
 http://sim.sagepub.com/
SIMULATION

 http://sim.sagepub.com/content/early/2011/05/10/0037549711401000
The online version of this article can be found at:

DOI: 10.1177/0037549711401000

 published online 10 May 2011SIMULATION
James Nutaro, Phani Teja Kuruganti, Vladimir Protopopescu and Mallikarjun Shankar

discrete event components
The split system approach to managing time in simulations of hybrid systems having continuous and

Published by:

 http://www.sagepublications.com

On behalf of:

 Society for Modeling and Simulation International (SCS)

 can be found at:SIMULATIONAdditional services and information for

 http://sim.sagepub.com/cgi/alertsEmail Alerts:

 http://sim.sagepub.com/subscriptionsSubscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.com/journalsPermissions.navPermissions:

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/
http://sim.sagepub.com/content/early/2011/05/10/0037549711401000
http://www.sagepublications.com
http://www.scs.org/
http://sim.sagepub.com/cgi/alerts
http://sim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

Simulation

The split system approach to
managing time in simulations
of hybrid systems having continuous
and discrete event components*

James Nutaro, Phani Teja Kuruganti, Vladimir Protopopescu
and Mallikarjun Shankar

Abstract

The efficient and accurate management of time in simulations of hybrid models is an outstanding engineering problem.

General a priori knowledge about the dynamic behavior of the hybrid system (i.e. essentially continuous, essentially

discrete, or ‘truly hybrid’) facilitates this task. Indeed, for essentially discrete and essentially continuous systems, existing

software packages can be conveniently used to perform quite sophisticated and satisfactory simulations. The situation is

different for ‘truly hybrid’ systems, for which direct application of existing software packages results in a lengthy design

process, cumbersome software assemblies, inaccurate results, or some combination of these independent of the designer’s

a priori knowledge about the system’s structure and behavior. The main goal of this paper is to provide a methodology

whereby simulation designers can use a priori knowledge about the hybrid model’s structure to build a straightforward,

efficient, and accurate simulator with existing software packages. The proposed methodology is based on a formal decom-

position and re-articulation of the hybrid system; this is the main theoretical result of the paper. To set the result in the

right perspective, we briefly review the essentially continuous and essentially discrete approaches, which are illustrated

with typical examples. Then we present our new, split system approach, first in a general formal context, then in three

more specific guises that reflect the viewpoints of three main communities of hybrid system researchers and practi-

tioners. For each of these variants we indicate an implementation path. Our approach is illustrated with an archetypal

problem of power grid control.

Keywords

combined simulation, continuous system simulation, discrete event simulation, hybrid simulation

1. Introduction

A major technical problem encountered when building
simulators that combine discrete event and continuous
components is to precisely and efficiently align in time
three discrete elements: (i) the points of time at which
solutions to the model’s continuous equations are cal-
culated; (ii) events that are contingent on the continu-
ous state variables; and (iii) events that are contingent
only on discrete variables. Solutions to this problem are
numerous, but this plurality is due in large part to each
solution being focused on a specific problem or small
class of problems. In this paper, we discuss two types of

Oak Ridge National Laboratory, Oak Ridge, TN, USA.

*The submitted manuscript has been authored by a contractor of the U.S.

Government under Contract DE-AC05-00OR22725. Accordingly, the

U.S. Government retains a nonexclusive, royalty-free license to publish

or reproduce the published form of this contribution, or allow others to

do so, for U.S. Government purposes.

Corresponding author:

James Nutaro, Oak Ridge National Laboratory, One Bethel Valley Road,

Oak Ridge, TN 37831, USA

Email: nutarojj@ornl.gov

Simulation: Transactions of the Society for

Modeling and Simulation International

0(00) 1–18

! The Author(s) 2011

Reprints and permissions:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/0037549711401000

sim.sagepub.com

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

solutions that are representative of the majority of
extent simulation methods for combined systems.
By merging specific aspects of these two methods we
create a third that mitigates their greatest weaknesses
and, at the same time, addresses a greater range of
problems than either method alone.

We begin by reviewing what we consider to be essen-
tially continuous and essentially discrete approaches to
managing time in hybrid simulations and illustrating
these with typical examples of models that simulation
tools handle well. Then we present our new approach,
first in a general context that defines the hybrid simu-
lation problem, followed by three more-specific guises
that reflect three popular schemes for describing hybrid
models. We indicate an implementation path for each
of these variants. Finally, we illustrate our approach on
an archetypal problem of power grid control.

The paper is structured as follows. In Section 2 we
present a rough classification of the hybrid systems that
existing tools aim to simulate: mostly continuous,
mostly discrete, and a third class that is neither
mostly discrete nor mostly continuous and hereafter
will be called truly hybrid. In Sections 3 and 4 we dis-
cuss the two widely used approaches to simulating
hybrid systems, namely Continuous Systems
Simulation Languages (CSSLs) and Combined
Discrete Event/Continuous Simulation packages.
These can be effectively used to simulate mostly contin-
uous and mostly discrete systems, respectively, but they
are not suited to simulating truly hybrid systems.
Section 5 introduces our split hybrid system approach
that integrates these existing approaches into a compre-
hensive simulation capability. Section 6 summarizes
and concludes the paper.

2. Three main classes of hybrid
dynamics

The notion of a hybrid system is encompassed by a
broad range of modeling formalisms. The relative
scope and complexity of a model’s discrete and contin-
uous dynamics favors a particular choice of modeling
formalisms. This in turn determines the selection of
simulation tools.

A clear-cut, unambiguous classification of hybrid
systems is complicated and beyond the scope of this
study. We shall limit ourselves to a rough, but intui-
tively appealing and practically useful, taxonomy
whose main goal is to guide the selection of appropriate
simulation technologies for hybrid systems. When judg-
ing the suitability of a technology, one has to weigh
several factors that include (i) the conceptual simplicity
and parcity of the underlying model(s), (ii) the effort
required to construct the simulation software, with spe-
cial emphasis on using existing, off-the-shelf simulation

packages, (iii) the accuracy of the expected results, and
(iv) the actual running time of the simulation on the
available hardware.

At a very cursory, but intuitively appealing, level our
classification divides hybrid systems into (1) mostly
continuous, (2) mostly discrete, and (3) truly hybrid.
A more precise characterization reads as follows:

1. Type 1 systems with continuous trajectories that
undergo or are interrupted by rare events;

2. Type 2 systems with essentially discrete event
dynamics, possibly with rare intermittent intervals
of continuous behavior; and

3. Type 3 hybrid systems with significant, interacting
continuous and discrete dynamics.

These three types of systems create distinguishable tra-
jectories, as illustrated in Figure 1.

Systems of Type 1 have continuous, typically non-
constant, trajectories that are interrupted by occasional
discontinuities (discrete events), and these events are
triggered by threshold crossings. More precisely, when
the continuous trajectory of the system reaches a cer-
tain (threshold) value, it jumps instantaneously and dis-
continuously to a new value (state). Occasionally, the
threshold values are known in advance, but typically
they become available only as the solution progresses.
In other words, an event is detectable only when it
actually occurs.i

Event locations in time are determined by the roots
of a set of equations fi(t)¼ 0, where i¼ 1,. . ., n. In gen-
eral, the continuous functions fi(t) are written in terms
of the model’s time-dependent, continuous state vari-
ables, that is, fi(t)¼ fi(x1(t),. . ., xm(t)). In this way, the
time localization of discrete events and the construction
of the continuous solution between events are inti-
mately connected.

