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Simulation

Quantized state simulation of spiking
neural networks

Guillermo L Grinblat, Hernán Ahumada and Ernesto Kofman

Abstract

In this work, we explore the usage of quantized state system (QSS) methods in the simulation of networks of spiking

neurons. We compare the simulation results obtained by these discrete-event algorithms with the results of the discrete

time methods in use by the neuroscience community. We found that the computational costs of the QSS methods grow

almost linearly with the size of the network, while they grows at least quadratically in the discrete time algorithms. We

show that this advantage is mainly due to the fact that QSS methods only perform calculations in the components of the

system that experience activity.
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1. Introduction

Continuous system simulation is a topic that has rap-
idly evolved in recent decades. The development of
faster and more powerful computers has allowed the
representation of larger and more complex models
that require the usage of more efficient and sophisti-
cated simulation algorithms.

Hundreds of numerical integration methods for
ordinary differential equations (ODEs) can be found
in the literature.1–4 These algorithms, according to
their features, are classified as one-step or multistep,
implicit or explicit, fixed or variable step, fixed or var-
iable order, etc. In spite of their differences, all the
methods share a property: they are all based on time
discretization, that is, given the solution at a time
instant, they compute the approximate solution for
the next discrete time point.

In recent years, a new family of algorithms was
developed that replace the time discretization by the
quantization of the state variables. Based on an original
idea of Bernard Zeigler, who showed that continuous
time systems with their inputs and outputs being quan-
tized can be represented by discrete event system
(DEVS) models,5–7 a general method for the numerical
integration of ODEs called the quantized state system
(QSS) was proposed by Kofman and Junco.8

The formulation of the QSS method was followed by
second- and third-order accurate algorithms (QSS29

and QSS310, respectively). The QSS family has nice
stability, convergence, and error bound theoretical
properties,4,8,9,11 and, from a practical point of view,
offers important advantages to detect and handle
discontinuities.12

QSS methods are also very efficient for simulating
large sparse systems,4,9 since they only invoke calcula-
tions on the states that experience sensible changes in
their values or derivatives. In other words, QSS algo-
rithms intrinsically exploit the activity of the
system.13–15

In this work, we explore the usage of QSS methods
to simulate deterministic ODE models of spiking neural
networks (SNNs). These models are emerging as a
plausible paradigm for characterizing neural dynamics
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in the cerebral cortex. The SNN models have high bio-
logical fidelity, and can model many characteristics of
brain architecture.16

SNN models are usually large (they are composed of
several neurons), sparse (each neuron is generally con-
nected to a small subset of neurons), and each spike
represents a discontinuity in the ODE. The presence
of discontinuities and their large dimensions poses sev-
eral difficulties to the different conventional numerical
methods used by the SNN community. Consequently,
the simulation of large networks of spiking neurons
becomes slow and demands more suitable numerical
methods.

Taking into account that QSS methods are good at
discontinuity handling and sparsity exploitation, they
are – in principle – good candidates to improve the
performance of SNN simulation. This hypothesis is
reinforced by the fact that previous works have
shown some advantages of using the DEVS methodol-
ogy in the simulation of non-ODE models of
SNNs.17,18 In addition, in Wainer,19 a discrete version
of the Hodgkin–Huxley model (which could be used to
model SNNs) is efficiently implemented with Cell–
DEVS and a similar approach, which approximates
the continuous time behavior, is reported by Wainer
and Giambiasi.20

The goal of this work is then to implement simula-
tions of ODE models of SNNs based on QSS methods
and to compare their performance with those of con-
ventional numerical methods currently in use for those
models.

As a main contribution, we shall show that the
principal advantage of using QSS methods to
simulate SNNs is that the computational costs grow
linearly with the number of neurons in the network,
while classic integration techniques lead to quadratic
growth (in the best case). In large networks, this prop-
erty is translated into a sensible reduction of the central
processing unit (CPU) time required to complete a
simulation.

The article is organized as follows. Section 2 pro-
vides the background for the work, presenting
different ODE models for SNNs, analyzing the differ-
ent numerical methods used in the literature, and
introducing the QSS methods, as well as the software
tools for their implementation. Section 3 then
describes the work done to model and to simulate
SNNs in a software tool that implements the com-
plete family of QSS algorithms. After that, Section
4 presents the simulation results and compares
those obtained with different QSS methods with
those obtained by classic methods for different SNN
configurations. Finally, Section 5 finishes the work
with conclusions and some ideas to continue with this
line of research.

2. Modeling and simulation of spiking

neural networks

This section provides the background on which the rest
of the work is based. We first introduce different ODE
models of SNNs and then we present the classic numer-
ical methods used to simulate them. After that, we
introduce the family of QSS methods and the software
tools that implement them.

2.1. Models of spiking neural networks

A single spiking neuron can be described by a system of
ODEs with discontinuities at the firing times. Several
models have been proposed, with varying complexity.
Among the most used we can mention the following
ones.

