
Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2014, Vol. 90(12) 1328–1345

� 2014 The Author(s)

DOI: 10.1177/0037549714554480

sim.sagepub.com

An extension of the OpenModelica
compiler for using Modelica models
in a discrete event simulation

James Nutaro

Abstract
This article describes a new back-end and run-time system for the OpenModelica compiler. This new back-end trans-
forms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to
encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation
package supports models with state-events and time-events and that comprise differential-algebraic systems with high
index. Although the procedure for effecting this transformation is based on adevs and the Discrete Event System
Specification, it can be adapted to any discrete event simulation package.

Keywords
combined simulation, continuous system simulation, discrete event simulation, hybrid simulation, simulation languages

1. Introduction

It is common to view combining discrete event and contin-

uous models as a problem of integrating distinct types of

simulation procedures. This viewpoint is evident when

using ‘‘combined’’ and ‘‘hybrid’’ to describe such simula-

tions as they intermix objects that are otherwise separate.

However, these combinations are not unique: each creates

a different definition of what is a hybrid model and how it

behaves. At best, the relationships between these defini-

tions are difficult to characterize; at worst, they are incom-

patible. A consequence is that tools for hybrid simulation

are difficult to integrate with each other and with other

tools for discrete event simulation (see, e.g, the discussion

by Carloni et al.1 and Lee and Zheng2).

An alternative viewpoint treats simulation of a model’s

continuous aspects as a particular discrete event system.

This viewpoint is intrinsic to the Discrete Event System

Specification (DEVS), which encompasses systems having

trajectories that change value a finite number of times in

any finite interval.3 This property is satisfied at the inter-

face between discrete event and continuous systems, and

also by numerical algorithms used to simulate continuous

models. Consequently, a particular DEVS is defined by

every numerical algorithm used to simulate the continuous

aspects of a hybrid model. A primary motivation for treat-

ing hybrid models in this way is that we may integrate

them directly into existing packages for discrete event

simulation.

This capability is essential for simulating many types

of systems that combine very complex discrete event and

continuous time dynamics. A good example of this is the

digital control of physical systems through a packet

switched communication network. Discrete event simula-

tion packages are almost universally preferred for model-

ing communication networks. Moreover, these models are

most often implemented with general-purpose program-

ming languages (e.g., C++) that can efficiently handle

data structures such as graphs, queues, and bit strings,

which play prominent roles in packet switched communi-

cation. On the other hand, modeling of the physical com-

ponents is most easily accomplished with special-purpose

languages (called continuous system simulation lan-

guages) that automatically reduce large sets of equations

into a simulatable form, with Modelica being a prominent

example of such a language. By translating Modelica

models into a discrete event system, these types of very

complicated simulations can be created quickly and simu-

lated with accuracy and efficiency.

A prior article formalizes this viewpoint as the split-

system approach to simulating hybrid models,4 and

Oak Ridge National Laboratory, Oak Ridge, TN, USA

Corresponding author:

James Nutaro, Oak Ridge National Laboratory, PO Box 2008, MS6085,

Oak Ridge, TN 37831-6085, USA.

Email: nutarojj@ornl.gov

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

specific applications of this viewpoint can be found in the

literature.5–7 The essential abstraction in the split system

approach is a collection of functions that operate on a set

S of states, set X of input, and set Y of output. The states

s 2 S may be composed of continuous and discrete vari-

ables. There are four functions F, G, A, an L that represent

the four central elements in a hybrid system simulation.

The function F : S 3R! S evolves the continuous part

of a state s 2 S through an interval of length h while leav-

ing the discrete part fixed. The function G : S ! R gives

the time remaining until a change in the discrete part of s

will occur. The function A: S 3 XF!S, where XF = X[
{F}, describes the change in s that occurs due to a discrete

input x 2 X or in response to an internal event F, with the

latter occurring at the instants G(s) = 0. The function

L: S!Y gives the output of the system when it is in state s.

While these elements appear in all simulation software

for hybrid systems, their arrangement is typically in a loop

that may be stylized as follows.

1. Advance the state from s(t) to s(t+ h) using F and

a step size h selected for numerical accuracy, stabi-

lity, and to avoid G going too far past zero.

2. Set t t+ h.

3. If G(s(t)) is at or has passed zero, then change the

state from s(t) to A(s(t),F).

4. Calculate the output L(s(t)).

5. Repeat.

This arrangement is natural when the purpose of the simu-

lator is to calculate trajectories for a specific model in iso-

lation, but it is very inconvenient if we want to use that

model as part of a larger, overarching simulation.

Nonetheless, this arrangement is often so deeply ingrained

into the simulation software that large modifications are

infeasible, and this leads to undesirable trade-offs between

accuracy, numerical stability, and execution time (see,

e.g., the discussion of step size selection in EPOCHS8 and

the review of co-simulation by Broman et al.9).

To overcome this problem, the split system approach

begins with the assumption that the hybrid model will be

used as a component within a larger, overarching simula-

tion system and arranges F, G, A, and L for this purpose.

This new arrangement defines an atomic Parallel DEVS

model3 (Parallel DEVS is assumed throughout this article

and so the Parallel adjective is dropped for brevity) in the

form

dint(s)=A(F(s, ta(s)),F) ð1Þ
dext(s, e, x)=A(F(s, e), x) ð2Þ

dcon(s, x)=A(F(s, ta(s)), x) ð3Þ
ta(s)=G(s) ð4Þ

l(s)= L(F(s, ta(s))) ð5Þ

An advantage of this approach is that it becomes possible

to efficiently and accurately manage time in co-simula-

tions. This atomic model can be used directly as a compo-

nent within discrete event simulation packages such as

OMNET++, OPNET, NS3, adevs, DEVSJAVA, and oth-

ers, and it can readily participate in federated simulations

organized around middle-ware such as the IEEE high-level

architecture (HLA).

This article takes an important step towards making the

split-system approach suitable for simulations of complex,

high-index DAEs by creating a new extension of the

OpenModelica compiler10,11 and a run-time system to sup-

port this extension. The extended compiler generates

C++ source code for a DEVS atomic model that is

intended for use with the adevs simulation package. This

atomic model is a C++ class that can be sub-classified to

add capabilities for interacting with other components in

the discrete event simulation. The source code for this gen-

erated C++ class and any sub-classes derived from it can

then be compiled and linked into any adevs-based simula-

tion program. For this purpose, the adevs simulation

library has been extended with numerical algorithms for

continuous system simulation: these include algorithms for

locating state events and solving high-index DAEs using

the method of dummy derivatives. In the future, the simple

numerical procedures used in this incarnation of the run-

time system will be replaced with more robust alternatives.

The presentation of the extended compiler and new

run-time system is structured as follows. Section 2 con-

trasts the proposed approach with related work on combin-

ing DEVS and Modelica models. Section 3 describes the

simulation procedure for combined models and how the

extended compiler and new run-time system support this

procedure. A detailed description of how a Modelica

model is transformed into a DEVS is the subject of

Section 4. Section 5 applies this procedure to simulate a

robotic arm controlled through an Ethernet network. The

article concludes in Section 6 with a brief comparison with

other techniques for the co-simulation of discrete event

and continuous models.

2. Related work

Prior work on combining Modelica and DEVS models has

pursued two distinct approaches. One of these approaches

is to extend the Modelica language and its run-time system

to facilitate the construction and simulation of discrete

event models. Examples of this approach can be found in

the literature,12,13 and these share the goal of creating a

single, integrated environment for modeling discrete event

and continuous systems. Consistent with this goal, the

chief characteristic of this approach is that the combined

Modelica/DEVS model is simulated with a loop like that

described in Section 1. Consequently, this approach to

Nutaro 1329

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

integrating Modelica and DEVS models does not facilitate

the reuse of Modelica models within existing software for

discrete event simulation.

The other approach to combining Modelica and DEVS

models is similar to what is proposed here. In this

approach, the Modelica compiler and run-time system are

modified to produce a module for an existing discrete

event simulation package. This type of modification is

described by D’Abreu and Wainer,14 Floros et al.,15,16 and

Bergero et. al.17 In those cases, the resulting DEVS model

uses quantized state integrators to solve the Modelica

model’s continuous equations with the purpose of reduc-

ing the execution time of a simulation, although the same

DEVS model could also be used as a component within an

overarching, DEVS-based model.

However, because the performance gains obtained by

these QSS-based tools depends on an explicit representa-

tion of the model’s dependency graph, QSS methods have

a limited capability to simulate DAE with high index. This

limitation manifests itself when the method of dummy

derivatives is used to reduce a high-index DAE to a DAE

with index 1. This limitation is significant because of the

numerical advantages of the dummy derivatives method

and its consequent use by OpenModelica and many other

simulation packages (see Mattsson and Söderland18; a good

example of the method can be found in Mattsson et al.19).

A brief review of the method of dummy derivatives

shows how it poses a difficult, and perhaps intractable,

problem for QSS-based simulators. The method has two

parts. In the first part, the high-index DAE is reduced via

symbolic manipulations to a family of index 1 DAEs.

