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System Specification models to
Specification and Description Language

Pau Fonseca i Casas

Abstract
Discrete Event System Specification (DEVS) is one of the main widely used formal languages to represent simulation
models, while Specification and Description Language (SDL) is a graphical ITU-T standard language, commonly used in
telecommunication and engineering areas. In this paper, we present an algorithm, and a simulation infrastructure that
implements this algorithm, to transform a simulation model represented using the DEVS formalism to the SDL standard
language. The algorithm can be viewed as a mechanism to represent graphically DEVS models. In addition, because of
the transformation, one can use SDL tools in order to implement DEVS models. To implement the algorithm, we pro-
pose an Extensible Markup Language representation for the DEVS and SDL models. For practical application of the algo-
rithm, it is implemented in a simulation infrastructure named the Specification and Description Language Parallel
Simulator that allows defining the models with both formalisms.
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1. Introduction

The growing complexity of simulation models requires a

formal system that aids in model specification, particularly

when the individuals building the model come from differ-

ent areas of expertise. The main mechanisms for working

with models that are specified using different formalisms1

are (i) meta-formalism, (ii) common formalism and (iii)

co-simulation.

Several alternatives to represent Discrete Event System

Specification (DEVS)2 graphically exist, such as Traoré3

and Ighoroje et al.,4 who present a graphical notation for

DEVS named DEVS-driven Modeling Language

(DDML). A similar approach is presented by Song and

Kim5 with the DEVS diagram. Kidisyuk and Wainer6 and

Bonaventura et al.7 present CD++ Modeler, an applica-

tion that permits defining DEVS models graphically based

on an Eclipse platform. In Wainer and Liu8 several other

platforms based on CD++ are introduced. Other infra-

structures, such as CoSMoS,9 allow the definition of cellu-

lar automaton structures following DEVS notation in a

graphical manner.10 Villalba et al.11 present an implemen-

tation based on Modelica for DEVS-GRAPH.12 The prob-

lem of writing models based on DEVS was discussed in

the framework of the DEVS standardization group (see

Wainer et al.,13 Ighoroje et al.,14 Sarjoughian and Chen15

and Mittal and Martı́n16). None of these alternatives uses a

standard graphical language, such as Specification and

Description Language (SDL),17 to define the models. This

makes a transformation between both formalisms interest-

ing, but if a graphical and standard representation for

DEVS models appears, this transformation is also interest-

ing due to the capability to combine both formalisms in a

single model. In addition, we understand that the graphical

representation of DEVS models using SDL provides some

interesting features to DEVS. Firstly, a new and complete

graphical representation of the models, through SDL/GR

(Specification and Description Language Graphical

Representation), the graphical representation of SDL mod-

els. Secondly, a textual description of a system can be

obtained, through SDL/PR (Specification and Description

Language Phrase Representation), the textual representa-

tion of SDL models. Thirdly, because SDL is a language
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of the ITU-T (International Telecommunication Union –

Telecommunication Standardization Sector), this transfor-

mation provides a standard representation for DEVS

models with a complete, well-known and precise gram-

mar; also, it is understood by numerous tools.18–21 In addi-

tion, SDL can be combined with Unified Modeling

Language (UML), allowing the formalization of an entire

DSS (Decision Support System; see recommendation

Z.10922). Finally, the DEVS models can benefit from the

validation SDL tools that currently exist in combination

with TTCN (Testing and Test Control Notation).23

Regarding this, it is also interesting to note that some

efforts have been done to combine DEVS with UML24

and SysML25 in order to validate the proposed system.

The objective of this paper is to present an algorithm to

transform DEVS formalization to SDL. This transforma-

tion simplifies the work of a multidisciplinary team, since

we can use SDL as a graphical representation for atomic

DEVS models. In addition, we present an infrastructure

that implements the algorithm. It is outside the scope of

this paper, but worthy of mention that this transformation

can be done thanks to the new features we propose to the

language that have been added to the new version of the

language, SDL-2010 approved in 2012, specifically ‘‘In

SDL-2010, it is possible to specify the delay between out-

put of signal and the signal being available for consump-

tion in the destination input port.’’17

This paper is structured as follows. Sections 2 and 3

describe the SDL and DEVS formalisms. If the reader is

familiar with these languages, we recommend reviewing

only Section 2.2 to understand the SDL version used in this

paper. Section 4 proposes XML representations for DEVS

and SDL, which are required for implementation. Section

5 presents an illustrative example of the algorithm that

transforms DEVS to the SDL-2010 formalism. Sections 6

and 7 present the algorithm and its implementation on the

SDLPS (Specification and Description Language Parallel

Simulator) infrastructure. Finally, concluding remarks are

given in Section 8.

