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Abstract
Although the Discrete Event System specification (DEVS) has over recent decades provided systems engineers with a
scalable approach to modeling and simulation, the formalism has seen little uptake in many other disciplines where it
could be equally useful. Our observations of end-user programmers confronted with DEVS theory or software suggest
that learning barriers are largely responsible for this lack of utilization. To address these barriers, we apply ideas from
human–computer interaction to the design of visual interfaces intended to promote their users’ effective knowledge of
essential DEVS concepts. The first step is to propose a set of names that make these concepts easier to learn. We then
design and provide rationale for visual interfaces for interacting with various elements of DEVS models and simulation
runs. Both the names and interface designs are evaluated using the Cognitive Dimensions of Notations framework,
which emphasizes trade-offs between 14 aspects of information artifacts. As a whole, this work illustrates a generally
applicable design process for the development of interactive formalism-based simulation environments that are learnable
and usable to those who are not experts in simulation formalisms.
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1. Introduction

The Discrete Event System specification (DEVS) provides

a general, rigorous formalism for describing discrete-event

simulations. It is used widely by simulation researchers

and systems engineers but has seen less uptake in other

disciplines where it could be extremely useful. DEVS is

frequently adopted as a basis for software libraries and

simulation environments. Most of these tools to date have

attempted to closely map their objects to the mathematical

constructs of the formalism. This approach has led to fea-

tures that make DEVS difficult for domain experts (who

mostly have limited knowledge of simulation theory) to

understand. For example, names such as ‘‘internal transi-

tion function’’ carry little meaning to those who have not

studied DEVS theory, whereas the word ‘‘model’’ may

cause confusion by evoking different interpretations for

different users. Another source of difficulty is the formal-

ism’s separation of a simulation program into a model-

independent simulator and various modeling elements.

This separation provides numerous benefits, yet contrasts

sharply with the imperative style of programming taught

first to many potential DEVS users.

Software itself presents new opportunities in learning

any formalism. Through careful interface design, support

for exploratory coding strategies such as copy-and-mod-

ify,1 freely available examples,2 and features such as

command-line completion, templates, and contextual help,

software can assist new users in understanding a system.

With the right design, software enables learning by doing.

Yet traditionally, systems engineers study DEVS theory

and then learn DEVS tools. A different approach is needed

for domain experts who prioritize the objective of their

code over its systematic development.3 To attract a larger

following, DEVS tools should assume the role of explain-

ing the formalism and take advantage of lessons learned in

end-user and visual programming.

A multitude of science, engineering, and design disci-

plines now have computational sub-disciplines that lever-

age state-of-the-art computing methods and technology to

address the needs of their area. These computational com-

munities have become large as both system capabilities
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and demand for these capabilities have grown. While

domain experts within these communities know little of

simulation theory, they make use of procedural scripting,

are familiar to some degree with object-oriented concepts,

and tend to have considerable experience with visual pro-

gramming. In particular, they tend to be comfortable with

dataflow visual programming, in which data flows from

one entity to another, and the program is represented by a

directed graph.4 Dataflow systems are both widely used

and actively developed in the architectural domain, where

among other benefits the paradigm helps designers para-

meterize building geometry.1 In the domain of life

sciences, dataflow programming aids in the specification

and execution of scientific workflows.5

The challenge of expanding DEVS utilization in the

computational communities of various domains can be

addressed by focusing on three objectives. First, change

the way DEVS theory is expressed to make it easier to

learn from a user’s perspective. Second, make software

consistent with the re-expressed DEVS theory. Third,

design visual interfaces that emphasize and relate the key

DEVS concepts associated with every element of the

users’ models and simulation runs. In the very early stages

of software design, before interfaces exist to facilitate eva-

luation through user studies, a set of qualitative guidelines

is needed to inform design decisions. We therefore propose

the use of a framework known as Cognitive Dimensions of

Notations,6 and apply it to all three objectives.

In this paper we pursue the design process outlined

above by first proposing a set of names to make DEVS

more approachable, and then presenting a set of visual

interfaces intended to inform and remind users of the form-

alism’s essential concepts. These interfaces exhibit novel

features, some prominent and others subtle, that we hope

will inspire simulation tool developers. Most importantly,

the rationale for all decisions is given, which will help

DEVS experts re-imagine their own simulation environ-

ments and attract not only systems engineers but also end-

user programmers from a wide range of disciplines. We

present the concepts discussed here through the canonical

simulation scenario of a bank.

2. Background and related work
2.1. Human–computer interaction

Researchers in the large and rapidly growing field of

human–computer interaction have explored a number of

topics relevant to the software-supported learning of form-

alisms and programming tools. Three topics in particular

have influenced our approach to visual interface design.

End-User Programming This provides insight into the

motivations of simulation practitioners from a range of dis-

ciplines. Writing and maintaining software is a professional

programmer’s primary job. An end-user programmer

however, has a different primary job: he/she writes a pro-

gram only to achieve a goal. This goal is not the program

itself, but something related to his/her job or hobby. For

example, a school teacher may program a spreadsheet to

calculate class grades, or an architect may write a simula-

tion to analyze the energy performance of a building.

Simulation tools have both types of users, and both groups

face barriers in authoring simulation models. The differ-

ence lies in the fact that end-user programmers are moti-

vated by their domain and not by the merit of producing

code, and therefore perceive these barriers as distractions7

that require cognitive attention.

In the attention investment model,8 the amount of atten-

tion a person spends on a task is considered as a currency.

So for each programming task, there is a certain amount of

attention ‘‘cost’’ that needs to be spent in order to receive

a ‘‘payoff’’ from the program (for example, time saved by

automating a task), with the ‘‘risk’’ of receiving no payoff

or incurring additional costs. Users take into account the

‘‘perceived’’ costs and risks of a programming task and its

payoff in their decision making process. For a simulation

system to be widely used, the cost and risk of creating,

editing, and using simulations must be low. In addition,

the perceived cost of these tasks must be low and in line

with the actual cost. In other words, the system should not

seem more difficult to learn and use than it actually is.

An increase in the utilization of DEVS-based software

will be accompanied by a shift in user demographics away

from systems engineers and towards experts in other

domains. Both barriers and attention investment are particu-

larly salient for domain experts; hence the visual interfaces

we design target end-user programmers. In general, when

we use the term user, we mean ‘‘end-user programmer’’.

Visual programming Visual programming, where more

than one dimension is used to convey semantics,9 shows

promise in reducing both barriers and perceived cost. Visual

programming languages use visual expression as part of

their syntax. Visual programming environments use tradi-

tional textual syntax with visual elements in the environment

to aid in creating or editing code. There have been several

studies on the effects of using visual programming tech-

niques on program comprehension, program creation and

program debugging. The results for program comprehension

are generally mixed and depend on the user and the type of

task. More significant improvements have been reported for

program creation, as well as program debugging.10 Visual

programming has become widely accepted among end-user

programmers.11 The goal of visual programming research is

not to eliminate textual code, but to improve programming

languages and environments and their ease of use, as well as

users’ accuracy and speed of programming. These goals are

pursued using the following strategies:.9

� Concreteness: expressing aspects of the program

using instances.
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� Directness: reducing the distance between the

user’s goal and the actions required to achieve that

goal, giving the user the feeling of directly manipu-

lating the object.
� Explicitness: making some aspect of the semantics

(such as dataflow or relationships) explicit in the

environment.
� Immediate visual feedback: automatically display-

ing the effects of program edits.

Spreadsheets are among the most successful visual pro-

gramming environments. They allow the user to work on

concrete data in the cells, give them the impression that

they are directly manipulating the data, make the relation-

ship between data cells explicit, and give immediate feed-

back on edits. Another widely used visual programming

language is Rhino3D’s Grasshopper add-on. Grasshopper,

a favorite among architectural designers, uses nodes and

links to visualize dataflow and parametric relationships

between geometric elements, with the result rendered

immediately in Rhino’s three-dimensional model viewer.

An effective visual programming environment for DEVS

would employ all four strategies while amplifying the

formalism’s support for modular model design. This is

analogous to the objective of the ConMan system,12 an

early example of visual programming involving communi-

cation between modular components.

Cognitive Dimensions of Notations Cognitive

Dimensions of Notations is a framework for evaluating the

usability of information artifacts, including both mathe-

matical formalisms and software interfaces. The frame-

work, first introduced by Green6 and later elaborated by

Green et al.,13 turns the knowledge of psychology of pro-

gramming into a form that is usable for non-psychologists.

It gives names to concepts that may seem obvious, but sig-

nificantly impact design decisions and trade-offs. The

framework comprises 14 dimensions, which we mark in

this paper with special typography.

