an agent can be ‘‘proactive and adaptive with learning

behavior’’. However, it proposes to augment the ML-

DEVS formalism with detailed propositions. The multi-

perspective DEVS modeling proposed in Seck and

Honig30 gives a solution for modeling complex systems

according to several levels of abstraction using the specifi-

cation of two DEVS models, called ‘‘aspect’’ and

‘‘bridge’’ models, in order to bring a solution to the prob-

lem of the management of alternative system perspectives

as well as the identification of the links between them.

Another abstraction-based modeling approach is multi-

resolution modeling (MRM). MRM is a modeling technol-

ogy for complex systems that considers them as hierarchi-

cal models having different resolutions at different

abstraction levels.31 As already mentioned in Moon and

Hong32 for the M&S domain, ‘‘the level of abstraction of

a model determines the amount of information contained in

the model’’. The resolution is defined in Moon and Hong32

as ‘‘the degree of detail and precision in describing real-

world aspects in a model’’. However, according to Davis

and Bigelow,31 abstraction and resolution can be inter-

changeable. MRM is an important technique used in soft-

ware development research for modularity and reuse, and it

is used also in the discrete-event M&S field. Again con-

cerning DEVS formalism, Baohong and Kedi33 propose to

use the dynamic structure DEVS (DSDEVS)34 formalism

in order to manage the resolution between levels.

Concerning time granularities in DEVS, we can men-

tion three approaches.23,30,35 In Guo et al.23 the time granu-

larity is performed in the framework of simulation service

composition using the DEVS formalism by introducing a

time granularity handling with a component that acts as a

mediator between two services. In Seck and Honig,30 the

authors deal with abstraction hierarchies. However, they

mention time hierarchies by saying that further research

will need to define some extension of the formalism that

allows for the mapping of different time bases. In Aı̈ello

et al.,35 only a DEVS modeling scheme concerning both

abstraction and time hierarchies is proposed. The simula-

tion aspects have not been detailed and implemented. We

can also point out that in the DEVS CD++ (http://source

forge.net/projects/cdpptoolkit/) software environment,

some time conversion functions (methods) offered by the

C++ language are available.36 These methods allow the

handling of simulated time according to the format used in

CD++ when dealing with different units (hours, minutes,

seconds and microseconds). However, these methods are

just used in order to convert the time into a time unit

before any simulation. No time granularity management is

involved in DEVS CD++ .

As already pointed out, in little previous work are the

abstraction and time hierarchies associated with the SES

formalism and treated as in the proposed approach:

isolated as a concept on its own that can be formalized,

integrated into the ontology of M&S using SES, and oper-

ationalized by leveraging the operations of pruning and

transformation to DEVS. In Seck37 the author proposed to

extend the SES formalism in order to deal with multi-

perspective concepts (which can be viewed as abstraction

hierarchies). The approach depends on the formalization

of the concept of ‘‘aspect’’ in order to add the possibility

to define a kind of abstraction hierarchy. However no

implementation nor any extension toward time granularity

is mentioned. The work30 also proposed an interesting

approach based on the introduction of the ‘‘aspect’’ and

‘‘bridges’’ notions. The ‘‘aspect’’ notion can be under-

stood as the possibility to extend DEVS (and as we pro-

pose SES) with the possibility to add a new hierarchy to

DEVS (and SES for us). The ‘‘bridges’’ notion allows the

specification of the transfer functions between levels.

However no implementation is proposed.

We have to point out that there are, a priori, no links

between time granularity and abstraction hierarchies. One

can define models of a system that will involve time gran-

ularity and no abstraction hierarchy, and in a similar way

a user may have to define a modeling scheme involving

several levels of abstraction and only one time granularity.

However, in both cases the objectives of abstraction hier-

archies and time granularity are the same.

� Multi-level modeling (abstraction or granularity)

for increased accuracy: In order to increase the

accuracy of the modeling scheme, it is necessary to

define models at lower levels of abstraction and

time granularity.
� Approximate simulations for increased perfor-

mance: Defining models of a system at different

levels of abstraction or granularity will allow the

performance of simulations with a lot of details

(high levels of abstraction of granularity), which

will require a lot of time-consuming or lower detail

(low levels of abstraction or granularity), which

will permit increases in the performance of the

simulations in terms of CPU time (but of course

with less accuracy).
� Approximate modeling scheme (at high levels of

abstraction or granularity) for lower model develop-

ment time: The design of models at high levels of

abstraction or granularity allows the user to develop

models faster than at lower levels.
� Interoperability between models at different levels

of granularities or different levels of abstraction for

reusability: If a user is using models at different lev-

els of abstraction or granularity, he will be able to

perform the simulations of interconnections of such

models using the proposed approach.

Santucci et al. 755

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


3.2. Contributions

The paper concerns the extension of SES in order to deal

with both abstraction and time hierarchies. The SES sup-

ports development, pruning, and generation of a family of

simulation models. By introducing the possibility to define

models at different levels of abstraction and different lev-

els of time granularity (and associated transfer functions

between levels), SES will support hierarchical composition

in which families of models are generated and tested via

pruning.

The approach presented in this paper depends on the

definition of two atomic models (upward atomic model

(UAM) and downward atomic model (DAM)), which are

automatically inserted into a coupled model involving sev-

eral levels of abstraction when the user has to perform the

simulation at different levels of abstraction; no modifica-

tion of the abstract DEVS simulator is required, and the

functions allowing transition from one level of abstraction

to another one are embedded into the DAM and UAM

(these functions can be specified in the UAM and DAM

code or in the SES corresponding to the coupled model to

be simulated). The idea consisting of adding a new atomic

model that allows the extension of the DEVS formalism is

not new in the field of DEVS M&S.34,38 Barros34 intro-

duces a new specific atomic model (named ‘‘network exec-

utive’’) that encodes in a state the information about the

structure of a dynamic coupled model (named ‘‘dynamic

structure system network’’). This concept has been pro-

posed for the M&S of dynamic DEVS models where the

structure of such models evolves over the simulation pro-

cess. The DEVS coupling scheme of a coupled model

depends on the selected state of the network executive

atomic DEVS model embedded in the coupled model.

Concerning the time granularity, the abovementioned

approaches have brought a lot to this area of research

(combining time granularity with DEVS). Aı̈ello et al.35

have done explorative work concerning time granularity,

and proposed a formal approach for DEVS modeling of

time hierarchies. However, they did not propose any solu-

tion for simulations of such DEVS models. Based on the

specification of two new kinds of models (aspects and

bridges), Seck and Honig30 suggested that time granulari-

ties can be managed as a future extension of the proposed

work.

We address the SES extension challenge by proposing

two new typologies of the specialization notion. A SES

represents the components of a system and their decompo-

sitions, taxonomies and couplings. The components are

called ‘‘entities’’ and an entity may have several speciali-

zations, each representing a taxonomy of the possible var-

iant of an entity. In addition, we have also defined how

these two new taxonomies will have transfer functions

constraints attached to them. Transfer function constraints

allow the specification of the way information is

transferred upward and downward between an entity and

its variants.

