
Asynchronous Approximate Simulation Algorithm for
Stream Processing Platforms (WIP)

Veronica Gil-Costa
Universidad Nacional de San

Luis
San Luis, Argentina
gvcosta@unsl.edu.ar

Emilio Tapia
Universidad de Santiago

Santiago, Chile
emilio.tapia@usach.cl

Mauricio Marin
CeBiB, DIINF, Universidad de

Santiago
Santiago, Chile

mauricio.marin@usach.cl

ABSTRACT
Simulating streaming software applications running on top
of a distributed stream processing platform can be useful to
evaluate their performance before putting them into produc-
tion. However, simulating them in parallel is a complex task
as the execution of events across simulation processors is
not trivial because causality related events can form differ-
ent sequences distributed on many processors. In this work,
we present a window-based simulation algorithm for approx-
imate parallel discrete-event simulation of streaming soft-
ware applications. The algorithm is suitable for distributed
stream computing platforms containing facilities for support-
ing fully asynchronous processing elements and downstream
event flows. Namely, our simulations can be executed on the
same streaming platform where the streaming application is
intended to be run. The parallel simulation algorithm is based
on two time control barriers. The first one is a time window
barrier used to process events with time-stamps within the
time window. The second one is an oracle time barrier used
to define the values of the time window barrier in a manner
that is based on the intrinsic features of the system being sim-
ulated rather than the current value of the time window bar-
rier of the actual parallel simulation. Both barriers are com-
puted asynchronously. For experimentation, on top of the dis-
tributed stream computing platform we simulate a Web search
engine. The experiments show that our proposal is capable of
efficiently scaling up and at the same time achieving good
approximate results with respect to the results obtained from
sequential simulations of the same Web search engine model.
Author Keywords
Stream processing platform; Parallel simulation.
ACM Classification Keywords
I.6.4 SIMULATION AND MODELING : Parallel.

INTRODUCTION
Stream processing platforms are useful for performing com-
plex operations on multi-source, high-volume, unpredictable
dataflows. They have been designed to deal with the online
processing of high volume data streams to achieve real-time
data analysis. Currently, there is a number of platforms for
stream computing which are available from cloud computing

SCSC 2016, July 24-27, Montreal, Quebec, Canada
c© 2016 Society for Modeling & Simulation International (SCS)

service providers such as SPC (Stream Processing Core) [2],
Storm [1], Spark [19] and D-Stream [19].

In particular, the S4 (Simple Scalable Streaming System) [15]
is a general-purpose distributed platform designed to analyze
massive data processing. The S4 world-view is that streams
are passed through a graph (DAG) formed by processing el-
ements (PEs) which are connected to each other in a down-
stream manner. Each PE performs a given primitive operation
on the received stream and generates output streams. Data is
routed through the PEs by means of keys, which are specified
by users.

Stream computing platforms process millions of events that
produce traces with information regarding user’s activity.
These traces can be used to detect anomalies, to predict the
behavior and trends of customers, among other activities that
can improve the productivity of a company or institution. In
addition, those traces can feed a simulator used to deal with
the complexities of understanding and optimizing applica-
tions running on the stream processing platform.

In a sequential simulation all events are executed in chrono-
logical order and a single clock is updated after the execu-
tion of each event. In distributed simulations -as the ones
needed for stream processing platforms- this becomes a main
difficulty as events are processed in different processors, and
each processor has its own local clock. Thus, a major diffi-
culty of Parallel Discrete Event Simulation (PDES) is to effi-
ciently process all events in parallel in global time-stamp or-
der. Synchronizing event execution across processors is not
trivial as causality related events can form different sequences
distributed on many processors.

In this work we propose an approximate simulation algorithm
for an asynchronous distributed stream computing platform
attached to a Web search engine infrastructure. In Web search
engines, stream computing platforms are usually available for
performing operations related to user mining. To control the
event time advance in each processor, the proposed algorithm
uses two barriers. A time window barrier B used to block
events with time-stamps e.tr > B and an oracle time barrier
R used to adaptively compute the values of B across the sim-
ulation. The experimental evaluation is performed on the S4
platform which makes the deployment of PEs on the cluster of
processors transparent and enables their efficient parallel and
distributed execution. The results show that our proposal is
capable of reducing in about 80% the running time of sequen-

421

tial simulations but it introduces imprecision on the statistics
of the simulated model. However the lost in precision is 5,8%
at most. To the best of our knowledge, no research has been
conducted so far on optimistic and approximate simulation
algorithms for distributed stream processing platforms.

