
DEVSML Studio: A Framework for Integrating
Domain-Specific Languages for Discrete and Continuous

Hybrid Systems into DEVS-Based M&S Environment
Saurabh Mittal

Dunip Technologies, LLC
Littleton, CO, USA

smittal@duniptech.com

José L. Risco-Martı́n
Complutense University of Madrid

Madrid, Spain
jlrisco@ucm.es

ABSTRACT
The Discrete EVent System (DEVS) specification has been
implemented in various platforms and languages over the
years. However, each implementation has been tightly cou-
pled with the underlying syntactical language. The DEVS
Modeling Language (DEVSML) is based on meta-modeling
concepts that provide a Domain-Specific-Language (DSL)
for DEVS model description. In this paper, we introduce
DEVSML Eclipse Studio that implement DEVSML execu-
tion with two DEVS engines: DEVSJAVA and xDEVS. We
demonstrate the features of DEVSML Studio with a mod-
erately complex example of a spectroscopy system involv-
ing digital shapers. We emphasize the importance of meta-
modeling concepts and their implementation in the DEVSML
Studio that enables model-driven engineering practices for
bringing other DSLs to a DEVS-based Modeling and Sim-
ulation (M&S) environment. We also establish the robustness
and correctness of the xDEVS simulation engine, integrated
within DEVSML Studio for a hybrid discrete and continuous
system such as a digital shaper.

Author Keywords
Metamodeling; Eclipse Plugin Development Environment
(PDE); DEVSML Studio; xDEVS; Digital Shapers; DEVS

ACM Classification Keywords
C.3 SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS: Real-time and embedded systems; I.6.1 SIM-
ULATION AND MODELING: Simulation Theory; J.6
COMPUTER-AIDED ENGINEERING: Computer-aided de-
sign (CAD)

INTRODUCTION
DEVS formalism has been in existence for over four decades
and has been implemented in major Object-oriented lan-
guages, e.g. Lisp, Scheme, C++, Java, Python, SmallTalk,
etc. We have ourselves tried the next generation of Java Vir-
tual Machine (JVM)-based languages such a Groovy, Scala
and Xtend. There exist many DEVS development environ-
ments. However, model creation is largely in the imple-
mentation language of the simulation engine implementation.

SummerSim-SCSC 2016 July 24-27 Montreal, Quebec, Canada
c© 2016 Society for Modeling & Simulation International (SCS)

Model-Driven Engineering (MDE) has started to make way
into DEVS Integrated Development Environments (IDEs)
[22] and various DEVS metamodels have started to appear
in the community. However, the abstraction levels at the
DEVS Modeling API have not been clearly defined or stan-
dardized for that matter. Efforts are underway for a standard-
ized DEVS modeling and simulation API for interoperability
at both the modeling and simulation layers.

In this article, we explore the state of the art in DEVS M&S
IDEs, DEVS metamodeling and abstract DEVS Modeling
Language (DEVSML). We will introduce an Eclipse DE-
VSML Studio that allows graphical development of atomic
DEVS state machine and coupled digraphs. Currently, DE-
VSML Studio is able to execute DEVS using two simulation
engines: DEVSJAVA [5] and xDEVS [24]. We will highlight
the capabilities of the DEVSML Studio through a moderately
complex example of a spectroscopy system involving digital
shapers. We will demonstrate that the DEVSML Studio is
capable of handling complex models and illustrate how the
novel xDEVS engine provides excellent abstraction mecha-
nisms and robust performance.

The reminder of this paper is organized as follows. Firstly,
we shows a brief survey on existing DEVS tools. Secondly,
we present the architecture of DEVSML Studio. Next, we
present an example with moderate complexity that can be
modeled using the DEVSML Studio. Finally, we show our
conclusions.