� Role-expressiveness(cd): The purpose of an

entity is readily inferred.
� Hidden dependencies(cd): Important links

between entities are not visible.
� Consistency(cd): Similar semantics are

expressed in similar syntactic forms.
� Diffuseness(cd): The notation is verbose.
� Closeness of mapping(cd): The notation corre-

sponds closely to the problem world.
� Hard mental operations(cd): Use places high

demand on cognitive resources.
� Visibility(cd): Components can be viewed and

juxtaposed easily.
� Abstraction(cd): The notation provides adequate

levels of abstraction.

� Progressive evaluation(cd): Work-to-date

can be checked at any time.
� Juxtaposibility(cd): Different parts of the

interface can be viewed and compared side-by-side.
� Error-proneness(cd): The notation invites mis-

takes and the system gives little protection.
� Secondary notation(cd): Notation can carry

extra information by means of layout, color or other

cues.
� Viscosity(cd): Much effort is required to make a

change to a program.
� Premature commitment(cd): Decisions must be

made before necessary information is available.

The Cognitive Dimensions of Notations framework is

used in formative evaluation of software systems during

their design process. For example, Jones et al.14 use the

dimensions as guides in creating the Forms/3 spreadsheet

system. The framework is also used to evaluate existing

systems, such as Green and Petre’s15 evaluation of several

visual programming languages and environments, includ-

ing LabView and Prograph. It can also serve as a feedback

and evaluation method for users of a system, using the

Cognitive Dimensions of Notations questionnaire.16

Depending on the nature of the system and the type of

task it supports, some dimensions may be more important

than others and trade-offs may have to be made. A system

designer may try to increase the usability of the notation in

one dimension, keep the usability in a second dimension

constant, and inevitably reduce the usability in a third

dimension. We use the framework to analyze existing sys-

tems and to design new visual interfaces, and in doing so,

some dimensions came up more often than others. For

example, considering the target users of our system who

are end-user programmers, it is important for the notation

to show the purpose of the entities as clearly and readily as

possible (role-expressiveness(cd)) and to reveal the

dependencies between those entities (hidden depen-
dencies(cd)). Another example of a dimension that came

up frequently in our design discussions was diffuse-
ness(cd), not so much as a goal we were after, but a con-

sequence of our design decision to use visual elements to

express the notation. The list of dimensions above is

ordered based on how often they came up: the dimensions

that we used most frequently, such as role-expressi-
veness(cd) and hidden dependencies(cd), are at the

top of the list.

2.2. Approachability of DEVS

The DEVS formalism allows essentially all simulation

models to be expressed in a common form. A model is

either atomic or coupled, and is specified by defining each

mathematical element in the corresponding tuple in equa-

tion (1). The role of each element is described in Theory of

Maleki et al. 3
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Modeling and Simulation,17 the latest edition of the book

which introduced DEVS in 1976. The elements are evalu-

ated by a model-independent simulation procedure, which

can be found in the same book or in Algorithm 1 of this

paper’s Appendix.

Atomic Models
hX , Y , S, dext, dint, l, tai

Coupled Models
hX , Y ,D, fMdg,EIC,EOC, IC, Selecti

ð1Þ

DEVS has two key properties that facilitate a scalable

approach to the design and application of simulation mod-

els. First, given a set of models implemented in a common

form based on the theory, a single simulator may perform

simulation runs using any of them. The concept of a reusa-

ble simulator is not unique to DEVS, but an atomic mod-

el’s relationship with certain time durations gives the

formalism a high degree of generality which makes the

separation of model and simulator particularly appealing.

Second, DEVS models of either type can be combined to

represent increasingly complex real-world systems. It is

true that object-oriented programming and numerous mod-

eling paradigms address complexity using similar compo-

sitional strategies. However, a DEVS coupled model is

particularly modular in that its component models do not

reference one another.

It is a testament to the generality of DEVS that models

of numerous other formalisms can be formally mapped

onto DEVS models.18 This fact, combined with the

decades of systems engineering research in the area,

should convince simulation users in other fields that

DEVS can accommodate their modeling objectives with-

out restricting them to a specific paradigm. Nevertheless,

our observations suggest that DEVS remains unused by

many communities of simulation practitioners in need of a

common yet flexible strategy to facilitate collaboration.

We do not believe this reflects any fundamental limitation

of the theory. Based on our own early encounters with the

approach, we believe DEVS could achieve more wide-

spread adoption if it entailed less effort, or rather a lower

perceived cost in attention, to learn. In other words, we

believe that a lack of approachability is the key factor

impeding the use of DEVS.

The approachability of DEVS relates in part to its his-

tory. The formalism was largely inspired by earlier work

in systems theory, notably that described in the book A

Mathematical Theory of Systems Engineering.19 This

deeply rooted mathematical perspective contributes to a

number of practical benefits for expert users. For example,

there is a formula that expresses the ‘‘legitimacy’’ of a

model specification. In simplified language, legitimacy

indicates that a model will allow a simulator to progress

through a simulation run without getting stuck. Many

systems engineers have learned DEVS by studying these

theories. However, the effort it takes to interpret mathe-

matical descriptions of the formalism can become a deter-

rent for simulation users in other fields.

One must also acknowledge that DEVS requires users

to develop a mental model of the simulation procedure that

may be at odds with their past programming experience.

Many potential DEVS users will have first learned the

imperative style of programming, which represents com-

putations in the context of control flow. Given an impera-

tive program, a programmer can readily trace the possible

execution paths from one line to the next. Control flow is

somewhat hidden with DEVS, as an atomic model defines

the functions dext, dint, l, and ta but does not express the

flow of execution between them. This separation of the

simulation procedure from the models is what enables the

development of reusable simulators and the rapid integra-

tion of simulation models. It makes DEVS more useful,

but unfortunately less approachable.

Past work has addressed the approachability of DEVS

through various types of contributions, the most obvious of

which is the writing of accessible sections, chapters, and

books introducing the theory. The textbook by Wainer20 is

notable in that its detailed description of a DEVS simula-

tor, a seemly fundamental topic, is deferred until seven

chapters on domain-specific applications have been

presented.

DEVS can also be made more approachable by re-

expressing parts of the theory. Presenting the DEVS++

library, for example, Hwang21 re-expresses atomic models

by merging the internal transition function dint with the

output function l. The resulting function is denoted dy to

emphasize its relationship with the output set Y, and simi-

larly the external transition function dext is denoted dx to

relate it to the input set X. Goldstein et al.22 argue that

similar deviations from the theory can be found wherever

DEVS models are mapped from mathematical specifica-

tions onto computer implementations. The authors proceed

to recommend a number of changes to the original formal-

ism specifically intended for DEVS-based tools. Some of

these changes promote computational efficiency but others

might make the theory more approachable.

Helping programmers approach the formalism outlined

in (1), which is known as Classic DEVS, is only one of

the objectives of most introductory material on the subject.

Typically there is also an intention to make a vast amount

of related systems engineering literature more accessible.

This literature includes numerous extensions to the theory,

technological contributions, applications, and variants of

the formalism. The best known variant is the Parallel

DEVS formalism,23 which better exploits parallel comput-

ing technology for isolated simulation runs. A notable var-

iant named EasyDEVS aims to make the theory more

approachable by unifying Classic DEVS and Parallel

DEVS into a single formalism.24
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When introducing DEVS with the objective of making

the entire literature more accessible, it is clearly advanta-

geous to adhere to established naming and modeling

conventions. All works cited above use traditional nomen-

clature to a large extent. Nevertheless, it is interesting to

consider whether simulation users from other communities

might find DEVS more approachable if it were explained

using familiar terms and with only minimally necessary

links to systems engineering. Efforts have been made to

exploit established conventions within particular areas of

expertise. For example, Mooney and Sarjoughian25 com-

bine DEVS with the Unified Modeling Language (UML),

which is popular among software engineers. The DEVS/

UML combination is clearly useful, but does not align

with our user communities, whose members understand

mainly basic imperative languages and visual program-

ming interfaces. While interpreting DEVS through UML

makes DEVS accessible to the software engineering com-

munity, our work further expands this to communities that

practice more basic programming skills and techniques.

2.3. Existing visual interfaces for DEVS

To make DEVS more approachable through the design of

visual interfaces, one may build upon previous work on

domain-independent DEVS-based simulation environ-

ments. Several of these tools feature interfaces that lower

the perceived cost, and in many cases the actual cost, of

learning and applying various aspects of DEVS theory.

