
Real-time Hardware/Software Co-Design Using DEVS-based
Transparent M&S Framework

José L. Risco-Martı́n
Complutense University of

Madrid
C/Prof. José Garcı́a

Santesmases, Madrid, Spain
jlrisco@ucm.es

Saurabh Mittal
The MITRE Corporation

McLean, VA, USA
smittal@mitre.org

Juan Carlos Fabero
Complutense University of

Madrid
C/Prof. José Garcı́a

Santesmases, Madrid, Spain
jcfabero@ucm.es

Pedro Malagón
Technical University of

Madrid
Avda. Complutense,

Madrid, Spain
malagon@die.upm.es

José L. Ayala
Complutense University of

Madrid
C/Prof. José Garcı́a

Santesmases, Madrid, Spain
jayala@ucm.es

ABSTRACT
Design and development of hard Real-Time (RT) embedded
systems present several crucial requirements regarding criti-
cality and timeliness of these systems. Formal methods have
been presented as a promising alternative to deal with the
design issues of these applications. However, these formal
method do not scale well in complex systems. Modeling
and Simulation (M&S) provides cost-effective approaches to
verify and validate the design and implementation details of
complex RT applications. Nevertheless, M&S approaches
and artifacts are usually discarded in the later phases of the
development. Discrete Event Systems Specification (DEVS)
provides an appropriate M&S framework to provide formal
specifications to the actual RT system, incrementally moving
from software specifications to a full hardware embedded sys-
tem. In this work, we propose a hardware-in-the-loop model-
driven method, based on DEVS for RT/embedded applica-
tion/systems engineering. Our approach is based on an in-
cremental substitution of DEVS virtual software models with
Unix-compliant device files through a formally defined pro-
cess in the modeling phase. Consequently, any DEVS simu-
lation engine can be used. This paper advances the state-of-
the-art in hardware-software co-design methodologies.

Author Keywords
Discrete Event Simulation; DEVS; Model Based Approach;
Hardware In the Loop;

ACM Classification Keywords
I.6.1 SIMULATION AND MODELING: Simulation Theory;
J.6 COMPUTER-AIDED ENGINEERING: Computer-aided

SummerSim-SCSC 2016 July 24-27 Montreal, Quebec, Canada
c© 2016 Society for Modeling & Simulation International (SCS)

design (CAD); D.4.7 OPERATING SYSTEMS: Organization
and Design—Real-time systems and embedded systems

INTRODUCTION AND RELATED WORK
The design, development and implementation of real-time
embedded systems continues to be a a challenging effort at
systems engineers level. The set of constraints related to real
time management, task execution deadlines, power consump-
tion, etc., has always represented a serious drawback when
designing these kind of devices. The problem is much more
accentuated today, as the new era of the Internet of Things
(IoT) dawns. This becomes a complex adaptive system when
the human element is brought as an component of the system
itself. The Modeling and Simulation (M&S) of Cyber Com-
plex Adaptive Systems (CyCAS) are continuously demand-
ing new formal methods to manage the design, development
and implementation of such ultra-large systems with a high
level of quality, accuracy and fulfilling all the real-time con-
straints that one can imagine [8].

On one hand, typical approaches already exist that tackle the
design of real time embedded systems using set of formal
methods, e.g., bond graphs, cellular automata, partial dif-
ferential equations, queing models, etc. [4]. Most formal
methods are either hard to scale up to larger systems, or re-
quire a difficult testing effort without guarantees for bug-free
final products [12]. On the other hand, systems engineers
have often relied on the use of M&S techniques to make sys-
tem development tasks manageable. Construction of a virtual
model along with the corresponding analysis through sim-
ulation, reduces both costs and risks, along with enhanced
quality and system capabilities. Conclusively, M&S allows
users to experiment with a virtual system, explore the de-
sign, perform verification and validation mechanisms, and
much more. However, many of the M&S techniques do not
allow an incremental design, by means of a gradual inclu-
sion of Hardware In the Loop (HIL) components. Instead,

309

the virtual model is usually discarded in the later stages of
the development, i.e. during the hardware system synthesis,
instead of doing an incremental substitution of sub-models
with hardware components. Additionally, heterogeneous sys-
tems, combining software and hardware models in a whole
ecosystem, are the typical scenarios of IoT systems today,
e.g., smart cars, smart buildings, smart cities or smart homes
in integrated energy environments [11].