SURVEY OF EXISTING DEVS TOOLS
In the last decade, many DEVS M&S engines have come into
existence. Almost all of them offer a programmer-friendly
Application Programming Interface (API) to define new mod-
els using a high level language and with an exception of one
or two, most are bound to an implementation language. Al-
ternatively, none is based on a DEVS metamodel. Further,
only a few of them provide a user-friendly Graphical User
Interface (GUI) for model specification. In the following, we
describe some of the most referenced DEVS M&S simulation
frameworks:

DEVSJAVA
DEVSJAVA has been developed by Bernard P. Zeigler (Uni-
versity of Arizona, U.S.A.) and Hessam Sarjoughian (Ari-
zona State University, U.S.A.) [5]. It is written in Java and

288

supports virtual time, real time, and sequential and paral-
lel execution. The definition of new models is performed
through an API. Several M&S tools have been defined around
DEVSJAVA (GUIs for results visualization, GUIs for models
definition, etc.), as DEVSJAVA is one of the primary DEVS
M&S reference simulators in the community.

DEVS-Suite and COSMOS
DEVS-Suite is a simulator built based on the Parallel DEVS
formalism, design of experiment concepts, and simulation vi-
sualization techniques consisting of displaying static struc-
ture of models, animation of models, and run-time viewing
of time-based trajectories [4]. CoSMoS (Component-Based
System Modeling and Simulation) is a framework aimed at
integrated visual model development, model configuration
and automatic simulation data collection [3]. The CoSMoS
environment supports component-based modeling with direct
support for DEVS formalism and XML Schema. DEVS-
Suite’s core is largely DEVSJAVA. It is bundled within the
CoSMoS distribution and thus enables both modeling and
simulation of Parallel DEVS models.

CD++
CD++ has been developed by Gabriel Wainer and his students
(Carleton University, Canada; Universidad de Buenos Aires,
Argentina). Written in C++, it allows the definition of DEVS
and Cell-DEVS models graphically. These models are also
defined using an API. CD++ supports virtual and real time,
as well as sequential, parallel and distributed simulations [2].

xDEVS
xDEVS has been recently implemented by José L. Risco-
Martı́n and Saurabh Mittal [24]. Developed in Java, sup-
ports both virtual time and real time simulations (in sequen-
tial, parallel or distributed environments), as well as flattened
simulations. It also allows hardware/software co-simulations
and provides a simulation profiler to measure performance.
xDEVS is designed using Object-oriented paradigm and is re-
leased under the GNU Public License (GPL). This facilitates
the rapid development of new components and extensions,
and wide adoption of the core engine. xDEVS provides the
user with a set of base classes that can be used to develop new
DEVS models, or to develop new DEVS simulation engines.
xDEVS is based on the fundamental separation of model and
the underlying corresponding simulator [27] and rightly so,
provides, the modeling Application Program Interface (API)
and the simulation API.

PyDEVS
PythonDEVS (a.k.a. PyDEVS) implements both Classic and
Parallel DEVS in the Python language, with a matching sim-
ulator [25]. Models are defined through the provided API,
allowing the execution of virtual time or real time simula-
tions. The latest release of PyDEVS is focused on improv-
ing the performance, mainly because Python is an interpreted
language. To this end, several schedulers have been defined,
obtaining good performance metrics.

aDEVS

Figure 1. Integrating theory of modeling and simulation framework with
MDE [22].

aDEVS (a Discrete EVent System simulator) is a C++ library
for constructing discrete event simulations based on the Par-
allel DEVS and Dynamic DEVS (dynDEVS) formalisms [1].
Developed by Jim Nutaro, it allows the implementation of
both sequential and parallel simulations using the provided
C++ API. This framework by far, displays the best perfor-
mance.

JAMES-II
Developed at the University of Rostock, the Java-based Mul-
tipurpose Environment for Simulation II (JAMES II) pro-
vides support for many different formalisms, including var-
ious variants of DEVS formalisms. Besides an API to define
models, this framework also provides a GUI to configure ex-
periments and see simulation results. This simulation engine
supports sequential and parallel execution [9].

DEVSim++
Developed by Tag Gon Kim and his group at Korea Advanced
Institute of Technology (KAIST) [16], this is a C++ based
engine and used extensively for large simulations focusing
on wargaming and simulation interoperability.

