
 http://sim.sagepub.com/
SIMULATION

 http://sim.sagepub.com/content/early/2013/10/31/0037549713505761
The online version of this article can be found at:

DOI: 10.1177/0037549713505761

 published online 31 October 2013SIMULATION
Juan-Ignacio Latorre and Emilio Jiménez

distributed computation and the Petri net paradigm
Simulation-based optimization of discrete event systems with alternative structural configurations using

Published by:

 http://www.sagepublications.com

On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATIONAdditional services and information for

 http://sim.sagepub.com/cgi/alertsEmail Alerts:

 http://sim.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 What is This?

- Oct 31, 2013OnlineFirst Version of Record >>

 at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from at CARLETON UNIV on November 5, 2013sim.sagepub.comDownloaded from

http://sim.sagepub.com/
http://sim.sagepub.com/content/early/2013/10/31/0037549713505761
http://www.sagepublications.com
http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com/content/early/2013/10/31/0037549713505761.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/
http://sim.sagepub.com/

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

0(0) 1–25

� 2013 The Society for Modeling and

Simulation International

DOI: 10.1177/0037549713505761

sim.sagepub.com

Simulation-based optimization
of discrete event systems with
alternative structural configurations
using distributed computation
and the Petri net paradigm

Juan-Ignacio Latorre1 and Emilio Jiménez2

Abstract
Decision-making on discrete event systems with alternative structural configurations is a field with application to the effi-
cient design and operation of many systems, ranging from manufacturing facilities to communication networks. The solu-
tion of this problem may be afforded by its transformation into an optimization problem. A variety of statements for this
optimization problem can be presented by using different formalisms able to describe the model of the system. These
different statements allow developing diverse optimization algorithms for solving the problem, which may be very
demanding for a computer. In this paper, several approaches are presented in order to reduce the computing require-
ments needed by the mentioned algorithms, some of them are implemented in one processor and others are based on
distributed computing. In particular, this paper presents a new distributed methodology, which associates sets of alterna-
tive structural configurations of the system to different alternative aggregation Petri net (AAPNs), regarding the number
of available processors. Under certain conditions, this methodology alleviates the computational requirements for every
processor and speeds up the optimization process. A case-study is presented and different techniques are applied to
solve it, for illustrating diverse distributed and non-distributed methodologies, regarding the available processors, as well
as for comparing their relative performance.

Keywords
Distributed computation, Petri nets, alternative aggregation Petri nets, AAPN, distributed optimization, decision-making,
discrete event systems

1. Introduction

1.1. Discrete event systems and the Petri nets

A discrete event system (DES) is characterized by a dis-

crete state-space and by a state transition mechanism,

which is event-driven.1 A DES can be found in many tech-

nological fields with a significant presence of computers,

such as communication networks, supply chains, and man-

ufacturing processes.

In the process of the design and operation of a DES,

usually some degrees of freedom exist, associated to a set

of alternative feasible configurations. These degrees of

freedom lead to the concept of an undefined DES, which

is converted into a defined DES by choosing a unique fea-

sible configuration for the degrees of freedom. An intuitive

insight of this idea can be seen in Figure 1. The choice of

a given configuration for the degrees of freedom can be

afforded by stating and solving a decision-making process,

devoted to specifying the best alternative configuration for

this purpose.

In order to develop repeatable, precise, and efficient

methodologies for solving the mentioned type of decision

problems, it is convenient to develop a formal model for

the undefined DES. Petri nets consist of a family of form-

alisms, which can cope with parallelism and concurrence,

1Department of Mechanical Engineering Energetics and Materials, Public

University of Navarre, Spain
2Department of Electrical Engineering, University of La Rioja, Spain

Corresponding author:

Juan-Ignacio Latorre, Department of Mechanical Engineering Energetics

and Materials, Public University of Navarre, Campus of Tudela. Ctra.

Tarazona s/n. 31500 Tudela, Spain.

Email: juanignacio.latorre@unavarra.es

characteristic behaviors of complex systems. Petri nets

show a simple and intuitive graphic representation, a useful

matrix-based description of the model, and are equipped

with a broad range of theoretical results, available for their

analysis.2 The formalization of the rest of the elements of

the statement of the decision problem leads to a constraint

satisfaction problem or, in a more general statement, to an

optimization problem.

The optimization problem based on a real DES is com-

monly related to a combinatorial explosion, when consid-

ering the size of the solution space;3,4 hence, performing

an exhaustive exploration requires unaffordable computer

resources. This situation leads to the development of effi-

cient but approximated techniques to solve the problems.5

An important group of these techniques include metaheur-

istics, a family of probabilistic search strategies.3,4

1.2. Classic approaches for the distributed
simulation of Petri net models

Distributed computing is an approach that contributes to

implementing fast algorithms for solving optimization

problems, where simulation is afforded for evaluating the

quality of the feasible solutions. In fact, the main motiva-

tion behind distributed simulation is to gain speed over tra-

ditional sequential simulation.

Distributed simulation has been applied in a large num-

ber of fields, comprising both discrete and continuous

simulation, such as formation of stars and galaxies, design

of global logistics systems, analysis and optimization of

combustion in engines and furnaces, diagnosis in human

organs, analysis of seismic responses on nuclear power

plants, subsurface hydrology, or epidemiology. Research

has been done on the topic of comparing conventional and

distributed simulation for a given application in order to

determine the conditions that allow one of these

approaches to perform better than the others. See, for

example, the work of Mustafee et al.6

Diverse successful approaches for distributed simula-

tion have been developed, such as parallel DES simulation

or grid-enabled DES simulation. These methodologies

require synchronization techniques that can be conserva-

tive or optimistic, according to their policy regarding the

local causality constraint. For example, Tang et al.7 pro-

pose an optimistic parallel DES simulation approach

including reverse computation techniques for recovering a

previous state. Another optimistic parallel DES simulation

is described by Vitali et al.,8 that improves the use of

memory caching architectures for ensuring correctness,

communications, and event scheduling. A brief introduc-

tion on parallel and distributed simulation of a DES can be

found in Ferscha.9

A computational grid can be seen as an ensemble of

distributed and heterogeneous resources, which present

enormous potential for running large-scale applications.

By accessing grid computing using the appropriate mid-

dleware framework, complex simulations can experience a

reduction in runtime.10 Given a certain application, to be

efficiently distributed on an existing computing infrastruc-

ture, a grid framework of this kind is required. For exam-

ple, Andjelković et al.11 describe the parallelization of the

simulation of electronic circuits and systems, as well as

the development of a grid interface. Furthermore, Evans

et al.12 has developed a platform that enables program-

ming parallel and distributed DES simulations, either by

parallelizing multiple executions of a given simulation or

by the implementation of a distributed DES.

The complexity of scheduling and resource manage-

ment in grid computing environments has led to the devel-

opment of simulation tools for assessing the efficiency of

different policies.13 Other approaches profit from the capa-

bility of distributed systems for storing the data generated

by a large series of complex simulations.14 Web-based dis-

tributed simulation has also received attention from the

researchers. Wainer et al.15 report the use of a distributed

simulation engine, which provides transparent sharing of

computer power, DES specification (DEVS)-based mod-

els, data, and experiments in heterogeneous resources on a

global scale.

A particular problem, which has received much atten-

tion from the research community, is the simulation of

large and complex systems. For example, Timm and

Pawlaszczyk16 address the grid-based simulation of large-

scale systems of autonomous decision-makers in the field

of global logistics networks. Two problems in the distribu-

ted simulation of large-scale and detailed models, related

to communication overhead and load-balancing, are

Real
system

Modeling
process

Petri net model

Degrees of
freedom

Feasible
values for the

degrees of
freedom

, ,
Alternative configurations for the model

Combinatorial
process

Figure 1. Undefined Petri net.

2 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

considered by D’Angelo et al.17 in which the simulation

runtime is eventually reduced. A synchronous conservative

algorithm for distributed simulation is used by Martin18

for optimizing the performance of detailed simulations of

large mobile ad hoc networks. Packet-level simulations of

large-scale computer networks performed on a variety of

platforms and a large number of processors are reported by

Fujimoto et al.19 Theodoropoulos et al.20 explores the chal-

lenges of large-scale and complex simulations profiting

from the distributed resources over the Internet, managed

by grid technologies, as well as explores collaborative

model development.

A promising simulation methodology, which profits

from a close relationship between the simulation system

and the physical modeled system, for applications such as

operational decision-making, is symbiotic simulation.21

Different methodologies have been developed for the

distributed simulation of Petri nets. One of the most suc-

cessful approaches is based on decomposing the Petri net

model of the original DES into submodels. Each one of

the Petri net submodels is assigned to a logical process that

performs the simulation on a specific processor.

For example, Chiola and Ferscha22 developed a heuris-

tic for the decomposition of the Petri net model in a way

that the concurrence and conflict resolution is internal to

the processes. On the other hand, Hulaas23 discussed the

decomposition of the model by means of an object-

oriented formal language, leading naturally to the descrip-

tion of distributed systems. The object-oriented techniques

with the complement of autonomous agents allowed

Holvoet and Verbaeten,24 as well as Kuo25 to model a

Petri net as a set of autonomous cooperating entities. The

problem of the time synchronization between processes

and the global order of events is addressed by Nicol and

Mao,26 Knoke et al.,27 and Zimmermann, Knoke and

Hommel,28 just to give a few examples.

Other approaches, which have been applied successfully

for performing the distributed simulation of a DES, are

described by Haggarty, Knottenbelt and Bradley,29 as well

as by Yoo, Cho and Yücesan.30 For example, Zuberek31

addresses the problem of the distributed generation of

state-spaces for timed Petri nets. The performance of this

process is enhanced by a reduction in the communication

between processors by clustering appropriate states.

Regarding the field of simulation-based optimization of

DESs modeled by Petri nets, different approaches have

been presented and tested by the research community. In

real applications, it is very common for the solution space

to be large, hence not allowing an exhaustive exploration

of every configuration of the Petri net by means of simula-

tion. In order to reduce the runtime of an optimization,

there are some approaches which apply a guided search

that choose a small amount of solutions to explore. In some

cases a manual selection of the solutions to be tested is the

methodology applied.32

Nevertheless, metaheuristics are popular and usually

efficient criteria for guiding the search in the solution

space. For example, Mušič33 addresses the Petri net-based

job-shop scheduling by means of a combination of dis-

patching rules with a local search guided by a metaheuris-

tic. On the other hand, Latorre et al.4 describe the

application of a genetic algorithm to solve a decision-

making problem related to the design of a manufacturing

facility. Zimmermann et al.3 apply the technique of simu-

lated annealing for solving a decision problem on the

operation of a flexible manufacturing system.

Other approaches search for similarities in the reach-

able state-space of different solutions to prune the explored

solution space.34

Bai et al.35 describe an agent-based approach for sup-

porting automated scheduling and planning. The chosen

modeling formalism is the augmentation of colored Petri

nets. Agents predict the probable future states of a system

and the corresponding risks of reaching these states. The

proposed methodology can enable agents to make accurate

decisions in complex scheduling and planning problems.

The optimization of routing problems of automatic

guided vehicles (GAV) in semiconductor manufacturing

systems is addressed by Nishi and Maeno.36 In order to

reduce the size of the state-space, the Petri net is decom-

posed into several independent subnets, where the original

shared places are removed and resource places are added.

A partial solution is derived for each subnet and a penalty

function algorithm integrates them to obtain a solution for

the complete system.

1.3. New methodology proposed for the
distributed simulation of Petri net models

The new methodology for distributed simulation, which is

proposed in this paper, is also based on the decomposition

of a Petri net model of a DES. Nevertheless, there are

important differences with the standard approaches men-

tioned in the previous section.

Firstly, the proposed new methodology is applied to the

Petri net model of a particular kind of system, which

includes degrees of freedom associated to a set of alterna-

tive structural configurations. This kind of system belongs

to the category of undefined DESs, previously mentioned

in section 1.1, and is very common in the design process

of DESs and usual in their operation. See, for example,

Tsinarakis et al.37, Zimmermann et al.,3 or Zhou and

Venkatesh.32 An intuitive representation of an undefined

DES and its model, an undefined Petri net, is shown in

Figure 1.