In this paper, we propose a method to help with the design of
RT/embedded complex systems and advance the state-of-the-
art in hardware-software co-design methodologies towards
IoT and CyCAS. We define a formal M&S incremental de-
sign approach based on the Discrete Event Systems Specifi-
cation (DEVS) M&S formalism and build on existing work
in this area. During the last decade, Moallemi and Wainer,
for example, have presented several DEVS-based approaches
[17], [12], [13]. In almost all of the approaches, a simu-
lation engine was substituted for RT hardware simulation.
In our approach, we do not modify the simulation engine
to allow RT DEVS communication with hardware devices.
Instead, our methodology suggests a formal straightforward
substitution of abstract hardware models (developed as DEVS
software models) with equivalent interface models to com-
municate with actual hardware. The concept of transpar-
ent simulation environment was developed for software com-
ponents/services in our earlier work [9, 10]. We apply the
same concept towards transparent hardware simulation envi-
ronment. We further define a formal procedure to build these
interface models, named “star” models.

Of course, there are other interesting techniques to deal with
the incremental design of RT embedded systems. As M&S
approaches, we may find SysML (Systems Modeling Lan-
guage) [6], UML-RT (the Unified Modeling Language for
Real-Time)) [7], the BIP (Behavior, Interaction, and Prior-
ity) methodology [3], and tools like Ptolemy II [5], SystemC
[2], MatLab/Simulink [1], etc. Some deal with the model-
ing domain and some have integrated simulation backend.
However, none offers the capability we require. An analy-
sis and comparison of these other techniques and tools is out
of the scope of this paper. This paper’s objective it to present
the new HIL model-driven DEVS-based method to develop
RT/embedded applications.

The remainder of this paper is organized as follows. Firstly, a
brief background is given. Secondly, the full approach is de-
scribed. Next, we show a case study where the methodology
proposed has been applied. Finally, some conclusions of this
work are drawn.

BACKGROUND

The Discrete Event System Specification
DEVS is a general formalism for discrete event system mod-
eling based on mathematical Set Theory [19]. Once a system
is described in terms of the DEVS formalism, it can be easily
implemented using an existing software/hardware library.

DEVS formally represents a system by three sets and five
functions: input set (X), output set (Y), state set (S), time

advance function (ta), external transition function (δext), in-
ternal transition function (δint), confluent function (δcon),
and output function (λ). The DEVS formalism provides the
framework for information modeling which gives several ad-
vantages to analyze and design complex systems: complete-
ness, verifiability, extensibility, and maintainability.

DEVS models are of two types: atomic and coupled. The
atomic model is the irreducible model definition that speci-
fies the behavior for any modeled entity: processes an input
event based on its state and condition, and generates an out-
put event and changes its state. The coupled model is the
aggregation/composition of two or more atomic and coupled
models connected by explicit couplings. The formal defini-
tion of parallel DEVS (P-DEVS) is given in [19]. An atomic
model is defined by the following equation:

A = 〈I,O,X, S, Y, λ, δint, δext, δcon, ta〉 (1)

where:

• I is the set of input ports.

• O is the set of output ports.

• X is the set of inputs described in terms of pairs port-value:
{p, v}.

• S is the state space. It includes not only the current state
of the atomic model, but also two special parameters called
σ and phase, which are the time until the next event gen-
eration, and a description of the current state (usually in
natural language), respectively.

• Y is the set of outputs, also described in terms of pairs
port-value: {p, v}.

• λ : S → Y is the output function. When the time elapsed
since the last output function is equal to σ, then λ is auto-
matically executed.