In addition to the above DEVS implementations used widely,
there are others with selective adoption such as GALATEA
[14] for Multi-Agent Systems (MAS), SimStudio [26], Pow-
erDEVS [12] for hybrid systems, MS4Me based on DEVS-
JAVA [10] and last but not the least, Virtual Laboratory Envi-
ronment (VLE) [13], based on C++. VLE is a multiparadigm
environment based on several DEVS extensions. Providing a
graphical atomic model representation has been a challenge
in all the existing DEVS engines and simulation environ-
ments, mostly attributed to the lack of a DEVS metamodel
and standardized atomic notation. Consequently, while de-
picting coupled model is easy, depicting an atomic DEVS
state machine has proven to be hard and largely unattended. It
is worth stating that a DEVS State machine is more expressive
than a UML state machine. Consequently, more notations are
needed in UML to account for DEVS specifications. This pa-
per provides a way forward to visualize both the atomic and
coupled models.

DEVSML ECLIPSE DEVELOPMENT STUDIO
DEVSML Studio is available for use with any JVM-based
languages, such as Groovy, Scala, Xtend, etc. A demon-
strative example is available online [17], where various lan-
guages can be used at the Modeling layer leveraging the

289

Figure 2. DEVSML Stack showing DEVS modeling language and various
transformations [19].

modeling API interface (see Figure 1). The xDEVS en-
gine is made available as the platform-specific-model (PSM)
of a more abstract DEVS Modeling Language (DEVSML),
which is based on XML-Based Finite Deterministic DEVS
[20] and language introduced in [19] and later developed in
[22][21]. The DEVSML Stack shown in Figure 2 describes
the layered architecture of platform-independent nature of
DEVSML [19][18]. The idea of including other domain-
specific languages (DSLs) and the following transformations
at the top layer of the stack brings in model-driven engineer-
ing (MDE) concepts with the DEVS M&S framework. Three
transformations are defined that allows various DSLs to be
transformed into DEVSML or directly to DEVS:

1. Model-to-Model (M2M)

2. Model-to-DEVSML (M2DEVSML)

3. Model-to-DEVS (M2DEVS)

DEVSML and DEVS Unified Process (DUNIP) are fo-
cused towards interoperability at the application level, specif-
ically, at the modeling level and hiding the simulator en-
gine as a whole, making it transparent [23]. Our vision
and solution development is along the lines of Model-as-a-
Service (MaaS), Simulation-as-a-Service (SimaaS), DEVS-
as-a-Service (DevaaS) and ultimately, System-as-a-Service
(SysaaS). We would like the user or designer to code the be-
havior in any of the programming languages, ideally a DSL of
his choice and let the DEVSML stack develop the transforma-
tions (Figure 1). The DEVS/SOA architecture is responsible
for taking a DSL or a coupled DEVSML model with the as-
sociated transformations and delivering us with an executable
model that can be simulated on any parallel-distributed net-
centric DEVS platform. The realization of netcentric DEVS
has the following pieces:

1. DEVSML Stack: the central concept.

2. Distributed simulation using SOA.

3. Netcentric DEVS VM (both client and server).

4. Design, development and deployment of netcentric sys-
tems with DEVS.

The user can integrate his model from models stored in any
Web/Cloud repository, whether it contained public models of

legacy systems or proprietary standardized models. This will
prove beneficial for both the industry as well as to the user,
thereby truly realizing the model-driven paradigm. MS4Me
[10] and CD++ [2] are already having such repositories.

We introduce a DEVSML Modeling Studio in this article that
demonstrates MDE principles and core ideas in the DEVSML
paradigm.

Features
The DEVSML Studio provides the following features:

1. It is based on Eclipse PDE with Xtext [8] EBNF grammar
underneath as DEVSML metamodel.

2. It provides textual templates for Atomic and Coupled
DEVSML models, rich with code-completion and DEVS
model validation.