. Hodgkin–Huxley model:21 this model was developed
in the 1950s based on the experiments performed on
the squid giant axon. Due to this fact, the model
parameters have a clear observed meaning. The
main inconvenience is that its simulation is very
expensive due to the model complexity, as each
neuron is represented by four equations governed
by 10 parameters. Thus, its usage is limited to net-
works formed by few neurons.22

. Integrate and fire:23,24 Contrary to Hodgkin–
Huxley, this is an extremely simple model. A
neuron is modeled by the equation

_vðtÞ ¼ IðtÞ þ a� bvðtÞ, if vðtÞ � vu then v c,

where v(t) is the membrane potential, I(t) is the input
current, and a, b, c, and vu are user-defined parameters
to obtain different behaviors.

Due to its simplicity, the equation can be analytically
integrated between discontinuities and large neural net-
works can be simulated. However, the model is not rich
enough to represent many features that are usually
observed in real neurons.

Several modifications have been proposed to
improve this model, such as the inclusion of a quadratic
term on v(t) (quadratic integrate and fire25), or the addi-
tion of a second state variable in order to represent
more complex behaviors (integrate and fire or burst26).

. The Izhikevich model:27,28 Recently, Izhikevich pro-
posed a rather simple but versatile model that can
represent different behaviors according to their
parameter configuration. Its equations are

C _v ¼ kv v� vtð Þ � uþ I

_u ¼ a bv� uð Þ ð1Þ
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where v(t) represents, as before, the membrane
potential and u(t) models the membrane restitution
phenomenon. Variable I(t) is the input current and
the rest are user-defined constant parameters that
allow one to obtain different types of behavior.

When at time t variable v(t) reaches a given thresh-
old value, the firing is produced and the state variables
are reset as follows:

vðtþÞ ¼ c

uðtþÞ ¼ uðtÞ þ d ð2Þ

where c and d are user-defined constant parameters.
The parameters of Equation (1) are usually selected

so that the equation becomes

_vðtÞ ¼ 0:04 � v2 þ 5 � vþ 140� uþ IðtÞ

_uðtÞ ¼ a � ðb � v� uÞ ð3Þ

As can be observed in the three models described,
there is always a trade-off between simulation costs and
the possibility of reproducing the different behaviors
observed in real neurons. There are several other
models for SNNs and a comparison among them can
be found in Izhikevich.22

We shall use Izhikevich’s model in this work, as it
combines rich dynamics with fair computational effort
requirements.

The interconnection between neurons (i.e. synapses)
can be also modeled in different ways. In this work, we
selected the synaptic current approach,16,29 also taking
into account excitatory and inhibitory currents.30

Thus, the original Izhikevich’s model of Equation (1)
was transformed into Equation (4):

C _v ¼kv v� vtð Þ � u� � v� E�
� �

� � v� E�
� �

þ I

_u ¼a bv� uð Þ ð4Þ

Here, Z and g are the excitatory and inhibitory con-
ductances, respectively, while E� and E� are the reversal
potentials. When a neuron receives the firing of an excit-
atory neuron, the excitatory conductance Z increases its
value in 6 nS, while when the firing comes from an
inhibitory neuron, then g is increased in 67 nS. The
rest of the time, Z and g decay exponentially following
a first-order dynamic:

_� ¼ ��� � �

_� ¼� �� � � ð5Þ

where �� and �� are the decay rate parameters.

2.2. Numerical integration of SNN models

When a classic numerical method is used to simulate a
SNN a problem appears. The models of SNNs exhibit a
discontinuous behavior each time a neuron fires.

Conventional numerical methods cannot integrate
across a discontinuity. The numerical integration meth-
ods are always based on polynomial approximations
of some functions that are no longer valid when those
functions are discontinuous. Thus, when they perform
an integration step that jumps through a discontinuity,
the error committed is unacceptable. To solve this
problem, the methods must detect the discontinuity
first, advance the simulation time until that instant,
and then restart the simulation from the new situation.4

SNN discontinuities belong to the state event type,
that is, their occurrence depends on a condition on the
state variables (typically, a zero-crossing of some
signal). The detection of this type of discontinuity
requires iterations, and it is computationally expensive.
The simulation restart is also time consuming, as the
simulation step size must be restarted, typically from a
small value.

From a practical point of view, the interesting SNN
models are those composed of several neurons. As fir-
ings at different neurons occur at different times, the
rate of firings in a network grows linearly with the
number of neurons.

This is, if each neuron provokes on average 100 fir-
ings per second, a network of 1000 neurons will pro-
voke about 100,000 firings per second. Then, any classic
numerical method simulating a single neuron will have
an upper bound for its step size of 1/100 in order to
properly handle discontinuities (accuracy and stability
considerations may impose a lower upper bound).
However, when simulating a network of 1000 neurons
that upper bound will be as low as 1/100,000. In addi-
tion, each step will be 1000 times more expensive as it
involves the evaluations on the derivatives of 1000
times more states.

Due to these facts, the computational cost grows at
least quadratically with the number of neurons in the
network.

Yet, classic numerical methods are widely used for
simulating SNNs. Among them, Runge–Kutta and
Bulirsch–Stoer3 appear frequently reported in the
literature.