• δint : S → S is the internal transition function. It is ex-
ecuted right after the output (λ) function and is used to
change the state S (including phase and σ)

• δext : Q · Xb → S is the external transition function. It
is automatically executed when an external event arrives to
one of the input ports, changing the current state if needed.

– Q = (s, e)s ∈ S, 0 ≤ e ≤ ta(s) is the total state set,
where e is the time elapsed since the last transition.

– Xb is the set of bags over elements in X .

• δcon : Q · Xb → S is the confluent function, subject to
δcon(s, ∅) = δint(s). This transition is selected if δext and
δint must be executed at the same instant.

• ta(s) : S → <+
0 ∪∞ is the time advance function.

The formal definition of a coupled model is described as:

M = 〈I,O,X, Y,Ci, EIC,EOC, IC〉 (2)

where:

310

• I , O are the set of external (not coupled) input and output
ports.

• X is the set of external input events.

• Y is the set of output events.

• Ci is a set of DEVS component models (atomic or cou-
pled). Note that Ci makes this definition recursive.

• EIC is the external input coupling relation.

• EOC is the external output coupling relation.

• IC is the internal coupling relation.

Given the recursive definition of M , a coupled model can it-
self be a part of a component in a larger coupled model system
giving rise to a hierarchical DEVS model construction.

Device files and device drivers
In a GNU/Linux system, there are two main concepts: device
file and device driver. A device file is an interface for a device
driver.

The device driver, is a piece of software that operates or con-
trols a particular type of device, such as printers or serial
ports. However, every device driver can be specialized to in-
teract with only a specific resource on those devices, such
as disk partitions. In Unix-like systems, a device driver is
typically compiled as a kernel module and can be loaded at
runtime.

A device file appears inside a file system almost as an ordi-
nary file. These files allow user’s software to interact with a
device driver using standard input/output system calls, which
simplifies the interface and unifies user-space Input/Output
(I/O) mechanisms. As one can easily imagine, such device
files exist in all operating systems, e.g. MS Windows, MS-
DOS, and OS/2. Additionally, device files are useful for ac-
cessing system resources that have no connection with any
actual devices, like data sinks or random number generators.
A device file can represent character devices, which emit a
stream data one character at a time, or block devices which
allow random access to blocks of data. Device files are usu-
ally found under the /dev directory and are created with the
mknod system call. The kernel resource exposed by the de-
vice file is identified by a major and minor number. The de-
vice file exposes what the device driver shows through the I/O
interface. For instance, the character device file representing
a mouse, exposes the movement of the mouse as a character
stream. Some device files also take inputs, allowing applica-
tions to communicate with the device by writing to its device
file.

For more information, the reader can refer to [16].

PROPOSED APPROACH

Hardware/Software Interface
The most critical characteristics when designing simulations
with HIL are (i) the management of deadlines, more particu-
larly in real-time systems, and (ii) the interfaces used to com-
municate with hardware. Deadlines are completely handled

Figure 1. GPT DEVS structure, all implemented in software.

by the DEVS formalism (DEVS-RT in our case [18], imple-
mented in xDEVS [15]). In this paper, we do not define activ-
ity mapping time-constraints. Thus, the HIL interaction can
be seen as a DEVS atomic model that receives the input from
hardware, processes the input and perform state changes in
real-time producing outputs within an acceptable predefined
deadline. In other words, the HW/SW interface is considered
as a DEVS atomic model that internally manages a device
file, which indeed is handled as a regular file. Since the set
of model-states are not tied to hardware activities, we do not
need to check their duration. At the end, we have a regular
RT-DEVS model, which any DEVS simulator engine can exe-
cute without much configuration effort. The only constraint is
that an additional atomic model attached to a device file must
be defined for each DEVS hardware component. This is anal-
ogous to creating a DEVS model-wrapper for hardware or
software component [11]. Similar work by Mittal and Risco-
Martı́n [10, 9] in the area of Service-oriented Architecture
(SOA) enabled DEVS M&S framework uses the transparent
simulation platform principle.