The remaining of this paper is as follows. Section intro-
duces preliminary concepts and describes related work. Sec-
tion presents our asynchronous parallel simulation algorithm.
Section presents our experiment results and section presents
concluding remarks.

BACKGROUND AND RELATED WORK
Efficient strategies for parallel discrete-event simulation
(PDES) have been widely studied in the late 90’s and early
2000’s literature [8]. In PDES, parallelism is introduced by
partitioning the system into a set of concurrent simulation ob-
jects called logical processes (LPs). Events take place within
LPs, their effect is the change of LP states, and LPs may
schedule the occurrence of events in other LPs by sending
event messages to them. Once the LPs are placed onto the
processors, a major problem is synchronizing the occurrence
of events that take place in parallel so that the final outcome
is equivalent to that of a sequential simulation of the same
events. There are two simulation approaches widely used to
solve this problem. Optimistic simulation represented by the
Time Warp (TW) protocol and its many variations [8], and a
number of conservative protocols [4]. TW is capable of pro-
cessing events in parallel in correct chronological order by
optimistically processing the occurrence of events available
in processors and correcting errors that are timely detected.
When TW detects that the simulation of events have been
missed in the chronological simulation time, a reverse com-
putation called roll-back is executed in the involved proces-
sors to re-simulate previous events and to include the missed
events in the right chronological order. The conservative pro-
tocols ensure safe simulation events by imposing rules on the
time of the next events that prevent the late arrival of events in
the processors. To this end, the simulation in any given LP is
blocked until it can be guaranteed that no event with a smaller
time-stamp will later be received.

PDES has deserved recent attention in the context of clus-
ters of multi-core processors [10]. The work in [10] proposes
a multi-grained parallelism technique based on the discrete
Event System Specification (DEVS) methodology. The work
in [14] proposes the DEVS/SOA framework which provides
the feature of run-time composability of coupled systems.
The work in [5] presented a global schedule mechanism ap-
proach for improving the effectiveness based on a distributed
event queue. In [7] the authors presented a distributed ap-
proach based on the migration of simulated entities. The work
presented in [18] evaluated symmetric optimistic simulation
kernels for a multi-core cluster which allows dynamic reas-
signment of cores to kernel instances.

The work in [6] proposed a hierarchical Colored Petri Net-
based scheme to represent a Web search engine. The hierar-
chical approach is useful to build large complex models and
parallelism can be captured by distributing modules on LPs

to enable parallel simulation on clusters of multi-core proces-
sors. The authors in [17] presented a simulator for stream
processing systems. However, the proposal is designed for
optimistic and exact simulations, and it uses synchronization
mechanism to guarantee the correct chronological execution
of events. Synchronization mechanisms includes additional
costs on the parallel simulation algorithm [11, 6]. The strat-
egy presented in [12] is an early uni-thread processor version
of the windowing-scheme presented below in this paper.

The parallel approximate simulator [13], is based on multi-
threading and a bulk-synchronous message passing strategy
to automatically conduct simulation time advance. The paral-
lelization of execution of simulations is simplified as no roll-
backs are considered to correct erroneous computations. The
simulation is organized as a sequence of steps. During a step,
processors may perform computations on local data and/or
send messages to other processors. At the end of a step there
is always a synchronization barrier. Messages sent during the
current step are available for processing at their destinations
at the next step. In each processor there is one master thread
that synchronizes with all other P − 1 master threads to ex-
ecute the steps and exchange messages. Then, in each pro-
cessor and step the remaining T −1 threads synchronize with
the master thread to start the next step, though they may im-
mediately exchange messages during the current step as they
share the same processor main memory.