2. Specification and Description Language

SDL is an object-oriented, formal language that was

defined by the ITU-T (formerly Comité Consultatif

International Télégraphique et Téléphonique [CCITT]) as

Recommendation Z.100.17 The language was designed to

specify complex, event-driven, real-time, interactive appli-

cations that involve many concurrent activities that com-

municate using discrete signals.26,27

The definition of the model is based on the following

components:

� structure: system, blocks, processes, procedures

and the hierarchy of processes;
� communication: signals, including the parameters

and channels that the signals use to travel;
� behavior: defined through the processes;
� data: based on Abstract Data Types (ADTs);
� inheritances: describe the relationships between

and the specializations of the model elements.

The language has four levels: (i) system; (ii) blocks; (iii)

processes; and (iv) procedures. The hierarchical decompo-

sition of SDL is shown in Figure 1.

A SYSTEM diagram represents all of the objects that

make up a model and the communication channels

between them. A SYSTEM is the outermost agent that

communicates with the environment. An AGENT, in SDL

Figure 1. Specification and Description Language structure.
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terminology, can be the SYSTEM, a BLOCK or a

PROCESS.

Each rectangle represents an AGENT. The lines that

join the objects are the communication channels. Both

bidirectional and unidirectional channels are allowed in

SDL. The communication channels are joined to the

objects through ports. Because ports ensure the indepen-

dence of objects, they are very important elements for

implementing and reusing objects. An object only knows

its own ports, which are the doors through which it com-

municates with its environment. An object only knows that

it sends and receives events using a specific port.

The BLOCK diagrams contain a number of PROCESS

agents and might contain other BLOCKs. Processes com-

municate via signal routes, which connect to other pro-

cesses or to channels external to the BLOCK.

2.1 SDL behavior representation

In SDL, the behavior of each state of a PROCESS to each

of the SIGNALS that reach the AGENT is described. A

PROCESS might react differently to a SIGNAL depend-

ing on the port through which it was sent, according to

the last version of the standard. The PROCESS is speci-

fied using graphical elements that describe operations or

decisions. Table 1 describes some of the most important

elements.

The last level of SDL is the description of the different

procedures that appear in the SDL diagrams. The structure

and elements of a procedure diagram are similar to process

diagrams. For more information regarding SDL, the reader

is referred to the Telecommunication standardization sec-

tor of ITU,28 SDL Tutorial29 and Reed.26

2.2 Working with time in SDL

The scheduled execution time of each model event must

be defined in a discrete simulation model. Often, each type

of event has a probability distribution that determines

when the type of event must be executed. In addition, the

priority, in relation to other events scheduled for the same

time, must also be defined. Based on our previous work,

we proposed two extensions to SDL that simplify the defi-

nition of delays and priorities in models. After several

years of discussions with the ITU-T committee, the exten-

sions have been accepted and are included in SDL-2010

(published at the end of 2012). In this paper, we assume

that we are working with the SDL-2010 standard. This

extension simplifies the proposed transformation algo-

rithm we see next.

Figure 2 shows a process diagram that represents the

behavior of a server using the extension to define the delay

related to the service time. In a simulation model repre-

sented using SDL, the events are represented by SIGNAL

elements.

As is shown, a Delay or Priority is added to a SIGNAL

(model event) using a text extension symbol.

3. Discrete Event System Specification
formalism

DEVS was originally designed to formalize simulation and

modeling problems.2,12,30 Proposed in the 1970s by mathe-

matician Bernard Zeigler, DEVS was designed as a

general-purpose formalism for representing Discrete Event

Systems (DESs). Because it can represent all formalisms,

it is one of the most general formalisms for DES analy-

sis.31 The specification is based on a mathematical descrip-

tion of two elements: a dynamic system and a simulation

Table 1. Some Specification and Description Language process
elements.

State. A state element contains the name of
a state. All diagrams start and end with state
elements.

Event reception. These elements describe
the type of events that can be received
depending on the state and the number of
ports through which the event traveled.
Because an object changes its state only after
a new event is received, all branches of a
specific state start with an event-reception
element. The symmetric representation of
this element is also allowed.
Procedure. These elements perform
actions, encapsulating some part of the model
behavior.

