
Applications

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2016, Vol. 92(1) 47–61

� 2015 The Author(s)

DOI: 10.1177/0037549715616683

sim.sagepub.com

Time discretization versus
state quantization in the
simulation of a one-dimensional
advection–diffusion–reaction equation

Federico Bergero, Joaquı́n Fernández, Ernesto Kofman and Margarita Portapila

Abstract
In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-
dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in
space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the
simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The perfor-
mance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization
refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS
method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude.

Keywords
advection–diffusion–reaction equation, quantization-based integration methods, numerical simulation

1. Introduction

Advection–diffusion equations provide the basis for

describing heat and mass transfer phenomena as well as

processes of continuum mechanics, where the physical

quantity of interest u(x, t) could be temperature in heat

conduction or concentration of some chemical substance.

In several applications these phenomena occur in presence

of chemical reactions, leading to the advection–diffusion–

reaction (ADR) equation, a problem frequently found in

many areas of environmental sciences as well as in

mechanical engineering. The ADR problem includes a

wide range of configurations encompassing variable velo-

city fields, variable reaction coefficients, steady and transi-

ent problems, in one, two and three dimensions.1–4

The ADR equation poses several challenges to numeri-

cal integration algorithms. First, as in most partial differ-

ential equations (PDEs), the space discretization usually

leads to large systems of equations which require an effi-

cient treatment. Also, when the diffusivity is small in com-

parison with the advection field and the reaction

coefficient (i.e. when the Péclet and Damköhler numbers

are high) the problem often develops sharp fronts that are

nearly shocks where numerical solutions are difficult to

obtain. In addition, chemical reactions take place on very

small time scales compared with the long-term effects

considered for the advection–diffusion transport. For stabi-

lity reasons, the presence of fast and slow dynamics

(called stiffness in the numerical ordinary differential

equation (ODE) literature) enforces the usage of implicit

numerical integration algorithms. These algorithms have a

high computational cost, particularly when the system

dimension is large.

In all cases, obtaining numerical solutions of PDEs

such as the ADR problem involves discretization in space

and time. In some techniques such as the method of lines

(MOL),5,6 this discretization is only performed in space,

transforming the PDE into a large set of ODEs. The result-

ing time dependent set of ODEs can then be solved with

numerical integration algorithms such as Euler’s or

Runge–Kutta’s methods,6,7 or through algebraic differen-

tial equation solvers such as DASSL8,9 among others.

Laboratorio de Sistemas Dinámicos, FCEIA - UNR, CIFASIS–CONICET,

Argentina

Corresponding author:

Federico Bergero, Laboratorio de Sistemas Dinámicos, FCEIA - UNR,

CIFASIS–CONICET, 27 de febrero 210 bis - (S2000EZP) Rosario,

Argentina.

Email: bergero@cifasis-conicet.gov.ar

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

An alternative way to solve the resulting set of ODEs is

given by the quantized state systems (QSS) methods,6,10

that replace the time discretization by state quantization.

These algorithms are characterized by performing only

local steps when and where changes occur. In conse-

quence, QSS methods are efficient when dealing with

large sparse systems where only some parts of the system

experience changes at a given time, a very common situa-

tion in ADR problems. Taking also into account that line-

arly implicit QSS (LIQSS) methods11 are able to tackle

certain stiff systems, these algorithms appear as promising

candidates for integrating the ODEs resulting from the

space discretization of ADR equations.

In this article, we provide a first analysis regarding the

usage of QSS methods in ADR problems by comparing the

performance of LIQSS methods against classic time discre-

tization algorithms (DASSL, DOPRI and RADAU) in the

simulation of a one-dimensional (1D) ADR problem previ-

ously discretized in space by the MOL. The comparison is

performed under different parameter and grid refinement

settings, showing that in advection–reaction-dominated

ADR problems, LIQSS methods are more than 10 times

faster than discrete time algorithms. We also briefly ana-

lyze the extension of these results to a 2D ADR equation.

The article is organized as follows. Section 2 introduces

the main concepts used in the rest of the paper and

describes some related work in the field. Section 3 dis-

cusses the implementation of the model in a QSS solver,

studying also the error bounds of the approximation from

a theoretical perspective. Section 4 shows numerical

results of the performance of LIQSS methods in advec-

tion–diffusion–reaction models, comparing these results

against classical integration methods. Finally, Section 5

presents the article conclusions and discusses how the state

quantization can be extended to more general ADR prob-

lems in two and three dimensions.

2. Background
2.1. Motivating example

Consider the following ODEs

_u1(t)= 3� u1(t)

_u2(t)= u1(t)� u2(t)

_u3(t)= u2(t)� u3(t)

ð1Þ

with initial conditions: u1(0)= 3, u2(0)= u3(0)= 0.

Equations (1), that can be solved analytically, may repre-

sent a rough MOL approximation of the pure advection

equation

∂u(x, t)

∂t
= � a

∂u(x, t)

∂x

for given parameters and boundary conditions.

Instead of solving (1) using a classic time discretization

approach, we shall modify it substituting ui(t) by its inte-

ger part qi(t) ¼D floor½ui(t)� at the right-hand side of each

equation:

_u1(t)= 3� floor½u1(t)�= 3� q1(t)

_u2(t)= floor½u1(t)� � floor½u2(t)�= q1(t)� q2(t)

_u3(t)= floor½u2(t)� � floor½u3(t)�= q2(t)� q3(t)

ð2Þ

Let us solve this last set of equations.

� At time t0 = 0 we have q1(t0)= 3,

q2(t0)= q3(t0)= 0.

- Initially, according to (2), we have

_u1(t0)= _u3(t0)= 0 and _u2(t0)= 3. These deri-

vatives will remain unchanged until some ui(t)
changes its integer part.

- Since _u1(t0)= _u3(t0)= 0, neither q1 nor q3 will

change now.

- The next change in q2(t) occurs when u2(t)= 1.

Since u2(t0)= 0 and its derivative is _u2(t0)= 3,

it will reach the value 1 at time t1 = 1=3.
� At time t1 = 1=3 the result is q2(t1)= u2(t1)= 1.

- According to (2) the result is _u2(t1)= 2 and

_u3(t1)= 1.

- The next change in q2(t) occurs at time

t2 = t1 + 1=2 while the following change in q3
would occur at time t1 + 1=1.

� At time t2 = t1 + 1=2= 5=6 the result is

q2(t2)= u2(t2)= 2, while u3(t2)= u3(t1)+
(t2 � t1) _u3(t1)= 1=2.
- According to (2) the derivatives are now

_u2(t2)= 1 and _u3(t2)= 2.

- Then, the upcoming change in q2(t) would

occur at time t2 + 1 while the next change in q3
should be recomputed to occur at time

t3 = t2 + 0:5=2.
� At time t3 = t2 + 1=4= 13=12 the result is

q3(t3)= u3(t3)= 1.

- According to (2) we have now _u3(t3)= 1.