Additionally, a key-based approach is used in [13]. Each
event has a key which determines the operation to be per-
formed and by means of a hash function it obtains the proces-
sor identifier and the thread responsible to simulate that op-
eration. Processing events in parallel during periods of time
where no messages from other processors (remote threads or
LPs) are received can lead to the problem of missing the ar-
rival of event messages at the right simulation time. The ap-
proach presented in [13] simply ignores such situations but
proposes a strategy to significantly reduce the arrival of those
“straggler” messages.

Stream Processing Platforms: S4
Applications executed on a stream processing platform re-
ceive, process and emit events. Typically those events are
generated on-line in an unpredictable way. The union of
events forms a continuous stream of information that may
have dynamic variations in intensity of traffic. In this con-
text, the process used to store and organize/index events in a
conveniently way to then process them in batch can be very
costly given the huge volume of data and the amount of com-
putational resources required for processing them. But even if
this is feasible, it is often desirable or even imperative to pro-
cess the events as soon as they are detected to deliver results
in real time. Stream processing corresponds to a distributed
computing paradigm that supports the process of gathering
and analyzing large volumes of heterogeneous data stream to
assist decision making in real time [3].

In particular, S4 is a stream processing platform which al-
lows applications to process data flows continuously with-
out restrictions [16]. This platform uses Adapter applications
to convert external stream into stream of S4 events. These

422

events are routed to Processing Elements (PE) which are the
basic units of the platform and messages are exchanged be-
tween them. Events are described as a pair (key, attribute).
PEs are allocated into processing nodes (PNs) servers. The
PNs are responsible for: a) receiving incoming events, b)
routing the events to the corresponding PEs and c) dispatch-
ing events through the communication layer. The events are
distributed using a hash function over the key of the events.
Furthermore, the communication layer uses Zookeeper [9]
which provides management and automatic replacement clus-
ters if a node fails.

ASYNCHRONOUS APPROXIMATE PARALLEL SIMULA-
TION
In this section we describe an efficient window-based approx-
imate simulation algorithm suitable for distributed stream
computing platforms containing facilities for supporting fully
asynchronous PEs and downstream event flows. The algo-
rithm removes the roll-back mechanism imposed by classical
optimistic approaches like TW, while applying a windowing
scheme to restrain optimistic simulation time advance, so that
the rate of potential roll-backs is kept very low. This leads to
approximate simulations, which is capable of producing over-
all system statistics which are precise enough. The rewards
are simulations of large and complex models that run very
fast on clusters of processors which enable their application
to on-line capacity planning studies [6].

Each PE of the stream processing platform executes a single
LP of the simulation model, and each physical processor can
hold one or more PEs. Streams take the form of a collection
of “events” that are “emitted” by upstream PEs to create more
refined streams containing data for downstream PEs. Stream
events are tuples (e, v, d) where e is the type of event, v is a
value associated to the e, and d is data associated to e. Upon
reception of an upstream event, the PE executes user code
which receives the incoming event as input so that it can per-
form computations on it and emit new events.

The proposed algorithm is based on the use of two barriers:
1) a window barrier named B and 2) a step counter barrier
named R which leads to the periodic calculation of a new
value for B. The B barrier is used to process events with
time-stamps within the time window B. The R barrier is used
to estimate the number of steps (oracle steps) executed by
the simulation when running in a synchronous way, where
each step ends with a synchronization barrier. Thus, the R
barrier helps bringing the asynchronous simulation close to
the synchronous simulation which tends to reduce the number
of stragglers events (events executed in a non-chronological
order).

Figure 1 shows the main steps executed by the proposed al-
gorithm. Each event e stores the simulation time at which e
is created (ts) and the occurrence time of the event (tr). After
receiving a new event e, the algorithm checks whether the cre-
ation time of the event e.ts is greater than the current oracle
time barrier R. If so, R is updated with the time of occurrence
of the event (e.ts) and the number of oracle steps (C) is in-
creased (lines 1-3). The event e is inserted into the EventList,

Variables in each PE
C = Oracle step counter in the PE (init C = 0).
R = Oracle time barrier in the PE (init R = 0).
CE = step counter in the PE (init CE = 0).
B = Barrier in the PE (init B = 0).
W = Window in the PE (init W = 0.0001).
D = Distance between C values in the PE (init D = 10.0).