Systems of Type 2 have essentially discrete dynamics
with rare intermittent stretches of non-constant contin-
uous behavior. The discrete events are generated at
times ti, i¼ 1, 2,. . ., that are determined recursively.
The system state is unchanging (constant trajectory)
between events. A state transition function D trans-
forms the current state into a new state at times dictated
by a time advance function ta. Denoting the system
state variables by x, the general form of the discrete
event evolution is

xnþ1 ¼ DðxnÞ,

tnþ1 ¼ tn þ taðxnÞ:

ð1Þ

This formulation encompasses the Discrete Event
System Specification (DEVS) formalism and most
other discrete dynamic modeling frameworks.1–3

2 Simulation: Transactions of the Society for Modeling and Simulation International 0(00)

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

It is important to note that the state variables can be
complex structures such as lists, queues, sets, etc., and
that the dynamics described by Equation (1) can be
sparingly interrupted by continuous evolutions.

Systems of Type 3 are truly hybrid systems; they are
at the core of the approach we advance in this paper.
These systems consist of multiple continuous and dis-
crete components that are strongly interconnected.
Discrete behaviors are described by both recursively
generated event sequences and functions that depend
on continuously evolving variables.

Owing to the strong intertwining of continuous
dynamics and discrete events, the mathematical formu-
lation of these systems is quite cumbersome.2,4–7

Formalisms that would cover both aspects remain, for
various reasons, anchored in the techniques and philos-
ophy germane to one or the other of the two domains.
Indeed, Lynch et al.5 and Matveev and Savkin6 are
attached to continuous techniques, while Zeigler
et al.,2 Barros,4 and Giambiasi et al.7 favor a discrete
event approach. Owing to this, existing simulation
packages and techniques that are supposed to address
complex hybrid systems meet with only limited success.
They remain either difficult to build from scratch or
inaccurate when assembled from off the shelf compo-
nents; see, e.g., the problem of time step selection in
EPOCHS,8 the small timing errors intrinsic to
TrueTime’s management of events,9 and the long exe-
cution times of discrete event models implemented with
Modelica.10

The goal of this paper is to address the problem of
managing time in simulations of Type 3 systems by
proposing an approach that is truly hybrid in spirit,
convenient from the engineering viewpoint, and effi-
cient and accurate from the users’ standpoint.
To begin, we present a critical analysis of the two
main existing approaches. As we illustrate in Sections
3 and 4, these two approaches are practicable when the
systems are essentially continuous or discrete, respec-
tively. Our third approach, presented in Section 5,
becomes interesting for truly hybrid systems.
Collectively, these three approaches cover the range
of hybrid systems described above.

3. Continuous System Simulation

Languages

There has been a concerted effort over the last several
years to build discrete event simulation packages using
available CSSLs. The Modelica user community has
been particularly active in this area.10,11–14 These efforts
have produced several working products and sugges-
tions for language extensions that could facilitate the
construction of discrete event simulation models.15

The specific techniques that are used to construct
discrete event models with CSSLs vary widely, but
there are three main themes (a nice overview is given
by Remelhe12). The most common approach is to use
the time or state event features of the simulation

1. 2.

3.

Figure 1. Typical trajectories for the three classes of hybrid systems.

Nutaro et al. 3

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

language as a basic discrete event modeling tool.10,13,16

The use of state events leads to an activity scanning
world view and the use of time events to an event-
oriented world view.2

Another approach14 reproduces much of the Arena
discrete simulation package in the form of a library that
can be used from within a Modelica model. Here, essen-
tial discrete event functionality is implemented outside
of Modelica using the C language. The external func-
tion facilities of Modelica are used to access these
capabilities.

Several research groups have approached hybrid
system simulation by compiling Modelica models into
a discrete event simulation.15,17 The implementation
described by D’Abreu and Wainer17 uses quantized
state integration to handle continuously evolving com-
ponents, and in this way resembles the simulation tools
described in Section 4.

In Song15 extended an existing Modelica compiler to
include new language features for discrete event system
modeling.

3.1. Advantages

The most compelling advantage of this approach is its
strong support for simulating complex continuous sys-
tems. This includes both advanced numerical algorithms
and libraries of reusable component models. Advanced
CSSLs substantially reduce simulator development time
by allowing developers to work directly with the math-
ematical model. The compiler automates the symbolic
manipulations and code production that are needed to
create a working simulation. This saves time, avoids
low-level programming errors, and is, consequently,
essential for modeling large, complex systems.

3.2. Disadvantages

The primary disadvantage of this method is rooted in
the language features that make CSSLs what they are.
CSSLs are designed for numerical computation. As a
result, they are missing many of the features that are
present in languages favored by builders of discrete
event simulation software. These missing features
include dynamic memory management and objects
that support run-time binding of methods (i.e. objects
in the sense of object-oriented programming languages
such as Java and Cþþ).18

This lack of general-purpose, object-oriented lan-
guage features seriously hampers the construction of
essential data structures such as lists, queues, sets,
and maps. Packet-level network models and
manufacturing process models are two concrete exam-
ples of discrete event systems that require these kinds of
dynamic data structures. It is worth noting that many

popular discrete event simulation tools, both commer-
cial and academic (examples include OPNET,
OMNEST and OMNeTþþ, GloMoSim, NS-2 and
NS-3, and Flexsim), use general-purpose programming
languages to define new dynamic components.

Extended CSSLs that include strong support
for object-oriented programming, dynamic memory
management, and other common features of general-
purpose programming language could greatly facilitate
the construction of discrete event models. However,
new language features necessarily expand the scope
for programmer errors (this is particularly true of
dynamic memory management), complicates compiler
implementation, and generally make the language more
difficult to use. The extent to which CSSLs can be
extended while preserving their basic utility as a con-
tinuous system simulation tool remains to be seen.

3.3. Type 1 example: Automotive engine control

A four-stroke internal combustion engine has an inher-
ently hybrid representation. The power train and air
pressure dynamics are continuous processes, whereas
the pistons are modeled with four discrete operating
states: intake, compression, combustion, and exhaust.19

The time interval separating subsequent discrete states
depends on the continuous motion of the power train,
which in turn depends on the torque produced by the
pistons.

This system is a Type 1 hybrid system. Discrete
events in this model are triggered, almost exclusively,
by threshold crossings of a non-trivial continuous func-
tion. Existing continuous system simulation languages,
such as Modelica, can model these types of processes
efficiently and accurately.

The classification of this model as a Type 1 model is
justified by Figure 2, which shows the variation of air
pressure with time inside of a single cylinder engine.
The smooth variation in pressure between combustion
events is modeled by continuous equations, but the
rapid pressure changes immediately following combus-
tion are modeled by a discrete event; that is, by an
instantaneous change in pressure. We simulated the
model using DYMOLA, a commercial tool that imple-
ments the Modelica language. Discontinuities in the
pressure function are readily apparent. Note, for exam-
ple, the instantaneous change in pressure at t& 0.13.

This combustion engine model is a fairly typical
example of a system that is handled well by available
continuous system modeling packages. Discrete
dynamics in these types of models are characterized
by events that are conditional on continuous variables
satisfying logical statements. Figure 2 nicely illustrates
the kind of trajectory that is characteristic of Type 1
systems.

4 Simulation: Transactions of the Society for Modeling and Simulation International 0(00)

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

4. Discrete event simulation
approaches

Combined continuous/discrete event simulation capa-
bilities are available in most discrete event simulation
tools. Two seemingly predominant approaches are dis-
cussed here. Both techniques allow for, and even pro-
mote, direct interactions between continuous and
discrete variables in a hybrid model. Owing to this,
simulators that support these approaches must have
tightly coupled continuous and discrete event simula-
tion algorithms.

The Generalized Discrete Event System Specification
(GDEVS)7,20 is an overarching formalization of several
hybrid simulation techniques couched in terms of
DEVS. DEVS is a modular modeling formalism for
discrete event systems. GDEVS based approaches
seek to preserve this modular modeling approach by
allowing any desired decomposition of the hybrid
system model. In particular, GDEVS-like techniques
allow the event detection and continuous dynamics of
a hybrid process to be separated into separate sub-
components.