Visual node editing interfaces provide a means of view-

ing and editing coupled models in DEVS-based simulation

environments such as PowerDEVS,26 CD++ Builder,27

and GVLE.28 Such interfaces alleviate the need for textual

specifications of coupled model components and the links

between them. They help to distance users from the math-

ematical elements of the formalism, in some cases for

atomic models as well as coupled models. For example,

PowerDEVS provides a library of pre-implemented atomic

models, and a user new to DEVS can prepare a simulation

by simply creating instances of these atomic models and

visually connecting them. Graphical editing of composi-

tional models is very common in non-DEVS simulation

environments such as Simulink,29 Xcos,30 Ptolemy II,31

and Dymola,32 to name a few. The discrete-event simula-

tion environment OMNeT++33 allows both textual and

graphical editing of coupled models, and editing in either

interface causes the other to be updated automatically.

Visual interfaces that show the transfer of information

between events serve at least two important roles. First,

they reveal to a novice user both correct and false assump-

tions in their understanding of the simulation procedure.

Second, they assist all users in debugging their models.

Existing simulation environments demonstrate multiple

ways to represent this dynamic information. A timeline

interface such as the Sequence Chart in OMNeT++ plots

events in order of occurrence, along with arrows represent-

ing messages between events. Both OMNeT++ and the

MS4 Me simulation environment34 feature an alternative

style of interface in which messages are not plotted but

rather animated in sequence. By animating data transfer

along the links of the node editing interface, a user may

more easily relate occurrences in the simulation run to ele-

ments of the coupled model. On the other hand, the time-

line’s ability to simultaneously display events and messages

over a period of simulated time may be useful for observing

certain patterns. Our interest is in achieving the benefits of

both styles of interface by designing timelines exhibiting

visual similarities with model representations.

To simplify programming of the atomic models, DEVS-

based simulation environments support templating in vari-

ous forms. For example, CD++ Builder and MS4 Me can

generate class definitions with all the required member

functions, so that the programmer need only provide the

body of each function. PowerDEVS separates atomic

model functions into different tabs in the interface, hiding

the visual complexity of an object-oriented class. These

templating techniques allow users to focus their concentra-

tion on the logic of their models rather than tool-specific

syntactical conventions. That said, the user must still have a

solid understanding of DEVS at the outset, since otherwise

he/she will not know when each function is invoked nor

how data is transferred from function to function. The chal-

lenge for future interfaces is to continue to guide the user in

authoring a model while also clarifying the simulation pro-

cedure and the role of each function with respect to data.

A number of existing DEVS-based tools allow users to

approach DEVS indirectly by starting with fully diagram-

matic modeling paradigms. For example, both MS4 Me

and CD++ Builder include State Diagram editors in which

nodes represent assignments to state variables and links

describe transitions between these assignments. State

Diagrams and other fully diagrammatic models can be

automatically converted into DEVS models, so in a sense

their authors are using DEVS. However, our interest lies in

visual interfaces that not only produce DEVS models but

also communicate the distinguishing aspects DEVS theory.

3. Re-expressing DEVS theory

The primary objective of this work is to design visual inter-

faces that help end-user programmers arrive at some rea-

sonable interpretation of the formalism, and it is important

to acknowledge that a wide range of interpretations are

possible. We must first develop a clear picture of how we

wish users to interpret the formalism, as only then can the

visual interfaces be designed accordingly.

If our goal were to teach users the mathematics of the

formalism, the visual interfaces might display symbols

such as dint, and the associated functions would be labeled
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with ‘‘internal transition function’’ and other well-

established names. We decided to take a different approach

and aim to help users bridge from their general and domain

knowledge to a qualitative but effective understanding of

how to use DEVS. Because we are tailoring our interfaces

not for systems engineers but for programmers in other

domains, we take great liberties in proposing our own

names to make DEVS more approachable. We explain

each departure from the literature.

We begin with the word ‘‘model’’, which evokes differ-

ent interpretations for experts in different domains.

Consider for example a simulation of heat transfer through

a building. To the DEVS expert, the relevant ‘‘model’’ is

that of the heat transfer process, and, if it is an executable

model, it will require building geometry as initial input

data. To an architect, by contrast, the heat transfer process

is part of a solver while the building geometry is the

‘‘model’’. Thus this single word may become an early

source of confusion when DEVS is first introduced to an

architect, and the same can be said of many other types of

simulation users.

To address the inevitable overloading of the word

‘‘model’’, we advocate the use of more specific terms

wherever possible. Consider the four statements below.

1. In the proposed model, the withdrawal request

must be rejected if amount . balance.

2. The bank machine model is defined as hX, Y, S,

dext, dint, l, tai, where X= {(p, v) jp= ‘‘Arriving
Customer$^.

3. Open the atomic model by selecting the file

‘‘bank_machine.java’’.

4. When the model receives an ‘‘Arriving Customer’’

message, it computes the service duration.

The first model is likely a conceptual model. The sec-

ond is a specification that may formalize the conceptual

model. The third is an executable description of a bank

machine, or rather of a class of bank machines that can be

instantiated by supplying parameters. The executable

description may implement the specification. The fourth

‘‘model’’ represents an individual bank machine in the

context of some scenario; it may be an instance of the

executable description. When explaining DEVS to a broad

audience, we would minimize the use of ‘‘model’’ by

favoring ‘‘conceptual model’’, ‘‘DEVS model specifica-

tion’’, ‘‘DEVS class’’, or ‘‘DEVS instance’’ in situations

corresponding to those above.

We acknowledge that these conventions are a departure

from the literature. Systems engineers will point out that

‘‘a DEVS model specification’’ may simply be called ‘‘a

DEVS’’, but we expect this abbreviation to cause confu-

sion for some users. Instead, the phrase ‘‘a specification’’

may be adopted when ‘‘DEVS model’’ is implied by the

surrounding context. A more significant departure from the

literature is our use of ‘‘class’’ and ‘‘instance’’, which sug-

gest a strong relationship to the similarly named object-

oriented concepts. We believe this analogy is appropriate

and will be helpful to experts in the computational sub-

disciplines of their domains. In fact, DEVS models are

often implemented as object-oriented classes, and in these

cases the relationship is more than just an analogy. We

note the word ‘‘model’’ has been identified as a source of

confusion in non-DEVS modeling frameworks, and this

confusion has even been linked to costly user errors in

managing model libraries.35

We turn our attention to the term ‘‘coupled model’’,

which follows from the coupling of systems concept that

predates DEVS. This well-establish terminology reflects a

bottom-up perspective on system composition, where pair-

wise connections between interacting subsystems are intro-

duced one at a time until the desired level of complexity is

achieved. Unfortunately, a ‘‘couple’’ implies two of some-

thing, whereas a ‘‘coupled model’’ can in fact have any

positive number of components. We therefore find ‘‘com-

posite model’’, as used in the DEVS-based CoSMoS envi-

ronment,36 more approachable. In most cases we would

avoid ‘‘model’’ and explain to users that a DEVS class is

either an atomic class or a composite class. Similarly, a

DEVS instance is either an atomic instance or a composite

instance. Professional programmers will be reminded of

the Composite Design Pattern,37 which simplifies the rep-

resentation of hierarchical structures in a manner closely

related to the DEVS principle of closure under coupling.

The word ‘‘component’’ is retained, but we remind our-

selves that a component is strictly an element of a compo-

site class. A component represents a DEVS instance, but

the terms are not interchangeable. In a simulation involv-

ing one atomic class, there is one atomic instance but no

components. In a simulation involving one composite class

with four components assigned atomic classes, there are

four atomic instances plus one composite instance.

In the context of the theory, it is reasonable to refer to

simply ‘‘an input’’, since DEVS models are associated

with only one form of influencing data: a value, affixed

with a port name, received at some point in time. In prac-

tice, a parameter assigned at the beginning of a simulation

run might also be considered ‘‘an input’’. Similarly, ‘‘an

output’’ could be interpreted as a timed (port name, value)

pair as in DEVS theory, but it could also refer to a statistic

calculated at the end of a simulation run. We therefore

avoid the use of ‘‘input’’ and ‘‘output’’ as countable nouns

describing data, at least where the names ‘‘parameter’’,

‘‘message’’, and ‘‘statistic’’ allow us to be more specific.

Note that a message is the value that is actually transferred

between DEVS instances, without any affixed port name.

Because parameters, messages, and statistics all pertain

to information transferred to or from a DEVS instance, it is

reasonable to organize all three types of data using named

ports. Both atomic and composite classes are permitted to
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have any number of any type of port. The four types of

ports are listed below along with the associated type of

data and the relevant phase of a simulation run.

� Initialization ports represent parameters whose val-

ues are provided to the DEVS instance during the

initialization phase that starts a simulation run.
� Simulation input ports receive messages during the

simulation phase of a simulation run.
� Simulation output ports send messages during the

simulation phase of a simulation run.
� Finalization ports represent statistics whose values

are assigned by the DEVS instance during the fina-

lization phase that concludes a simulation run.

The qualifiers ‘‘initialization’’, ‘‘simulation’’, and

‘‘finalization’’ allow several concepts to be introduced

with a great deal of symmetry. For example, there are

initialization links, simulation links, and finalization links.

