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ABSTRACT
Cloud provides a shared computing space on a pay-as-you-gomodel.
Due to this sharing, it is difficult to execute the task efficiently in
terms of time. Several factors play its parts such as process sched-
uling and computing requirement of other processes sharing the
system. Moreover, network usage is highly depended on processes,
typically processes are categorized computing and communication
intensive. Such sharing of platform often degrade the performance
of parallel and distributed simulations (PADS). Execution of opti-
mistic simulation can lead to a large number of rollbacks due to the
imbalanced situation of physical systems. In this paper, we have an-
alyzed the execution of Time Warp (TW) inside cloud environment
and proposed a scheme to migrate the frequent communication
processes. Thus, the objective is to reduce the overhead which is
one of the sources of rollback especially due to unknown network
conditions inside the cloud. The results section demonstrate the
effectiveness of our proposed scheme.
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1 INTRODUCTION
The domain of Parallel and Discrete Event Simulations (PDES) has
evolved over the years. Its purpose is to simulate the behavior of
executing processes on Parallel or Distributed processors. Commu-
nication is established between these processes via either message
passing or shared memory. Improving the overall performance of
the simulation on heterogeneous platforms is one of the major
research concern in this field.

Cloud computing provides its users with hardware and software
resources and these resources can be remotely utilized by the users.
Goal of cloud service providers is to improve the performance by
enhancing the application portability and offer more diverse re-
source deployment options. Cloud computing data centers require
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a comprehensive resource allocation system to manage both com-
putational and network resources. There are many optimal and sub-
optimal resource allocation techniques for cloud computing data
centers [22]. With such appealing processing capabilities of cloud
computing, many scientific research applications and paradigms use
cloud computing architecture. Similarly, cloud computing presents
a fascinating means to provide simulation applications to its users,
specially the parallel and distributed simulations. As much as ap-
pealing this concept is, there are some challenges in execution of
PDES on clouds[6].

• Performance degradation can be faced if PDES is executed
on clouds, on the account of its multi-tenant environment.

• Compute or Data intensive application can effect the capa-
bility of other processes launched on the same physical node
as the system is shared among different applications.

• Processes are placed at different locations on the clouds
which is prone to congestion as more traffic will be gener-
ated.

• Cloud resources are shared by different applications that can
arise inconsistency issues.

• A simulation that involves a lot of communication is more
challenging to be performed on cloud platform.

In traditional distributed simulation, logical processes (LPs) are
mapped on different systems/cores. These LPs communicate with
each other by sending and receiving time-stamped messages. How-
ever, process mapping on different Processing Entities (PEs) in a
cloud can greatly affect the performance of entire simulation sys-
tem. Distributed simulation requires a synchronization algorithm
to ensure that the distributed execution yields the same results
as a sequential execution. Synchronization among processes is of
significant importance. Moreover, some algorithms need to store in-
formation of processed events to undo out of order execution using
rollback mechanism. S. Jafer et al[8] has presented a detailed dis-
cussion about some of the widely used synchronization techniques
categorized as; Conservative Synchronization and Optimistic Syn-
chronization.

In conservative approach causality error is strictly avoided by
applying strategies to determine when it is safe to process an event.
Chandy et al[3] proposed a conservative synchronization mecha-
nism that uses Null messages. In this mechanism, every time an
LP sends an event message to a neighboring LP, it also sends a
Null-message to all its other neighboring LPs. This Null message
informs the neighboring LPs of a lower bound on the timestamp (i.e.
its Simulation time plus its lookahead value) of any event message
LP might send in the future. Neighboring LPs can thus determine
a lower bound on the timestamp (LBTS) of all messages it might
receive in the future (from all its neighbors). Optimistic Synchro-
nization on the other hand defies the notion of Local Causality
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Constraint. It just proceeds with the execution of events and uses
rollbacks to recover from events that are executed out of order.
Jefferson presented a famous optimistic algorithm known as Time
Warp [11]. In this synchronization technique for Distributed Simu-
lations there is a local clock associated with each process. The time
of that local clock is called Local Virtual Time (LVT). Each process
compares timestamps of events with it own Local Virtual Time due
to which it makes sure that no out of order message arrives[10].
If by any chance an out of order message arrives, necessary roll-
backs are done and then simulation proceeds[21]. To be able to
rollback changes, Time Warp mechanism keeps processed events
in a different list causing memory overhead. A Global Virtual Time
is computed that is the lowest timestamp of all unprocessed events,
processed events and anti messages. Global Virtual Time (GVT) as-
sures that processes do not go further away from it[2] and memory
associated with all the events with timestamp lower than GVT can
be regained [15].