Each DAE in this family has a distinct set of state and

algebraic variables, and consequently a distinct depen-

dency graph for those variables. In addition to this family

of systems, Jacobian matrices are generated such that their

numerical conditioning determines which system to use at

each instant of time. This part of the method is done by

the Modelica compiler as it parses the model and gener-

ates simulation code.

In the second part, the run-time system uses the

Jacobian matrix to select a system for use at each step in

the simulation. Before each step of the integration proce-

dure, the simulator calculates the Jacobian matrices using

the current state of the model and then performs a full

pivot of these matrices to determine which of the family

of DAEs is best conditioned. This best conditioned system

is used in the next integration step.

To use the method of dummy derivatives in a QSS-

based simulation would require two significant advances.

The first is an efficient, but explicit, coding of the depen-

dency graphs for the family of DAEs. The size of this fam-

ily grows combinatorially in the number of required and

candidate state variables, suggesting that a brute

force encoding of each member in a large family will

quickly use up the available computer memory. This

problem is avoided by numerical methods that do not

require an explicit representation of the model’s depen-

dency graph.

The second significant advancement is an alternative

to full pivoting of the Jacobian matrices. The full pivot is

an O(N3) operation in the number of candidate state

variables, and it is performed each time a state variable is

updated. Hence, the otherwise rapid updates of the

QSS integrators must now incur the high cost of this pivot

operation. Moreover, it has been shown that the time

advance function of the resultant of a first-order QSS net-

work is bounded from above by the stable step size of the

explicit Euler integrator.20 So while the QSS integrators

perform fewer function evaluations overall relative to a

synchronous method, the QSS method generally has more

events than the synchronous method has time steps. This

suggests that there will be many more pivot operations in

a QSS simulation than in a simulation that updates its state

variables synchronously. Consequently, the QSS method

may lose its advantage of computational efficiency.

The extended compiler described in this article differs

from these prior approaches to combining DEVS and

Modelica models in two important ways. The first differ-

ence is our aim to transform Modelica models into mod-

ules for an existing discrete event simulation. Unlike

prior work to extend Modelica with a capacity for dis-

crete event simulation, the C++ class generated by our

extension to the OpenModelica compiler is not intended

for use on its own. Rather, this class is to be sub-classi-

fied, the derived class extended for exchanging data with

other discrete event models, and then compiled into a

discrete event simulation program that uses the adevs

simulation library.

The second difference is that the run-time system has

full support for simulating high-index DAEs using the

method of dummy derivatives. For this purpose, we use

the symbolic part of the dummy derivatives method that is

already built into the OpenModelica compiler. In the run-

time system we use a full pivot of the generated Jacobian

to select the best conditioned system of equations at each

integration step or event. This straightforward solution is

possibly because the new run-time system uses a synchro-

nously updating method to solve the model’s continuous

equations. In principle, the proposed approach can be rea-

lized with numerical solvers such as DASRT that are

widely used in Modelica-based simulation tools. This is

attractive because it suggests that existing Modelica tools

could be quickly adapted to generate discrete event mod-

els. Nonetheless, here we demonstrate a Modelica compi-

ler for the split system approach in a much simpler setting

that uses the bisection method for locating state events

(i.e., to realize G) and an explicit Runge–Kutta method to

advance the state of the continuous variables (i.e., to real-

ize F). The functions A and L are intrinsic to the DEVS

formulation of the Modelica model.

1330 Simulation: Transactions of the Society for Modeling and Simulation International 90(12)

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

3. Combining Modelica and DEVS

The Modelica models considered here comprise a vector q

of continuously evolving state variables, a vector w of

continuously evolving algebraic variables, and a vector z

of discretely evolving variables. The discrete variables

change value only at discrete instants in time; that is, in

response to discrete events. These events may be discrete

input to the model or the satisfaction of a logical predicate

over the continuous and discrete variables. Between dis-

crete events, the continuous variables evolve according to

_q= f (q,w, z) ð6Þ

g(q,w, z)= 0 ð7Þ

The extended OpenModelica compiler generates a DEVS

atomic model that solves these equations using KINSOL for

g and a Runge-Kutta integration algorithm for f (see Brenan

et al.21 and Hindmarsh et al.22). Previous work4,5 gives an

abstract definition of this DEVS atomic model. To realize

this abstract definition, the OpenModelica compiler, in con-

junction with its run-time support in the adevs simulation

package, produces the five parts of a DEVS atomic model.3,5

1. The time advance function ta, which gives the

smaller of the time remaining until the model’s

next internal event and the next update of its con-

tinuous variables. The next internal event occurs at

the earliest instant when any of the model’s logical

predicates are satisfied. The next update of the

continuous variables occurs at the next step of the

numerical integrator.

2. The output function l, which maps the model’s

present state into a bag of discrete outputs. These

outputs are generated immediately prior to every

internal event.

3. The internal state transition function dint, which

maps the model’s present state into a next state.

This function calculates the model’s continuous

trajectory between discrete events and calculates

new values for discrete and continuous variables at

internal events.

4. The external state transition function dext, which

maps the model’s present state, the time that has

elapsed since the most recent discrete event, and a

bag of discrete inputs into a next state. This func-

tion calculates new values for the model’s discrete

and continuous variables upon receiving input from

some other discrete event model. The arrival of dis-

crete inputs is called an external event.

5. The confluent state transition function dcon, which

maps the model’s present state and a bag of dis-

crete inputs into a next state. This function calcu-

lates new values for the model’s variables when an

internal and external event coincide in time.

The simulator for an atomic model has three tasks. These

are (i) determine the time of the next event, (ii) calculate the

output at that time, and (iii) calculate the new state at that

time. Let t0 be the time of the model’s most recent event, tN
the time of its next event, s the state of the model at t0, tx the

time of the next input (i.e., if input occurs at t1 4 t2 4 .,

then tx is t1 until that input is processed, then tx is t2 until that

input is processed, and so on) and x the input at time tx. The

simulation procedure, which is implemented by the adevs

simulation package, has four steps.3,5

1. Find the time tN of the next event. This time is the

smaller of t0+ ta(s) and tx.

2. Calculate the model’s output at tN. If

tN = t0+ ta(s), then the output at time tN is l(s).

Otherwise, the model does not generate output at

tN.

3. Calculate the model’s state at tN. The next state is

dint(s) if t0+ ta(s) \ tx; it is dext(s, tN 2 t0, x) if

and tx \ t0+ ta(s); and it is dcon(s,x) if

t0+ ta(s) = tx.

4. Set t0 to tN and repeat from step 1.

Simulations that combine a Modelica and DEVS model

use this simulation procedure for all components of the

combined model, both continuous and discrete event. To

accomplish this, it is sufficient to generate time advance,

output, and state transition functions for the continuous

model or, more properly, for its numerical simulator. The

modified OpenModelica compiler is used for this purpose.

Figure 1 illustrates how the modified compiler is used

to create a simulation program. This simulation program

has two parts: source code in the Modelica language,

which describes the program’s Modelica models, and

C++ source code that implements its adevs models. The

extended compiler translates the Modelica source code

into C++ source code in three steps as follows.

1. Parsing the Modelica models. This is done by the

front-end of the compiler, which is not modified

for the split system method.

2. Flattening, index reduction, equation sorting, and

other symbolic manipulations. This is done by the

middle part of the compiler to generate a family of

systems in the form of Equations 6–7, Jacobian

matrices for selecting which member of the family

to use, and expressions for time and state events.

This part of the compiler is also unmodified.

3. C++ source code is emitted by the back-end of

the compiler, which has been modified specifically

to translate the equations provided by the middle

part of the compiler into a DEVS model. The

emitted source code is an atomic model with its

time advance, state transition, and output func-

tions. However, the generated code does not

Nutaro 1331

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

contain instructions for interacting with other

DEVS models.

The source code emitted in step 3 is not a complete simu-

lation program because it does not interact with other dis-

crete event models. Instructions for these interactions are

added by creating a sub-class that extends the internal,

external, and confluent state transition functions, time

advance function, and output function generated by the

Modelica compiler. This sub-class converts incoming

adevs events into data suitable for the Modelica model

(e.g., to extract the payload from a network packet and

convert it into a floating point number), and it transforms

events and data within the Modelica model into events

suitable for sending to other adevs models (e.g., to put a

sensor measurement into a network packet).

Instances of the DEVS model created by the

OpenModelica compiler and sub-classes of this model are

used in a simulation by attaching it to an instance of the

Hybrid class. The Hybrid class is a part of the adevs simu-

lation library that serves as the run-time system for

Modelica models. The Hybrid class is a type of Atomic

model that implements numerical procedures for solving

the differential algebraic equations using the method of

dummy derivatives, for locating state events, and for initi-

alizing the model state. The combination of the class gen-

erated by the OpenModelica compiler, the class derived

from this by the modeler, and the Hybrid class constitute a

complete realization of the atomic model defined by the

split system method.4,5

Figure 2 illustrates the relationships between the Hybrid

class, the class generated by the OpenModelica compiler,

and its sub-class that is created by the modeler. The inter-

action of these classes is described by Nutaro.5 In what fol-

lows, the assembly shown in Figure 2 is treated as a single,

atomic model without reference to its components. From

this perspective we describe the essential aspects of the

assembly: its time advance, output, and state transition

functions. In this description, behaviors added by the sub-

class are referred to as sub-class code, sub-class functions,

and so forth.