PE (streaming event e) //A new event e arrives to the PE
1. if (e.ts > R) then
2. R = e.tr
3. C = C + 1
4. EventList.Insert(e.tr, e)
5. if (C mod D == 0) then
6. ∆ = simulation time elapsed since last visit here
7. W = ∆/C
8. while(EventList.not empty() and (CE − C ≤ D))do
9. e = EventList.Extract()
10. if (e.tr > B)then
11. B = B + W
12. CE = CE + 1
13. Simulate event e
14. Emit(new events generated by event e)

Figure 1. Parallel simulation using S4 streaming processing elements.

which is sorted by the occurrence time of the events e.tr (line
4).

The value of W is automatically calculated as the average
simulation time increment in the PE (lines 5-7). W is com-
puted as W = ∆/C. C is the oracle step counter in the PE
and ∆ is the elapsed time since the last update of W . This
computations is performed after N steps.

We control the optimistic execution of PEs imposing that no
PE advances beyond D steps with respect to the oracle steps.
Thus, if the difference between the real number of steps of
the PE (CE) and the oracle number of steps (C) is greater
than a user defined value (D), the event e is not simulated
and the control flow of the algorithm goes back to wait for
another incoming event (line 8). Otherwise, the first event of
the EventList is recovered.

If the time of occurrence of the event (e.tr) is greater than
the window barrier time (B), it means that the simulation
has reached the global barrier synchronization (all PEs have
reached the same point of execution of the simulated algo-
rithm), and the window barrier is updated. The initial value
of B = 0. With this instruction the simulation time is ad-
vanced W units of time. Also, the number of real steps is
increased by one (lines 10-12). Finally, the event is simulated
(line 13) and the algorithm emits the new events generated by
e (line 14).

EXPERIMENTAL RESULTS

Case of Study: Web search engine
Typically, Web search engines (WSE) are composed by three
services devised to quickly process user queries in an on-
line manner: Front-Service (FS), Caching-Service (CS) and

423

Index-Server (IS). These services are deployed on a large set
of processors forming a cluster of computers. They are im-
plemented as arrays of P × R processors, where P indicates
the level of data partitioning and R the level of replication of
data. Hence, this architecture makes a high usage of parti-
tioning and redundancy to enhance the query response time
and throughput.

In a WSE a query submitted by a user goes through different
stages. Initially, it is received by a node of the FS, which redi-
rects the query to a node of the CS. The partition of the CS
is selected by applying a hash function on the query terms.
The replica is selected in a round-robin manner. The selected
CS node checks whether the same request has already been
performed and verifies if the result (document IDs) are stored
in the cache memory of the server. The CS node can answer
to the FS node with a cache hit. In this case, the CS node
sends the query results to the FS node which builds the Web
page with the query results and sends it to the user. Other-
wise, if the CS node sends a cache-miss to the FS node and
the FS re-routes the query to all partitions in the IS. Replicas
of the IS are selected in a round-robin manner. The IS nodes
compute the top-k document results by executing a ranking
algorithm. Then, each IS node send the local top-k document
results to the FS. Finally, the FS merge the local top-k doc-
uments received from the P IS nodes, builds the Web page
with the global top-k query results, sends it to the user and
sends a message to update the CS.

Event=START

key="QueryGenerator"

data=NULL

obj1
EVENT=FROM_OUTSIDE

key="class=FrontService;

 replicaID=128;"

data=token

EVENT=FROM_OUTSIDE

key="class=FrontService;

 replicaID=58;"

data=token

EVENT=FROM_OUTSIDE

Key="class=CacheService;

 partition=33;

 replicaID=111"

data=token EVENT=FROM_OUTSIDE

key="class=FrontService;

 replicaID=128;"

data=token

EVENT=FROM_OUTSIDE

key="class=IndexService;

 partition=22;

 replicaID=133;"

 data=token

obj2 obj3

obj4

obj5

Figure 2. Key based approach example for the S4 platform.