- Then, the subsequent change in q3(t) would

occur at time t3 + 1.
� At time t4 = t2 + 1= 11=6 we have q2(t4)=

u2(t4)= 3 and u3(t4)= u3(t3)+ (t4 � t3) _u3(t3)=
7=4.
- According to (2) the derivatives are now

_u2(t2)= 0 and _u3(t2)= 2.

- Then, q2(t) will not change again and the next

change in q3(t) can be recomputed to occur at

time t5 = t4 + 0:25=2.
� At time t5 = t4 + 1=8= 47=24 we have

q3(t5)= u3(t5)= 2.

- According to (2) the derivative is now

_u3(t2)= 1.

48 Simulation: Transactions of the Society for Modeling and Simulation International 92(1)

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

- Then, the next change in q3 occurs at time

t6 = t5 + 1.
� At time t6 = t5 + 1= 71=24 we have q3(t6)=

u3(t6).
- All of the derivatives are equal to zero and no

further changes occur after t6.

The trajectories of this solution are depicted in Figure 1.

Variables u1(t) and q1(t), that remain unchanged for all t,

are not drawn.

This example shows that replacing a variable ui(t) by its
integer part floor½ui(t)� at the right-hand side of an ODE

seems to provide a way to integrate the equation. Note that

under this principle, we are replacing the time discretiza-

tion by the quantization of the system states. This is indeed

the basic idea behind the family of QSS methods.

The following remarks must be taken into account in

connection with the procedure followed above.

� After the startup, the simulation took a total of six

steps.
� Each step was local, related to a change in the inte-

ger part of a state: In t1, t2 and t4 the change

occurred in q2(t) while in t3, t5 and t6 the change

occurred in q3(t). As q1(t) was already at equili-

brium, it never changed.
� Changes in q2(t) prompted the evaluation of _u2 and

_u3. Changes in q3(t) provoked that only _u3 was

evaluated. Thus, after the startup, _u1 was never

computed, _u2 was evaluated three times and _u3 was
evaluated six times.

� The previous analysis shows that computations are

only performed where and when changes occur,

which leads to a very efficient sparsity exploitation.
� The results plotted in Figure 1 show very coarse

steps, with jumps of 1 unit between successive val-

ues of each state. More accurate results can be

obtained replacing the quantization function

floor½ui(t)� by DQ � floor½ui(t)=DQ�. The parameter

DQ is called quantum.
� If the first line of (1) is replaced by

_u1(t)= 2:5� u1(t), then the first line of (2)

becomes _u1(t)= 2:5� q1(t). In this case, the pro-

cedure fails. Initially we have q1(0)= 3 and then

_u1(0)= � 0:5. Thus, immediately we have

u1(0
+)\ 3� q1(0

+)= 2 and then

_u1(0
+)= + 0:5. Therefore, we are back to the ini-

tial situation u1(0
++)= 3. This cyclic behavior

provokes an infinitely fast oscillation and the simu-

lation cannot advance beyond the initial time.

This drawback is solved with the usage of hysteresis in the

quantization function, which leads to the definition of the

QSS algorithm.

2.2. QSS methods

QSS methods are inspired in the ideas explained above,

replacing the time discretization of classic numerical inte-

gration algorithms by the quantization of the state variables.

Given the ODE

_x(t)= f(x(t), t) ð3Þ

the first-order QSS method (QSS1)10 approximates it by

_x(t)= f(q(t), t) ð4Þ

Here, q is the quantized state vector. Its entries are

component-wise related with those of the state vector x by

the following hysteretic quantization function:

qj(t)=
xj(t) ifjxj(t)� qj(t

�)j5DQj

qj(t
�) otherwise

�
ð5Þ

where DQj is called quantum and qj(t
�) denotes the left-

sided limit of qj at time t.

Equation (5) says that the quantized state qj(t) only

changes when its difference with the state xj(t) becomes

equal to the quantum DQj. When this condition is reached,

the quantized state starts a new segment with the value of

the state, i.e. qj(t)= xj(t).
Since the quantized state trajectories qj(t) are piecewise

constant then, the state derivatives _xj(t) also follow piece-

wise constant trajectories and, consequently, the states xj(t)
follow piecewise linear trajectories. Figure 2 shows typical

QSS1 trajectories.

Due to the particular form of the trajectories, the analy-

tical solution of (4) is straightforward and can be obtained

following the ideas used to solve (2). These ideas can be

generalized by the following procedure.

For j= 1, . . . , n, let tj denote the next time at which

jqj � xjj=DQj. Then we use the following procedure.

Figure 1. Solution of Equation (2).

Bergero et al. 49

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

1. Advance the simulation time t to the minimum tj.

2. Recompute xj(t)= xj(t
�
j
)+ _xj(t

�
j
) � (t � t�

j
), where

t�
j

was the last update time of xj and _xj(t
�
j
) was

computed at time t�
j
from (4).

3. Take qj = xj and recompute tj (the next time at

which jqj � xjj=DQj).

4. For all i such that _xi explicitly depends on qj,

update xi(t)= xi(t
�
i)+ _xi(t

�
i) � (t � t�i), recompute

_xi(t) and recalculate ti (the next time at which

jqi � xij=DQi).

5. Go back to step 1.

The QSS1 method has the following features.

� The difference between the state and quantized vari-

ables is never greater than the quantum DQj. This

fact ensures stability and global error bound proper-

ties.6,10 In stable linear systems, the global simula-

tion error results linearly bounded by the quantum.
� The quantum DQj of each state variable can be

chosen to be proportional to the state magnitude,

leading to an intrinsic relative error control.12

� Each step is local to a single state variable xj (the

one which reaches the quantum change), and it only

provokes evaluations of the state derivatives that

explicitly depend on it. This fact implies that QSS1

performs intrinsic sparsity exploitation.
� If some state variables do not change significantly,

they will not provoke any step or evaluation at all.

This feature reinforces the efficient sparsity

exploitation.
� The fact that the state variables follow piecewise

linear trajectories makes very easy to detect discon-

tinuities. Moreover, after a discontinuity is detected,

its effects are not different to those of a normal step

(because changes in qj are discontinuous). Thus,

QSS1 is very efficient to simulate discontinuous

systems.13

The main limitations of QSS1 are as follows.

� It only performs a first-order approximation, and

good accuracy cannot be obtained without a signifi-

cant increment in the number of steps.
� It is not suitable to simulate stiff systems.

The first limitation was solved with the introduction of

higher-order QSS methods such as QSS214 and QSS3.15

QSS2 has the same definition as (4) except that the

quantization function of (5) is replaced by a different one,

such that the quantized state variables qj(t) follow piece-

wise linear trajectories and the state variables xj(t) follow
piecewise parabolic trajectories as shown in Figure 3. In

that way, the algorithm performs larger steps preserving

the difference between the state xj(t) and the quantized

state qj(t) bounded by the quantum DQj.

QSS2 has the same theoretical properties and practical

advantages of QSS1.

QSS3 is based on the same principles but with piece-

wise parabolic and piecewise cubic trajectories.

Regarding stiff systems, a first-order backward QSS

method (BQSS) was introduced by Migoni et al.16 This

method, in spite of being backward, was explicit due to the

following property. In QSS the next state value is always

known as it should be either qj +DQj or qj � DQj, accord-

ing to the sign of _xj. The unknown, that can be computed

explicitly, is the instant of time at which the state reaches

the next quantized value.