4. The Modelica model
as an Atomic DEVS

The time advance function is what most distinguishes the

extended OpenModelica compiler and new run-time sys-

tem from prior work on combining DEVS and Modelica

models. Therefore, Section 4 begins by defining this time

advance function. Definitions of the state transition func-

tions and output function follow naturally from the time

advance and a suitable adaptation of previous work on

simulating Modelica models.19,23–25

4.1. Time advance of a Modelica model

As before, let t0 be the time of the model’s most recent

event and s its state, which includes q, w, and z. The time

ta(s) until the next internal event at time t0+ ta(s) is the

Figure 2. UML diagram of the adevs objects that implement a
Modelica model.

adevs models

adevs models

Modelica compiler

C++ compileradevs runtime

Modelica files

Simulation program

Figure 1. Using the Modelica compiler to create part of a
simulation program.

1332 Simulation: Transactions of the Society for Modeling and Simulation International 90(12)

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

smaller of three values. The first value is the preferred step

size of the numerical method that advances q and w

between events. This step size is the smallest that satisfies

a tolerance for error in the numerical solution and a maxi-

mum step size, which are both specified by the modeler.

Let h1 be the step size selected to satisfy these criteria.

The second value used to calculate the time advance is

the time remaining until the next internal event for which

the time of occurrence is known explicitly. These events

are called time events, and the sample function of the

Modelica language provides an example. The sample

function has two arguments that describe instants when

values for the continuous variables must be calculated.

These arguments are a start time t and sample interval Dt.

Hence, an event occurs at the instants t+ nDt, n 5 0.

Let h2 denote the time remaining to the next time event.

The third value used to calculate the time advance is the

time remaining until the next internal event for which the

time of occurrence is only known implicitly. These events

are called state events and they are due to logical predi-

cates over continuous state variables. The compiler trans-

forms these predicates into zero-crossing functions that

change sign when the predicate changes value. The next

state event happens at the smallest root t# of the model’s

zero-crossing functions in the interval [t0, t0+min{h1,

h2}]. If such a root exists, then the time remaining to this

event is h3 = t# 2 t0. If there is no such root, then h3 = N.

The value of h1 may be calculated using well-known

techniques for selecting the step size of a numerical inte-

grator.26 The value of h2 is a simple function of the mod-

el’s current state and the current time. To determine h3
requires two things: a definition of the zero-crossing func-

tions and a method for finding their roots. Modelica has

seven primary operators that generate state events. These

are the relations . , 5 , \ , and 4 and the functions

floor, ceiling, and div. All other logical predicates (i.e., if,

when, and other conditional statements) that generate state

events are expressed using combinations of these operators

and discrete auxiliary variables.23,24

The OpenModelica compiler defers realization of these

primary operators to the simulation run-time system, which

must provide specific definitions. The definitions used by

the adevs run-time system are described below, and these

are sufficient to realize if and when statements; the floor,

ceiling, div, mod, integer, and rem functions; and compari-

sons. Zero-crossing functions may also be supplied by sub-

classes of the DEVS model.

4.1.1. Hysteresis in event detection. It is intuitively appealing

to have the compiler create a single zero-crossing function

z for each relation and function in the model that generates

state events. This function would be defined such that

z = 0 at the event and z6¼ 0 otherwise. However, this single

function presents a serious difficulty to numerical simula-

tion, as illustrated by the model show below.

class Zeno

Real x(start = 0);

equation

der(x) = if (x \ 1) then 1 else 0;

end Zeno;

This model is simple enough that its intended behavior is

apparent without simulation. The model has a single state

variable x that begins at x(0) = 0 and, because of the if

statement, with dx(0)/dt = 1. The model has a state event,

encoded by the if statement, that occurs when x(t) = 1 and

this happens at t = 1. At this instant, the derivative

switches from dx/dt = 1 to dx/dt = 0, and the model

should remain at x(t) = 1 for all t 5 1.

However, a simulation that uses the zero crossing func-

tion z(t) = x(t) 2 1 to test for ‘‘if (x \ 1)’’ will not

behave as it should. At t = 1, x(1) = 1 and, therefore,

z(1) = 0. Hence, the if statement is triggered and this

changes dx/dt to 0 but leaves x = 1. When the simulator

tests again if there are events to execute at t = 1, it dis-

covers that z(1) = 0 is still true and so again sets dx/dt to

0. Indeed, the simulation clock will never advance past

t = 1 because the event indicated by ‘‘if (x \ 1)’’ is trig-

gered again, and again, and again into perpetuity. This

model with this zero-crossing is illegitimate3,27 (also called

a Zeno hybrid system28,29). It produces an infinite number

of discrete events in a finite interval of time.

A solution to this problem is to apply a hysteresis e to

the zero-crossing function. The simplest use of this hyster-

esis is to find where z(t) = 0 and then activate the event

some small time e after t. Applying this to the model

above, we detect the state event at z(1) = 0 and apply the

event at z(1+ e) = 1 2 x(1+ e) = 1 2 (1+ e) = 2e.

This solves the illegitimacy problem, but introduces a new

difficulty. Suppose we replace Zeno with the model shown

below.

class Zeno2

Real x(start = 0);

equation

der(x) = if (x \ 1) then 2 else 0;

end Zeno2;

Simulating this model, we find the event at t = 0.5 where

z(0.5) = 0. However, the event is applied at t = 0.5+ e

and we have z(0.5+ e) = 1 2 x(0.5+ e) = 1 2 2(0.52e)

= 22e. By doubling the derivative, we have doubled the error

in z at the time of the event. Indeed, a bound on the error

cannot be determined without knowledge of the deriva-

tive of z, which typically is not known prior to simulat-

ing the model.

This new problem and the illegitimacy problem are

both solved with a more complicated, but more robust, use

Nutaro 1333

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

of the hysteresis. With this approach, e splits z into two

functions z1 = z and z2 = z 2 e. The function z1 is initially

active if x \ 1 and z2 otherwise. The active function is

switched at each event. In this way, the error in z at the

application of the event is controlled explicitly by the algo-

rithm that detects when z1 and z2 cross zero. Applying this

approach to the model Zeno gives the pair of zero-crossing

functions

z1(t)= 1� x(t) ð8Þ

z2(t)= 1� x(t)� e ð9Þ

Only z1 is active at the start of the simulation. As before,

at t = 1, z1(1) = 0 and the event occurs to set dx/dt = 0

while leaving x = 1. This event also replaces z1 with z2.

Now at t = 1, z2(1) = 2e and the next event occurs at

t = N. Hence, the model is legitimate and behaves as

expected: it reaches its maximum value at 1 and remains

there. Applying this model to Zeno2 yields a similar result,

with z1(0.5) = 0 and z2(0.5) = 2e. The outcome is inde-

pendent of the derivative of z.

4.1.2. Comparisons. Comparisons that generate state events

in a Modelica model take the form e1 \ e2, e1 4 e2, e1
. e2, and e1 5 e2 where e1 and e2 are expressions that

evaluate to a fixed or continuously evolving quantity. For

each such comparison, the compiler generates a binary

variable zc that is true if the comparison is true and false if

the comparison is false. The compiler also generates func-

tions z \ for \ and 4 and z . for . and 5 that

cross zero when the variable zc should change value. A

hysteresis e is used to avoid the model becoming stuck at

an event.

The functions z\ and z . are defined by

z \ (e1, e2, zc)=
e2 � e1 if zc =true
e2 � e1 � e if zc =false

�
ð10Þ

z . (e1, e2, zc)= z \ (e2, e1, zc) ð11Þ

These definitions cause a true to false transition at zero

and a false to true transition at e. Moreover, the following

relations are true when e = 0.

(z \ (e1, e2, zc)\ 0 and zc) or (z \ (e1, e2, zc). 0

andnot zc), zc 6¼ e1 4 e2
ð12Þ

(z . (e1, e2, zc)\ 0 and zc) or (z . (e1, e2, zc). 0

andnot zc), zc 6¼ e1 5 e2
ð13Þ

These facts are used to calculate the response of the model

to discrete events (see Section 4.3). The initial value for zc

is calculated using the initial values of e1 and e2. Hence,

starting values for \ and 4 are zc(0) = e1(0) \ e2(0)

and zc(0) = e1(0) 4 e2(0), respectively. Starting values

for . and 5 are determined in the same manner.

4.1.3. Event-generating functions. The floor, ceiling, and div

functions are similarly defined by using a hysteresis value

and auxiliary variable. In this case, the auxiliary variable

is an integer zi that retains the value of the floor, ceiling,

or div function at the time of the most recent event. Each

instance of a floor, ceiling, or div function generates two

zero-crossing functions: one for deciding when zi increases

and another for deciding when zi decreases. These zero-

crossing functions are zfu and zfd for the floor function, zcu

and zcd for the ceiling function, and zdu and zdd for the div

function.