We address the abstraction hierarchy challenge by pro-

posing a generic approach in order to deal with abstraction

hierarchies into DEVS. The proposed approach depends

on the definition of two atomic models (DAM and UAM)

that control the transfer of information downward and

upward between levels of abstraction, which allows the

simulation of a coupled model involving several levels of

abstraction using an abstract DEVS simulator (Classical

DEVS or PDEVS). We show in Section 3.4 how the DAM

and UAM are automatically inserted in the coupled model

that is going to be simulated, and how they allow the per-

formance of the transfer functions that have been specified

by the user in the framework of the SES (or directly using

the DEVS formalism).

We address the time hierarchy challenge by proposing

the same kind of approach in order to deal with the time

granularity hierarchy. Once again, time information

between levels of granularity will be performed using the

two atomic models DAM and UAM. The user has to spe-

cify (by using SES transfer constraints or by writing the

corresponding dext function in DEVS) the way time infor-

mation has to be considered when simulating a coupled

model involving atomic models at different levels of gran-

ularity. We show in Section 3.4. how the DAM and UAM

are used in this case of time granularity.

We have to point out that, in order to deal with both

abstraction hierarchie and time hierarchie granularity,

there is no real need for SES; it is possible to do the same

without SES since the concept of abstraction hierarchie

and time granularitie into coupled DEVS models. For

example, in an implementation-centered approach (with the

DEVSimPy framework, for example), a user will be able to

define models at different levels of abstraction of time gran-

ularities and still perform the simulation of such models

without using SES. The proposed approach to manipulate

DEVS models at different levels of hierarchy depends on the

definition and automatic generation of two types of DEVS

atomic models that will allow the transfer of information (up

and down) between levels. The abstract simulator is not

modified, so that the presented approach fits with both the

DEVS or its parallel variant PDEVS algorithm.

3.3. Modeling aspects

We introduce in this part the basic concepts for M&S of

complex systems involving several levels of abstraction

and several levels of time granularity in the framework of

the SES and DEVS formalism. The three main features

that have to be added to the DEVS formalism to reach

this goal, are the following: (i) definition of different lev-

els of abstraction – allowing the complexity of a system to

be taken into account in a gradual way; (ii) definition of

different levels of time granularity allowing modeling

756 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


information of the considered system at different timebase

to be taken into account; (iii) definition of a generic simu-

lation approach allowing the processing of the simulation

of systems, whatever the involved levels of abstraction or

levels of time granularity.

When defining a model, a level of abstraction should be

indicated. Dealing with M&S at different levels of abstrac-

tion in the DEVS formalism corresponds to the definition

of coupled models at level of abstraction N that are com-

posed by atomic models defined at level of abstraction N,

and coupled models that can be defined at level of abstrac-

tion N+ 1. When a coupled model at level N has a com-

ponent that is a coupled model described at level N+ 1,

two kinds of functions must be added: (i) downward func-

tions that allow the description of how the events (data) are

transferred from level N to level N+ 1 (disaggregation);

(ii) upward functions that allow the description of how the

events (data) are transferred from level N+ 1 to level N

(aggregation).

The simulation approach that we have defined is simi-

lar to the one proposed in the DEVS abstract simulator, as

introduced by Zeigler.3 The only difference consists in

executing the downward/upward functions every time a

data transfer between levels of abstraction has been

defined in the modeling part by the user.

When defining a model, a level of time granularity

should be indicated. Dealing with M&S at different levels

of time granularity in the DEVS formalism corresponds to

the definition of coupled models at level of granularity N

that are composed by atomic models defined at level of

time granularity N, and atomic models that can be defined

at level of time granularity N+ 1. When a coupled model

at level N has a component that is an atomic model

described at level N+ 1, two kinds of functions must be

added: (i) finer functions that allow the description of how

events have to be expanded when going from level N to

level N+ 1; (ii) coarser functions that allow the descrip-

tion of how events have to be aggregated when going from

level N+ 1 to level N. As with the abstraction hierarchy,

the simulation approach that we have defined is the similar

to the one proposed in the DEVS abstract simulator with

the difference consisting in executing the finer/coarser

functions every time a time granularity conversion

between levels of time granularity has been defined in the

modeling part by the user.

Concerning the SES, two new types of specialization

are proposed:

� The first one (notated Abstraction in Figure 7) has

been defined in order to take into account abstrac-

tion hierarchy specifications (downward and

upward functions) of the parent entity.
� The second one (notated Time in Figure 7) has been

defined in order to take into account time granular-

ity specifications (finer and coarser functions) of

the parent entity.

Two unique features of the SES are decomposition and

coupling. Decomposition describes how to decompose or

breakdown an entity into entities. These entities can later

represent components in a model constructed for the origi-

nal entity. Coupling describes how information can flow

among the components in the constructed model.

Couplings appear in the outline of the SES; this display of

couplings may be easier to scan through than the original

natural language text. In order to specify the way transfer

information has to be managed during the simulation, we

have extended the natural language of SES using the fol-

lowing sentences.

� \ variables. are mapped downward/upward as

\ other variables. with \ a function. for spe-

cifying the transfer of information between vari-

ables belonging to different levels of abstraction.
� Events on \ variables. are more finely/coar-

sely expanded for specifying the modification of

temporal granularities.

In the next section we introduce the concepts to be used

in order to realize the simulation of models that require

abstraction hierarchies and time granularity.

Figure 7. Integration of abstraction hierarchies and time granularity specifications into system entity structure (SES).

Santucci et al. 757

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


3.4. Simulation aspects

The simulation approach that we have defined depends on

the fact that the DEVS abstract simulator as introduced by

Zeigler3 has to be used without any modification. The goal

is to be able to simulate DEVS models involving abstrac-

tion hierarchies using the classical or parallel simulator.

We present below a way to perform the downward/upward

functions every time a data transfer between levels of

abstraction has been defined in the modeling part without

any modification of the abstract simulator.

As with abstraction hierarchies, the simulation of

DEVS models involving time hierarchies will be per-

formed using the classical or parallel simulator. The goal

is find a way to perform the finer/coarser functions every

time a time granularity conversion between levels of time

granularity has been defined in the modeling part without

any modification of the abstract simulator.

In order to fulfill the above requirement, we propose to

add two atomic models that will embed the transfer of

information between levels of abstraction. These are: (i)

the DAM, in order to transfer of information from a level

of abstraction to a lower level, and (ii) the UAM in order

to transfer information from a level of abstraction to a

higher level (Figure 8). The atomic models used in this

way extend the usual notion of DEVS transfer functions,

which map between outputs and inputs in a memoryless

manner. In contrast, the atomic models provide fully

dynamic capabilities needed for time hierarchy mappings.

Moreover, the introduction of the new facility enables: (i)

explicit separation between the behavior of the models

and the transfer functions of information (abstraction and

granularity); (ii) the facilitation of the task of the user

when writing the specification of the transfer functions.