Unfortunately, BQSS cannot be extended to higher-

order approximations. However, a family of LIQSS meth-

ods up to third order was proposed by Migoni et al.11 Even

when the formulation of LIQSS methods is implicit, their

Figure 3. State and quantized trajectories in the QSS2 method.Figure 2. State and quantized trajectories in the QSS1 method.

50 Simulation: Transactions of the Society for Modeling and Simulation International 92(1)

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

implementations are explicit thanks to the same property

explained above for the case of BQSS algorithm.

LIQSS methods share the advantages of QSS methods

and, additionally, they are able to efficiently handle stiff

systems, provided that the stiffness is due to the presence

of large entries in the main diagonal of the system

Jacobian matrix. Otherwise, when the stiffness is due to

other reasons (the structure of semi-discretized diffusion

problems,6 for instance) LIQSS methods may provoke

spurious oscillations and the efficiency is lost.

As a consequence, for sparse, discontinuous systems or

those exhibiting the type of stiffness that is properly

handled by LIQSS algorithms, the usage of quantized state

solvers can offer a better performance than that of classic

discrete time methods. Otherwise, the use of appropriate

classical methods may be the best choice.

In the context of this work, the intrinsic sparsity exploi-

tation and the explicit treatment of stiffness will provide

the main advantages of LIQSS algorithms. Anyway, these

advantages will disappear in the presence of large diffusion

terms where the resulting stiffness cannot be efficiently

handled by these methods.

2.3. Implementation of QSS methods

It was shown that the behavior of the QSS approximation

of (4) can be described in terms of the discrete event sys-

tem specification (DEVS) formalism.17 Based on this

property, the whole family of QSS methods was first

implemented in PowerDEVS,18 a DEVS-based simulation

platform designed for simulating hybrid systems. In addi-

tion, the explicit QSS methods of orders 1–3 were also

implemented in a DEVS library of Modelica19 and imple-

mentations of the first-order QSS methods can also be

found in CD++ 20 and VLE.21

DEVS-based implementations of QSS methods are sim-

ple but inefficient. DEVS simulation engines waste a large

amount of computational effort passing messages and

scheduling events that are not strictly necessary for the

QSS algorithms. This fact motivated the development of

stand-alone QSS solvers.

A first approach to a stand-alone version of QSS1 to

QSS3 was implemented in the Java-based simulation tool

Open Source Physics,22 but that implementation was not

more efficient than that of PowerDEVS and it required the

user to provide the system structure information needed by

QSS methods.

Recently, the complete family of QSS methods was

implemented in a stand-alone QSS solver coded in plain C

language.23 This solver improves PowerDEVS simulation

times by more than one order of magnitude, allowing the

simulation of models described in a subset of the Modelica

language24 called m-Modelica.

This is the tool we shall use in the rest of this article.

2.4. Related work

The goal of this article is to study the efficiency of QSS

methods in the simulation of the ADR PDE semi-

discretized using the MOL.

To the best of the authors’ knowledge, this problem was

never studied. However, there are several works that study

the same PDE problem in the context of classic numerical

integration algorithms, and there are some works that study

the use of QSS methods in the simulation of other types of

PDEs.

The combination of the MOL with classic numerical

algorithms for the ADR PDE has been analyzed in several

articles.25–30

In all of these works, the goal was to overcome the

problem imposed by the stiffness associated to the reaction

term, using variants of Runge–Kutta algorithms.

Savcenco et al.31 study the use of multi-rate algorithms

for stiff ODE problems, including a case resulting from the

semi-discretization of an advection–reaction PDE. Multi-

rate algorithms are somehow related to quantization-based

integration methods in the sense that both use different

time scales for different state variables.

The use of QSS methods in PDEs has not been yet stud-

ied in depth. Muzy et al.32 showed the results of using QSS

methods for a 1D diffusion problem. Hyperbolic PDEs rep-

resenting lossless transmission lines were also simulated in

the context of QSS methods in Migoni et al.,14,16 including

also a stiff load.

3. QSS approximation of the ADR model

In this section, we first introduce the 1D ADR model used

along the work and its discretization with the MOL. We

then perform a theoretical analysis to obtain an upper

bound for the error introduced by the QSS approximation

of the resulting ODE. Finally, we describe the implemen-

tation of this ODE in the QSS solver.

3.1. The ADR equation

Let u(x, t) be the concentration of some species in the

space coordinate x at time t. Then, the 1D advection and

diffusion33 process can be described by the following

PDE:

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= d

∂2u(x, t)

∂x2
ð6Þ

Taking into account that the species undergoes a chem-

ical reaction, we include a non-linear reaction term follow-

ing Zeldovich’s equation34 as follows:

∂u(x, t)

∂t
+ a

∂u(x, t)

∂x
= d

∂2u(x, t)

∂x2
+ r(u(x, t)2 � u(x, t)3)

ð7Þ

Bergero et al. 51

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

This is the model we shall work with in the rest of the arti-

cle. Here a, d and r are parameters expressing

the advection, diffusion and reaction coefficients,

respectively.

We shall consider that the space domain is limited to

the interval 04 x4 10 and that the boundary conditions

are

u(x= 0, t)= 1;
∂u(x= 10, t)

∂x
= 0 ð8Þ

For the simulations, we shall work with the following

initial conditions:

u(x, t= 0)=
1 if x \ 2

0 otherwise

�
ð9Þ

3.2. MOL discretization of the ADR model

In order to discretize the problem with the MOL, we shall

use a regular grid of width

Dx=
10

N
ð10Þ

where N is the number of grid points.

The advection term of (7) ∂u(x, t)
∂x

shall be replaced by a

first-order upwind finite difference:

∂u

∂x
(x= xi, t)’

ui � ui�1
Dx

ð11Þ

for i= 1, . . . ,N , where

ui(t)’ u(xi, t) ð12Þ

is the ith state variable of the resulting ODE and

xi = i � Dx ð13Þ

is the ith grid point.

Taking into account the boundary condition of (8) at

x= 0, we also have u0 = 1.

We shall discretize the diffusion term replacing the

expression ∂2u
∂x2

by a second-order centered finite difference:

∂2u

∂x2
(x= xi, t)’

ui+ 1 � 2ui + ui�1
Dx2

ð14Þ

for i= 1, . . . ,N � 1.

For the last grid point, taking into account the symme-

trical border condition of (8) at x= 10, we can replace

∂2u

∂x2
(x= xN , t)’

uN�1 � 2uN + uN�1
Dx2

ð15Þ

Replacing (11)–(15) into (7) we obtain the following set

of ODEs:

_ui = � a
(ui � ui�1)

Dx
+ d

(ui+ 1 � 2ui + ui�1)

Dx2
+ r(u2i � u3

i)

ð16Þ

for i= 1, . . . ,N � 1 and

_uN = � a
(uN � uN�1)

Dx
+ d

(2uN�1 � 2uN)

Dx2
+ r(u2

N � u3
N)

ð17Þ

3.3. Model structure

The Jacobian matrix of the system of (16) can be computed

as

J =

J11 J12 0 0 � � � 0

J21 J11 J12 0 � � � 0

0 J21 J11 J12 � � � 0

..