The degrees of freedom in the Petri net model have

been depicted as missing pieces of information that can be

filled from a set of feasible values. In Figure 1, the model

of the system is depicted as a cloud; the missing pieces of

Latorre and Jiménez 3

information are represented as geometrical shapes and the

feasible values are the same shapes but filled with differ-

ent patterns. The alternative configurations for the degrees

of freedom can be specified by a mere combinatorial pro-

cess of the feasible values associated to every degree of

freedom. However, not all of the combinations are likely

to be allowed; they depend on the particular undefined

DES considered in the decision problem.

The choice of one structural configuration for the unde-

fined Petri net is the purpose of the decision-making pro-

cess, aimed at for the design or the efficient operation of

the original DES. This choice leads to the specification of

a complete model for the designed or operated system,

which is called the alternative Petri net. In Figure 2, the

three alternative Petri nets, {R1, R2, R3}, which can be

specified from the undefined Petri net illustrated in

Figure 1, are depicted.

In the proposed methodology for distributed simulation

presented in this paper, the decomposition of the undefined

DES is not performed in submodels or parts of a given

alternative structural configuration, as is the case of the

approaches mentioned in the section 1.2. On the contrary,

in the new methodology, the Petri net model of the DES

includes the complete set of alternative structural config-

urations. This model is decomposed by a partition of the

set of alternative structural configurations. The resulting

subsets from the partition are assigned respectively to the

model of the system, to fill the corresponding degrees of

freedom. Every Petri net resulting from the decomposition

is a complete functional model and contains one or more

alternative structural configuration.

This idea can be found in Figure 3, where an intuitive

representation of a decomposition of the undefined Petri

net represented in Figure 1 has been performed for two

available processors. The first alternative Petri net has

been associated to processor 1, whereas the alternative

Petri nets, 2 and 3, have been assigned to processor 2.

Every processor should perform the optimization process

corresponding to the assigned alternative Petri nets. In the

case of processor 2, according to the paradigm of ‘‘divide

and conquer’’, it is necessary to state two different optimi-

zation problems and to afford the sequential solution of

both of them. The quality of the best results obtained in

each solved problem will be compared with the rest of

them and the best one will lead to the chosen alternative

structural configuration for the undefined DES.

In the following sections, it will be shown that this

sequential process for the solution of the optimization

problems stated in the processors with more than a single

associated alternative Petri net can be improved. In partic-

ular, it is possible to perform a single optimization for

every processor, no matter the number of assigned alterna-

tive Petri nets. In order to achieve this objective, the use

of an appropriate formalism, such as the alternative aggre-

gation Petri net (AAPN), is introduced. In Figure 4, it is

shown in an intuitive manner that it is possible to build a

single AAPN from the two alternative Petri nets associated

with processor 2.

Once a set of alternative Petri nets, associated to the

same processor, has been transformed into a single AAPN,

it is possible to transform the original decomposition of

the undefined Petri net as it is shown in Figure 5. In this

figure, a similar representation to the one depicted in the

Figure 3 is presented. However, in Figure 5, processor 2 is

able to perform a single optimization process instead of a

sequence of processes aimed to solve the optimization

problems associated to the different alternative Petri nets

Undefined
Petri net

Alternative
Petri nets

, ,

R1

R2

R3

Figure 2. Alternative Petri nets.

Alternative
Petri nets

R1

R2

R3

R1
R2

R3

Processor 1 Processor 2

Figure 3. Distributed simulation for two available processors
and sequential optimization per processor.

4 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

assigned to this processor. In a subsequent section, it will

be shown that reducing the number of sequential optimiza-

tions may lead to a reduction in the computer

requirements.

Due to the fact that the optimization performed in every

processor corresponds to exclusive and independent mod-

els, the only information needed to be interchanged

between them is the best solution found at the end of the

process and the identification of the alternative Petri net

associated with it. With this sole information, it is possible

to determine the solution of the global decision problem.

The application of the mentioned methodology for the

distributed simulation of the original DES can be

complemented with other techniques, such as the ones

described in section 1.2. This complementary use of dif-

ferent approaches for distributed simulation has been rep-

resented in Figure 6. In this figure, the alternative Petri net

R1 has been decomposed into two submodels to be simu-

lated in two different processors: 1 and 3. In general, the

decomposition of a Petri net in subnets requires time syn-

chronization between the processors performing the simu-

lations of the subnets. This requirement is a consequence

of the concurrent evolution that is likely to exist between

the subnets. The mentioned synchronization has been

depicted in Figure 6 as a string of binary numbers inter-

changed by processors 1 and 3. The application of these

standard methodologies for distributed simulation is not

considered in this paper; despite this fact, a fertile colla-

boration among them can be envisaged.

The decision problems posed on an undefined DES with

alternative structural configurations is one of the problems

related to the design and operation of a DES which may be

harder to solve. This fact is due to the large size of the

solution space and the existence of a disjunctive constraint

in the form of a set of alternative structural configurations

for the model of the DES. This is the problem addressed in

this paper with the purpose of reducing the computer

requirements for performing the solution process.

For this objective to be achieved, the main contribu-

tions of this paper, several distributed and non-distributed

Alternative
Petri nets

R1

R2

R3

RA
23R

Choice 1

Choice 2

R1

Figure 4. Transformation of the set of alternative Petri nets
{R1, R2} into the AAPN RA23.

Alternative
Petri nets

R1

R2

R3

R1

Processor 1 Processor 2

R
A

23

Choice 1

Choice 2

Figure 5. Distributed simulation for two available processors
and single optimization per processor.

Alternative Petri net R1
associated to processor 1

Processor 1
New available

processor 3

R1

R1a R1b

0 0
1101 0 1 1 0 0 01 1

1

Figure 6. Complementary application of a classic approach for
distributed simulation for another available processor.

Latorre and Jiménez 5

approaches are proposed, analyzed, and their relative per-

formances are compared, making explicit the dependence

of the results with the number of available processors for

the distributed approaches. Furthermore, the suitability of

several formalisms based on the paradigm of the Petri nets

for the modeling of an undefined DES and for the imple-

mentation of a solving methodology for the associated

optimization problem is tested.

The rest of the paper is organized as follows. Section 2

details the simulation-based optimization process of a DES

developed for a single processor. This section consists

mainly of a compilation of previous results of the authors,

which have been rewritten and presented in a comprehen-

sive manner. The rest of the sections are composed in their

major parts by original contributions of the authors.

Section 3 describes the theoretical background of several

algorithms that allow distributing the optimization process

into a number of processors. The mentioned algorithms are

explained in section 4. Section 5 compares different meth-

odologies based on the execution of simulation-based opti-

mization algorithms in a single processor, as well as

distributed algorithms on sets of processors of different

sizes. Finally, section 6 presents some conclusions and

open research lines.

2. Simulation-based optimization
of a DES on a single processor

The design and operation of a DES require affording

decision-making processes. If an efficient operation of the

system is expected, the process of making decisions

becomes more challenging. In this last case, which is a

very usual situation for DESs, the decision-making is

aimed at selecting the best possible configuration for some

or all of the degrees of freedom of the system.

2.1. Paradigm of the Petri nets

In order to develop an algorithmic procedure for solving

the decision-making problem, it is convenient to translate

the description of the decision problem into a formal

language.

In this paper, the formalism used to represent a model

of the DES is based on the paradigm of the Petri nets. This

section is devoted to providing an introduction to the Petri

net formalism and to the dynamics of a Petri net model.

Every concept presented in this section will play a role in

the following sections. A deeper and broader insight into

this paradigm can be found in the literature.38–40

Definition 1. Marked Petri net.

A (generalized) marked Petri net graph (or Petri net

system) is a weighted bipartite graph given by the five-

tuple

R = hP, T, pre, post, m0i

where

P = {p1, p2, . , pn} is the finite, non-empty, set of places

(one type of node in the graph);

T = {t1, t2, . , tm} is the finite, non-empty, set of transi-

tions (the other type of node);

pre: P× T!N is the pre-incidence or input function;

post: T×P!N is the post-incidence or output function;

and

m0: P!N is the initial marking. h

The pre (post) function represents the directed arcs

drawn from (to) any place to (from) any transition of the

Petri net. The arcs are labeled by the corresponding value

of the pre or post function, which is called the weight of

the arc. The state of the Petri net changes with the occur-

rence of a transition, also called the firing, where tokens

are removed from the places linked to the fired transition

by incoming arcs (input places) and tokens are added to

the places linked by out coming ones (output places). The

number of tokens removed from or added to a given place

corresponds to the weight of the arc that links the place to

the fired transition. Only the enabled transitions can be

fired. For a transition to be enabled, the number of tokens

in the input places should be equal to or greater than the

weight of the arc that links the place with the transition.

It is possible to represent the net structure by means of

incidence matrices: an input or pre-incidence matrix W –

and an output or post-incidence matrix W+ , both having

|P| rows and |T| columns. As a consequence, it is possible

to interpret a Petri net as a sequence of numbers or para-

meters that play a particular role in the model: some of

them represent the static structure and some others the

behavior, given by a sequence of states described by the

marking of the Petri net system.4

The evolution of a Petri net from a state, described by

its marking, by means of the firing of the transition t can

be specified by the state equation

mk
t−→mk + 1 , mk + 1 =mk +W(t) · ut ð1Þ

where ut is the characteristic vector of t, also called the fir-

ing vector associated to t. It is defined to indicate the fact

that the jth transition fires

ut = (0, . . . , 0, 1, 0, . . . 0) ð2Þ

where the only 1 appears in the jth position such that j∈
{1, . , |T|}.

2.2. Petri net model of a DES with alternative
structural configurations

Given an undefined DES and according to several consid-

erations, such as the used formalism, the characteristics of

6 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

the DES, and the choice of the modeler, the result of the

modeling process can be a single Petri net or a set of them.

If the degrees of freedom are modeled as missing pieces

of information in the incidence matrices of the Petri net,

the alternative configurations are called structural ones

and a natural and intuitive modeling process leads to a set

of alternative Petri nets. Otherwise, the resulting model is

normally represented by a single parametric Petri net.

Please, consult Zimmerman et al.,3 Recalde et al.,41

Tsinarakis et al.,37 and Latorre et al.42 for more details.

In this paper, the objective of the decision problem will

be an undefined Petri net containing several alternative

structural configurations; hence, it may be represented by

a set of alternative Petri nets. In this section, some defini-

tions, related to the models of an undefined DES with

alternative structural configurations will be given. A

broader and slightly different presentation can be found in

the work developed by Latorre-Biel et al.43

Definition 2. Set of alternative Petri nets.

Given a set of Petri nets SR = {R1, ., Rn}, SR is said to

be a set of alternative Petri nets if n> 1 and "i, j∈N such

that 1 ≤ i, j≤ n, and i6¼j. It is verified that

(i) if m(Ri) 6¼ m0(Ri))m(Rj) = m0(Rj);

(ii) if m(Rj) 6¼ m0(Rj))m(Ri) = m0(Ri); and

(iii) the incidence matrices of the Petri nets are differ-

ent: W(Ri))W(Rj). h

Notice that the properties (i) and (ii) imply that Ri and Rj

verify mutually exclusive evolution, that is to say, if one

of them is in a state different to the initial one, the other

must remain in the initial state. This property, which mod-

els the exclusive nature of the feasible choices in a deci-

sion problem, justifies the independent evolution of the

different alternative Petri nets, which do not require any

synchronization while the simulation is being performed

in different processors.

This classic approach of having many models as feasi-

ble structural configurations can be enriched through the

abstraction of some concepts, such as the exclusiveness of

the evolution of the different alternative Petri nets. This

abstraction leads to the definition of new formalisms, such

as the AAPN.

The concept of exclusive entity is an abstraction of the

models chosen to represent the different structural config-

urations of the DES. One particular representation of a set

of exclusive entities is a set of alternative Petri nets, each

one for a different structural configuration of the DES. In

fact, the concept of a set of alternative Petri nets has an

important role in the following definition of a set of exclu-

sive entities.

Definition 3. Monotypic set of exclusive entities.