A recent work proposes a discrete event-like solution
based on the linearization of the ODE and its analytical
solution between firings,31 yet for neuron models
involving more than one state variable this approach
is only first-order accurate. Thus, for the case of
Izhikevich’s model – which is a second-order system –
this approach cannot offer decent results. The fact that
the algorithm results are only first-order accurate
implies that it will not be able to achieve an acceptable
accuracy without increasing enormously the computa-
tional costs. However, it is worth mentioning as this
solution, called voltage stepping, has some connection
with the QSS methods that we describe below.

Grinblat et al. 3
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2.3. Quantized state system simulation

While all classic methods are of the discrete time type, a
new approach was recently developed that replaces time
discretization by state quantization.

The first of these algorithms was the QSS method of
first order (QSS1), which is defined below.

Consider a time invariant ODE:

_xðtÞ ¼ fðxðtÞ, uðtÞÞ ð6Þ

where is xðtÞ 2 Rn the state vector and uðtÞ 2 Rm is an
input vector, which is a known piecewise constant
function.

The QSS1 method4,8 analytically solves an approxi-
mate ODE, which is called QSS:

_xðtÞ ¼ fðqðtÞ, uðtÞÞ ð7Þ

where q(t) is a vector of quantized variables that are
quantized versions of the state x(t). Each component
qj(t) of q(t) follows a piecewise constant trajectory,
related with the corresponding component xj(t) of x(t)
by a hysteretic quantization function so that (we denote
qj ðt

�Þ ¼ lim
�!t
�qj ð�Þ, that is, the limit from the left-hand

side of qj(t))

qj ðtÞ ¼
xj ðtÞ if qj ðt

�Þ � xj ðtÞ
�� �� ¼ �Qj

qj ðt
�Þ otherwise

�
ð8Þ

and qj ðt0Þ ¼ xj ðt0Þ. That is, qj ðtÞ only changes when it
differs from xj ðtÞ by ��Qj. The magnitude �Qj is
called quantum. Figure 1 shows a typical QSS1 quan-
tization function.

The piecewise constant evolution of the quantized
variables qj ðtÞ implies that the state derivatives _xj ðtÞ
follow piecewise constant trajectories, and then the
states xj ðtÞ evolve in a piecewise linear way. These
facts permit the analytical integration of the system of
Equation (7) in a straightforward manner.

The QSS1 method has some nice stability and global
error bound properties.4,9,11 Yet, it performs only a
first-order approximation and a good accuracy cannot
be obtained without significantly increasing the number
of steps.

A second-order accurate method called QSS2 was
proposed by Kofman.9 QSS2 has the same definition
as QSS1, except that the components of qj ðtÞ are
now calculated to follow piecewise linear trajectories.
Figure 2 shows a typical evolution of state and quan-
tized variables.

In QSS2 the state derivatives _xj ðtÞ are computed as
piecewise linear trajectories and then the states xj ðtÞ
follow piecewise parabolic trajectories. Like in QSS1,
the analytical solution of the quantized system of

Equation (7) can be easily obtained following a
simple algorithm.

QSS1 and QSS2 ideas were also extended to obtain a
third-order accurate method called QSS3.10 In QSS3,
quantized variables follow piecewise parabolic trajecto-
ries and states are piecewise cubic.

Both methods, QSS2 and QSS3, share the stability
and error bound properties of QSS1. The family of
QSSs is completed with a Backward QSS algorithm
(BQSS) and the Centered QSS (CQSS) conceived to
integrate stiff and marginally stable systems,
respectively.32

Since Izhikevich’s model is not stiff or marginally
stable, we shall use QSS3 as it offers the maximum
accuracy order among all the QSS methods. Thus, it
will obtain the best relationship between accuracy and
computational costs.

The quantization functions shown in Figures 1 and 2
use a uniform quantum �Qj. Alternatively, QSS

Figure 2. QSS2 quantization.

Figure 1. Hysteretic quantization.
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methods can use logarithmic quantization, where the
quantum is proportional to the corresponding state
magnitude.33

When uniform quantization is used, the absolute
global simulation error is bounded by a linear function
of the quantum.4 In the case of logarithmic quantiza-
tion, the relative global simulation error is intrinsically
controlled.33

Steps in QSS methods are only produced when some
quantized variable qj ðtÞ changes, that is, when the cor-
responding state xj ðtÞ differs from qj ðt

�Þ in a quantum.
That change implies also that some state derivatives
(those that depend on xj) are also changed. Then,
each step involves a change in only one quantized var-
iable and in some state derivatives.

Thus, when a large sparse system experiences activity
only in a few states while the rest of the system remains
unchanged, the QSS methods intrinsically exploit this
fact, performing computations only when and where
the changes occur.

Another important advantage of the QSS methods is
that they handle discontinuities in a straightforward
and very efficient manner.12 According to the order of
the method, the state variables follow piecewise linear,
parabolic, or cubic trajectories. Then, detecting zero
crossings is straightforward, as it involves solving a
cubic equation in the worst case. Once a discontinuity
is detected, the algorithm handles it as an ordinary step,
since each step is in fact a discontinuity in a quantized
variable. Hence, the occurrence of a discontinuity
implies only some local calculations to recompute the
state derivatives that are directly affected by that event.