3. It provides a visualization plugin for rapid visual inspection
of both the atomic and coupled DEVS. The visualization
plugin is based on open-source PlantUML plugin [11].

4. It can be configured with different DEVS-engines using
DEVSML configuration settings. The default is xDEVS
M&S engine [24]. The other available engine is DEVS-
JAVA [5].

5. It can be configured with various platform-specific imple-
mentations. Currently only JVM-based languages are sup-
ported and efforts are underway to generate C++ (aDEVS)
and Python (PyDEVS).

6. It provides compiled JAVA code for ready execution of DE-
VSML.

7. It integrates EclEmma Code Coverage plugin [7] for JVM
executable platform-specific code.

8. It provides explicit port-interfaces for rapid prototyping
to message-based netcentric systems using Oracle JMS,
Apache Camel, IBM Websphere MQ and Event-driven Ar-
chitectures using TIBCO, Esper, etc.

9. Code-snippets are provided as String and when a model
runtime is configured for a DEVSML project, the platform-
specific model shows errors in the generated platform-
specific code.

10. It shows the hierarchical structure of a DEVS file in the
Eclipse Outline View.

Architecture
The architecture of DEVSML Studio is based on metamod-
eling concepts and is shown in Figure 3. DEVSML Studio
inherits from the Eclipse Workbench Plugin architecture and
integrates various views (PlantUML, EclEmma) into a DE-
VSML Perspective. The execution of DEVSML Studio will
be demonstrated through a moderately complex example in
the sections ahead. The Studio is available for download at
[6]. The xDEVS M&S Engine is available both as .jar and
as an Eclipse plugin. The DEVSML Studio is available as an
installable Eclipse feature.

290

Figure 3. (a) Metamodeling layers and (b) DEVSML Studio software archi-
tecture.

CASE STUDY: TRAPEZOIDAL PULSE SHAPER
The integration with other discrete systems like Business Pro-
cess Modeling Notation (BPMN), Unified Modeling Lan-
guage (UML), Statecharts, System Entity Structure (SES),
etc., has already been demonstrated and reported in the book
by Mittal and Risco-Martı́n [22]. We have selected an exam-
ple of trapezoidal pulse shapers to demonstrate the integration
of discrete and continuous hybrid systems. In this section,
we demonstrate the capabilities of DEVSML Studio with an
example of moderate complexity: M&S of trapezoidal pulse
shapers.

The performance of nuclear spectroscopy systems has
been considerably improved by replacing the conventional
analogue electronics modules by modern digital systems.
The detector-preamplifier configuration of a common spec-
troscopy system produces a pulse with an initial short rise
time followed by a long exponential tail. Using a trapezoidal
digital shaper, the exponential signal is transformed into a
trapezoid by series of differentiators and integrators, and the
pulse energy is measured as the difference between the fat
top of the trapezoid and its base. The design of these trape-
zoidal shapers requires the definition of a set of parameters
based on the characteristic of the input signal (timing, noise,
etc.). Hence, M&S is essential to analyze these parameters.
In the following, we model a common spectroscopy system
using DEVSML Studio and xDEVS as the simulation engine,
analyzing its behavior.

Model description
A recursive algorithm that converts a digitized exponential
pulse v(n) into a symmetrical trapezoidal pulse s(n) is given
by equations 1 to 5, borrowed from [15]:

dk(n) = v(n)− v(n− k), (1)

dk,l(n) = dk(n)− dk(n− l), (2)

p(n) = p(n− 1) +m2 · dk,l(n), n ≥ 0, (3)

r(n) = p(n) +m1 · dk,l(n), (4)
s(n) = s(n− 1) + r(n), n ≥ 0 (5)

In the equations above, v(n), p(n) and s(n) are equal to zero
for n < 0. Parameters m1 and m2 only depend on the decay
time constant of the exponential pulse, τ , and the sampling
period, Tclk, given by:

m1

m2
=

(
e
Tclk
τ − 1

)−1
(6)

According to [15], the duration of both the rising and
falling edge of the trapezoidal shape is defined by min(k, l),
whereas the duration of the flat part of the trapezoid is given
by |k − l|. Parameter m2 determines the digital gain of the
shaper.