Given an DES D, a monotypic set of exclusive entities

associated to D is a set Sx = {X1, ., Xn}, which verifies that

(i) the elements of Sx are exclusive, that is to say,

only one of them can be chosen as a consequence

of a decision;

(ii) "i, j∈N
*, i6¼j, and 1 ≤ i, j≤ n, it is verified that

Xi 6¼ Xj;

(iii) the elements of Sx are of the same type; and

(iv) d f: Sx!SR such that

(a) SR = { R1, ., Rn } is a set of alternative

Petri nets, feasible models of D; and

(b) f is a bijection)"Xi∈ Sxd! f(Xi) = Ri∈ SR

such that Ri is a feasible model for D and

"Ri∈ SRd! f-1(Ri) = Xi∈ Sx. h

The adjective ‘‘monotypic’’ for a set of exclusive entities

refers to the fact that all of them are associated to the same

type of representation, for example alternative Petri nets.

If the abstraction process continues further, an unde-

fined Petri net with alternative structural configurations

can be defined as the model of an undefined DES with

alternative structural configurations.

Definition 4. Undefined Petri net with alternative struc-

tural configurations.

Given a DES D, an undefined Petri net with alternative

structural configurations developed as a model of D, is a

10-tuple RU = hP, T, pre, post, m0, Sα, Svalα, Sx, Rγ, Rvalαi,
such that |Sx|> 1, where

(i) Sα is the set of undefined parameters, that is to

say, the variables of the Petri net that model the

degrees of freedom of D;

(ii) Svalα is the feasible combination of values for the

undefined parameters Sα;

(iii) Sx is a complete set of exclusive entities associ-

ated to D;

(iv) Rvalα is a binary relation between Svalα and Sx;

and

(v) Rγ is a binary relation between Sx and Sγ, where

Sγ is the set of parameters of RU no matter if they

are undefined ones or are associated to a single

feasible value. h

One possible representation of an undefined Petri net with

alternative structural configurations is a set of alternative

Petri nets. Another particular representation of an unde-

fined Petri net is called the AAPN.42 As its name says, the

AAPN may be constructed from the aggregation of a set

of alternative Petri nets, a process described by Latorre et

al.44. In this process, the set of exclusive entities is repre-

sented by a set of choice variables SA = {a1, a2, ., an}.

See Figure 4 for an intuitive representation of this idea.

Latorre and Jiménez 7

Definition 5. Simple AAPN system.

Given an undefined Petri net RU, an AAPN system RA

is defined as the 10-tuple:

RA = hP, T, pre, post, m0, Sα, Svalnstrα, SA, Rvalnstrα, fAi

where

(i) Sα is a set of non-structural undefined para-

meters, that is to say, not contained in the inci-

dence matrices of the net;

(ii) Svalα is the set of feasible combination of values

for the undefined parameters in Sα;

(iii) SA is the representation of the set of exclusive

entities, called the set of choice variables, which

verifies that SA6¼1 and SA = {a1, a2, ., an | d!

ai=1, 1 ≤ i≤ n^aj=0 "j6¼i, 1 ≤ i≤ n }, where

the choice of ai=1 is the result of a decision;

(iv) Rvalα is a binary relation between Svalα and SA;

and

(v) fA: T ! f(a1, ., an) assigns a function of the

choice variables in regard to each transition t

such that type[fA(t)] = Boolean. h

Notice that the adjective ‘‘simple’’ applied to the AAPN

in the previous definition is a reference to the fact that RA

does not have any undefined structural parameter. For a

more detailed description of the AAPNs and the transfor-

mation algorithm from a set of alternative Petri nets to an

equivalent AAPN, see Latorre et al.44

2.3. Statement of an optimization problem

Once the model of the original DES has been developed, it

is necessary to complete the formal statement of the deci-

sion problem with additional constraints in the form of

inequalities (for example a minimal production that should

be complied to in the case of a manufacturing facility or a

maximal makespan).

In general, a decision problem requires the choice of the

best solution according to a certain criterion. In this case, it is

necessary to quantify this criterion, usually in the form of one

or several performance measurements, which are included in

an objective or multi-objective function f(x). This function

should also be included in the formal statement of the optimi-

zation problem associated to the decision problem.

In sections 2.5 and 2.6, several formal statements of opti-

mization problems of interest in this paper will be presented.

2.4. Influence of the choice of the modeling
formalism on the computer requirements
for solving an optimization problem

If the formalism chosen to model an undefined DES is a

set of n alternative Petri nets, SR = {R1, R2,., Rn}, the

subsequent optimization problem can be solved by means

of a classic approach. This methodology is based in the

concept of ‘‘divide and conquer’’, where the optimization

process is divided into a set of n simpler optimization prob-

lems. Each one of the simple problems is associated to a

single one of the alternative Petri nets of SR. According to

this idea, the search for the best solution to the problem is

decomposed into n independent search processes, focused

on smaller solution spaces than the one that corresponds to

the complete set SR. In particular, the ith given independent

search is devoted to the solution space of the associated

alternative Petri net Ri.

If this classic methodology is executed in a single pro-

cessor, it is necessary to solve sequentially a set of n opti-

mization problems based on a single alternative Petri net.

It is possible to improve the efficiency of the methodol-

ogy to solve the original decision problem by using a more

compact and appropriate model for the alternative structural

configurations of the DES or, what is the same, for the asso-

ciated set of exclusive entities. This improvement is based

on several facts pointed out in the following paragraphs:

(a) In real systems, it is very common that the differ-

ent alternative Petri nets share some subnets,

which correspond to common physical subsys-

tems. In particular, there are cases where the

diverse alternative structural configurations are

built from the different combinations of the same

subsystems. Thanks to this idea, the model of the

system might be greatly reduced by the removal

of this redundant information.

(b) The state-space of a set of alternative Petri nets is

isomorphous to the union of the state-spaces of the

alternative Petri nets. This property is not verified

by a set of Petri nets that are subsystems of the

same model instead of being alternative structures

for it, since the former leads to a state-space for

the set of Petri nets that is in general much larger

than the union of the state-spaces of the original

Petri nets. In fact, the set of Petri nets may present

states that are feasible combinations of the states

of the different Petri nets, while the alternative

Petri nets verify the mutually exclusive evolution.

(c) If the optimization is reduced to a single process,

there exists only one solution space to be explored,

whereas there are n different solution spaces asso-

ciated to the n simpler optimization problems aris-

ing from the approach of ‘‘divide and conquer’’.

When the search of the most promising solutions

to be evaluated is performed by means of a heuris-

tic, the computer resources are focused on the

most promising regions of the solution space,

while the ‘‘divide and conquer’’ approach scatters

the computer resources into the n search processes

of the different solution spaces.

8 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

The improved methodology to solve the optimization

problem, for the moment in a single processor, is based in

the use of a single and compact model, based on the form-

alism of the AAPN. This model may require less data to

be described than an original set of alternative Petri nets if

the degree of similarity between the nets is high. This

degree of similarity is related to a large number of coinci-

dent elements in the incidence matrices of the alternative

Petri nets and may correspond to alternative structural

configurations with shared subnets.

The performance of the simulation of the evolution of a

single alternative Petri net is likely to be faster than a simu-

lation of the AAPN. Nevertheless, better use of the com-

puter resources in the exploration of the complete solution

space may lead to an optimization process much shorter in

the case of the AAPN than the set of alternative Petri nets

(see paragraph (c) in this section).

Summarizing, two optimization methodologies are

introduced in this section. They are applied to a general

decision problem based on an undefined DES and they are

based on different formalisms for the development of the

model of the DES. As a result of the considerations of this

section, it is expected that on a single processor, the

approach based on an AAPN outperforms the methodol-

ogy inspired in the paradigm of ‘‘divide and conquer’’. In

section 2.5, a deeper insight into both methodologies will

be provided.

2.5. Optimization strategy based on the paradigm
of ‘‘divide and conquer’’

The first optimization methodology to be considered in

detail is a classic approach based on the concept of ‘‘divide

and conquer’’. The corresponding optimization problem

contains a set of alternative Petri nets as a model of the

undefined Petri net and can be stated as follows:

Definition 6. Optimization problem based on a set of n

alternative Petri nets.

Optimize f(x), subject to

(i) SR = {R1, R2, . , Rn} is a model of the system in

the form of a set of alternative Petri nets; this is a

disjunctive constraint;

(ii) additional constraints that can be written in the

form

(a) gj(x) > 0, 1 ≤ j≤ ngj,

(b) hk(x) = 0, 1 ≤ k≤ nhk; and

(iii) x∈Dom, solution space, where (x, Ri) is the solu-

tion of the optimization problem and contains all

the undefined parameters of the model: x = (α1,

α2, ., αp). h

This problem can be decomposed into n independent opti-

mization subproblems of the form:

Definition 7. Optimization subproblem based on an alter-

native Petri net.

Optimize fi(xi), subject to

(i) Ri∈ SR = {R1, R2, . , Rn} is a partial model of

the system given by a single feasible combination

of values for the undefined structural parameters

in the form of an alternative Petri net; it is not a

disjunctive constraint;

(ii) additional constraints, written in the form

(a) gij(xi) > 0, 1 ≤ j≤ ngij,

(b) hik(xi) = 0, 1 ≤ k≤ nhik; and

(i) xi∈Domi, solution space, where xi contains all the

undefined parameters of Ri and is the solution of

the ith optimization subproblem. h

In the standard approach of ‘‘divide and conquer’’, the

optimization strategy consists of solving independently the

n different optimization subproblems associated to every

alternative Petri net, obtaining the best fi(xi) in each case,

comparing them, and choosing the best fopt(xi) of all.

fopt(xi) corresponds to a configuration of the undefined

parameters of the Petri net model given by xi and, hence,

to the solution of the associated decision problem.

2.6. Optimization strategy based on an AAPN

The second optimization strategy to be considered in detail

is based in the formalism of the AAPN (see definition 5) to

represent the same undefined DES considered in the previ-

ous section. Under this approach it is possible to translate

the original decision problem based on a DES into the fol-

lowing optimization one:

Definition 8. Optimization problem based on an AAPN.

Optimize f(x), subject to

(i) RA is a model of the system in the form of an

AAPN; this is a disjunctive constraint;

(ii) additional constraints that can be written in the

form

(a) gj(x) > 0, 1 ≤ j≤ ngj,

(b) hk(x) = 0, 1 ≤ k≤ nhk; and

(iii) x∈Dom, solution space, where (x, a) is the solu-

tion of the optimization problem that contains all

the undefined parameters of the model x = (α1,

α2, ., αp). h

The use of an AAPN model allows performing a single

optimization instead of the n processes associated to the

classic approach. Moreover, the size of the model may

contain less data in the AAPN representation than in the

whole set of alternative Petri nets as a consequence of the

removal of redundant information mentioned in paragraph

(a) of section 2.4.

Latorre and Jiménez 9

On the other hand, the incidence matrices W+ and W –

associated to the AAPN may be larger than the incidence

matrices of any of the alternative Petri nets;42 hence, the

application of equation (1) to calculate a step in the evolu-

tion of a Petri net requires more computational resources

in the case of the AAPN than a single alternative Petri net.

Nevertheless, the optimization problem based on a set of

alternative Petri nets requires n optimization processes to

be solved.

Moreover, each optimization process, associated to an

alternative Petri net, explores a region of the total solution

space, which implies a waste of time in the less promising

regions; whereas, the AAPN approach explores the solu-

tion space as a whole avoiding the less promising areas

and devotes the computational resources to where the heur-

istic guides the search to the regions that are the most pro-

mising ones.

For a more detailed description on a particularly suc-

cessful heuristic to solve the mentioned optimization prob-

lems, the genetic algorithms, see Latorre et al.4

2.7. Example of the design of a
manufacturing facility

Latorre et al.44 presents a case-study, hereafter referred to

as example 1, where a manufacturing facility in the pro-

cess of being designed is considered for decision-making.

In this application case, there are two alternative structural

configurations that include respectively a flexible subsys-

tem and a non-flexible one for the quality control, assem-

bly of parts, and packing of the final products. In each one

of the alternative configurations, there are other degrees of

freedom, such as the presence and size of intermediate buf-

fers, the layout of several machining centers, and the num-

ber of robots to perform certain tasks in the facility.