Within a GDEVS-like modeling framework, contin-
uous sub-components exchange the coefficients of poly-
nomial functions that approximate their internal
dynamics, thereby simulating continuous interaction
in a modular and event driven way. With this technique
it is possible to approximate a coupled hybrid system as
a coupled DEVS with an identical structure.2,7,21

Consequently, the hybrid system can be simulated
directly using discrete event simulation software.

A different approach to hybrid simulation is fre-
quently adopted by non-modular simulation

frameworks. In this approach, a numerical method is
globally applied to evolve continuous variables in a
combined model. Interactions between continuous
and discrete event sub-components are not restricted
to rigid interfaces. In an implementation, conceptually
distinct sub-processes frequently access the internal
state variables of other sub-processes.22,23

Because access to state variables is not explicitly reg-
ulated by the simulation engine, it is essential that all
state variables be up to date at each simulation event
time. Consequently, the integration scheme used to
evolve continuous variables is evaluated whenever a
discrete event occurs, as well as at time points required
to control numerical errors and process events due to
threshold crossings of continuous variables.

4.1. Advantages

Both of these approaches allow discrete event and con-
tinuous processes to be freely intermingled, and this
gives the modeler a great deal of flexibility when build-
ing the simulator. Any decomposition of the system
into sub-components can be simulated directly, and
so there are no special restrictions in this respect
when building hybrid models. Moreover, existing dis-
crete event simulation software can be easily extended
to support this kind of hybrid simulation approach.

4.2. Disadvantages

The tight coupling of discrete event and continuous
simulation algorithms presents distinct disadvantages.
When a continuous simulation algorithm is added to a
non-modular simulation framework, there is a signifi-
cant increase of the computational cost (in terms of

P = 0.01573 Pa
t = 0.13239s

P = 9.29171 Pa
t = 0.13239s

0

1

2

3

4

5

6

7

0.00

10

9

8

0.05 0.10 0.15 0.20 0.25

Pr
es

su
re

 (
Pa

)

Time (s)

Figure 2. Pressure as a function of time in a single cylinder engine. The discrete changes in pressure are readily apparent.

Nutaro et al. 5

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

time) for large simulations. When a modular frame-
work uses a GDEVS-like approach, it is possible to
introduce subtle, but significant, numerical errors that
can have a dramatic effect on the simulated model
behavior.

The increased computational cost of a non-modular
combined continuous/discrete event simulation is a
direct result of evaluating the integration scheme at
each event. If the derivative function is expensive to
compute, then the event execution time explodes.
Frequent events combined with computationally com-
plex continuous behaviors make the simulation grind to
a halt.

This scalability problem is avoided by GDEVS-like
schemes because a modular structure explicitly limits
the scope of sub-component interactions. However,
this is also the greatest barrier to an effective implemen-
tation: because the unrestricted decomposition of the
system’s model is reflected in the simulator, it may
happen that the simulator does not produce an accurate
calculation. A simulator for a bouncing ball gives a
simple example of how this can occur.

The model of the ball has two part. The first
describes how the ball moves through the air:

_h ¼ v,

_v ¼ �g,
ð2Þ

where h is the height of the ball, v is the velocity, and g
acceleration due to gravity. The second part dictates the
ball’s behavior when it strikes the floor: when this event
occurs, the ball rebounds, changing its velocity imme-
diately. The condition for the event’s occurrence and its
consequence are

h ¼ 0 & v5 0) v �v ð3Þ

where denotes assignment.
Suppose that this model is partitioned into two pro-

cesses. The first process simulates the continuous tra-
jectory given by Equation (2). The output of this
continuous process is a piecewise polynomial function
that describes h. The second process watches this poly-
nomial for satisfaction of Equation (3). When this
occurs, it generates an event for the first process to
change the velocity of the ball. Figure 3 illustrates
this decomposition.

If we solve Equation (2) with an implicit, first-
order accurate Euler integration scheme, then it is rea-
sonable to use a line as the first process’s output; this
line is

hn þ vnðt� tnÞ, ð4Þ

where hn and vn are the most recent values of h and v,
computed at time tn. The second process extrapolates
using Equation (4) to find the point at which Equation

(3) is satisfied. This extrapolation produces collision
times that are inconsistent with h¼ 0 as computed by
the first process. Consequently, the system exhibits seri-
ous simulation artifacts. Indeed, the ball appears to be
bouncing on an uneven surface.

This could have been anticipated by observing that
the height of the ball over a single integration time step
is computed as

vnþ1 ¼ vn � Dtg,

hnþ1 ¼ hn þ Dtvnþ1 ¼ hn þ Dtðvn � DtgÞ:

The height of the ball obtained by extrapolating with
Equation (4) is

~hnþ1 ¼ hn þ Dtvn:

The difference is

~hnþ1 � hnþ1 ¼ �ðDtÞ
2g:

The effect of this discrepancy is shown in Figure 4 for
two different implementations of the model; one using
the GDEVS approach and the other a method for sim-
ulating Type 1 models (a variable step integrator and a
state event locator using the interval bisection
method).24

This particular problem can be alleviated by ensur-
ing that the integration scheme and extrapolation
scheme produce consistent results. For example, using
an explicit Euler integration scheme would remove the
event detection error (Equation (4) is, in fact, the expli-
cit Euler scheme). Alternatively, we could use a second-
order interpolating polynomial (which, in this case,
completely characterizes the dynamics of the falling
ball). In general, where these types of problems
emerge, their solution will require a careful, and there-
fore restricted, selection of algorithms for numerical
integration and event detection.

4.3. Type 2 example: Automated manufacturing
processes

A manufacturing process model, such as that described
by Pepyne and Cassandras,25 is an excellent illustration
of a Type 2 system that is handled well by existing

Continuous
Dynamics

Bounce
Condition

Polynomial approximating h(t)

Bounce!

Figure 3. Decomposition of the bouncing ball into two

interacting sub-processes.

6 Simulation: Transactions of the Society for Modeling and Simulation International 0(00)

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

discrete event modeling tools. This particular model
characterizes the machining of a part with a physical
state subject to continuous time dynamics. The queuing
of raw and semi-finished materials at machining sta-
tions is modeled with discrete events.

Figure 5 shows a single manufacturing stage in this
model. This stage consists of a discrete arrival process
and queue. The machining tool is activated whenever it
is idle and there is a part to work on. It ejects discrete
parts. The machining process is modeled with a differ-
ential equation.

To demonstrate a Type 2 system, we implemented
this single stage manufacturing model with Arena. The
Arena discrete event simulation package is an example
of a non-modular modeling and simulation tool that
effectively supports modeling of Type 2 systems. Its
continuous system modeling and simulation capabili-
ties are described by Kelton et al.26 Continuous trajec-
tories are simulated using either an explicit, variable
time step Runge–Kutta scheme or a simple fixed step
Euler scheme.

The state event detection scheme used in Arena is
relatively sophisticated. The user specifies event thresh-
olds on continuous variables, and the simulator will
search for crossings of those threshold values by retry-
ing integration steps. Arena advances every continuous
sub-component at every event time to ensure the con-
tinuous variables are up to date whenever a discrete
event handler needs to access them. In this way, com-
bined continuous and discrete dynamics are accurately
simulated.

For this example, the queue capacity is infinite and
blanks arrive at intervals determined by a uniform
random variable with a range of [0.1, 10]. The machin-
ing process is described by

_x ¼ kð1:1� xÞ,

where k is a discrete variable that turns the machine on
when a part arrives and off when a part is completed.
The machining process starts with x¼ 0 and finishes
when x¼ 1.

This manufacturing model is illustrative of systems
that are easily modeled with existing discrete event
modeling packages. Figure 6 shows the relative simplic-
ity of the continuous dynamics that are generally asso-
ciated with Type 2 models.

