
Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

88(6) 707–730

� The Author(s) 2012

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0037549711428233

sim.sagepub.com

Supporting dynamic simulations with
Simulation Modeling Architecture
(SiMA): a Discrete Event System
Specification-based modeling and
simulation framework

Fatih Deniz1, M Nedim Alpdemir2, Ahmet Kara2 and Halit Oğuztüzün1

Abstract
In this paper, we present our approach to introduce dynamism support to simulation environments, which adopts a
Discrete Event System Specification (DEVS)-based modeling and simulation approach and builds upon previous work on
Simulation Modeling Architecture (SiMA), a DEVS-based simulation framework developed at TUBITAK UEKAE. In the
relevant literature there are already proposed solutions to the dynamism support problem. One particular contribution
offered in this study over previous approaches is the systematic framework support for post-structural-change state syn-
chronization among models with related couplings, in a way that benefits from the strongly typed execution environment
SiMA provides. In addition to introducing theoretical extensions to basic SiMA, we report the results of performance
measurements to illustrate the added value of dynamism extensions over the basic version, using a sample wireless sen-
sor network simulation.

Keywords
Discrete Event System Specification, modeling and simulation, variable structure models

1. Introduction

Analyzing the behavior of complex and adaptive systems

through simulation often requires the underlying modeling

and simulation approach to support structural and beha-

vioral changes. This requirement may stem from the inher-

ent nature of the real world system under study, such as

ecological or social systems,1 it may stem from the model-

ing and simulation methodology of the analyst or it may be

due to the way system modelers approach the modeling of

inherent behavioral complexity of their models. A good

example of a combination of the latter two is the case

where the simulation study involves a large number of

highly complex systems, the analyst wants to observe the

behavior of these systems at varying levels of fidelity, and

the modeler constructs the models in a way to allow the

models to exhibit different observable behaviors during the

course of simulation. This particular case implies that mod-

els may switch between different behavioral specifications

(e.g. fidelity levels) dynamically at run time, depending on

various triggering events. Some of the other possible rea-

sons why dynamism support is required in a modeling and

simulation framework can be listed as follows.

1. Some simulation scenarios can efficiently be exe-

cuted only through dynamic structure support. For

example, consider a simulation scenario in which

two planes follow the terrain at a specific altitude.

The provision of the terrain information to plane

models could be implemented using an environ-

ment model. When this scenario is executed in a

high-resolution setting, it may be impossible to

load the terrain that represents the whole world at

once. So, if the simulation requires the whole

world, terrain has to be decomposed into regions,

such that the environment model representing each

of these regions interacts with the models repre-

senting the planes flying over it only when the

plane enters that particular region.

1Middle East Technical University, Ankara, Turkey
2TÜB_ITAK B_ILGEM UEKAE/_ILTAREN, Ankara, Turkey

Corresponding author:

Fatih Deniz, Sakarya Mahallesi, Cira Sokak, No:4/1, Altindag, Ankara,

Turkey

Email: fatih.deniz@tcmb.gov.tr

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

2. Dynamism support can be used to yield optimal

model execution. Adding dynamism support is

most likely to increase performance. A model can

be loaded into the memory whenever needed and

can be removed from the memory after completing

its job. Continuing from the previous plane exam-

ple, in order to use the resources effectively, unne-

cessary sections of the terrain can be removed from

the memory. In addition, through dynamic manage-

ment of couplings and ports, unnecessary message

transfers can also be eliminated, thereby increasing

the performance by doing less work in each step.

3. Dynamism support may become a necessity for

creating more realistic simulations. Model structure

may have to be changed whenever necessary while

the simulation is running. For example, if a missile

explodes, the model representing it should also be

removed from the model structure. Dynamism sup-

port is the natural way of handling this kind of

situation.

4. Complex systems that require behavioral or struc-

tural changes to adapt to changing situations can

be modeled more efficiently with variable structure

models. Examples of these systems include wire-

less sensor networks (WSNs), distributed comput-

ing systems and ecological systems.

5. In addition, there may be unpredictable changes

that need to be modeled at run time. For instance,

consider a human population simulation, in which

civilians and combatants are represented by differ-

ent models. Under certain circumstances, a civilian

can change into a combatant due to triggering

events. The modeler may wish to design two dis-

tinct behavioral models for a combatant and a

civilian, which requires dynamic switching from

one model to another at run time. In order to allow

simulations to adapt to these types of unpredictable

changes, dynamism support can be used.

Allowing modifications to model structures and to internal

functional specifications while the simulation is running,

however, is a challenging task due to instabilities and

inconsistencies this may introduce, especially if the under-

lying modeling approach does not provide a sound formal

basis upon which the run-time infrastructures can be estab-

lished. In this study, we take a particular stand to the prob-

lem of dynamism support in simulation environments by

adopting a Discrete Event System Specification (DEVS)-

based modeling and simulation approach and by building

upon our previous work on Simulation Modeling

Architecture (SiMA),2,3 a DEVS-based modeling and

simulation framework developed at TUBITAK UEKAE.

We observe that several approaches to dynamism are

already proposed in the relevant literature.1,4–7 We note that

three distinct categories of change are discussed in those

existing approaches: (a) a change in the overall composi-

tional state of models; (b) a change in the connectivity rela-

tionships (coupling) among the models; (c) a change in the

internal functional behavior of the model. We find two of

the formal approaches to the variable structure models in

the DEVS environment particularly relevant to our work.

The first one is DSDEVS (Dynamic Structure DEVS),

introduced by Barros.5 The second one is Dynamic DEVS

(DynDEVS), introduced by Uhrmacher.1 A brief introduc-

tion to both approaches is provided in Section 3. In addition

to these formal extensions, there are approaches that adopt

existing formal specifications but contribute through differ-

ent routes. For instance, Shang and Wainer8 extend their

existing simulation engine by adopting a combination of

DSDEVS and DynDEVS. Similarly, Hu et al.9 take a soft-

ware engineering-oriented stand and propose a component-

based simulation environment.

Our contribution to the work in this field is extending

SiMA with dynamism support, building upon our basic

SiMA-DEVS formalism. In particular, we formally present

the extensions to SiMA-DEVS, called dynamic SiMA, to

support structural dynamism, we present the extensions we

have added to the implementation of SiMA-DEVS to

achieve structural dynamism and we provide experiment

results where dynamic SiMA is used. Our approach to add

dynamism to our basic DEVS model is derived from that

of DynDEVS. However, we do not have some of the opera-

tional limitations that DynDEVS has. Unlike DynDEVS,

our approach allows dynamic port management and allows

atomic models to initiate changes other than changing

themselves only. One particular contribution we offer is the

formal specification and systematic framework support for

post-structural-change state synchronization among models

with related couplings. This operation works in the oppo-

site direction of the normal message flow and enables

newly added models and newly added couplings to acquire

the current state of the simulation. The details of our contri-

butions are provided in Section 4.

The rest of the paper is organized as follows. Section 2

summarizes the relevant background work, Section 3 sum-

marizes previous efforts for incorporating dynamism sup-

port into DEVS-based modeling and simulation

environments, Section 4 provides a formal discussion of

our approach and some details of the implementation,

Section 5 describes a case study and presents our findings

on the performance measurements and finally Section 6

provides conclusions and our plans for future work.

2. Background
2.1 DEVS formalism

The DEVS is a formalism introduced by Bernard Zeigler

in 1976 to describe discrete event systems. In this formal-

ism, there are two types of models: atomic models and

708 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

coupled models. Atomic models are basic units that spe-

cify behavioral logic. On the other hand, coupled models

consist of other models (atomic and/or coupled) and con-

nections between those models, but no behavioral specifi-

cation. An atomic model in parallel DEVS formalism

consists of a set of input events, a state set, a set of output

events, an internal, external and confluent transition func-

tion and an output and time advance function.10 The for-

mal definition of an atomic model M with the set of input

ports, InPorts, and the set of output ports, OutPorts, is as

follows:

M = X , Y , S, δint, δext, δcon, λ, tah i

where

X = p, vð Þjp∈ InPorts, v∈Xp

� �
is the set of input ports

and values, where Xp is the set of values that can be

received through port p,

Y = p, vð Þjp∈OutPorts, v∈Yp

� �
is the set of output

ports and values, where Yp is the set of values that can be

sent through port p,

S is the set of states,

δint : S → S is the internal state transition function,

δext : Q×X → S is the external state transition function

such that:

Q= s, eð Þjs∈ S, 0≤ e≤ ta sð Þf g is the total state set,

e is the elapsed time since the last transition,

δcon : S ×X → S is the confluent transition function,

λ : S → Y is the output function,

ta : S →Rþ0,∞ is the time advance function.

In DEVS formalism, model interaction semantics are

encapsulated in the notion of ports that define externally

visible interfaces of models. Input ports receive external

input events X, and output ports send output events Y. An

atomic model has a state set S, where each state s∈ S is

associated with a time value, calculated by a time advance

(ta) function, which determines the maximum duration of

the state. If no external event is fired during this time, the

first output function (λ) and then the internal transition

function (δint) is executed. If the model receives an external

event during this time, then the external transition function

(δext) is executed. The current state of the model is updated

in internal and external transition functions. If the model

receives events at the time of its internal transition, then

the confluent transition function is executed. This function

is the main difference between parallel DEVS and the clas-

sical DEVS definition.

Coupled models do not contain any behavioral logic.

They define the overall model composition structure, spe-

cifying both port couplings and the hierarchy between

constituent models. A coupled model in parallel DEVS

formalism is defined formally as follows:

CM = X , Y ,D, Mif g,EIC,EOC, ICh i

where

X = p, vð Þjp∈ InPorts, v∈Xp

� �
is the set of input ports

and values, where Xp is the set of values that can be

received through port p,

Y = p, vð Þjp∈OutPorts, v∈ Yp

� �
is the set of output

ports and values, where Yp is the set of values that can be

sent through port p,

D is the set of component names,

Mi is the model of component i, for i∈D

EIC, EOC and IC define the coupling structure,

EIC is the set of couplings between input ports of the

coupled model itself and input ports of its components,

EOC is the set of external output couplings, which con-

nect its components’ output ports to the model’s own out-

put ports,

IC is the set of internal couplings, which connect a com-

ponent’s output port to another component’s input within

the coupled model.

A complete description of DEVS semantics can be found

in Zeigler and Praehofer,10 Zeigler11 and Barros et al.12

2.2 SiMA formalism

SiMA2,3 is a modeling and simulation framework that is

based on the DEVS approach as a solid formal basis for

complex model construction. SiMA Simulation Execution

Engine implements the parallel DEVS protocol, which pro-

vides a well-defined and robust mechanism for model exe-

cution. SiMA builds upon a specialized and extended form

of DEVS formalism, namely SiMA-DEVS, which does the

following.

1. Formalizes the notion of ‘port types’, leading to a

strongly typed (and therefore type-safe) model

composition environment. In this respect, we spe-

cialize the basic DEVS formalism by introducing

type-system driven syntactic constraints on the

port definitions.

2. Introduces a new function as a first class construct

to allow for state inquiries between models with

possible algebraic transformations (but no state

change), without simulation time advance. In this

respect, we extend the definition of an atomic

model in the DEVS formalism.

Given an Extensible Markup Language (XML) Schema-

type system G, an atomic model M with sets of input and

output ports, InPorts,OutPorts, respectively, SiMA-DEVS

formalism is defined as follows:

M = X , Y , S, δint, δext, δcon, δdf , λ, ta
� �

where

S, δint, δext, δcon, λ, ta are as defined in the

parallel DEVS formalism given in Section 2.1,

X = p, vð Þjp∈ InPorts, v∈Xp

� �
is the set of input ports

Deniz et al. 709

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

and values, where Xp is the set of values that can be

received through port p,

Y = p, vð Þjp∈OutPorts, v∈Yp

� �
is the set of output

ports and values, where Yp is the set of values that can be

sent through port p,

Inports, Outports are the sets of input and output ports

such that:

InPorts= G, τð ÞjG ‘ v : τ, v, ∈Xp

� �

OutPorts= G, ρð ÞjG ‘ v : ρ, v, ∈ Yp

� �
G : is the XML Schema-type system,

τ, ρ : are data types valid with respect to the XML

Schema-type system, δdf : PDFTin × S →OutPorts0 is the

time invariant direct feed-through function, where

PDFTin ⊆ InPorts and OutPorts0⊆OutPorts.

Note that the set of input ports, Inports, is formally defined

as a set of pairs where each pair defines one input port of a

model uniquely. The first element of each pair, G, is a typ-

ing environment (in our case the XML Schema-type sys-

tem) and the second element of the pair (τ) is a data type

that is valid in G, where each input value v conforms to

data type τ. This is formally denoted by the typing judg-

ment G ‘ v : τ, which asserts that a term v has a type τ

with respect to a static typing environment G for the free

variables of v (or shortly ‘ v has type τ in G ‘).13 Similar

semantics apply to output ports, too. Thus, we make strong

typing and type-system dependency of the ports explicit in

the formal model. It may be argued that strong typing and

type-system dependency are essentially run-time proper-

ties of the execution environment, and that incorporation

of these aspects into the definition may ambiguate the

abstraction level of the formal specification. Although this

argument may be valid in many cases, we counter-argue

that there are a number of merits our proposed route, in

particular the following.

1. We introduce a type discipline to the definition of

the externally visible model interfaces (i.e. ports)

leading to a sound basis for the specification of the

overall information model of the system being mod-

eled. Ensuring that the overall information model is

specified using a well-defined type system we sup-

port syntactic compatibility at the modeling level.

2. We facilitate model-driven engineering through

well-typed and type-system dependent external

plugs to enable automated port matching and

model composition. In fact, a model-driven simu-

lation construction tool chain for SiMA is success-

fully implemented, via a number of tools, such as

a code generator, a model builder and a model

linker. Thus, by making strong typing and type-

system dependency explicitly visible in the formal-

ism, we reduce the gap between modeling-level

logical composability constraints and run-time

level pluggability constraints.

3. Model implementation can be supported via a type-

safe input/output (I/O) data handling and state man-

agement mechanism that eases the model develop-

ment process and enables compile time consistency

checks. In fact, our SiMA implementation provides

a template class for atomic model developers that

maintains typed object and event managers. An

object manager is a template vector initialized with

the data type of an input or an output port it is

bound to. Thus, each port is bound to an object or

event manager and a model developer can readily

access and manipulate arbitrarily complex data

flowing via the ports in a type-safe manner.