. ..
. ..

. ..
. . .

. ..
.

2
6664

3
7775 ð18Þ

where

J11 =
�a

Dx
+
�2d

Dx2
+ r(2u1 � 3u2

1);

J12 =
d

Dx2
; J21=

a

Dx
+

d

Dx2

ð19Þ

Note that J is tridiagonal.

As was shown by Migoni et al.,35 LIQSS methods effi-

ciently handle stiffness due to large entries in the main

diagonal. Thus, we expect that the stiffness due to the reac-

tion term, which only appears in J11, is efficiently handled.

However, the stiffness due to the diffusion term may cause

problems. Moreover, it is known that the stiffness ratio of

the resulting ODE grows quadratically with the number of

segments,6 so those problems may become more important

as the grid is refined.

3.4. Global error bounds of the QSS simulation of
the ADR model

The global error bound properties of QSS methods6,14

establish that the simulation with these algorithms of sta-

ble linear time invariant (LTI) systems gives numerical

solutions that differ from the analytical solution in a quan-

tity that is linearly bounded with the quantum.

In the absence of a reaction term, the system of (16)–(17)

is LTI. However, for the pure advection problem, the analysis

cited before6,14 cannot be applied because the system cannot

be diagonalized.

Thus, we analyze here the pure advection case in order

to establish a theoretical upper bound for the error intro-

duced by the QSS approximation of (16)–(17).

Defining u ¼D ½u1, u2, . . . , uN �T, the pure advection

model can be written as

52 Simulation: Transactions of the Society for Modeling and Simulation International 92(1)

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

_u(t)=A � u(t)+B � u0(t) ð20Þ

with

A=
a

Dx
�

�1 0 0 . . . 0

1 �1 0 . . . 0

0 1 �1 . . . 0

..

.

0 1 �1

2
66664

3
77775; B=

a

Dx
�

1

0

0

..

.

0

2
66664

3
77775

ð21Þ

Any QSS or LIQSS method transforms (20) into

_v(t)=A � q(t)+B � u0(t) ð22Þ

where v(t) is the numerical solution and q(t) is the quan-

tized version of the state v(t).
Taking into account that differences between the com-

ponents qi(t) and vi(t) cannot be larger than the quantum

DQ, we can write

qi(t)= vi(t)+Dvi(t) ð23Þ

with jDvi(t)j\ DQ. Then, we can rewrite the ith compo-

nent of (22) as

_vi(t)= � a

Dx
(vi(t)+Dvi)+

a

Dx
(vi�1(t)+Dvi�1) ð24Þ

while the ith component of the original system of (20) is

_ui(t)= � a

Dx
ui(t)+

a

Dx
ui�1(t) ð25Þ

Defining the error ei(t) ¼D vi(t)� ui(t) and subtracting

(25) from (24) we obtain the error dynamics as

_ei(t)= � a

Dx
(ei(t)+Dvi)+

a

Dx
(ei�1(t)+Dvi�1) ð26Þ

Taking into account that we have not quantified the

boundary condition (i.e. u0 = v0 = q0), then the dynamics

of the first component of the error is

_e1(t)= � a

Dx
� (e1(t)+Dv1(t)) ð27Þ

Note that if at certain time tk this error is positive and

reaches the quantum, i.e. e1(tk)=DQ, recalling that

jDv1(t)j4DQ it results that e1(tk)5 jDv1(tk)j and there-

fore e1(tk)+Dv1(tk)5 0. Taking into account the nega-

tive sign in (27) the result is _e1(tk)4 0.

Similarly, if at certain time tk this error is negative and

reaches the quantum, i.e., e1(t : k)= � DQ, an analogous

reasoning shows that _e1(tk)5 0.

In other words, whenever e1(t) reaches the value

+DQ, its derivative becomes negative or zero and when-

ever e1(t) reaches the value �DQ, its derivative becomes

positive or zero. Thus, if je1(tk)j4DQ, then je1(t)j4DQ

for all t . tk .

Taking into account that e1(t0)= 0 the result is that

je1(t)j4DQ ð28Þ

for all t5 t0.

For the second component we have that

_e2 = � a

Dx
� (e2 +Dv2 � e1 � Dv1) ð29Þ

where it can be easily seen that jDv2(t)� e1(t)
�Dv1(t)j4 3DQ. Hence, proceeding as before, we found

that je2j\ 3 � DQ.

Extending this analysis, we arrive to the error bound

condition

jei(t)j\ (2 � i� 1) � DQ ð30Þ

This is a global upper bound on the error introduced by

the QSS algorithms at the ith space point of the solution,

which stands for any initial condition of the purely advec-

tive problem of (16)–(17).

This result establishes that the error bound grows line-

arly with the quantum DQ and with the space coordinate

index i= xi=Dx. Although it is a conservative result, its

predictions will be corroborated in the following section.

The addition of a small diffusion term does not change

significantly the results, leading to a more complex

expression.

The presence of reaction terms leads to a more complex

non-linear study that is out of the scope of this work.

3.5. The ADR model in the QSS solver

The ODE model of (16)–(17) can be described in the sub-

set of Modelica language (m-Modelica) used by the stand-

alone QSS solver23 as follows:

model adv_dif_reac
constant Integer N=1000;
parameter Real a=1;
parameter Real d=1e-4;
parameter Real r=10;
parameter Real L=10;
parameter Real dx=L/N;
Real u[N];

initial algorithm
for i in 1:0.2*N loop
u[i]:=1;

end for;
equation

der(u[1])=-a*(u[1]-1)/dx+d*(u[2]-
2*u[1]+1)/(dx^2)+r*(u[1]^2)*(1-u[1]);
der(u[N])=-a*(u[N]-u[N-1])/dx+d*(u[N-
1]-2*u[N]+u[N-1])/(dx^2)+r*(u[N]^2)*
(1-u[N]);
for i in 2:N-1 loop

Bergero et al. 53

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

der(u[i])=-a*(u[i]-u[i-1])/dx+
d*(u[i+1]-2*u[i]+u[i-1])/(dx^2)+
r*(u[i]^2)*(1-u[i]);

end for;
end adv_dif_reac;

Note that in this case, we used parameters a= 1,

d = 10�4, r = 10 and performed the discretization over

N = 1000 grid points. The solution for this parameter set,

obtained with LIQSS2, is shown in Figure 4. There, u½400�
is the discretized version of u(x= 4), u½600� is the discre-
tized version of u(x= 6), and so on.

4. Results

In this section we compare the performance of different

numerical integration methods on the ADR problem semi-

discretized with the MOL. For that purpose, the resulting

model of (16) is simulated for different parameter settings

using LIQSS2, DASSL, Radau5 and DOPRI.

� DASSL results were computed using the Fortran

code DASPK.36

� DOPRI and Radau5 results were computed using

the C++ implementation available at Hairer’s

website http://www.unige.ch/;hairer/
software.html, written by Blake Ashby.