Each link may only connect to the similarly named type of

port. Each link directs its associated type of data, either a

parameter value, a sequence of messages or a statistic

value, during the similarly named phase of a simulation

run. One possible objection to this scheme is the use of

‘‘simulation’’ to refer to only one of the three phases. The

justification is that the other two phases, initialization and

finalization, rely only on familiar programming concepts.

DEVS can therefore be described as building upon a pro-

grammer’s preexisting knowledge through the incorpora-

tion of a simulation phase and its associated time-related

elements: messages, simulation ports, simulation links,

and simulation events.

A simulation event represents a self-contained set of

computations associated with a particular DEVS instance

and a single point in simulated time. For an atomic

instance, every simulation event is associated with an

invocation of either an internal or external state transition

function. We observe that the name ‘‘internal transition

function’’ can be regarded as an abbreviation of ‘‘intern-

ally triggered state transition function’’. Although the full

12-syllable phrase is prohibitively long, the omission of

‘‘state’’ conceals the type of object that is transitioning,

while the omission of ‘‘triggered’’ leads to ambiguity. If a

user assumes that ‘‘internal’’ and ‘‘external’’ refer to the

scope of a transition’s effects, he/she might incorrectly

associate internal and external transitions with, respec-

tively, the input and output of messages.

After searching for relatively short names that unam-

biguously differentiate the two types of simulation events,

we settled on ‘‘planned event’’ and ‘‘unplanned event’’. A

planned event is an internally triggered event that was at

one time scheduled, but at some point actually occurred.

Note that in a discrete time simulation, all events are

‘‘planned’’ in the sense that their timing is known at the

outset; appropriately, such simulations have only planned

events. A unplanned event is an externally triggered event

that effectively cancels the upcoming planned event due to

the ‘‘unplanned’’ arrival of a message.

The functions associated with planned and unplanned

events are, respectively, the planned event handler and the

unplanned event handler. We use ‘‘handler’’ in place of

‘‘function’’ to distinguish these atomic class elements

from the more general functions with which all program-

mers are familiar. Event handlers differ from regular func-

tions primarily in their relationship with time. The value

known as the ‘‘elapsed time’’ is preserved, but we refer to

it as the elapsed duration. The word ‘‘duration’’ better

reflects the fact that this quantity is measured relative to a

previous event, as opposed to the beginning of the simula-

tion. What is known as the lifetime of the state, or formally

ta(s), can instead be referred to as the planned duration.

The name ‘‘planned duration’’ exhibits a helpful symmetry

with ‘‘elapsed duration’’, and also emphasizes the fact that

a ‘‘planned’’ event will occur should this duration of time

elapse.

Having proposed a reasonably comprehensive set of

names to describe DEVS to an end-user programmer, we

are now ready to apply these phrases in the design of visual

interfaces. Beforehand, let us briefly reflect on several

principles from the cognitive dimensions of notations

framework that provide a general rationale for the new

names.

When choosing a name, closeness of mapping(cd)

suggests that its meaning in a DEVS context should map

closely to its meaning in a context already familiar to the

user. This affirms our restrictions on the use of ‘‘model’’,

which carries numerous domain-specific meanings, as well

as our avoidance of ‘‘coupled’’ so as not to imply ‘‘a pair’’.

We believe that ‘‘class’’, ‘‘instance’’, and ‘‘composite’’

avoid misleading associations and map closely to object-

oriented concepts that are growing in popularity even

among novice programmers.

When a name is used in a DEVS-related context, it

should always carry the same meaning. Our names pro-

mote this type of consistency(cd) in a preemptive fash-

ion. For example, it is likely that, at various points in a

user’s experience with DEVS, ‘‘input’’ will be applied to

some sort of initial value as opposed to a value received at

a point in simulated time. Such inconsistencies are diffi-

cult to avoid, unless one actively promotes the use of more

specific terms such as ‘‘parameter’’ and ‘‘message’’.

It is common to encounter trade-offs between cognitive

dimensions. A clear example of this is the widespread

avoidance of ‘‘internally triggered state transition func-

tion’’ in favor of ‘‘internal transition function’’. The first

phrase clearly suffers from diffuseness(cd) due to its

length, but the latter gives up role-expressive-
ness(cd) to some degree by omitting two words that help

describe the element. We consider ‘‘planned event

handler’’ to be a sufficiently short and reasonably
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role-expressive alternative. The phrase ‘‘lifetime of the

state’’ and the semantically equivalent expression ‘‘ta(s)’’

exhibit the same trade-off, and for that reason we prefer

‘‘planned duration’’.

4. Designing visual interfaces
4.1. Atomic class interface

Unlike their composite counterparts, atomic classes are

structurally similar to one another. They all have the same

four event handlers, and each handler is always linked with

a particular one of the four types of ports. To mirror this

structural consistency in interactive consistency(cd), a
visual atomic class interface should show all ports and

handlers of an atomic class in one place, and allow a user

to design a new class by essentially ‘‘filling in the blanks’’.

We acknowledge that this level of assistance may not be

necessary for a systems engineer already familiar with

DEVS theory. For an end-user programmer, however, a

comprehensive, template-like visual interface may act as a

valuable learning aid as well as a practical programming

tool.

Figure 1(a) illustrates our proposed atomic class inter-

face as it might appear when exploring or enhancing a

hypothetical ‘‘Bank Machine’’ class. The fact that there

are four types of ports conveniently allows them to be

grouped at the corners of the interface. By scanning the

corners in left-to-right, top-to-bottom order, we see quickly

that the Bank Machine has three initialization ports repre-

senting parameters, two simulation input ports for receiv-

ing messages, four simulation output ports for sending

messages, and two finalization ports representing statistics.

Arranged in a diamond-shaped configuration, the four

event handlers exhibit the following symmetries:

� each row of handlers is associated with a particular

phase: initialization, simulation, finalization;
� the upper three handlers compute planned durations

(arrows lead to the clock symbol);
� the lower three handlers observe elapsed durations

(arrows lead from the clock symbol).

In order to reduce the number of handlers to the four

shown, a number of conventions were adopted from exist-

ing DEVS tools. The time advance function ta is absorbed

into the upper three handlers, as is done in DEVSJAVA38

and CD++.20 Users of this interface will therefore learn

about ‘‘planned durations’’ in place of ta. Also, the output

function l is absorbed into the planned event handler (i.e.

internal transition function). As in DEVS++,21 this devia-

tion from the mathematical formalism emphasizes the

symmetry between unplanned and planned events with

respect to simulation input and output ports. As recom-

mended by Goldstein et al.,22 a single planned event may

produce multiple messages. This is convenient in the case

of the Bank Machine class, assuming the departure of a

‘‘Served Customer’’ is modeled to coincide with an

‘‘Account Change’’ message communicating the result of

a withdrawal or deposit transaction. The Appendix pro-

vides a mapping between this adaptation of DEVS and the

classic version of the formalism, showing that they are

essentially equivalent.

Having identified the most prominent elements of the

atomic class interface, we turn our attention to more spe-

cific design decisions and the cognitive dimensions they

promote. These decisions address various user needs we

consider at high risk of being neglected in DEVS-based

software.

A user needs to understand the simulation proce-

dure as they develop an atomic class. The separation of

model and simulator is an essential principle of DEVS,

but it is important that ‘‘separation’’ be interpreted as

‘‘semantically distinct and independent’’ as opposed to

‘‘visually separated’’. It is common in DEVS tools for the

simulation procedure to be hidden from users, or shown

only in the documentation. This lack of visibility forces

the users to imagine the simulation procedure in their

head, or to switch their attention back and forth between

the documentation and the model interface in an effort to

determine the order of events. The timing of events may

also be unclear to an inexperienced user. He/she may dis-

cover from the code how the planned duration is calcu-

lated, yet fail to understand when the simulator actually

applies this duration and advances the simulation time.

To increase the visibility(cd) of the simulation pro-

cedure, and to reduce hard mental operations(cd) in
determining the order of events, we use arrows, decision

points, and loops to show the flow of program execution.

The decision points in Figure 1(a) indicate that if the

‘‘Planned duration.’’ has ‘‘elapsed’’, a planned event

occurs; if it is ‘‘Interrupted by.’’ an ‘‘incoming mes-

sage’’, an unplanned event occurs; if it is ‘‘Interrupted

by.’’ the ‘‘end of simulation’’, finalization occurs.

Observe that the point in the procedure where time

advances is marked by a clock symbol, promoting clo-
seness of mapping(cd) between simulation time and a

user’s preexisting knowledge of time.