It is worth noting that, in its current form, the notion of

strongly typed ports comes with an obvious limitation:

port couplings need to be based on strict type equality. In

other words, model composability is constrained with syn-

tactic type matching. Presumably, this limitation can be

alleviated by introducing semantic mapping mechanisms

to allow for type equivalence (rather than strict equality),

but currently this is not supported.

Note also that, in addition, SiMA-DEVS introduces a

new function, δdf , that enables models to access the state

of other models through a specific type of port, without

advancing the simulation time. As such, it is possible to

establish a path of connected models along which the

models can share parts of their state and use state variables

to compute derived values instantly within the same simu-

lation time step. This is similar to the notion of zero-

lookahead in high-level architecture (HLA).14 One may

argue that the zero-lookahead behavior could be modeled

by adjusting the time advance function of an atomic model

such that the model causes the simulation to stop for a

while, do any state inquiry via existing couplings, then re-

adjusting the time advance to go back to the normal simu-

lation cycle. Although this is possible, we hold that by

introducing a function and a specific port type that is tied

(through run-time constraints imposed by the framework)

to that particular function several advantages are gained:

1. the models can communicate and exchange part of

their state with each other without the intervention

of the simulation engine, thus providing a very effi-

cient run-time infrastructure;

2. allowing such communications only to occur

through a specific port type, the framework is able

to apply application-independent loop-breaking

logic at the ports to prevent algebraic loops,

thereby ensuring model legitimacy.

For example, in Figure 1 the platform model is just updat-

ing its X and Y coordinates and does not deal with the

710 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

object’s altitude. However, the Radar Model requires the

platform object’s Z coordinate in order to generate the cor-

rect radar behavior. By using the δdf function, the

Geographic Information System (GIS) model can calculate

the altitude of the platform object and send it to the Radar

Model within the same time step of the platform update,

so that the Radar Model obtains all of the X, Y and Z prop-

erties at the same time and calculates its estimations

accordingly.

Intuitively, we can state that the behavior of SiMA-

DEVS is equivalent to that of parallel DEVS, from a lan-

guage equivalence point of view.15 Hwang15 shows that

two atomic DEVSs can be equivalent if the languages they

generate are the same. The total language a DEVS atomic

model generates is simply defined in terms of transition

trajectory, output trajectory and the total trajectory gener-

ated by that DEVS model. Since the new function we intro-

duce does not change the model’s state, the state trajectory

would be the same as parallel DEVS. Although the output

trajectory of a SiMA-DEVS model is directly affected by

δdf , the same output behavior can be generated by a parallel

DEVS model via the next time calculation logic. In other

words, the parallel DEVS models can be forced to stop

advancing at a specific point in time to send data to other

models. As such, equivalence is also true from a timed lan-

guage16 point of view. So, the benefit SiMA-DEVS offers

in this respect is that the ability to model zero-lookahead

behavior is encapsulated into a well-defined mechanism

and this mechanism is introduced into the model definition

as a first class entity, rather than relying on custom imple-

mentations. We leave the formal discussion of the language

equivalence out of the scope of this paper and refer the

reader to Hwang,15,16 and Hwang and Cho.17

2.3 SiMA software architecture

In a nut shell, SiMA provides a software framework for

developing simulation models and an engine for executing

simulations. As can be observed in Figure 2, SiMA con-

sists of two main layers: SiMA Core and C++ Interface.

Arrows in the figure denote data and interaction dependen-

cies between layers and components.

The SiMA Core consists of five sub-modules that are

used for modeling and simulation. The Modeling

Framework is a set of classes and data types to be used in

model development. Atomic models and all their

Figure 2. SiMA software architecture.

Pla�orm
Model

GIS
Model

Radar
ModelNew Posi�on

X, Y

Al�tude
Z

New Posi�on
X, Y, Z

DFT

Figure 1. SiMA ddf example use.

Deniz et al. 711

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

subclasses are defined in this framework. Connection

Ports is the transportation component that contains classes

for defining ports and their connection characteristics. The

Simulation Engine Core includes the functionality for

executing simulations and in addition exposes administra-

tive interfaces to manage and track the simulations at run

time. It contains a simulator component that encapsulates

most of the functionality required to implement the parallel

DEVS simulation protocol. The Simulation Engine Core

module uses the Modeling Framework and Connection

Ports to fulfill its functions. The Distributed Simulation

Adapter is the interface for connecting SiMA simulations

to external distributed simulation infrastructures, such as

HLA compliant Run-time Interfaces (RTIs). Messaging

Constructs is the component that presents all base data

type classes and rules for inter-communication of atomic

models and SiMA Core components.

The C++ Interface layer allows C++ to be used as

a model implementation language for SiMA atomic mod-

els. All core SiMA components are developed in .NET,

but SiMA supports models implemented in both .NET

(C#, Managed C++) and pure C++ to co-exist in the

same run-time environment during a simulation. However,

since there is a strict boundary between their coding envir-

onments, various adapters and components that manage

the interoperability between .NET and C++ atomic mod-

els and SiMA components are implemented in the C++
Interface layer.

The C++ Interface layer consists of three sub-compo-

nents. The Unmanaged Modeling Adapter has the same

interface and class hierarchy as the .NET Modeling

Framework, except it is developed in pure C++ language.

The Managed Modeling Adapter is developed in C++ /

CLI, which is a special edition of C++ language in .NET

that allows access to both C++ and .NET methods and

data types. The Managed Modeling Adapter handles the

interoperability management and delegates all simulation

commands to C++ models, and provides all information

required by them from the simulation environment. Data

Converters are special adapters that perform marshalling of

all values between .NET and C++ data types in both

ways. A model developer can use the KODO tool to auto-

generate these data converters for his/her data types.

3. Related work

In the relevant literature, there are two main approaches to

the dynamism support problem, namely DSDEVS and

DynDEVS. In this section a brief introduction to these

formalisms will be given.

3.1 DSDEVS

DSDEVS was introduced by Barros in 1995.5,18,19 In this

approach, the atomic model definition remains the same as

classic DEVS formalism, but the classical coupled model

definition is extended. Each coupled model is associated

with a dynamic structure atomic model that handles the

structural changes in its associated coupled model.

A DSDEVS network model is formally described as

follows: DSDEVSN = hX�, Y�, χ,Mχi, where � is net-

work name; χ is the name of the DSDE network execu-

tive; Mχ is the model of χ; X� is the set of input events;

and Y� is the set of output events. Mχ, the model of the

network executive χ, is a basic DSDE model defined as

Mχ = hXχ, Yχ, Sχ, δintχ , δextχ , λχ, taχi
Mχ contains information about network composition

and coupling. A state sχ ∈ Sχ has information about the

structure of the network model and it is defined as

sχ = D, Mif g, Iif g, Zi, j

� �
, SELECT ,V

� �
, where D is the

set of component names; Mi is the model of component i,

for i∈D; Ii is the set of component influencers of i,

8i∈D ∪ χ,�f g; Zi,j is the i-to-j output to input transla-

tion function, for all elements of Ii; SELECT is the tie-

breaker function; and V represents other state variables of

the network executive.

In DSDEVS, only the network executive can make

structural changes and any change made in one of the com-

ponents of the 5-tuple D, Mif g, Iif g, Zi, j

� �
, SELECT

� �
will be automatically reflected to the structure of the net-

work model. The DSDE formalism developed subse-

quently by Barros et al. is a modified version DSDEVS

and it defines its behavior in a parallel way, making net-

works of models more amenable to an implementation in a

parallel machine. A detailed explanation of DSDE formal-

ism can be found in Barros,19 and abstract simulators nec-

essary to simulate DSDE models can be found in Barros.20

3.2 DynDEVS

The DynDEVS approach was introduced by Uhrmacher in

2001.1 Unlike DSDEVS, DynDEVS formalism does not

introduce a dedicated type of model (i.e. the network exec-

utive model) to apply structural changes dynamically.

Instead, transition functions ρα and ρN are added to the

atomic and coupled model definitions, respectively, to

support dynamism. There are two types of models defined

in DynDEVS formalism, which are dynDEVS and

dynNDEVS models. Atomic models in DynDEVS formal-

ism are formally defined as follows: dynDEVS =
hX , Y ,minit,M minitð Þi, where X, Y are structured sets of

inputs and outputs; minit ∈M minitð Þ is the initial model;

M minitð Þ is the least set having the structure hS, sinit,

δint, δext, λ, ta, ραi, where S is the set of states; sinit ∈ S is

the initial state; δint, δext, λ, ta are the same functions as in

classical DEVS formalism; and ρα : S →M minitð Þ is the

model transition function.

Coupled models are described in DynDEVS formalism

formally as follows: dynNDEVS = hX , Y , ninit,N ninitð Þi,
where X, Y are structured sets of inputs and outputs;

712 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

ninit ∈N ninitð Þ is the start configuration; N ninitð Þ is the least

set having the structure hD, ρN , dynDEVSif g, Iif g,
Zi, j

� �
, Selecti, where D is the set of component names;

ρN : S →N ninitð Þ is the network transition function with

S = × d ∈D⊕m∈ dynDEVSd
Sm; dynDEVSi is the DynDEVS

model with i∈D; Ii is the set of influencers of i; Zi.j is the

i-to-j output–input translation function; and Select is the

tie-breaking function.

In DynDEVS formalism, there are certain operational

constraints. Just like atomic models, coupled models, too,

cannot make structural changes outside their enclosing

model. Another constraint is that dynamic port manage-

ment in the sense of addition and removal of ports to exist-

ing models is not supported. Allowed operations include

insertion and deletion of models, and addition and removal

of couplings between existing ports. Further details on

DynDEVS formalism can be found in Uhrmacher1 and

Himmelspach and Uhrmacher.21

4. Our approach
4.1 Adding dynamism to SiMA-DEVS

Our approach to add dynamism to our basic DEVS model

is based on to that of DynDEVS, as indicated earlier. To

be more precise, we conform to both dynDEVS and

dynNDEVS definitions as the underlying formal specifica-

tion, with some extensions that are elucidated below.

1. Structured sets of inputs and outputs are defined in

conformance to our strongly typed port definitions,

where the formal definitions for Pin, Pout apply;

M minitð Þ is the least set having the structure

hS,sinit,δint,δext,λ,ta,ρα,δdf i, where S,sinit,δint,δext,

λ,ta,ρα are the same as in DynDEVS formalism;

δdf is the direct feed-through transition function

defined in SiMA-DEVS. Thus, the meaning of a

model in SiMA-DEVS is aligned with that of

DynDEVS and the top-level semantics of the

DynDEVS definition are maintained. In other words,

our dynamism mechanisms are non-disruptive to the

overall semantics of the basic DynDEVS formalism.

2. We introduce a state synchronization mechanism

between connected models, to be performed at the

end of a structural change phase, in case a model is

required to update the values of those state vari-

ables that are within the common set of pre- and

post-change models (i.e. they are not introduced

newly after the model’s structural transition) but

have values that remained unchanged during the

pre-change simulation period. This mechanism can

be instrumental in several specific cases. Consider,

for instance, two models A and B where model A

is the influencee (affected by the output of model

B) and model B is the influencer (its output ports

are connected to the input ports of model A).

Suppose model A initializes some of its state vari-

ables at the beginning of simulation but does not

receive updates for these variables until model B

goes through some structural change. In this case

model A can use our state synchronization mechan-

ism to update the relevant portion of its state.

Another case arises when model B is added in the

middle of a simulation and introduces new cou-

plings influencing the input ports of model A.

Once again, model A needs to synchronize with

model B to update its state. One might argue that,

after the structural change, synchronization of such

state variables would already take place as a result

of message passing via the coupling links during

the normal course of the simulation. However, it is

important to note that, due to differences in state

update rates (i.e. different step sizes), an influencee

may have to go through many state updates and

produce many output sets before it can receive the

required updates from slower influencers, a case

that might potentially lead to significant errors in

the behavior of the overall simulation, especially if

the simulation application requires a high degree of

behavioral sensitivity. It is worth mentioning that

the state synchronization function must be exe-

cuted as the last step of the structural change transi-

tion phase to allow the influencers to perform the

necessary state updates before the influencees ask

for the latest values of the state variables that need

to be synchronized.

A variable structure atomic model is defined formally as

follows:

VSAM = X , Y , S, δint, δext, δcon, λ, ta, δdf , SO, ρα
� �

where X , Y , S, δint, δext, δcon, λ, ta, δdf are as in the basic

SiMA-DEVS formalism, SO is the set of structure change

operations and ρα : S × SO→ S0 is the structure change

transition function. ρα defines a mapping from pre-change

state and structure change operations (S × SO) to post-

change state (S0).
A variable structure coupled model is defined formally

as follows:

VSCM = X , Y , ninit,N ninitð Þh i

where,

ninit ∈N ninitð Þ is the start configuration,

N(ninit) is the least set having the structure

D,Mi, Ii, Zi, j, γ, τ
� �

where

D is the set of component names,

Mi is the model of component i, for i∈D,

Deniz et al. 713

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Ii is the set of component influencers of i,

Zi,j is the i-to-j output-to-input translation function, for

j∈ Ii,

γ : SO× SN (ninit) → SN (ninit) is the network change struc-

ture transition function, where SN (ninit) = × d ∈D⊕ k ∈Md
Sk

in which SN (ninit) is defined as the cross-product over the

state space of its components. Since the internal state of a

component might vary within the boundary of Mi, we

define the state space of each component as a disjoint sum

of the state spaces of its incarnations mk. (A disjoint sum

is a construction that takes two sets and combines them to

obtain a set in which the two originals are embedded with

no overlap and no superfluous elements. Equivalently, it is

a set via which any pair of functions, one from each of the

given sets, can be factorized. For a more detailed discus-

sion of why a disjoint sum is used in this context see

Uhrmacher.1)

τi : SMi
→ S

0
Mi

is the state synchronization function, where

S
0
Mi
= j∈Ki

Q
LσC

Sj

� �� 	
, where Ki ⊂ Ii.

In other words, τi computes the synchronized state (S0Mi
)

for Mi, by applying selection (σ) and projection (Π) opera-

tions on the states of some of the influencers of model Mi,

and then producing the union of these states. In this defini-

tion, L denotes the reduced (projected) tuple for Sj and C

denotes the condition of the selection.

In this definition, when structural change is initiated by

top-level simulator, the γ transition function is executed. A

structure change request initiated by the top-level simula-

tor is disseminated to the children-coupled models recur-

sively. Each coupled model, receiving the request, applies

the structural changes relevant to it and passes the requests

to its relevant children (i.e. those addressed by the request).