This approach has the benefit of conserving the DEVS

specifications, subject to the observance of the closure

under coupling property. Another benefit to using atomic

models in order to translate abstraction information

between abstraction levels is that they simplify the time

resolution between these levels. Moreover, the computa-

tional cost of the simulator is minimal since it will manage

only two additional atomic DEVS models (DAM and

UMA) rather than a new time-consuming tracking-based

algorithm to support the compatibility between the inter-

faces of abstraction levels.

Furthermore, we propose to automatically add these

two atomic models into a coupled model to be simulated.

These two kinds of atomic models will be automatically

introduced from the modeling part just before performing

the simulation of models involving several levels of

abstraction. Obviously, it would have to also be possible to

do that statically. However, in order to facilitate the task of

the user when he has to perform the simulation of DEVS

models involving abstraction and/or time hierarchies, we

propose to automatically add the UAM and DAM models

into the coupled model that has to be simulated. The user

will just have to define the upward and downward transfer

functions before simulations, and the automatic addition of

the DAM and UAM models will allow him to perform the

simulations using the classical abstract simulator of DEVS

or PDEVS formalism. This automatic generation could be

also implemented during the SES pruning process, but it is

not yet considered in this paper.

One approach to abstraction-level modeling is to add a

behavior to the coupled DEVS model.27 In contrast to this

approach, and in order to fulfill the two requirements

above, we propose to dynamically add two atomic models

into coupled models to implement the transfer of informa-

tion between levels of abstraction. These are (i) the DAM,

in order to perform transfer of information from a level of

abstraction to a lower level, and (ii) the UAM in order to

perform the transfer of information from a level of abstrac-

tion to a higher level (Figure 8). These two kinds of atomic

models will be automatically introduced from the model-

ing part just before performing the simulation of models

Figure 8. Additional downward atomic models (DAMs) and upward atomic models (UAMs) in the proposed approach.

758 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


involving several levels of abstraction. This approach has

the benefit of conserving the DEVS specifications, subject

to the observance of the closure and coupling property.

Another benefit of using atomic models in order to trans-

late abstraction information between abstraction levels is

that they simplify the time resolution between these levels.

The introduction of the two kinds of atomic model, DAM

and UAM, allows the use of the classical or parallel

abstract simulator concepts when performing simulation of

models through several levels of abstraction.

Concerning a DAM atomic model, the transfer function

is executed each time an input event is received on the

input of the DAM model using the external transition, and

output events on each one of the output ports of the DAM

are immediately generated according to the transfer func-

tion (time advance = 0). Concerning the UAM model, the

transfer function is executed each time each input of the

UAMmodel has received an event. An output event is gen-

erated on the output port of the UAM model at a time

defined using the UAM time advance function. One impor-

tant feature to point out is that the DAM (respectively

UAM) should be the first (respectively the last) in the pri-

ority list of the coupled model including DAM and UAM.

This is done automatically before the simulation process.

Obviously, this constraint will disappear using PDEVS3

instead of classical DEVS. In PDEVS, the omission of the

select function means that colliding models should transi-

tion in parallel instead of sequentially. This increases the

possibility for parallelization, since the output function and

transition functions can now happen in parallel by merging

different bags.39 Furthermore, as we can see in Figure 8,

all the events pass through DAM/UAM and there are no

conflicts with the external transition functions of all other

models.

Let us now consider time hierarchies. Modeling accord-

ing to several levels of time granularity is enabled by add-

ing into a given coupled model, whose behavior is

described according to a given timebase, an atomic model

whose behavior requires execution at a finer or coarser

timebase. In order to perform the simulation of models

described according to different levels of time granularity,

we have to define a mechanism that allows the conversion

of the current timebase into a finer (respectively coarser)

one when going downward – from a level of granularity N

to a level N+ 1 – (respectively upward – from a level of

granularity N+ 1 to a level N). The two atomic models

presented above (DAM and UAM) are used in order to

perform the time granularity conversions. The timebase

conversion function allowing conversion from a given

time granularity level to a finer one is associated with the

DAM atomic model. The timebase conversion function

allowing conversion from a given time granularity level to

a coarser one is associated with the UAM atomic model.

The modeler has to write the time granularity finer conver-

sion function that expresses how an event message

received at time t at the granularity level N is expanded

into several event messages at level N+ 1 (for example,

as soon as an event arrives at the input of the model at

level N, say at time t on the timebase Day (Figure 8), the

time granularity finer conversion function associated with

the DAM model is activated and allows the generation of

24 events planned at time t + 1
24
, t+ 2

24
, ., t+ 1 on the

timebase Hour (Figure 8)). In the same way the modeler

also has to write the time granularity coarser conversion

function that expresses how a set of events collected at

level N+ 1 is aggregated into an event at level N. For

example, as soon as 24 events are collected at the inputs

of the UAM model on the timebase Hour, the time granu-

larity coarser conversion function is activated and allows

the aggregation of the 24 events into one event at time t

on the timebase Day at level N.

4. Implementation

This section shows how it is possible to model the beha-

vior of a watershed with several abstraction levels and sev-

eral time granularity levels in the DEVSimPy framework.

This subsection deals with a case study that is intended to

illustrate and validate the concepts of abstraction and time

hierarchies presented in Section 3. The case study con-

cerns the behavior of a watershed, and will involve a SES

modeling whose pruning will allow a set of DEVS models

to be obtained according to different levels of abstraction

and temporality. The case study is described in Section

4.2, the SES modeling (respectively DEVS modeling) in

Section 4.3 (respectively 4.4). The simulation results are

given and analyzed in Section 4.5.

4.1. Abstraction and time levels in DEVSimPy

When the user wants to implement an abstraction level in a

coupled model with DEVSimPy: (i) he/she defines the level

of abstraction using the spin control (see the black box in

Figure 9); (ii) he/she specifies a behavior of two atomic mod-

els that control the downward/upward abstraction rules for a

coupled model. The code of these two atomic models can be

edited by clicking in the down (respectively up) arrow button

for the DAM (respectively UAM) model. These atomic

models will be instantiated and connected dynamically into

the coupled model at the beginning of the simulation. The

user does not need to know other functions (besides the tran-

sition function of the DEVS) for implementing abstraction-

based models. Figure 9 depicts the CM0 coupled model at

abstraction levels 0 and 1. The details of level 1 are shown in

the detached frame, which is composed by: two atomic mod-

els (AM0 and AM1), three input ports (IPort 0, 1 and 2) and

two output ports (OPort 0, 1).

When the user wants to implement a time granularity

level in a coupled model with DEVSimPy: (i) he/she

defines the level of time granularity using the spin control

Santucci et al. 759

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


(see black box in Figure 9); (ii) he/she specifies the beha-

vior of the two atomic models (DAM and UAM) that con-

trol the finer downward/coarser upward time granularity

rules for a coupled model. As for the abstraction level, the

code of these two atomic models can be edited by clicking

in the down (respectively up) arrow button for the DAM

(respectively UAM) model. As in the case of the abstrac-

tion hierarchy management, these atomic models are

instantiated and connected dynamically into the coupled

model at the beginning of the simulation.