The interface in Figure 1(a) combines model and simu-

lator elements from a visual standpoint, yet keeps the

model and simulator semantically separate. To maintain

this separation, the key principle is that the only elements

of the interface that may change are those related to the

model: the number of ports, the names of the ports, and

the code within each handler. The thick gray arrows, loops,

decision points, and clock symbol are simulator elements

that appear the same for all models and remain unchanged

as models are developed. The distinction between editable

model elements and non-editable simulator elements,

which can be further emphasized by highlighting editable
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objects when hovered over, should help the user discover

that with DEVS he/she has neither the ability nor the need

to alter the simulation procedure. In fact this fundamental

concept can be explicitly stated in a dialog box that would

appear if a user attempts to alter a simulator element by

clicking on it. Users will be familiar with the locking of

cells in an Excel spreadsheet: one of many examples of

editable and non-editable objects juxtaposed in a helpful

way.

A user needs to understand the role of each handler

in observing and computing data. In DEVS theory, the

input and output of every function is expressed mathemati-

cally with statements such as dext : Q 3 X ! S. Systems

engineers typically learn these statements prior to using

DEVS in a programming environment, but end-user pro-

grammers need the software to first inform and later

remind them of the role of each handler with respect to

data.

To indicate the flow of data into, out of, and among the

four event handlers, our atomic class interface combines

the procedural representations mentioned above with ele-

ments from dataflow programming. This increases the

role-expressiveness(cd) of each handler. As shown

in Figure 1(a), the visual interface also uses shapes, colors

and orientations to distinguish between different types of

data and their respective ports. Initialization and finaliza-

tion links are pale gold in color, and flow in a left-to-right

direction. Simulation links are blue with a top-down direc-

tion, carrying messages from the simulation input ports to

the unplanned event handler and from the planned event

handler to the simulation output ports. State links, shown

in gray, serve three purposes. First, as previously dis-

cussed, they play a key role in illustrating the simulation

procedure. Second, they clarify the role of the handlers in

observing and modifying the state of an atomic instance.

Third, they draw attention to possible hidden depen-
dencies(cd) between handlers: a state change produced

by one handler may influence computations in any down-

stream handler.

A user needs to relate sections of code to one another

and to other atomic class elements. When the DEVS

formalism is used to present an atomic model specifica-

tion, each function is defined by a separate formula identi-

fied by a variable: dext, dint, l, or ta. Similarly, when a

visual interface is used to program an atomic class, each

handler may be coded in a separate text area identified by

a label: ‘‘Initialization’’, ‘‘Unplanned Event’’, ‘‘Planned

Event’’, or ‘‘Finalization’’. But whereas examples of

Figure 1. The visual interface of the atomic class with handlers collapsed (a) and expanded (b).
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atomic model specifications often fit on a page, we cannot

expect all of an atomic class’s code to fit on a computer

screen. An obvious way to address screen size limitations

is to place each handler’s code in a scrollable text area on

its own tab. Unfortunately, this design may prevent a user

from simultaneously viewing related sections of code in

different handlers. Another option is to dedicate a separate

floating window to each hander. Floating windows may

provide too much flexibility, however, making it hard to

remember which handler was placed where. Aside from

the issue of displaying multiple sections of code, it impor-

tant for an end-user programmer to relate the code to the

simulation procedure and data flow logic.

To help users view sections of code in a helpful context,

we envision the use of animated transitions to expose

handler code in two stages. In the first stage, the four hand-

ler compartments in Figure 1(a) expand, revolve around

their common center by roughly 45�, and acquire scrolla-

ble text areas as shown in Figure 1(b). Juxtaposing the four

event handlers in this fashion reveals hidden depen-
dencies(cd) between them at the level of the code. Where

possible, the ports and links of Figure 1(a) are retained in

Figure 1(b) to remind users of each handler’s relationship

with the simulation procedure and various types of data.

Port styles and link colors are maintained, promoting

consistency(cd). In the second stage, a user may focus

on a single handler by expanding the selected compartment

in Figure 1(b) to completely cover the other three

compartments.

A user needs to correct and/or confirm his/her

understanding of the simulation procedure and atomic

class code. Understanding barriers, according to

Ko et al.,39 emerge when end-user programmers cannot

evaluate the behavior of the program relative to their

expectations. In other words, even when they think they

understand the simulation procedure, the program does

something they did not expect. Ko et al.39 also report infor-

mation barriers occurring when users catch an error or

unexpected behavior, but do not know what causes it and

how to go about fixing it. Increasing the visibility(cd)

of the simulation procedure in the context of specific runs,

and maintaining its connection with the atomic class code,

help in lowering understanding and information barriers.

Figure 2 shows the visual design of the atomic class

debugging tool, which consists of the atomic class code

view on the left and a timeline interface on the right. When

a simulation is run, unplanned events (purple bars near the

top of the interface) and planned events (green bars near

the bottom) appear on the timeline. There they exhibit the

same colors as their corresponding handlers in the atomic

Figure 2. The atomic class debugging tool, consisting of the code view and the visualization of events with messages and state
variables displayed in the timeline on demand.
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class interface to maintain consistency(cd). Ports and

events in the timeline are aligned with the code view to

reduce hard mental operations(cd) involved in relat-

ing the two views. To further emphasize related elements,

hovering over an object in one view may produce high-

lighting in both views.

The debugging tool allows the user to watch variables

and messages to aid in finding the source of errors and fix-

ing them. The horizontal alignment of variables and mes-

sages along a time axis is common practice for static

diagrams and is also seen in the DEVS-Suite simulation

tool.40 A feature more unique to the proposed interface is

the vertical alignment of ports between views, as well as

the alignment of the upper/lower boundaries of unplanned/

planned events and their respective handlers. This arrange-

ment of elements gives rise to a large region in the center

of the timeline where state variables can be visualized.

Seven variables are shown in the middle of the timeline in

Figure 2. The timeline navigation tool at the top allows

the user to go back and forth in time and track these vari-

ables over time, reducing the need for breakpoints to stop

the process before it crashes and println statements to

observe past values of variables.41 We acknowledge that

the elements in the timeline will have to change dynami-

cally as the user zooms out to reveal thousands of events.

Multiscale widgets such as FacetZoom42 may help the

debugging tool scale to accommodate complex atomic

classes and simulation runs.

4.2. Composite class interface

As observed in Section 2.3, visual node editing interfaces

are a common alternative to textual interfaces for the

implementation of composite models. This style of inter-

face is arguably the most prominent instance of visual pro-

gramming applied in simulation environments, and it

serves as a starting point for our own composite class

interface. One unusual feature of our interface is that the

components are always placed in a cascading vertical

arrangement. This layout is shown on the left of Figure 3

for a ‘‘Bank’’ model consisting of a lineup for a bank

machine, the machine itself, a lineup for a bank teller, and

Figure 3. The visual interface of the composite class on the left, which is accompanied by the visualization of events on the right in
the composite class debugging tool.
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the teller itself. The user may reorder the components, in

which case the affected links should be re-positioned auto-

matically. Observe that the cascading of the components

reduces the number of necessary link turns, lowering

diffuseness(cd). Also note that our preference for a

familiar top-to-bottom, left-to-right cascade is one of the

justifications for placing the simulation input and output

ports on the top-right and bottom-left corners. We explain

how this vertical layout and other design decisions address

the needs of end-user programmers.

A user needs to understand the relationship between

atomic classes, composite classes, and components.

Atomic and composite model specifications differ signifi-

cantly in structure and appearance. It is therefore expected

that a typical DEVS-based tool will provide two very

different-looking interfaces: one or more code editors for

an atomic class, and a node editor for a composite class.

Unfortunately, this inconsistency in visual representation

means that users may not necessarily transfer what they

learn from one interface to the other. For example, a user

may be slow to recognize that both types of classes feature

the same types of ports, communicate using the same

types of data during the same phases of a simulation run,

and can be assigned to components of a composite class.

The similarities between atomic and composite classes

can be emphasized wherever appropriate by maximizing

consistency(cd) between the visual interfaces of atomic

and composite models. First, the outermost compartment

that represents an entire class is the same shape for the

atomic class in Figure 1(a) and the composite class on the

left of Figure 3, with ports placed in the same locations

and drawn with the same styles. Observe that the same

style of compartment is also used for the four components,

suggesting they are associated with classes of either type.

Finally, although they were not required by DEVS theory,

we included links in the atomic class interface to help

users identify the same types of data in the composite class

interface. In both interfaces, messages are directed by blue

simulation links that connect to ports in a downward

direction.