2.4. QSS methods and DEVS

Although QSS algorithms can be easily coded in any
programming language, they are usually implemented
as discrete event systems within the DEVS formalism
framework.7

Notice that each component of Equation (7) can be
considered as the coupling of two elementary subsys-
tems. A static one:

dj ðtÞ ¼ fj ðq1, . . . , qn, u1, . . . , umÞ ð9Þ

and a dynamical one:

qj ðtÞ ¼ Qjðxj ð�ÞÞ ¼ Qj

�Z
dj ð�Þd�

�
ð10Þ

In the case of the first-order QSS1 method, Qj is the
hysteretic quantization function (it is not a function of
the instantaneous value xj ðtÞ, but a functional of the
trajectory xj ð�Þ).

Since the components uj ðtÞ and qj ðtÞ are piecewise
constant, the output of subsystem (9), that is, dj ðtÞ, will

be piecewise constant. In this way, both subsystems
have piecewise constant input and output trajectories.

If we represent every change of a piecewise constant
trajectory as an event, then the trajectories can be con-
sidered sequences of events.

Thus, the subsystems of Equations (9) and (10) can
be seen as DEVs that process event sequences.

The DEVS formalism7 allows one to describe any
model that processes event sequences and the represen-
tation of the models of Equations (9) and (10) is in fact
very simple. The DEVS equivalent of Equation (9) is
called the static function and the DEVS equivalent of
Equation (10) is called the hysteretic quantized integra-
tor. Their definitions can be found in Cellier and
Kofman.4

Figure 3 shows the block diagram representation of
Equation (7). It is composed by n static subsystems, like
Equation (9), and n dynamic subsystems, like Equation
(10).

By connecting the DEVS models corresponding to
static functions and quantized integrators following the
block diagram of Figure 3, a coupled DEVS model is
obtained that exactly represents the dynamics of
Equation (7).

The same idea can be applied to represent QSS2
approximations as DEVS models, but now the events
carry two variables with the initial value and slope of
each segment of a piecewise linear trajectory. The
DEVS models corresponding to static functions and
quantized integrators are more complex, since they
take into account also the slopes of the corresponding
trajectories.

The QSS3 method can be also be implemented fol-
lowing these ideas.

The family of QSS methods, including QSS1, QSS2,
QSS3, BQSS, and CQSS algorithms, were implemented
in PowerDEVS,34 a DEVS-based simulation software.

Figure 4(a) shows the QSS continuous library of
PowerDEVS. The blocks contained in this library
implement the quantized integrators and static func-
tions for the mentioned QSS methods.

Hybrid systems can be represented and simulated in
PowerDEVS coupling blocks of the continuous library
with the blocks of the QSS hybrid library shown in
Figure 4(b). The hybrid blocks are DEVS models that
handle different types of discontinuities, making use of
the piecewise polynomial features of quantized variable
trajectories in QSS methods.

For instance, the hybrid system corresponding to
Izhikevich’s model of Equations (2) and (3) can be
implemented by the PowerDEVS model of Figure 5.

The models of continuous and hybrid systems in
PowerDEVS can be built using the classic block dia-
gram approach. That is, we include an integrator for
each state variable and then we build the expression of

Grinblat et al. 5
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the state derivatives using continuous and/or hybrid
blocks. In addition, for input signals, we use source
blocks.

The first-order accurate QSS1 algorithm was also
implemented in other simulation tools: CDþþ,35

VLE,36 and Dymola/Modelica.37 However, those
implementations do not include higher order methods,
such as QSS3 (with the exception of ModelicaDEVS,
but this implementation is not efficient enough37), so we
shall focus only on PowerDEVS.

3. PowerDEVS modeling and simulation
of spiking neural networks

This section describes the work done to simulate SNNs
in PowerDEVS using QSS methods. We first describe

Figure 5. Izhikevich’s model in PowerDEVS.

Figure 4. PowerDEVS QSS continuous and hybrid libraries.

Figure 3. Block diagram representation of a QSS1

approximation.
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the PowerDEVS model of a single isolated neuron, then
the model of a neuron with synapsis interface, and
finally the model of a network of neurons and the mod-
ifications introduced in PowerDEVS in order to effi-
ciently simulate large coupled systems.

3.1. PowerDEVS model of a single isolated neuron

A single isolated neuron, following Izhikevich’s model
of Equations (1) and (2), was modeled in PowerDEVS
as Figure 5 shows. This block diagram was built fol-
lowing the classic procedure mentioned above, and it is
the direct representation in block diagrams of the cor-
responding differential equations.

There, the blocks ‘Reset QSS_Integ1’ and ‘Reset
QSS_Integ2’ compute the states v and u, respectively.
Similarly, the static blocks ‘Wsum1’, ‘Square Pow1’,
and ‘Wsum2’ calculate the state derivatives, making
use also of the source blocks ‘Constant1’ and ‘Step1’.
The block ‘Cross detect1’ produces an event
each time its input signal crosses a given level, in this
case when the condition v¼ 60 is reached. This event is
used to reset the first integrator to the value v¼�30

and to compute the signal u� 30 and reset the second
integrator.