Performance of Parallel and Distributed Simulations (PADS) de-
grades on account of the fact that logical processes exchange large
number of event messages that are sent across the networks. A lot
of network traffic is generated because of the recurring commu-
nication of processes. The goal of this work is to minimize this
network traffic by an effective mapping of processes in cloud data
center. A technique to overcome this situation is to perform other
operations during communication, is known as Latency Hiding. We
have suggested a migration technique that will not only reduce the
amount of rollbacks but also the overall communication expense
of the network of the cloud. The remaining paper is categorized
as follows: Section II contains details about some of related works.
Section III explains problem formulation. Our proposed methodol-
ogy is explained in Section IV. Evaluation is done in Section V and
conclusion is discussed in Section VI.

2 LITERATURE REVIEW
Some of the related work in this field is discussed here. Malik et
al [16] presented a methodology to deal with recurrent rollbacks
caused by unbalanced workload and crowded network. Fujimoto
et al[7] highlighted key challenges in performing Parallel and Dis-
crete Event Simulations over Cloud environment. Performance of
a distributed simulation can degrade because of processes that
frequently communicate with each other by message passing. Ran-
domly placing processes over cloud can cause unbalanced workload,
that is why some processes will compute execution immediately
and some will last longer.

Perumalla et al[20] proposed a mechanism for processing opti-
mistic parallel application using time warp. The mechanism sup-
ports a variety of synchronization techniques. It is designed in such
a way that processes can dynamically choose between synchroniza-
tion techniques. Alfred et al[19] proposed a technique for executing
distributed simulations of large scale using amaster-worker method-
ology while the simulation is performed on resources connected
through network. Authors in [9] minimized synchronization delays
by incorporating a model that uses multi-threading technology. A
mechanism discussed in [1] is proposed to improve the efficiency
of simulation applications by reducing the number of rollbacks.

Another attempt of the same nature is made by Wentrong et
al[13] for augmenting large scale simulations performance, so that
maximal simulation execution speed can be achieved. Idea is to
make the system fully balanced by providing virtual machines
with resources, dynamically. It also ensures that different nodes
proceed with similar speed. Xiao et al[23] designed a procedure
that increases the efficiency of High Level Architecture (HLA) sys-
tems by presenting load balancing under both communication and
computation expenses.

In [24] Jingjing Wang et al. approaches to PDES by proposing
a multi-threaded simulator. The objective of the author’s work is
to increase the performance of simulations by using a threaded
model. Doing so will increase the performance of communicating
processes compared to using a non-threadedmodel. Munck et al[17]
discussed the problems with conservative synchronization’s null
message protocol justifying that it sends enormous amount of null
messages causing overhead and then proposes a technique that
integrates the fruitfulness of existing techniques.

In [5], writers Gabriele D’Angelo et al. discussed the challenges
faced in executing parallel and distributed simulations in clouds as
well as multi-core systems. Under the constraints of performance
and utility, authors evaluated the existing PADS techniques for
deficiencies and then proposed an adaptive way to overcome those
deficiencies. The proposed system lessens the cost of communica-
tion and improves load balancing.