A WSE is deployed on the S4 platform using a key-based ap-
proach. Figure 2 illustrates this process. The typical content
of a key is a string like ”class= Class-Name; instance=ID”,
say”class= FrontService; replica=128”, or ”class= IndexSer-
vice; partitionID=22; replicaID=133”. In this example, the
only requirement is to specify the class identification field to
instantiate the right PE. Figure 2 shows an example where
the initial key is generated with the START event which cre-
ates a Query Generator object. The other objects are created
as soon as the query generator sends events to them. In the
figure, obj1 contains the query generator component, objects
obj2 and obj3 are Front-Service components, and obj4 is a
Caching-Service node whereas obj5 is an Index-Service node.

Experimental setup
The proposed asynchronous parallel simulator was evaluated
on a cluster of 16 64-bits CPUs Intel Q9550 Quad Core 2.83
GHZ and 4GB DDR3 RAM 1333 Mhz. The evaluation was

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

0 5 10 15 20

Q
u

er
ie

s
p

er
 S

ec
o

n
d

IDs for < FS, CS, IS > Configurations

Real
POS
S4

Figure 3. Simulation versus real implementations.

performed by modeling a Web search engine (WSE). The
simulator was tuned to emulate the costs of the relevant op-
erations executed by a WSE. Thus, we run benchmark pro-
grams to determine those costs (e.g. merge and ranking), and
the hardware related costs (e.g. network communication) [6].
We simulate a total of Q = 500000 queries.

We first validate our proposed asynchronous simulator and
then we present experiments performed to evaluate the ac-
curacy and the performance of the parallel algorithm. Fig-
ure 3 shows results from sequential simulations of the WSE
system described. The simulators were constructed following
the above guidelines. The curve labeled POS and S4 stand for
process-oriented and the S4 asynchronous simulations. The
curve labeled Real shows results from an actual implementa-
tion of the same system. The figure shows query throughput
results for different configurations given by specific values for
the number of replicas of the FS, and the number of partitions
and replicas of the CS and IS. In total, these configurations
range from 115 to 240 processors. Overall, the results clearly
indicate that simulations are able to predict performance trend
of the service configurations.

Accuracy Evaluation
In this section we present the query response time reported by
the POS, the synchronous approximate algorithm presented
in [13] and the proposed approximate asynchronous parallel
simulator. We analyze the average query response time met-
ric because it is a sensitive metric. It includes the delays pro-
duced by the network latency and the waiting queues inside
each services.

Figures 4.(a) and 4.(b) show the average query response time
for a small service configuration with 829 nodes and for a
large service configuration with 5448 nodes. The x-axis
shows query traffic which range from low (at left) to high
(at right). For the small system, the lowest query traffic is
400 queries per second and the highest query traffic is 2200
queries per second. For the large service configuration, the
lowest query traffic starts with 2000 queries per second and
it is increased to 3600 queries per second. Results show that
the small system is rapidly saturated affecting query response
times. Whereas for the large system, there is still room for
increasing the query traffic rate before saturating the system.

424

Regarding the accuracy evaluation, the synchronous algo-
rithm reports query response times close to the ones presented
by the POS algorithm. For a small service configuration, it
presents a maximum error of 2,44% and 1,94% in average.
For a large service configuration the maximum error is 2,6%
and the average error is 2,1%. The proposed asynchronous
parallel simulator reports an error of 5,3% at most when ex-
ecuting a small service configuration. The error rises up to
5,8% when executing a large service configuration.

The Pearson Correlation reported by the proposed algorithm
is 0, 97 for a small service configuration and 0, 91 for a
large service configuration. The values reported by the syn-
chronous algorithm are 0, 99 and 0, 88 respectively. In other
words, there is a positive correlation among the results from
the sequential (POS) and both approximate parallel simula-
tions.

Figure 4.(c) shows the percentage of straggler events reported
by the synchronous and the proposed asynchronous simula-
tion approaches. The experiment was performed for small
(829 nodes), medium (2435 nodes) and large (5448 nodes)
service configuration systems. The results show that the syn-
chronous algorithm achieves around 30% of stragglers events,
meanwhile the proposed algorithm reports 60% of stragglers
events in the worst case.