Figure 7 shows an intuitive representation of the deci-

sion problem. The original DES is a manufacturing facility

in the process of being designed. After a modeling process,

an undefined Petri net is obtained. The degrees of freedom of

the model have been represented in the following way. The

undefined structural parameters, which correspond to the two

different quality control, packing, and assembly systems, are

represented by a triangle. It has two feasible configurations:

a and b. On the other hand, the undefined non-structural

parameters, such as the size of intermediate buffers or the

number of robots are represented by a rectangle. The feasible

combination of values for the undefined non-structural para-

meters are represented by the natural numbers 1, 2, 3, .
The undefined DES is modeled in two ways: as a set of

two alternative Petri nets and as an AAPN. It has to be

said that with the exception of the mentioned subsystem of

quality control, assembly, and packing, the structure of the

rest of the facility is the same in both cases. The existence

of shared subnets between the structural alternatives is

very common in the design of a DES.41

In the mentioned paper, a comparison is described

between two optimization approaches. On the one hand, a

‘‘divide and conquer’’ approach in the form of two optimi-

zation problems, each one of them associated to one of the

alternative Petri nets, is presented. On the other hand, the

search in a single solution space associated to an AAPN

model is described. The comparison takes into account

two performance parameters from both approaches: the

quality of the best solution obtained, measured by the

value of a multi-objective function, as well as the com-

puter requirements, measured by the time required to fin-

ish the complete optimization process.

The results of the comparison show that the quality of

the solutions is comparable and the time required to finish

the process based on the AAPN is half the time needed by

the classic approach. With this case-study it has been

shown that at least in this example the approach based on

an AAPN is very efficient when compared to the classic

‘‘divide and conquer’’. h

Other application cases, studied by the authors, with a

larger number of alternative Petri nets lead to a trend

showing that the larger the number of shared subnets, the

more efficient the AAPN is compared to the set of alterna-

tive Petri nets. The previous considerations, including the

already mentioned improvements of the optimization

based on an AAPN and their justifications, may lead to

the conclusion that the AAPN is a formalism that can

improve the efficiency of the decision-making processes

for an undefined DES, performed on a single processor.

Real system in
the process of
being designed

Modeling
process

Petri net model
Degree of freedom 1:

non-structural

Feasible values
for the degrees

of freedom

,
Alternative structural configurations

Combinatorial
process

Degree of freedom 2:
quality control,

assembly, and packing

a b 1
2 3 …

…

a b

?

?

? ?

Figure 7. Undefined Petri net of example 1.

10 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

3. Distributed computation to solve
a simulation-based optimization

In a distributed computing system (DCS), programs and

data files are distributed among several processing units

which may contribute to the simultaneous execution of a

single program or, alternatively, different programs can be

executed concurrently.

Several authors have addressed the simulation of the

evolution of a Petri net using distributed algorithms. These

algorithms aim to reduce the execution time by distribut-

ing the computational effort into a number of processors.

As it has already been mentioned in section 1, most of

these strategies are compatible with the approach that is

presented in this paper; thus, interesting research work

might be afforded by the combination of some of these

techniques.

3.1. Definition of optimization subproblems of size m

In this section, a methodology to distribute the solving pro-

cedure of the optimization problems described in definition

6 and definition 8 into a number of different processing

units will be described. This methodology is applied by

decomposing the optimization problem into autonomous

subproblems that minimize the computational effort, as

well as the information interchanged between the proces-

sors. Every subproblem is assigned to a different processor

to be solved.

The definition of a subproblem of size m can be per-

formed in the following way:

Definition 9. Optimization subproblem of size m based on

a subset of alternative Petri nets.

Given an optimization problem based on SR = {R1,

R2, . , Rn} (see definition 6), an optimization subproblem

of size 1 ≤m≤ n based on SRi4SR can be defined in the

following way

Optimize fi(xi), subject to

(i) SRi4SR = {R1, R2, . , Rn}, |SRi| = m≤ n;

(ii) additional constraints that can be written in the

form

(a) gij(xi) > 0, 1 ≤ j≤ ngij,

(b) hik(xi) = 0, 1 ≤ k≤ nhik; and

(iii) xi∈Domi, solution space, where xi is the solution

of the optimization problem that contains all the

undefined parameters of SRi. h

In Figure 3, the Petri net models of different statements

of optimization problems have been represented. In the

upper part of Figure 3, a set of three alternative Petri nets

is shown. This set of alternative Petri nets is associated to

an ‘‘optimization problem based on a set of n=3 alternative

Petri nets’’, as described in definition 6. In the bottom-left

corner of Figure 3, a single alternative Petri net, belonging

to an ‘‘optimization subproblem based on an alternative

Petri net’’ is shown, as described in definition 7. This sub-

problem has been assigned to processor number 1. Finally,

in the bottom-right corner of the Figure 3, a set of two

alternative Petri nets, associated to an ‘‘optimization sub-

problem of size m=2 based on a subset of alternative Petri

nets’’, can be found. This subproblem has been assigned to

processor number 2.

In an analogous way, it is possible to state another defi-

nition of the same optimization problem, based on a differ-

ent representation of the model of the undefined DES. In

this case the chosen formalism is the AAPN:

Definition 10. Optimization subproblem of size m based

on an AAPN.

Given an optimization problem based on SR = {R1, R2,

. , Rn} (see definition 6), an optimization subproblem of

size 1 ≤m≤ n based on an AAPN Ri
A, equivalent to

SRi4SR, where |SRi| = m≤ n. ,can be defined in the follow-

ing way

Optimize fi(xi), subject to

(i) Ri
A, AAPN equivalent to SRi;

(ii) additional constraints that can be written in the

form

(a) gij(xi) > 0, 1 ≤ j≤ ngij,

(b) hik(xi) = 0, 1 ≤ k≤ nhik; and

(iii) xi∈Domi, solution space, where xi is the solution

of the optimization problem that contains all the

undefined parameters of Ri
A. h

In Figure 5, an intuitive representation of an AAPN,

associated to an ‘‘optimization subproblem of size m=2

based on an AAPN’’ has been shown. In the bottom-right

corner of Figure 5, an intuitive representation of this

AAPN, assigned to processor number 2, can be seen.

By means of the application of a transformation algorithm

from a set of alternative Petri nets, SRi, into an equivalent

AAPN, Ri
A, detailed by Latorre et al.44 Given a subproblem

described by definition 9, it is always possible to obtain an

equivalent subproblem described by definition 10.

3.2. Decomposition of an optimization problem
into subproblems

Given an instance of a problem described by definition 6,

‘‘optimization problem based on a set of n alternative Petri

nets’’, it is always possible to decompose it into k non-

redundant subproblems, where k≤ n. For this task to be

performed, a decomposition of the set of alternative Petri

nets SR = {R1, R2, . , Rn} is afforded, such that the fol-

lowing properties are verified:

Latorre and Jiménez 11

(i) SR = SR1∪ SR2∪.∪ SRk: this property is justi-

fied by the fact that every feasible alternative

configuration of the DES should be included in

one of the subproblems resulting from the

decomposition;

(ii) SRi6¼1, 1 ≤ i≤ k: it does not make sense to

define a subproblem, which does not include any

alternative configuration of the undefined DES

to be analyzed; and

(iii) SRi∩ SRj = 1, 1 ≤ i,j≤ k: this last property is

related to the need to prevent a repetitive analysis

of a given alternative configuration by ensuring

that any of the configurations is associated to a

single subproblem.

The previous three properties, verified by the decompo-

sition of SR = {R1, R2, . , Rn} into subproblems, define a

partition of SR.

It is clear that, in general, different decompositions of

an ‘‘optimization problem based on a set of n alternative

Petri nets’’ (see definition 6) would perform differently

when the same solving technique is applied. For this rea-

son, it is convenient to know all the range of possibilities

that this decomposition approach offers.

The power of this approach can be measured partially

in terms of the number of possible decompositions. As it

will be shown in the following paragraphs, in a general

case, it is possible to find a large number of feasible

decompositions into subproblems of a given optimization

problem. This result allows searching for the partition of

SR that leads to the most efficient optimization process by

distributed computation:

Proposition 1. Number of possible decompositions of an

optimization problem based on a set of n alternative Petri

nets, SR.

Given an instance of the optimization problem

described in definition 6, where |SR| = n, the number of

feasible decompositions into non-redundant subproblems

is given by the Bell number Bn.

Proof

The decomposition of the problem consists of dividing it

into subproblems that include the elements corresponding

to the assigned feasible configurations: objective function,

alternative Petri net or nets, additional constraints, and

domain.

To avoid loss of information, to permit consistency in

the subproblems, and to prevent redundancy the following

three properties should be complied with

(i) SR = SR1∪ SR2∪.∪ SRk;

(ii) SRi6¼1, 1 ≤ i≤ k; and

(iii) SRi∩ SRj = 1, 1 ≤ i,j≤ k.

These three properties specify the decomposition of SR

as a partition.

According to Rota,45 the number of feasible partitions

of a set of cardinality n can be calculated by the Bell num-

ber Bn. h

The sets SRi, 1 ≤ i≤ k, obtained from the partition of SR

are called blocks, classes, or cells by different authors.

The Bell number Bn can be obtained by the following

recursion formula45

Bn =
Xn�1
i= 0

n� 1

i

� �
·Bi ð3Þ

where B0=1 by convention45 and the binomial coefficients

can be calculated by different means, for instance

n� 1

i

� �
= n� 1ð Þ!

i! · n� i� 1ð Þ! for 0≤ i≤ n� 1 ð4Þ

The Bell numbers are also called exponential numbers46

and grow very rapidly with the cardinality of the set SR,

which implies the advantage of having in general a large

number of possible decompositions for an optimization

problem based on a set of alternative Petri nets.

To provide an idea of the rate at which their value is

increased, some Bell numbers have been listed in Table 1

as an example.

The interpretation of these Bell numbers in the context

of this paper can be seen by the following example. Let us

consider an undefined Petri net with 100 alternative struc-

tural configurations, described by SR, such that |SR| = 100.

The number of feasible decompositions of an optimization

problem based on SR into a set of k processors, where 1

≤ k≤ n =100, is 4.75853912767648 · 10115. Among

them, there will be some decompositions that may lead to

very efficient solution processes of the optimization

problem.

Table 1. Value of some selected Bell numbers.

B0 = 1
B1 = 1
B2 = 2
B3 = 5
B4 = 15
B5 = 52
B6 = 203
B7 = 877
B8 = 4140
B9 = 21147
B10 = 115975
B15 = 1382958545
B25 = 4638590332230000000
B50 = 1.85724268771078 · 1047
B100 = 4.75853912767648 · 10115

12 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

3.3. Example of decomposition of an optimization
problem into subproblems

As example 2, let us consider the set of n = 4 alternative

Petri nets SR = {R1, R2, R3, R4} included in the statement

of an optimization problem according to definition 6.

This problem can be decomposed in B4 = 15 different

ways, represented by the Hasse diagram depicted in

Figure 8.

In the previous Hasse diagram, the different B4 = 15

possible partitions of SR, structured in four levels accord-

ing to the order of the partition, can be seen. This order

describes the number of resulting blocks of alternative

Petri nets from the partition which in this case ranges from

1 to 4. Notice that for a given partition, a block is repre-

sented by a set of alternative Petri nets between curly

brackets. In the distributed scheme presented in this paper,

every block corresponds to the set of alternative Petri nets

associated to an optimization subproblem assigned to a

given processor. As a consequence, the number of avail-

able processors will correspond to the order of the parti-

tion considered for the case.

Furthermore, the lines in the diagram link sequences of

decompositions, which increase the order of the resulting

set of blocks from the top of the diagram to the bottom or

decrease it in the opposite direction.

Let us consider now a case, where there are k = 3 avail-

able processors for executing the optimization algorithm

mentioned in the last example (see definition 6). In this

situation, the partition of SR should be made of order k = 3

in order to distribute the alternative Petri nets into three

subproblems, for solving each one of them in a different

processor. As it can be seen in the Hasse diagram, the

number of feasible partitions of order 3 is 6. Hence, it is

necessary to use an additional criterion to choose one of

the six available partitions. Eventually, the selected parti-

tion will describe how to distribute the alternative Petri

nets into subproblems that will be assigned to different

processors. More general considerations will be developed

and detailed in the following paragraphs.

The type of a partition can be considered as notation

for designing the partitions of a set. The arrangement of

the sizes of the blocks into a decreasing sequence is called

the type of a partition. For example, the partition of order

1 is of type 1. The partitions of order 2 are of type 22

({Ra, Rb}, {Rc, Rd}) and of type 31 ({Ra}, {Rb, Rc, Rd}).