� LIQSS2 results were obtained with the stand-alone

QSS Solver.
� All of the simulations were performed on the same

Intel i7-3770@3.40 GHz computer under a Linux

operating system (Ubuntu).

� The errors in all cases are computed against refer-

ence trajectories obtained with a tight error toler-

ance (13 10�10) using DOPRI. We consider the

error on the state of the last grid point uN (t) since,
as shown in Section 3.4, that point accumulates the

error of all of the previous ones. The average error

is computed on 5000 equidistant time points byP5000
i= 1 juNref

(ti)� uNsim
(ti)j=5000 while the maxi-

mum error is maxi (fjuNref
(ti)� uNsim

(ti)jg) where

uNref
(t) is the ground truth reference and uNsim

(t) is
the simulated solution.

� We did not compute consistency errors due to the

MOL space discretization. We are only interested

in the ODE integration error.
� In all scenarios (except for the error analysis

case) we gave the numerical solver a relative toler-

ance of 13 10�3 and an absolute tolerance of

13 10�4.
� The model was simulated up to t = 10 seconds.

Before that time, the model always reaches an equi-

librium condition.
� In all cases, the number of function evaluations

reported corresponds to scalar components.

4.1. Error analysis

We first simulated the system of (16) with parameters

a= 1, r = d = 0 (i.e. the pure advective case) using the

LIQSS2 method for different quantum DQ and grid refine-

ment N. The goal of this experiment was to compare the

theoretical bound of (30) with the actual error introduced

by the algorithm.

Figure 4. Simulation results for a= 1, d= 1× 10�4, r= 10, N= 1000 using the LIQSS2 method.

54 Simulation: Transactions of the Society for Modeling and Simulation International 92(1)

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://www.unige.ch/;hairer/software.html
http://www.unige.ch/;hairer/software.html
http://sim.sagepub.com/

The results are summarized in Table 1.

Analyzing these results, we make the following

observations.

� The theoretical error bound computed by (30) holds

for all cases.
� The theoretical error bound formula is very conser-

vative. For instance, taking N = 10, 000 and

DQ= 13 10�6, the theoretical error bound states

that jeN (t)j\ 1:93 10�2 and Table 1 shows that

the maximum error found is 3:03 10�5.
� The reported errors grow linearly with the quantum

in concordance with the theoretical error bound.
� While (30) establishes that the theoretical error

bound grows linearly with the grid refinement N,

results reported in Table 1 show that N does not

seem to affect the maximum error significantly,

since it remains of the same order.
� The main practical conclusion of the error analysis

is that the measured error and the quantum have a

similar order of magnitude.

4.2. Variation of the grid size Dx

In this scenario we study the computational cost and error

introduced by the different algorithms for different number

of points (N) in the grid. The remaining parameters are

kept fixed, a= 1, d = 13 10�4, r = 1000. The resulting

Péclet number is a=d = 10, 000.
The goal of this experiment is to establish how efficient

are ODE solvers at handling models resulting from more

refined grids, which are used often to reduce the consis-

tency error introduced by the MOL.

Figure 5 compares the CPU time of DASSL, DOPRI,

Radau5 and LIQSS2 as N grows. Table 2 summarizes the

results together with the number of scalar function

evaluations.

Here LIQSS2 outperforms the other methods in all

cases. Note that up to N = 1000, the CPU time grows

sub-linearly with the size N for LIQSS2. With N = 1000

LIQSS2 is 15 times faster than DOPRI and DASSL, and

27 times faster than Radau.

However, at N = 10, 000 the stiffness due to the diffu-

sion term at (16) becomes relevant since, as was mentioned

Figure 5. CPU time versus N with a= 1, d= 1× 10�4, r= 1000.

Table 1. Maximum and average error for different values of �Q with N= 100,1000,10,000.

N= 100 N= 1000 N= 10,000

Maximum Average Maximum Average Maximum Average

�Q= 1× 10�3 8:5× 10�3 2:5× 10�4 7:7× 10�3 1:7× 10�3 2:5× 10�2 3:8× 10�4

�Q= 1× 10�4 9:9× 10�4 3:2× 10�5 7:1× 10�4 1:9× 10�5 1:4× 10�3 3:3× 10�5

�Q= 1× 10�5 1:8× 10�4 7:3× 10�6 7:3× 10�5 2:5× 10�6 2:5× 10�4 3:73× 10�6

�Q= 1× 10�6 5:4× 10�5 2:2× 10�6 1:6× 10�5 3:9× 10�7 3:0× 10�5 4:1× 10�7

Bergero et al. 55

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

before, in diffusion problems discretized with the MOL the

stiffness ratio grows quadratically with the number of grid

points. We recall that this type of stiffness is not properly

handled by LIQSS methods,11 hence its performance is

impoverished.

Although the presence of the reaction term makes the

problem stiff, the explicit algorithm DOPRI is still able to

simulate it in a reasonable time. In fact, it performs several

function evaluations, but its low cost per step results in a

similar performance to that of DASSL.

It must be mentioned that DASPK and Radau5 codes

are suitable for large-scale models. Moreover, they exploit

the knowledge of the tridiagonal structure of the Jacobian

matrix for this particular case. Otherwise, their computa-

tional cost would grow cubically with N.

Table 3 shows the maximum and mean absolute errors

obtained by the tested algorithms.

The average errors of LIQSS2, DASSL and DOPRI are

similar, and they are consistent with the tolerance settings.

Radau, however, is about two orders of magnitude more

accurate. This is because the implementation is extremely

conservative regarding the error tolerance.

The maximum absolute error is high for all algorithms

(except for Radau). The reason is that the solution is a tra-

veling wave with a large slope. Figure 4 illustrates the

solution for r = 10. For r = 1000 the solution looks like a

traveling step. Thus, a very small error in the wave speed

causes a very large error in the value of ui when the wave

passes through the ith point of the grid.

4.3. Variation of the grid size Dx without diffusion

In this scenario we study the computational cost for differ-

ent number of points N in the grid without diffusion term

(d = 0), i.e. a purely advective–reactive problem. The

remaining parameters were fixed as: a= 1, r = 1000.

Errors are not reported as they are similar to those of the

previous scenario.

Figure 6 compares the CPU time of DASSL, Radau5,

DOPRI and LIQSS2. Table 4 summarizes the results

together with the number of scalar function evaluations.

The results here are similar to those with d = 13 10�4,
except that now LIQSS2 does not experience any problem

as N grows. The absence of diffusion confines the stiffness

to the main diagonal of the Jacobian matrix, a case that

LIQSS2 efficiently handles.

Consequently, when N = 10, 000, LIQSS2 is about 30

times faster than DOPRI, 38 times faster than DASSL and

98 times faster than Radau.

4.4. Variation of reaction term r

Now we consider the variation of r with the remaining

parameters fixed at a= 1, d = 13 10�4, N = 1000.

Figure 7 compares the CPU time of DASSL, Radau5,

DOPRI and LIQSS2 as r grows. Table 5 summarizes the

results together with the number of scalar function evalua-

tions. Errors are not reported as they are similar to the pre-

vious ones.