Similarly, Weiwei Chen et al[4] proceeded with another method
to improve parallel and discrete event simulations. They improved
the performance of the overall simulation using multiple threads
running simultaneously. This approach has the ability to decide at
runtime whether to initiate a group of threads in parallel or not. In
[14], existing methods are analyzed and compared by the author
to his own method of optimizing task allocation and then he justi-
fies how his technique puts him one up on other existing algorithms.

Vy Thuy Nguyen et al[18] proposed a criteria for the simulation
of network containing large number of nodes. The criteria produces
efficiency in the networks by giving high level parallelism. The gist
of this work is to replace node model by link model, that is an LP
portrays a link to the network and not a node and it will perform
better.

We have proposed an approach that will migrate processes that
most frequently communicate with each other, making Time Warp
to execute efficiently over the clouds. The forthcoming section de-
scribes the problem formulation.

3 PROBLEM FORMULATION
In this section, we have devised and explained the problem that will
help in understanding how we can minimize the delay experienced
by the network. This is done by performing essential migration
of those processes that communicate most frequently resulting in
improved performance of the overall system. A simulation involves
the participation of a number of Logical Processes (LP’s) i.e.

LP1,LP2, ........LPm ∈ LP

These logical processes are scheduled on a number of Compute
Codes (CN’s). A data center is a huge station containing a lot of
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physical cores also called as Processing Elements (PE’s). Each Pro-
cessing Element is capable of scheduling multiple Virtual Machines.
Logical processes are scheduled on these virtual machines. Com-
pute Nodes are same as virtual machines. It is to be noted that these
nodes may or may not belong to the same rack in a data center.

CN1,CN2, ........CNm ∈ CN

Some of the assumptions we made are as under: We have assumed
LP’s to be representing an undirected graph that is:

G = (V ,E)

Where G is an amalgamation of Edges E and Vertices V. In our as-
sumption vertices represent LP’s and edges represent paths through
which those LP’s will exchange messages.

Furthermore to layout the network we have supposed a mesh
topology. Doing so will enable an LP to be able to communicate
with every other LP on the network. There is a cost associated with
every path through which a processes will communicate given by:

costx,y |{weiдht(x ,y) = weiдht(y,x)}

Considering x to be source and y to be destination, weight from
source to destination and destination to source should be the same.

Additionally, LP’s can either be scheduled on the same compute
node or on different compute nodes. The cost of communication
between such LP’s is represented byCostlocalNode . LP’s could also
be scheduled on different compute nodes but within one rack. In
that case, cost of communication is maintained by CostlocalRack .
In another case LP’s could be scheduled on different nodes across
different racks and then the cost for this situation is maintained by
Costr emoteRacks .

The cost of communication between LP’s on the same compute
node must be the lowest whereas the cost of communication be-
tween LP’s on different racks must be the highest i.e.

CostlocalNode < CostlocalRack < Costr emoteRacks

As cloud supplies its users with resources like processing power,
memory and storage on pay-as-you-go basis. Users are charged
on account of memory usage, amount of computation, amount of
communication and usage of storage. The goal here is to lessen the
cost of communication by migrating processes near to its commu-
nicating counterpart.

Assuming, if we have six compute nodes on a data center i.e.
CN1,CN2,CN3...CN6 and an equivalent amount of LP’s are launched
on those compute nodes i.e.

{lp1.w , lp1.w+1, ..., lp1.x } −→ cn1

{lp2.x , lp2.x+1, ..., lp2.y } −→ cn2

...

{lp6.y , lp6.y+1, ..., lp6.z } −→ cn6

R1 + R2 + ... + Rk −→ DataCenter

R stands for Racks that belong to a data center.
Additionally nodes pairs are placed on racks.

cn1, cn2 −→ R1

cn3, cn4 −→ R2

and

cn5, cn6 −→ R3

Assuming that communication occurred between process located
on different racks is represented by m, communication occurred
between processes on different nodes but same rack is represented
by r and communication occurred between processes on the same
node is represented by q. Assumingm > r > q

(cn1, cn3) ⇒ (p1.r+r ,p3.j ) −→m

(cn5, cn6) ⇒ (p5.l ,p6.m ) −→ r

(cn4, cn4) ⇒ (p4.x ,p4.x+1) −→ q

Equations above represent how communication occurred between
processes on different racks, on different nodes but same rack and
on the same node.