Listing 1 gives an example of the code of a DAM

model. This code is partially generated using a template,

and the user has just to code the transition functions and

the time advance function. It allows the finer downward

rules definition for both the abstraction hierarchy and the

time granularity for a coupled model. The DAM atomic

model has one input port (such as a port of an atomic

model at level N) and when an event occurs, the external

method is triggered and the message is stored in the ’msg’

variable (line 14). The DAM model sends two messages

(since the atomic model at level N+ 1 requires two ports)

by multiplying the received message by 10 and 20 (lines

21, 22) at fixed time intervals 0:0416= 1
24
(line 34) in any

24 periods (line 27). It should be pointed out that the time

step of the DAM model at level N+ 1 must be a multiple

(or strictly, a least multiple) of the time step at level N. An

UAM model can be specified in the same way. Regarding

to the DAM of the Listing 1, an UAM model could send

message(s) by combining all of the messages received dur-

ing the period. The rule that defines the combination of the

messages could be specified in the UAM outputFunction

before sending the message(s). The UAM model goes to

the ’SENDING’ state only when it receives all messages.

4.2. Case study: Watershed behavior informal
description

An informal description of the hydrologic behavior of a

watershed involving two kinds of abstraction specialization

and one example of temporal specialization is given in this

section. This case study illustrates the use of both abstrac-

tion and time hierarchies in the context of a real case appli-

cation. The considered example concerns a watershed

belonging to a mountainous part of France (the Alps).40 It

involves both liquid (rain) and solid (snow) precipitation

over the period of a year.

Precipitation can be classified according to its nature,

solid or liquid. Depending on the time of year and the geo-

graphical area concerned, the amount of solid precipitation

will be different, moving between entirely solid (only

snow) and entirely liquid (only in the form of rain). When

precipitation falls as snow, the hydrological response of

the watershed is not the one observed in case of rain: there

is a lack of response in the short term due to the accumula-

tion of solid precipitation in the form of snow cover at the

soil surface. Then, when the conditions of melting are met

(which can occur several days to several months after the

occurrence of precipitation), this water is remobilized. It

causes a delayed reaction of the watershed.

The behavior of the watershed is obtained by studying

the rainfall data (expressed daily) and temperature data

(expressed daily and hourly). Different models defined at

Figure 9. Abstraction levels of the CM0 coupled model into DEVSimPy.

760 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


different levels of abstraction or time granularity are

defined and simulated. The simulation results of these

models are then compared with the observed steam-flow

of the watershed.

The hydrologic behavior can be specified in four differ-

ent ways.

� At the highest level of abstraction (level 0), the

behavior is the simplest one, just considering a per-

centage of the rainfall.
� At a lower level of abstraction (level 1), the beha-

vior is expressed by taking into account the altitude

parameter (using a Montain atomic model) and

three hydrogeological layers (soil layer, surface

layer and aquifer layer).
� At another lower level of abstraction (level 2) the

Montain model is detailed in order to take into

account the snow effect (at the highest level of

temporality (level 0) the snow effect is considered

on a daily basis).
� At the same level of abstraction (level 2), the

Montain model is then detailed at a lower level of

temporality (level 1) on an hourly time basis.

The next section presents the SES modeling of the pre-

viously introduced hydrological behavior of a watershed.

4.3. SES modeling

Figure 10 depicts the SES of the WS (WaterShed) model

with the use of both abstraction hierarchy and time hierar-

chy specifications. WS0 and WS1 are abstract specializa-

tions of the WS entity, and level mapping specifications

are introduced. The dashed lines with elements like

(\model 1. , \model 2. , \port 1. , \port 2. )

are added in order to hold the information of the coupling

Listing 1. Example of Python class for a DAM DEVS atomic model.

1. class DAM(DomainBehavior):
2. ### DEVS Class for DAM model
3.
4. def _ _init_ _(self):
5. ### Constructor
6. DomainBehavior._ _init_ _(self)
7. self.state = {’status’: ’IDLE’, ’sigma’:INFINITY}
8. self.msg = None
9. self.value = None
10. self.cpt = 0
11.
12. def extTransition(self):
13. ### DEVS external transition function
14. self.msg = self.peek(self.IPorts[0])
15. self.state[’sigma’] = 0 if self.state[’status’] == ’IDLE’ else INFINITY
16. self.state[’status’] = ’SENDING’ if self.state[’status’] == ’IDLE’ else ’IDLE’
17.
18. def outputFnc(self):
19. ### DEVS output function
20. self.value = self.msg.value[0]
21. self.poke(self.OPorts[0], Message([self.value*10,0,0], self.timeNext))
22. self.poke(self.OPorts[1], Message([self.value*20,0,0], self.timeNext))
23.
24. def intTransition(self):
25. ### DEVS internal transition function
26. self.cpt +=1
27. if self.cpt == 23:
28. self.state[’status’] = ’IDLE’
29. self.state[’sigma’] = INFINITY
30. self.msg = None
31. self.cpt = 0
32. else:
33. self.state[’status’] = ’SENDING’
34. self.state[’sigma’] = 0.0416
35.
36. def timeAdvance(self):
37. ### DEVS Time Advance function
38. return self.state[’sigma’]

Santucci et al. 761

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


between entities. In this way, the level mapping abstract

specifications could be invoked with the downward and

upward functions as:

1. rain is mapped downward as in flow1, in flow2,

in flow3 with ‘‘T1’’, where rain is the input port of

‘‘WS’’, in flow1, in flow2, in flow3 are the input

ports of WS1 and ‘‘T1’’ is the downward function.

2. out flow1, out flow2, out flow3 are mapped

upward as flow with ‘‘T2’’, where flow is an output

port of ‘‘WS’’, out flow1, out flow2, out flow3 are

output ports of WS1 and ‘‘T2’’ is the upward

function.

In the same way, Montain0 and Montain1 are abstract

specializations of the Montain entity. The upward function

is described as follows: out flow1, out flow2, out flow3

are mapped upward as flow with ‘‘T3’’, where flow is the

output port of Montain, and out flow1, out flow2 and

out flow3 are the output ports of Montain1. We have to

highlight the fact that the transfer of information between:

(i) the input ports temp (respectively in flow1, in flow2

and in flow3) of Montain and the input port in0 (respec-

tively in1, in2, in3) of the Montain1 entity are mapped with

the identity function (they are not indicated in Figure 10).

Figure 10 also introduces a temporal specialization

associated with the entity called Basin. Basin0 and Basin1,

which are temporal specializations of the Basin entity. The

downward and upward temporal transfer functions are

described as follows: (i) events on temp and flow of Basin

are more finely expanded with ‘‘C1’’ where temp and flow

are the inputs ports of the Basin model, and ‘‘C1’’ is the

conversion function of information between Basin0 (level

0 of temporality) and Basin1 (level 1 of temporality); (ii)

events of ‘‘out_flow’’ are coarsely aggregated with ‘‘C2’’

where ‘‘out_flow’’ is the output port of the entity Basin

and ‘‘C2’’ is the conversion function between entity

Basin1 (level 1 of temporality) and entity Basin0 (level 0

of temporality).