On the other hand the network transition function is exe-

cuted when structural change is initiated by a leaf-level

atomic model. In this case, each coupled model collects

request messages from its children, applies changes rele-

vant to it and passes upper-level requests to its parent-

coupled model. Further details of how a particular struc-

tural change is achieved through the mechanisms SiMA

provides are presented in Section 4.3.

We now set out to describe the principles that govern

the run-time algorithms of the SiMA simulation engine to

manage structural changes. In SiMA-DEVS, there is no

dedicated executive model that supervises atomic models

as in the DSDE formalism. Although notionally SiMA

coordinators play a similar role to the network executive

model in that they accumulate change requests, they do not

include model logic (i.e. transition functions, state, inputs

and outputs, etc.) as in the DSDE network executive. In

SiMA-DEVS, similar to DynDEVS, atomic models are

responsible for initiating structural changes. This model-

centric approach seems to be more reasonable, since most

of the potential change-triggering events that require

structural changes from a particular model are naturally

handled by the external transition function of that atomic

model. In addition, it is that particular model which should

have the knowledge of re-structuring itself, whether this re-

structuring is a switch to an internally defined different

functional model, or a re-adjustment of its port couplings.

The only exception where the model-centric approach

may become restrictive is the case where a new model

(atomic or coupled) is to be added to the simulation. The

logic for initiating a model insertion may require that more

than one model contribute to the decision, or model inser-

tion may be a user-initiated request that is not necessarily

handled by a single model. In current implementations of

DynDEVS, namely, AgedDEVS and JAMES, it is reported

that the atomic models are assumed to have access to a

knowledge base from where they can collect the necessary

information to decide new model additions.1 Although this

approach seems quite reasonable for agent-oriented imple-

mentations, it introduces a dependency to a specific archi-

tectural scheme and behavioral semantics for simulation

applications, which we are inclined to avoid. Therefore, in

our approach the following apply.

• If an atomic model requires a structural change, it

informs its parent coordinator about the type and

content of the operations to apply. Coordinators

store all structure change requests until all child

models complete their operations. These requests

will be processed by the relevant coordinator. In

the case of overlapping requests (i.e. requests

involving change operations targeting the same

model), those requests will be combined and propa-

gated to the relevant model by the parent coordina-

tor. An atomic model can create and send structure

change requests to its parent-coupled model, but

cannot change its own structure. A coupled model

processes these messages and executes the opera-

tions restricted to its bounding coupled model and

sends the requests targeted at outside its boundaries

to its parent-coupled model. The target of the

change is resolved by checking the path attribute

found in the change request message (see Section

4.5 for more details on the content of a change

request message).
• The software application that is hosting the simula-

tion may initiate structural changes, too. This

request is sent to the root coordinator to be exe-

cuted over the model structure recursively. The root

coordinator implements an interface that allows

applications to send their structural change requests

to the simulation engine. This operation is applied

in two parts:

� before applying the change operation, simula-

tion is suspended at the beginning of the next

cycle;

714 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

� the change request is processed by the root

coordinator and child model operations are sent

to the child coordinators recursively, causing

all related child coordinators to apply change

operations specified in the request.

4.2 Operations on model structures

There are three main types of structural change operations

defined in SiMA: adding/removing a model, adding/

removing a coupling and adding/removing a port.

• Removing a model: this operation consists of two

steps: removing all the connections from/to the

model, and removing the model.
• Adding a model: this operation consists of three

steps:

1. adding a model to the parent-coupled model;

2. calling the init() function of the newly added

model to initialize its state variables;

3. calling the AdvanceTime (CurrentTime) func-

tion for synchronization.
• Adding/removing a coupling: adding a coupling is

a critical operation in our case. After adding a

coupling, a process for synchronizing the current

states of newly connected models is executed. To

achieve this, a data request mechanism between

connected ports is implemented that operates in

the opposite direction of the normal message flow.

An input port creates a request and sends it to

the newly connected ports. An answer to this

request is generated and sent to the requesting

port. These response messages will be handled

when the external transition function of the model

is executed.
• Adding/removing a port: this operation supports the

addition of new ports to coupled models. Note that

the new ports must conform to one of the existing

port types. Before removing a port, all couplings

from/to the port are removed.

Our framework does not support the addition and removal

of new port types to the type space of the simulation at run

time. One rationale for this is to preserve the models’

external identity, as advocated by Uhrmacher.1 Another

important reason for such a restriction is the implied ambi-

guities in the run-time behavior of source and sink models

of the newly added ports with new port types. To be more

specific, say, for instance, a new output port of a new type

is to be added. This would normally cause new connec-

tions to be established between its source and some other

sink model. To be able to process the data coming from

the new port type, the sink models have to be structurally

and behaviorally ready to receive, interpret and process

data coming from the new port. In a type-safe environment

where port connectivity is regulated and restricted by type

compatibility between connected ports (which is the case

in SiMA), normally a new port will have to be added to

the sink model too. However, both the source and the sink

model may not know in advance the processing logic of

the information flowing through these new ports. Such a

support would rely on the pre-existence of sophisticated

application-specific semantics within the models. We

believe this case should be avoided for generic frameworks

and, therefore, we exclude this functionality. However,

unlike DynDEVS, we do find the addition of ports having

a port type already defined in the current type space useful,

since it allows one to establish a new coupling with an

existing model.

For an example where some of these operations are

applicable, consider a simulation scenario involving two

planes flying in formation. A graphical representation of

the models involved in this scenario can be seen in Figure

3. When the simulation starts execution, the models repre-

senting the planes send their states to each other from their

ports once and subsequently they only send their current

locations and directions, which are the only updated para-

meters of the planes throughout the simulation. Assume

that at some point in time, a third plane is to be added to

the simulation to connect to the existing planes. This

updated model can be seen in Figure 4. Since the first two

planes send only their updated parameters, which are

Plane 1 Plane 2IN OUT IN OUT

Plane 3IN OUT

Figure 4. Updated model.

Plane 1 Plane 2IN OUT IN OUT

Figure 3. Initial model.

Deniz et al. 715

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

location and direction, a newly added plane will not be

aware of the remaining two planes’ relevant part of their

states. Therefore a state synchronization is required.

Dynamic SiMA handles this case by implementing an

automated state synchronization mechanism via a query-

ing system between connected port pairs. When a coupling

is added to the model structure while the simulation is run-

ning, this querying system automatically works as a ser-

vice provided by the infrastructure, without incurring any

additional implementation overhead on the model develo-

per. A more detailed discussion of the state synchroniza-

tion mechanism is provided in Section 4.4.

4.3 SiMA abstract simulators adapted for
dynamism support

Recall that SiMA is an implementation of SiMA-DEVS

formalism as discussed at the beginning of this section.

The SiMA run-time layer is implemented in C# program-

ming language but it can interface to models implemented

in both C++ and C# programming languages. To incor-

porate dynamism support into the SiMA run time, a num-

ber of modifications are applied. A summary of these

modifications for supporting variable structure models is

given below.

i. A property, named StructureChangeRequired, is

added to the atomic models’ simulators.

ii. Atomic models that may require structural changes

while the simulation is running implement ρα tran-

sition function.

iii. The GetNextTime functions of the coordinators and

simulators are modified so that, in addition to the

minimum advance time value, they now return a

StructureChangeRequired flag, too. To initiate a

structural change, an atomic model simply sets its

StructureChangeRequired flag to true.

iv. When a structure change request arrives at the root

coordinator with the minimum advance time value,

a structure change step is executed. For each atomic

model that requires structural changes at the new

current time, the ChangeStructureTransition func-

tion is executed.

In the remainder of this section, extensions to abstract

simulators required for executing variable structure SiMA

models are provided as code fragments described in

pseudo code format. The code fragments include only crit-

ical parts of the processing logic. We first present an activ-

ity diagram in Figure 5 that denotes the high-level logic

driving the execution of the code fragments.

4.3.1 Root coordinator. The algorithm that is executed at

the top-level root coordinator is shown in Algorithm 1. It

can be observed in this algorithm that there are two distinct

cases in regard to the initiation of a structure change and

three alternative simulation cycles can potentially be exe-

cuted depending on these cases. If the structure change is

initiated by an external request, the statements between

lines 3–6 are executed, if the structure change is initiated

by a leaf-level atomic model, statements between lines 13–

15 are executed, otherwise the normal simulation cycle is

executed.

1: while simulation-end-condition not satisfied do

2: if structure change requested from top level then

3: Process change request

4: Send subrequests to related child coordinators

5: Do state synchronization

6: Initialize newly added models

7: end if

8:

9: <currentTime, changeReq>�model.GetNextTime()

10: Advance simulation time to currentTime

11:

12: if changeReq is True then

13: Execute a structural change step

14: Do state synchronization

15: Initialize newly added models

16: else

17: Execute a normal simulation cycle

18: end if

19: end while

Algorithm 1. Root coordinator.

After a structural change operation, all models that

have new couplings will execute the state synchronization

mechanism discussed in Section 4.4 to update their state

information.

The ChangeStructure function has a similar effect to

that of the structure change (sc) message found in both

DSDEVS8,20 and DynDEVS.21

4.3.2 Coordinator. In the GetNextTime function of a coordi-

nator, shown in Algorithm 2 the next simulation time and

whether any structural change is required at that time is

resolved recursively down the model hierarchy and the result

is sent back to the parent coordinators up the hierarchy.

716 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

1: for each inner model M do

2: <time, changeReq> � M.GetNextTime()

3: if time < minTime then

4: minTime � time

5: commonChangeReq � changeReq

6: else if time = minTime and changeReq is True then

7: commonChangeReq � True

8: end if

9: end for

Algorithm 2. Recursive next time calculation.

1: for each inner model Mdo

2: if M requested structure change then

3: Call M’s change structure function

4: Add M’s change requests to changeReq set

5: end if

6: end for

7: Process changeReq set

8: Apply necessary updates in current level

9: Send upper-level operations to parent model

Algorithm 3. Structure change in coordinator -from the bottom.

Process Change
Request

Top level change
request exists

NO

YES

YES Execute structure
change step

Send subrequests
to inner models

Do state
synchronization

Initialize new
models

CurrentTime =
GetNextTime()

Advance time to
current time

NO

ChangeRequired =
GetChangeRequired()

Execute normal
simulation cycle

Algorithm 1

Apply necessary
updates

Algorithm 3&5

Algorithm 2

Algorithm 4

Algorithm 6

Botottotom Upp
Changengege

ReReqRequiredRequired

Bottom Up
Change

Required

Figure 5. Top-level activity diagram.

Deniz et al. 717

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

If a change-structure step is initiated by a leaf-level atomic

model, in a coupled model’s coordinator, Algorithm 3 is

executed, which causes the initiating model to apply any

model-specific logic, applies any required updates to other

models at the same level as the initiator, and sends the change

request up the hierarchy. On the other hand, if the step is

initiated by the top-level root coordinator, Algorithm 4 is

executed, similarly to the former but in the reverse direction of

change request propagation. The basic idea in both algorithms

is to apply necessary updates in the coupled model they are

associated with and redirect the remaining requests to the

models at lower or higher levels where they are addressed.

1: Process requests

2: for each inner coupled model Cdo

3: if a request exists for model C or its submodels then

4: Send related requests to model C

5: end if

6: end for

7: Apply necessary updates in current level

Algorithm 4. Structure change in coordinator -from the top.

4.3.3 Simulator. The GetNextTime function of the

simulator returns the next internal transition time and an

indication of whether any structural change request exists

at that time. As indicated in Algorithm 5, the structural

change function of an atomic model (i.e. ρα) is executed

if and only if its next time is imminent and a structural

change request has been issued by that model.

1: if changeRequired is True and simulation time = tNthen

2: Call

3: changeRequired � False

4: Send required change packages to parent model

5: end if

Algorithm 5. Structure change in the simulator.

If the state of an atomic model satisfies certain conditions

that require structural changes, the atomic model marks

itself as pending for change and informs its simulator to

initiate a structural change process. This simulator then

recursively sends the request to the root coordinator.

Structural change requests can be issued by any atomic

model during one of its transition functions. These

requests are handled in the next internal transition phase.

4.4 State synchronization mechanism

One of the major extensions to realize dynamism support

was to add a state synchronization mechanism between con-

nected ports. With this extension, a port can create a request

and send this request to other source ports to which it is

connected. This mechanism works in the opposite direction

of the normal message flow and enables newly added mod-

els or newly added couplings to acquire the current state of

the simulation. This capability is crucial for SiMA, since

ports are managed by event and object managers where

object managers send only modified data for efficiency rea-

sons. Therefore a sink model would not have up-to-date val-

ues of certain state variables from the source models if

before the structural change the sink model did not use

those particular state variables. If a model requires the pre-

viously updated fields, it can prepare and send a request to

gather this information. Synchronization might also be

required for cases where a model (call it an event initiator)

sends an event to trigger a specific behavior of other models

connected to its output ports. In such cases, if a newly added

model is required to connect to this event initiator, it would

require the last event (e.g. a triggering command) in order

to synchronize the part of its state that would normally be

updated via the external transition function when that partic-

ular event was received. Implementation details of state syn-

chronization mechanism are discussed below.

An interface named IPortValueSource is defined in

SiMA as shown in Algorithm 6.

1: RequestState(destModel:string, destPort:Port):Message[]

Algorithm 6. IPortValueSource interface.

This interface has only one member function, which takes a

destination model and a destination port as input parameters

and returns the port’s related data. In a structural change

step, after all structural updates are completed, the states of

the models are updated accordingly, as shown in Algorithm

7. Each coupled model contains a list of couplings, in its

level, that are added in the last structural change step.

1: for each inner coupled model Mdo

2: Call state synchronization procedure of M

3: end for

4: for each new coupling c do

5: Add destination port to the affected ports list

6: Message[] messages � c.SourcePort.RequestState(destination model, destination

port)

7: for each Message m in messages do

8: Put values of m into destination port

9: end for

10: end for

11: for each affected port Pdo

12: Synchronize sources of P

13: end for

14: Clear new couplings list

Algorithm 7. Updating states.