A user needs to relate the elements of a composite

class to events and messages in a simulation run. Like

its atomic counterpart, a composite class consists of static

elements representing dynamic behavior, and a user may

have difficulty understanding this model-simulation rela-

tionship. In the case of a composite class, it is particularly

difficult to explain how time advances without showing

case-specific sequences of events, as well as the transfer of

information from one event to another. Such visualizations

are therefore essential for helping end-user programmers

learn DEVS, and may also serve as a valuable debugging

aid for all users. The challenge for interface designers is to

show the sequence and timing of events, the flow of data,

and the composite model itself such that all elements can

be related to one another.

When a simulation is run, the composite class interface

may be accompanied by a timeline of events and messages

as illustrated in Figure 3. The vertical layout of compo-

nents in the class interface allows them to be aligned with

the timeline events of the corresponding DEVS instances.

This eliminates the need for additional labels on the time-

line, and promotes juxtaposibility(cd) with regard

to modeling and simulation elements. The ports are also

aligned between the class interface and timeline, reducing

hard mental operations(cd) in determining which

link is responsible for a given transfer of data. For the sake

of consistency(cd), the colors of planned and

unplanned events in the timeline match those of the corre-

sponding handlers in the atomic class interface.

A user needs to be mindful of the ordering of simul-

taneous planned events. In theory, this is determined by

the tie-breaking function Select. In practice, most simula-

tors prioritize the component closest to the front of a user-

defined list, and the manner in which this list is visually

represented can affect the likelihood of a false assumption

about which messages may preempt which events. For

example, unless the list is an integral part of the interface,

the user may simply forget how the components are

ordered. A more subtle issue is whether a user understands

that simulation links have slightly different roles depend-

ing on whether they approach higher- or lower-priority

components.

In addition to promoting alignment with the timeline,

the vertical layout of our composite class interface implies

an ordering of components. The higher a component is

located in the diagram, the higher its priority. This concept

should be easily understood due to its closeness of
mapping(cd) with a user’s mental model of organizational

hierarchies: higher positions are generally associated with

higher priorities. The convention also produces a visual

distinction between upward and downward simulation

links. This promotes role-expressiveness(cd) once
the user understands that only a downward link, which

approaches a lower-priority component, is able to preempt

an imminent planned event by triggering an unplanned

event instead.

A user needs to manage data dependencies during

initialization and finalization. The DEVS formalism does

not provide mathematical elements for initialization and

finalization, and we note that a number of specification

properties such as legitimacy can be formally analyzed

without this information. In DEVS-based tools it is com-

mon practice to include parameters and initialization func-

tions in atomic classes, but not composite classes. The

reason is that the user is generally permitted to initialize a

composite instance by assigning parameters directly to

each component. Unfortunately, this functionality may

hide dependencies(cd) among component parameters.

For example, suppose that both the Bank Machine and

Bank Teller atomic classes have an Exchange Rate
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parameter. When these classes are assigned to components

of the Bank composite class, the need to keep the

Exchange Rate parameters consistent imposes an uncom-

fortable burden on the user.

Our composite class interface can be expanded horizon-

tally to reveal initialization and finalization elements, as

illustrated in Figure 4. This view is heavily influenced by

dataflow visual programming, which is suitable for the task

of initializing component parameters as it reduces hidden
dependencies(cd) on the parameters of the composite

class. These dependencies may take several forms: a one-

to-one mapping, as demonstrated by the Machine Lineup

Capacity parameter; a one-to-many mapping, as demon-

strated by the Exchange Rate parameter; and a computa-

tion, as demonstrated by the Accounts initialization node

that generates an initial set of customer balances for both

the Machine and Teller components. As is typical in data-

flow programming, the initialization and finalization links

form a directed acyclic graph. Note that the color of these

links, their left-to-right orientation at port connections, and

the style and placement of the initialization and finaliza-

tion ports distinguishes parameter- and statistic-related

data from message data, promoting consistency(cd)

with the atomic class interface.

Our target community is accustomed to using dataflow

programming to both specify and transform objects in

their domain. In dataflow programming, a node represents

a function that may be evaluated once values become

available on all of its input ports. We include examples of

such user-defined functions in both the initialization and

finalization steps to demonstrate that users can encapsulate

these functions in the places where they will be used.

Initialization and finalization functions, such as those rep-

resented by the Accounts and Waiting Customers nodes,

do not contradict DEVS since they are invoked only before

and after the simulation process where time advances. In

other words, they are external to the execution of a DEVS-

based simulation. We argue that these dataflow program-

ming elements will help users better connect the simulation

to the domain models that are the users’ primary focus.

We believe there is a strong case for incorporating ele-

ments of dataflow visual programming at least for the initi-

alization of component parameters. Providing similar

elements for finalization, as shown on the right-hand side

of Figure 4, completes what we intend to be a very sym-

metrical mental model of DEVS. Experts may argue that

the processing of statistics belongs in a separate transducer

class associated with the experimental frame as opposed to

Figure 4. The initialization and finalization view of the composite class interface, featuring dataflow programming elements such as
the Accounts and Waiting Customers nodes.
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the representation of a real-world system. Without taking a

firm stand on this issue, we suggest that our finalization

elements provide a mechanism for processing statistics in

any class. Once this mechanism is understood by the user,

it is possible to recommend a set of best practices which

may include the consolidation of statistics in transducer

classes. For the sake of role-expressiveness(cd), we
would prefer not to use the term ‘‘transducer’’ but rather

‘‘analysis class’’.

Figure 5 shows the full view of the composite class,

where message links and initialization and finalization ele-

ments are overlaid. It is up to the user to choose among the

three composite class views based on what data is relevant

for the task at hand. We envision an environment that com-

plements these views with an interface that allows the user

to manually rearrange the nodes. Manual layouts common

to existing simulation tools remain beneficial for two rea-

sons: to minimize link overlap or to use the alternative lay-

out as a form of secondary notation(cd). Ultimately,

we want to be able to combine the system’s automatic lay-

out and the user’s manual layout in a meaningful way.

5. Discussion and conclusion

We view this paper more as demonstrating an approach to

making DEVS easier to learn and use for a potentially

large community of users who know much about the

phenomenon they want to simulate but little about DEVS,

and less as a demonstration of a new interface for DEVS.

To this end we have presented both design decisions and

rationale, the latter using concepts from end-user program-

ming and the cognitive dimensions of notations.

Any reliable evaluation of our interfaces requires

implementation and user studies. Even the names underly-

ing an interface, such as the names proposed in Section 3,

lend themselves to systematic investigation once they are

embedded in software. One methodology for investigating

naming conventions involves the recording and collabora-

tive examination of programming-related conversations, as

demonstrated by Katzenberg and Piela.35 In the results of

user studies on vocabulary and visual interfaces, we can

expect both confirmation of our approach and evidence of

trade-offs that must be made. Cognitive dimensions theory

predicts that improvements in one dimension may be

linked to problems created for others. In the following, we

predict several such trade-off effects.

The presented interfaces will increase overall diffu-
seness(cd) when compared with a standard text editor

interface to the simulation code. It is very difficult to

improve on the compactness of text, especially when a pro-

grammer takes advantage of functions for reusable elements

and modern programming language features such as inheri-

tance. On the other hand, these abstraction(cd) mechan-

isms tend to increase hidden dependencies(cd), which

Figure 5. The overall view of the composite class interface
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should be addressed in a visual interface. Still with the issue

of functions and inheritance, the absence of devices for these

in the interface will make it less abstract(cd). However,
composite classes are an abstraction(cd) mechanism,

whose purpose is to improve role-expressiveness(cd)

and closeness of mapping(cd), but require devices such
as careful link layout to reduce hard mental opera-
tions(cd). Of course, further design informed by cognitive

dimensions may improve these trade-off situations.

As a consequence of increased diffuseness(cd), our
visual interfaces and others like them will not scale easily

as DEVS classes grow in size. Atomic classes grow pri-

marily in the internal complexity of their four main user-

defined parts: the handlers for initialization, finalization,

planned events and unplanned events. However, these

structures can and do become complex, requiring addi-

tional user-defined functions. Composite models may pres-

ent larger problems, particularly if they grow by accretion

in an iterative process of simulation development. We

should expect to see this problem addressed in several

ways: through deepening of the model hierarchy (extract-

ing subsets of the components into new composite classes),

through semantic zoom in which the visualization of a

model changes with its size (the smallest possible visuali-

zation being a pixel and the largest one that fully displays

all parts of a model); model compilation in which models

become black boxes to a user; and by the brute force

method of increasing display size (the cost of which is fall-

ing dramatically, but which is limited by human vision and

attention constraints).

Further delving into composite classes reveals both

benefits and trade-offs in other cognitive dimensions. A

composite class comprising only atomic components could

quickly become extremely diffuse(cd). Extracting multi-

ple atomic (or composite) components and encapsulating

them within a new composite class presents a single con-

cept to a user. This may improve role-expressive-
ness(cd) in cases where the grouped components

collectively perform a well-defined function in the context

of a system, or it may promote closeness of map-
ping(cd) if the new group reflects a familiar real-world

object. However, when expressed as a single node, a com-

posite class increases hidden dependencies(cd): what
is the relation between incoming and outgoing messages?