Send event. These elements describe the
type of event to be sent and the port to be
used. Other attributes of the event
can also be detailed, e.g., priority, execution
time, etc. The symmetric representation of
this element is also allowed.

Decision point. These elements describe
bifurcations. Their behavior depends on how
the related question is answered.

Figure 2. SDL-2010 delayable SIGNAL. Note that the SIGNAL
requires two units of time to reach its destination. A priority is
defined to break the ambiguity that exists when two signals
reach the destination at the same time.
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model (the DEVS model). The structure of a dynamic sys-

tem defined using DEVS is based on a tuple, S, comprising

elements defined as follows:

S = \ T ,X , Y ,O,Q,D,L . , where
T : time base
X : set of input values
Y : set of output values
O : set of allow able input segments; w \ t1, t2 .

! X , overT
Q : set of state values
D : Q 3O! Q global transition function
L : Q 3 X ! Youtput function

The input segments are the set of valid input values for

the model. An input trajectory and an output trajectory are

defined in a set of valid input segments.

An initial state value (in the set of state values Q) corre-

sponds to the initial state of the input segment.

The event streams are defined by:

� v \ t0, tn . Ł AU{Ø}, segment over continuous

time.
� v is an event segment if a finite set of points, t1, t2,

., tn2 \ t0,tn . , exists such that v(ti) = ai2A for

I = 1,.,n–1, and v(t) = Ø for each t2 \ t0,tn . .

The transition function uses these elements as arguments

and calculates the new state value for the end time of the

input segment.

Through the output function, the system output reflects

the system state. The following is a definition of a model

in DEVS:

M = \ X , S, Y , dint, dext, l, ta .where,
X : set of input values

S : set of states

Y : set of output values

dint : internal transition function; dint : S ! S

dext : external transition function; dext ! Q 3 X ! S

Q= s, eð Þjs e S, 04 e4 ta sð Þf g : set of total states

e : time from the last transition

l : S ! Y : output function
ta : time advance function

ta : S ! R+
0

An interesting feature of DEVS is the concept of inter-

nal and external transitions.

When an internal transition is executed, no external

event is processed (external to the model). That is, if the

system reaches state s at time t, the system remains in state

s for a time defined by ta(s), during which no external

events are received. At time e, equal to ta(s), the system

generates an output event, l(s), and changes its state to

s’= dint(s), defined by the internal transition of state s.

An external transition is the processing of an event that

comes from outside the model. As in the previous example,

the system reaches state s. Before the system clock reaches

ta(s) time, an external event with value x occurs. The sys-

tem is in state (s,e), where e 4 ta(s). In this case, the sys-

tem changes its state to s’, s’ = dext(s,e,x), but no output

event is generated.

With this information, we classify states based on ta

function definitions:

� if ta(s) is 0, s is a transitory state;
� if ta(s) =N, s is a passive state.

More information regarding DEVS formalism can be

obtained in Zeigler et al.,2,12 and Fonseca i Casas.32

4. Extensible Markup Language
representation of Specification and
Description Language and Discrete
Event System Specification

The DEVS and SDL models must be represented in a tex-

tual form to code an algorithm that automatically trans-

forms the model from DEVS to SDL. We chose an

Extensible Markup Language (XML) representation.

There is not a standard representation of DEVS or SDL

using XML. DEVS is not yet a standard, and SDL uses

SDL/PR as a textual standard. The following details our

proposed representations.

4.1 XML representation of an SDL simulation
model

Figure 3 depicts an example of a non-graphical SDL repre-

sentation, SDL/PR.28

We use SDL/PR as a basis to represent SDL models

using XML. Because it is easier to extend and parse an

XML file than a textual one, we use an XML representa-

tion. From this point forward, this version of SDL is

referred to as SDL-XML.

idle

t

s

idle

idle

1(1)process P

Figure 3. A non-graphical Specification and Description
Language representation. In this example, the initial STATE is
IDLE.
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A preliminary proposal to represent an SDL model was

presented by Fonseca i Casas.33 In Figure 4, the system

BLOCK and the process type (Figure 4(b)) that represent

an SDL PROCESS are shown for the first level of the

XML Schema Documentation (XSD) that we use to vali-

date the structure of our XML.