Consider a simple example. Figure 1 shows the DEVS
structure of a typical Generator Processor Transducer (GPT)
DEVS model [14], consisting of three atomic models. The
generator atomic model generates job-messages at fixed time
intervals and sends them via the “out” port. The transducer
atomic model accepts job-messages from the generator at its
“arrived” port and monitors their arrival time instances. It
also accepts job-messages at the “solved” port. When a mes-
sage arrives at the “solved” port, the transducer matches this
job with the previous job that had earlier arrived on the “ar-
rived” port (when it was generated) and calculates their time
difference. The transducer monitors the response (in this case
the turnaround time) of messages that are injected into an ob-
served system. The observed system in this case is the pro-
cessor atomic model. A processor accepts jobs at its “in” port
and sends them via the “out” port again after some finite, but
non-zero time period. If the processor is busy when a new job
arrives, the processor discards it. Finally, the transducer stops
the generation of jobs by sending any event from its “out”
port to the “stop” port at the generator.

Now suppose that the processor component is an actual hard-
ware device that must be included in the simulation. In this
case, Figure 2 shows the architecture proposed in this pa-
per. First, a device driver must be developed to implement
the communication with the hardware device. Since the pair
(device driver, hardware device) will be managed by a device
file, a new Processor atomic model must be defined, to emu-

311

Figure 2. GPT DEVS structure with Processor working as a hardware de-
vice.

late the behavior of the Processor atomic model, but by means
of Input/Output (IO) operations through the device file. This
is the Processor* model defined in Figure 2.

DEVS implementation of the HW/SW interface
Continuing with the GPT example, let us delve in a bit detail
for the Processor model. A job j is processed in a wall-clock
time equal to jp seconds. We first show the formal DEVS
specification of the original Processor atomic model (Figure
1):

Processor = 〈X,S, Y, δint, δext, λ, ta〉
X = {(in, j ∈ J)}

J is a set of Jobs

S = (σ × phase× j ∈ J)

phase ∈ {busy,passive}
Y = {(out, j ∈ J)}

ta(σ, phase, j) = σ

λ(σ, phase, j) = j

δint(σ, phase, j) = (∞,passive,�)
δext (σ, passive, j, e, (in, j

′)) =
(
j′p,busy, j

′)
δext (σ, busy, j, e, (in, j

′)) = (σ − e,busy, j)

Now, considering that we have a hardware processor and its
corresponding device file f , the previous specification must
be slightly modified to incorporate the hardware device into
the simulation:

Processor∗ = 〈X,S, Y, δint, δext, λ, ta〉
X = {(in, j ∈ J)}

J is a set of Jobs

S = (σ × phase× j ∈ J)

phase ∈ {busy,passive}
Y = {(out, j ∈ J)}

ta(σ, phase, j) = σ

λ(σ, phase, j) = j ← f

δint(σ, phase, j) = (∞,passive,�)
δext (σ, passive, j, e, (in, j

′)) =
(
j′p,busy, f ← j′

)
δext (σ, busy, j, e, (in, j

′)) = (σ − e,busy, j)

As stated in the previous specification, the function δext
writes the received job in the device file (denoted as f ← j′),
whereas λ loads the already processed job from the same file
(denoted as j ← f), according to the time constraints spec-
ified in jp. As can be imagined, the greater weight of the
needed modifications are handled by the device driver, which
must “understand” the atomic model format and transform
this into the format of the hardware interface. Figure 3 shows
the template used to implement a device driver that will com-
municate data to the actual hardware. As can be seen, only
two functions called device write and device read
must be implemented. The first one is automatically executed
when data is written in the device file, whereas the second one
is automatically executed when the device file is to be read.
In the Processor* example, the job must be written in the de-
vice file through the device write function (actually the
job would be stored in the buffer input variable, as text).
On the other hand, the job is loaded in the output function,
when the data is read from the device file and device read
is automatically executed. An exact form of these hardware
sections is shown in the case study.