Also, which component addresses a particular aspect of a

simulation? This problem increases sharply when other

composite classes occur as components. Fully answering

the above questions may involve fully expanding the com-

posite class to reveal all atomic classes, which would dra-

matically increase diffuseness(cd) and may well

decrease role-expressiveness(cd) as the sheer com-

plexity of the display may make it difficult to figure out

what individual components actually do. The design pre-

sented here is not alone in facing this problem: handling

such compositions is one of the primary issues for all

visual programming languages. However, the devices of

vertical ordering of components and port alignment pres-

ent a novel approach to this enduring challenge.

Visual programming interfaces present new opportuni-

ties for debugging, some of which we take advantage of in

our current design and others we leave for future work.

For example, juxtaposing(cd) the debugging tool with

the simulation interface and aligning their ports and nodes,

liveness of the entire interface with highlighting of compo-

nents across views43, and the ability to watch the progress

through the code line-by-line and through time event-by-

event in one interface, all increase visibility(cd) and
role-expressiveness(cd) and decrease error-
proneness(cd) and hard mental operations(cd) of
the system and encourage progressive evalua-
tion(cd). These end-user programming ideas might be

combined with emerging research in formalism-based

simulation debugging, such as the recent work by Mierlo

et al.44

We argue that the interface designs presented here may

help DEVS tool designers improve the reception of their

work. For example, by critically examining established

naming conventions from an end-user perspective,

designers may improve both learnability and ease of use

once learned. By using cognitive dimensions analysis dur-

ing design, designers may discover not only issues, prob-

lems and trade-offs (for example, the trade-off between

supporting abstraction(cd) and reducing hidden
dependencies(cd) that occurs in composite classes), but

also motivate and recognize potentially useful new design

elements (such as the component cascade in the composite

class interface). By adapting our approach to other model-

ing formalisms, such as Parallel DEVS, and other para-

digms, such as agent-directed simulation, designers may

not only improve the user reception of an entire class of

tools, but also better reveal commonalities among these

diverse approaches. Clearly, we have only touched the sur-

face here. It seems entirely safe to claim that there is

plenty of opportunity to make DEVS-based simulation

more accessible to non-DEVS end-user programmers who

are experts in the domain being modeled.
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Appendix

With the objective of promoting DEVS utilization in

domains outside of simulation research and systems engi-

neering, the Introduction outlined the following strategy.

First, change the way DEVS theory is expressed to make it

easier to learn from a user’s perspective. Second, make soft-

ware consistent with the re-expressed DEVS theory. Third,

design visual interfaces that emphasize and relate the key

DEVS concepts associated with every element of the users’

models and simulation runs. Having pursued this strategy

throughout the paper, we find ourselves with an adapted ver-

sion of DEVS. Here we show that this adaptation remains

essentially equivalent to the classic version of the formalism.

We begin by comparing the simulation procedures

associated with Classic DEVS, the mathematical elements

of which are listed in Section 2.2, and our adapted version

of DEVS, illustrated in Figure 1(a). To simplify the com-

parison, we omit the classic sets X, Y, S that contain the

permissible values of input messages, output messages,

and instance states. These sets provide both a form of doc-

umentation and a degree of reliability. However, their rea-

lization in DEVS-based software depends on the

programming language used, which is beyond the scope of

this paper. We therefore focus on the four classic functions

dext, dint, l, and ta, as well as the four proposed event

handlers that take the place of these functions.

The pseudocode listed in Algorithm 1 describes the basic

simulation procedure for Classic DEVS. The model and ini-

tial state s0 are known at the outset. We assume that all input

messages are initially available in the form of a time series

tsin containing time (t), port (port), value (msg) entries of the

Maleki et al. 17

 at CARLETON UNIV on September 7, 2015sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


form [t, [port, msg]]. In contexts involving interactivity or

real-time control, these messages become available only as

the simulation is underway; nevertheless, the pseudocode

provides useful guidance as to how the messages should

influence a simulation. We also assume that a simulated

time point tend is supplied, and that the simulation ends as

soon as the current time t reaches this point. Other terminat-

ing mechanisms can be used with minimal change to the

overall procedure. The result of the algorithm is the time

series of output messages tsout, the final state s, and the time

elapsed in the final state Dte. One may modify the algorithm

to also record some or all of the intermediate states that

occur as the simulation progresses. It is remarkable that,

given suitable definitions for the functions dext, dint, l, and

ta, this algorithm can describe essentially any simulation run

regardless of its domain or the timing patterns that emerge

between its events.

As with most computer programs, certain manipulations

can be performed with minimal or zero effect on the nature

of the algorithm. An example of a minimal change is the

encapsulation of state within the simulation procedure.

Instead of requiring the initial state s0 directly, we require

parameter values valsin from which the initial state can be

computed. It is actually common practice to obtain initial

states in this fashion. The parameter-to-state transforma-

tion is performed by the initialization event handler, which

we represent using the mathematical function finit. To fully

encapsulate state, an analogous change must be made at

the end of the algorithm. Instead of delivering the final

state s and corresponding elapsed duration Dte, these val-

ues are supplied to the finalization event handler repre-

sented by ffinal. This yields the statistics values valsout,

which are delivered along with the output time series as

the simulation results.

An example of a program manipulation with no seman-

tic effect whatsoever is the relocation of the computation

ta(s). In Algorithm 1, the computation is found on line 15.

Nothing is changed if we instead apply ta immediately

after every state change; in other words, we extract ta(s)

Algorithm 1. Classic DEVS simulation

1: function simulate(model , s0, ts in , tend)
2: δext , δint , λ, ta ← model
3: s← s0 {current state}
4: t← 0 {current time}
5: Δte = 0 {elapsed duration}
6: iin ← 0 {input time series index}
7: nin ← #ts in {input time series size}
8: tsout ← [ ] {output time series}
9: done ← ⊥ {termination flag}

10: while ¬done do {simulation loop}
11: text , x←∞,∅
12: if iin < nin then {more messages?}
13: text , x← ts in [iin ]
14: end if
15: tint ← t+ ta(s)
16: tprev ← t
17: t← min(text , tint) {time advancement}
18: Δte ← t− tprev
19: if t ≥ tend then {finished?}
20: done = �
21: else if t = text then {external event?}
22: s← δext(s,Δte, x)
23: iin ← iin + 1
24: else if t = tint then {internal event?}
25: y, s← λ(s), δint(s)
26: if y �= ∅ then
27: tsout ← tsout ‖ [ [t, y] ]
28: end if
29: end if
30: end while
31: return tsout, s,Δte
32: end function

Algorithm 2. Adapted DEVS simulation

1: function simulate(model , vals in , ts in , tend)
2: finit , fu, fp, ffinal ← model
3: s,Δtp ← finit(vals in) {initialization event}
4: t← 0 {current time}
5: Δte = 0 {elapsed duration}
6: iin ← 0 {input time series index}
7: nin ← #ts in {input time series size}
8: tsout ← [ ] {output time series}
9: done ← ⊥ {termination flag}

10: while ¬done do {simulation loop}
11: tu, x←∞,∅
12: if iin < nin then {more messages?}
13: tu, x← ts in [iin ]
14: end if
15: tp ← t+Δtp
16: tprev ← t
17: t← min(tu , tp) {time advancement}
18: Δte ← t− tprev
19: if t ≥ tend then {finished?}
20: done = �
21: else if t = tu then {unplanned event?}
22: s,Δtp ← fu(s,Δte, x)
23: iin ← iin + 1
24: else if t = tp then {planned event?}
25: s,Δtp, listy ← fp(s,Δte)
26: tsout ← tsout ‖ [ [t, listy] ]
27: end if
28: end while
29: valsout ← ffinal(s,Δte) {finalization event}
30: return tsout, valsout
31: end function
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from line 15 and insert it after lines 3, 22, and 25. Line 3

is where we will invoke the initialization event handler

finit, and this function can absorb the ta(s) computation.

Line 22 is where the unplanned event handler fu will be

invoked, and again it will absorb ta(s). Finally, line 25 will

become part of the planned event handler fp, along with

the ta(s) computation. Note that wherever ta(s) is com-

puted, the result can be stored in a planned duration vari-

able Dtp so that the value can be still be used on line 15.

These largely superficial changes result in Algorithm 2,

the simulation procedure for the adapted version of DEVS

involving the four event handlers finit, fu, fp, and ffinal. For

all intents and purposes, the algorithms are the same, and

accordingly the argument model can be interpreted as a

DEVS model in both cases. The difference is that

Algorithm 2 better supports the paper’s visual interfaces

designed for end-user programmers.