The partitions of order 3 are all of type 211, while the par-

tition of order 4 is 1111. h

3.4. Decompositions of an optimization problem
for k available processors

Let us consider now a set of k equivalent processor systems,

which are available for a distributed optimization. Notice

that the use of processors of different characteristics, for

performing a balanced distribution of tasks, has not been

considered in this paper. It is our interest to decompose the

optimization problem based on a set of n alternative Petri

nets SR, into k tasks to be executed in the processors.

The following different cases may arise according to

the values of n and k:

(a) k = n: in this case, n subproblems can be stated

according to definition 7. Each subproblem is

associated with a different processor;

(b) k > n: consider case (a) and divide some of the

subproblems of size 1 into subprocesses, by

means of other techniques of distributed simula-

tion mentioned in section 1.2;

(c) k = 1: a single problem, according to definition 6

or definition 8, can be posed; and

(d) 1 < k < n: this situation is described below,

which consists of distributing an optimization

problem based on n alternative Petri nets into a

set of k processor systems.

In real applications, the case described in (d) is very

common, since the number k of available processors, a

scarce resource in general, is usually smaller than the num-

ber of alternative structural configurations for an unde-

fined DES. For this reason, the following paragraphs will

be devoted to this case.

3.5. Calculation of the number of feasible
decompositions of an optimization problem
for a given k and n

This section will address a first step in the development of

an algorithm to solve an optimization problem, as

{ R
1
, R

2
, R

3
, R

4
}

{R1},{R2,R3,R4}

{R2},{R1,R3,R4} {R
3
},{R

1
,R

2
,R

4
}

{R1,R2,R3},{R4}

{R1,R2},{R3,R4}

{R1},{R2},{R3,R4}

{R1},{R3},{R2,R4}

{R1},{R2,R3},{R4} {R
2
},{R

3
},{R

1
,R

4
}

{R2},{R1,R3},{R4}

{R1,R2},{R3},{R4}

{R
1
},{R

2
},{R

3
},{R

4
}

{R1,R3},{R2,R4}

{R
1
,R

4
},{R

2
,R

3
}

Figure 8. Hasse diagram representing the feasible partitions of
a set of four alternative Petri nets.

Latorre and Jiménez 13

described in definition 6, for a given pair (n, k). Notice

that n is the size of the set of alternative Petri nets,

whereas k is the number of available processors. This first

step consists of calculating the number of feasible decom-

positions of the problem. Once this figure is known, the

choice of the best partition of the set of alternative Petri

nets SR will be afforded.

Proposition 2. Number of possible decompositions of an

optimization problem based on SR into a set of k processor

systems.

Given an optimization problem, as described in defini-

tion 6, where |SR| = n, the number of feasible decomposi-

tions into k non-redundant subproblems is given by the

Stirling number of the second kind S(n, k).

Proof

The decomposition of the original optimization problem

divides it into k subproblems. In particular, the set of n

alternative Petri nets that model the undefined DES is dis-

tributed into the k available processors. In addition to the

subset of alternative Petri nets, each one of the k subpro-

blems includes additional elements, such as an objective

function, a set of additional constraints, and the domain of

the components of the feasible solutions.

To avoid loss of information, to permit consistency in

the subproblems, and to prevent redundancy in the division

of SR, this decomposition should be a partition, as stated in

the proof of proposition 1.

The number of feasible partitions of a set of cardinality

n into k non-empty blocks can be calculated by the Stirling

number of the second kind S(n, k).47 h

The Stirling number S(n, k) can be calculated by the fol-

lowing recurrence relation47

S n, kð Þ= k · S n� 1, kð Þ+ S n� 1, k � 1ð Þ ð5Þ

where n, k≥ 1, and by convention S(0, 0)=1, S(n, 0)=0 for

n≥ 1, S(n, k) = 0 for k > n.

Alternatively, it is possible to represent explicitly S(n,

k) as a finite sum47 and respectively

S(n, k)= 1

k!

Xk

i= 0

�1ð Þi
k

i

� �
k � ið Þn

= 1

k!

Xk

i= 0

�1ð Þk�i k

i

� �
in

ð6Þ

where 0 ≤ k≤ n.

The lowest Stirling numbers of the second kind are rep-

resented in Table 2. In the position that corresponds to the

ith row (number n) and the jth column (number k) the

Stirling number S(i, j) has been represented.

In example 2, it is possible to calculate the Stirling

numbers of the second kind S(n, k) such that 1 ≤ k≤ n =

4. The order of the partition corresponds to the second

argument of the Stirling number of the second kind k. As a

consequence it is possible to calculate in example 2 the

following numbers:

* number of partitions of order 1: S(4, 1) = 1;

* number of partitions of order 2: S(4, 2) = 7;

* number of partitions of order 3: S(4, 3) = 6; and

* number of partitions of order 4: S(4, 4) = 1.

In the Table 2, it can also be seen, for some cases, the

relation existing between the Bell numbers and the Stirling

numbers of the second kind, which can be explicitly repre-

sented as

Bn =
Xn

k = 0

S n, kð Þm ð7Þ

This relation is immediately obtained, since the number

of ways an n-element set can be partitioned is the sum of

the number of ways in which this set can be partitioned

into exactly k blocks ranging from 0 to n.

3.6. Choice of the decomposition of an
optimization problem for a given k and n

Once the number of feasible decompositions of an optimi-

zation problem into k non-redundant subproblems has

Table 2. Values of the Stirling numbers of the second kind from n=1 to n=10.

n\k 1 2 3 4 5 6 7 8 9 10 Bn

1 1 1
2 1 1 2
3 1 3 1 5
4 1 7 6 1 15
5 1 15 25 10 1 52
6 1 31 90 65 15 1 203
7 1 63 301 350 140 21 1 877
8 1 127 966 1701 1050 266 28 1 4140
9 1 255 3025 7770 6951 2646 462 36 1 21147
10 1 511 9330 34105 42525 22827 5880 750 45 1 115975

14 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

been calculated, it is convenient to determine which one

of the feasible partitions should be chosen to afford the

distribution of the subproblems into the available k

processors.

The criterion to choose one of the feasible partitions of

SR can be different regarding the final statement of the

optimization problem. It is possible to state a collection of

k subproblems of the types mentioned in the following:

(a) subproblems associated to a subset of alternative

Petri nets, according to definition 9 and definition

7;

(b) subproblems associated to an AAPN or a single

alternative Petri net, according to definition 10

and definition 7, respectively; and

(c) a combination of subproblems associated to a sub-

set of alternative Petri nets or an AAPN, accord-

ing to definitions 7, 9, and 10.

The following considerations address some criteria to

choose successfully a certain partition for the alternative

structural configurations of an undefined DES in the three

cases described in the previous paragraphs. One successful

criterion in the case described in paragraph (a), for choos-

ing one of the feasible partitions of SR, may be to construct

blocks of similar size in order to balance the computational

requirements of the subproblems. It is convenient to group

together the fastest subproblems in the largest blocks in

order to speed up the complete distributed optimization. In

general, due to the fact that the most demanding operation

in the optimization process is the simulation of the evolu-

tion of the Petri net by the application of equation (1), the

fastest subproblems are characterized by the smallest inci-

dence matrices. An appropriate criterion associated to the

case described in paragraph (b) may be to obtain blocks of

similar size and group together with the alternative Petri

nets that share subnets. At a subsequent step, every block

of alternative Petri nets can be transformed into an AAPN

according to the algorithm described in Latorre et al.44.

The Petri nets that share subnets will lead to an AAPN,

where the shared subnet appears only once; hence, this

redundant information is removed from the model of the

system. The result is a model described by a smaller

amount of data, which would be processed by the optimi-

zation algorithm in an efficient way. A successful criterion

associated to the last option, described in paragraph (c),

may be a combination of the previously mentioned ones.

In this section, the definitions of some optimization sub-

problems have been stated. Furthermore, two propositions

have been proven regarding the calculation of the feasible

decompositions of a given problem into feasible subpro-

blems. Finally, some criteria to choose one of the feasible

decompositions to define the solving strategy have been

presented.

In section 4, specific algorithms to distribute the tasks

to different processors, to describe the optimization tasks

themselves, and to transform an optimization subproblem

based on a set of alternative Petri nets into a more efficient

one, based on an AAPN, are discussed.

4. Algorithm for a distributed solution
of an optimization problem

In this section, some algorithms for the distribution of the

problem into a number of processors, for the conversion of

a subset of alternative Petri nets into an AAPN and for the

execution of the optimization process are presented.

Algorithm 1, represented in Figure 9, describes the pro-

cess of distributing an optimization problem based on a set

of n alternative Petri nets SR = {R1, R2, . , Rn} into a set

of k processor systems. The resulting subproblems are

aimed to be associated to sets of alternative Petri nets, as

stated in definition 9 and definition 7.

Algorithm 1 requires as input data the number of avail-

able processors k, as well as the definition of the optimiza-

tion problem, including the objective function, the model

of the undefined DES in the form of a set of alternative

Petri nets SR, the additional constraints, and the domains

of the components of the solution of the problem.

Start

Input k

Calculate the size of
all the k blocks of
the partition

Arrange alternative
PN Ri according to
the size of W(Ri)

Optimization
problem

Build pairs (Ri, blockj)
assigning larger W(Ri) to
smaller blockj

End

Particularize the elements
of the optimization
problem to every block

Pairs
(subproblemi, blockj)

Figure 9. Algorithm 1.

Latorre and Jiménez 15

Algorithm 1
Step 1. Calculation of the size of k blocks of the partition

of SR in terms of the number of alternative Petri nets. In

order to balance the size of the blocks, the distribution of

alternative Petri nets should be done in a way that makes

the size of every block as small as possible.

Step 2. Make an ordered list of alternative Petri nets Ri

according to the size of their incidence matrix W(Ri).

Step 3. Assign the alternative Petri nets of larger incidence

matrix to the smaller blocks.

Step 4. Particularize the other components of the optimi-

zation problem to the blocks created in the partition of SR.

Every subproblem is stated and assigned to a different

block. Every block is assigned to a different available

processor. h

This algorithm tries to compensate for the computa-

tional requirements of every subproblem by gathering the

most demanding alternative Petri nets, which are the ones

with larger incidence matrices, into the smallest subsets of

the alternative Petri nets, which are the ones associated to

the smallest blocks.

Algorithm 2, depicted in Figure 10, is focused on the

process of distributing an optimization problem based on a

set of n alternative Petri nets into a set of k processor sys-

tems. The resulting subproblems are aimed to be associ-

ated to an AAPN or a single alternative Petri net if the size

of the corresponding block is 1, as stated in definition 10

and definition 7.

Algorithm 2
Step 1. Calculate the size of k blocks of the partition of SR,

making them as small as possible. Notice that k is the num-

ber of available processors.

Step 2. Make an ordered list of alternative Petri nets

according to the size of their incidence matrix.

Step 3. Assign the alternative Petri net in the list with the

larger incidence matrix to the smaller empty block of the

partition. Remove the Petri net from the ordered list.

Step 4. While there is room free in the block: Search for the

Petri net from the list with the largest subnet shared with the

previous one. Add it to the block. Remove it from the list.

Repeat Step 4 until there is no room free in the block.

Step 5. If the ordered list of alternative Petri nets list is not

empty, go to step 3.

Step 6. Particularize the other components of the optimi-

zation problem to the blocks created in the partition of SR.

Every subproblem is stated and assigned to a different

block. Every block is assigned to a different available

processor. h

The previous algorithm groups in the same blocks the

alternative Petri nets that share the largest blocks.

Algorithm 2 reaches a compromise between speed of

computation and result. In fact, it would be better to find

subnets shared by more than a single Petri net. Another

interesting option consists of developing a dynamic

grouping of alternative Petri nets into blocks, whose size

would be increased as new, large subnets are found to be

shared by the Petri net that already belongs to the block.