Figure 4 shows a block diagram of the digital trapezoidal
shaper. DELAY{1,2} are the delay pipelines, Σ{1,2,3} are
adders/subtractors, ACC{1,2} are accumulators and X{1,2} are
multipliers. We can also find coupled models like DS{1,2},
which is a Delay-Subtractor unit or HPD, which is a High-
Pass filter Deconvolver. In the following, we describe the
implementation of this trapezoidal shaper using MitRis DE-
VSML Studio.

Model code
In order to deploy a direct mapping between Figure 4 and the
corresponding DEVSML model, the following components
are designed:

Atomic models:
AdderSubtractor An adder/subtractor combinational

model, to implement Σ{1,2,3}.

Clock It is the digital clock system. It sends a clock square
signal to all the sequential components. All the sequential
components react to a rising clock edge.

Constant A combinational atomic model designed to send a
given value (like m1 or m2 in Figure 4) just at the begin-
ning of the simulation.

IdealExpInput This class implements the sequential expo-
nential input as a discrete function where each value is trig-
gered by a clock signal.

Multiplier A multiplier combinational model to implement
X{1,2}.

Register This is a register sequential atomic model, needed
to implement both accumulators.

ShiftRegister Implements a sequential shift register. This
component is used to simulate the two delay pipelines
DELAY{1,2}.

Coupled models
Accumulator A coupled model that contains an AdderSub-

stractor atomic model and a Register atomic model.

DelaySubtractor (DS) The DS coupled model in Figure 4
contains a ShiftRegister atomic model and an AdderSub-
tractor atomic model.

HighPassDeconvolver (HPD) The HPD coupled model in
Figure 4. This model includes two Constant, two Multi-
plier, one Accumulator and one AdderSubtractor atomic
models.

291

Figure 4. Diagram of the digital trapezoidal shaper. The elements are: DELAYn - a delay pipeline, Σn an adder/subtracter, ACCn an accumulator, Xn a
multiplier. DSn is a delay-subtractor unit, HPD is a high-pass filter deconvolver.

Trapezoidal This is the trapezoidal digital shaper, includ-
ing DS1, DS2, HPD and the final Accumulator in Figure
4. [TrapezoidalTest] This is the coupled model that runs
the experiment. It consists of Clock, IdealExpInput and
Trapezoidal components.

It can be easily seen that it is hierarchical model (Trapezoidal-
Test) with depth of 4. A graphical representation in DEVSML
Editor for some of the atomic models is shown in Figure 5
and coupled model is shown in Figure 6. In the graphical
atomic model, external transitions are shown by red, inter-
nal transition are shown by green, an external input is shown
as a label prefixed by ? on the red arrow and the output is
shown as label prefixed by ∧. In the coupled model, each port
displays the fullyQualifiedName and its data-type enclosed
within << . . . >>. The external input couplings (EIC) are
shown in green, the internal couplings (IC) in blue and the
external output couplings are shown in red. The flows are
shown by directed arrows. In order to run the simulation,
TrapezoidalTest is executed by a specific coordinator.

Model Execution
A set of 100000 synthetic particle impacts (also called
events), which represents up to 4 hours of particle detection
in a real satellite, is generated using the following parameters:

• Tclk = 2× 10−5s

• Amplitude of the exponential input is randomly generated
in the interval [70, 74]

• τ is also randomly generated in the rage of [9, 11] clock
ticks.

• {k, l,m1,m2} = {8, 64, 19, 2}
Figure 7 shows the detection of one of these 100000 events,
with amplitude equal to 72 and τ equal to 10 clock ticks. The
left plot shows the input event and the right plot shows the
trapezoid generated by the digital shaper. As can be seen,
the set of parameters selected are fine to detect the range of
particle impacts generated.

To perform this experiment, we have used an Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz with 16 GB RAM mem-
ory, with a GNU/Linux Debian 8 Operating System.