–0.001

–0.0005

 0

 0.0005

 0.001

 0 1 2 3 4 5 6 7 8 9 10

he
ig

ht

time

(a)

–0.001

–0.0005

 0

 0.0005

 0.001

 0 2 4 6 8 10

he
ig

ht

time

(b)

Figure 4. Simulation artifacts in the bouncing ball problem.

(a) GDEVS with implicit Euler and linear extrapolation.

(b) Implicit Euler with interval bisection.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

x(
t)

 -
 m

ac
hi

ni
ng

 p
ro

gr
es

s

time

Figure 6. The continuous machining process in one simulation

run of the single-stage manufacturing process.

Queue Server

Parts departParts arrive

Figure 5. Model of a single manufacturing stage.

Nutaro et al. 7

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

5. Split hybrid system modeling

The split hybrid system modeling approach explicitly
recognizes discrete event and continuous variables in
a system model, and this knowledge is used to construct
an efficient simulator. We simulate individual sub-com-
ponents using the most appropriate algorithms: numer-
ical integration methods for continuous components
and discrete event algorithms for discrete components.
This overcomes the major limitation of CSSL and dis-
crete event simulation techniques, where the simulation
approach assumes the predominance of a particular
type of component.

The idea underlying our approach is simple.
The overarching modeling paradigm is based on dis-
crete events. Continuously interacting sub-components
are treated as a single entity. The internal dynamics of
these entities are simulated using any suitable numerical
method. However, interactions with other components
occur at time and state events through an explicitly
defined interface. These events are the only mechanism
for interacting with the continuous entities.

This strict and explicit disentanglement of discrete and
continuous dynamics distinguishes the split hybrid model-
ing approach from its predecessors. By focusing on
the (large) subclass of split hybrid systems, we
avoid the numerical problems inherent in GDEVS.
The computational problems of a non-modular model-
ing approach are overcome by restricting discrete/
continuous interactions to specific discrete events.
This clear distinction between continuous and discrete
components allows us to use sophisticated continuous
simulation algorithms within the confines of a general-
purpose discrete event simulation framework.

Figure 7 illustrates this disentanglement principle by
comparing two decompositions of a hybrid model. This
model has four components, two of which interact con-
tinuously. Figure 7(a) shows a decomposition that is
disallowed in our approach, but permitted by
GDEVS. A GDEVS-like approach allows the continu-
ously interacting components to be described and sim-
ulated as separate blocks. Figure 7(b) reorganizes this
system to be compatible with the split hybrid system
modeling approach.

This modular, self-contained description of the con-
tinuous sub-components explicitly identifies and distin-
guishes between continuous and discrete event
dynamics. The simulation algorithm takes advantage
of this by using continuous system simulation algo-
rithms to generate the internal dynamics of continuous
blocks. Interactions with other discrete event compo-
nents are coordinated through the discrete event inter-
face of the continuous model. In this way, proper
coordination of the discrete and continuous compo-
nents is assured, accurate continuous trajectories are

generated, and the resulting simulation software is effi-
ciently executed.

The split hybrid system modeling approach describes
self-contained, continuous sub-components with four
functions. The evolution function F describes how the
continuous, internal state variables evolve between dis-
crete events. The event scheduling function G indicates
how much time will elapse before the next discrete
internal event. The discrete action function A describes
how the discrete state changes in response to internal
(state) and external (input) events. The discrete output
function L describes how the output changes in con-
junction with discrete internal events.

Continuous sub-components are formalized with a
structure

X and Y, the input and output value sets

S; the internal state set

F : S�R! S, the evolution function

G : S! R, the event scheduling function

A : S� XF ! S, the discrete action function ,

where XF = X [fFg and F is the non-event, and

L : S! Y, the discrete output function. ð5Þ

(a)

(b)

Figure 7. Two decompositions of a hybrid system, one com-

patible and the other incompatible with the split hybrid system

approach: (a) incompatible decomposition; (b) compatible

decomposition. Solid blocks interact continuously with each

other; dotted blocks are purely discrete.

8 Simulation: Transactions of the Society for Modeling and Simulation International 0(00)

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

The set X is the range of values that can be injected into
the system. The set Y is the range of values that can be
produced by the system. The set S is the range of the
system’s internal state variables.

The evolution function F(q, h), with q2S and h2R,
takes the system from a state q at time t to a later state
q0 at time tþ h. This function describes continuous,
autonomous evolution of the model’s internal state.
The system evolves continuously until G(q)¼ 0 or a
change occurs in the input trajectory. At these points,
the discrete action function dictates an immediate and,
possibly, discontinuous state change.

The discrete action function A(q, u), with u2XF,
determines the response of the model to discrete
events. These events can be inputs to the system or be
triggered by its internal dynamics. In either case, the
system changes state instantaneously from q to
q0 ¼A(q, u). Changes due to internal dynamics occur
when G(q)¼ 0, and the subsequent state of the system
is determined by A(q, F). External events are due to a
change in the input trajectory. In this case, the state
immediately following the event is given by A(q, x),
where x2X is the value of the input trajectory imme-
diately after the input event occurs.

The discrete output function L(q) defines the model’s
output trajectory. The initial output value is given by
L(q0), where q0 is the initial state of the system. Discrete
changes in the output trajectory occur when G(q)¼ 0.
At these times, the output trajectory takes the value
L(q), and it keeps this value until the system again
enters a state in which G evaluates to zero.

A simple example will illustrate how these functions
are used to define a hybrid model. Consider the pro-
portional gain controller illustrated in Figure 8.
The continuous state variable x of the plant is sampled
at intervals Dt and these samples travel through a
shared network (e.g. an Ethernet) that introduces
some delay before they are multiplied by the control
gain k and fed back into the plant. The continuous
elements of this model comprise three state variables:
the plant state x, the output sample y last received
from the network, and the time te that has elapsed
since a sample of x was last obtained. Assume that

the differential equation governing the plant between
changes in y is

_x ¼ x� ky: ð6Þ

If explicit Euler is used to solve this equation, then its
simulation model in terms of the structure (5) is

X ¼ Y ¼ R

S ¼ fðx, y, teÞ j x, y 2 R 0 � te � Dtg

Fððx, y, teÞ, hÞ ¼ ðxþ hðx� kyÞ, y, te þ hÞ

Gððx, y, teÞÞ ¼ Dt� te

Aððx, y, teÞ, uÞ ¼
ðx, y, 0Þ if u = F

ðx, u, teÞ otherwise

�
Lððx, y, teÞÞ ¼ x:

The dynamics associated with the structure (5) can
be described in three ways: as a DEVS atomic model,2 a
Hybrid Input/Output Automata (HIOA),5 and algo-
rithmically as an event scheduling simulation. In what
follows, we detail these three equivalent descriptions.
In doing so, the class of split hybrid systems is
described in the context of well-established analysis
and simulation frameworks for discrete event and
hybrid systems.

5.1. DEVS

Our first characterization associates the structure (5)
with a DEVS atomic model. The atomic model’s
set of states is S, and its input and output sets are
X and Y. The state transition, time advance, and
output function are defined in terms of the evolution
function F, event scheduling function G, discrete output
function L, and discrete action function A. These def-
initions are

�intðqÞ ¼ AðFðq, taðqÞÞ,FÞ

�extðq, e, xÞ ¼ AðFðq, eÞ, xÞ

�conðq, xÞ ¼ AðFðq, taðqÞÞ, xÞ

taðqÞ ¼ GðqÞ

�ðqÞ ¼ LðFðq, taðqÞÞÞ:

ð7Þ

Output and internal events occur at the expiration
of the time advance. The discrete output is com-
puted using the system state just prior to the discrete
event (i.e. prior to applying the discrete action
function).