Before detailing the DEVSimPy implementation, we

provide a short overview of the approach to developing the

family of models for the WS. Using the pruning operation

involved in the SES modeling scheme, a set of intersecting

SESs representing a suite of related families of models is

derived. In such a suite, there are SESs that are compo-

nents of other SESs. A SES is a component of another SES

in the sense that the models that the first SES generates are

components of models generated by the second SES.8 Four

families can be derived.

� ‘‘WS0’’ family based on the SimpleLayer model.
� ‘‘WS1 with Montain0’’ family that involves the

EWS SES and the SimpleMontain model.

Figure 10. System entity structure (SES) of the Watershed behavior.

762 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


� ‘‘WS1 with Montain1 and Basin0’’ family that

depends on the EWS SES, the Montain1 SES

involving the SimpleBasin model.
� ‘‘WS1 with Montain1 and Basin1’’ family that

depends on the EWS SES, the Montain1 SES

involving the SnowBasin model.

The user has to define the five transfer functions involved

in Figure 10.

1. T1: which allows the downward transfer of infor-

mation between the input port rain at the level 0

abstraction of the WS component and the input

ports in flow1, in flow2 and in flow3 at the level 1

abstraction of the WS component. This function is

defined as follows: in flow1 (respectively in flow2

and in flow3) = 60% (respectively 30% and 10%)

of rain.

2. T2: which allows the upward transfer of informa-

tion between the output ports out flow1, out flow2

and out flow3 at the level 1 abstraction of the WS

component and the output port flow at level 0

abstraction of the WS component. This function

is defined as follows: flow= out flow1 + out

flow2 + out flow3.

3. T3: which allows the upward transfer of informa-

tion between the output ports out flow1 and

out flow2 at level 1 abstraction of the Montain

component and the output port flow at level 0

abstraction of the Montain component. This func-

tion is defined as follows: flow= out flow1 + out

flow2.

4. C1: which allows the downward transfer of infor-

mation between the input ports temp and flow at

level 0 temporality of the component Basin and the

input ports in0 and in1 at level 1 temporality of the

component Basin. This function is defined as fol-

lows: an event at time t (daily basis) is expanded

into 24 events at time t+ 1
24
, t+ 2

24
, t+ 3

24
, .,

t + 1 (hourly basis).

5. C2: which allows the upward transfer of informa-

tion between the output port out0 at level 0 tem-

porality of the component Basin and the output

port out flow at level 0 temporality of the compo-

nent Basin. This function is defined as follows: it

performs the sum of the values of each event arriv-

ing on port ‘‘out0’’ between time t and time t+ 1

(hourly basis) in order to define an event at time

t+ 1 (daily basis) whose value is the previously

computed sum.

The other transfer functions are not highlighted in the

paper since they correspond to the identity function. The

next section presents the DEVS models associated with

the previously introduced SES model and modeled into

DEVSimPy framework.

4.4. DEVSimPy modeling

A description of the DEVS modeling scheme of the

watershed behavior involving three levels of abstraction

and two levels of temporality is given in this section. We

call WS a coupled model describing the behavior of a

watershed at a level 0 abstraction. It has two inputs corre-

sponding respectively to the daily temperature (temp) and

the rain precipitation (rain), and an output (flow) corre-

sponding to a quantity of water coming from the

watershed.

Figure 11 details the WS coupled model describing the

behavior of a watershed at level 0 and is composed by one

atomic model (SimpleLayer) at level 0. The behavior of

the SimpleLayer is as follows: 20% of the water that

arrives as input is generated on the output. The description

model of watershed behavior at the abstraction level 1 is

given in Figure 12. It is a coupled model integrating two

other coupled models: the Montain model and the EWS

(Elementary WaterShed) model. The behavior of the EWS

model is described using a classical DEVS coupled model

as shown in Figure 12 while to be able to define the beha-

vior of the Montain model two different levels of abstrac-

tion have been defined.

A EWS model (Figure 12) receives one input Alt corre-

sponding to the flow coming from the Montain model. An

EWS model allows computation on its outputs – the flows

associated with the three layers (flow1, flow2, flow3) that

characterize it. The behavior of the atomic models

involved in the EWS coupled model are not described in

this paper since it is a simple DEVS coupled model (with-

out any abstraction or time hierarchies).41 As mentioned

above in the WS coupled model at level 1, the EWS model

Figure 11. Watershed at abstraction level 0 in DEVSimPy.

Santucci et al. 763

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


is interconnected with the Montain model (Figure 12): the

precipitation input of the EWS model (called Alt) is con-

nected to the output of the Montain model out0.

In order to specify the behavior of the Montain model

we have again used the SES abstraction specialization as

described in Figure 10. The Montain entity of the SES is

described at level 0 abstraction by the coupled model

Montain0 and at level 1 abstraction by the coupled model

Montain1. Figure 12 details the coupled model describing

the behavior of the Montain model at level 0. It has one

input temp corresponding to the daily temperature, and

three other inputs in flow1, in flow2 and in flow3 corre-

sponding to the daily precipitations at different points of

the watershed, while it has one output (flow) correspond-

ing to a quantity of water coming from Montain model.

The Montain0 coupled model is composed by one atomic

model (SimpleMontain) at level 0 (Figure 12). The input

port in flow1 (respectively in flow2, in flow3, temp) of

Montain0 is connected to the input in0 (respectively in1,

in2 and in3) of the SimpleMontain atomic model. The

behavior of the SimpleMontain is as follows: the output of

the SimpleMontain model (out0) is computed by perform-

ing 10% of the sum of the three inputs in flow1, in flow2

and in flow3.

The Montain1 is a coupled model for estimating rainfall

depending on the altitude (and the effect of snow). This

model requires the definition of two kinds of atomic mod-

els (Figure 13):

� Estimator that calculates the estimated rainfall at

each point of the mesh.
� Area that calculates the rainfall on the considered

area linked with the Area atomic model. In the con-

sidered example we have to deal with two different

areas (Area 1, Area 2) and only the Area 1 has to

deal with the snow effect.

The behavior of the Estimator is that, every time events

(vi, t) are received in the three inputs (in flow1, in flow2,

in flow3, it performs the sum S of the three values of the

events vi and sends an event (S � 2
3
, t) from output out0

(connected to Area1) and an event (S
3
, t) from output out1

(connected to Area2).

The behavior of the Area model is as follows: the

Area atomic model allows the modeling of the behavior

of parts of the watershed according to the altitude. In the

considered example, Area1 corresponds to the high part

of the watershed and is connected with the Montain

model while Area2 corresponds to the lower part of the

watershed and is not connected with a Montain model.

When the altitude is high (Area1 in our case) only a

small (respectively great) part of the received flows is

going to be found in the river flow, reflecting the storage

of the water in the form of snow (respectively the snow

melting effect). The behavior is as follows: when an

input event (v,t) is received at the in0 input of an Area

atomic model, an output event (v � 3
4
, t) is sent to the out-

put out0 of the Area atomic model. As explained above,

the out0 output port of the Area1 model is connected to

the in0 input port of the Basin model in order to take into

account the snow effect.