Given an expression e and value zi, the zero-crossing

functions are defined by

zfu(e, zi)= zi + 1� e ð14Þ

zfd(e, zi)= e� zi + e ð15Þ

zcu(e, zi)= zi + e� e ð16Þ

zcd(e, zi)= e� zi + 1 ð17Þ

zdu(e, zi)=
zi + 1� e if zi 5 1

zi + e� e if zi 4 � 1

1� e if zi = 0

8<
: ð18Þ

zdd(e, zi)=
e� zi + e if zi 5 1

e� zi + 1 if zi 4 � 1

e+ 1 if zi = 0

8<
: ð19Þ

These functions satisfy the following relations when

e = 0.

zfu(e, zi)\ 0 or zfd(e, zi)\ 0, zi 6¼ floor(e) ð20Þ

zcu(e, zi)\ 0 or zcd(e, zi)\ 0, zi 6¼ ceiling(e) ð21Þ

zdu(e, zi)\ 0 or zdd(e, zi)\ 0, zi 6¼ div(e) ð22Þ

As with the relations, these facts are used to calculate

the response of the model to discrete events (see Section

4.3). The initial value for zi is calculated from the initial

value of e so that for the floor function

zi(0)= floor(e(0)) ð23Þ

and for the ceiling function

zi(0)= ceil(e(0)) ð24Þ

and for the div function

zi(0)= trunc(e(0)) ð25Þ

where trunc rounds its argument toward zero.

1334 Simulation: Transactions of the Society for Modeling and Simulation International 90(12)

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

4.1.4. Sub-class functions. Zero-crossing functions that are

supplied by the sub-class must satisfy two criteria. First,

they must be continuous to support algorithms for event

detection that assume continuity in the zero-crossing func-

tions. Second, the zero-crossing functions must not make

the model illegitimate.

4.1.5. Locating zero-crossings. Any root finding algorithm

can be used to locate states events in time by finding the

smallest time in the interval [t0,t0+min{h1, h2}] where a

zero-crossing function z(l(t)) ’ 0. The function z may be a

sub-class function or any of the zero-crossing functions

defined in Sections 4.1.2 and 4.1.3. The argument l(t) may

be e(t), zi; e1(t), e2(t), zc; or e2(t), e1(t), zc as appropriate.

During the search for a zero-crossing, the variables in z,

which include the discrete auxiliary variables, are kept

constant at their values for time t0. Whatever specific root

finding algorithm is used, the outcome is two values. The

first is a Boolean value indicating the presence or absence

of a state event in the interval [t0+min{h1, h2}] and the

second is the h3 where this event occurs (or N if there is

no such event).

The bisection algorithm for N zero-crossing functions

in the form zk(lk(t)), k 2 [1, N] is summarized as

Algorithm 1. The presence or absence of a state event at

h3 is indicated with the boolean variable atEvent. The

zero-crossings that triggered the event are indicated by

boolean flags gk, k 2 [1, N] such that gk is true if zk gener-

ates the state event and is false otherwise.

Algorithm 1 illuminates two problems that are specific

to the split system method and do not occur in stand-alone

simulations. The first problem is that state events can be

lost when the DEVS model responds to input. From this

perspective, the key feature of Algorithm 1 is the error tol-

erance p, which is a necessary component of all root find-

ing algorithms. To see this problem, suppose at time t we

have z(t) = 0. Owing to p it is possible for the simulator to

misplace this state event, believing instead that it occurs

later at time t+ t with jz(t+ t)j \ p. Hence, if an input

arrives in the interval [t, t+ t), the simulator may over-

look the state event at t. This problem must be corrected

for in the model’s the external transition function (see

Section 4.4).

The second problem is that input may cause a state

transition before the time advance expires. Algorithm 1

addressed this possibility by fixing the bisection search on

the left-hand side. This retains the model state at time t to

calculate its response to input arriving in the interval

[t, t+ ta(s)]. This change to the standard bisection algo-

rithm has a negative impact on performance because it

closes in on the root from just the right-hand side. A simi-

lar problem will be encountered regardless of the root

finding algorithm that we choose. On the other hand, if we

wanted to allow for updates of the left- and right-hand

sides, then it would be necessary to retain a copy of the

state at time t and thereby double the memory required to

simulate the model.

4.2. Output function

The output function is invoked just prior to an invocation

of the internal or confluent transition function. Recall that

the output function is defined by the split system method

to be l(F(s, ta(s))) and so requires s(t) at the time of the

output. Conceptually, this is accomplished by computing F

in the output function but not assigning the result of this

computation to the model’s state variables. In this way, the

state of the model is not modified by the output function.

In practice, there are two choices for calculating the

output function. The first choice is to retain the last trial

solution for s that was calculated as part of obtaining ta(s).

This trial solution is the value of s at t+ ta(s), and so it is

the F(s, ta(s)) needed in the output function. To use the

trial solution requires that we keep in memory two copies

of the model’s variables: one copy for the state at the pre-

vious event and one copy that is the trial solution. The

advantage of this is that we avoid recalculating F. The sec-

ond choice is to discard the trial solution and recalculate F

when it is needed by the output function. This saves mem-

ory, but increases the execution time of the simulation.

The simulator presented here uses the first choice.

ALGORITHM 1: Locating state events by bisection.

Data: t0, h1, h2
Result: h3, atEvent, γ1, ., γN

h3 min{h1, h2}

repeat

missedEvent false

atEvent false

for k ∈ [1, N] do

γk false

if sign (zk(lk(t0+ h3))) 6¼ sign(zk(lk(t0))) then

if | zk(lk(t0+ h3)) | < p then

γk true

atEvent true

else

missedEvent true

end

end

end

if missedEvent then

h3 h3/2

else

return h3, atEvent, γ1, ., γN

end

until forever

Nutaro 1335

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

4.3. Internal and confluent transition functions

The internal transition function is used to compute a new

state for the model when the time advance expires without

any interrupting input. Let t0 be the time of the model’s

most recent change in state and h the value of the time

advance so that the current simulation time is t0+ h. The

internal transition function calculates the new state of the

model at t0+ h with an algorithm that has four steps.

The first step is to advance the continuous variables q

and w from time t0 to time t0+ h. This is done by inte-

grating the continuous state variables and solving for con-

tinuous algebraic variables using the new values of the

continuous state variables.

The second step is to reconsider which DAE system,

selected from the family of options created by the sym-

bolic part of the dummy derivatives method, to use at the

next simulation event. This is done by calculating and

pivoting the Jacobian matrices that were generated by the

OpenModelica compiler for this purpose. If a new system

is indicated by the pivot operation, then the new choice of

state and algebraic variables is recalculated to be consis-

tent with this selection.

The third step is to apply the discrete events that occur

at t0+ h. If there are events at this time, then the internal

transition function calculates their effect on q, w, and z.

This calculation begins by reinitializing all of the discrete

variables in z that depend on the model’s zero-crossing

functions. This is done using the comparison operator or

discrete function to which each discrete variable is

attached, i.e., if zc is the auxiliary variable for e1 \ e2,

then zc is set to true if e1 \ e2 and false otherwise. Then

new values for the continuous variables are calculated to

account for reinit statements and the new values of the dis-

crete variables.

The new values of the discrete and continuous variables

may trigger additional events. The algorithm uses the rela-

tions in Equations 12–13 and 20–22 to detect these events.

This process begins by calculating the values of the zero-

crossing functions using e = 0 and the new values of the

discrete and continuous variables. Then for each zero-

crossing function generated by a relation, the algorithm

checks if either (i) the zero-crossing is negative and zc is

true or (ii) the zero-crossing is positive and zc is false. For

each event generating function, the algorithm checks if at

least one of its zero-crossing functions is negative.

If any of these conditions is true, then z is reinitialized

as before, new values for q and w are calculated, and the

above check for events is repeated. Otherwise, the calcula-

tion of the internal transition function is complete with

respect to code generated from the Modelica model.

The fourth step is to execute sub-class additions to the

internal transition function. This code is supplied with the

current values of the Modelica variables, and it may alter

the values of Modelica variables and make changes to any

variables that are not part of the Modelica model. If

sub-class code was executed, then the model’s algebraic

variables are recalculated and its discrete variables are reini-

tialized. As before, the values of the discrete variables are

checked for consistency with the zero-crossing functions. If

inconsistent values are found, then the discrete variables are

reinitialized, the continuous variables are recalculated, and

this is iterated until a consistent set of values is found.

This procedure for calculating the internal transition

function is summarized as Algorithm 2. The bulk of this

algorithm, which iterates to find a consistent set of values

for q, w, and z following an event, is the same procedure

used by OpenModelica’s default run-time system (see the

event iteration algorithm of Braun et al.23).

The confluent transition differs from the internal transi-

tion function in that the sub-class code is supplied with the

input x. In all other respects, a confluent transition is calcu-

lated just like an internal transition by using Algorithm 2.