To obtain the characteristic of our DEVS coupled model,
we simulate the model using the xDEVS CoordinatorProfile
class. As a result, the number of calls to the transition or out-
put functions was equal to 6.66× 107, whereas the most time
consuming function was the Accumulator transition function
of the High Pass Deconvolver coupled model with a total of
75.56 s. The atomic model with the lowest performance was
the adder of the accumulator 1 (ACC1 in Figure 4), with an
execution time equal to 3.44 s for the transition function (in-
cluding the external, internal and confluent transitions).

Per the case study, we have, in total, 14 atomic models in
TrapezoidalTest. In terms of performance, Figure 8 shows a
comparative study of different xDEVS coordinators. A se-
quential execution takes the maximum amount of time with
151.54 seconds. After flattening the model, the same co-
ordinator improves its performance to 93.97 seconds i.e. a
speedup of 1.61. For the parallelized xDEVS simulator, the
simulation with the flattened model is run on 8 processors and
the parallelized Coordinator execution is varied from using 1
thread to 10 threads. With a single thread, the execution time
taken is 96.56 seconds. A little jump in execution time (From
93.97 secs) may be attributed to the thread management in
JVM. When the number of threads is increased to 8, the ex-
ecution time is reduced to 34 seconds, i.e. a total speedup
of 4.45 over sequential (without flattened) and 2.76 with flat-
tened. As the threads are increased (from 8 to 10) beyond the
number of available cores, more time is spent in managing
the thread execution resulting in increased execution time.

CONCLUSIONS
DEVS formalism has been in existence for around 40 years
and many implementations of the formalism exist in various
programming languages. We surveyed the state of the art in
DEVS tools and found that very few use MDE and metamod-
eling approaches to deliver a workbench for DEVS modeling.
In almost all the approaches, the user is forced to program
using a computer language and is tied to the execution plat-
form. We explored the DEVS DSL called DEVSML in more
detail and implemented the DEVSML metamodel in Eclipse
PDE. We have developed DEVSML Studio containing sev-
eral DEVS M&S engines and an Eclipse editor. We have
also presented the xDEVS engine, which is based on latest

292

Figure 5. DEVSML Studio showing auto-generated DEVS Atomic visual and hierarchical representation.

Figure 6. Auto-generated Coupled model representation with port data-types. Green arrows represent External Input Coupling (EIC), blue arrows represent
Internal Coupling (IC), and red arrows represent External Output Coupling (EOC).

293

Figure 7. Exponential input (left) and trapezoidal output (right) generated by the xDEVS shaper model for one single event.

Figure 8. Performance comparison of xDEVS Coordinators.

JVM features and implements advanced executor framework
for a parallel and distributed execution on JVM, flattening
capability for the coupled model and a profiler for inspect-
ing the performance of any particular model during a simu-
lation execution. DEVSML Studio features advanced model
checking, validation, graphical inspection of both atomic and
coupled models, and advanced code-generation to multiple
DEVS platforms and languages (Java, Python, Groovy, etc.).
We also demonstrated the execution of both the engine and
the editor using a moderately complex example of digital
shapers utilized in nuclear spectroscopy establishing that both
the engine and editor are robust enough, and the code-gen
using MDE principles delivers valid simulation results for a
hybrid discrete and continuous system. Finally, we exam-
ined the performance of the xDEVS engine for sequential and
parallel execution with multiple thread and achieved a maxi-
mum speedup of 4.45 for a parallelized flattened model with
100000 events.

ACKNOWLEDGMENTS
The work on DEVSML Eclipse Studio was developed at
Dunip Technologies during the period 2012-2013 and was
made available as a part of the book [22] by the authors. The
xDEVS simulation engine development and research is sup-
ported by the Spanish Ministry of Economy and Competitiv-
ity under research grant TIN2014-54806-R.

REFERENCES
1. aDEVS.

http://web.ornl.gov/∼1qn/adevs, 2016.

2. CD++.

http://cell-devs.sce.carleton.ca, 2016.