3.2. PowerDEVS model of a neuron with synapsis
interfaces

The addition of the synapsis ports transforms
Equations (1) and (2) into Equations (4) and (5).
Thus, we modified the PowerDEVS model of Figure 5
by adding new blocks, as Figure 6 shows.

In this new PowerDEVS block diagram, the new
blocks ‘Reset QSS_Integ3’ and ‘Reset QSS_Integ4’ cal-
culate the new states Z and g, and the blocks ‘Gain1’
and ‘Gain2’ compute the corresponding state deriva-
tives. The blocks ‘Commanded Sampler2’ and
‘Commanded Sampler3’ are in charge of resetting the
integrators of Z and g when they receive the events that
indicate the firing of other neurons.

The blocks ‘WSum4’, ‘WSum5’, ‘Wsum6’,
‘Multiplier1’, and ‘Multiplier2’ calculate the additional
terms of the derivative _vðtÞ at the right-hand side of
Equation (4), and finally, the blocks ‘WSum7’ and
‘WSum8’ compute the reset values for Z and g.

Figure 6. Izhikevich’s model with synapsis in PowerDEVS.

Grinblat et al. 7

 at CARLETON UNIV on March 23, 2011sim.sagepub.comDownloaded from 

http://sim.sagepub.com/


3.3. Modeling and simulation of a large
neural network

Modeling and simulating a large network of neurons,
such as those of Figure 6 using PowerDEVS requires
one to solve some problems first.

3.3.1. Model construction. The first of the problems
is related to the construction of a very large model with
a graphical user interface (GUI), such as that of
PowerDEVS. Although it allows one to encapsulate
complex models so that the entire block diagram of
Figure 6 appears as a single block, copying and cou-
pling 1000 of these blocks (in order to simulate a net-
work of 1000 neurons) is impossible.

We also wanted to generate the connection structure
in a random way in order to perform multiple simula-
tion runs of different networks and the GUI of
PowerDEVS does not have that capability.

So, we used the PowerDEVS GUI only to build the
model of a single neuron (with and without synapsis
ports) and then we wrote a Cþþ program that repli-
cates that model as many times as we want and that
generates random interconnections (if necessary)
between the different neurons.

3.3.2. Model simulation. The second problem we
faced was related to the size and the structure of the
model and the way PowerDEVS searches the next event
time and the next transitioning model.

Notice that the model of a single neuron with syn-
apsis interfaces (Figure 6) contains 27 blocks (without
taking into account the Gnuplot block in charge of
plotting the results). Thus, a model of 1000 connected
neurons has 27,000 atomic blocks.

After producing and propagating an event, the sim-
ulation engine must find which is the block that pro-
vokes the next event and when that event is being
produced. As PowerDEVS was not originally designed
to simulate large networks, it simply looks at the next
event time of each block and then it takes the one
having the smallest (in case the that two or more
blocks share the minimum time, PowerDEVS uses a
priority list to decide among them).

This solution, although being appropriate for small
models, is completely inefficient for a large network, as
it implies searching along the whole structure at each
step. Thus, the cost of each search for the next event
time grows linearly with the size of the system.

Taking into account that the number of neuron fir-
ings grows linearly with the size of the network, so will
grow the number of simulation events. If the search for
the next event time also grows linearly, then the total
cost will grow at least quadratically with the network
dimension. Consequently, we shall obtain something

similar to conventional numerical methods. Thus, if
we want to improve this, we need to avoid performing
a linear search for the next event time.

The problem of optimizing the search for the next
event time in large models has been previously dis-
cussed in the literature.

The DEVS abstract simulator of Zeigler et al.7 pro-
poses a tree structure for the DEVS model. That way,
the search for the next event time is no longer linear.
However, in a SNN model, we can have connections
from any neuron to any other neuron and there is no
natural way of splitting the model in a tree-like form at
the modeling stage. The best we can do to reduce the
size of the higher hierarchy level is to build a single
coupled model for each neuron. However, the number
of neurons is still very large and the cost of performing
a linear search among them is still linear.

In order to improve the performance of the time
scheduling procedure some authors have proposed par-
allelizing part of the algorithms and also reducing the
search space among a subset of atomic models having a
minimum time advance.38,39 As we want to show an
algorithm working in a single processor, we cannot
take the first solution. The second one, although it
would improve the performance, will not avoid the
linear growth.

Another solution consists in leaving aside from the
search those atomic models in passive states, that is,
with time advance equal to infinite.40,41 As before,
this solution in a SNN network will not prevent the
search for the next event time from growing linearly.

Finally, to accelerate the search among the models
with finite time advance, a heap structure is usually
implemented.40,41

As this solution reduces the cost from linear to log-
arithmic, we made our implementation based on that.
We could have also combined this idea with the other
solutions analyzed above. That way, we might have
improved further the results. However, we only
wanted to reduce the time search from linear to loga-
rithmic in order to prevent the total simulation cost
from growing quadratically with the size of the
network.