An implementation of this atomic model will, in gen-
eral, require events that do not result in discrete actions
(i.e. an evaluation of A) or discrete output (i.e. an eval-
uation of L). These types of events are needed, for
instance, when the evolution and event scheduling func-
tions are implemented with numerical integration and
state event detection algorithms.24 A DEVS model that

Network
k

Plant

y1,y2,...

x1,x2,...

Figure 8. Illustrative model of proportional gain control

through a network. The subscripted x are samples of the plant’s

continuous state variable that are sent through the network; the

subscripted y are the same samples received by the controller

through the network.

Nutaro et al. 9

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:49pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

is functionally equivalent to (7) can be had by defining
a function

IntegStep : S! R

that picks the next integration step size. The system
dynamics are then defined by
�intðqÞ ¼

AðFðq, taðqÞÞ,FÞ if G(q) � IntegStepðqÞ

Fðq, taðqÞÞ otherwise

�
�extðq, e, xÞ ¼ AðFðq, eÞ, xÞ

�conðq, xÞ ¼ AðFðq, taðqÞÞ, xÞ

taðqÞ ¼ minfGðqÞ, IntegStepðqÞg

�ðqÞ ¼

LðFðq, taðqÞÞÞ if G(q) �IntegStepðqÞ

F otherwise.

�
ð8Þ

5.2. HIOA

We can also characterize the structure (5) by associat-
ing it with an appropriate subclass of HIOA. Let x(t),
y(t), and q(t) denote points on the input, output, and
state trajectories of the HIOA. The notation x(t�) is
used to refer to the value of the function x when t
is approached from the left, and x(tþ) the value when
t is approached from the right. Any particular HIOA is
acceptable as long as it satisfies the following
restrictions.

1. A set of internal variables is defined whose range is
the set of states S.

2. A set of input variables is defined whose range is the
set of inputs X.

3. A set of output variables is defined whose range is
the set of outputs Y.

4. Input and output variables are discrete (i.e. their tra-
jectories are piecewise constant functions).

5. We have y(t)¼L(q(t*)) where

t� � t &

ðGðqðt�ÞÞ ¼ 0 or t� ¼ 0Þ &

8� 2 ðt�, t�,Gðqð�ÞÞ 6¼ 0:

6. If G(q(t))¼ 0 and x(t�)¼ x(tþ), then the subsequent
internal state q0(t) is given by q0(t)¼A(q(t), F).

7. If x(t�) 6¼x(tþ), then the subsequent internal state
q0(t) is given by q0(t)¼A(q(t), x(tþ)).

8. Otherwise, the trajectory q(t) is dictated by the evo-
lution function F.

Items 5, 6, 7, and 8 impose a particular form on the
system trajectories. These conditions are sufficient for
the hybrid automaton to have a DEVS representation

in the form of (7). The advantage of this is that the
hybrid automaton can be simulated with an event
scheduling algorithm, and therefore can be integrated
directly with a discrete event simulation tool.

Condition 5 forces a change in the automaton
output variables to coincide with internal states that
cause the function G to be zero. The output at this
time is dictated by the discrete output function L, and
the output value is maintained until the next state for
which G is zero.

Conditions 6, 7, and 8 allow for explicit scheduling
of discrete changes to the internal state of the hybrid
automaton. This preserves the semantics of the DEVS
time advance function, and makes a discrete event sim-
ulation of the system possible.

5.3. Event scheduling

Lastly, we describe the dynamic behavior of structure (5)
in terms of an event-oriented simulation program. For
this purpose, the hybrid system is assumed to be con-
tained within a logical process, or to be otherwise parti-
tioned from the rest of the discrete event model.27 Three
types of events are required. A Step event performs an
integration step in which discrete actions do not occur. A
Change event performs an integration step at the end of
which a discrete action does occur. An External(x)
event describes a change in the discrete input to the
system. The discrete input value is denoted by x.

Let q denote the state of the logical process, h the
preferred time step for the integration scheme, F denote
an absence of input events, tl be the last event time, and
t be the current time. Algorithms 1, 2, and 3 describe
the processing required at Step, Change, and
External(x) events.

10 Simulation: Transactions of the Society for Modeling and Simulation International 0(00)

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:50pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

When External(x) and Change events coincide, it is
preferable to define a fourth event type to handle this
case (a discussion of some issues surrounding
this fourth event type is given elsewhere28–30). In the
DEVS formalization, this fourth event is described by
the confluent transition function. It is implicit in restric-
tions 5, 6, 7, and 8 of the HIOA formalization.

If this fourth event type can be defined within the
simulation environment, then the desired computa-
tional steps are given as Algorithm 4. The
Confluent(x) event allows output events to be produced
using the state just before the discrete state change
occurs. A subsequent Change event can be scheduled
via the G function if additional output is desired imme-
diately following the discrete change.

If a fourth event type is not possible, then a preferred
priority for Change and External(x) events must be
given based on knowledge of the system being simu-
lated. Also note that the DEVS and HIOA definitions
require that simultaneous input events be presented
simultaneously to the continuous sub-component.
If this option is not available in a particular simulation
tool, then some preferred prioritization of External(x)
events must be specified as well.

5.4. Advantages

The split hybrid modeling method combines the use of
a general-purpose discrete event simulator with
advanced numerical algorithms for handling continu-
ous dynamics. Continuous blocks can be implemented
directly or generated automatically by CSSL compilers
that produce software modules with a suitable pro-
gramming interface (e.g. the acslXtreme API produced

by the AEgis ACSL compiler). By combining advanced
discrete event simulation tools and state-of-the-art con-
tinuous modeling capabilities, it is possible to build
large and complex hybrid system simulations that are
numerically robust and computationally efficient.

The three main disadvantages of CSSL, GDEVS-
like, and non-modular combined simulations are
overcome by the split hybrid modeling approach.
The overarching discrete event modeling and simula-
tion framework ensures an adequate set of basic struc-
tures for describing discrete event dynamics. The
computational tractability problem of a non-modular
approach is eliminated by restricting discrete/continu-
ous interactions to explicitly defined input and output
events.

By forcing continuously interacting elements into
atomic blocks, our approach allows the numerical inte-
gration and state event detection schemes to be mutu-
ally consistent without restricting the choice of
algorithms. The use of consistent schemes eliminates
the simulation artifacts that can emerge in a GDEVS-
like approach. At the same time, the simulation builder
can use any desired set of numerical techniques to sim-
ulate continuous processes.

For instance, consider the bouncing ball problem
discussed in Section 4.2. The GDEVS solution gets
into trouble because it uses two different approxima-
tions of the ball’s trajectory, namely (i) an implicit
Euler approximation to the differential equations and
(ii) a linear extrapolation for anticipating bounce
events. The GDEVS solution requires these two differ-
ent approximations because the event detector cannot
access the state of the integrator and vice versa. The
solution shown in Figure 4(a) is the result of this
inconsistency.

The two parts of the ball’s dynamics interact contin-
uously because the event condition depends on the con-
tinuously evolving height of the ball. Consequently, the
split system approach requires that they be combined
into a single modeling entity. Combining the event con-
dition and continuous dynamics makes it possible to
use a coordinated state event detector and numerical
solver. In particular, we can use the interval bisection
method24 to find bounce events and produce the desired
solution shown in Figure 4(b).

For simple models it is often possible to construct an
adequate approximation from an almost intuitive
understanding of the dynamics. The bouncing ball is
an extreme case where the solution of the correspond-
ing differential equation is easily written down and
bounce events can be trivially anticipated. Complex
hybrid dynamics, on the other hand, have non-intuitive
continuous dynamics and events that are difficult to
anticipate. Satisfactory simulation of these models
requires the use of the split approach.

Nutaro et al. 11

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:50pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

5.5. Disadvantages

The success of our proposed approach is predicated on
a suitable split of the hybrid system into discrete and
continuous dynamics.ii This is avoided by the previous
approaches (i.e. those in Sections 4 and 3), which allow
for direction simulation of any model decomposition.
There are at least two dangers in requiring an explicit
decomposition. The first is that such a description will
be so unnatural and cumbersome that it, by itself,
defeats the modeling effort. This, at least, can be deter-
mined early and another (less accurate, precise, or com-
putationally efficient) approach attempted.