Table 2. CPU time (ms) and number of function evaluations for different values of N with a= 1, d= 1× 10�4, r= 1000.

LIQSS2 DASSL DOPRI Radau5

N time eval. time eval. time eval. time eval.

10 9:04× 10�1 5:99× 103 3:85× 100 8:47× 103 1:00× 101 1:88× 105 2:00× 101 1:02× 104

50 3:45× 100 2:79× 104 1:93× 101 1:02× 105 4:00× 101 1:06× 106 2:00× 101 1:74× 105

100 6:62× 100 5:38× 104 5:11× 101 3:29× 105 6:00× 101 2:45× 106 5:00× 101 5:02× 105

200 1:48× 101 1:17× 105 1:10× 102 8:85× 105 1:20× 102 5:17× 106 1:50× 102 1:57× 106

500 2:73× 101 3:16× 105 3:33× 102 2:61× 106 3:70× 102 1:73× 107 6:10× 102 6:06× 106

1000 4:66× 101 6:05× 105 7:41× 102 5:64× 106 7:00× 102 3:54× 107 1:29× 103 1:23× 107

10,000 7:49× 103 1:07× 108 1:54× 104 1:08× 108 1:50× 104 7:41× 108 3:97× 104 4:04× 108

Table 3. Maximum and average error for different values of N with a= 1, d= 1× 10�4, r= 1000.

LIQSS2 DASSL DOPRI Radau5

N Maximum Average Maximum Average Maximum Average Maximum Average

10 5:9× 10�2 2:8× 10�3 7:4× 10�1 7:9× 10�4 3:9× 10�3 8:7× 10�4 2:5× 10�3 2:7× 10�6

50 8:4× 10�2 8:1× 10�4 7:0× 10�1 6:8× 10�4 2:2× 10�2 1:9× 10�3 3:5× 10�3 6:7× 10�6

100 1:2× 10�1 1:7× 10�4 6:6× 10�1 6:1× 10�4 3:8× 10�2 2:5× 10�3 9:1× 10�3 2:9× 10�5

200 1:6× 10�1 1:8× 10�3 7:5× 10�1 7:6× 10�4 9:8× 10�2 3:0× 10�3 3:0× 10�3 1:3× 10�5

500 1:8× 10�1 1:1× 10�3 5:3× 10�1 4:0× 10�4 3:9× 10�2 3:8× 10�3 1:7× 10�2 1:4× 10�5

1000 2:1× 10�1 1:3× 10�3 3:4× 10�2 2:4× 10�5 5:8× 10�2 4:8× 10�3 4:9× 10�2 3:3× 10�5

10,000 5:9× 10�1 8:1× 10�4 1:0× 100 1:4× 10�3 1:9× 10�1 6:6× 10�3 3:0× 10�1 1:3× 10�4

56 Simulation: Transactions of the Society for Modeling and Simulation International 92(1)

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

In this scenario LIQSS2 shows a noticeable advantage

over the other methods as its performance is not affected

at all by the growth of the reaction term r. When r grows

the problem becomes more stiff, but this stiffness is due to

a large entry in the main diagonal of the Jacobian matrix,

which is efficiently handled by LIQSS2.

Figure 6. CPU time versus N with a= 1, d= 0, r= 1000.

Table 4. CPU time and number of function evaluations for different values of N with a= 1, d= 0, r= 1000.

LIQSS2 DASSL DOPRI Radau5

N time eval. time eval. time eval. time eval.

10 8:54× 10�1 6:14× 103 3:78× 100 8:47× 103 2:00× 101 1:88× 105 1:00× 101 1:02× 104

50 1:46× 100 2:81× 104 1:61× 101 1:02× 105 3:00× 101 1:06× 106 3:00× 101 1:74× 105

100 8:30× 100 5:92× 104 4:49× 101 3:12× 105 6:00× 101 2:46× 106 6:00× 101 5:02× 105

200 1:28× 101 1:04× 105 9:79× 101 8:70× 105 1:20× 102 5:16× 106 1:50× 102 1:57× 106

500 2:33× 101 2:70× 105 3:17× 102 2:74× 106 3:40× 102 1:65× 107 5:80× 102 6:06× 106

1000 4:23× 101 5:49× 105 7:44× 102 5:90× 106 6:70× 102 3:54× 107 1:17× 103 1:19× 107

10,000 3:99× 102 6:58× 106 1:51× 104 1:04× 108 1:19× 104 6:43× 108 3:93× 104 4:23× 108

Table 5. CPU time and number of function evaluations for different values of r with a= 1, d= 1× 10�4, N= 1000.

LIQSS2 DASSL DOPRI Radau5

r time eval. time eval. time eval. time eval.

100 3:35× 101 5:93× 105 3:53× 102 1:94× 106 1:10× 102 5:38× 106 5:80× 102 5:50× 106

500 4:34× 101 5:45× 105 4:79× 102 3:68× 106 3:10× 102 1:61× 107 9:90× 102 9:18× 106

1000 4:66× 101 6:05× 105 7:41× 102 5:64× 106 7:00× 102 3:54× 107 1:29× 103 1:23× 107

2000 4:49× 101 6:51× 105 1:05× 103 1:00× 107 1:21× 103 6:37× 107 2:51× 103 2:41× 107

5000 5:08× 101 6:84× 105 1:50× 103 1:71× 107 2:60× 103 1:41× 108 3:58× 103 3:52× 107

10,000 5:25× 101 7:04× 105 1:75× 103 2:14× 107 5:25× 103 2:78× 108 4:39× 103 4:49× 107

100,000 5:64× 101 7:68× 105 3:29× 103 5:12× 107 4:68× 104 2:71× 109 8:93× 103 9:43× 107

Bergero et al. 57

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

However, the other methods present various drawbacks.

DOPRI, being explicit, has its step size limited by the sta-

bility region which is reduced linearly with r. Thus, the

computational cost grows linearly with r.

DASSL and Radau do not have stability issues, but the

growth of r increases the non-linearity of the problem and

the Newton iteration used by these implicit algorithms

requires more steps to converge.

In conclusion, for the last case analyzed (r = 100, 000),
LIQSS2 is about 60 times faster than DASSL, 160 times

faster than Radau and 830 times faster than DOPRI.

4.5. Variation of diffusion term d

In the last scenario we study the computational cost for dif-

ferent values of the diffusion term d while the remaining

parameters are kept fixed (a= 1, N = 1000, r = 1000).

Errors are similar to those of the first scenario so they are

not reported.

Figure 8 plots the computational costs as a function of

d while Table 6 summarizes the results together with the

number of scalar function evaluations.