718 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

Destination ports create requests and send these requests to

the source ports that are connected to them. When an

atomic model receives a request, it sends part of its state

that qualifies for the posed request as a response. When a

coupled model receives a request, it redirects this request

to the source ports that are connected to this port. Then,

the coupled model collects and returns the responses

received from those redirected ports. For example, in

Figure 6 a model named D and a coupling from C’s OUT1

port to D’s IN1 port is added dynamically. In this example,

the state synchronization process works as follows:

1) the IN1 port of model D sends a request to the

OUT1 port of model C;

2) the OUT1 port of model C redirects this request to

the OUT1 ports of model A and model B;

3) the OUT1 port of model C collects response mes-

sages from the OUT1 ports of model A and B;

4) it sends these messages back to the In1 port of

model D.

The state synchronization mechanism works from bottom-to-

top. In other words, a parent models execute the state syn-

chronization mechanism after the completion of all of its

submodels. As mentioned before, communication in SiMA is

bidirectional and destination ports are aware of the source

ports they are connected to. However, while updating the

states, destination ports are not aware of the source ports that

they are newly connected to. As can be observed in

Algorithm 7, sources of destination ports are synchronized

after the state updating procedure. In this way, SiMA pre-

vents unnecessary queries, as well as duplicate messages. For

example, in Figure 7 two couplings are added dynamically,

from the OUT2 port of model C to the IN port of model D

and the IN port of model D to the IN port of model E. In this

example, the state synchronization process works as follows:

• From the IN port of model D to the IN port of

model E:

1) the IN port of model E sends a request to the

IN port of model D;

2) the IN port of model D redirects this request to

the OUT1 port of model C;

3) the OUT1 port of model C redirects this

request to the OUT port of model A;

4) response messages of model A are sent to

model E from the same path.
• from the OUT2 port of model C to the IN port of

model D:

1) the IN port of model D sends a request to the

OUT2 port of model C;

C

A

B

OUT

OUT

OUT1

OUT2

D

EIN

IN

FIN

C

A

B

OUT

OUT

OUT1

OUT2

D

EIN

IN

FIN

Figure 7. Dynamically adding couplings.

C D
OUT

IN

A

B

OUT

OUT

C
OUT

A

B

OUT

OUT

Figure 6. Dynamically adding a model and a coupling.

Deniz et al. 719

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

2) The OUT2 port of model C redirects this

request to the OUT port of model B;

3) response messages are sent to the IN port of

model D from the same path;

4) the IN port of model D sends a copy of

these messages to the IN ports of both models E

and F.

4.5 Change request message structure

Change requests in SiMA are defined as XML docu-

ments that are compatible to the XML Schema shown in

Figure 8.

A change request consists of several actions and each

action consists of attributes and structure change opera-

tions. Attributes of an action specify the destination model

that will execute structure change operations defined in

the action. An action has three attributes: type, level and

path. Level and path are optional attributes and their data

types are int and string, respectively. The type attribute of

an action can have one of the following values: relative

path, absolute path, relative level and absolute level. For

example, if the type attribute is set to relative level and

level attribute to one, then the action will be executed in

the parent-coupled model. If the level attribute is set to

two, then the action will be executed at the parent-coupled

model of the parent-coupled model, and so on.

In dynamic SiMA, requests can be sent both from top-

to-bottom and bottom-to-top. For both purposes, the same

schema, introduced in this section, is used. The structural

flexibility of this schema allows the requests to be broken

into pieces for messages sent from top-to-bottom and

allows the requests to be combined for messages sent from

bottom-to-top.

4.6 Time management in dynamic SiMA

The time management diagram of a simulator in dynamic

SiMA is illustrated in Figure 9. The parts that are clearly

marked in the figure connote the dynamism extensions to

Figure 8. Change request message structure.

720 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

the time management flow of classical DEVS formalism.

After each simulation cycle, the simulator checks whether

there exists a structure change request in the next cycle. If

such a request exists and if the current simulation time is

equal to the time of the change request, then the required

changes are applied. Changing the model structure in

SiMA is handled in three steps.

• Changing the model structure.
• Synchronizing states (details are discussed in

Section 4.4).
• Initialization of newly added models. Current times

of newly added models are also advanced to the

current simulation time.

After the structure is modified, the normal simulation cycle

resumes with the updated model structure.

5. Case study and performance analysis
5.1 Wireless sensor network simulation as a case
study

In this section, we present the details of our case study and

report our performance measurements to illustrate the

impact of SiMA dynamism extensions. To conduct the

performance tests, a WSN simulation has been developed

as a sample case. Models representing the sensors are

implemented using both classic SiMA and dynamic SiMA

frameworks and the performance findings are compared.

ComputeOutput
Function

IF Value in
Input Ports

NO

NO

YES

Confluent Transition

Internal
Transition

External
Transition

IF Value in
Input Ports

YES

Internal
Transition

External
Transition YES

NO

IF Structure
Change

Requested
NO

Change
Structure
Transition

State
Synchronızation

Initialize New
Models

YES

Next Time =
GetNextTime()

Is Change Requested =
GetChangeRequest()

IF Structure I
Change

Requested

Change
Structure
Transition

State
Synchronızation

Initialize New
Models

YES

Dynamism
Extensions

IF CurrentTime =
RequestedTime

Figure 9. Time management in dynamic SiMA.

Deniz et al. 721

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

The domain knowledge required for designing a realistic

WSN is obtained from the work presented by Iyengar and

Chakrabarty22 and Akyildiz et al.23 A top-level visual rep-

resentation of DEVS models developed to implement the

proposed WSN is given in Figure 10. The WSN system

consists of five components.

1) The sensor detects the movement of objects in the

environment and can communicate with other sen-

sors within its range. Each sensor is represented by

a coupled model and consists of four subcompo-

nents. These components and their inner relation-

ships can be observed in Figure 11.

• The antenna is used for communicating with

the main sensor and other sensors within their

range. As such, the antenna is the intermediate

model between the outside world and the pro-

cessor. Messages coming from the outside

world are sent to the processor and messages

received from the processor are sent to the other

sensors. A routing protocol is also implemented

in this model. For this case study, greedy for-

warding, which is the simplest form of geo-

graphic routing, is used. Each node makes

decisions according to the locations of its direct

neighbors. Each sensor designates the neighbor

that has the shortest distance to the sink model

as its parent. More details about greedy for-

warding algorithm can be found in Karp and

Kung.24

• The sensing unit is used for sensing the move-

ment activities in the environment. When a sen-

sing unit detects a movement it estimates a

value between [0,1] representing the proximity

of the detected object and sends a message con-

taining this data to the processor.

• The processor receives messages from both the

antenna and the sensing unit. It creates and

sends data messages to the antenna according

to messages received from the sensing unit.

When the processor receives a message from

the antenna that is originated from the sink sen-

sor, it sends an activation message to its sen-

sing unit.
• The battery is connected to the antenna, pro-

cessor and sensing unit. The battery models

power consumption. When the power of the

battery runs out, the battery model informs

other models with an event, upon which all

models in the sensor change their states to

‘Dead’ phase.

2) The main sensor (or the sink unit) is the base unit

that collects and evaluates all the information sup-

plied by the sensor network. It can communicate

with the sensors within its range but does not sense

the environment. It sends activation messages to

the sensors and waits for the response messages.

Unlike other sensors, the main sensor does not con-

tain a battery unit. The main sensor contains two

subcomponents. These components and their rela-

tionships can be observed in Figure 12.
• The sink antenna sends activation messages

and listens to the incoming messages within a

specific range. It redirects received messages to

the sink processor.
• The sink processor follows the truck’s move-

ment by processing the detection messages

received from the sensors. During the simula-

tion, it collects data messages received from

the sensors and it analyzes these messages to

determine the (time, location) pairs for the

truck’s movement. The analysis of the location

of the truck at each time step is handled using

the trilateration method discussed by Staras and

Honickman.25

3) The truck has a predefined path that it follows

during the course of simulation. The motion model

does not include any dynamics so is very straight-

forward, simply changing the truck’s position

along the predefined path with a predefined

velocity at each time step. The truck represents

the detectable object for the sensors in the

environment.

4) The logger acts as the transducer model and logs

all the location and data packages, created by truck

and sensors, respectively, into a file on the disk.

This file can be used to analyze the simulation

results.

5) The sensor adder exists only in the dynamic ver-

sion of the simulation and it is used for adding sen-

sors into the environment at run time.

LoggerTruck

OUT_LOCATIONDATA IN_LOCATIONDATA

IN_DATAPACKET

SinkNode

OUT_DATAPACKETIN_DATAPACKET

SensorAdder

Sensor1

OUT_DATAPACKETIN_DATAPACKET

IN_LOCATIONDATA

Figure 10. Wireless sensor network main model.

722 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

5.2 The simulation scenario

Our sample simulation scenario involves randomly distri-

buting a number of wireless sensors into an area to con-

struct a WSN system. A sink unit is positioned randomly

within the area. Thus, in the initialization phase of the

simulation, a sensor network with a random layout is

deployed into an area and is ready for sensing intruder

objects. When the simulation starts, a truck starts navigat-

ing the area where the sensor network was deployed.

When the truck enters a sensor’s sensing range, the sensor

detects the truck’s location and sends an accuracy value to

its parent to be sent to the sink unit. At the end, the sink

unit analyzes collected messages and determines the

observed path of the truck. The simulation analyst is then

IN_DATAPACKET

IN_DATAIDPAIR

IN_BATTERYINFO

OUT_DATAPACKET

OUT_DATAIDPAIR

OUT_BATTERYINFO

Antenna

IN_ANTENNA_DATAIDPAIR

IN_SENSINGUNIT_DATAIDPAIR

IN_BATTERYINFO

OUT_ANTENNA_DATAIDPAIR

OUT_SENSINGUNIT_DATAIDPAIR

OUT_BATTERYINFO

Processor

IN_DATAIDPAIR

IN_LOACTIONDATA

IN_BATTERYINFO

OUT_DATAIDPAIR

OUT_BATTERYINFO

SensingUnit

IN_BATTERYINFO OUT_BATTERYINFOBattery

IN_DATAPACKET

IN_LOCATIONDATA

OUT_DATAPACKET

Figure 11. Single sensor model.

IN_DATAPACKET_FROMOUT

IN_DATAPACKET_FROMPROC

OUT_DATAPACKET_TOOUT

OUT_DATAPACKET_TOPROC

SinkAntenna

IN_DATAPACKET OUT_DATAPACKETSinkProcessor

IN_DATAPACKET

OUT_DATAPACKET

Figure 12. Main sensor model.

Deniz et al. 723

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

able to compare the actual path and the observed (or

detected) path of the truck to determine the effectiveness

of the WSN with the given characteristics (such as the sen-

sor layout, sensing ranges, etc.).

In this case study, tests are performed according to the

following scenario:

• a truck starts moving along a random path with a

constant speed;
• the sink unit creates and broadcasts an activation

message.;
• when a sensor receives the activation message, it

broadcasts it to the maximum possible number of

nodes;
• sensors that receive the activation message start col-

lecting movement activity data from the environ-

ment via their sensing units;
• when a sensing unit receives movement activities

from the truck, it sends a message to its processor;
• the processor creates data messages according to

the collected data from the environment;
• when messages are ready, processors send them to

their antenna to be sent to the sink unit.;
• the sink unit collects these data messages and

resolves the current location of the truck.

5.3 WSN simulator application

To drive the tests and collect the metrics, a test application

called the WSN Simulator Application is implemented.

The application enables the user to observe the behavior of

WSNs via a visually plausible graphical interface and to

verify simulation results both through textual output and

visual cues. It also provides a controlled experimentation

environment which ensures that both static and dynamic

cases are tested in a consistent way. Figure 13 illustrates

the main window of the tool. We provide a quick scan

through the capabilities of this tool to give some insight

into our testing environment. The tool consists of the fol-

lowing five main panels.

• Simulation parameters: this panel contains the

parameters that control the main characteristics of

the simulation run. Values of these parameters are

passed to the related simulation models to facilitate

the initialization phase of these models. By chang-

ing parameters, such as sensor count, sensor adder

frequency and simulation type (static or dynamic),

different simulations can be executed.
• Simulation manager: this panel controls the simu-

lation run. Before starting a simulation, simulation

end conditions can be defined. While a simulation

Figure 13. Wireless sensor network simulator tool.

724 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

is running, it is possible to pause or stop the simu-

lation. When the simulation is paused, allowed

operations are iterating the simulation for one step,

resuming execution, stopping the simulation and

finally changing the model structure (for dynamic

case). The command for changing the structure

allowed here is a top-to-bottom structure change

operation where upon user command (via the simu-

lation manager panel), structure change requests

are read from an XML document (for simplicity)

and sent from root coordinator to the related

subcomponents.
• Simulation panel: visual representation of the run-

ning simulation is shown in this section of the

screen. A truck’s path is shown with a polygon and

sensors are represented by dots with different col-

ors according to their states.
• Statistics control: statistics of completed simula-

tions are shown in this section. By just looking into

the visual representation of the simulation it may be

difficult to make sure that both static and dynamic

simulations have executed the same simulation.

Hence, statistical data need to be used. In addition

to the simulation execution time and simulation

type, the number of times a truck is located and the

number of sensors locating that truck are also

shown as a part of statistical data and these are the

main metrics we used for making sure that we are

executing the same simulation with different

approaches.

Figure 14 illustrates the simulator after executing a

dynamic simulation. In the dynamic approach, after a sen-

sor completes its execution, it is removed from the simula-

tion structure. So, in Figure 14 only active sensors are

visible. In the static case inactive sensors would also

remain in the model structure and would be displayed in

the simulation panel colored gray.

5.4 The performance tests

Performance measurements are carried out to observe the

impact of the dynamism extensions. To achieve that the

following steps are taken.

Figure 14. Wireless sensor network dynamic simulation.

Deniz et al. 725

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

• Exactly the same simulation model set is, imple-

mented using the basic SiMA framework, as well as

the extended SiMA framework that includes dyna-

mism support.
• The test tool presented above is used to run the

simulation for both implementations.
• Two metrics are defined to be used for compari-

sons: (i) execution duration of simulations for vary-

ing sensor counts; and (ii) execution duration of

simulation for varying truck step sizes. These

metrics are collected for both dynamic and static

(classical) cases.

Tests are performed in a Windows XP environment on a

machine with the following hardware configuration:

Intel(R) Core(TM)2 Quad central processing unit (CPU)

Q9550 @2.83 GHz, 3.93 GB of random-access memory

(RAM).

The rationale behind specifying the metrics given above

and the method adopted for collecting them are presented

below.

5.4.1 Testing criteria 1: sensor count. Execution times of

simulations for varying sensor counts are our first metric.