4.2 XML representation of DEVS models

Some attempts have been made to represent DEVS models

using XML. As an example, Risco-Martı́n et al.34 pre-

sented schema that cannot represent programming logic,

loops or if-then-else constructs. Our XML representation

for DEVS models allows for the representation of those

elements. Because it is an ISO standard, we propose using

ANSI C to represent the code contained in a model. The

representation of a model in SDL is simplified by using a

variant, SDL-RT, which also uses ANSI C.

We follow conventions to represent a DEVS model

using XML syntax. Firstly, all of the code required to

define a simulation model is defined in the ‘‘values’’

XML section. Secondly, the initial conditions of the model

are defined in the XML using a ‘‘value’’ attribute that is

related to all of the variables that define the state of an

atomic DEVS model. Finally, to represent N, which is

used in the passive states, we use a literal value, ‘‘inf’’.

Some of the more interesting parts of the XML schema

used to represent coupled and atomic models are shown in

Figure 5.

5. Transformation of a Discrete Event
System Specification to Specification
and Description Language

Based on a system theory, DEVS is a general formalism in

which all other formalisms can be transformed.31 Because

Figure 4. XML Schema Documentation. The system view in (a) shows all the constitutive elements of a Specification and
Description Language (SDL) model, while (b) shows a process type that represent a SDL PROCESS.

Figure 5. Discrete Event System Specification (DEVS)
Extensible Markup Language schema. We have different external,
internal and ta functions because we can define several
transitions in our DEVS model.
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DEVS can be transformed to SDL, the full power of

DEVS can be used. In addition, models can be represented

graphically using SDL, which makes them more under-

standable to audiences that are not familiar with mathe-

matical languages.

In the DEVS formalism, two levels can be used to

define a model’s behavior: coupled and non-coupled.

When coupled models are used, the structure of the entire

model can be defined. When non-coupled models are used,

the behavior of simple model elements can be specified.

Once the behavior of the basic model elements has been

defined, the model structure can be defined. This structure

is defined by connecting the various basic elements with a

known behavior.

The next section presents the equivalence between the

SDL and DEVS formalisms at these two levels.

5.1 Coupled DEVS models and SDL

Simulation models can be specified in the DEVS formal-

ism without having to describe the behavior of each model

element. The structural relationships between identical ele-

ments can be defined. Such models are called coupled

models.

In DEVS, there are two main types of coupled models:

modular and non-modular. In modular coupling, the inter-

action of the various model components happens only at

their entrances and exits. In non-modular coupling, the

interaction occurs throughout the state. The literature

shows that it is possible to change from one type of cou-

pling model specification to the other.30 Therefore, this

paper focuses on the relationship between the SDL specifi-

cation and the DEVS modular formalism. For simplicity,

we work with the coupled DEVS model with ports. With

this model, a series of input and output ports are described

for each type of event that can be processed in the DEVS

model. Figure 6 shows an example in which we combine

the two models representing a queue and a processor.2

The diagram that represents a coupled model is quite

similar to the first level of an SDL specification.

Therefore, the transformation problem lies in representing

non-coupled models using SDL.

5.2 Behavior definition of non-coupled models

From a DEVS system specification, we extract state dia-

grams that represent internal and external transitions and

convert them to SDL diagrams.

We use an example to describe the process and to show

the behavior of a generator:2

DEVSperiod = X , Y , S, dext, dint, l, tað Þ
X = fg
Y = f1g
S = f99passive99, 99active99g3 R+

dint = phase,sð Þ=(99active99, period)
l=(99active99,s)= 1

ta= phase,sð Þ=s

To transform this DEVS model to an SDL model, we

first construct the states diagram. Because the number of

states is not finite, we use the transitions to define the

states (classes of states).

Only one transition is defined, dint = (phase,s) =

(‘‘active’’, period). In this transition, we reach the state

‘‘active’’, and remain in this state for s time (period time).

The starting state for this transition can be

‘‘active’’3 R+ . Although the number of states is infinite,

it is only necessary to consider two states (phases):

‘‘passive’’ and ‘‘active’’ (see Figure 7).

The internal transition defined in dint is represented by

INT (see Figure 8). We can define the SDL diagrams for

each of the states. The SDL diagrams represent the transi-

tions defined. In this example is represented the internal

transition. For each internal transition it is necessary to

define at least two procedure blocks. One procedure

defines ta, and the second defines the output function. The

internal event, INT, carries ta as a parameter that repre-

sents the delay required by the simulation engine to pro-

cess the event.