3. CoSMoS.
http://acims.asu.edu/software/cosmos, 2016.

4. DEVS-Suite.
http://devs-suitesim.sourceforge.net, 2016.

5. DEVSJAVA.
http://acims.asu.edu/software/devsjava, 2016.

6. DEVSML Studio Update site.
http://duniptechnologies.com/jm/downloads.html, 2016.

7. EclEmma Java Code Coverage.
http://eclemma.org, 2016.

8. Eclipse Xtext.
http://www.xtext.org, 2016.

9. JAMES II.
http://wwwmosi.informatik.uni-rostock.de, 2016.

10. MS4Me.
http://www.ms4systems.com, 2016.

11. PlantUML.
http://plantuml.com, 2016.

12. PowerDEVS.
http://powerdevs.sourceforge.net, 2016.

13. VLE: The Virtual Laboratory Environment.
http://www.vle-project.org, 2016.

14. Davila, J., and Uzcategui, M. Y. GALATEA: A
multi-agent, simulation platform. In International
Conference on Modeling, Simulation and Neural
Networks (MSNN 2000) (2000), 52–67.

15. Jordanov, V. T., Knoll, G. F., Huber, A. C., and Pantazis,
J. A. Digital techniques for real-time pulse shaping in
radiation measurements. Nuclear Instruments and
Methods in Physics Research A 353 (1994), 261–264.

16. Kim, T. G., Sung, C. H., Hong, S.-Y., Hong, J. H., Choi,
C. B., and Kim, J. H. DEVSim++ Toolset for Defense
Modeling and Simulation and Interoperation. The
Journal of Defense Modeling & Simulation 8, 3 (2011),
129–142.

17. Mittal, S. EFP Samples.
http://duniptechnologies.com/wp/tag/tutorials, 2016.

294

18. Mittal, S., and Douglass, S. A. From Domain Specific
Languages to DEVS Components: Application to
Cognitive M&S. In Proceedings of the Workshop on
Model-driven Approaches for Simulation Engineering -
Spring Simulation Multiconference (2011).

19. Mittal, S., and Douglass, S. A. DEVSML 2.0: The
Language and the Stack. In Symposium on Theory of
Modeling and Simulation, Spring Simulation
Multiconference (2012).

20. Mittal, S., Hwang, M. H., and Zeigler, B. P.
XFD-DEVS. XML-Based Finite Deterministic DEVS.
http://www.duniptechnologies.com/research/xfddevs,
2016.

21. Mittal, S., and Risco-Martı́n, J. L. Model-driven systems
engineering for netcentric system of systems with devs
unified process. In Winter Simulation Conference (WSC
2013) (Washington, DC, 2013), 1140–1151.

22. Mittal, S., and Risco-Martı́n, J. L. Netcentric System of
Systems Engineering with DEVS Unified Process. CRC
Press, 2013.

23. Mittal, S., Risco-Martı́n, J. L., and Zeigler, B. P.
DEVSML: automating DEVS execution over SOA
towards transparent simulators. In SpringSim ’07:
Proceedings of the 2007 spring simulation
multiconference, Society for Computer Simulation
International (San Diego, CA, USA, 2007), 287–295.

24. Risco-Martı́n, J. L., and Mittal, S. xdevs.
http://www.duniptechnologies.com, 2016.

25. Tendeloo, Y. V., and Vangheluwe, H. The modular
architecture of the python(P)DEVS simulation kernel. In
Symposium on Theory of Modeling and Simulation -
DEVS Integrative M&S Symposium (2014), 1–6.

26. Traoré, M. K. SimStudio: a Next Generation Modeling
and Simulation Framework. In International ICST
Conference on Simulation Tools and Techniques for
Communications, Networks and Systems (2010).

27. Zeigler, B. P., Praehofer, H., and Kim, T. G. Theory of
Modeling and Simulation. Integrating Discrete Event
and Continuous Complex Dynamic Systems, 2 ed.
Academic Press, 2000.

295