These results indicate that the synchronous algorithm is capa-
ble of drastically reducing the number of events executed in a
non-chronological order. It reports 30% less stragglers events
than the proposal. However, the proposal asynchronous algo-
rithm is a competitive algorithm in terms of effectiveness, as
the maximum errors are kept below 6% and the Person Cor-
relation is very high.

Performance Evaluation
In this section we evaluate the performance of the proposed
asynchronous parallel algorithm in terms of scalability. In
Figure Figure 5.(a) we show the simulation time reported by
the asynchronous parallel simulator to simulate the execution
of Q = 500000 queries. We show results with small, medium
and large service configurations. As expected, as queries ar-
rive faster to the simulator, the simulation time tends to de-
crease. In other words, when traffic is low, the LPs are put to
sleep until the next event arrives and the time elapsed between
two consecutive query arrivals increments the total simulation
time (the clock). But when the query traffic is high, the LPs
are always busy simulating the processes required to solve
a query. Thus, the time elapsed between two consecutive
queries arrivals does not affect the simulation time (clock).

This figure also shows the effect of saturating the different
service configurations while increasing query traffic. In par-
ticular, for high query traffic the simulation time of the small
service configuration is 22% higher than the one reported by
the large service configuration and 13% higher than the one
reported when executing a medium service configuration.

In Figure 5.(b) we show the total time in nanoseconds
reported by the S4 stream processing platform to ex-
ecute the asynchronous parallel simulation with differ-
ent number of processors. Execution time was mea-

sured with the System.nanoT ime() instruction of java.
We show the execution time for completing a total of
Q={1K,3K,5K,7K,9K,12K} queries. We simulate a system
with 2100 nodes and a query arrival rate of 1000 queries per
second.

Results show that the execution time grows logarithmically
as we increase the total number of queries (amount of work).
Additionally, the total execution time is reduces with more
processors.

Finally, Figure 5.(c) shows the running time reported by the
proposed algorithm running on the S4 platform with P = 16,
the synchronous approximate algorithm presented in [13]
running with P = 16 and the POS simulator (P = 1). The
S4 approach drastically reduces by 80% in average the run-
ning time reported by the POS simulator, and by 60% the
time reported by the synchronous approximate approach. The
synchronous approach tends to report higher running times as
the WSE model size increases, because it executes more steps
to finish the simulation and in each step a synchronous bar-
rier is executed among all involved processors. In addition,
this approach compute the value of the window increment W
gathering statistic information from all processors, which in-
troduces a communication overhead.

CONCLUSIONS
In this work we proposed and evaluated an asynchronous par-
allel simulator designed for the distributed stream processing
platform S4. The algorithm is designed to control the time
advance of events executed in different physical processors.
The control mechanism is based on two barriers which in-
cludes a window barrier and a step barrier. The first barrier is
used to avoid the execution of events with time-stamps too far
ahead in the simulation time. The second one is used to peri-
odically calculate a new value for the simulation time barrier.
This calculation is based on the event causality dependencies
across processors. We evaluate the proposed algorithm using
a Web search engine as a case of study. Results show that
the proposal is capable of estimating the query response time
when the web search engine is running under different con-
ditions with a maximum error of 5,8%. Additionally, the al-
gorithm is capable of scaling with more processors (P = 16)
as query traffic (workload) and the service configurations are
increased. In the near future, we plan to evaluate more cases
of studies including social networks and others stream pro-
cessing platforms like Storm and Spark.

ACKNOWLEDGMENTS
This work has been partially funded by CONICYT Basal
funds FB0001.

REFERENCES
1. Storm. [Online]. Available:

https://github.com/nathanmarz/storm/wiki.

2. Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King,
R., Selo, P., Park, Y., and Venkatramani, C. Spc: A
distributed, scalable platform for data mining. In
DM-SSP (2006), 27–37.

425

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

Low Medium High

A
v

g
.

Q
u

er
y

 R
es

p
o

n
se

 T
im

e

Query Traffic

POS
Sync
S4

 0.046

 0.048

 0.05

 0.052

 0.054

 0.056

 0.058

 0.06

Low Medium High

A
v

g
.