As another example, we consider the Binary counter

from Zeigler et al.2 and its SDL equivalent diagram.

Figure 6. Coupled Discrete Event System Specification model
combining two models, one representing a Queue and the other
a Machine.

activepassive

INT

INT

Figure 7. States diagram for the period Discrete Event System
Specification model.
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DEVSbinary counter = X , Y , S, dext, dint, l, tað Þ
X = f0, 1g
Y = f1g
S = f99passive99, 99active99g3 R+

0 3 f0, 1g
dext = 99passive99,s, count, e, xð Þ
=

if count+x \ 2ð Þ then (99passive99,s,� e, count+x)
else(99active99, 0, 0)

�

dint = phase,s, countð Þ=(99passive99,‘, count)
l=(99active99,s, count)= 1

ta= phase,s, countð Þ=s

Again, the states are not finite, and we use the transi-

tions to define the classes of states that allow the represen-

tation of the diagram. The two classes of states can be

defined by ‘‘passive’’ and ‘‘active’’ states.

The internal transition only ‘‘acts’’ when the state is

(‘‘active’’, 0, 0), returning ‘‘1’’. Hence, there are two main

classes of states: (‘‘active’’, 0, 0) and (‘‘passive’’, N, count).

The states diagram is shown in Figure 9.

We draw the external and internal transitions and take

into account that ta is N, that is, this internal event must

Figure 8. Specification and Description Language (SDL) diagram for the period Discrete Event System Specification (DEVS) model.
The two states are ‘‘active and ‘‘passive’’. The usual action that a DEVS model performs when an element changes from one state to
another due to an internal or an external event (SIGNAL in SDL) is described in the PROCESS. Note that the ‘‘passive’’ state can be
neglected.
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not be represented. In SDL, it does not make sense to send

an event that will never be processed. The resulting dia-

gram is given in Figure 10.

We detail the external transitions of the binary_counter

model in a block diagram by defining the events we want

to receive.

The semantics is preserved in both cases because the

SDL diagrams contain the same states, the travel from one

state to other are caused by the same signal (event) and the

procedures executed (the l function) are the same.

Figure 10. Specification and Description Language diagram for the binary_counter Discrete Event System Specification model.

passive active

xє{0,1}xє{0,1}

INT

Figure 9. States diagram for the binary_counter Discrete
Event System Specification model.
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6. The algorithm (DEVStoSDL)

The proposed algorithm used to represent a DEVS atomic

model using SDL diagrams is detailed in this section.

1. Represent the external signals that are received by

the process through the definitions of external tran-

sitions, dext, in a block diagram.

In the period example, no external transition existed. In

the binary_counter example, the block diagram is repre-

sented in Figure 11. Note that this defines the communica-

tion channels and events (SDL signals) of the model. All

coupled models can be mapped to an equivalent SDL

BLOCK. This allows representing the hierarchical decom-

position of coupled DEVS models. Finally, to represent

the atomic model we can use a SDL PROCESS. This

PROCESS, like the atomic DEVS models, represents the

behavior of the model, while the hierarchical decomposi-

tion of the model, represented on the BLOCKS diagram,

represents the model structure.

2. For the process diagram, define the states, S based

on the transitions, dext and dint, that define the set

of states.

The states diagram can always be represented because the

number of states can be finite or infinite:

a. in the finite case, the state diagram is based on

this finite set, and thus can be represented;

b. in the infinite, the states of the state diagram

are based on the finite transitions defined on

the DEVS model, and thus can be represented.

3. Draw the external transitions in the process

diagram.

The transitions can own several conditions, as is the case

of the external transition for the binary_counter DEVS

model example:

dext = 99passive99,s, count, e, xð Þ
if count+ x \ 2ð Þthen(99passive99,s, � e, count+ x)

else(99active99, 0, 0)

�
:

Hence, it is necessary to decompose the external (or the

internal functions) in several branches on the SDL equiva-

lent diagram, starting from a DECISION element that

defines the starting point of the branches.

Also, note that for the external transition function

dext : Q 3 X ! S, the total state set Q is defined

as Q= f(s, te)js 2 S, te 2 T \ 0, ta sð Þ½ �ð Þg, representing the

set of total states and te is the elapsed time since the last

event. On SDL, if necessary due to the external function

calculus, we can store the elapsed time in a PROCESS

variable every time an event (SIGNAL) is processed. SDL

implements a now() method that allows obtaining the

simulation clock for the PROCESS. This can be repre-

sented, as is proposed in the algorithm, in the

PROCEDURE that encapsulates all the variables modifi-

cations. We need to follow the next algorithm for each

external transition defined on the model.