We organized the atomic models with a binary tree
structure. Every leaf of the tree contains a reference to
an atomic model and to its next event time. Every node
of the tree contains the minimum time of its children
and the reference to the corresponding atomic model.
Thus, the main node of the tree contains the minimum
time of the network and the reference to the corre-
sponding atomic model.

After an event, for each atomic model that changed
its next event time, we only need to compare it with the
time of its brother. If the smaller time does not change,
nothing else has to be done. Otherwise, we need to
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propagate the new minimum time to its father node
that will in turn compare it back with its brother
node. In the worst case, the propagation will reach
the main node. In that worst case, only about log2ðNÞ
comparisons are performed (where N is the number of
blocks) for each atomic model that changed its time
advance.

As the number of connections per neuron is bounded
by a constant in these models, each event is propagated
to a maximum number of blocks that does not depend
on the total number of blocks. Thus, the number of
comparisons needed after each transition is bounded
in a logarithmic way.

According to some preliminary results, the usage of
the binary tree allowed us to reduce the total simulation
time by two orders of magnitude in the simulation of a
model with 1000 neurons.

4. Simulation results

This section shows and discusses the simulation results.
Here, we compare the results obtained with the QSS3
method (in PowerDEVS) using constant and logarith-
mic quantization, with those obtained using Runge–
Kutta–Fehlberg (RK45) and Bulirsch–Stoer (BS) (for
both methods we used the code provided in Press et al.3

with the addition of discontinuity handling routines).
We worked on three examples: a single isolated

neuron, a large network of isolated neurons, and finally
a large network of interconnected neurons.

4.1. Simulation of a single neuron

We first simulated a single neuron with a final simula-
tion time of 1 second. We used the model of Equation
(3). For the parameters, we followed Izhikevich,27

choosing a¼ 0.02, b¼ 0.2, c ¼ �65þ 15 � r2, and
d ¼ 8� 6 � r2, where r is a random variable with uni-
form distribution in the interval [0,1]. Similarly, I(t) was
taken as a constant function with random value.

We ran each simulation 100 times in order to obtain
meaningful statistical data. We measured, for different
tolerance and quantum settings, the mean absolute
error and the total simulation time. We used as refer-
ence solution that obtained with QSS3 using a quantum
�Q ¼ 10�11.

We used this solution as a reference, since the ana-
lytical solution cannot be obtained. In order to check
that the different methods converge to the reference
solution, we included simulations performed with
those methods using small tolerances.

Figure 7 shows the state trajectories for a particular
simulation run. They coincide with the typical solutions
of Izhikevich’s model.

The difference between the solutions given by the
three numerical integration methods cannot be distin-
guished by the naked eye.

Tables 1–4 summarize the results. Figures 8 and 9
illustrate the evolution of the CPU time and error as a
function of the tolerance or quantum parameter for the
different methods.

For small tolerances, we see that the error of BS and
RK45 (i.e. the difference with the reference solution of
QSS3) is around 1E�8. This means that the reference
solution is useful up to this tolerance.

The results exhibit a clear advantage of the RK45 and
BS methods over QSS3. The dynamics do not exhibit
many discontinuities and the system is fully intercon-
nected. Thus, QSS3 does not have much to offer here.
Moreover, the PowerDEVS implementation (Figure 5)
is quite inefficient, as every event of the integrators is
propagated to several static atomic blocks, which are
in turn propagated back along the coupled structure.
So, the simulation engine spends more time handling
the coupling structure than doing useful calculations.
In addition, the PowerDEVS engine performs some

Figure 7. State trajectories of a single neuron simulation

using QSS3.
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initialization procedures before each simulation that
take some fixed time (it takes about 0.01 seconds), so
there is a lower bound for the total simulation time.

When it comes to errors and tolerance, we found
that the performance of QSS3 compared with RK45

and BS worsens when the tolerance becomes more
stringent (Figure 8). This is due to the fact that QSS3
is only a third-order accurate algorithm and thus the
CPU time grows with the cubic root of the required
accuracy.

Table 1. Simulation with RK45. Parameter¼ relative tolerance

Parameter Mean CPU time in sec. (variance) Mean error (variance)

10�03 7.21E-04 (1.69E-04) 6.51E-01 (4.17E-01)

10�04 7.93E-04 (1.76E-04) 9.95E-02 (6.91E-02)

10�05 8.85E-04 (1.93E-04) 6.62 E-03 (7.19E-03)

10�06 1.05E-03 (2.09E-04) 3.78E-04 (5.43E-04)

10�07 1.32E-03 (2.41E-04) 4.71E-05 (5.71E-05)

10�08 1.78E-03 (3.00E-04) 4.96E-06 (6.07E-06)

10�09 2.26E-03 (3.42E-04) 6.31E-07 (5.35E-07)

10�10 3.22E-03 (4.63E-04) 8.13E-08 (4.43E-08)

10�11 4.80E-03 (6.50E-04) 7.16E-09 (7.76E-09)

CPU: central processing unit.