The expense of the total communication is devised as:

f (x) = {

m∑
i=1

Costr emoteRacks+

r∑
i=1

CostsameRack+

q∑
i=1

CostlocalNode }

Considering a three-tier architecture, communication happened
between processes on different racks will require at least 2 hops
as the message traverser through aggregate and access switches.
Similarly, on same rack, the communication will require just one
hop and on the same node, there are no hops as the communication
is done locally.

min{
∑m
i=1Costr emoteRacks +

∑r
i=1CostlocalRack +

∑q
i=1CostlocalNode }

There is a way [12] to lessen the traffic on the network by introduc-
ing locality between communicating processes. More number of
hops means more delay incurred. So:

delaylocalNode < delaylocalRack < delayr emoteRacks

Bringing processes who communicate more on the same node can
lessen the traffic on the network, that is another goal of our work.
The idea is to lessen delay incurred in communication between
processes that transmit message most frequently by introducing
locality between such processes. In traditional methodology, roll-
backs can affect the performance of the simulation by congesting
the network which will resultantly make the system costly. So the
goal is:

min{
∑m

i=1
delr emRacks +

∑r

i=1
dellocRack +

∑q

i=1
dellocNode }

Reducing the amount of rollbacks means reducing the amount
of anti-messages sent across the network, that in result will reduce
the network usage and thus enhance the performance.
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4 PROPOSED METHODOLOGY
As discussed earlier, Parallel and Discrete Event Simulation involves
a number of LP’s that communicate with each other by sending
messages that has a time stamp associated with it. Problems arise
while synchronizing the Logical Processes. To overcome this prob-
lem some technique were introduced like Time Warp. Time Warp
overcomes the problem of synchronization by using rollbacks. But
large number of rollbacks become a major problem when Time
Warp is used on cloud environment. For synchronization purpose,
it will generate a huge amount of rollbacks because of the net-
work involvment [16]. Besides this, network performance is also
degraded due to the placement of virtual machines in a dynamic
manner as happens in the case of cloud environment.

Our procedure helps in overcoming delays experienced in com-
munication, decreases the network usage and also the amount of
rollbacks in case of Time Warp execution on clouds platform. Sep-
arate queues are associated with each LP for keeping a record of
processed and unprocessed events. Events are initially executed in
increasing order of their timestamps. Messages are also kept track
of such that, if a message is received that has a timestamp lower
than the local time of the Logical Process (that received the mes-
sage) then the changes are rolled back. These rolled backs events
are later considered for execution again. Rollbacks cause the system
to sent anti messages which in turn causes other processes to do
rollbacks. Following this strategy, there occur a lot of rollbacks,
hence, the performance is degraded.

In our approach, one process acts as the master process (global
coordinator) and all other processes acts as workers. The number
of messages sent and received by a process are kept track of. The
number of messages sent or received increases as more events
are being executed. After a user defined unit of time each process
creates a table that is in descending order of the number of sent
and received messages. ”’N” entries from the top of the table are
shared with the master process. We calculated ”’N” from dividing
total number of processes by 2. Our methodology mainly follows
the criteria of Alfred et al[19] and Fujimoto et al[7].

After when the worker processes are done with sending their
top ”’N” entries, the master process on the basis of those entries
draws a graph. Number of messages sent and received are added
and given as weights to edges. An edge between two processes is
added if their is any communication between them. If a processes
has no communication with other processes, it is added to graph as
an unconnected node. If there is a cycle in the graph it is eliminated
by removing the lowest weighted edge.