4. Draw the internal transitions in a process diagram.

For the internal transitions, the procedure is the same that

for the external transition, but adding the output function.

We need to follow the next algorithm for each internal

transition defined on the model.

for each condition of dext {

Represent the variables modified in a procedure

(one for each branch). Here if needed we can store te
(te = now();).

If the final state for a branch of the dext is a state

with an internal transition defined {

DrawInternalTransitionOutputSignal

}

}

for each condition of dint {

Represent the variables modified in a procedure
(one for each branch)

Represent the output function in a procedure.

If the final state for a branch of the dint is a state
with an internal transition defined {

DrawInternalTransitionOutputSignal

}

}

Figure 11. Block diagram for the binary_counter model. The
output channel that represents the output function of the
Discrete Event System Specification model is not represented in
the diagram.

Casas 257

 at CARLETON UNIV on December 1, 2016sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


The method DrawInternalTransitionOutputSignal is

5. Define the initial state of the model by executing

the internal transitions (those that can be exe-

cuted). This defines the signals (internal) that the

PROCESS must send before the PROCESS

reaches its initial STATE.

6.1 SDLPS implementation of the algorithm

We implement the proposed algorithm using the XML

representations for the SDL and DEVS models (DEVS-

XML and SDL-XML) in the SDLPS20 infrastructure. This

allows us to obtain a new SDL-XML file that represents a

DEVS model. In Figure 12, the DEVS model using XML

is shown. From this DEVS-XML representation, we can

use XML (SDL-XML) to obtain an equivalent model

described using SDL. In Figure 13, the SDL-XML repre-

sentation of the model is shown. The representation con-

tains two processes: queue and processor1.

SDLPS implements all of these features and simulates

models represented in SDL or DEVS languages. SDLPS

has been built using C++ and C. The code related to the

model is represented using a dynamic-link library (DLL),

and the generation of the SDL-XML model is performed

automatically using a plug-in in Microsoft Visio�. The

main idea of this kind of formal language is to understand

and share the model behavior; it is clear that some parts of

the model will be easy to understand using code or a math-

ematical function. This is what happens when in DEVS

we define the transitions or when in SDL we define proce-

dures. The PROCEDURES represent the ‘‘last level’’ of a

SDL specification, encapsulating a behavior that is not

related with the time (it does not modify the simulation

clock) . Hence, this is represented by code and, then, when

this must be executed it must be encapsulated on a DLL or

similar. Although SDL allows a graphical representation

of the PROCEDURES, sometimes it is clearer to have a

simple C function detailing this .

Figure 14 shows the DEVS GG1 model in SDLPS.

Note that the DEVS model is not represented because the

Microsoft Visio� plug-in we developed generates SDL-

XML from an SDL Microsoft Visio� diagram. However,

we cannot regenerate the diagram from an SDL-XML

representation.

7. Discussion

Firstly, it is necessary to remark that this transformation is

not bidirectional; here the focus is on the transformation

from DEVS to SDL. A transformation from an SDL speci-

fication to a DEVS specification will be little more com-

plex due to the more flexible structure of SDL.

Now we analyze the applicability and correctness of

this transformation. Reviewing the DEVStoSDL algo-

rithm, we notice that the first step can always be per-

formed; the number of external transitions that can be

represented is finite for a DEVS specification. The second

step can also be always performed; in the infinite case, we

define the states based on the transitions of the DEVS

model and the number of transitions is finite, implying that

the number of states is finite. The third and fourth steps

also can be done always, due to the finite nature of the

DEVS transitions; SDL diagrams allow representing bifur-

cations, using the DECISION element to represent the

transitions that are defined by conditionals. The transfor-

mation is defined and a SDL diagram depicting the overall

structure that follows a DEVS model and all the specific

model elements can be represented inside this diagram

using variables and DECISION elements. In addition, the

initial state can be calculated always. Finally, any existing

function on the DEVS model can be represented in SDL

PROCEDURES. Because all of the steps can always be

applied, the method can always be used to transform

DEVS models to SDL.

Calculate ta in a task.

if (ta \ N) {

Represent the output signal related to the event.

Represent ta in the delay related to the output
signal.