Snow is another important element that can substantially

alter the water balance from one month to another, espe-

cially in mountainous areas. For that it is necessary to:

� compute the proportion of rain transformed into

snow based on the data of a reference thermometer

station;
� manage the effect of the snow, which means storing

the snow when the temperature is lower than 0 8C
and compute the quantity of water that will be gen-

erated from the stored snow when the temperature

is greater than 0 8C.

Figure 12. Watershed at abstraction level 1 with Montain0 in DEVSimPy.

764 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


Thus, in order to take into account the snow, from rain-

fall data (daily data) and temperatures (hourly data) we

add a new type of component named Basin, which is con-

nected with the area component corresponding to the high-

est part of the watershed.

In the example of Figure 10 we notice that the Basin

entity is temporally specialized into two different entities:

Basin0 and Basin1. Therefore, the Basin component can be

described using two possible behaviors, located on two

different time granularity levels (temporal level 0/1 is

Day/Hour). Data exchange between these two temporal

levels is provided by two transfer conversion functions C1

and C2. Considering the granularity level 0, the input data

are processed using a Day timebase unit, which is coarser

than the timebase, used at the level 1 (Hour timebase unit).

The behavior of the Basin entity is therefore less precise at

temporal level 0 than at temporal level 1 when the number

of data taken into account is greater (information per hour

instead of information per day). This implies a greater

accuracy of results at temporal level 0, but a longer period

of simulation in relation to the temporal level 1. When

performing the pruning using the SES formalism, the user

will have to choose between the two possible behaviors,

obviously knowing that obtaining highly accurate results

is done at the expense of simulation time, because it

increases (sometimes considerably).

At temporal level 0, the Basin0 model has an input

called in0 representing the observed daily temperatures

and an input called in1 representing the observed rainfall.

It also has an output called out0 representing the quantity

of water (flow) coming out from the Basin model by tak-

ing into account the effect of the snow.

Figure 14 details the coupled model describing the beha-

vior of the Basin model at level 0. It is a coupled model

involving one atomic model called SimpleBasin that has two

state variables called Stored (which is used to model the

storage of the snow) and Melting (which is used to model

the melting). The external transition can be informally speci-

fied as follows: if the input temperature is negative, then the

quantity of water of the rain input is added to the Stored

state variable, while if the input temperature is positive, the

Stored state variable is decreased from a certain value repre-

senting the melting of the snow (this value is a percentage

of melting obtained according to the value of the tempera-

ture) and the Melting state variable is set to the previous

computed quantity. The output of the SimpleBasin model

(flow) is set at the value given by the Melting state variable

(using the lambda output function) while the internal transi-

tion allows the Melting state variable to be reset to zero.

Figure 13 depicts the Basin1 coupled model. It involves

the atomic model called SnowBasin. The description is

similar to the previous description. The only difference is

that, when events are arriving on the inputs in0 and in1 of

Figure 13. Watershed at abstraction level 1 with Montain1 and Basin1 in DEVSimPy.

Figure 14. Basin coupled model at time level 0.

Santucci et al. 765

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


the SnowBasin component, the level of temporality is dif-

ferent (instead of a daily time step, it is now an hourly time

step that has to be considered). Once again, DAM and

UAM atomic models are inserted in order to perform the

conversion between the two time granularities. The DAM

is used in order to split the events arriving at the inputs at

time t into 24 events at different time units respectively

t + 0:025, t+ 0:05, t + 0:075, t + 0:1, t + 0:125, .,

t + 1. Similarly the UAM atomic model is used to aggre-

gate the 24 last events arriving from the output port out0

into one event at time t+ 1.

The next section details how the transfer of information

between levels of abstraction and levels of temporality are

performed in the case of the previously defined DEVS

models.

4.5. DEVSimPy simulation results

In this section we present the simulation results obtained

after the pruning of the SES of Figure 10. This pruning

results in four different configurations.

1. WS0, which corresponds to the level of abstraction

0 of the WS component involving the atomic model

SimpleLayer

2. WS1 with Montain0, which corresponds to the level

of abstraction 1 of WS where the component

Montain is described at level of abstraction 0

3. WS1 with Montain1 and Basin0, which corresponds

to the level of abstraction 1 of WS where the com-

ponent Montain is described at level of abstraction

1 with the component Basin described at level of

temporality 0

4. WS1 with Montain1 and Basin1, which corresponds

to the level of abstraction 1 of WS where the com-

ponent Montain is described at level of abstraction

1 with the component Basin described at level of

temporality 1

The left-hand side of Figure 11 gives the context of the

experiment: two generator atomic models (Rain and Temp)

allow the sending of the amount of rain and temperature of

each day of a year concerning the watershed under study

(situated in the French Alps). The WS coupled model cor-

responds to the models described previously in the SES of

Figure 10. According to the pruning procedure of the SES,

the WS model can be replaced by the four configurations

listed above. The DEVS simulations of the WS model have

been performed for the four previously DEVS models. The

results of the simulation are expressed from Figure 15

thanks to the To Disk atomic model. Each of these figures

presents a time series comparing simulated and observed

daily flows for the one-year period (365 days for the year

2009) when using each of the four previously mentioned

DEVS models.

The top-left-hand side of Figure 15 depicts the simula-

tion result with the WS model at the abstraction level 0.

The shapes of the two curves are broadly similar, with

some additional peaks due to the lack of details in the

behavior of the model. The simulation results depicted on

the top-right-hand side of Figure 15 are not significant,

despite the increasing of the abstraction level for WS. This

is due to the fact that more details (abstraction and granu-

larity) are required. Therefore, the bottom-left-hand side

of Figure 15 shows an improvement of the results when

another level of abstraction is introduced with the Montain

model. The amplitude of the simulated results is close to

the observed streamflow due to the introduction of the

models Area and Basin, which allows the consideration of

the effect of the temperature on a daily basis. The bottom-

right-hand side of Figure 15 points out the effect of the

temporal granularity on obtained results. Simulated peaks

are closer (days 197-201) to the observed streamflow

peaks when the snow effect on an hourly time basis is

considered.

Furthermore, in order to perform a better comparison

between the four different simulations, we propose to use

the Pearson correlation coefficient (PCC).42 Correlation is

a technique for investigating the relationship between two

quantitative, continuous variables, for example, age and

blood pressure. Pearson’s correlation coefficient is a mea-

sure of the strength of the association between the two

variables. It measures the dependence between two vari-

ables X and Y, giving a value between + 1 and 21 inclu-

sive, where 1 is total positive correlation, 0 is no

correlation, and 21 is total negative correlation. It is

widely used in the sciences as a measure of the degree of

linear dependence between two variables. We have com-

puted the PCC between the 365 values of the observed

streamflow and the 365 values of each of the four obtained

results. The PCC between observed and simulated stream-

flow quantifies the agreement between the two records. If

the estimated series were a perfect prediction of the obser-

vations, the PCC would be one. The best predictions corre-

spond to the ones that are the closest to one.