As can be seen, the greatest advantage of this approach is
the idea that no modification is required for the DEVS M&S
engine i.e. it is transparent. As a result, an incremental de-
sign of model-driven HIL is now possible, starting with pure
software models and gradually replacing them with hard-
ware components, until the full hardware implementation is
reached. Additionally, hardware verification and validation is
also possible which involves comparing the output of the soft-
ware models against the equivalent hardware models. In the
following, we show a case study of the proposed architecture.

CASE STUDY: DESIGN AND IMPLEMENTATION OF AN
ELEVATOR CIRCUIT CONTROLLER

System specification
The goal of this case study is to design and build a circuit that
will emulate the controller of an elevator in a building with 7
floors. Figure 4 shows a general scheme of the circuit that is
to be designed.

The circuit will have the following set of ports:

• A 3-bit output Q, which shows the floor in which the eleva-
tor is stopped.

• A 3-bit input X, which represents the desired target floor.

• A clock input CLK.

• An input INI, of synchronous initialization to (000), active
Low.

Both X and Q encode the floor in binary, i.e., (000) is the
ground floor, (001) is the first floor, and so forth until (111),
which is the last (seventh) floor.

The output will be (000) in all those cases where INI is 0. In
those cycles where INI is 1, the behavior of the system will
be as follows:

• If Q=X the output will keep its value, i.e., we are in the
target level.

312

/ / . . .
/ / Some g l o b a l v a r i a b l e s :
d e v t devnumber ;
s t r u c t cdev∗ c u r r d e v = NULL;

i n t i n i t m o d u l e (vo id) {
/ / Major and minor s e t u p
/ / . . .
major = MAJOR(devnumber) ;
minor = MINOR(devnumber) ;

}

vo id c l e a n u p m o d u l e (vo id) {
i f (c u r r d e v)

c d e v d e l (c u r r d e v) ;
u n r e g i s t e r c h r d e v r e g i o n (devnumber , 1) ;

}

s t a t i c i n t d e v i c e o p e n (s t r u c t i n o d e ∗ inode , s t r u c t f i l e ∗ f i l e) {
/ / . . .
t r y m o d u l e g e t (THIS MODULE) ;
r e t u r n SUCCESS ;

}

s t a t i c i n t d e v i c e r e l e a s e (s t r u c t i n o d e ∗ inode , s t r u c t f i l e ∗ f i l e) {
/ / . . .
modu le pu t (THIS MODULE) ;
r e t u r n SUCCESS ;

}

s t a t i c s s i z e t d e v i c e w r i t e (s t r u c t f i l e ∗ f i l p , c o n s t c h a r ∗ b u f f e r , s i z e t l e n g t h , l o f f t ∗ o f f) {
/ / b u f f c o n t a i n s t h e d a t a w r i t t e n i n t h e e x t e r n a l
/ / t r a n s i t i o n f u n c t i o n , which i s p a s s e d t o u s e r b u f :
c h a r u s e r b u f [MAX COMMAND LEN+ 1] ;
i f (c o p y f r o m u s e r (u s e r b u f , b u f f e r , l e n g t h))

r e t u r n −EFAULT ;
u s e r b u f [l e n g t h]= ’\0 ’ ;
/ / Here t h e d a t a must be s e n t t o t h e ha rdware d e v i c e :
/ / HARDWARE SPECIFIC CODE
/ / . . .
r e t u r n l e n g t h ;

}

s t a t i c s s i z e t d e v i c e r e a d (s t r u c t f i l e ∗ f i l p , c h a r ∗ b u f f e r , s i z e t l e n g t h , l o f f t ∗ o f f s e t) {
/ / At t h e end , b u f f e r must s t o r e t h e d a t a r e a d by t h e o u t p u t f u n c t i o n
/ / i . e . , t h e o u t p u t o f t h e ha rdware d e v i c e
c h a r u s e r b u f [MAX COMMAND LEN+ 1] ;
/ / Here t h e d a t a o f t h e ha rdware d e v i c e must be s t o r e d i n t o u s e r b u f :
/ / HARDWARE SPECIFIC CODE
/ / . . .
i f (c o p y t o u s e r (b u f f e r , u s e r b u f , l e n g t h))

r e t u r n −EFAULT ;
r e t u r n l e n g t h ;

}

Figure 3. Device driver code snippet. The two labeled HARDWARE sections require specific communication with the hardware device.