}

Figure 12. GG1 Discrete Event System Specification model.
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From the DEVS point of view, the simulation algo-

rithms are methods to generate the model’s legal beha-

viors, which means that the trajectories do not reach illegal

states.35 In Figure 15 we see the trajectories that we can

obtain from the binary counter DEVS model; we depicted

here the key elements that are represented in the SDL

equivalent model. If with the equivalent SDL model we

can obtain equivalent trajectories, both models can be

Figure 14. Specification and Description Language Parallel Simulator environment with the Discrete Event System Specification
model loaded. The tree that contains all of the elements that define the model is on the left-hand side.

Figure 13. Extensible Markup Language (XML) representation of the Specification and Description Language model. The detailed
XML representation of the PROCESS queue is shown on the right side. The PROCEDURE contains the code that is defined in the
procedures Discrete Event System Specification model.
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considered equivalent. To assure this equivalence we are

going to analyze the DEVS abstract simulators and com-

pare them with the implementation we obtain from the

SDL specification.

In SDL-2010, all the SIGNALs are stored at the input

of the PROCESS, sorted by time and priority.17 When a

PROCESS consumes a SIGNAL, its time ‘‘t’’ is updated.

A representation of the SDL abstract machine is described

by Sanders27 (see Figure 16), while a representation of the

abstract machine for atomic DEVS can be reviewed in

Zeigler.35

To assure that the trajectories we obtain with the SDL

model are equivalent it is necessary to remember that the

initial states for both models are equivalent (assured by the

step 5 of the algorithm) and analyze the structure of the

finite state machine of the SDL machine. Reviewing the

DEVStoSDL algorithm, the resulting SDL branch for each

internal event has the structure presented in Table 2 (right),

while the abstract DEVS simulator is represented on the

left.

Reviewing the DEVS abstract simulator, steps 1 and 2

are represented by lambda PROCEDURE CALL. If any

variable in the function dint(s) is modified this can be

represented on dint(s) PROCEDURE CALL ; step 3 is rep-

resented by the SET STATE(dint(s)), in the sense that if

any conditional exists in dint(s) it will be represented on

the SDL diagram using the DECISION element, which

defines the different needed SET STATES. In the DEVS

abstract simulator, two variables for representing time are

defined, tl (representing the time of the last event) and tn
(representing the time of the next internal event). Both

variables are also represented in SDL, since the input port

stores the events sorted by time (storing tn), while the

internal clock of the PROCESS stores tl time (these vari-

ables have the same meaning and are updated according to

it). In SDL and in DEVS simulators we are expecting as

the next internal event ‘‘i’’, an event with the time tn; if

this is not true (in SDL this means that something is

wrong in the SIGNAL queue) an error is handled (t6¼tn).

Note that if ta = N then no OUTPUT is defined in SDL

since tn = N, meaning that this event never will be pro-

cessed. In both simulators, the trajectories we are going to

obtain are equivalent.

A similar analysis is done for the external events.

Based on ‘‘View 1’’,35 Table 3 shows the DEVS abstract

simulator and the PROCESS structure we got from the

DEVStoSDL algorithm.

The first step is represented by the SET STATE; again

if dext(s, t–tl, x) modifies any variable this can be repre-

sented by dext(s, t–tl, x) PROCEDURE CALL; also, if any

conditional exists on dext(s, t–tl, x) it will be represented in

the SDL diagram using the DECISION element. Adding

in the SDL diagram the OUTPUT element depends if the

final state an internal transition is defined or not. Also, if

we are receiving an event and (tl4 t and t4 tn) == false

then we must report an error; in SDL this condition must

be assured also, since we cannot receive SIGNALS from

the past and we cannot process a SIGNAL prior to pro-

cessing others that have a smaller time stamp . This error

implies a problem in the SIGNALS queue.

Since the trajectories we obtain on both simulators are

equivalent, both models can be considered equivalent.

Figure 15. Trajectories for the binary counter model showing
the Specification and Description Language (SDL) elements that
will be represented on the equivalent SDL model. The states can
be ‘‘passive’’ and ‘‘active’’; when an external event is received
(represented by the INPUTelement), the variable ‘‘count’’ is
increased by the value. In S we can see that the internal event is
triggered when count > 2. Also, Y represents the
PROCEDURE that implements the lambda Discrete Event
System Specification function.

Figure 16. Specification and Description Language machine.27

The finite state machine in our case is following a specific
structure.
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Table 2. Comparing the Discrete Event System Specification abstract simulator with the obtained PROCESS to be executed on the
Specification and Description Language simulator for internal events.