The distribution of the normalized PCC and CPU time

for each of the four presented DEVS models is shown in

Table 2. It is immediately apparent that each time a lower

abstraction level or a lower time granularity level is con-

sidered, the PCC is improved and the CPU time increases.

From this measure, the last model involving the hourly

basis simulation for the Montain model appears more com-

petitive than the three DEVS models working at the same

time granularity level. In the same way, each time a lower

level of abstraction has been used, the PCC is better. From

these results we have pointed out the efficiency of a mod-

eling scheme involving both abstraction hierarchies and

time granularity. Obviously, the PCC can be improved by

refining the DEVS model, but that was not the goal of the

proposed work.

766 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


5. Conclusion and future work

This paper deals with the M&S of systems described

according to several levels of abstraction and levels of

granularity. The notion of hierarchical levels of abstraction

and levels of time granularity have been introduced and

compared with the notion of hierarchical levels of descrip-

tion. An extension of SES has been proposed in order to

integrate both abstraction and time granularity hierarchies

in M&S. We have informally detailed how to deal with the

notion of levels of abstraction and time granularity in the

framework of the DEVS formalism. The presented

approach allows the simulation of models involving sev-

eral levels of abstraction and several levels of time granu-

larity through the association of downward and upward

functions to two new atomic models: DAM and UAM. The

partial implementation performed using the DEVSimPy

framework has been validated on a real case of catchment

basin behavior described using the extension of SES. This

research opens up many directions of research and devel-

opment. (i) Define and implement the capabilities entailed

by abstraction hierarchies and time granularity theory

including support for pruning the extended SES and

Figure 15. Simulation results at different level of abstraction and time granularity (top-left-hand side for WS0, top-right-hand side
for WS1, bottom-left-hand side for WS2, bottom-right-hand side for WS3).

Table 2. Pearson correlation coefficient (PCC) and CPU time comparison.

PCC CPU (s)

Simulated StreamFlow 0.072649636 8.345
Simulated StreamFlow (Alt0) 0.073450706 8.367
Simulated StreamFlow (Alt1) 0.302929338 9.568
Simulated StreamFlow (SnowTank1) 0.475553476 11.567

Santucci et al. 767

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


transforming pruned entity structures into DEVS models.

Theoretical support for developing abstractions and ana-

lyzing their error properties can also be integrated into the

proposed. For example, the division of space into snow

and rain regions can be justified with the uniformity condi-

tion requirements of the theory in Zeigler,2 Chapters

13,14. (ii) It is possible that the modeler needs to consider

abstraction and time hierarchies all at once. SES has to be

extended in order to merge the two kinds of hierarchy. (iii)

Emergence29: we plan to use both the abstraction and time

hierarchies in order to deal with emergence of DEVS com-

plex systems. The proposed approach fits very well in the

framework Stimergic-DEVS and DEVS-CAS.29 (iv) SES

extension in MS4Me (www.Ms4systems.com)1,43: the goal

is to show the generic nature of the approach by generating

DEVS models from the SES in the MS4Me software based

on the concepts proposed here. (v) Investigation around of

the concept of superdense time trajectories44: we plan to

investigate the notion of superdense time trajectories in the

case of the management of time granularity in DEVS

simulations. (vi) Incorporating recent advances in DEVS

and SES developments: we envision adding the state-based

(in contrast to behavior-based) hierarchy starting with the

probabilistic hierarchies based on FP-DEVS (finite prob-

abilistic DEVS) and Markov modeling (The MS4 model-

ing environment provides a suite of tools that support a

probabilistic extension of FD-DEVS45); also the SES func-

tions introduced recently by Pawletta et al.46 may be gener-

alized to apply here. (vii) So far, the implementation of the

presented approach has been done without using a

DEVSimPy plug-in. However, we have used an object-

oriented programing approach and we have isolated all of

the code in preparation for its integration into a specific

DEVSimPy plug-in.

Funding

This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

References

1. Zeigler BP and Sarjoughian HS. Guide to modeling and simu-

lation of systems of systems. London: Springer-Verlag, 2013.

2. Zeigler BP. Theory of modeling and simulation. New York:

Wiley, 1976.

3. Zeigler BP, Kim TG and Praehofer H. Theory of modeling

and simulation. 2nd ed. Orlando, FL: Academic Press, Inc.,

2000.

4. Zeigler BP and Sarjoughian HS. System entity structure

basics. In: Guide to modeling and simulation of systems of

systems, Simulation Foundations, Methods and Applications.

London: Springer, pp.27–37.

5. Kim TG, Lee C, Christensen ER, et al. System entity structur-

ing and model base management. IEEE Trans Syst Man

Cybern 1990; 20(5): 1013–1024.

6. Rozenblit JW and Zeigler BP. Representing and constructing

system specifications using the system entity structure con-

cepts. In: 25th winter simulation conference. WSC ’93, Los

Angeles, CA, 12–15 December 1993, pp.604–611. New

York, NY: ACM.

7. Zeigler BP, Seo C and Kim D. System entity structures for

suites of simulation models. Int J Model Simula Sci Comput

2013; 04(03): 1340006.

8. Zeigler BP, Seo C, Coop R, et al. Creating suites of

models with system entity structure: Global warming exam-

ple. In: Symposium on theory of modeling & simulation, San

Diego, CA, 7–10 April 2013, pp.1–8. Society for Computer

Simulation International.

9. Santucci JF, Capocchi L and Zeigler BP. SES extension to

integrate abstraction hierarchy into DEVS modeling and

simulation. In: 2015 spring simulation multiconference,

Alexandria, VA, 12–15 April 2015. Society for Computer

Simulation International. pp.782–789.

10. Benjamin P, Erraguntla M, Delen D, et al. Simulation mod-

eling at multiple levels of abstraction. In: Simulation winter

conference, Washington DC, 13–16 December 1998,

pp.391–398. IEEE Computer Society Press.

11. Fishwick PA and Lee K. Two methods for exploiting

abstraction in systems. In: Simulation and planning in high

autonomous systems, Tuscon, AZ, 1996, pp.257–264. IEEE

Computer Society Press.

12. Zeigler BP, Praehofer H and Kim TG. Theory of modeling

and simulation. 2nd ed. London: Academic Press, 2000.

13. Capocchi L, Santucci JF, Poggi B, et al. DEVSimPy: A col-

laborative Python software for modeling and simulation of

DEVS systems. In: 20th IEEE international workshops on

enabling technologies, Paris, France, 27–29 June 2011,

pp.170–175. IEEE Computer Society Press.

14. Van Tendeloo Y and Vangheluwe H. The modular architec-

ture of the Python(P)DEVS simulation kernel (WIP). In:

Symposium on theory of modeling & simulation – DEVS inte-

grative, Tampa, Florida, USA, 13–16 April 2014, pp.14:1–

14:6. San Diego, CA: Society for Computer Simulation

International.

15. Van Mierlo S, Mustafiz S, Barocca B, et al. Explicit mod-

elling of a parallel DEVS experimentation environment.

In: Symposium on theory of modeling & simulation,

Alexandria, VA, USA, 12–15 April 2015, pp.860–867.