313

Figure 4. High level specification of the circuit.

Figure 5. Schematic design of the circuit, drawn in a breadboard.

• If Q>X, the output must be (cycle after cycle) decreasing
until Q=X. The elevator must go down because the floor
in which it is placed is greater than the commanded floor.

• If Q<X, the output must be increasing until Q=X. In this
case, the elevator must go up because the floor in which it
is placed is less than the commanded floor.

To implement the controller, the following Integrated Circuits
(ICs) are used:

• 74169: A bidirectional modulo 16 synchronous counter
(with parallel load signal, active low, which takes prece-
dence over the two signals to enable the count, also active
low)

• 74283: A 4-bit full adder

• 7410: 3 3-input NAND gates

• 7404: 6 inverters

System design
To implement a prototype, we first implemented all the four
ICs as xDEVS [15] atomic models in a Raspberry Pi, through
the software ports per the circuit shown in Figure 5.

Figure 6. Elevator controller with the adder as a HIL component.

Secondly, we replaced all the ICs incrementally with their
equivalent hardware ICs. We successfully connected a bread-
board to the Raspberry, developing a device driver and its
associated device file. The device drivers were accordingly
upgraded as additional software ICs were replaced by actual
hardware. Figure 6 shows the circuit implementation with the
IC 74283 working in the breadboard, and ICs 74169, 7410
and 7404 implemented in the Raspberry Pi through xDEVS.
Once the IC 74283 is moved to the breadboard, we applied
our approach as described in the previous section, i.e., we de-
veloped the interface as a virtual IC 74283 communicating
with the device file abstracting it’s state and behavior.

Figure 7 shows a snippet of the IC 74283 driver, commented
as HARDWARE SPECIFIC CODE in Figure 3. For the sake
of clarity, we have included generic calls to the GPIO Rasp-
berry interface. Basically, the write driver function sends
A and B (previously read from the device file) through the
GPIO pins connected to the IC 74283 inputs in Figure 6.
Similarly, the read driver function reads the result from the
GPIO pins connected to the IC outputs and virtually writes
those values to the device file, making them available for
the IC 74283* xDEVS hardware interface. As a result, the
complete circuit works transparently, without any modifica-
tion in the simulation engine. As the whole design is opera-
tional through DEVS formalism, we can leverage the avail-
able model-checking mechanisms for DEVS systems, e.g.
Verification and Validation (V&V) tasks.

Finally, Figure 8 depicts all the hardware circuit components
on the breadboard as a part of the model. In this case, the
xDEVS software model is formed by the equivalent four
“star” models plus the simulation clock. We ran several tests
on the resulting hardware-software system with no noticeable
issues at both the modeling and simulation levels. It is worth
mentioning that “star” models are very conducive to perform
V&V tests, without including additional DEVS atomic mod-
els to the system.

CONCLUSION
We have shown that M&S techniques offer a significant sup-
port for the design of complex real-time embedded systems.
However, in an IoT new era where real-time systems become

314

/ / . . .
/ / Some g l o b a l v a r i a b l e s :
/ / . . .

s t a t i c s s i z e t d e v i c e w r i t e (s t r u c t f i l e ∗ f i l p , c o n s t c h a r ∗ b u f f e r , s i z e t l e n g t h , l o f f t ∗ o f f) {
/ / . . .
/ / HARDWARE SPECIFIC CODE
i f (s s c a n f (& u s e r b u f [0] , ’ ’ add \%i \%i \n ’ ’ , &numA , &numB)) {