Table 2. Simulation with BS. Parameter¼ relative tolerance

Parameter Mean CPU time in sec. (variance) Mean error (variance)

10�03 1.12E-03 (2.41E-04) 1.41Eþ 00 (6.84E-01)

10�04 1.44E-03 (3.03E-04) 3.67E-01 (2.31E-01)

10�05 1.53E-03 (4.59E-04) 1.40E-01 (9.88E-02)

10�06 2.17E-03 (4.40E-04) 1.05E-02 (1.69E-02)

10�07 2.23E-03 (4.93E-04) 1.70E-04 (2.30E-04)

10�08 2.72E-03 (6.53E-04) 1.53E-05 (1.11E-05)

10�09 2.88E-03 (5.71E-04) 1.26E-06 (1.04E-06)

10�10 3.32E-03 (7.19E-04) 1.57E-05 (8.49E-05)

10�11 3.66E-03 (7.38E-04) 1.24E-08 (1.31E-08)

CPU: central processing unit.

Table 3. Simulation with QSS3. Parameter¼�Q

Parameter Mean CPU time in sec. (variance) Mean error (variance)

10�03 2.35E-02 (1.53E-03) 1.16E-01 (7.50E-02)

10�04 3.17E-02 (3.29E-03) 1.74E-02 (9.74E-03)

10�05 5.05E-02 (6.64E-03) 1.52E-03 (2.11E-03)

10�06 8.88E-02 (1.42E-02) 2.64E-04 (1.04E-03)

10�07 1.74E-01 (3.11E-02) 7.74E-06 (2.94E-06)

10�08 3.58E-01 (6.71E-02) 7.63E-07 (3.12E-07)

10�09 7.55E-01 (1.53E-01) 8.26E-08 (5.21E-08)

10�10 1.62Eþ 00 (3.16E-01) 6.71E-09 (6.37E-09)

10�11 3.47Eþ 00 (6.32E-01) 0.00Eþ 00 (0.00Eþ 00)

CPU: central processing unit.
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4.2. Simulation of networks of isolated neurons

In this second experiment, we simulated different
systems of disconnected neurons. We ran different sim-
ulations of systems with 10, 100, 1000, and 2000
neurons using the same methods of the previous exam-
ple. In order to have similar errors with the different

algorithms, we selected a tolerance of 10�4 for RK45
and 10�5 for BS. Similarly, we selected a quan-
tum �Q ¼ 10�3 for QSS3 and �Qrel ¼ 10�4 for QSS3
with logarithmic quantization. With these values,
according to the simulation results of the previous
example, all the methods have a mean absolute error
around 10�1.

Table 4. Simulation with logarithmic QSS3. Parameter¼�Qrel

Parameter Mean CPU time in sec. (variance) Mean error (variance)

10�03 1.92E-02 (8.78E-04) 1.15Eþ 00 (3.08E-01)

10�04 2.26E-02 (3.74E-03) 1.66E-01 (1.10E-01)

10�05 2.82E-02 (2.97E-03) 6.73E-03 (8.38E-03)

10�06 4.12E-02 (5.60E-03) 1.41E-03 (3.55E-03)

10�07 6.96E-02 (1.08E-02) 4.67E-04 (1.39E-03)

10�08 1.31E-01 (2.31E-02) 1.89E-04 (8.97E-04)

10�09 2.66E-01 (5.33E-02) 3.02E-06 (5.27E-06)

10�10 5.51E-01 (1.09E-01) 3.02E-07 (5.46E-07)

10�11 1.18Eþ 00 (2.50E-01) 1.89E-08 (2.52E-08)

CPU: central processing unit.

Figure 9. Error versus tolerance (quantum) for

different methods.

Figure 8. CPU time versus tolerance (quantum) for

different methods.
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Table 5 exhibits the mean time (after 30 simulation
runs) required by each method to complete the simula-
tion. The final simulation time was set to 1 second.

Figure 10 plots the CPU time required by each
method for the different number of neurons.

The results become now more interesting. For small
systems (10–100 neurons), QSS3 methods show a poor
performance compared with BS and RK45. However,
when the number of neurons increases, QSS3 rapidly
outperforms both discrete time algorithms.

This fact can be easily explained taking into account
the way in which QSS methods exploit activity. As we
mentioned in Section 2.2, discrete time algorithms must
evaluate all the state derivatives at each step, and they
must restart the whole simulation after each disconti-
nuity (i.e. after each firing). As the number of firings, as
well as the size of the right-hand side function of the
ODE, grow linearly with the size of the network, the
discrete time algorithms experience a quadratic growth
of the CPU time.

Although the QSS3 method is inefficient to simulate
a single neuron, every step and every firing only pro-
vokes calculations at one neuron. Thus, the algorithm
only performs computations where the changes occur,
that is, where the system shows some activity. In con-
sequence, the CPU time grows almost linearly with
the number of neurons. This fact can be observed in
Table 5.