We now explore the question of whether the visual

interfaces are appropriate only for end-user programmers,

or if they also support the needs of those who prefer to

begin with DEVS model specifications in the conventional

form. It turns out that if one has defined dext, dint, l, and

ta, there is a simple mapping of these functions onto finit,

fu, fp, and ffinal.

finit(valsin)= s0,Dtp
where Dtp = ta(s0)

fu(s,Dte, x)= s0,Dtp

where s0= dext(s,Dte, x)
Dtp = ta(s0)

fp(s,Dte)= s0,Dtp, listy

where s0= dint(s)

Dtp = ta(s0)

listy = ½l(s)�

ffinal(s,Dte)= valsout

The mapping is efficient in that, when the above defini-

tions of finit, fu, fp, and ffinal are substituted into Algorithm

2, there are no redundant invocations of dext, dint, l, or ta.

A DEVS expert could therefore specify his/her model in

the traditional mathematical form, yet implement it using

a simulation tool featuring the proposed visual interfaces.

To complete the comparison of the classic and adapted

versions of DEVS, there is one remaining difference to

explore. In Classic DEVS, each internal event is associated

with exactly zero or one output message (in Algorithm 1,

line 25, see y which may be ; to indicate no message). In

the adaptation, where there are ‘‘planned events’’ instead of

‘‘internal events’’, each planned event is associated with a

list of zero or more output messages (see listy on line 25 of

Algorithm 2). This departure from Classic DEVS is not crit-

ical to our work; in other words, our visual interface designs

support either one optional message or a list of messages. If

a message list is to be supported, a small change must be

made in the simulation of composite models.

An elegant way to describe simulations involving com-

posite models is as follows. First, regard any composite

model as an atomic model known as the resultant, which is

possible thanks to the concept known as closure under cou-

pling. Second, because a composite model is essentially a

special case of an atomic model, Algorithms 1 and 2 can

be used to simulate any model. To apply this technique to

Classic DEVS, we must define the resultant functions dext,

dint, l, ta using the composite model elements below

½. . . , ½hdextid , hdintid , ld , tad �, . . .� fcomponentsg
EIC fexternal input couplingsg
EOC fexternal output couplingsg
IC finternal couplingsg
Select ftie-breaking functiong

Let us focus specifically on the resultant functions

RESULTANT_LAMBDA(l) and RESULTANT_DELTA_INT(dint), both

associated with internal events. The pseudocode is given

in Algorithm 3. Both functions select the event-triggering

component using the same procedure, which is encapsu-

lated in the CALL_SELECT function.

The pseudocode for the resultant planned event handler

is given in Algorithm 4, and the procedure is similar to that

of the internal events in Algorithm 3. The first step in both

cases is to determine the index d* of the event-triggering

component. In Algorithm 3 this is done by the CALL_SELECT

function, whereas in Algorithm 4 the corresponding code

appears on lines 3 through 10. The Classic function

RESULTANT_LAMBDA contains a for loop on line 19, which

tracks messages from the d* component to the output ports

of the composite model; the same loop appears on line 16

of Algorithm 4. The Classic function RESULTANT_DELTA_INT

contains a for loop on line 38, which tracks messages from

the d* component to the input ports of other components;

the same loop appears on line 21 of Algorithm 4. The

RESULTANT_DELTA_INT function is also responsible for

updating the state of the d* component (line 34) and

affected components (line 41); the corresponding instruc-

tions can be found on lines 11 and 24 of Algorithm 4.

For the version of DEVS adapted for visual interfaces,

composite models include the following elements.

½. . . , ½hfinitid , hfuid , hfpid , hffinalid �, . . .� fcomponentsg
EIC fexternal input couplingsg
EOC fexternal output couplingsg
IC finternal couplingsg

Though largely similar, there are a few notable differ-

ences between Algorithms 3 and 4. For the code at the

beginning that selects the event-triggering component, the

main semantic difference is that Classic DEVS relies on a

Select function whereas the adapted version orders events

by component index. Most DEVS-based tools feature this
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simplification. Another meaningful difference is that,

whereas the Classic DEVS code handles one potentially

empty output yd� , the adaptation code deals with a list of

messages hlistyid� . Accordingly, the if statements on lines

17 and 36 of Algorithm 3 are replaced with the for loop on

line 14 of Algorithm 4. A final difference is that whereas

both versions include component states sd and component

elapsed durations hDteid in the state s, Algorithm 4 also

includes component planned durations hDtpid. Regardless
of how DEVS is adapted, these planned durations should

be stored in one form or another to avoid redundant invo-

cations of the tad functions. Arguably, the storage of hDtpid
values makes Algorithm 4 easier to implement in an effi-

cient manner.

In summary, the adapted version of DEVS remains sim-

ilar to the original version of the formalism. There is a

direct mapping from Classic DEVS elements to the newly

proposed event handlers, and the corresponding simulation

algorithms are semantically equivalent aside from a few

small differences. Minor departures from the theory can

be found in all DEVS-based tools: a result of the funda-

mental limitations of computer technology.

Algorithm 4. Resultant internal event

1: function resultant f p(s,Δte)
2: [. . . , [sd, 〈Δte〉d, 〈Δtp〉d], . . .]← s
3: d∗ ← ∅

4: for d : [0, . . . ,#s− 1] do
5: 〈Δte〉d ← 〈Δte〉d +Δte
6: 〈Δtp〉d ← 〈Δtp〉d −Δte
7: if d∗ = ∅ ∧ 〈Δtp〉d = 0 then
8: d∗ ← d
9: end if

10: end for
11: sd∗ , 〈Δtp〉d∗ , 〈listy〉d∗ ← 〈fp〉d∗(sd∗ , 〈Δte〉d∗)
12: 〈Δte〉d∗ ← 0
13: listy ← [ ]
14: for yd∗ : 〈listy〉d∗ do
15: portd∗ ,msg ← yd∗

16: for [d†, portd† ], port : EOC do
17: if d† = d∗ ∧ portd† = portd∗ then
18: listy ← listy ‖ [ [port ,msg ] ]
19: end if
20: end for
21: for [d†, portd† ], [d, portd] : IC do
22: if d† = d∗ ∧ portd† = portd∗ then
23: xd ← [portd,msg ]
24: sd, 〈Δtp〉d ← 〈fu〉d(sd, 〈Δte〉d, xd)
25: 〈Δte〉d ← 0
26: end if
27: end for
28: end for
29: Δtp ← min(. . . , 〈Δtp〉d, . . .)
30: return [. . . , [sd, 〈Δte〉d, 〈Δtp〉d] . . .],Δtp
31: end function

Algorithm 3. Resultant internal event

1: function call select(s)
2: [. . . , [sd, 〈Δte〉d], . . .]← s
3: Δte ← min(. . . , tad(sd)− 〈Δte〉d, . . .)
4: imminent ← [ ]
5: for d : [0, . . . ,#s− 1] do
6: if tad(sd)− 〈Δte〉d = Δte then
7: imminent ← imminent ‖ [d]
8: end if
9: end for

10: return Select(imminent),Δte
11: end function
12: function resultant lambda(s)
13: [. . . , [sd, 〈Δte〉d], . . .]← s
14: d∗,Δte ← CALL SELECT(s)
15: y ← ∅

16: yd∗ ← λd∗(sd∗)
17: if yd∗ �= ∅ then
18: portd∗ ,msg ← yd∗

19: for [d†, portd† ], port : EOC do
20: if d† = d∗ ∧ portd† = portd∗ then
21: y ← [port ,msg ]
22: end if
23: end for
24: end if
25: return y
26: end function
27: function resultant delta int(s)
28: [. . . , [sd, 〈Δte〉d], . . .]← s
29: d∗,Δte ← CALL SELECT(s)
30: for d : [0, . . . ,#s− 1] do
31: 〈Δte〉d ← 〈Δte〉d +Δte
32: end for
33: yd∗ ← λd∗(sd∗)
34: sd∗ ← 〈δint〉d∗(sd∗)
35: 〈Δte〉d∗ ← 0
36: if yd∗ �= ∅ then
37: portd∗ ,msg ← yd∗

38: for [d†, portd† ], [d, portd] : IC do
39: if d† = d∗ ∧ portd† = portd∗ then
40: xd ← [portd,msg ]
41: sd ← 〈δext〉d(sd, 〈Δte〉d, xd)
42: 〈Δte〉d ← 0
43: end if
44: end for
45: end if
46: return [. . . , [sd, 〈Δte〉d], . . .]
47: end function

20 Simulation: Transactions of the Society for Modeling and Simulation International

 at CARLETON UNIV on September 7, 2015sim.sagepub.comDownloaded from 

http://sim.sagepub.com/