4.4. External transition function

The external transition function determines the response of

the model to input from an external source. The arguments

to the external transition function are the input x and the

ALGORITHM 2: Calculate δint.

Advance q and w from t0 to t0+ h using z(t0)

Select new system of equations as needed and recalculate q and w for this selection

if atEvent = true (see Algorithm 1 and Algorithm 3) then

repeat

Calculate z using q and w

Calculate q and w using z

until z is consistent with its zero-crossing functions

if there exists sub-class code that has not been executed then

Execute sub-class code using q, w, and z

goto repeat

end

end

1336 Simulation: Transactions of the Society for Modeling and Simulation International 90(12)

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

time e that has elapsed since the most recent event at time

t0. Upon receiving an input, the part of the model gener-

ated by the OpenModelica compiler updates its continuous

state variables to time t0+ e. In this respect, the external

transition function closely resembles the internal transition

function with an addendum to process the input. Input is

processed by a sub-class of the model that must be created

by the modeler for this purpose.

Unlike the internal transition function, the external tran-

sition function must cope with the possibility of an undis-

covered state event in the interval [t0, t0+ e]. This can

happen because of the error tolerance p used by Algorithm

1. Recall from Section 4.1.5 that a side of effect of p is to

schedule state events some time t after the model’s zero-

crossing functions indicate they should occur. This can

result in a reordering of internal and external state transi-

tions, with a consequent loss of output from the model.

For instance, suppose that an internal event should happen

at t0+ ta(s) but because of p is actually scheduled for

t0+ ta(s)+ t. In this case, an input arriving at t0+ ta(s)

will preempt the output and internal state transition that

should have occurred. This disordering of events is due to

an unavoidable numerical error in the root finding

algorithm.

To test for this condition, the external transition func-

tion begins by calculating the zero-crossing functions for

time t0 and t0+ e. There are two possible outcomes.

1. If the signs of the zero-crossing functions are the

same at t0 and t0+ e then no event was missed

and the external transition function advances the

continuous variables from t0 to t0+ e. As with the

internal transition function, the model reconsiders

its choice of equations and, if a new choice is indi-

cated, recalculates the model’s continuous

variables to be consistent with this choice. Next,

the external transition function invokes its sub-

class code to process the input x. If this changes q,

w, or z, then the repeat-until loop in Algorithm 2

is used to find consistent values for all of the mod-

el’s variables.

2. If the signs are not the same, then a state event was

missed. In this case, the model omitted an output

and an internal event. To remedy this, the external

transition function determines what output should

have been emitted and stores this result. The new

state of the model is then calculated using the same

procedure as for the confluent transition function

(see Algorithm 2).

In the second case, the stored data forces the time advance

function to return zero. As a result, the output function

immediately sends the stored data as an output. If it also

happens that min{h1, h2, h3} = 0, then output that would

have occurred naturally as a result of a zero time advance

is appended to the stored data. The stored data is discarded

at the next state transition. The procedure for calculating

the external transition function is summarized as

Algorithm 3.

5. A case study: control
of a pick-and-place robot

The control of a place-and-pick robot, described by

Nedialkov and Ramdani,30 demonstrates many of the

advantages of having Modelica models incorporated into

the adevs simulation package. This demonstration extends

the example of Nedialkov and Ramdami in two respects.

The first extension is sensors and actuators separated

from the control logic by an Ethernet network that is

ALGORITHM 3: Calculate δext.

missedOutput {}

Calculate zero-crossing functions for time t0 and t0+ e

Advance q and w from t0 to t0+ e using z(t0)

if any zero-crossing function changes sign then

missedOutput λ(s)

Calculate new state using Algorithm 2 with input x and atEvent = true

else

Select new system of equations as needed and recalculate q and w for this selection

Execute sub-class code using q, w, z, and input x

repeat

Calculate z using q and w

Calculate q and w using z

until z is consistent with its zero-crossing functions

end

Nutaro 1337

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

shared among several applications. The media-access con-

trol protocol of the network is modeled to capture its effect

on packet loss and jitter. Simple models that transmit data

packets represent applications on this network other than

the robot and its control. The second extension is explicit

modeling of the discrete sensing and actuating, which are

treated as continuous in the prior work.

The primary components of the model and their inter-

connections are shown in Figure 3. (The complete source

code for the model and simulator are available in the

examples directory of the adevs package. This package

can be downloaded from http://sourceforge.net/projects/

adevs/.) Throughout this modeling problem, we are pre-

sented with the option of realizing particular dynamics

using either the Modelica language or directly with a

DEVS model. One such choice is periodic sampling of the

robot’s joint angles. This can be done using the sample

function of the Modelica language or with a DEVS model

that generates periodic requests for a new sample value.

In most cases, the Modelica language is used just for

those elements of the model that have continuous

dynamics. Discrete effects that do not depend on continu-

ously evolving variables are implemented with DEVS

atomic or coupled models. The exception to this is our use

of the Modelica sample function to model fixed rate sen-

sing of the arm angle. This is done to demonstrate the use

of time events in a model mixing Modelica and adevs

components. Figure 4 shows how the modeling is parti-

tioned between adevs and Modelica, and how the pieces

are integrated in the context of Figure 1.

To be consistent with the notation used by Nedialkov

and Ramdani,30 the terms q, z, and others are redefined in

the description of the robot, network, and control.

However, the model does not refer explicitly to prior uses

of these terms, and so their overloading should not cause

confusion.

5.1. Robot

The robot consists of two articulated arms that hang from

the ceiling and are attached in parallel to a single tool. The

relevant parts of the robot are illustrated in Figure 5. The

two revolute joints P1 and P2, located on the ceiling at xp

and 2xp, respectively, are controlled by motors delivering

torques G1 and G2. The angles q1 and q2 of these joints

determine the position x and z of the tool in the x–z plane.

The arms are symmetric with two sections of length l and

<< Modelica >>
Robot

<< Modelica >>
Control

Modelica compiler

<< adevs >>
Control

<< adevs >>
Robot adevs runtime

<< adevs >>
ControlExt

<< adevs >>
RobotExt

C++ compiler

Simulation program

<< adevs >>
OtherApp

<< adevs >>
Tx

<< adevs >>
Rx

derived classes

<< adevs >>
NetworkCard

Figure 4. Work flow for the case study and its partitioning into adevs and Modelica components.

Ethernet

Robot ControlM
otor torque

Joint data

Joint data

M
otor torque

M
isc. data

Other app

Figure 3. Model comprising a robotic arm, its controller,
Ethernet network, and sources of background traffic.

1338 Simulation: Transactions of the Society for Modeling and Simulation International 90(12)

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sourceforge.net/projects/adevs/
http://sim.sagepub.com/

L connected by another revolute joint. The position x, z of

the tool is related to the angles q1, q2 by the algebraic

equations

0=(x� xp � L cos q1)
2 +(z+ L sin q1)

2 � l2 ð26Þ

0=(x+ xp + L cos q2)
2 +(z+ L sin q2)

2 � l2 ð27Þ

Using the notation from Nedialkov and Ramdani,30 we

write x = (x, z), q = (q1, q2), and Equations 26–27 as

f(x, q) = 0.

The torques G1 and G2, denoted collectively by G =

(G1, G2), on the actuators determine the forces and torques

acting on the tool and joints. Using the parameters in Table

1, the equations describing these forces and torques are

G=Gred +Gfric +Garm +Gfarm +Gtplate ð28Þ

Gred = n2(Jmot + Jred)€q ð29Þ
Gfric =sign(_q)Fs +Fv _q ð30Þ

Garm = I€q� m1g cos q ð31Þ
Gfarm = 0:5m2L(L€q� g cos q) ð32Þ

0=(JT
x J
�1
q)Gtplate +(m2 +m3 +ml)(€x+ g) ð33Þ

Jq = ∂f=∂q ð34Þ

Jx = ∂f=∂x ð35Þ
g=(0, � g) ð36Þ

The sign function is defined such that sign(a) = 1 if

a 5 0 and 21 otherwise. The functions sign, cos, sin,

and differentiation with respect to time apply component-

wise to the vector arguments. For the purpose of control,

the inputs to this model are the torques G and the outputs

are the joint angles q.

Equations 26–36 are implemented as a Modelica model

called BaseRobot. These equations constitute a differential

algebraic system with index 3.30 The OpenModelica com-

piler reduces Equations 26–36 to family of index 1 sys-

tems in the form of Equations 6–7. For a numerically

robust simulation, the choice of equations changes dyna-

mically while the simulation executes.18 This model

thereby demonstrates OpenModelica’s algorithm for index

reduction and the complementary support of the adevs

run-time for selecting a system from the resulting family

of index 1 DAEs.

The model BaseRobot also includes variables q1_sam-

ple and q2_sample that hold sample values for q and a

variable sampleNumber that counts the samples taken.

The DEVS output function and internal transition function

are extended to emit q1_sample and q2_sample as output

whenever sampleNumber changes value.

Table 1. Parameters for the pick-and-place robot.