Sensor count is a good measure of structural dynamism in

that it indicates the impact of dynamic model inclusion

and removal as opposed to a static model coupling struc-

ture. Four of the simulation models (namely sink unit, log-

ger, truck and sensor adder) have one instance only,

whereas sensor models will be in varying numbers. For

example, when there are 40 sensors in the simulation, the

number of sensor models will be 90% of the whole model

structure. In the dynamic version, these sensors are inserted

into the simulation when they are activated and removed

from the simulation when they are deactivated. However,

in the static approach, all models are added to the simula-

tion at the beginning and removed when the simulation is

terminated. In Table 1 execution times of simulations for

both static and dynamic approaches and performance

improvement of the dynamic approach over the static

approach can be observed. The improvement of the

dynamic approach over the static approach is calculated as

the percentage difference in the elapsed time. In the experi-

ments the total simulation wall clock duration is set to be

200 seconds.

To aid the interpretation of the results shown in Table

1, Figures 15 and 16 are presented to provide a graphical

representation. In Figure 15, execution times of the static

and dynamic approaches are shown. As can be observed

from the results, execution times of the static approach are

proportional with the sensor model count, whereas execu-

tion times of the dynamic approach are almost proportional

with the logarithm of the sensor model count. In Figure 16,

performance gain of the dynamic approach over the static

approach is graphically represented.

An important factor that influences the performance of

the simulation is the total number of messages transferred

between models. We have added the capability to each

atomic model in the simulation to keep track of the num-

ber of received messages and log that statistic, in both sta-

tic and dynamic cases. For the sample simulation a typical

message size is 42 bytes. It can be observed that, in static

simulations, the total number of messages circulating in

the simulation is proportional with the square of the sensor

count. On the other hand, in dynamic simulations, the rate

of increase in the message count is much less with respect

to the increase in sensor count. In Table 2, the number of

messages for different sensor counts is shown for both sta-

tic and dynamic simulations. The figures help us to reveal

Table 1. Comparison of the two approaches according to
sensor count (in seconds).

Sensor
count

Static(s) Dynamic(s) Difference(s) Gain (%)

1 0.30 0.27 0.03 10.00
3 0.72 0.64 0.08 11.11
5 2.55 2.37 0.18 7.06
7 4.50 4.20 0.30 6.67
9 6.79 6.29 0.50 7.36

11 8.97 8.25 0.72 8.03
13 12.24 11.02 1.22 9.97
15 15.78 14.07 1.70 10.77
17 19.02 16.55 2.46 12.93
19 22.37 18.98 3.39 15.15
21 25.89 21.06 4.83 18.66
23 30.14 23.79 6.35 21.07
25 33.95 26.13 7.81 23.00
27 38.20 28.87 9.34 24.45
29 42.42 30.93 11.49 27.09
31 46.61 32.70 13.90 29.82
33 49.69 34.02 15.67 31.54
35 53.48 35.33 18.15 33.94
37 56.39 36.14 20.25 35.91
39 59.22 36.73 22.49 37.98

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Sensor Model Count

A
ve
ra
ge

Ex
ec
u�

on
Ti
m
e

Sta�c

Dynamic

(s
)

Figure 15. Execution time of simulations with respect to
sensor count.

726 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

the reasons behind the performance improvement reported

in Table 1.

5.4.2 Testing criteria 2: truck step size. The simulation step

size of the truck model is another convenient parameter

for increasing or decreasing the number of messages tra-

veling along the couplings between the models, which is

instrumental in measuring the effect of dynamic coupling

management in reducing the message handling cost of the

framework. The number of messages circulating between

sensors is inversely proportional to the truck step size.

Although the end result of this exercise is similar to the

test conducted in Section 5.4.1 Testing criteria 1: - sensor

count, this time the simulation resolution (and hence

model resolution) is increased. Thus we aim to observe

the behavior of the framework where the number of mes-

sages is increased in a more non-deterministic manner.

This is because, in this test, the number of messages cre-

ated depends on the number of sensors encountered along

the path of the truck and smaller step sizes may cause the

truck to be more sensitively sensed when passing along a

more populated area, since the sensors are irregularly dis-

tributed over the area. Tests for measuring this criterion

are executed for 10 sensors with varying truck step sizes

for both static and dynamic approaches. The impact of

truck step size on performances can be seen in Table 3.

The Results of the tests are presented in Table 3 and are

graphically illustrated in Figures 17 and 18. Examining

Figure 17, we observe that increasing the step size (i.e.

decreasing the resolution) improves the performance of

both approaches. This is an expected behavior. When the

resolution decreases (i.e. step size increases), the number

of messages circulating between models decreases and

therefore performance increases. On the other hand, Figure

18 signifies that performance degradation of the dynamic

approach as the resolution increases is much less compared

to that of the static approach. When the simulation resolu-

tion increases, the gap between the dynamic approach and

static the approach becomes wider. This indicates that, for

higher resolutions, the benefit of the dynamic approach is

more evident.

5.4.3 Discussion of the results. A summary of the reasons

for the reported findings can be enumerated as follows.

1) In classical DEVS formalism, after the initializa-

tion phase, simulation goes into a loop where in

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

G
ai

n
(%

)

Sensor Model Count

Performance Gain (%)

Figure 16. Performance enhancement of dynamic approach with respect to sensor count.

Table 3. Comparison of the two approaches with respect.

Sensor
count

Truck
step
size(s)

Static(s) Dynamic(s) Diff.(s) Gain
%

10 0.001 24.79 17.53 7.26 29.29
10 0.002 15.25 11.52 3.73 24.46
10 0.003 12.22 9.50 2.72 22.26
10 0.004 10.12 7.99 2.13 21.05
10 0.005 8.84 7.15 1.69 19.12
10 0.006 8.61 7.05 1.57 18.23
10 0.007 8.29 6.82 1.46 17.61
10 0.008 8.07 6.72 1.34 16.60
10 0.009 8.05 6.74 1.31 16.27
10 0.010 7.52 6.44 1.07 14.23

Table 2. Comparison of the two approaches according to total
message count.

Sensor
count

Message #
in static

Message #
in dynamic

Gain %

10 1,540,071 1,484,869 3.58
20 5,545,412 4,726,308 14.77
30 11,003,793 7,885,944 28.33
40 16,120,844 9,250,767 42.62

Deniz et al. 727

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

each cycle, all simulators execute their functions

as mandated by the applicable DEVS simulation

protocol. The number of simulators in classical

DEVS is fixed (as the number of models is fixed)

and does not change while the simulation is run-

ning. However, in the dynamic version, models

can be inserted into the simulation whenever they

are needed and they are removed when they com-

plete their work. Therefore, the number of simula-

tors in the dynamic version will always be less

than or equal to the number of simulators in the

classical version. As a consequence, the number of

calls to simulators in each cycle of the simulation

loop never exceeds that of the classical approach.

2) Even though incoming messages are not processed

by inactive models, messages are nevertheless

received by their ports and then they are discarded.

Therefore, not only the existence of the inactive

models, but also unnecessary couplings between

those models, cause performance degradation dur-

ing simulation execution. The DynDEVS approach

eliminates such performance losses through its

support for dynamic coupling management.

One particular work that focuses on the performance anal-

ysis of DSDEVS based on cellular space models is that of

Sun and Hu.26 Their findings are similar to ours in that

they also report the important positive impact of dynamic

structure modeling due to reduced memory requirements,

faster simulation initialization periods and improved effi-

ciency of the simulation engine because of the small pro-

portion of active models (cell spaces in their case).

However, they also report that the overhead of dynami-

cally adding and removing models at run time can

become significant for simulations that have a high pro-

portion of active models. They note that in such cases the

advantage of not constructing all the models at the start

of the simulation diminishes. Intuitively, it seems to be

evident that the benefit of dynamic structure modeling is

likely to be pronounced when the proportion of the active

models with respect to all required models in the overall

simulation remains below a certain threshold during the

course of simulation. In fact, in our case, due to the state

synchronization mechanism introduced, this overhead

may even become more dominant for extreme cases

where the proportion of the active models remains high

and the state synchronization cost is particularly

significant.

It is worth noting that the state synchronization

mechanism introduced as part of SiMA-DEVS dynamism

extensions is fully utilized in the case study. For instance,

in the sample WSN simulation, sensors start sensing the

movement of the truck in the environment upon receiving

activation messages from the main sensor, indicating that

it has started execution. The main sensor sends this mes-

sage only once after the initialization phase. When a new

model is included into the simulation dynamically, it

needs to know whether the main sensor is executing so

that it can start sensing the environment. In order to

enable newly added sensors to acquire the current state of

the simulation, the state synchronization mechanism is

employed.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0.0010.0020.0030.0040.0050.0060.0070.0080.0090.010

G
ai

n
(%

)

Truck Step Size (s)

Performance Gain (%)

Figure 18. Performance enhancement of dynamic approach in relation to truck step size.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.0010.0020.0030.0040.0050.0060.0070.0080.0090.010

Ex
ec

ut
io

n
Ti

m
e

(s
)

Truck Step Size (s)

Sta�c

Dynamic

Figure 17. Execution time of simulations with respect to truck
step size.

728 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

6. Conclusion and future work

In this paper, we have introduced our approach to imple-

ment variable structure support for dynamic and adaptive

simulation environments. We summarized the fundamen-

tal properties of our modeling and simulation framework,

SiMA, and its variable structure extensions, with refer-

ences to similar approaches in the literature.

In particular we note the following.

1) We have formally presented the extensions to

SiMA-DEVS to support structural dynamism. We

reiterate that our approach to add dynamism to our

basic DEVS model is derived from to that of

DynDEVS. However, we do not have the limitations

that DynDEVS has. Unlike DynDEVS, our approach

allows dynamic port management and allows atomic

models to initiate changes other than changing them-

selves only. One particular contribution we offer is

the formal specification and systematic framework

support for post-structural-change state synchroniza-

tion among models with related couplings. This

operation works in the opposite direction of the nor-

mal message flow and enables newly added models

and newly added couplings to acquire the current

state of the simulation. This feature is used and

tested in the sample simulations.

2) We have extended our existing implementation of

SiMA-DEVS by incorporating the mechanisms

required to implement the structural dynamism.

This extended version of SiMA, namely dynamic

SiMA, is used during the experiments.

3) In order to test our approach, we have developed a

sample WSN simulator that uses dynamic SiMA.

Since dynamic SiMA is an extended version of

basic SiMA, the simulation engine was able to exe-

cute both static and dynamic simulations. Using

this simulator, we executed several scenarios with

different parameters and measured the performance

according to two different metrics: (i) the sensor

count in the simulation; and (ii) the simulation step

size of the target model. As a result, using the sen-

sor count metric, we observed in Section 5.4 that as

the model structure complexity increased and the

performance gain of the dynamic approach over

the static approach also increased. According to

our second metric, we observed that, as the truck

step size (hence the resolution of the simulation)

increased, dynamic SiMA improved the overall

performance by 40%. We argue that these results

indicate the utility of dynamism support in improv-

ing the performance of the simulations.

As a concluding remark, we would like to provide a com-

parative summary of our approach with the two most

closely related approaches, namely DSDEVS and

DynDEVS. Our approach is mostly aligned with

DynDEVS with non-disruptive extensions to the overall

semantics of the basic DynDEVS formalism. A compara-

tive summary of the most important features of these

approaches can be found in Table 4.

Funding

This work was partially supported by the research and develop-

ment (R&D) office of the Turkish Ministry of Defense.

References

1. Uhrmacher AM. Dynamic structures in modeling and simula-

tion: a reflective approach. ACM Transactions on Modeling

and Computer Simulation; April 2001; 11 (2): 206–232

2. Kara A, Bozagac CD and Alpdemir MN. SiMA: A DEVS

Based Hierarchical and Modular Modelling and Simulation

Framework. 2nd National Defensive Applications Modelling

and Simulation Conference, Ankara, Turkey, 2007

3. Kara A, Deniz F, Bozagac CD and Alpdemir MN. Simulation

Modeling Architecture (SiMA), A DEVS Based Modelling

and Simulation Framework. In Proceedings of Summer

Computer Simulation Conference (SCSC’09), _Istanbul,

Turkey, July 2009, pp. 315–321.

4. Baati L, Frydman C and Giambiasi N. LSIS_DME M&S

environment extended by dynamic hierarchical structure

DEVS modeling approach. In: Proceedings of the 2007

Spring Simulation Multiconference, San Diego, CA, 2007,

pp.227–234.

5. Barros FJ. Dynamic structure discrete event system specifica-

tion: anew formalism for dynamic structure modeling and

simulation. In: Proceedings of the 1995 Winter Simulation

Conference, 1995, pp.781–785.

6. Lee K, Choi K, Kim J and Vansteenkiste GC. A methodology

for variable structure system specification: formalism, frame-

work, and its application to ATM-based network system.

ETRI J 1997; 18: 245–264.

7. Pawletta T and Pawletta S. A DEVS-based simulation

approach for structure variable hybrid systems using high

accuracy integration methods. In: Proceedings of the

Conference on Conceptual Modeling and Simulation, Part of

Mediterranean Modelling Multiconference, Genoa, Italy,

2004, pp.368–373.

8. Shang H and Wainer GA. A flexible dynamic structure DEVS

algorithm towards real-time systems. In: Proceedings of the

2007 summer computer simulation conference, San Diego,

CA, 2007, pp.339–345.

Table 4. Feature comparison of approaches.

DSDEVS DynDEVS Dynamic
SiMA

Adding/removing model Yes Yes Yes
Adding/removing coupling Yes Yes Yes
Adding/removing port Yes No Yes
State synchronization No No Yes

Deniz et al. 729

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

9. Hu X, Zeigler BP and Mittal S. Variable structure in DEVS

component-based modeling and simulation. Simulation

2005; 81: 91–102.

10. Zeigler BP, Kim TG and Praehofer H. Theory of Modeling

and Simulation (2nd ed.). Academic Press, Inc., Orlando, FL,

USA, 2000.

11. Zeigler BP. Theory of Modeling and Simulation. John

Wiley, New York, 1976.

12. Barros FJ, Zeigler BP and Fishwick PA. Multimodels and

dynamic structure models: an integration of DSDE/DEVS

and OOPM. In: Proceedings of the Winter Simulation

Conference, 1998, pp.413–420.

13. Cardelli L. Type Systems. CRC Handbook of Computer

Science and Engineering, 97:1-97:41, Boca Raton, Florida:

Chapman&Hall/CRC Press, 2004

14. Fujimoto RM and Weatherly RM. Time management in the

DoD high level architecture. In: Proceedings of the

Workshop on Parallel and Distributed Simulation, Institute

of Electrical and Electronics Engineers, Piscataway, 1996,

pp.60–67.