The second danger is more subtle, occurring when
the model description is not split but the model imple-
mentation is split by the programmer. In practice, this
after the fact decomposition can create two different
software artifacts: the model description and its simu-
lation software. This substantially increases the possi-
bility of errors in both the paper model description and
its computer implementation (this is a well-known soft-
ware engineering problem18). This danger is also
avoided by the previous approaches, which allow any
model decomposition to be translated directly into a
software implementation.

5.6. Type 3 example: An automatic load
control system

The efficient and reliable delivery of electric power
increasingly depends on networked SCADA
(Supervisory Control and Data Acquisition) and dis-
tributed control systems. These systems often operate
over commercially available, frequently IP-based, com-
munication networks. Problems of control and commu-
nication in the smart electric grid have recently focused
attention on modeling and simulation of distributed,
wide area control systems in this context.8,31

A system for under-frequency protection of wide
area electric power systems illustrates several aspects
of Type 3 hybrid systems. The objective of this system
is to prevent under-frequency generator failures by
making small and rapid changes to the network load.
The idea is to incur small service interruptions when
under-frequency failures are imminent, and then to
automatically restore service when the system stabilizes.

5.6.1. Continuous elements. The continuous compo-
nent in this system is a power generation and transmis-
sion model of a 17 bus system that is derived from the
IEEE 14 bus system. The model consists of 12 loads
and 5 generators that are interconnected as shown in
Figure 9. Frequency, and not voltage, disturbances are
the focus of the current investigation. Therefore, only
real power flow is considered.32

The generators are modeled as synchronous
machines using the swing equation plus additional
equations that model a governor, non-reheat turbine,
and over speed breaker. One of the five generators also
includes a basic Automatic Generation Control (AGC)
unit that eliminates steady-state frequency error
throughout the system. The three equations that
describe the generator dynamics are32

D _�g ¼ D!,

D _! ¼ ðDPm � DPeÞ=M,

D €Pm ¼ �100ðkagcD�g þ D!=Rþ 0:25D _Pm þ PmÞ,

where DPm and DPe are the deviations of mechanical
power output and electrical demand from the initial
steady-state operating point, Ddg is the change in rela-
tive generator shaft angle, and D! is the deviation of
the shaft angular velocity from 60 Hz. The values R,M,
and kagc are the generator’s speed droop constant, rota-
tional inertia, and the AGC gain. If the speed deviation
of a machine exceeds �0.1 Hz, then it is disconnected
from the transmission network.

Real power flow is calculated using known generator
shaft angles and electrical power demand at the load
buses. Disconnected generators are treated as load
buses with zero power demand.32 To facilitate the cal-
culation of electrical demand Pe on the generators, the
network admittance matrix Y is broken into the four
sub-blocks shown in Equation (9). The Yll block
describes load to load connections, Ylg and Ygl describe
the symmetric generator–load/load–generator connec-
tions, and Ygg describes generator–generator connec-
tions. Similarly, the bus angle and electric power
vectors are split into upper and lower blocks. The vec-
tors ��l and �Pl denote the load bus angles and injected
power. The vectors �Pe and ��g are the electrical demand
on the generators and the generator shaft angles. The
power flow equations are

�Pl

�Pe

" #
¼

Yll Ylg

Ygl Ygg

� � ��l

��g

" #
: ð9Þ

The electrical demand on the generators is given by

��l ¼ Y�1ll ð
�Pl � Ylg

��gÞ

�Pe ¼ Ygl
��l þ Ygg

��g:

Attached to each generator is a monitor that is fre-
quency sensitive. The monitor is triggered when the gen-
erator frequency differs by 0.001 Hz with respect to

12 Simulation: Transactions of the Society for Modeling and Simulation International 0(00)

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:50pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

the last triggering event, i.e. the monitor samples the
generator when its frequency reaches 60.0 � 0.001 Hz,
�0.002 Hz, etc. and at these times it measures
five quantities: the generator’s mechanical power
DPm, rate of change in mechanical power D _Pm, electri-
cal load DPe, shaft velocity D!, and shaft
acceleration D _!.

Using the DEVS approach described in Section 5.1,
this continuous model is encapsulated in a single atomic
component. Input to the component are discrete
changes in the electric load; these inputs cause instan-
taneous change to the diagonal elements of Yll. Output
from the component are sensor measurements, which
occur at discrete values of the D!. The evolution func-
tion F gives the solution to the continuous generator
equations at the instants of discrete input and output
and at time points selected to control numerical errors.
The evolution function is implemented with a fourth-/
fifth-order Runge–Kutta (RK45) integrator with error
control.33 This numerical integrator is particularly
attractive because its step size can be adjusted at will
to accommodate discrete events. The Template
Numerical Library is used to solve the power flow
equations at each integration step.

The event scheduling function G gives the smaller of
(i) the time remaining to the next sampling instant, (ii)
the next opening of a frequency protection breaker, and
(iii) the step size h selected by the numerical integrator.
The last of these is calculated first, and this is the largest
value that G will report. Items (i) and (ii) are calculated
by looking for the first instant in the interval [0, h] at
which any of the D!’s reach a threshold value. This is a
root finding problem and we solve it here using a rela-
tively simple interval bisection approach.24 If no such
instant exists, then G simply returns h.

The discrete action function A opens frequency pro-
tection breakers, sets the elements of Yll to indicate
changes in load, or both as is required by the events
that triggered the evaluation of A. In the DEVS imple-
mentation of this model, load changes are due to an
external event (i.e. dext), frequency protection breakers
are opened due to an internal event (i.e. dint) that has one
of the D! at the tripping threshold of 0.1 Hz, and a
confluent event (i.e. dcon) may cause both. The output
functionL returns a sample for the generators that are at
a sampling threshold, or the non-event F if there is no
such generator. Note that the input and output trajecto-
ries for this model of the generators, loads, and

TURNER_2
2

14

7

BEAVER_C

6

3

2

1

4

LOGAN_2
3

TURNER

15

SPRIGG
5

1
SALTVILL

TAZEWELL

175

GLEN_LYN

KINCAID 8

DOYLEAIRPORT

9

HOMER

CLINCH_R

16

CLINCH_2
4

KANAWHA

13

LOGAN

12

MOSES
11

10

Figure 9. The 5 generator and 12 load bus power system model.

Nutaro et al. 13

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:50pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

transmission network comprise only discrete events. This
is the characteristic feature of the split system method.

5.6.2. Discrete elements. Samples output by the
model of the generators, loads, and transmission net-
work are input to the model of the control and com-
munication system. At each sampling instant, the
monitors at the sampled generators estimate the time
to an under-frequency failure by

tf ¼
60:0ðD!þ1Þ�59:9

jD _!j if D _! 5 0.0

1 if D _! �0.0

�

and time to meet demand by

ts ¼
jDPm � DPej

jD _Pmj
:

The generator is in danger of being disconnected if

tf � ts:

In this case, the monitor broadcasts a request asking all
load buses to reduce their power demand. If, on the
other hand,

tf 4 kts,

where k	 1 is a safety factor, the system is operating
under capacity. In this case, the monitor broadcasts a
message indicating that demand for power can be
increased.

Load change requests are summarized by the load
service fraction �, with �2 [0, 1]. When �¼ 1, the gen-
erator can tolerate the full electrical demand seen at its
terminal. When �< 1, the generator would like to see
the demand on its terminal reduced to a fraction � of
the full power demand. Changes to � occur in discrete
increments D�.