San Diego, CA: Society for Computer Simulation

International.

16. Fard M and Sarjoughian H. Visual and persistence behavior

modeling for DEVS in CoSMoS, volume 47. 8 ed. San Diego,

CA: The Society for Modeling and Simulation International,

2015. pp.227–234.

17. Sarjoughian HS and Elamvazhuthi V. CoSMoS: A visual

environment for component-based modeling, experimental

design, and simulation. In: 2nd international conference on

simulation tools and techniques, Rome, Italy, 2–6 March

2009, pp.1–9. Brussels, Belgium: Institute for Computer

Sciences, Social-Informatics and Telecommunications

Engineering. Belgium: ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering).

18. Muzy A, Capocchi L and Santucci JF. Using activity metrics

for DEVS simulation profiling. ITM web of conferences,

768 Simulation: Transactions of the Society for Modeling and Simulation International 92(8)

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


Zuirch, Switzerland, 16–18 January 2014, Vol. 3, pp.1–9.

Les Ulis, France: EDP Sciences - Web of Conferences.

19. Bettini C, Jajodia SG and Wang SX. Time granularities in

databases, data mining and temporal reasoning. 1st ed.

Secaucus, NJ: Springer-Verlag New York, Inc., 2000.

20. Montanari A. Metric and layered temporal logic for time

granularity. PhD Thesis, University of Amsterdam,

Netherlands, 1996.

21. Franceschet M and Montanari A. Dividing and conquering

the layered land. PhD Thesis, University of Udine, Italy,

2001.

22. Euzenat J. Granularity in relational formalisms with applica-

tion to time and space representation. Comput Intell 2001;

17(4): 703–737.

23. Guo S, Hu X and Wang X. On time granularity and event

granularity in simulation service composition (WIP). In:

2012 symposium on theory of modeling and simulation –

DEVS integrative M&S symposium, Orlando, Florida, USA,

26–29 March 2012, pp.1–8. San Diego, CA: Society for

Computer Simulation International.

24. Zeigler BP and Hammonds PE. Modeling & simulation-

based data engineering. London: Academic Press, 2007.

25. Cheon S, Doohwan K and Zeigler BP. DEVS model compo-

sition by system entity structure. In: IEEE international con-

ference on information reuse and integration, Las Vegas,

Nevada, USA, 13–15 July 2008, pp.479–484. IEEE.

26. Tekinay C, Seck MD and Verbraeck A. Exploring multi-

level model dynamics: Performance and accuracy (WIP). In:

2012 symposium on theory of modeling and simulation,

Orlanda, Florida, 26–29 March 2012, pp.1–6. San Diego,

CA: Society for Computer Simulation International.

27. Steiniger A, Krüger F and Uhrmacher AM. Modeling agents

and their environment in multi-level-DEVS. In: Winter simu-

lation conference, Berlin, Germany, 9–12 December 2012,

pp.233:1–233:12. New York: IEEE.

28. Himmelspach J and Uhrmacher A. The JAMES II frame-

work for modeling and simulation. In: International work-

shop on high performance computational systems biology,

Trento, Italy, 14–16 October 2009, pp.101–102. New York:

IEEE.

29. Mittal S. Emergence in stigmergic and complex adaptive sys-

tems: A formal discrete event systems perspective. Cognit

Syst Res 2013; 21(0): 22–39.

30. Seck MD and Honig HJ. Multi-perspective modelling of

complex phenomena. Comput & Math Organiz Theory 2012;

18(1): 128–144.

31. Davis P and Bigelow J. Experiments in multi resolution mod-

eling (MRM). RAND Report MR1004, RAND Corp, 1998.

32. Moon IC and Hong JH. Theoretic interplay between abstrac-

tion, resolution, and fidelity in model information. In:

Winter simulation conference, Washinton DC, USA, 8–11

December 2013, pp.1283–1291. New York: IEEE.

33. Baohong L and Kedi H. A formal description specification

for multi-resolution modeling (MRM) based on DEVS

formalism. In: 13th international conference on AI, simula-

tion, and planning in high autonomy systems, Jeju Island,

Korea, 4–6 October 2004, pp.285–294. Berlin, Heidelberg:

Springer-Verlag.

34. Barros FJ. Modeling formalisms for dynamic structure

systems. ACM Trans Model Comput Simul 1997; 7(4):

501–515.

35. Aı̈ello A, Santucci JF, Delhom M, et al. Modélisation multi-

vue et simulation à événements discrets. L’Objet 2000; 6(4).

36. Wainer GA. Discrete-event modeling and simulation: A

practitioner’s approach. 1st ed. Boca Raton, FL: CRC Press,

Inc., 2009.

37. Seck MD and Honig HJ. Multi-perspective modelling of

complex phenomena. Comput Math Organ Theory 2012; 18:

128–144.

38. Hu X, Zeigler BP and Mittal S. Variable structure in DEVS

component-based modeling and simulation. Simulation

2005; 81(2): 91–102.

39. Tendeloo YV. Activity-aware DEVS simulation. Master’s

Thesis, University of Antwerp, 2014.

40. Coron L, Andréassian V, Perrin C, et al. On the lack of

robustness of hydrologic models regarding water balance

simulation: A diagnostic approach applied to three models

of increasing complexity on 20 mountainous catchments.

Hydrol Earth Syst Sci 2014; 18(2): 727–746.

41. Valéry A, Andréassian V and Perrin C. Regionalization of

precipitation and air temperature over high-altitude catch-

ments – Learning from outliers. Hydrol Sci J 2010; 55(6):

928–940.

42. Taylor R. Interpretation of the correlation coefficient: A

basic review. J Diagn Med Sonography 1990; 6(1): 35–39.

43. Seo C, Zeigler BP, Coop R, et al. DEVS modeling and

simulation methodology with MS4Me software tool. In:

Symposium on theory of modeling & simulation, San

Diego, CA, USA, 7–10 April 2013, pp.1–7. San Diego:

Society for Computer Simulation International.

44. Sarjoughian HS and Sundaramoorthi S. Superdense time

trajectories for DEVS simulation models. In: Symposium

on theory of modeling & simulation, Alexandria, VA, USA,

12–15 April 2015, pp.249–256. San Diego, CA: Society for

Computer Simulation International.

45. Zeigler BP, Nutaro JJ and Seo C. Combining DEVS and

model-checking: Concepts and tools for integrating simula-

tion and analysis 2016; To appear in Int. J. Process Modeling

and Simulation. I3M 2014: Special Issue on: ’’New

Advances in Simulation and Process Modelling: Integrating

New Technologies and Methodologies to Enlarge Simulation

Capabilities.

46. Pawletta T, Schmidt A, Zeigler BP, et al. Extended variabil-

ity modeling using system entity structure ontology within

MATLAB/Simulink. In: SCS international SpringSim/ANSS,

Pasadena, CA, USA, 3–6 April 2016, pp.62–69. San Diego,

CA: Society for Computer Simulation International.

Santucci et al. 769

 at CARLETON UNIV on September 20, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/