Description Notation Value

Motor position (m) P1x-coordinate xp 0.1
P2x-coordinate − xp 0.1

Lengths (m) arm L 0.3
forearm l 0.7

Masses (kg) arm m1 0.82
forearm m2 0.14
tool
(traveling plate)

m3 0.5

net load ml 5.0
Moment of inertia (kg.m2) motor Jmot 0.37× 10−4

gears Jred 9.09× 10−4

arm Jred 0.018895002
Friction coefficients Fs 3

Fv 0.5
gear reduction ratio n 5
gravity (m/s2) g 9.81

xp

q1q2 P1P2

p–x
x

z

L L

ll

(x, z)

g

Figure 5. Schematic of the pick-and-place robot.

Nutaro 1339

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Measurements of the joint angles q may be generated in

two ways. The first method of sampling takes new measure-

ments at a fixed rate. To implement this fixed rate sampling,

a new class called Robot1 is derived from BaseRobot. This

derived class adds the algorithm section shown below.

model Robot1 extends BaseRobot;

parameter Real sampleFreq = 1000.0;

algorithm

if initial() or sample(0,1.0/

sampleFreq) then

q1_sample := q1;

q2_sample := q2;

sampleNumber := sampleNumber+1;

end if;

end Robot1;

This method of sampling demonstrates support for time

events in the extended OpenModelica compiler and new

run-time system.

The second method of sampling transmits a new mea-

surement of q upon a significant change D in x or z. As

above, a new class called Robot2 is derived from

BaseRobot to implement this method of sampling. This

derived class adds the algorithm section shown below.

model Robot2 extends BaseRobot;

parameter Real Delta = 0.0005;

output Real xsampled, zsampled;

algorithm

if initial() or abs(x-xsampled) .= Delta or

abs(z-zsampled) .= Delta then

q1_sample := q1;

q2_sample := q2;

xsampled := x;

zsampled := z;

sampleNumber := sampleNumber+1;

end if;

end Robot2;

This method of sampling demonstrates support for state

events in the extended OpenModelica compiler and run-

time system.

The Modelica models called Robot1 and Robot2 are

compiled to atomic models for adevs which are also called

Robot1 and Robot2. These atomic models are then

extended by deriving C++ sub-classes named RobotExt1

and RobotExt2 (or, generically, RobotExt). The sub-

classes add the capability to act on two types of discrete

events.

The first event is a change in the discrete variable

sampleNumber. For this purpose, the RobotExt classes

have a member variable called sampleNumber that is ini-

tially equal to its Modelica counterpart. At any internal or

confluent event where these values disagree, the RobotExt

sets its time advance to zero. This causes the RobotExt to

immediately produce as output the current values of q1

and q2. The RobotExt then sets its own sampleNumber

variable equal to its Modelica counterpart. The second dis-

crete event is new values for the torques G1 and G2. The

RobotExt responds to this input by setting the Modelica

variables G1 and G2 to their new values.

A partial listing of the source code for the RobotExt1

is shown in the next section. This listing shows how the

internal transition function has been modified to keep

track of the sample number and decide when a new sam-

ple of the arm angle should be sent through the network.

Also shown is how this model sends data via its output

function and receives data through is external transition

function. The methods set_T that are called in the pro-

cess_command method adjust the corresponding values in

the Modelica model. Likewise, the get_sampleNumber

method retrieves the value of the Modelica model’s

sampleNumber variable and get_q1 and get_q2 return the

arm angles.

5.2. Control

Measurements of q from the robot are transmitted via the

Ethernet network to the control system. Control of the

robot is accomplished with separate PID control of q1 and

q2. The reference trajectory qd = (qd,1, qd,2) to be followed

by each angle is calculated using the geometric constraint

f from Equations 26–27 and a reference trajectory xd =

(xd, zd) for the tool.

The control torques are calculated at intervals hn using

a sequence of samples n = 1, 2, . of q and the reference

trajectories xd and qd. A subscript is appended to each term

to indicate which sample value is being considered; e.g.,

the nth sample of xd is indicated by xd,n. For each sample

n, the control signal Gn is calculated with the system of

equations

0=f(xd, n, qd, n) ð37Þ

en = qd, n � qn ð38Þ

_en =
en � en�1

hn

ð39Þ
Z

en = en�1 + hnen ð40Þ

Gn = 2000 en +
1

300

Z
en + 0:05 _en

� �
ð41Þ

To realize this model, the reference trajectory xd and

Equation 37 are implemented in the Modelica language as

a model called Control. From this Modelica model, the

OpenModelica compiler generates an atomic model also

named Control. This atomic model is sub-classified to cre-

ate the atomic model ControlExt that realizes Equations

38–41. Although Modelica is clearly a best fit for realizing

Equation 37, the choice to implement the other control

1340 Simulation: Transactions of the Society for Modeling and Simulation International 90(12)

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

// Derive a new class from the Robot1 class that was generated by the Modelica compiler.

class RobotExt1: public Robot1 {

public:

// Input and output ports for the DEVS model

static const int sample, command;

// Constructor, destructor, etc.

.....

// Internal transition function for the derived class

void internal_event(double* q, const bool* state_event) {

// Calculate new state variable values for the Modelica model

Robot::internal_event(q,state_event);

// Extended model will schedule a time event for the current time if

// doSample is true (the scheduling code is omitted from this listing).

doSample = lastSampleNumber != get_sampleNumber();

lastSampleNumber = get_sampleNumber();

}

// External transition function for the derived class. The confluent transition

// function has been omitted from this list, but is similar to what is shown here.

void external_event(double* q, double e, const adevs::Bag\OMC_ADEVS_IO_TYPE.& xb) {

// Calculate new state variable values for the Modelica model. The base class does

// nothing with xb but uses e for the simulation step size.

Robot::external_event(q,e,xb);

// Process the incoming data

process_input_data(xb);

}

// Output function for the derived class.

void output_func(const double *q, const bool* state_event, adevs:: Bag\OMC_ADEVS_IO_TYPE.& yb) {

// Called base class output_func so that the derived class will have access to values in the

// trial solution at time t+ta(s)

Robot::output_func(q,state_event,yb);

// Sample the arm angles and put them into a network packet

if (doSample) {

SampleSig* sig = new SampleSig(get_q1(),get_q2());

IO_Type msg;

msg.port = sample;

msg.value = new NetworkData(NetworkData::APP_DATA,controlAddr,100,sig);

yb.insert(msg);

}

}

private:

// Member variable declarations, etc.

.....

// Get commands received from the network and send them to the Modelica model

void process_input_data(const Bag\IO_Type.& xb) {

for (Bag\IO_Type.::const_iterator iter = xb.begin(); iter != xb.end(); iter++) {

NetworkData* pkt = dynamic_cast\NetworkData*.((*iter).value);

CommandSig* sig = dynamic_cast\CommandSig*.(pkt-.getPayload());

process_command(sig-.getT1(),sig-.getT2());

}

}

// Send new commands for torque 1 and torque 2 to the motors

void process_command(double T1, double T2) {

// Set the values of T1 and T2 in the Modelica model

set_T(T1,0);

set_T(T2,1);

// Recalculate the Modelica equations using these new values

update_vars();

}

};

Nutaro 1341

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

equations in a derived class is arbitrary. Regardless of this

choice, a sub-class of the generated atomic model is neces-

sary for interacting with the network model by which sen-

sor data arrives and control commands are sent.

The model ControlExt operates as follows. The values

of e1,
R
e1, and _e1 begin at zero. Upon receiving a new

value qn, n . 1, the external transition function of

ControlExt calculates Equations 37–41 using for hn the

time elapsed since the previous input. It next sets its time

advance to zero and immediately generates as output the

new command Gn. The internal transition function then

sets the time advance to infinity, causing the controller to

wait for a new measurement.

5.3. Ethernet model

The control is connected to the actuators and sensors of the

robot through an Ethernet network that is shared with other

applications. These other applications create background

traffic that causes dropped packets and jitter in the control

loop. For this example, the media access control layer is

modeled with adevs, but reuse of existing network models

is also feasible; for examples of such reuse see Nutaro

et al.4,5 and Kim et al.31 The model of media access control

presented here is a simplification of the protocol as it is

described by Tanenbaum.32

The primary elements of the media access control

model are the transmit model and receive model called Tx

and Rx, respectively. These are components of the

NetworkCard model shown in Figure 6. To create a net-

work, the ‘‘to_media’’ output of each NetworkCard is con-

nected to the ‘‘from_media’’ input of every other

NetworkCard. An application sends data through the net-

work by generating an input for the ‘‘from_app’’ port of

that application’s NetworkCard. Data from the network is

presented to an application as output from the

NetworkCard’s ‘‘to_app’’ output port.

Every data packet sent through the network has three

fields: (i) the address of the NetworkCard that is to receive

the packet; (ii) the payload to be transported to that recei-

ver; and (iii) an indication of the role to be played by a

particular instance of that packet. There are four roles: (i)

APP_DATA indicating a packet arriving from or going to

an application; (ii) TX_START indicating the start of a

transmission over the physical Ethernet media; (iii)

TX_CMPLT indicating the successful completion of a

transmission over the physical Ethernet media; and (iv)

TX_FAIL indicating a failed transmission over the physi-

cal Ethernet media.