The operation of the monitor is depicted in
Figure 10. The monitor state and output are computed
at each sampling event. Circles denote discrete phases,
and the action performed in each phase is denoted by
state change/output. Labeled arrows denote phase
change conditions. At each sampling instant, the
phase change conditions are evaluated and the phase
is changed accordingly. Then the output value is pro-
duced and, subsequently, the state variable change is
applied. A new monitor state and output is calculated
every time the monitor takes a measurement.

Load buses remember the last load service fraction
received from each monitor. The remembered requests
are denoted by �i, with i2 [1, 5] indicating the monitor
that produced the request. Each load bus is also aware of
its electrical demand. On receiving a message, the load

bus removes or restores some of its power demand from
the transmission network. The serviced load Ls at each
bus is a fraction of the total demand Ld given by

Ls ¼ Ld

�
1

5

X5
i¼1

�i

�
:

With five generators in the system, all of the demand is
serviced if the �i are all 1, and no demand is serviced if
the �i are all zero. Note that the monitor attached to a
disconnected generator will continue to operate with
DPe¼ 0, and this causes the service fraction for the
monitor to eventually settle at 1.

The monitors and load buses communicate through
a packet switching network. Communication lines
follow the network transmission lines, and packets are
routed from origin to destination through this shared
communication medium. The communication lines are
modeled as queues with a fixed throughput, measured
in bits per second (bps), and base delay. The time
required for a packet to traverse a single line is given by

bits

throughput
þ base delay.

Each line has a buffer for queuing packets, and only
one packet can traverse the communication line at any
time. No packets are dropped. In general, a message
will need to travel through several lines before reaching
its destination. Network flooding is used to implement
the broadcast function.34

The control and communication system is imple-
mented in three parts. The monitors and actuators at
the loads are DEVS atomic models; these are pure dis-
crete event components and their implementation is
straightforward. The communication network is mod-
eled using NS2, and it is encapsulated in a component

Figure 10. State transition diagram for the generator monitor.

14 Simulation: Transactions of the Society for Modeling and Simulation International 0(00)

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:50pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

whose input and output are the commands produced by
the monitors and consumed by the load actuators. All
of the components and their interactions are illustrated
in Figure 11.

5.6.3. An experiment. One experiment will serve to
exhibit the hybrid trajectories produced by this
system. The line admittances used in this experiment
have been described previously.32 The initial power at
each generator is calculated to ensure a steady state at a
selected bus angle.32 Other generator parameters are
listed in Table 1. The controller parameters are
k¼ 104 and D�¼ 0.1. The size of a control message is
900 bytes. The base link latency is 10 ms and through-
put is 560 kbps.

Table 2 shows the electrical demand schedule that is
used in this experiment. The t¼ 0 column shows initial
power demand at each bus. Subsequent columns con-
tain an entry only for buses at which the power demand
changes. Electrical demand is described by ‘per unit’
power injected at the load bus. Without any load con-
trol, this schedule causes all five generators to trip off-
line following the load spike at t¼ 10 seconds. The
failure scenario is shown in Figure 12.

Figure 13 shows that, in this scenario, the control
scheme prevents a system collapse. The frequency dips,
but this is detected by the generator monitors and
appropriate control messages are acted on by the load
actuators. Figure 14(b) shows the total load fraction
requested by the controllers. These messages are able
to traverse the network rapidly enough that the load
manipulations are effective. As Figure 14(a) shows,

however, the control action is delayed and very
ragged due to communication delays. The combined
effect on overall system behavior would be difficult to
anticipate without an integrated, dynamic model of the
power, control, and communication systems.

The greatest strength of the proposed approach is
the reuse of existing continuous system simulation
tools within a discrete event simulation framework.
Unfortunately, most current continuous system
simulation packages support only half of the features
needed to do this. The two features that are widely
supported are:

1. an interface for setting and getting the values of con-
tinuous variables; and

2. functions or methods for evaluating a single step of
the integrator.

The missing features are, however, crucial for applying
the split hybrid system modeling approach. These fea-
tures are:

3. functions or methods for getting the next step
selected by the numerical solver without actually
committing to that step; and

Network

Generators, transmission, and loads

Freq. monitor

Load actuator

Figure 11. Components and their interconnections in the

power system model. A solid outline indicates the component

has continuous dynamics; a dashed outline indicates a component

that is entirely discrete.

Table 2. Electrical demand schedule

Load bus t¼ 0.0 t¼ 1.0 t¼ 10.0

1 0.0

2 �0.217

3 �0.942

4 �0.112

5 �0.478

6 �0.076

7 �0.295 0.0 �0.4

8 �0.09 0.0 �0.09

9 �0.035

10 �0.061 0.0 �0.4

11 �0.135 0.0 �0.135

12 �0.149 0.0 �0.149

Table 1. Generator parameters

Generator 1/R kagc

1 300 0

2 225 200

3 300 0

4 300 0

5 225 0

Nutaro et al. 15

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:50pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

4. separation of the numerical integration step and state
event evaluation.

6. Conclusions

In this paper we have proposed a split modeling
approach for simulating hybrid systems. The overarch-
ing modeling paradigm is based on discrete events.
Continuously interacting sub-components are treated
as a single entity. These entities interact with other
components through a discrete event interface that is
defined in terms of time and state events. Their internal
dynamics are simulated using any suitable numerical
method. However, interactions with other (continuous
or discrete) autonomous components occurs through
well-defined events. These events are the only mecha-
nism for interacting with the continuous entities.

The split hybrid system modeling approach explicitly
recognizes discrete event and continuous variables in a
system model, and this knowledge is used to construct

an efficient simulator. Individual sub-components are
simulated using the most appropriate algorithms:
numerical integration methods for continuous compo-
nents and discrete event algorithms for discrete compo-
nents. This intrinsic capability overcomes the major
limitations of CSSL and GDEVS techniques and
enables the reuse of powerful, existing continuous
system simulation algorithms as part of existing discrete
event simulation models. Thus, the resulting software is
computationally efficient, ensures accurate interactions
between discrete event and continuous components,
and requires only a modest software integration effort.

Acknowledgments

We thank Sara Mullen and Laurie Miller at the University of
Minnesota for their assistance with the power grid example
used in this paper. Thanks are also due to Conrad Housand at

AEgis Technologies for supporting our research effort with an
acslXtreme license.

Funding

This work was supported by the Laboratory Directed

Research and Development Program of Oak Ridge

–3

–2.8

–2.6

–2.4

–2.2

–2

–1.8
 9.5 10 10.5 11 11.5 12

A
ct

ua
l p

ow
er

 d
em

an
d

time

(a)

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 9.5 10 10.5 11 11.5 12

R
eq

ue
st

ed
 lo

ad
 s

er
vi

ce
 fr

ac
tio

n

time

(b)

Figure 14. (a) Actual load and (b) load fraction requested

during the control action. The jagged load profile is due to delay

in the communication network.

 59.9

 59.95

 60

 60.05

 60.1

 0 2 4 6 8 10 12

fr
eq

ue
nc

y
(H

z)

time (seconds)

Genr. 1
Genr. 2
Genr. 3
Genr. 4
Genr. 5

Figure 12. System failure in the absence of any load control

scheme.

 59.9

 59.95

 60

 60.05

 60.1

 0 2 4 6 8 10 12 14 16 18 20

fr
eq

ue
nc

y
(H

z)

time (second)

Genr. 1
Genr. 2
Genr. 3
Genr. 4
Genr. 5

Figure 13. The load control scheme prevents system failure.

16 Simulation: Transactions of the Society for Modeling and Simulation International 0(00)

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:50pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

National Laboratory (ORNL), managed by UT-Battelle,

LLC for the U.S. Department of Energy (contract number
DE-AC05-00OR22725).

Notes

i. We note that this ‘definition’ excludes continuous systems

with chaotic behavior. Indeed, while in these systems there

are no discrete events, after a certain time, the dynamics

cannot be anticipated (predicted) and no ‘fix’, continuous

or discrete, could restore this predictability.

ii. This assumes that a useful decomposition can be found for

the particular system of interest.