Q
u

er
y

 R
es

p
o

n
se

 T
im

e

Query Traffic

POS
Sync
S4

 0

 20

 40

 60

 80

 100

Small Medium Large

%
 S

tr
ag

g
er

s

Strategy

Sync
S4

(a) (b) (c)
Figure 4. Query response time for (a) small and (b) large service configurations. (c) Percentage of stragglers events.

 0

 200

 400

 600

 800

 1000

 1200

Low Medium High

S
im

u
la

ti
o

n
 T

im
e

Query Traffic

Small
Medium

Large

 0

 200

 400

 600

 800

 1000

 1200

 1400

1K 3K 5K 7K 9K 12K

E
x

e
c
u

ti
o

n
 T

im
e

Total Number of Queries

P=1
P=2
P=4
P=8
P=16

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0 5 10 15 20

E
x

ec
u

ti
o

n
 T

im
e

IDs for < FS, CS, IS > Configurations

POS
Sync

S4

(a) (b) (c)
Figure 5. (a) Execution time with (a) different query traffic, (b) different number of queries and (c) POS vs. S4.

3. Andrade, H., Gedik, B., and Turaga, D. Fundamentals of
Stream Processing Applications Design. System and
Analytics, Cambridge University Press, 2014.

4. Boukerche, A., and Das, S. K. Dynamic load balancing
strategies for conservative parallel simulations. SIGSIM
Simul. Dig. 27, 1 (1997), 20–28.

5. Chen, L.-l., Lu, Y.-s., Yao, Y.-p., Peng, S.-l., and Wu,
L.-d. A well-balanced time warp system on multi-core
environments. In PADS (2011), 1–9.

6. Costa, V. G., Marı́n, M., Inostrosa-Psijas, A., Lobos, J.,
and Bonacic, C. Modelling search engines performance
using coloured petri nets. Fundam. Inform. 131, 1
(2014), 139–166.

7. DAngelo, G., and Bracuto, M. Distributed simulation of
large-scale and detailed models. IJSPM 5, 2 (2009),
120–131.

8. Fujimoto, R. Parallel discrete event simulation. Comm.
ACM 33, 10 (1990), 30–53.

9. Hunt, P., Konar, M., Junqueira, F. P., and Reed, B.
Zookeeper: Wait-free coordination for internet-scale
systems. In USENIXATC (2010), 11–11.

10. Liu, Q., and Wainer, G. A. Multicore acceleration of
discrete event system specification systems. Simulation
88, 7 (2012), 801–831.

11. Marı́n, M. An evaluation of conservative protocols for
bulk-synchronous parallel discrete-event simulation. In
European Simulation Multiconference (2000), 83–90.

12. Marı́n, M. Acontrolling optimistic execution in
bulk-synchronous parallel discrete-event simulation. In
SCS European Simulation Symposium (2001).

13. Marı́n, M., Gil-Costa, V., Bonacic, C., and Solar, R.
Approximate parallel simulation of web search engines.
In SIGSIM-PADS (2013), 189–200.

14. Mittal, S., Risco-Martn, J. L., and Zeigler, B. P.
Devs/soa: A cross-platform framework for net-centric
modeling and simulation in devs unified process.
SIMULATION 85, 7 (2009), 419–450.

15. Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. S4:
Distributed stream computing platform. In ICDMW
(2010), 170–177.

16. Neumeyer, L., Robbins, B., Nair, A., and Kesari, A. S4:
Distributed stream computing platform. In ICDMW
(2010), 170–177.

17. Park, A. J., Li, C.-H., Nair, R., Ohba, N., Shvadron, U.,
Zaks, A., and Schenfeld, E. Towards flexible exascale
stream processing system simulation. Simulation 88, 7
(2012), 832–851.

18. Vitali, R., Pellegrini, A., and Quaglia, F. Towards
symmetric multi-threaded optimistic simulation kernels.
In PADS (2012), 211–220.

19. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and
Stoica, I. Discretized streams: Fault-tolerant streaming
computation at scale. In SOSP (2013), 423–438.

426