4.3. Simulation of networks of interconnected
neurons

In this last test we simulated different networks of inter-
connected neurons. To this end, we followed the
scheme proposed in the Benchmark I of Brette et al.16

We considered networks composed of 400, 1000,
2000, and 4000 neurons. In each case, 80% of the neu-
rons are of the excitatory type while the remaining 20%
are of the inhibitory type. We also established that each

Figure 10. CPU time (seconds) for RK45, BS, QSS3, and QSS3

logarithmic in the simulation of a system of 10, 100, 1000, and

2000 disconnected neurons.

Table 5. Mean CPU time in seconds for simulating 10, 100, 1000, and 2000 disconnected neurons. The variance is reported

between parentheses

Method 10 neurons 100 neurons

RK45 1.41E-02 (1.78E-02) 1.31E-01 (3.00E-02)

BS 1.30E-02 (5.27E-03) 3.70E-01 (8.33E-02)

QSS3 2.08E-01 (2.02E-01) 7.70E-01 (2.19E-01)

QSS3 log 1.24E-01 (8.39E-02) 5.93E-01 (9.40E-02)

Method 1000 neurons 2000 neurons

RK45 1.04Eþ 01 (8.36E-01) 3.88Eþ 01 (3.30Eþ 00)

BS 3.71Eþ 01 (4.33Eþ 00) 1.35Eþ 02 (1.53Eþ 01)

QSS3 7.89Eþ 00 (2.09Eþ 00) 1.72Eþ 01 (3.49Eþ 00)

QSS3 log 7.07Eþ 00 (1.74Eþ 00) 1.61Eþ 01 (3.51Eþ 00)
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neuron is connected (in a random way) with 80
neurons.

We compare the performance of the four algorithms
of the previous example, with the same tolerance and
quantum settings, but now we selected a final simula-
tion time of 250 milliseconds. As before, we ran each
simulation 30 times and computed the mean CPU time
required for each algorithm. Table 6 summarizes the
results.

Figure 11 plots the CPU time as a function of the
number of neurons for each algorithm.

These new results agree with the previous case of
disconnected neurons. When the number of neurons
becomes larger, QSS3 methods become more efficient
than both discrete time algorithms.

As we observed in the previous example, Figure 11
shows that the CPU time grows almost linearly in QSS3
methods, while it grows at least quadratically in the
other algorithms.

5. Conclusions

In this article we studied the use of QSS algorithms in
the simulation of SNNs. We found that their efficient
discontinuity handling and their activity-driven features
offer very important advantages over the most widely
used discrete time methods.

The greatest advantage exhibited by the QSS meth-
ods is that their computational costs grow almost line-
arly with the number of neurons, while they grow at
least quadratically for discrete time methods.
Consequently, the performance of the QSS algorithms
in the simulation of large networks of neurons is clearly
superior.

As a side result, we implemented an algorithm to
manage the time advance of the simulation engine
based on a binary tree of the submodels. While the
cost for computing the next event time is linear with
the number of submodels in most DEVS implementa-
tions, in our algorithm its results are only logarithmic.

Although the results are promising and the QSS
methods noticeably improve the performance of dis-
crete time algorithms in the systems analyzed, some
work has to be done before claiming that this discrete
event approach constitutes a valid and general alterna-
tive for SNN simulation.

Firstly, we need to perform experiments with differ-
ent models (so far, we have used only Izhikevich’s
model with a particular type of synapse). We conjecture
that we shall find the same advantages, but we cannot
affirm that without running simulations.

In the current work, as we explained in Section 3, the
models were built using an ad hoc Cþþ program that
generated the PowerDEVS model structure. If we want
to convince people from the neurosciences community
to use our algorithms, we definitely need to develop a
better end-user interface.

Moreover, it is possible that PowerDEVS (or any
other DEVS-based modeling tool) is not the best

Figure 11. Mean CPU time versus number of neurons.

Table 6. Mean CPU Time (seconds) for 400, 1000, 2000, and 4000 interconnected neurons. The variance is reported

between parentheses

Method 400 1000 2000 4000

RK45 9.79 (1.62) 68.89 (7.94) 300.29 (25.84) 1231.24 (76.98)

BS 30.08 (3.69) 165.58 (16.40) 568.40 (43.50) 2124.14 (293.23)

QSS3 17.74 (1.59) 61.33 (2.71) 139.76 (4.79) 301.76 (11.00)

QSS3 log 12.56 (0.85) 44.15 (2.19) 101.80 (3.55) 218.19 (7.61)
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choice to implement these simulations. Any general-
purpose DEVS simulation engine performs several
tasks that are not useful in the context of simulating
a QSS approximation of an ODE. We are currently
working on the development of standalone QSS sol-
vers. Some preliminary results show a simulation
speedup of one order of magnitude with respect to
the same QSS approximation executed by
PowerDEVS. Thus, if we can develop a specific end-
user interface for modeling large SNNs and then we
integrate them with these standalone solvers, we can
expect a significant improvement of the results shown
in this article.

Finally, for larger networks of neurons, we will need
to tackle the problem of parallelization of the
algorithms.
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