15. Hwang MH. Identifying equivalence of DEVSs: language

approach. In: Proceedings of Summer Computer Simulation

Conference, Montreal, Canada, 2003, pp.319–324.

16. Hwang MH. Equivalence and minimization of output aug-

mented DEVS. In: Proceedings of the IEEE Conference on

System, Man, and Cybernetics, Washington, DC, 2003,

pp.409–414.

17. Hwang, MH and Cho SK. Timed behavior analysis of sched-

ule preserved DEVS. In: Proceedings of Summer Computer

Simulation Conference, San Jose, CA, 2004, pp.173–178.

18. Barros FJ. The dynamic structure discrete event system spe-

cification formalism. Trans Soc Comput Simulat Int 1996;

13: 35–46.

19. Barros FJ. Modeling formalisms for dynamic structure sys-

tems. ACM Trans Model Comput Simulat 1997; 7: 501–515.

20. Barros FJ. Abstract simulators for the DSDE formalism. In:

Proceedings of the 30th Conference on Winter Simulation,

Los Alamitos, CA, 1998, pp.407–412.

21. Himmelspach J and Uhrmacher AM. Processing dynamic

PDEVS models. In: Proceedings of the IEEE Computer

Society’s 12th Annual International Symposium on

Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems, 2004, pp.329–336.

22. Qi H, Iyengar SS and Chakrabarty K. Distributed sensor net-

works–a review of recent research. J Franklin Inst 2001;

338: 655–668.

23. Akyildiz IF, Su W, Sankarasubramaniam Y and Cayirci E.

Wireless sensor networks: a survey. Comput Networks 2002;

38: 393–422.

24. Karp B and Kung HT. GPSR: Greedy Perimeter Stateless

Routing for Wireless Networks. In: Proceedings of the 6th

Annual International Conference on Mobile Computing and

Networking, Boston, MA, USA, August 2000, pp. 243–254

25. Staras H and Honickman SN. The accuracy of vehicle loca-

tion by trilateration in a dense urban environment. IEEE

Trans Veh Technol 1972; 21: 38–43.

26. Sun Y and Hu X. Performance measurement of dynamic

structure DEVS for large scale cellular space models.

Simulation 2009; 85: 335–351.

Author Biographies

Fatih Deniz is a PhD student in the Department of Computer

Engineering at the Middle East Technical University (METU),

Ankara, Turkey. He received his BSc degree from Bilkent

University, Ankara, Turkey in 2007 and his MSc (2010) degree

from the Department of Computer Engineering of the METU.

His current research interests include model-driven engineering

and variable structure models.

M. Nedim Alpdemir received his MSc (1996) in Advanced

Computer Science and PhD (2000) in Component-Based

Simulation Environments from the Department of Computer

Science, University of Manchester, UK. He worked as a research

associate, and later as a research fellow in the Information

Management Group (IMG) at the Department Computer Science

of the University of Manchester, UK, until 2005. Currently he is

the head of the Software Infrastructures Group and supervises

the Simulation Software Frameworks team at TUBITAK

UEKAE ILTAREN, Ankara, Turkey.

Ahmet Kara is a chief researcher at TUBITAK UEKAE

ILTAREN. He has been involved in the design and implementa-

tion of modeling and simulation architectures. He received his

BSc (2003) and MSc (2006) degrees from Bilkent University,

Ankara, Turkey. He is currently a PhD student in the

Department of Computer Engineering of the METU. His current

research interests include multi-resolution modeling in simula-

tion systems.

Halit Oğuztüzün is an associate professor in the Department

of Computer Engineering at the METU, Ankara, Turkey. He

obtained his BS and MS degrees from the METU in 1982 and

1984, and PhD from University of Iowa, Iowa City, IA, USA, in

1991. His current research interests include distributed simula-

tion and model-driven development. He participates in the activi-

ties of the Modelling and Simulation Research Center of the

METU.