Nevertheless, the very demanding computer require-

ments needed for performing this task has led to this

Start

Input k

Calculate the size of
all the k blocks of
the partition

i ← 1; j ← 1

blocki ← Rj;
Remove Ri
from the list

i ← i+1

Find j, such that Rj is
the first element in

the ordered list

Is
the ordered list

empty?

yes

no

Optimization
problem

Ordered list
of Petri nets

Particularize the elements
of the optimization
problem to every block

Pairs
(subproblemi, blockj)

Arrange alternative
PN Ri according to
the size of W(Ri)

j ← q

Is
there room in

blocki?

yes

no

Find q such that
Rj shares largest
subnets with Rq

End

Figure 10. Algorithm 2.

16 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

more modest algorithm 2. This algorithm focuses on

assigning a Petri net to each processor and to grouping it

with other alternative Petri nets remaining to be assigned

and that show similarity with respect to the previous

one. This measurement of similarity is expected to lead

in many real cases to a significant reduction in the

redundant information contained in the original set of

alternative Petri nets, developed as a model of the unde-

fined DES.

Another interesting approach to afford this distribution

of alternative Petri nets into subproblems can be done by

identifying the common real subsystems, which usually

lead to shared subnets, as a criterion to group the alterna-

tive Petri net models. Experience shows that this approach

is very efficient.42,44

Algorithm 3 addresses the following step after the exe-

cution of algorithm 2. Once the alternative Petri nets of the

original statement of the optimization problem are distrib-

uted into k blocks to be implemented in k processors, algo-

rithm 3 transforms the subsets of the alternative Petri nets,

belonging to every block, into AAPNs. See Latorre et al.42

for more details.

Algorithm 3, including a subroutine which describes the

transformation of the set of alternative Petri nets of a given

subproblem into a single AAPN, is presented in Figure 11.

This subroutine is presented in Figure 12.

Notice that algorithm 3 may be easily transformed to be

executed in a distributed way by solving the transforma-

tion of blockj in processor j. The number of blocks of the

partition of SR has been made to coincide with the number

of available processors k.

Algorithm 3
Step 1. Determine the first block as the current block to

transform.

Step 2. Check the size of the current block. If the size is 1,

that is to say, it contains a single alternative Petri net, then

determine the following block as the current block and

repeat step 2 again.

Step 3. Call the subroutine from algorithm 1 in order to

transform the set of alternative Petri nets associated with

the current block into a single AAPN.

Step 4. Determine the following block as the current block,

unless the final blockk has already been transformed, and

go to step 2. h

Subroutine for algorithm 3

Step 1. Divide the alternative Petri nets of blockj into sub-

nets, trying to find shared subnets.

Step 2. Take the first alternative Petri net as the seed of the

AAPN of the jth block.

Step 3. For every ith alternative Petri net, add to the seed

of the AAPN the subnets and link transitions of the ith

Start

 j ← 1

j ← j + 1

Pairs
(subproblemj, blockj)

j = k

yes

no

Subroutine:
Transform SRj

into AAPN Rj
A

Size of blockj = 1
yes

no

End

Figure 11. Algorithm 3.

Start

Divide the
alternative PN of

blockj into subnets

Pairs
(subproblemj, blockj)

i = Size of blockj

yes

no

i ← 1

Rj
A ← Ri

i ← i + 1

Add to Rj
A non-

shared subnets of
Ri and link

transitions with aji

Return

Apply reduction
and simplification

rules to Rj

A

Figure 12. Subroutine for Algorithm 3.

Latorre and Jiménez 17

alternative Petri net not shared by the seed. The added link

transitions, which correspond to the alternative Petri net aji

should be associated to the choice variable aji as a guard

function.

Step 4. Apply the reduction and simplification rules to the

AAPN Ri
A. See Latorre et al.4 for more details. h

Algorithm 4 describes the complete distributed optimi-

zation algorithm, based on a genetic algorithm, to guide

the search in the solution spaces of every subproblem. In

the implementation of the algorithm, the subproblems of

size m > 1 are based on an AAPN according to definition

10. Algorithm 4 is shown in Figure 13.

Algorithm 4
Step 1. Apply algorithm 2 in the main processor. Notice

that the last ‘‘end’’ should be changed to ‘‘return’’.

Step 2. Apply algorithm 3 in the main processor or apply a

variant of algorithm 3 to be executed in a distributed way.

Notice that the last ‘‘end’’ should be changed to ‘‘return’’.

Step 3. Solve optimization subproblem j in processor j, for

1 ≤ j≤ k.

Step 4. Compare the fitness (value of the objective or cost

function) of the k fittest solutions calculated in k proces-

sors and choose the best one.

Step 5. Print the information required for the human

decision-maker to solve the decision problem based

on the original undefined DES: global optimum, block

of the partition of SR that led to the solution, and choice

variable, informing on the alternative structural config-

uration associated to the best solution found. Notice

that these data collect the information required to specify

values for the degrees of freedom of the undefined

DES. h

The subroutine for algorithm 4 allows solving an opti-

mization subproblem based on an AAPN in a single pro-

cessor. Its flowchart has been represented in Figure 14.

Subroutine for algorithm 4

Step 1. Select the initial population of feasible solutions

for the genetic algorithm.

Step 2. Calculate the fitness of every solution.

Step 3. Store the fittest solution.

Step 4. Remove the less fit solutions.

Step 5. Complete the population with the offspring of the

remaining solutions by the application of the crossover

and mutation operations.

Start

Choose global
optimum

Triples
(aji, blockj, optimumj)

Print:
Global optimum,

blockj, aji

End

Algorithm 2

Algorithm 3

Subroutine:
Solve

subproblem 1
in processor 1

Subroutine:
Solve

subproblem k
in processor k

…

Figure 13. Algorithm 4.

Start

Create the initial
population

Pairs
(subproblemj, blockj)

gen = genmax

yes

no

optimum ← fittest
solution

gen ← gen + 1

Complete population
applying crossover to
the existing solutions

and mutation

Return

Input number
of processor j

gen ← 1

Population

Calculation of
fitness

Removal of less fit
solutions

Triples
(aji, blockj, optimumj)

Figure 14. Subroutine for algorithm 4.

18 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

Step 6. If the number of generations that have been calculated

has not reached the expected value, then go to step 2.

Step 7. Return the optimum value, with the block number

and the choice variable aji to be compared with the others

returned by the rest of the processors. h

Algorithm 4 and its subroutine should be modified

slightly to be adapted to subproblems based on sets of

alternative Petri nets instead of a single AAPN.

Algorithm 4(b)
Step 1. Apply algorithm 1 in the main processor. Notice

that the last ‘‘end’’ should be changed to ‘‘return’’.

As it can be seen, the partition of the set of alternative

Petri nets SR, developed as the model of the original unde-

fined DES, should be performed to profit from this spe-

cific approach. Algorithm 4 would eventually work with

this approach, but its performance is expected to be lower

than algorithm 4(b) for the statement of the subproblems

according to definition 9 instead of definition 10.

The subroutine for algorithm 4(b) would also be differ-

ent from the one for algorithm 4. In particular, it should

perform a sequential solution of all the subproblems that

correspond to definition 7 and the size of the block associ-

ated with the current processor. This sequential solving pro-

cess is associated with the paradigm of ‘‘divide and

conquer’’, which states that in every processor, as many sub-

problems (according to definition 7) as alternative Petri nets

are associated with the corresponding block of the partition.

As a consequence a repetitive control structure should

be inserted in the subroutine:

Step 6b. If there are unsolved subproblems, go to step 1.

Eventually, the result of the subroutine for algorithm

4(b) will be a set of m best solutions arising from the opti-

mization of the m alternative Petri nets associated to the

subproblem of size m that corresponds to the current pro-

cessor. For this reason an additional step is necessary to

finish the task of every processor:

Step 6c. Compare the fitness (value of the objective or cost

function) of the fittest solutions and choose the best one.

The subroutine for algorithm 4(b), including the men-

tioned modifications from algorithm 4 has been presented

in Figure 15.

Once the different algorithms for solving an optimiza-

tion problem based on an undefined Petri net according to

two distributed approaches have been presented, a compar-

ison of their performance will be described in the follow-

ing section. For this purpose, a case study is presented.

5. Comparison of the solving
methodologies

5.1. Introduction

In this section, a comparison between different methodolo-

gies to solve a decision problem related to an undefined

DES, modeled by Petri nets and with alternative structural

configurations, is presented. Some of the considered meth-

odologies are implemented on a single processor and some

of them are distributed to a set of k available processors.

Furthermore, the alternative structural configurations of

Start

Create the initial
population

Pairs
(subproblemj, blockj)

gen = genmax

yes

no

optimumi ← fittest
solution

gen ← gen + 1

Complete population
applying crossover to
the existing solutions

and mutation

Return

Input number
of processor j

gen ← 1

Population

Calculation of
fitness

Removal of less fit
solutions

i ← 1

i = size
of blockj

yes

no
i ← i + 1

Choose the best
optimumi

Triples
(aji, blockj, optimumj)

Figure 15. Subroutine for algorithm 4(b).

Latorre and Jiménez 19

the undefined DES are modeled in some of the approaches

as a set of alternative Petri nets, as an AAPN, or as a com-

bination of these two formalisms.

The aim of this multiple comparison is to obtain infor-

mation on the most efficient approach, in terms of required

computer resources, among the different modeling strate-

gies and for a given number of available processors. In

order to afford this comparison, a case-study is developed

with the aim of comparing real measures of computer time

needed by the different approaches.

5.2. Case-study: the design of a production facility

In example 3, the benchmark presented by Zhou and

Venkatesh32 and extended by Latorre et al.44 is solved by

means of different approaches, including two distributed

algorithms. The results are compared in Table 2 and com-

mented afterwards.

This case-study presents a decision-making problem for

the operation of a manufacturing facility, whose layout has

been depicted in Figure 16. Several degrees of freedom in

the system require making different choices:

(1) choice of the best manufacturing strategy: diverse

implementations of pure push and pull paradigms

can be chosen, as well as combinations of them in

different stages of the production system. The Petri

net model of every one of these possibilities consti-

tutes an alternative structural configuration, since

the incidence matrix is different in each case;

(2) choice of the production and conveying lot size:

the manufacturing system is composed of indepen-

dent machining centers. The conveying of semi-

finished parts is performed by means of automatic

guided vehicles (AGVs). Analogously to the

previous choice, every lot size is modeled by Petri

nets with different incidence matrices; hence, they

constitute alternative structural configurations;

(3) choice of the layout of the route or routes of the

AGV: every route corresponds to a different alter-

native structural configuration; and

(4) choice of the number of AGVs and their assign-

ment to the different routes: in this case, the

diverse possibilities can be modeled by means of

the same Petri net model with different initial

markings; hence, they do not lead to alternative

structural configurations.

The different structural configurations can be modeled

by means of a set of 24 alternative Petri nets, a single

AAPN, or a combination of these two formalisms among

other possibilities.42

The optimization methodology used to solve the ver-

sion of the case-study presented in the work of Latorre

et al.44 is based on a metaheuristic-guided search in the

solution space and the calculation of the objective function

by means of the simulation of the behavior of the Petri net

model. The chosen metaheuristic is a genetic algorithm.4

In order to perform the fairest comparison among the

different methodologies, the same genetic algorithm with

the same parameter adjustment has been applied to all of

them. In particular, a population of 50 solutions for gener-

ation has been implemented and a constant value of 15

generations has been considered as criterion to finish the

application of the genetic algorithm.

5.3. Estimation of the required computer time

Under the mentioned conditions, a rough estimation of the

computing time required by the different methodologies

can be performed. Every optimization algorithm is based on

multiple evaluations of the objective function, one for every

tested solution. Furthermore, every evaluation of the objec-

tive function requires the simulation of the evolution of the

Petri net model for a certain period of simulated time.

The simulation of the evolution of a Petri net model

requires the iterative evaluation of the state equation for

the calculation of the sequence of states reached by the

model in its evolution. The computing effort of every eva-

luation of equation (1) is proportional of the size of the

incidence matrix, as can be seen in equation (1). As a con-

sequence, a comparison of the computing time required by

the optimization processes based on a single Petri net

(alternative Petri net or AAPN) can be roughly afforded

by the comparison of the sizes of the incidence matrices of

every Petri net model.

The size of the incidence matrices of the 24 alternative

Petri nets is around 78× 58. There is a variation of one or

two rows and columns regarding the alternative Petri net.

On the other hand, the size of the AAPN is 99× 125.