/∗ Send A and B ∗ /
dec ima lToArray (numA , A) ;
dec ima lToArray (numB , B) ;
s e n d V a l u e s (A, B) ; / / Through GPIO : g p i o s e t v a l u e (Apin [i] , A[i]) ;

/ / Through GPIO : g p i o s e t v a l u e (Bpin [i] , B[i]) ;
}
r e t u r n l e n g t h ;

}

s t a t i c s s i z e t d e v i c e r e a d (s t r u c t f i l e ∗ f i l p , c h a r ∗ b u f f e r , s i z e t l e n g t h , l o f f t ∗ o f f s e t) {
/ / . . .
/ / Here t h e d a t a o f t h e ha rdware d e v i c e must be s t o r e d i n t o u s e r b u f :
/ / HARDWARE SPECIFIC CODE
readSum () ; / / sum <− g p i o g e t v a l u e (Cpin [i n d e x])
s p r i n t f (u s e r b u f , ”\%i ” , sum) ;
l e n g t h = s t r l e n (k b u f f) ;
/ / . . .
r e t u r n l e n g t h ;

}

Figure 7. Device driver code snippet, implemented for the IC 74283. Only the HARDWARE parts described in the previous section are partially listed here.

Figure 8. Elevator controller with all the four integrated circuits placed in
the breadboard.

much more complex, new mechanisms to allow incremen-
tal designs and implementations are urgently needed. In this
paper, we have used DEVS as the basis to develop heteroge-
neous hardware/software systems in an incremental way. The
proposed mechanism is straightforward. The transition from
pure virtual models to heterogeneous models is performed
through well defined steps where each virtual model is substi-
tuted with an equivalent model that acts as an interface with
the real system. In this regard, the complete system is still
a DEVS system and as a consequence, all the DEVS M&S
theory is applicable and brought to bear for systems valida-
tion and verification. Since the communication with the ac-
tual hardware is based on device drivers, the DEVS M&S
simulation engine does not have to be tuned each time that
a new hardware component must be included. This is the
prime contribution as a transparent M&S framework where
the model, after validation and verification, is replaced by the
actual hardware in an incremental and transparent way.

To demonstrate the transparent hardware-software M&S en-
vironment, we presented a case study: the design and imple-
mentation of an elevator circuit controller. The whole system
was first modeled as a software using xDEVS, an open source
DEVS library (though any DEVS library can be used). We
showed the methodology to incrementally transition from vir-
tual models to the actual hardware until all the software mod-
els are replaced. We also stated that “star” models, that in-
terface between the DEVS virtual model and actual hardware
can be also used to perform systems V&V, to be attempted in
our future work.

IoT is advancing by leaps and bounds. There is a dearth of
system-based M&S methodologies that can guarantee the be-
havior of a particular hardware when it gets integrated in the

315

large whole. With this methodology, any hardware, when ab-
stracted through DEVS-Based systems theoretical framework
in a transparent manner, has the potential to be experimented
upon with larger domain models that can evaluate its behav-
ior in a larger system. Further, the second contribution of this
work is the validation of the developed software model of the
hardware itself. This capability is very much needed in IoT
design and analysis: to evaluate new pieces of hardware tech-
nology that are ready to plug into the larger complex adaptive
systems, such as Internet or mission-critical systems. With
validated software models, large scale simulations with thou-
sands or millions of virtual agents (of abstracted hardware as
a DEVS agents) in High Performance Computing environ-
ments (HPC) then become possible to study the effects of any
new technology that comes to be integrated in IoT.

ACKNOWLEDGMENTS
The authors would like to thank Mr. Miguel Higuera Romero,
who implemented the case study presented in this paper as
part of his senior project. We would also like to thank Dr. Al-
berto A. del Barrio for providing encouraging feedback and
insightful comments that improved the content and the quality
of this paper. This work is supported by the Spanish Min-
istry of Economy and Competitivity under research grants
TEC2012-33892, TIN2013-40968-P, and TIN2014-54806-R.