For low values of d, LIQSS2 again outperforms the

other methods. However, as the diffusion term grows,

LIQSS2 performance is soon degraded. The reason for this

is the appearance of stiffness which is not reflected at the

main diagonal of the Jacobian matrix. These stiff cases are

not correctly handled by LIQSS algorithms, as is analyzed

by Migoni et al.11

4.6 A simple 2D scenario

In this scenario we briefly analyze whether the results

found before hold for 2D cases. For that purpose we con-

sider a 2D MOL advection–reaction model given by the

following equations:

_ui, j = � ax

(ui, j � ui, j�1)

Dx
� ay

(ui, j � ui�1, j)

Dy
+ r(u2

i, j � u3
i, j)

ð31Þ

for i= 2, . . . ,N , j= 2, . . . ,N ,

_ui, 1 = � ax

ui, 1

Dx
� ay

(ui, 1 � ui�1, 1)

Dy
+ r(u2

i, 1 � u3
i, 1) ð32Þ

for i= 2, . . . ,N ,

_u1, j = � ax

(u1, j � u1, j�1)

Dx
� ay

u1, j

Dy
+ r(u2

1, j � u3
1, j) ð33Þ

for j= 2, . . . ,N and finally

_u1, 1 = � ax

u1, 1

Dx
� ay

u1, 1

Dy
+ r(u2

1, 1 � u3
1, 1) ð34Þ

where the grid refinement is defined by Dx=Dy= 10=N .

We simulated this model for different grid refinement

settings, obtaining the results summarized in Table 7.

We note that DASSL solver fails to perform from

N 3 N = 1003 100. In this case, DASSL must invert a

huge matrix which is no longer tridiagonal.

Figure 7. CPU time versus r with a= 1, d= 1× 10�4, N= 1000.

58 Simulation: Transactions of the Society for Modeling and Simulation International 92(1)

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

As before, the LIQSS2 method exhibits a better perfor-

mance than DOPRI and DASSL. We must mention that

while the number of function evaluations of LIQSS2

grows linearly with the system size, the CPU time scales

supra-linearly. This is due to the fact that the stage of the

QSS solver that translates the m-Modelica model into C

language does not support 2D models yet, so we wrote the

N 3 M matrix using M arrays. In consequence, the

m-Modelica model was inefficiently translated into C, with

the right-hand side of the ODE containing M unnecessary

Figure 8. CPU time comparison for different magnitudes of diffusion d: a= 1, N= 1000, r= 1000.

Table 6. CPU time and number of function evaluations for different d: a= 1, N= 1000, r= 1000.

LIQSS2 DASSL DOPRI Radau5

d time eval. time eval. time eval. time eval.

1× 10�1 3:79× 103 6:19× 107 3:15× 102 2:46× 106 1:82× 103 9:45× 107 4:90× 102 4:76× 106

1× 10�2 6:25× 101 8:68× 105 5:38× 102 4:04× 106 6:20× 102 3:16× 107 9:40× 102 9:00× 106

1× 10�3 5:23× 101 6:07× 105 7:39× 102 5:26× 106 7:00× 102 3:63× 107 1:81× 103 1:59× 107

1× 10�4 4:66× 101 6:05× 105 7:41× 102 5:64× 106 7:00× 102 3:54× 107 1:29× 103 1:23× 107

1× 10�5 4:18× 101 5:62× 105 7:73× 102 5:77× 106 6:90× 102 3:54× 107 1:26× 103 1:20× 107

1× 10�6 4:27× 101 5:48× 105 7:47× 102 5:45× 106 6:90× 102 3:54× 107 1:26× 103 1:19× 107

1× 10�7 3:89× 101 5:22× 105 8:07× 102 6:11× 106 6:90× 102 3:54× 107 1:24× 103 1:19× 107

Table 7. CPU time (ms) for different grid refinement settings (N×N): ax = ay = 1, r= 1000.

LIQSS2 DOPRI DASSL

time eval. time eval. time eval.

10× 10 5:70× 100 4:86× 104 1:37× 102 2:39× 106 8:64× 101 1:28× 106

50× 50 1:82× 102 1:17× 106 3:02× 103 7:16× 107 3:76× 104 4:69× 108

100× 100 8:59× 102 4:68× 106 1:19× 104 2:91× 108 — —
500× 500 5:69× 104 1:21× 108 4:03× 105 9:40× 109 — —
1000× 1000 4:35× 105 4:96× 108 1:91× 106 4:24× 1010 — —

Bergero et al. 59

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

comparisons. As M grows, those unnecessary comparisons

affect the overall performance.

5. Conclusions

In this work we studied the application of quantization-

based integration methods for semi-discretized 1D ADR

problems.

We compared the LIQSS2 method against widely used

classic numerical integration methods implemented in sol-

vers such as DASSL, Radau and DOPRI.

We make the following conclusions.

� LIQSS2 is a better option than classical numerical

integration methods when the relation between the

advection and the diffusion is large (i.e. large Péclet

numbers). However, when the diffusion is higher,

the stiffness introduced is not properly handled by

LIQSS2 and classic methods are more efficient.
� Provided that the diffusion term is kept small,

LIQSS2 shows an increasing advantage over the

other methods while N grows since it scales sub-

linearly with the grid refinement.
� Contrary to classic methods, LIQSS2 performance

is not affected by the growth of the reaction term r.

This is because (as stated in Section 2.2) LIQSS

methods efficiently handle stiffness due to large

entries in the main diagonal of the Jacobian matrix.
� In most cases, LIQSS2 performed at least 10 times

faster than classic solvers.

We also have performed a theoretical analysis on the max-

imum error introduced by the LIQSS methods for purely

advective cases. A simulation study showed that this error

bound, in spite of being extremely conservative, still holds

in the presence of diffusion and reaction terms.

We also extended the results to a simple 2D advection–

reaction case, obtaining promising results regarding the

usage of LIQSS methods in higher-dimensional problems,

where they can still offer advantages over classic discrete

time algorithms.

It is worth mentioning that in these two-dimensional

studies, we are reporting simulation results with QSS

methods on a system having up to one million states. To

the best of the authors’ knowledge, this is the first time

QSS methods are applied to models of this size.

In spite of the advantages observed, we must recall that

this work is limited to some special cases (1D ADR and

2D advection–reaction equations) with particular initial

states and boundary conditions, and semi-discretized with

the MOL using first-order finite differences. Thus, future

work should corroborate these results on a more general

context, considering the following.

� More sophisticated models, including 2D and 3D

problems with realistic initial states and boundary

conditions, such as environmental geochemistry,

and pollutants transport in surface and ground

water. Also adding native support for 2D models in

the QSS tool is a must.
� The use of different space discretization methods,

such as boundary integral methods or meshless

methods.
� The usage of the MOL with higher-order finite

differences.

It would be also of theoretical interest to extend the error

analysis to the complete ADR model, including diffusion

and reaction terms.

Funding

This work was funded by grants ANPCYT PICT 2012 - 0077 and

CONICET PIP 2012-2014 00216.

References

1. Volker J and Schmeyer E. Finite element methods for time-

dependent convection–diffusion–reaction equations with

small diffusion. Comput Meth Appl Mech Eng 2008; 198(3–

4): 475–494.

2. Theeraek P, Phongthanapanich S and Dechaumphai P.

Solving convection–diffusion–reaction equation by adaptive

finite volume element method. Math Comput Sim 2011;

82(2): 220–233.