Assembly system

Raw materials supply

Machining centers
Stage 1

Machining centers
Stage 2

Robots

Routes for the conveying
of parts by AGV

Robots

Figure 16. Layout of the flexible manufacturing system of
example 3.

20 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

The relative size of the incidence matrix of the AAPN

with respect to the incidence matrix of a single alternative

Petri net is as follows

≈ 99:125

78:58
= 12375

4350
= 2:84 ð8Þ

As a consequence it is expected that an optimization

process associated to a subproblem based on an alternative

Petri net may be around 2.84 times faster than the optimi-

zation process based on the AAPN.

5.4. Description of the tested approaches

The previous theoretical estimation may be compared to a

real measure of the computational effort required by the

optimization processes.

A set of tests has been performed in identical comput-

ers. The tests that have been developed are the following:

(a) optimization problem based on a set of 24 alterna-

tive Petri nets, solved in the same processor: this

statement of the problem has been described in

definition 6, ‘‘optimization problem based on a

set of n alternative Petri nets’’;

(b) optimization problem based on an AAPN, solved

in a single processor: this statement of the prob-

lem has been described in definition 8, ‘‘optimi-

zation problem based on an AAPN’’;

(c) set of optimization subproblems of size 1 based on a

single alternative Petri net: every subproblem is

solved in a different processor. This statement of the

subproblems has been described in definition 7,

‘‘optimization subproblem based on an alternative

Petri net’’;

(d) set of k = 12 optimization subproblems based on

subsets of alternative Petri nets: k is also the num-

ber of processors. This statement of the subpro-

blems has been described in definition 9,

‘‘optimization subproblem of size m based on a

subset of alternative Petri nets’’; and

(e) set of k = 6 optimization subproblems based on

subsets of alternative Petri nets: k is also the num-

ber of processors. This statement of the subpro-

blems has been described in definition 9,

‘‘optimization subproblem of size m based on a

subset of alternative Petri nets’’.

5.5. Quantitative results of the tests and comparison

A comparison of the results can be seen in Table 3, where

the pairwise rates of the computer times required by the

different tested methodologies have been written.

In every position of the table, the speed of the solving

methodology represented in the row with respect to the sol-

ving methodology indicated in the column has been indi-

cated. For example, the value written in the position (3, 2)

of Table 3, which can be found in the third row and second

column, has been calculated by dividing the computer time

required by methodology (b) by the time that methodology

(c) requires. The value associated to this position is 2.023,

meaning that methodology (c) (row) is 2.023 times faster

than methodology (b) (column).

5.6. Comparison between the approaches applied
on a single processor

In order to evaluate the quality of equation (8) with respect

to the computer time required to perform an optimization

based on a single alternative Petri net and an AAPN it is

possible to divide the average of the 24 times obtained in

(c) with the time measured in (b). The result, which is the

speed of the approach based on a single AAPN versus the

set of alternative Petri nets, is 2.35 versus the theoretical

2.84. In fact, if a comparison of every one of the computer

times required for the different subproblems of size 1 with

the computer effort required by the AAPN is made, the

interval is obtained as follows: [2.02, 2.64].

The difference between the theoretical and practical

results may be due to the fact that since the number of tested

solutions and evaluated generations is the same for every

problem or subproblem, the amount of simulations for tested

solutions and the number of evaluations of equation (1) for

the simulation may be different in every case. In the theore-

tical estimation, all these figures have been taken as the

same for all the cases in order to simplify the calculations.

5.7. The fastest algorithm

Interesting deductions can be made from the data repre-

sented in Table 3. On the one hand the slowest approach

consists with the strategy of ‘‘divide and conquer’’ imple-

mented on a single processor (a), which is 10 times slower

Table 3. Rates of computing time required by different applied methodologies.

tcolumn/trow (a) (b) (c) (d) (e)

(a) 1 0.098 0.048 0.096 0.183
(b) 10.22 1 0.494 0.982 1.866
(c) 20.674 2.023 1 1.986 3.775
(d) 10.411 1.019 0.504 1 1.901
(e) 5.477 0.536 0.265 0.526 1

Latorre and Jiménez 21

when compared to the other single-processor approach,

based on the AAPN.

From Table 3, it is clear that the fastest algorithm of all the

methodologies is the one implemented in the highest number

of processors. In this case, it has been used in 24 processors;

as many processors as alternative Petri nets are needed to

model the original undefined DES (c). This process is about

20 times faster than (a) and only twice as fast as (b).

This last result is surprisingly low considering that in

the AAPN-based case, (b), a single processor is used ver-

sus 24 processors required in case (c). As it can be seen,

methodology (b) is a very efficient option for a single pro-

cessor. As a consequence, the use of AAPN models in

combination with a larger number of processors might

lead to very efficient methodologies.

Of course, it has to be considered that using techniques

for distributing the solution of an optimization subproblem

of size 1 into more than one processor, in addition to the

mentioned methodologies, the computer time of the

approach (c) could be improved. Nevertheless, in this

paper, these additional techniques, such as those presented

in section 1.2, have not been taken into account, because

the objective of this paper is to analyze the efficiency of

the specific methodologies mentioned in section 5.4.

5.8. Results regarding a limited number of
available processors

Other interesting results arise when the optimization

algorithms are implemented in a number of processors

smaller than n, the number of alternative Petri nets in SR

or the number of subproblems of size 1. In this case-study,

n = 24.

In order to implement algorithm (c) on k processors,

such that k < n, cases (d) and (e) have been solved, where

12 and 6 available processors are used respectively.

Both cases, (d) and (e), are more general than it might

be supposed at first glance. In both cases every processor

j will solve sequentially a set of mj subproblems of size 1.

The value of mj will depend on the size of SR = n = 24, and

the number of available processors k. See algorithm 1.

Case (d) is based on the availability of 12 processors.

For this reason, the number of assigned subproblems to

every processor will be n / k = 24 / 12 = 2. Any case in

this example, where the number of available processors k

verifies that n > k≥ n / 2, is expected to require similar

computer time for solving the complete optimization prob-

lem. Actually, the time needed for solving the complete

problem would be imposed by the processor requiring

more time.

In the cases that range from n / 2 = 12 to n– 1 = 23

available processors, there is at least one processor, which

should solve sequentially two optimization subproblems of

size 1. Due to the fact that every subproblem requires the

same time to be solved, all the mentioned cases, which

assign at least two subproblems to a single processor, will

require a similar amount of time to solve the complete

optimization problem. It is necessary to clarify that the

time required for any of the n = 24 subproblems to be

solved is roughly the same, since the dimensions of the

incidence matrix of every alternative Petri net is almost

the same. In effect, the speed of (c) with respect to (d),

obtained from the tests, is 1.986.

Furthermore, an indication of the efficiency of solving

the problem with an AAPN model and a single processor

can be obtained by comparing the computer time required

in (b) with the tests performed in (d). In fact, the tests per-

formed by the authors have determined the average rate

time(b)/time(d) in the interval [1.01, 1.31] as 1.019.

On the other hand, case (e) is based on the availability

of six processors. For this reason, the number of assigned

subproblems to every processor will be n / k = 24 / 6 = 4.

Any case in this example, where the number of available

processors k verifies that 8 = n / 3 > k≥ n / 4 = 6, is

expected to require similar computer time for solving the

complete optimization problem.

In these cases, since all the n = 24 subproblems of size

1 require approximately the same amount of time to be

solved, it is expected that quadruple the computer time

will be required for implementing the sequential solution

of four subproblems of size 1. According to this consider-

ation, the optimization time required for algorithm (e), dis-

tributed into a number of computers belonging to [n / 4,

n / 3–1] = [6, 7] is approximately equal.

As expected, the rate of time(e)/time(c) that has been

measured is 3.775. Furthermore, the tests performed by

the authors in the application of case (e) have led to a

measured computing time 1.86 times higher in the ‘‘divide

and conquer’’ approach (e) than in the single-processor

approach based on the AAPN approach (b). This value of

1.86 is the speed of (b) with respect to (e).

As a conclusion, it is possible to say that in this case-study

the AAPN approach (b) implemented in a single processor

reaches roughly the computer time required by a distributed

algorithm under the approach of ‘‘divide and conquer’’ (d)

for k processors such that n > k≥ n / 2. In fact, the single-

processor approach is less efficient than the ‘‘divide and con-

quer’’ approach in this interval. Furthermore, the single-

processor AAPN-based method (b) improves the results for k

< n / 2 processors, for example (e).

It is possible to deduce that the AAPN approach is very

efficient at solving certain types of optimizations.

According to the different applications of this methodol-

ogy performed by the authors, the more shared subnets

and the larger they are the better the results offer by the

AAPN-based methodology are compared to the approach

of ‘‘divide and conquer’’.

As a consequence of the previous conclusions, the inter-

est of performing tests of distributed computing associated

22 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

to subproblems of size m > 1 based on an AAPN instead

of sets of alternative Petri nets has been justified, as in

cases (c), (d), and (e).

In order to analyze the efficiency of a distributed

approach based on AAPN models the following test has

been performed:

(f) set of k = 12 optimization subproblems of size 2

based on an AAPN: k is also the number of processors.

This statement of the subproblems has been described in

definition 10, ‘‘optimization subproblem of size m based

on an AAPN’’.

The test of this case-study performed on a set of n / 2 =

12 computers has led to a rate of computing time time(d)/

time(f) measured as 1.52. This value means that for this

case-study the distributed approach based on an AAPN for

k = 12 processors presents a speed increase of 1.52 versus

the distributed approach based on sets of alternative Petri

nets for the same number of processors. Moreover, for the

reasons mentioned in the previous paragraphs, it is likely

that the speed increase is roughly the same for a number

of processors belonging to the interval [12, 23].

As a summary of the results described in the present

section, Figure 17 is shown. The x-axis represents the num-

ber of processors in which the case-study is solved, from 1

to 24. The y-axis represents the speed increase of every

methodology studied, from (a) to (f), with respect to the

single-processor approach based on a set of alternative

Petri nets (a). Notice that approach (a) has a speed increase

of 1. In Figure 17 both approaches based on AAPN mod-

els, (b) and (f), have been represented by triangles, whereas

the others, based on a set of alternative Petri nets, have

been depicted by means of a diamond. To the right of the

mentioned symbol, the speed increase and the approach

ranging from (a) to (f) has been indicated.

It has to be noticed that in all the studied tests, the opti-

mum found was associated to an objective function that

takes similar values; hence, the quality of the obtained

solutions are very similar. h

6. Conclusions and further research

In this paper, the solution of decision problems based on

undefined DESs, which include a set of alternative

structural configurations, has been discussed. Two model-

ing formalisms based on the paradigm of the Petri nets

have been presented. The first one, based on a classic

approach of ‘‘divide and conquer’’, is a set of alternative

Petri nets, where each alternative Petri net models a single

alternative structural configuration. The second one is

based on the compact formalism of the AAPN, which can

profit from the existence of shared subnets in the different

alternatives. This property allows the AAPN to remove the

redundant information contained in the set of alternative

Petri nets.

It has been shown that the original decision problem

can be formalized into different statements of the same

optimization problem. Some of the statements are to be

implemented on a single processor, while others profit

from the use of a higher number of processors.

A problem of size m, associated to a set of m alternative

Petri nets, can be partitioned into several subproblems

associated to k different processors, where k≤m. The

number of feasible partitions has been calculated by means

of the Stirling numbers of the second kind.

In fact, this paper has shown, via the analysis of a case-

study, that the fastest statement of the optimization prob-

lem consists in the use of k = m different processors to

solve optimization problems of size 1 based on a single

alternative Petri net.

If the number of available processors is larger than m,

it might be possible to accelerate the optimization process.

Nevertheless, further research is needed in this field.

On the other hand, if the number of available proces-

sors is smaller than m, then this methodology of ‘‘divide

and conquer’’ is not necessarily the most efficient one.

In fact, in the interval k∈ [n / 3– 1, n / 4] of processors,

the single-processor AAPN-based statement of the prob-

lem has shown to be the most efficient. In the interval k∈
[n– 1, n / 2] both statements of the problem require a simi-

lar computer time to finish; however, the approach based

on a set of alternative Petri nets is slightly better than the

single-processor AAPN-based approach.