DISCLAIMER
The author’s affiliation with The MITRE Corporation is pro-
vided for identification purposes only, and is not intended to
convey or imply MITRE’s concurrence with, or support for,
the positions, opinions or viewpoints expressed by the author.

Approved for Public Release. Distribution Unlimited.
Case Number: 16-1506.

REFERENCES
1. The Mathworks Inc.

https://www.mathworks.com/, 2016.

2. SystemC.
http://www.systemc.org/downloads/standards/systemc,
2016.

3. Basu, A., Bozga, M., and Sifakis, J. Modeling
heterogeneous real-time components in bip (2006).
3–12.

4. Beydeda, S., Book, M., and Gruhn, V., Eds.
Model-Driven Software Development. Springer, 1998.

5. Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X.,
Ludvig, J., Neuendorffer, S., Sachs, S., and Xiong, Y.
Taming heterogeneity - the ptolemy approach.
Proceedings of the IEEE 91, 1 (2003), 127–144.

6. Friedenthal, S., Moore, A., and Steiner, R. A Practical
Guide to SysML. MK/OMG Press, 2012.

7. Huang, D., and Sarjoughian, H. Software and simulation
modeling for real-time software-intensive systems. In

Proceedings of 8th IEEE Symp. on Distributed
Simulation and Real-time Applications (2004).

8. Mittal, S. Model engineering for cyber complex adaptive
systems. In EMSS (2014).

9. Mittal, S., Risco, J. L., and Zeigler, B. P. Devs-based
simulation web services for net-centric t&e. In
Proceedings of the 2007 Summer Computer Simulation
Conference, SCSC ’07, Society for Computer
Simulation International (San Diego, CA, USA, 2007),
357–366.

10. Mittal, S., Risco-Martı́n, J. L., and Zeigler, B. P.
Devsml: Automating devs execution over soa towards
transparent simulators. In Proceedings of the 2007
Spring Simulation Multiconference - Volume 2,
SpringSim ’07, Society for Computer Simulation
International (San Diego, CA, USA, 2007), 287–295.

11. Mittal, S., Ruth, M., Pratt, A., Lunacek, M.,
Krishnamurthy, D., and Jones, W. A system-of-systems
approach for integrated energy systems modeling and
simulation. In Proceedings of the Conference on
Summer Computer Simulation, SummerSim ’15, Society
for Computer Simulation International (San Diego, CA,
USA, 2015), 1–10.

12. Moallemi, M., and Wainer, G. A. A simplified real-time
embedded DEVS approach towards embedded and
control design. In Proceedings of the 2009 Winter
Simulation Conference (2009).

13. Moallemi, M., and Wainer, G. A. Modeling and
simulation-driven development of embedded real-time
systems. Simulation Modelling Practice and Theory 38
(2013), 115–131.

14. Risco-Martı́n, J. L., Cruz, J. M., Mittal, S., and Zeigler,
B. P. eUDEVS: Executable UML with DEVS Theory of
Modeling and Simulation. SIMULATION 85, 11-12
(June 2009), 750–777.

15. Risco-Martı́n, J. L., and Mittal, S. xDEVS.
https://github.com/jlrisco/xdevs, 2016.

16. Tanenbaum, A. S., and Bos, H. Modern Operating
Systems. Pearson, 2014.

17. Wainer, G. Applying modelling and simulation for
development embedded systems. In 2013 2nd
Mediterranean Conference on Embedded Computing
(MECO) (2013), 1–2.

18. Wainer, G. A. Discrete-Event Modeling and Simulation:
A Practitioner’s Approach. CRC Press, 2009.

19. Zeigler, B. P., Praehofer, H., and Kim, T. G. Theory of
Modeling and Simulation. Integrating Discrete Event
and Continuous Complex Dynamic Systems, 2 ed.
Academic Press, 2000.

316