1. generate an output (y�l(s))
2. send this output to his parent (send y-

message(y,t) to parent)
3. update the state (s�δint(s)), and
4. update the times tl that represents the time

of the last event and tn that represents the
time for the next event (tl�t; tn�tl+ ta(s);)

Table 3. Comparing the Discrete Event System Specification abstract simulator with the obtained PROCESS to be executed on the
Specification and Description Language simulator for external events.

1. update the state, s�δext(s, t–tl, x)
2. update the time tl that represents the time
of the last event and tn that represents the time
for the next event (tl�t; tn�tl+ ta(s);)
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7.1 Interoperability

Here we discuss briefly the interoperability between SDL

and DEVS models and how this algorithm improves it. As

stated by Vangheluwe,1 several alternatives to combine

simulation models and simulators exist. Obviously, with

the proposed algorithm, a common simulator can be

achieved when a modeler transform DEVS models to

SDL. However, this is not the only alternative to combine

both formalisms. In Figure 17 we can see the mapping of

a DEVS coupled model to an abstract threaded simulator

and a representation of the model structure based on a

SDL. It is remarkable that the hierarchy in SDL is so simi-

lar, allowing also to express those elements that can be

executed on parallel threads with BLOCKS and those that

must be executed sequentially with PROCESS.

As is studied in this paper, the behavior of the DEVS

atomic model can be represented in SDL PROCESS;

hence, the DEVS model can be represented graphically,

on the last level, using SDL diagrams that come from a

previous DEVS specification. Also starting from a DEVS

specification, we can obtain a SDL representation enabling

the use of SDL tools such as PragmaDev SARL,21

CINDERELLA SOFTWARE,18 IBM. TELELOGIC19 or

that described by Fonseca i Casas20 to simulate DEVS

models.

It is outside the scope of the paper to show how to auto-

matize the transformation of coupled models or parallel

models, but we want remark on the huge similarities

between DEVS and SDL at couple level (structure), as

shown in Figure 17. Also, due to the versatility that

currently exists in SDL to represent priorities a parallel

DEVS model can be achieved; in SDL-2010 we can add

priorities at PROCESS level or at SIGNAL level, allowing

complete control of how the SIGNALS are going to be

processed in the final input port of the PROCESS (see

Figure 16).

8. Concluding remarks

In this paper, we presented an algorithm that allows

atomic DEVS formalisms to be transformed to SDL

PROCESSES. Thanks to this, both formalisms can be used

in the same project to represent a simulation model fol-

lowing the common formalism methodology. In addition,

SDL diagrams can be used as a graphical representation

for DEVS models. In summary, we can construct simula-

tion models by combining the best features of these two

formalisms and define a simulation model using the pow-

erful DEVS syntax and the standard graphical representa-

tion of SDL.

In addition, in this paper we propose a XML representa-

tion for the DEVS and SDL formalisms. For SDL, a stan-

dard textual representation of the model exists following

SDL/PR. However, no standard XML representation for

SDL exists, (development of a standard is an ongoing proj-

ect of the ITU-T working groups). Currently, there is not a

standard to represent a DEVS model textually. The schema

presented here can be used as a starting point for groups

that are involved in defining a much-needed common rep-

resentation for DEVS.

AM 1

AM 2 AM 3

CM A

CM B S 1

S 2 S 3

C A

C B

RC

AM 1

AM 2

AM 3

BLOCK CM A

BLOCK CM B

DEVS coupled model Abstract threaded simulator SDL representa�on of the model structure

Figure 17. Mapping of the abstract threaded simulator tree, based on Wainer and Mosterman.36 AM: atomic models; CM: coupled
models; RC: root coordinator; CL: coordinators; S: simulators; DEVS: Discrete Event System Specification; SDL: Specification and
Description Language.
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A specialist can use DEVS models, translate them to

the SDL-XML representation and apply SDL commercial

tools that provide automatic code generation to implement

a DEVS model. Co-simulation and the reuse of existing

models in new simulation models are possible with this

approach.

A growing number of people recognize the need for the

use of simulation tools to understand and possibly predict

the problems of a system. However, in complex environ-

ments, with complex systems, the diversity of tools and

languages used by multidisciplinary teams can be a hin-

drance. Mechanisms to share and combine models must be

established. Mechanisms to improve models by combining

the strengths of all of the tools are imperative.
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