References

1. Fishwick PA. Simulation Model Design and Execution:

Building Digital Worlds. Englewood Cliffs, NJ: Prentice-

Hall, 1995.
2. Zeigler BP, Praehofer H and Kim TG. Theory of

Modeling and Simulation, 2nd ed. New York: Academic

Press, 2000.

3. Wymore AW. Model-Based Systems Engineering: An

Introduction to the Mathematical Theory of Discrete

Systems and to the Tricotyledon Theory of System

Design. Boca Raton, FL: CRC Press, 1993.
4. Barros F. Modeling and simulation of dynamic structure

heterogeneous flow systems. SIMULATION 2002; 78:

28–35.
5. Lynch N, Segala R and Vaandrager F. Hybrid I/O

automata. Information and Computation 2003; 185:

105–157.

6. Matveev AS and Savkin AV. Qualitative Theory of

Hybrid Dynamical Systems. Berlin: Springer, 2001.
7. Giambiasi N, Escude B and Ghosh S. GDEVS: A gener-

alized discrete event specification for accurate modeling

of dynamic systems. Transactions of the Society for

Computer Simulation International 2000; 17: 120–134.
8. Hopkinson K, Wang X, Giovanini R, Thorp J, Birman K

and Coury D. EPOCHS: A platform for agent-based elec-

tric power and communication simulation built from

commercial off-the-shelf components. IEEE

Transactions on Power Systems 2006; 21: 548–558.
9. Cervin A and Årzén K-E. TrueTime: Simulation tool for

performance analysis of real-time embedded systems.

In: Mosterman PJ and Nicolescu G (eds) Model-based

Design for Embedded Systems. Boca Raton, FL: CRC

Press, 2009.
10. Beltrame T. Design and Development of a Dymola/

Modelica Library for Discrete Event-oriented Systems

Using DEVS Methodology. Master’s thesis. Deparment

of Computational Science, ETH Zurich, Zurich,

Switzerland, 2006.
11. Färnqvist D, Strandemar K, Johansson K and Hespanha

J. Hybrid modeling of communication networks using

Modelica. In: Proceedings of the 2nd International

Modelica Conference, Oberpfaffenhofen, Germany,

2002, p.209–213.

12. Remelhe M. Combining discrete event models and

Modelica—general thoughts and a special modeling envi-

ronment. In: Proceedings of the 2nd International

Modelica Conference, Oberpfaffenhofen, Germany,

2002, p.203–207.

13. Mosterman P, Otter M and Elmqvist H. Modeling Petri

nets as local constraint equations for hybrid systems

using Modelica. In: Proceedings of the 1998 Summer

Computer Simulation Conference, Reno, NV, 1998.
14. Prat V, Uriquia A and Dormido S. ARENALib: A

Modelica library for discrete-event system simulation.

In: Proceedings of the 5th International Modelica

Conference, Vol. 1, Vienna, Austria, 2006, p.539–548.

15. Song HB. Infrastructure for DEVS Modelling and

Experiment. Master’s thesis. Montreal, Canada: School

of Computer Science, McGill University, 2006.
16. Ferreira J and de Oliveira JE. Modelling Hybrid Systems

Using StateCharts and Modelica. In: Proceedings of the

7th IEEE International Conference on Emerging

Technologies and Factory Automation, Vol. 2, 1999,

p.1063–1069.
17. D’Abreu M and Wainer G. M/CDþþ: Modeling contin-

uous systems using Modelica and DEVS. In: Proceedings

of the 13th IEEE International Symposium on Modeling,

Analysis, and Simulation of Computer and

Telecommunication Systems, 2005, p.229–236.
18. Pressman RS. Software Engineering: A Practitioner’s

Approach, 6th ed. New York: McGraw-Hill, 2005.
19. Balluchi A, Benvenuti L, Benedetto MDD, Pinello C and

Sangiovanni-Vincentelli AL. Automotive engine control

and hybrid systems: Challenges and opportunities.

Proceedings of IEEE 2000; 88: 888–912.
20. Wainer GA and Giambiasi N. Cell-DEVS/GDEVS for

complex continuous systems. SIMULATION 2005; 81:

137–151.

21. Kofman E. Discrete event simulation of hybrid systems.

SIAM Journal on Scientific Computing 2004; 25:

1771–1797.
22. Klingener JF. Combined discrete–continuous simulation

models in Promodel for Windows. In: Proceedings of the

27th Winter Simulation Conference, Arlington, VA, 1995,

p.445–450.

23. Klingener JF. Programming combined discrete–continu-

ous simulation models for performance. In: Proceedings

of the 28th Winter Simulation Conference, Coronado, CA,

1996, p.833–839.
24. Cellier FE and Kofman E. Continuous System Simulation.

Berlin: Springer, 2006.
25. Pepyne DL and Cassandras CG. Optimal control of

hybrid systems in manufacturing. In: Proceedings of

IEEE 2000; 88: 1108–1123.
26. Kelton WD, Sadowski RP and Sadowski DA. Simulation

with Arena. New York: McGraw-Hill, 2002.
27. Fujimoto RM. Parallel and Distributed Simulation

Systems. New York: Wiley-Interscience, 1999.
28. Nutaro J and Sarjoughian H. Design of distributed sim-

ulation environments: A unified system-theoretic and log-

ical processes approach. SIMULATION 2004; 80:

577–589.

Nutaro et al. 17

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

XML Template (2011) [9.5.2011–3:50pm] [1–18]
//cephastorage2/Journals/application/sage/SIM/SIM 401000.3d (SIM) [PREPRINTER stage]

29. Sarjoughian H and Zeigler B. DEVS and HLA:
Complimentary paradigms for M&S? Transactions of
the Society for Computer Simulation International 2000;

17: 187–197.
30. Lake T, Zeigler B, Sarjoughian H and Nutaro J. DEVS

simulation and HLA lookahead. Spring Simulation
Interoperability Workshop, 2000, abstract 00S-SIW-160.

31. McDermott T, Dugan R, King T and McGranaghan M.
Modelling distribution automation schemes with a con-
trol systems overlay. IEEE Power and Energy Society

General Meeting (PES ’09) 2009; 1–3.
32. Mullen S. Power System Simulator for Smart Grid

Development. Master’s thesis. Minneapolis, MN:

University of Minnesota, 2006.
33. Ralston A and Rabinowitz P. A First Course in Numerical

Analysis, 2nd ed. Mineola, NY: Dover, 1978.

34. Tanenbaum AS. Computer Networks, 3rd ed. Upper
Saddle River, NJ: Prentice-Hall PTR, 1996.

James Nutaro is a part of the research staff in the
Computational Sciences and Engineering Division at
Oak Ridge National Laboratory, Oak Ridge,
Tennessee and an adjunct professor in the

Department of Electrical Engineering and Computer
Science at the University of Tennessee, Knoxville,
Tennessee.

Phani Teja Kuruganti is a member of the research staff
at Oak Ridge National Laboratory and a PhD candi-
date in the Department of Electrical Engineering and
Computer Science at the University of Tennessee,
Knoxville.

Dr Vladimir Protopopescu is chief scientist of the
Computational Sciences and Engineering Division at
the Oak Ridge National Laboratory and adjunct pro-
fessor in the Mathematics Department of the
University of Tennessee, Knoxville.

Mallikarjun Shankar is a member of the research staff
at Oak Ridge National Laboratory and a faculty
member in the Center for Interdisciplinary Research
and Graduate Education (CIRE) at the University of
Tennessee, Knoxville.

18 Simulation: Transactions of the Society for Modeling and Simulation International 0(00)

 at CARLETON UNIV on August 15, 2011sim.sagepub.comDownloaded from

http://sim.sagepub.com/