After the graph is completed built, the master puts edges with
the highest weight in a separate list one after one until all connected
nodes are added to the list. Nodes that are still remaining i.e. those
that were not connected to the graph are added to another list. Let’s
suppose processes x and z are currently located at node A and pro-
cess y is located on another node B. Further, assume that processes
x and y communicated with each another the most. Master process
in such case will migrate process y to the same node as process x
i.e. node A. Process z which in this case is not communicating with
either x or y is migrated to node B. The master will always, in such
case, swap two processes just like it did y and z. Processes that are

added to the second list are considered expendable, meaning when
a process needs to be migrated to its most communicating peer,
master will pick any expendable process to pair up for swapping.
The complete flow of procedure is show in figure 3.

Additionally key-value pairs are added to a routing table. A
routing table is associated with each process that contains default
values see Figure 2(a). Use of routing tables will help us in achieving
transparency. Routing tables makes life easy by providing processes
with the current id’s of process in the destination. In the start,
each routing table has default values but as soon as migrations
are performed the routing table is updated with new id’s of the
processes, see Figure 2(b). This is vital because these tables are used
to get the id’s of destination processes.

Process_Id Updated Process_Id
325 325
456 456
986 986
391 391
235 235

(a) Routing table before migration

Process_Id Updated Process_Id
325 235
456 986
986 456
391 391
235 325

(b) Routing table after migration

Figure 1: Routing table maintain
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(a) Undirected graph is created based on communications

P1

P2 P3

P4 P5

P66

9

37

(b) Get rid of cycles

P1

P2 P3

P4 P5

P66

9

37

(c) Put the pair of nodes that communicate the most in a list

P1 P4 P5

P6

37

(d) Put the next most communicating pair in the list

P5

P6

(e) Processes that remain dis-
connected from the graph
are to be added to the list of
Expendables

Figure 2: Working of the system
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5 PERFORMANCE EVALUATION
We have used PHOLD benchmark model to study the performance
of the system.We compared the results of our systems with the stan-
dard optimistic TimeWarp protocol on a cloud computing platform.
Moreover, we used Amazon EC2 with about 20 instances. Accord-
ing to PHOLD model, a single instance is supposed to schedule
many processes that should communicate with each other. Exper-
iment was performed several times to obtain normalized values,
then we took the average of the all results. Figure 3 depicts events
committed using both scenarios, figure 4 describes the network
usage, figure 5 shows the rollbacks happened and shown in figure 6
represents the efficiency of both techniques. The network usage
is the amount of messages passed in between different racks. Our
technique performs better as it outnumbers the traditional method
by having more committed events. Furthermore, our technique
not only has way less rollbacks but it also tones down the usage
of network and has a better efficiency. Efficiency is the ratio of
committed events to the total events. Therefore, results depicts that
our algorithm augments the performance of Time Warp if used in
cloud computing platform.

Figure 3: Events Committed

Figure 4: Network Usage

Figure 5: Rolled-back Events in both cases

Figure 6: Efficiency Comparison
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6 CONCLUSION
In cloud computing platform a single resource is shared by multiple
remote users. Different users may have different workloads. Execut-
ing Parallel and Discrete Event Simulation on such platforms may
cause performance issues because of unbalanced distribution of
workload. Some criteria should be adopted that can handle changes
in dynamic manner so that the overall system remains balanced
and well-performing. In PDES, event messages are used as a source
of communication between Logical Processes. These event messages
can affect the performance negatively as it can clog the network.

Our approach, as compared to the existing standard Time Warp
(that does not work better on cloud platform due to the single-
resource-multiple-users trait) works better on the cloud environ-
ment. We have devised a methodology in a way that it decreases
the communication across the network thus, improving the perfor-
mance of the simulation. In future, we are looking forward to in-
clude mechanisms that will support fault-tolerant and autonomous
migration of processes.
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