5.3.1. Receiver model. The Rx model has a single input port

called ‘‘from_media’’ and single output port called

‘‘to_app’’. The model receives packets with role

TX_START, TX_CMPLT, and TX_FAIL on its ‘‘from_-

media’’ port and generates packets of type APP_DATA on

its ‘‘to_app’’ output port. The Rx model is initially idle,

waiting to receive a packet on its ‘‘from_media’’ port.

Upon receiving a packet, it checks the role and address of

the packet. If the role is TX_CMPLT and the address

matches the address of the NetworkCard, then the Rx

model changes the role to APP_DATA and immediately

places that packet onto its ‘‘to_app’’ output port.

Otherwise the packet is discarded.

5.3.2. Transmitter model. The Tx model has two input ports,

called ‘‘from_app’’ and ‘‘from_media’’, and a single out-

put port called ‘‘to_media’’. The Tx model queues packets

received on its ‘‘from_app’’ port. Upon receiving such a

packet, it is placed at the back of the queue. Queued pack-

ets are processed first come, first served.

To process a packet, the Tx model begins by waiting

for the physical media to become idle. If the media is not

already idle, then the end of the active transmission is

indicated by a packet with role TX_FAIL or TX_CMPLT

on the ‘‘from_media’’ port. Upon the media becoming

idle, the Tx model immediately issues a packet with role

TX_START to indicate the start of a transmission over the

media.

The time to transmit a packet is expressed in Ethernet

frames, each of which is 51.2 ms long and contains 512

bits. For a packet with b bytes, the transmission time is

8b=512d e3 51:2 ms. If this time elapses without interrup-

tion, i.e., without receiving any input on the ‘‘from_me-

dia’’ port, then the model indicates a successful

transmission by sending the packet with role TX_CMPLT

on the ‘‘to_media’’ output port. This indicates to all other

network cards that the transmission is completed.

Otherwise, the transmission is interrupted and the Tx

model increments a counter-indicating the number of times

that it has attempted to send the packet. Then the Tx model

waits for a time equal to a number of Ethernet frames

selected at random from 0 to the value of the counter or

10, whichever is smaller. When this time has elapsed, the

transmitter waits for the media to become idle before issu-

ing a packet with role TX_START on the ‘‘to_media’’

port.

The above process is repeated until either the transmis-

sion is completed without interruption or the attempt to

transmit has failed 16 times. At the 16th failure, the Tx

model issues a packet with role TX_FAIL on the

Rx

Tx

to_app
from_media

to_mediafrom_app

Figure 6. Model of a network card for transmitting and
receiving data on the Ethernet network.

1342 Simulation: Transactions of the Society for Modeling and Simulation International 90(12)

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

‘‘to_media’’ port to indicate it has stopped the attempted

transmission. The packet is then discarded and work on

the next packet, if any, begins.

5.4. Performance of the control
as a function of background load

The control trajectory (xd, zd) for this example is

xd(t)= � 0:35 sin(pt=2:0) ð42Þ

zd(t)= � 0:7+ 0:1 cos(pt=2:0) ð43Þ

The initial position of the tool is (x, z) = (0, 20.6) with

G1 = G2 = 0. The ability of the control to direct the arm

depends on both the method of sampling and the quantity

of background traffic on the network.

The maximum data rate for the Ethernet network is

approximately 512 bits per 51.2 ms, which is 1,250,000

bytes per second. Each packet generated by the angle sen-

sor and torque control contains 100 bytes. With a fixed

sampling rate of 1000 Hz, the sensor and control consume

approximately 16% of the network’s capacity. For the

given control trajectory, the threshold sensor generates

data at slightly lower rates, which vary from about 300 Hz

up to about 1000 Hz, thereby also occupying about 16%

of the network’s capacity.

The remainder of the traffic is created by background

sources. Each background source generates 1% of the max-

imum data rate of the network by transmitting 125 packets

per second on average, with each packet having 100 bytes.

The actual interval between transmissions is sampled from

an exponentially distributed random variable with mean of

1/125 seconds.

To transmit these packets, each background source is

connected to the network through its NetworkCard model.

Notably, the time for a successful transmission of 100

bytes is (1003 8)=512d e3 51:2= 819ms. The actual

transmission delay is therefore quite small and control

errors due to the network are caused by the protocol for

access to the network media.

Table 2 shows the maximum norm of the control error

jx 2 xdj+ jz 2 zdj over 20 s of operation. This table

shows results for 0, 10, 20, 30, 40, and 50 sources of back-

ground traffic. Unsurprisingly, the control degrades as the

network becomes congested. Nonetheless, the control is

stable with as much as 30% background loading. Adding

the approximately 16% load due to the control, this

demonstrates stable control at a total network utilization

of up to 46%. For the cases with 50 sources (for sampled

control) and 40 sources (for quantized control), the control

is unstable and the simulation is stopped prior to 20 s.

5.5. Advantages relative to co-simulation

The advantages of the proposed approach are apparent

when compared with its alternatives, which are distin-

guished by their lack of the time advance function.

Without the time advance (or its equivalent) the simulation

algorithm cannot precisely coordinate the exchange of

data between components. In this case, it becomes neces-

sary to select synchronization points t1, t2, . at which the

components are stopped and their outputs exchanged; see,

e.g., the Modelica technical report ‘‘Functional Mock-up

Interface for Co-Simulation,’’33 which describes this

approach to co-simulation. The explicit selection of syn-

chronization points requires a choice between the accuracy

of the simulation and the speed of its execution.8

If we use this approach to co-simulation, then to

achieve a simulation of the robot, network, and control

with timing errors smaller than an Ethernet frame requires

a time step tk+ 1 2 tk \ 51.2 ms. For the 20 s simula-

tion, this small time step causes approximately 400,000

steps of the co-simulation algorithm. However, the differ-

ent components in the model interact over milliseconds,

not microseconds. If we increase the time step to 1 ms,

then the simulation needs only 20,000 steps of the co-

simulation algorithm, but every transaction is artificially

delayed by the duration of 20 Ethernet frames.

In contrast to this, discrete event simulation of the

Modelica model achieves better than microsecond accu-

racy in the timing of interactions and millisecond leaps in

time between these interactions. Indeed, there are just

20,000 interactions between the discrete event and contin-

uous models during a simulation of the robot and its con-

trol. The Modelica model of the robot generates 20,000

discrete outputs and receives 20,000 discrete inputs.

Moreover, the discrete event simulation is more accu-

rate than the co-simulation with a microsecond time step.

The timing of the network events is simulated with

machine precision, and the detection of state events is

accurate to within the detection threshold p, which is 1027

in this example, i.e., fractions of a micrometer for the arm

Table 2. Maximum norm of the control error observed over
20 seconds.

Number of
sources

Error, sampled
control

Error, quantized
control

0 0.0037 0.0037
10 0.0049 0.0037
20 0.0053 0.011
30 0.0091 0.013
40 0.037 > 1.6
50 > 2.3 > 2.1

Nutaro 1343

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

position and fractions of a microradian for the arm angle.

Hence, the interaction between the method of sampling

and the protocol for media access control is simulated

more precisely than in a co-simulation using microsecond

time steps, and this precision is achieved with less

computation.

6. Conclusion

The OpenModelica extensions described here, and those

described in prior work34–36 on precisely integrating con-

tinuous and discrete event models, embed the numerical

solver for the continuous model within a discrete event

simulation. The precise management of time in these dis-

crete event simulations depends on the capability of com-

ponents in the model to provide the time of their next

internal event. With this information, the event schedule

of the simulator synchronizes, naturally and precisely, the

exchange of data between every component of the com-

bined model. The time advance functions of the continu-

ous models are what distinguishes this approach from its

alternatives.

Nonetheless, the proposed approach to combined simu-

lations is compatible with other approaches to co-simula-

tion. This compatibility is based in large part on the

DEVS formalism and an extensive body of research

describing its use within federated simulation environ-

ments. Indeed, the structure of the discrete event simula-

tion facilitates its integration with other co-simulation

tools. This has been discussed in detail with regard to

DEVS and the HLA,37–40 and similar approaches have

been used in other co-simulation frameworks.31,41

In principle the approach described here for

DEVS-based simulation packages can be adapted for

event-oriented simulation packages. This is described con-

ceptually in a prior article on the split-system method,4

and partial implementations of this concept appear in

much earlier work.36 If such an adaptation can be accom-

plished, it would extend the capability to simulate very

sophisticated, hybrid models to the majority of simulation

packages for discrete event models. Conversely, the pro-

posed approach can extend packages for simulating con-

tinuous models to encompass very sophisticated, hybrid

dynamic systems.