730 Simulation: Transactions of the Society for Modeling and Simulation International 88(6)

 at INRIA on July 7, 2015sim.sagepub.comDownloaded from

http://sim.sagepub.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeCorpID-Acrobat
 /AdobeCorpID-Adobe
 /AdobeCorpID-Bullet
 /AdobeCorpID-MinionBd
 /AdobeCorpID-MinionBdIt
 /AdobeCorpID-MinionRg
 /AdobeCorpID-MinionRgIt
 /AdobeCorpID-MinionSb
 /AdobeCorpID-MinionSbIt
 /AdobeCorpID-MyriadBd
 /AdobeCorpID-MyriadBdIt
 /AdobeCorpID-MyriadBdScn
 /AdobeCorpID-MyriadBdScnIt
 /AdobeCorpID-MyriadBl
 /AdobeCorpID-MyriadBlIt
 /AdobeCorpID-MyriadLt
 /AdobeCorpID-MyriadLtIt
 /AdobeCorpID-MyriadPkg
 /AdobeCorpID-MyriadRg
 /AdobeCorpID-MyriadRgIt
 /AdobeCorpID-MyriadRgScn
 /AdobeCorpID-MyriadRgScnIt
 /AdobeCorpID-MyriadSb
 /AdobeCorpID-MyriadSbIt
 /AdobeCorpID-MyriadSbScn
 /AdobeCorpID-MyriadSbScnIt
 /AdobeCorpID-PScript
 /AGaramond-BoldScaps
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-RomanScaps
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGar-Special
 /AkzidenzGroteskBE-Bold
 /AkzidenzGroteskBE-BoldEx
 /AkzidenzGroteskBE-BoldExIt
 /AkzidenzGroteskBE-BoldIt
 /AkzidenzGroteskBE-Ex
 /AkzidenzGroteskBE-It
 /AkzidenzGroteskBE-Light
 /AkzidenzGroteskBE-LightEx
 /AkzidenzGroteskBE-LightOsF
 /AkzidenzGroteskBE-Md
 /AkzidenzGroteskBE-MdEx
 /AkzidenzGroteskBE-MdIt
 /AkzidenzGroteskBE-Regular
 /AkzidenzGroteskBE-Super
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Aldine401BT-BoldA
 /Aldine401BT-BoldItalicA
 /Aldine401BT-ItalicA
 /Aldine401BT-RomanA
 /Aldine401BTSPL-RomanA
 /Aldine721BT-Bold
 /Aldine721BT-BoldItalic
 /Aldine721BT-Italic
 /Aldine721BT-Light
 /Aldine721BT-LightItalic
 /Aldine721BT-Roman
 /Aldus-Italic
 /Aldus-ItalicOsF
 /Aldus-Roman
 /Aldus-RomanSC
 /AlternateGothicNo2BT-Regular
 /AmazoneBT-Regular
 /AmericanTypewriter-Bold
 /AmericanTypewriter-BoldA
 /AmericanTypewriter-BoldCond
 /AmericanTypewriter-BoldCondA
 /AmericanTypewriter-Cond
 /AmericanTypewriter-CondA
 /AmericanTypewriter-Light
 /AmericanTypewriter-LightA
 /AmericanTypewriter-LightCond
 /AmericanTypewriter-LightCondA
 /AmericanTypewriter-Medium
 /AmericanTypewriter-MediumA
 /Anna
 /AntiqueOlive-Bold
 /AntiqueOlive-Compact
 /AntiqueOlive-Italic
 /AntiqueOlive-Roman
 /Arcadia
 /Arcadia-A
 /Arkona-Medium
 /Arkona-Regular
 /ArrusBT-Black
 /ArrusBT-BlackItalic
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AssemblyLightSSK
 /AuroraBT-BoldCondensed
 /AuroraBT-RomanCondensed
 /AuroraOpti-Condensed
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /Avenir-Black
 /Avenir-BlackOblique
 /Avenir-Book
 /Avenir-BookOblique
 /Avenir-Heavy
 /Avenir-HeavyOblique
 /Avenir-Light
 /Avenir-LightOblique
 /Avenir-Medium
 /Avenir-MediumOblique
 /Avenir-Oblique
 /Avenir-Roman
 /BaileySansITC-Bold
 /BaileySansITC-BoldItalic
 /BaileySansITC-Book
 /BaileySansITC-BookItalic
 /BakerSignetBT-Roman
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /BaskervilleBook-Italic
 /BaskervilleBook-MedItalic
 /BaskervilleBook-Medium
 /BaskervilleBook-Regular
 /BaskervilleBT-Bold
 /BaskervilleBT-BoldItalic
 /BaskervilleBT-Italic
 /BaskervilleBT-Roman
 /BaskervilleMT
 /BaskervilleMT-Bold
 /BaskervilleMT-BoldItalic
 /BaskervilleMT-Italic
 /BaskervilleMT-SemiBold
 /BaskervilleMT-SemiBoldItalic
 /BaskervilleNo2BT-Bold
 /BaskervilleNo2BT-BoldItalic
 /BaskervilleNo2BT-Italic
 /BaskervilleNo2BT-Roman
 /Baskerville-Normal-Italic
 /BauerBodoni-Black
 /BauerBodoni-BlackCond
 /BauerBodoni-BlackItalic
 /BauerBodoni-Bold
 /BauerBodoni-BoldCond
 /BauerBodoni-BoldItalic
 /BauerBodoni-BoldItalicOsF
 /BauerBodoni-BoldOsF
 /BauerBodoni-Italic
 /BauerBodoni-ItalicOsF
 /BauerBodoni-Roman
 /BauerBodoni-RomanSC
 /Bauhaus-Bold
 /Bauhaus-Demi
 /Bauhaus-Heavy
 /BauhausITCbyBT-Bold
 /BauhausITCbyBT-Heavy
 /BauhausITCbyBT-Light
 /BauhausITCbyBT-Medium
 /Bauhaus-Light
 /Bauhaus-Medium
 /BellCentennial-Address
 /BellGothic-Black
 /BellGothic-Bold
 /Bell-GothicBoldItalicBT
 /BellGothicBT-Bold
 /BellGothicBT-Roman
 /BellGothic-Light
 /Bembo
 /Bembo-Bold
 /Bembo-BoldExpert
 /Bembo-BoldItalic
 /Bembo-BoldItalicExpert
 /Bembo-Expert
 /Bembo-ExtraBoldItalic
 /Bembo-Italic
 /Bembo-ItalicExpert
 /Bembo-Semibold
 /Bembo-SemiboldItalic
 /Benguiat-Bold
 /Benguiat-BoldItalic
 /Benguiat-Book
 /Benguiat-BookItalic
 /BenguiatGothicITCbyBT-Bold
 /BenguiatGothicITCbyBT-BoldItal
 /BenguiatGothicITCbyBT-Book
 /BenguiatGothicITCbyBT-BookItal
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /Benguiat-Medium
 /Benguiat-MediumItalic
 /Berkeley-Black
 /Berkeley-BlackItalic
 /Berkeley-Bold
 /Berkeley-BoldItalic
 /Berkeley-Book
 /Berkeley-BookItalic
 /Berkeley-Italic
 /Berkeley-Medium
 /Berling-Bold
 /Berling-BoldItalic
 /Berling-Italic
 /Berling-Roman
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BernhardTangoBT-Regular
 /BlockBE-Condensed
 /BlockBE-ExtraCn
 /BlockBE-ExtraCnIt
 /BlockBE-Heavy
 /BlockBE-Italic
 /BlockBE-Regular
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BremenBT-Black
 /BremenBT-Bold
 /BroadwayBT-Regular
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Caliban
 /CarminaBT-Bold
 /CarminaBT-BoldItalic
 /CarminaBT-Light
 /CarminaBT-LightItalic
 /CarminaBT-Medium
 /CarminaBT-MediumItalic
 /Carta
 /Caslon224ITCbyBT-Bold
 /Caslon224ITCbyBT-BoldItalic
 /Caslon224ITCbyBT-Book
 /Caslon224ITCbyBT-BookItalic
 /Caslon540BT-Italic
 /Caslon540BT-Roman
 /CaslonBT-Bold
 /CaslonBT-BoldItalic
 /CaslonOpenFace
 /CaslonTwoTwentyFour-Black
 /CaslonTwoTwentyFour-BlackIt
 /CaslonTwoTwentyFour-Bold
 /CaslonTwoTwentyFour-BoldIt
 /CaslonTwoTwentyFour-Book
 /CaslonTwoTwentyFour-BookIt
 /CaslonTwoTwentyFour-Medium
 /CaslonTwoTwentyFour-MediumIt
 /CastleT-Bold
 /CastleT-Book
 /Caxton-Bold
 /Caxton-BoldItalic
 /Caxton-Book
 /Caxton-BookItalic
 /CaxtonBT-Bold
 /CaxtonBT-BoldItalic
 /CaxtonBT-Book
 /CaxtonBT-BookItalic
 /Caxton-Light
 /Caxton-LightItalic
 /CelestiaAntiqua-Ornaments
 /Centennial-BlackItalicOsF
 /Centennial-BlackOsF
 /Centennial-BoldItalicOsF
 /Centennial-BoldOsF
 /Centennial-ItalicOsF
 /Centennial-LightItalicOsF
 /Centennial-LightSC
 /Centennial-RomanSC
 /Century-Bold
 /Century-BoldItalic
 /Century-Book
 /Century-BookItalic
 /CenturyExpandedBT-Bold
 /CenturyExpandedBT-BoldItalic
 /CenturyExpandedBT-Italic
 /CenturyExpandedBT-Roman
 /Century-HandtooledBold
 /Century-HandtooledBoldItalic
 /Century-Light
 /Century-LightItalic
 /CenturyOldStyle-Bold
 /CenturyOldStyle-Italic
 /CenturyOldStyle-Regular
 /CenturySchoolbookBT-Bold
 /CenturySchoolbookBT-BoldCond
 /CenturySchoolbookBT-BoldItalic
 /CenturySchoolbookBT-Italic
 /CenturySchoolbookBT-Roman
 /Century-Ultra
 /Century-UltraItalic
 /CharterBT-Black
 /CharterBT-BlackItalic
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamBT-Bold
 /CheltenhamBT-BoldCondItalic
 /CheltenhamBT-BoldExtraCondensed
 /CheltenhamBT-BoldHeadline
 /CheltenhamBT-BoldItalic
 /CheltenhamBT-BoldItalicHeadline
 /CheltenhamBT-Italic
 /CheltenhamBT-Roman
 /Cheltenham-HandtooledBdIt
 /Cheltenham-HandtooledBold
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Christiana-Bold
 /Christiana-BoldItalic
 /Christiana-Italic
 /Christiana-Medium
 /Christiana-MediumItalic
 /Christiana-Regular
 /Christiana-RegularExpert
 /Christiana-RegularSC
 /Clarendon
 /Clarendon-Bold
 /Clarendon-Light
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /CMR10
 /CMR8
 /CMSY10
 /CMSY8
 /CMTI10
 /CommonBullets
 /ConduitITC-Bold
 /ConduitITC-BoldItalic
 /ConduitITC-Light
 /ConduitITC-LightItalic
 /ConduitITC-Medium
 /ConduitITC-MediumItalic
 /CooperBlack
 /CooperBlack-Italic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Light
 /CooperBT-LightItalic
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-BoldCond
 /CopperplateGothicBT-Heavy
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /Copperplate-ThirtyThreeBC
 /Copperplate-ThirtyTwoBC
 /Coronet-Regular
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Critter
 /CS-Special-font
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Della-RobbiaItalicBT
 /Della-RobbiaSCaps
 /Del-NormalSmallCaps
 /Delphin-IA
 /Delphin-IIA
 /Delta-Bold
 /Delta-BoldItalic
 /Delta-Book
 /Delta-BookItalic
 /Delta-Light
 /Delta-LightItalic
 /Delta-Medium
 /Delta-MediumItalic
 /Delta-Outline
 /DextorD
 /DextorOutD
 /DidotLH-OrnamentsOne
 /DidotLH-OrnamentsTwo
 /DINEngschrift
 /DINEngschrift-Alternate
 /DINMittelschrift
 /DINMittelschrift-Alternate
 /DINNeuzeitGrotesk-BoldCond
 /DINNeuzeitGrotesk-Light
 /Dom-CasItalic
 /DomCasual
 /DomCasual-Bold
 /Dom-CasualBT
 /Ehrhard-Italic
 /Ehrhard-Regular
 /EhrhardSemi-Italic
 /EhrhardtMT
 /EhrhardtMT-Italic
 /EhrhardtMT-SemiBold
 /EhrhardtMT-SemiBoldItalic
 /EhrharSemi
 /ELANGO-IB-A03
 /ELANGO-IB-A75
 /ELANGO-IB-A99
 /ElectraLH-Bold
 /ElectraLH-BoldCursive
 /ElectraLH-Cursive
 /ElectraLH-Regular
 /ElGreco
 /EnglischeSchT-Bold
 /EnglischeSchT-Regu
 /ErasContour
 /ErasITCbyBT-Bold
 /ErasITCbyBT-Book
 /ErasITCbyBT-Demi
 /ErasITCbyBT-Light
 /ErasITCbyBT-Medium
 /ErasITCbyBT-Ultra
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuropeanPi-Four
 /EuropeanPi-One
 /EuropeanPi-Three
 /EuropeanPi-Two
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /Eurostile
 /Eurostile-Bold
 /Eurostile-BoldCondensed
 /Eurostile-BoldExtendedTwo
 /Eurostile-BoldOblique
 /Eurostile-Condensed
 /Eurostile-Demi
 /Eurostile-DemiOblique
 /Eurostile-ExtendedTwo
 /EurostileLTStd-Demi
 /EurostileLTStd-DemiOblique
 /Eurostile-Oblique
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /ExPonto-Regular
 /FairfieldLH-Bold
 /FairfieldLH-BoldItalic
 /FairfieldLH-BoldSC
 /FairfieldLH-CaptionBold
 /FairfieldLH-CaptionHeavy
 /FairfieldLH-CaptionLight
 /FairfieldLH-CaptionMedium
 /FairfieldLH-Heavy
 /FairfieldLH-HeavyItalic
 /FairfieldLH-HeavySC
 /FairfieldLH-Light
 /FairfieldLH-LightItalic
 /FairfieldLH-LightSC
 /FairfieldLH-Medium
 /FairfieldLH-MediumItalic
 /FairfieldLH-MediumSC
 /FairfieldLH-SwBoldItalicOsF
 /FairfieldLH-SwHeavyItalicOsF
 /FairfieldLH-SwLightItalicOsF
 /FairfieldLH-SwMediumItalicOsF
 /Fences
 /Fenice-Bold
 /Fenice-BoldOblique
 /FeniceITCbyBT-Bold
 /FeniceITCbyBT-BoldItalic
 /FeniceITCbyBT-Regular
 /FeniceITCbyBT-RegularItalic
 /Fenice-Light
 /Fenice-LightOblique
 /Fenice-Regular
 /Fenice-RegularOblique
 /Fenice-Ultra
 /Fenice-UltraOblique
 /FlashD-Ligh
 /Flood
 /Folio-Bold
 /Folio-BoldCondensed
 /Folio-ExtraBold
 /Folio-Light
 /Folio-Medium
 /FontanaNDAaOsF
 /FontanaNDAaOsF-Italic
 /FontanaNDCcOsF-Semibold
 /FontanaNDCcOsF-SemiboldIta
 /FontanaNDEeOsF
 /FontanaNDEeOsF-Bold
 /FontanaNDEeOsF-BoldItalic
 /FontanaNDEeOsF-Light
 /FontanaNDEeOsF-Semibold
 /FormalScript421BT-Regular
 /Formata-Bold
 /Formata-MediumCondensed
 /ForteMT
 /FournierMT-Ornaments
 /FrakturBT-Regular
 /FrankfurterHigD
 /FranklinGothic-Book
 /FranklinGothic-BookItal
 /FranklinGothic-BookOblique
 /FranklinGothic-Condensed
 /FranklinGothic-Demi
 /FranklinGothic-DemiItal
 /FranklinGothic-DemiOblique
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItal
 /FranklinGothic-HeavyOblique
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothicITCbyBT-Heavy
 /FranklinGothicITCbyBT-HeavyItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumItal
 /FranklinGothic-Roman
 /Freeform721BT-Bold
 /Freeform721BT-BoldItalic
 /Freeform721BT-Italic
 /Freeform721BT-Roman
 /FreestyleScrD
 /FreestyleScript
 /Freestylescript
 /FrizQuadrataITCbyBT-Bold
 /FrizQuadrataITCbyBT-Roman
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura
 /FuturaBlackBT-Regular
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldCondensedItalic
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Heavy
 /FuturaBT-HeavyItalic
 /FuturaBT-Light
 /FuturaBT-LightCondensed
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /Futura-CondensedLight
 /Futura-CondensedLightOblique
 /Futura-ExtraBold
 /Futura-ExtraBoldOblique
 /Futura-Heavy
 /Futura-HeavyOblique
 /Futura-Light
 /Futura-LightOblique
 /Futura-Oblique
 /Futura-Thin
 /Galliard-Black
 /Galliard-BlackItalic
 /Galliard-Bold
 /Galliard-BoldItalic
 /Galliard-Italic
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Galliard-Roman
 /Galliard-Ultra
 /Galliard-UltraItalic
 /Garamond-Antiqua
 /GaramondBE-Bold
 /GaramondBE-BoldExpert
 /GaramondBE-BoldOsF
 /GaramondBE-CnExpert
 /GaramondBE-Condensed
 /GaramondBE-CondensedSC
 /GaramondBE-Italic
 /GaramondBE-ItalicExpert
 /GaramondBE-ItalicOsF
 /GaramondBE-Medium
 /GaramondBE-MediumCn
 /GaramondBE-MediumCnExpert
 /GaramondBE-MediumCnOsF
 /GaramondBE-MediumExpert
 /GaramondBE-MediumItalic
 /GaramondBE-MediumItalicExpert
 /GaramondBE-MediumItalicOsF
 /GaramondBE-MediumSC
 /GaramondBE-Regular
 /GaramondBE-RegularExpert
 /GaramondBE-RegularSC
 /GaramondBE-SwashItalic
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-Book
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-BookItalic
 /Garamond-Halbfett
 /Garamond-HandtooledBold
 /Garamond-HandtooledBoldItalic
 /GaramondITCbyBT-Bold
 /GaramondITCbyBT-BoldCondensed
 /GaramondITCbyBT-BoldCondItalic
 /GaramondITCbyBT-BoldItalic
 /GaramondITCbyBT-BoldNarrow
 /GaramondITCbyBT-BoldNarrowItal
 /GaramondITCbyBT-Book
 /GaramondITCbyBT-BookCondensed
 /GaramondITCbyBT-BookCondItalic
 /GaramondITCbyBT-BookItalic
 /GaramondITCbyBT-BookNarrow
 /GaramondITCbyBT-BookNarrowItal
 /GaramondITCbyBT-Light
 /GaramondITCbyBT-LightCondensed
 /GaramondITCbyBT-LightCondItalic
 /GaramondITCbyBT-LightItalic
 /GaramondITCbyBT-LightNarrow
 /GaramondITCbyBT-LightNarrowItal
 /GaramondITCbyBT-Ultra
 /GaramondITCbyBT-UltraCondensed
 /GaramondITCbyBT-UltraCondItalic
 /GaramondITCbyBT-UltraItalic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garamond-Light
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Garamond-LightItalic
 /GaramondNo4CyrTCY-Ligh
 /GaramondNo4CyrTCY-LighItal
 /GaramondThree
 /GaramondThree-Bold
 /GaramondThree-BoldItalic
 /GaramondThree-BoldItalicOsF
 /GaramondThree-BoldSC
 /GaramondThree-Italic
 /GaramondThree-ItalicOsF
 /GaramondThree-SC
 /GaramondThreeSMSIISpl-Italic
 /GaramondThreeSMSitalicSpl-Italic
 /GaramondThreeSMSspl
 /GaramondThreespl
 /GaramondThreeSpl-Bold
 /GaramondThreeSpl-Italic
 /Garamond-Ultra
 /Garamond-UltraCondensed
 /Garamond-UltraCondensedItalic
 /Garamond-UltraItalic
 /GarthGraphic
 /GarthGraphic-Black
 /GarthGraphic-Bold
 /GarthGraphic-BoldCondensed
 /GarthGraphic-BoldItalic
 /GarthGraphic-Condensed
 /GarthGraphic-ExtraBold
 /GarthGraphic-Italic
 /Geometric231BT-HeavyC
 /GeometricSlab712BT-BoldA
 /GeometricSlab712BT-ExtraBoldA
 /GeometricSlab712BT-LightA
 /GeometricSlab712BT-LightItalicA
 /GeometricSlab712BT-MediumA
 /GeometricSlab712BT-MediumItalA
 /Giddyup