3. Portapila M and Power H. A convergence analysis of the per-

formance of the DRM-MD boundary integral approach. Int J

Numer Meth Eng 2007; 71(1): 47–65.

4. Caruso N, Portapila M and Power H. Local regular dual reci-

procity method for 2D convection-diffusion equation. In

34th international conference on boundary elements and

other mesh reduction methods, pp. 27–37.

5. Schiesser W. The numerical method of lines: integration of

partial differential equations. New York: Academic Press,

1991.

6. Cellier F and Kofman E. Continuous System Simulation.

New York: Springer, 2006.

7. Butcher J. Numerical Methods for Ordinary Differential

Equations. New York: John Wiley & Sons, Ltd, 2005.

8. Brenan KE, Campbell SL and Petzold LR. Numerical

Solution of Initial-Value Problems in Differential-Algebraic

Equations. Philadelphia, PA: Society for Industrial and

Applied Mathematics, 1995.

9. Petzold LR. A description of DASSL: a differential/algebraic

system solver. In Scientific computing, Montreal, Quebec,

1982. New Brunswick, NJ: IMACS, 1983, pp. 65–68.

10. Kofman E and Junco S. Quantized state systems. A DEVS

approach for continuous system simulation. Trans SCS 2001;

18(3): 123–132.

11. Migoni G, Bortolotto M, Kofman E, et al. Linearly implicit

quantization-based integration methods for stiff ordinary

60 Simulation: Transactions of the Society for Modeling and Simulation International 92(1)

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

differential equations. Sim Modell Practice Theory 2013; 35:

118–136.

12. Kofman E. Relative error control in quantization based inte-

gration. Latin Amer Appl Res 2009; 39(3): 231–238.

13. Kofman E. Discrete event simulation of hybrid systems.

SIAM J Sci Comput 2004; 25(5): 1771–1797.

14. Kofman E. A second order approximation for DEVS simula-

tion of continuous systems. Simulation 2002; 78(2): 76–89.

15. Kofman E. A third order discrete event simulation method

for continuous system simulation. Latin Amer Appl Res

2006; 36(2): 101–108.

16. Migoni G, Kofman E and Cellier F. Quantization-based new

integration methods for stiff ODEs. Simulation 2012; 88(4):

387–407.

17. Zeigler B, Praehofer H and Kim TG. Theory of Modeling

and Simulation, 2nd edn.New York: Academic Press, 2000.

18. Bergero F and Kofman E. PowerDEVS: a tool for hybrid sys-

tem modeling and real time simulation. Simulation 2011; 87:

113–132.

19. Beltrame T and Cellier F. Quantised state system simulation

in Dymola/Modelica using the DEVS formalism. In

Proceedings of the fifth international Modelica conference,

volume 1, Vienna, Austria, pp. 73–82.

20. D’Abreu M and Wainer G. M/CD+ + : Modeling continu-

ous systems using Modelica and DEVS. In Proceedings of

MASCOTS 2005, Atlanta, GA, pp. 229–236.

21. Quesnel G, Duboz R, Ramat E, et al. VLE: a multimodeling

and simulation environment. In Proceedings of the 2007

Summer computer simulation conference, San Diego,

California, pp. 367–374.

22. Esquembre F. Easy Java Simulations: a software tool to cre-

ate scientific simulations in Java. Comput Phys Commun

2004; 156(1): 199–204.

23. Fernández J and Kofman E. A stand-alone quantized state

system solver for continuous system simulation. Simulation

2014; in press.

24. Fritzson P and Engelson V. Modelica - a unified object-

oriented language for system modelling and simulation. In

ECOOP, pp. 67–90.

25. Wolke R and Knoth O. Implicit–explicit Runge–Kutta meth-

ods applied to atmospheric chemistry-transport modelling.

Environ Modell Software 2000; 15(6): 711–719.

26. Sommeijer B, Shampine L and Verwer J. RKC: An explicit

solver for parabolic {PDEs}. J Computat Appl Math 1998;

88(2): 315–326.

27. Verwer J, Sommeijer B and Hundsdorfer W. RKC time-

stepping for advection–diffusion–reaction problems. J

Computat Phys 2004; 201(1): 61–79.

28. Kleefeld B and Martn-Vaquero J. SERK2v2: A new second-

order stabilized explicit Runge–Kutta method for stiff prob-

lems. Numer Meth Partial Differ Eq 2013; 29(1): 170–185.

29. Álvarez J and Rojo J. An improved class of generalized

Runge–Kutta methods for stiff problems. Part I: The scalar

case. Applied Mathematics and Computation 2002;.

30. Álvarez J and Rojo J. An improved class of generalized

Runge–Kutta methods for stiff problems. Part II: The

separated system case. Appl Math Computat 2004; 159(3):

717–758.

31. Savcenco V, Hundsdorfer W and Verwer J. A multirate time

stepping strategy for stiff ordinary differential equations.

BIT Numer Math 2007; 47(1): 137–155.

32. Muzy A, Jammalamadaka R, Zeigler B, et al. The activity-

tracking paradigm in discrete-event modeling and simula-

tion: The case of spatially continuous distributed systems.

Simulation 2011; 87(5): 449–464.

33. Hundsdorfer W and Verwer JG. Numerical Solution of Time-

Dependent Advection–Diffusion–Reaction Equations. New

Yor: Springer, 2003.

34. Gilding BH and Kersner R. Travelling waves in nonlinear

diffusion–convection–reaction. Memorandum 1585,

Department of Applied Mathematics, University of Twente,

Enschede, 2001.

35. Migoni G, Kofman E, Bergero F, et al. Quantization-based

simulation of switched mode power supplies. Simulation

2015; 91(4): 320–336.

36. Brown P, Hindmarsh A and Petzold L. Using Krylov meth-

ods in the solution of large-scale differential-algebraic sys-

tems. SIAM J Sci Comput 1994; 15(6): 1467–1488.

Author biographies

Federico Bergero received a computer science degree

in 2008 and a PhD in informatics in 2012, both from the

UNR Argentina. He is currently a research assistant at

CIFASIS and holds a professorial position at the UNR

Argentina. His research interests include discrete event

systems, real time and parallel simulation, modeling lan-

guages and simulation tools.

Joaquı́n Fernández received his BS in computer science

in 2012 from the Universidad Nacional de Rosario,

Argentina. He is currently a PhD student at the French

Argentine International Center for Information and

Systems Sciences (CIFASIS). His research interests

include hybrid system simulation, real-time and parallel

simulation, simulation tools, and modeling languages.

Ernesto Kofman received his BS in electronic engineer-

ing in 1999 and his PhD in automatic control in 2003,

both from the National University of Rosario. He is an

adjunct professor at FCEIA–UNR. He also holds a

research position at the CIFASIS–CONICET. His research

interests include automatic control theory and numerical

simulation of hybrid systems.

Margarita Portapila is full professor at the School of

Civil Engineering of National University of Rosario and

head of the Computational Fluid Dynamics division at

CIFASIS.

Bergero et al. 61

 at CARLETON UNIV on January 14, 2016sim.sagepub.comDownloaded from

http://sim.sagepub.com/