It is noteworthy that if the challenges described in

Section 2 for QSS integrators and the dummy derivatives

method could be resolved, then it would be possible to

achieve the benefits of the proposed approach and obtain

the significant reductions in execution time afforded by

the QSS methods. Future research in this direction is par-

ticularly attractive because the split system method cannot

take advantage of some optimizations that are routinely

done in the simulation loop for a standalone solver. One

example of this is in the calculation of the time advance

function where we must choose between a hobbled root

finding algorithm or increasing the memory required for

the simulation. It is likely that these undesirable choices

could be eliminated if the functions for F and G in the split

system method were realizable using QSS type numerical

methods.

Funding

This work was supported by the Laboratory Directed Research

and Development Program of Oak Ridge National Laboratory

(ORNL), managed by UT-Battelle, LLC for the US Department

of Energy (contract number DE-AC05-00OR22725). The sub-

mitted manuscript has been authored by a contractor of the US

Government under Contract DE-AC05-00OR22725. Accordingly,

the US Government retains a non-exclusive, royalty-free license

to publish or reproduce the published form of this contribution, or

allow others to do so, for US Government purposes.

References

1. Carloni LP, Passerone R, Pinto A, et al. Languages and tools

for hybrid systems design. Found Trends Electron Design

Automat 2006; 1(1/2): 1–193.

2. Lee EA and Zheng H. Operational semantics of hybrid sys-

tems. In Morari M and Thiele L (eds.), Hybrid Systems:

Computation and Control (Lecture Notes in Computer

Science, vol. 3414). Berlin: Springer, 2005, pp. 25–53.

3. Zeigler BP, Praehofer H and Kim TG. Theory of Modeling

and Simulation,2nd edn. New York: Academic Press, 2000.

4. Nutaro J, Kuruganti PT, Protopopescu V, et al. The split sys-

tem approach to managing time in simulations of hybrid sys-

tems having continuous and discrete event components.

Simulation 2012; 88(3): 281–298.

5. Nutaro J. Building Software for Simulation: Theory and

Algorithms, with Applications in C++ . New York: Wiley,

2010.

6. Nutaro J, Kuruganti P, Miller L, et al. Integrated hybrid-

simulation of electric power and communications systems.

In IEEE Power Engineering Society General Meeting, pp.

1–8.

7. Sydney A, Nutaro J, Scoglio C, et al. Simulative comparison

of multiprotocol label switching and openflow network tech-

nologies for transmission operations. IEEE Transactions on

Smart Grid 2013; 4(2): 763–770.

8. Hopkinson K, Wang X, Giovanini R, et al. EPOCHS: a

platform for agent-based electric power and communication

simulation built from commercial off-the-shelf components.

IEEE Transactions on Power Systems 2006; 21(2): 548–558.

9. Broman D, Brooks C, Greenberg L, et al. Determinate com-

position of FMUs for co-simulation. Technical Report UCB/

EECS-2013-153, University of California at Berkeley,

Electrical Engineering and Computer Sciences, 2013. http://

www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-

153.pdf.

10. Fritzson P, Aronsson P, Lundvall H, et al. The

OpenModelica modeling, simulation, and development envi-

ronment. In Proceedings of the 46th Conference on

Simulation and Modeling (SIMS’05), pp. 83–90.

1344 Simulation: Transactions of the Society for Modeling and Simulation International 90(12)

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

11. Fritzson P. Principles of Object-Oriented Modeling and

Simulation with Modelica 3.3: A Cyber-Physical Approach.

New York: Wiley-IEEE Press, 2014.

12. Sanz V, Urquia A, Cellier FE, et al. System modeling using

the Parallel DEVS formalism and the Modelica language.

Sim Modell Practice Theory 2010; 18(7): 998–1018.

13. Beltrame T. Design and Development of a Dymola/Modelica

Library for Discrete Event-oriented Systems using DEVS

Methodology. Master’s Thesis, ETH Zürich, Department

of Computer Science, Institute of Computational Science,

2006.

14. D’Abreu M and Wainer G. M/CD++ : modeling continuous

systems using Modelica and DEVS. In 13th IEEE

International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems,

pp. 229–236.

15. Floros X, Bergero F, Cellier F, et al. Automated simulation

of Modelica models with QSS methods - the discontinuous

case. In 8th International Modelica Conference, pp. 657–

667.

16. Floros X, Cellier F and Kofman E. Discretizing time or

states? a comparative study between DASSL and QSS. In

3rd International Workshop on Equation-Based Object-

Oriented Modeling Languages and Tools, pp. 107–115.

17. Bergero F, Floros X, Fernández J, et al. Simulating Modelica

models with a stand-alone quantized state system solver. In

Proceedings of the 9th International Modelica Conference,

pp. 237–246.

18. Mattsson SE and Söderland G. Index reduction in

differential-algebraic equations using dummy derivatives.

SIAM Journal on Scientific Computing 1993; 14(3): 677–

692.

19. Mattsson SE, Olsson H and Elmqvist H. Dynamic selection

of states in Dymola. In Modelica Workshop2000, pp. 61–67.

20. Nutaro J and Zeigler B. On the stability and performance of

discrete event methods for simulating continuous systems. J

Computat Phys 2007; 227(1): 797–819.

21. Brenan K, Campbell S and Petzold L. Numerical solution of

initial-value problems in differential-algebraic equations.

Philadelphia, PA: SIAM, 1996.

22. Hindmarsh A, Brown P, Grant K, et al. SUNDIALS: Suite of

Nonlinear and Differential/Algebraic Equation Solvers. ACM

Trans Math Softw 2005; 31(3): 363–396.

23. Braun W, Bachmann B, Pro S, et al. Synchronous events in

the OpenModelica compiler with a Petri net library applica-

tion. In 3rd International Workshop on Equation-Based

Object-Oriented Modeling Languages and Tools, pp. 63–70.

24. Lundvall H, Fritzson P and Bachmann B. Event handling in

the OpenModelica compiler and runtime system. Technical

Report 2, Linköping University, Department of Computer

and Information Science, PELAB - Programming

Environment Laboratory, 2008.

25. Frenkel J, Kunze G and Fritzson P. Survey of appropriate

matching algorithms for large scale systems of differential

algebraic equations. In Proceedings of the 9th International

Modelica Conference, pp. 433–442.

26. Ralston A and Rabinowitz P. A first course in numerical

analysis, second edition. New York: McGraw-Hill, 1978.

27. Zeigler BP. Theory of Modeling and Simulation. New York:

John Wiley & Sons, 1976.

28. Zhang J, Johansson KH, Lygeros J, et al. Zeno hybrid sys-

tems. International Journal of Robust and Nonlinear Control

2001; 11(5): 435–451.

29. Pulecchi T and Casella F. HyAuLib: modelling Hybrid

Automata in Modelica. In Proceedings of the 6th

International Modelica Conference, volume 1, pp. 239–246.

30. Nedialkov NS and Ramdani N. Towards Integrating Hybrid

DAEs with a High-Index DAE Solver. Rapport de recherche

RR-6834, INRIA, 2009. http://hal.inria.fr/inria-00360999.

31. Kim T, Hwang MH, Kim D, et al. DEVS/NS-2 environment:

integrated tool for efficient networks modeling and simula-

tion. In Proceedings of the 2007 spring simulation multicon-

ference, SpringSim’07, volume 2, pp. 219–226.

32. Tanenbaum AS. Computer Networks,3rd edn. Englewood

Cliffs, NJ: Prentice-Hall, 1996.

33. Modelisar. Functional Mock-up Interface for Co-Simulation,

Version 1. Technical Report 07006, ITEA 2, 2010.

34. Kofman E. Discrete event simulation of hybrid systems.

SIAM J Sci Comput 2004; 25(5): 1771–1797.

35. Lee EA and Zheng H. Leveraging synchronous language

principles for heterogeneous modeling and design of

embedded systems. In Proceedings of the 7th ACM and

IEEE international conference on Embedded software

(EMSOFT’07), pp. 114–123.

36. Klingener J. Combined discrete-continuous simulation mod-

els in ProModel for Windows. In Proceedings of the 1995

Winter Simulation Conference, pp. 445–450.

37. Zeigler BP, Hall SB and Sarjoughian HS. Exploiting HLA

and DEVS to promote interoperability and reuse in

Lockheed’s corporate environment. Simulation 1999; 73(5):

288–295.

38. Sarjoughian H and Zeigler B. DEVS and HLA: complemen-

tary paradigms for modeling and simulation? Trans Soc

Comput Sim Int 2000; 17(4): 187–197.

39. Kim YJ and Kim TG. A heterogeneous simulation frame-

work based on the DEVS BUS and the high level architec-

ture. In Proceedings of the Winter Simulation Conference,

volume 1, pp. 421–428.

40. IEEE. IEEE Standard for Modeling and Simulation (M & S)

High Level Architecture (HLA) - Framework and Rules.

IEEE Standard 1516-2000, 2000; i–22.

41. Huang D, Sarjoughian H, Wang W, et al. Simulation of

semiconductor manufacturing supply-chain systems with

DEVS, MPC, and KIB. IEEE Trans Semicond Manuf 2009;

22(1): 164–174.

Nutaro 1345

 at CARLETON UNIV on December 26, 2014sim.sagepub.comDownloaded from

http://sim.sagepub.com/