 /Giddyup-Thangs
 /GillSans
 /GillSans-Bold
 /GillSans-BoldCondensed
 /GillSans-BoldExtraCondensed
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-ExtraBold
 /GillSans-ExtraBoldDisplay
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSans-LightShadowed
 /GillSans-Shadowed
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /Gill-Special
 /Giovanni-Bold
 /Giovanni-BoldItalic
 /Giovanni-Book
 /Giovanni-BookItalic
 /Glypha
 /Glypha-Bold
 /Glypha-BoldOblique
 /Glypha-Oblique
 /Gothic-Thirteen
 /Goudy
 /Goudy-Bold
 /Goudy-BoldItalic
 /GoudyCatalogueBT-Regular
 /Goudy-ExtraBold
 /GoudyHandtooledBT-Regular
 /GoudyHeavyfaceBT-Regular
 /GoudyHeavyfaceBT-RegularCond
 /Goudy-Italic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-ExtraBold
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudySans-Black
 /GoudySans-BlackItalic
 /GoudySans-Bold
 /GoudySans-BoldItalic
 /GoudySans-Book
 /GoudySans-BookItalic
 /GoudySansITCbyBT-Black
 /GoudySansITCbyBT-BlackItalic
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Light
 /GoudySansITCbyBT-LightItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GoudySans-Medium
 /GoudySans-MediumItalic
 /Granjon
 /Granjon-Bold
 /Granjon-BoldOsF
 /Granjon-Italic
 /Granjon-ItalicOsF
 /Granjon-SC
 /GreymantleMVB-Ornaments
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Black-SemiBold
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Compressed
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-Light-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Condensed-Thin
 /Helvetica-ExtraCompressed
 /Helvetica-Fraction
 /Helvetica-FractionBold
 /HelveticaInserat-Roman
 /HelveticaInserat-Roman-SemiBold
 /Helvetica-Light
 /Helvetica-LightOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackCond
 /HelveticaNeue-BlackCondObl
 /HelveticaNeue-BlackExt
 /HelveticaNeue-BlackExtObl
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldCond
 /HelveticaNeue-BoldCondObl
 /HelveticaNeue-BoldExt
 /HelveticaNeue-BoldExtObl
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-ExtBlackCond
 /HelveticaNeue-ExtBlackCondObl
 /HelveticaNeue-Extended
 /HelveticaNeue-ExtendedObl
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyCond
 /HelveticaNeue-HeavyCondObl
 /HelveticaNeue-HeavyExt
 /HelveticaNeue-HeavyExtObl
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightCond
 /HelveticaNeue-LightCondObl
 /HelveticaNeue-LightExt
 /HelveticaNeue-LightExtObl
 /HelveticaNeue-LightItalic
 /HelveticaNeueLTStd-Md
 /HelveticaNeueLTStd-MdIt
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-MediumExt
 /HelveticaNeue-MediumExtObl
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinCond
 /HelveticaNeue-ThinCondObl
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLigCond
 /HelveticaNeue-UltraLigCondObl
 /HelveticaNeue-UltraLigExt
 /HelveticaNeue-UltraLigExtObl
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /Helvetica-Oblique
 /Helvetica-UltraCompressed
 /HelvExtCompressed
 /HelvLight
 /HelvUltCompressed
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-ExtraBold
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /Humanist521BT-UltraBold
 /Humanist521BT-XtraBoldCondensed
 /Humanist531BT-BlackA
 /Humanist531BT-BoldA
 /Humanist531BT-RomanA
 /Humanist531BT-UltraBlackA
 /Humanist777BT-BlackB
 /Humanist777BT-BlackCondensedB
 /Humanist777BT-BlackItalicB
 /Humanist777BT-BoldB
 /Humanist777BT-BoldCondensedB
 /Humanist777BT-BoldItalicB
 /Humanist777BT-ExtraBlackB
 /Humanist777BT-ExtraBlackCondB
 /Humanist777BT-ItalicB
 /Humanist777BT-LightB
 /Humanist777BT-LightCondensedB
 /Humanist777BT-LightItalicB
 /Humanist777BT-RomanB
 /Humanist777BT-RomanCondensedB
 /Humanist970BT-BoldC
 /Humanist970BT-RomanC
 /HumanistSlabserif712BT-Black
 /HumanistSlabserif712BT-Bold
 /HumanistSlabserif712BT-Italic
 /HumanistSlabserif712BT-Roman
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /Iglesia-Light
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Imago-Book
 /Imago-BookItalic
 /Imago-ExtraBold
 /Imago-ExtraBoldItalic
 /Imago-Light
 /Imago-LightItalic
 /Imago-Medium
 /Imago-MediumItalic
 /Industria-Inline
 /Industria-InlineA
 /Industria-Solid
 /Industria-SolidA
 /Insignia
 /Insignia-A
 /IPAExtras
 /IPAHighLow
 /IPAKiel
 /IPAKielSeven
 /IPAsans
 /ITCGaramondMM
 /ITCGaramondMM-It
 /JAKEOpti-Regular
 /JansonText-Bold
 /JansonText-BoldItalic
 /JansonText-Italic
 /JansonText-Roman
 /JansonText-RomanSC
 /JoannaMT
 /JoannaMT-Bold
 /JoannaMT-BoldItalic
 /JoannaMT-Italic
 /Juniper
 /KabelITCbyBT-Book
 /KabelITCbyBT-Demi
 /KabelITCbyBT-Medium
 /KabelITCbyBT-Ultra
 /Kaufmann
 /Kaufmann-Bold
 /KeplMM-Or2
 /KisBT-Italic
 /KisBT-Roman
 /KlangMT
 /Kuenstler480BT-Black
 /Kuenstler480BT-Bold
 /Kuenstler480BT-BoldItalic
 /Kuenstler480BT-Italic
 /Kuenstler480BT-Roman
 /KunstlerschreibschD-Bold
 /KunstlerschreibschD-Medi
 /Lapidary333BT-Black
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LatinMT-Condensed
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LDecorationPi-One
 /LDecorationPi-Two
 /Leawood-Black
 /Leawood-BlackItalic
 /Leawood-Bold
 /Leawood-BoldItalic
 /Leawood-Book
 /Leawood-BookItalic
 /Leawood-Medium
 /Leawood-MediumItalic
 /LegacySans-Bold
 /LegacySans-BoldItalic
 /LegacySans-Book
 /LegacySans-BookItalic
 /LegacySans-Medium
 /LegacySans-MediumItalic
 /LegacySans-Ultra
 /LegacySerif-Bold
 /LegacySerif-BoldItalic
 /LegacySerif-Book
 /LegacySerif-BookItalic
 /LegacySerif-Medium
 /LegacySerif-MediumItalic
 /LegacySerif-Ultra
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldSlanted
 /LetterGothic-Slanted
 /Life-Bold
 /Life-Italic
 /Life-Roman
 /LINE10
 /LINEW10
 /Linotext
 /Lithos-Black
 /LithosBold
 /Lithos-Bold
 /Lithos-Regular
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /LOMD-Normal
 /LubalinGraph-Book
 /LubalinGraph-BookOblique
 /LubalinGraph-Demi
 /LubalinGraph-DemiOblique
 /LucidaHandwritingItalic
 /LucidaMath-Symbol
 /LucidaSansTypewriter
 /LucidaSansTypewriter-Bd
 /LucidaSansTypewriter-BdObl
 /LucidaSansTypewriter-Obl
 /LucidaTypewriter
 /LucidaTypewriter-Bold
 /LucidaTypewriter-BoldObl
 /LucidaTypewriter-Obl
 /LydianBT-Bold
 /LydianBT-BoldItalic
 /LydianBT-Italic
 /LydianBT-Roman
 /LydianCursiveBT-Regular
 /Machine
 /Machine-Bold
 /Marigold
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /MatrixScriptBold
 /MatrixScriptBoldLin
 /MatrixScriptBook
 /MatrixScriptBookLin
 /MatrixScriptRegular
 /MatrixScriptRegularLin
 /Melior
 /Melior-Bold
 /Melior-BoldItalic
 /Melior-Italic
 /MercuriusCT-Black
 /MercuriusCT-BlackItalic
 /MercuriusCT-Light
 /MercuriusCT-LightItalic
 /MercuriusCT-Medium
 /MercuriusCT-MediumItalic
 /MercuriusMT-BoldScript
 /Meridien-Bold
 /Meridien-BoldItalic
 /Meridien-Italic
 /Meridien-Medium
 /Meridien-MediumItalic
 /Meridien-Roman
 /Minion-Black
 /Minion-Bold
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-BoldItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-DisplayItalic
 /Minion-DisplayRegular
 /MinionExp-Italic
 /MinionExp-Semibold
 /MinionExp-SemiboldItalic
 /Minion-Italic
 /Minion-Ornaments
 /Minion-Regular
 /Minion-Semibold
 /Minion-SemiboldItalic
 /MonaLisa-Recut
 /MrsEavesAllPetiteCaps
 /MrsEavesAllSmallCaps
 /MrsEavesBold
 /MrsEavesFractions
 /MrsEavesItalic
 /MrsEavesPetiteCaps
 /MrsEavesRoman
 /MrsEavesRomanLining
 /MrsEavesSmallCaps
 /MSAM10
 /MSAM10A
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM10A
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MTSYN
 /MusicalSymbols-Normal
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-CnBold
 /Myriad-CnBoldItalic
 /Myriad-CnItalic
 /Myriad-CnSemibold
 /Myriad-CnSemiboldItalic
 /Myriad-Condensed
 /Myriad-Italic
 /MyriadMM
 /MyriadMM-It
 /Myriad-Roman
 /Myriad-Sketch
 /Myriad-Tilt
 /NeuzeitS-Book
 /NeuzeitS-BookHeavy
 /NewBaskerville-Bold
 /NewBaskerville-BoldItalic
 /NewBaskerville-Italic
 /NewBaskervilleITCbyBT-Bold
 /NewBaskervilleITCbyBT-BoldItal
 /NewBaskervilleITCbyBT-Italic
 /NewBaskervilleITCbyBT-Roman
 /NewBaskerville-Roman
 /NewCaledonia
 /NewCaledonia-Black
 /NewCaledonia-BlackItalic
 /NewCaledonia-Bold
 /NewCaledonia-BoldItalic
 /NewCaledonia-BoldItalicOsF
 /NewCaledonia-BoldSC
 /NewCaledonia-Italic
 /NewCaledonia-ItalicOsF
 /NewCaledonia-SC
 /NewCaledonia-SemiBold
 /NewCaledonia-SemiBoldItalic
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothic-BoldOblique
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldCondensed
 /NewsGothicBT-BoldCondItalic
 /NewsGothicBT-BoldExtraCondensed
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Demi
 /NewsGothicBT-DemiItalic
 /NewsGothicBT-ExtraCondensed
 /NewsGothicBT-Italic
 /NewsGothicBT-ItalicCondensed
 /NewsGothicBT-Light
 /NewsGothicBT-LightItalic
 /NewsGothicBT-Roman
 /NewsGothicBT-RomanCondensed
 /NewsGothic-Oblique
 /New-Symbol
 /NovareseITCbyBT-Bold
 /NovareseITCbyBT-BoldItalic
 /NovareseITCbyBT-Book
 /NovareseITCbyBT-BookItalic
 /Nueva-BoldExtended
 /Nueva-Roman
 /NuptialScript
 /OceanSansMM
 /OceanSansMM-It
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OnyxMT
 /Optima
 /Optima-Bold
 /Optima-BoldItalic
 /Optima-BoldOblique
 /Optima-ExtraBlack
 /Optima-ExtraBlackItalic
 /Optima-Italic
 /Optima-Oblique
 /OSPIRE-Plain
 /OttaIA
 /Otta-wa
 /Ottawa-BoldA
 /OttawaPSMT
 /Oxford
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /Palatino-Roman
 /Parisian
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PhotinaMT
 /PhotinaMT-Bold
 /PhotinaMT-BoldItalic
 /PhotinaMT-Italic
 /PhotinaMT-SemiBold
 /PhotinaMT-SemiBoldItalic
 /PhotinaMT-UltraBold
 /PhotinaMT-UltraBoldItalic
 /Plantin
 /Plantin-Bold
 /Plantin-BoldItalic
 /Plantin-Italic
 /Plantin-Light
 /Plantin-LightItalic
 /Plantin-Semibold
 /Plantin-SemiboldItalic
 /Poetica-ChanceryI
 /Poetica-SuppLowercaseEndI
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /ProseAntique-Bold
 /ProseAntique-Normal
 /QuaySansEF-Black
 /QuaySansEF-BlackItalic
 /QuaySansEF-Book
 /QuaySansEF-BookItalic
 /QuaySansEF-Medium
 /QuaySansEF-MediumItalic
 /Quorum-Black
 /Quorum-Bold
 /Quorum-Book
 /Quorum-Light
 /Quorum-Medium
 /Raleigh
 /Raleigh-Bold
 /Raleigh-DemiBold
 /Raleigh-Medium
 /Revival565BT-Bold
 /Revival565BT-BoldItalic
 /Revival565BT-Italic
 /Revival565BT-Roman
 /Ribbon131BT-Bold
 /Ribbon131BT-Regular
 /RMTMI
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /RotisSansSerif
 /RotisSansSerif-Bold
 /RotisSansSerif-ExtraBold
 /RotisSansSerif-Italic
 /RotisSansSerif-Light
 /RotisSansSerif-LightItalic
 /RotisSemiSans
 /RotisSemiSans-Bold
 /RotisSemiSans-ExtraBold
 /RotisSemiSans-Italic
 /RotisSemiSans-Light
 /RotisSemiSans-LightItalic
 /RotisSemiSerif
 /RotisSemiSerif-Bold
 /RotisSerif
 /RotisSerif-Bold
 /RotisSerif-Italic
 /RunicMT-Condensed
 /Sabon-Bold
 /Sabon-BoldItalic
 /Sabon-Italic
 /Sabon-Roman
 /SackersGothicLight
 /SackersGothicLightAlt
 /SackersItalianScript
 /SackersItalianScriptAlt
 /Sam
 /Sanvito-Light
 /SanvitoMM
 /Sanvito-Roman
 /Semitica
 /Semitica-Italic
 /SIVAMATH
 /Siva-Special
 /SMS-SPELA
 /Souvenir-Demi
 /Souvenir-DemiItalic
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /Souvenir-Light
 /Souvenir-LightItalic
 /SpecialAA
 /Special-Gali
 /Sp-Sym
 /StempelGaramond-Bold
 /StempelGaramond-BoldItalic
 /StempelGaramond-Italic
 /StempelGaramond-Roman
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-PhoneticAlternate
 /StoneSans-PhoneticIPA
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /StoneSerif
 /StoneSerif-Italic
 /StoneSerif-PhoneticAlternate
 /StoneSerif-PhoneticIPA
 /StoneSerif-Semibold
 /StoneSerif-SemiboldItalic
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-BlackRounded
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-BoldRounded
 /Swiss721BT-Heavy
 /Swiss721BT-HeavyItalic
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Medium
 /Swiss721BT-MediumItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721BT-ThinItalic
 /Swiss921BT-RegularA
 /Symbol
 /Syntax-Black
 /Syntax-Bold
 /Syntax-Italic
 /Syntax-Roman
 /Syntax-UltraBlack
 /Tekton
 /Times-Bold
 /Times-BoldA
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /Times-NewRoman
 /Times-NewRomanBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-PhoneticAlternate
 /Times-PhoneticIPA
 /Times-Roman
 /Times-RomanSmallCaps
 /Times-Sc
 /Times-SCB
 /Times-special
 /TimesTenGreekP-Upright
 /TradeGothic
 /TradeGothic-Bold
 /TradeGothic-BoldCondTwenty
 /TradeGothic-BoldCondTwentyObl
 /TradeGothic-BoldOblique
 /TradeGothic-BoldTwo
 /TradeGothic-BoldTwoOblique
 /TradeGothic-CondEighteen
 /TradeGothic-CondEighteenObl
 /TradeGothicLH-BoldExtended
 /TradeGothicLH-Extended
 /TradeGothic-Light
 /TradeGothic-LightOblique
 /TradeGothic-Oblique
 /Trajan-Bold
 /TrajanPro-Bold
 /TrajanPro-Regular
 /Trajan-Regular
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /Transitional551BT-MediumB
 /Transitional551BT-MediumItalicB
 /Univers
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /Univers-BlackExt
 /Univers-BlackExtObl
 /Univers-Bold
 /Univers-BoldExt
 /Univers-BoldExtObl
 /Univers-BoldOblique
 /Univers-Condensed
 /Univers-CondensedBold
 /Univers-CondensedBoldOblique
 /Univers-CondensedOblique
 /Univers-Extended
 /Univers-ExtendedObl
 /Univers-ExtraBlackExt
 /Univers-ExtraBlackExtObl
 /Univers-Light
 /Univers-LightOblique
 /UniversLTStd-Black
 /UniversLTStd-BlackObl
 /Univers-Oblique
 /Utopia-Black
 /Utopia-BlackOsF
 /Utopia-Bold
 /Utopia-BoldItalic
 /Utopia-Italic
 /Utopia-Ornaments
 /Utopia-Regular
 /Utopia-Semibold
 /Utopia-SemiboldItalic
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Viva-BoldExtraExtended
 /Viva-Regular
 /Weidemann-Black
 /Weidemann-BlackItalic
 /Weidemann-Bold
 /Weidemann-BoldItalic
 /Weidemann-Book
 /Weidemann-BookItalic
 /Weidemann-Medium
 /Weidemann-MediumItalic
 /WindsorBT-Elongated
 /WindsorBT-Light
 /WindsorBT-LightCondensed
 /WindsorBT-Roman
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfCalligraphic801BT-Bold
 /ZapfCalligraphic801BT-BoldItal
 /ZapfCalligraphic801BT-Italic
 /ZapfCalligraphic801BT-Roman
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Demi
 /ZapfChanceryITCbyBT-Medium
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZapfHumanist601BT-Ultra
 /ZapfHumanist601BT-UltraItalic
 /ZurichBT-Black
 /ZurichBT-BlackExtended
 /ZurichBT-BlackItalic
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldExtended
 /ZurichBT-BoldExtraCondensed
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraBlack
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-LightCondensedItalic
 /ZurichBT-LightExtraCondensed
 /ZurichBT-LightItalic
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