Furthermore, the combination of a distributed algorithm

with the construction of an AAPN for the sets of alterna-

tive Petri nets associated to a subproblem of size m > 1 is

a very promising methodology as it has been shown in the

case-study. In fact, this methodology has outperformed the

best analyzed strategy for the case k < m.

This promising methodology has a significant potential

for the case with a high number n alternative structural

configurations. A large value for n can be obtained easily

in the design of a DES, due to combinatorial reasons,

which might even produce a combinatorial explosion. In

such a case, the number of available processors, k, is likely

to be smaller than the number of alternative Petri nets,

which is the situation studied in more detail in this paper.

As next steps in the development of this research, it is

convenient to apply it to a broader range of real cases in

Figure 17. Speed increase of the different approaches.

Latorre and Jiménez 23

order to understand better the advantages and drawbacks

of the methodology, as well as to predict its performance

for a given application.

Funding

This paper has been partially supported by the project of the

University of La Rioja (UR) and Banco Santander (grant number

API12-11) ‘‘Sustainable production and productivity in industrial

processes: integration of energy efficiency and environmental

impact in the production model for integrated simulation and

optimization’’.

References

1. Cassandras CG and Lafortune S. Introduction to discrete

event systems. New York: Springer, 2008.

2. Silva M and Teruel E. Petri nets for the design and operations

of manufacturing systems. Euro J Control 1997; 3: 82–199.

3. Zimmermann A, Rodrı́guez D and Silva M. A two phase

optimisation method for Petri net models of manufacturing

systems. J Intell Manufact 2001; 12: 409–420.

4. Latorre JI, Jiménez E and Pérez M. A genetic algorithm and

Petri nets approach for decision problems stated on discrete

event systems. In: 12th international conference on computer

modelling and simulation (UKSIM2010), Cambridge, UK,

24–26 March 2010, pp. 86–91.

5. Narciso M, Piera MA and Guasch A. A methodology for sol-

ving logistic optimization problems through simulation.

SIMULATION 2010; 86: 369–389.

6. Mustafee N, Taylor SJE, Katsaliaki K, et al. Facilitating the

analysis of a UK National Blood Service supply chain using

distributed simulation. SIMULATION 2009; 85(2): 113–128.

7. Tang Y, Perumalla KS, Fujimoto RM, et al. Optimistic paral-

lel discrete event simulations of physical systems using

reverse computation. In: Workshop on principles of advanced

and distributed simulation (PADS’05), Washington, DC,

USA, 1–3 June 2005.

8. Vitali R, Pellegrini A and Cerasuolo G. Cache-aware mem-

ory manager for optimistic simulations. In: SIMUTools 2012,

Sirmione, Italy, 19–23 March 2012.

9. Ferscha A. Parallel and distributed simulation of discrete

event systems. In: Zomaya AY (ed) Parallel and distributed

computing handbook, New York: McGraw Hill, 1995, pp.

1003–1041.

10. Page EH, Litwin L, McMahon MT, et al. Goal-directed grid-

enabled computing for legacy simulations. In: 2012 12th

IEEE/ACM international symposium on cluster, cloud and

grid computing (CCGRID ’12), Ottawa, Canada, 13–16 May

2012, pp. 873–879.

11. Andjelković B, Litovski VB and Zerbe V. Grid-enabled par-

allel simulation based on parallel equation formulation. ETRI

J 2010; 32: 555–565.

12. Evans NS, GauthierDickey C, Grothoff C, et al. Simplifying

parallel and distributed simulation with the DUP system. In:

43rd annual simulation symposium (ANSS’10), Orlando,

Florida, USA, 12–15 April 2010, pp. 208–215.

13. Murshed M, Buyya R and Abramson D. GridSim: a toolkit

for the modeling and simulation of global grids. Technical

report, Monash-CSSE 2001/102, Monash University,

Australia, 2001.

14. Wozniak JM, Brenner P, Thain D, et al. Generosity and glut-

tony in GEMS: grid enabled molecular simulations. In: 14th

IEEE international symposium on high performance distribu-

ted computing (HPDC 2005), Research Triangle Park, North

Carolina, USA; July 24–27, 2005.

15. Wainer G, Liu Q, Chazal J, et al. Performance analysis of

web-based distributed simulation in DCD+ + : a case study

across the Atlantic Ocean. In: 2008 spring simulation multi-

conference (SpringSim), April 2008, pp. 413–420.

16. Timm IJ and Pawlaszczyk D. Large scale multiagent simula-

tion on the grid. In: 5th IEEE international symposium on

cluster, computing and the grid (CCGRID ’05), Cardiff, UK,

9–12 May 2005, vol. 01, pp. 334–341.

17. D’Angelo G and Bracuto M. Distributed simulation of large-

scale and detailed models. Int J Sim Process Modelling

2009; 5: 120–131.

18. Martin JM. Parallel discrete event simulation of large scale

wireless ad-hoc networks. PhD Dissertation, University of

California, Los Angeles, USA, 2002.

19. Fujimoto RM, Perumalla K, Park A, et al. Large-scale

network simulation: how big? how fast? In: 11TH IEEE/

ACM international symposium on modeling, analysis and

simulation of computer telecommunications systems

(MASCOTS’03), Orlando, Florida, USA, 2003, pp. 116–123.

20. Theodoropoulos G, Zhang Y, Chen D, et al. Large scale dis-

tributed simulation on the grid. In: CCGRID 2006 workshop:

international workshop on distributed simulation on the grid,

Singapore, 16–19 May 2006.

21. Aydt H, Turner SJ, Cai W, et al. Symbiotic simulation sys-

tems: an extended definition motivated by symbiosis. In: 22nd

workshop on principles of advanced and distributed simula-

tion (PADS ’08), Rome, Italy, 3–6 June 2008, pp. 109–116.

22. Chiola G and Ferscha A. Distributed simulation of Petri nets.

IEEE J Parallel Distributed Tech 1993; 1: 33–50.

23. Hulaas J. An evolutive distributed algebraic Petri nets simu-

lator. In: 10th European simulation multiconference

ESM’96, Budapest, Hungary, 1996, pp. 348–352.

24. Holvoet T and Verbaeten P. Using agents for simulating and

implementing Petri nets. In: 11th workshop on parallel and

distributed simulation (PADS’97), Austria, 1997, pp.

134–137.

25. Kuo CH. Development of distributed agent-oriented Petri

net simulation and control environment for discrete event

dynamic systems. In: IEEE international conference on sys-

tems, man and cybemetics (SMC 2004), The Hague, The

Netherlands, 10–13 October 2004, vol. 5, pp. 5001–5006.

26. Nicol DM and Mao W. Automated parallelization of timed

petri-net simulations. J Parallel Distributed Comp 1995; 29:

60–74.

27. Knoke M, Kühling F, Zimmermann A, et al. Towards correct

distributed simulation of high-level Petri nets with fine-

grained partitioning. In: Lecture notes in computer science,

vol. 3358: parallel and distributed processing and applica-

tions: second international symposium, ISPA 2004 (eds Cao

J, Yang LT, Guo M, et al.), Hong Kong, China, 13–15

December 2004, pp. 64–74. New York/Heidelberg: Springer-

Verlag.

24 Simulation: Transactions of the Society for Modeling and Simulation International 0(0)

28. Zimmermann A, Knoke M and Hommel G. Complete event

ordering for time-warp simulation of stochastic discrete

event systems. In: 4th symposium on design, analysis and

simulation of distributed systems (DASD 2006), Huntsville,

Alabama, USA, 2–6 April 2006.

29. Haggarty OJ, Knottenbelt WJ and Bradley JT. Distributed

response time analysis of GSPN models with MapReduce.

SIMULATION 2009; 85: 497–509.

30. Yoo T, Cho H and Yücesan E. Web services-based

parallel replicated discrete event simulation for large-

scale simulation optimization. SIMULATION 2009; 85:

461–475.

31. Zuberek WM. Performance study of distributed generation

of state spaces using coloured Petri nets. In: 4th workshop

and tutorial on practical use of coloured Petri nets and the

CPN tools CPN’02 (ed Jensen K), Aarhus, Denmark, 28–30

August 2002, pp. 81–98.

32. Zhou M and Venkatesh K. Modelling, simulation and con-

trol of flexible manufacturing systems. A Petri net approach.

Singapore: WS World Scientific, 1999.

33. Mušič G. Petri net based scheduling approach combining dis-

patching rules and local search. In: 21st European modelling

and simulation symposium (EMSS 09), Puerto de la Cruz,

Spain, September 2009, vol. 2, pp. 27–32.

34. Piera MA and Mušič G. Coloured Petri net scheduling mod-

els: timed state space exploration shortages. Math Comp Sim

2011; 82: 428–441.

35. Bai Q, Ren F, Zhang M, et al. Using colored Petri nets to pre-

dict future states in agent-based scheduling and planning sys-

tems. J Multiagent Grid Systems - Advances Agent-mediated

Auto Neg Archive 2010; 6; 527–542.

36. Nishi T and Maeno R. Petri net decomposition approach to

optimization of route planning problems for AGV systems.

IEEE Trans Auto Sci Engr 2010; 7: 523–537.

37. Tsinarakis GJ, Tsourveloudis NC and Valavanis KP. Petri net

modeling of routing and operation flexibility in production sys-

tems. In: 13th Mediterranean conference on control and auto-

mation, Limassol, Cyprus, 27–29 June 2005, pp. 352–357.

38. Silva M. Introducing Petri nets. In: DiCesare F (ed) Practice

of Petri nets in manufacturing. London: Chapman and Hall,

1993, pp. 1–62.

39. Balbo G and Silva M (eds). Performance models for

discrete event systems with synchronizations: formalisms

and analysis techniques. Saragosse, Spain: Editorial Kronos,

1998.

40. David R and Alla H. Discrete, continuous and hybrid Petri

nets. Berlin: Springer, 2005.

41. Recalde L, Silva M, Ezpeleta J, et al. Petri nets and manu-

facturing systems: an examples-driven tour. Lectures on con-

currency and Petri nets: advances in Petri nets. In: Desel J,

Reisig W and Rozenberg G (eds) Lecture notes in computer

science. New York: Heidelberg: Springer-Verlag, 2004, vol.

3098, pp. 742–788.

42. Latorre JI, Jiménez E and Pérez M. The optimization prob-

lem based on alternatives aggregation Petri nets as models

for industrial discrete event systems. SIMULATION 2013;

89: 346–361.

43. Latorre-Biel JI, Jiménez-Macı́as E and Pérez M. The exclu-

sive entities in the formalization of a decision problem based

on a discrete event system by means of Petri nets. In: 23rd

European modelling and simulation symposium (EMSS 11),

Rome, Italy; September 2011, pp. 580–586.

44. Latorre JI, Jiménez E, Pérez M, et al. The alternatives aggre-

gation Petri nets as a formalism to design discrete event sys-

tems. Inter J Sim Process Modeling 2010; 6: 152–164.

45. Rota GC. The number of partitions of a set. Amer Math

Monthly 1964; 71: 498–504.

46. Bell ET. Exponential numbers. Amer Math Monthly 1934;

41: 411–419.

47. Joarder A and Mahmood M. An inductive derivation of stir-

ling numbers of the second kind and their applications in sta-

tistics. J Applied Math Decision Sci 1997; 1: 151–157.

Author biographies

Juan-Ignacio Latorre is an industrial engineer. He has

developed his professional career in industry and in educa-

tional institutions. Currently he is an assistant professor in

the Department of Mechanical Engineering, Energetics,

and Materials of the Public University of Navarre (Spain)

and in the Department of Mechanical Engineering of UR.

His research interests include factory automation, simula-

tion, and modeling of industrial processes and formal

methodologies to solve decision problems based on DESs.

His main research activities have been performed with

the research Group of Modeling, Simulation, and

Optimization of UR, in the field of decision support sys-

tems in DES-based on Petri net models.

Emilio Jiménez is a professor at UR in the Electrical

Engineering Department, where he leads the research

Group of Modeling, Simulation, and Optimization. His main

research interests include factory automation, modeling, and

simulation of industrial processes and formal methodologies

to solve decision problems based on DESs. His main

research activities have been performed with the Group of

Discrete Event Systems Engineering of the University of

Zaragoza, Spain, and the Modeling, Simulation, and

Optimization Group of UR, in the field of decision support

systems in DESs based on Petri net models.

Latorre and Jiménez 25

