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ABSTRACT 

A dynamic structure DEVS algorithm – 
Flexible Dynamic Structure DEVS is introduced in 
this paper. The dynamic structure is a salient 
supplementary of the Real-Time DEVS-based 
experimental environment we proposed before. By 
adapting the system organization to the changing 
internal/external environments while the systems 
are in progress, the functionality of the 
experimental environment is improved greatly. 
Consequently, it is possible to build more reliable 
and flexible Real-Time systems. This paper 
describes the abstract simulators for dynamic 
structure DEVS; moreover, the implementing 
process is presented to show how the dynamic 
structure abstract simulators work seamlessly with 
the regular DEVS simulating engine. The 
Real-Time DEVS-based experimental environment 
with the dynamic structure function exploits a new 
space to build reliable and adaptive Real-Time 
systems.  

1. INTRODUCTION 

Real-Time systems are extremely noted for 
the critical timeliness requirement and rigorous 
correctness of results. Development of Real-Time 
systems calls for a unified process to bridge the gaps 
between design and implementation.  

Discrete EVent System Specification (DEVS) 
[1] is a popular approach in the simulation domain. 
Modularity and hierarchy of DEVS make it easy to 
represent systems in a structured way.  DEVS 
formalism has been extended to the Real-Time 
domain, which is helpful to build a DEVS-based 

framework to enhance the seamless transformation 
from the system design to the implementation of 
Real-Time systems [2-5]. However, they did not 
mention that how the seamless transformation 
between the different development stages. MDA 
(Model Driven Architecture) technology proposed 
in [6-8] exhibits a Real-Time DEVS-based 
experimental environment, in which substantial 
examples are offered to show how the large-scale 
Real-Time systems are built up from the virtual 
DEVS models. In the experimental environment, 
DEVS models are integrated as a portion of a 
Real-Time system. The Real-Time DEVS-based 
experimental framework makes it possible to 
analyze and test models in a risk-free environment. 
In addition, the DEVS models can be replaced by 
real world processes gradually after they are safely 
tested in the Real-Time simulation environment. The 
experimental environment provides a sound 
platform to analyze the reliability. Accordingly, the 
performance of the Real-Time systems is improved.  

In common, the experimental environment is 
represented by DEVS models statically. For instance, 
the elevator system [7] and the AMS system [8] are 
both of static structures. These systems interact with 
their external worlds statically by the specified input 
and output ports. The static structured systems are 
not reasonable to represent the systems residing in a 
changing environment. It is essential to introduce a 
dynamic structure function to fit the varied 
requirements of responding to the changing external 
environment or recovering from errors automatically. 
Flexibility and reliability, therefore, are reached by 
adjusting the structures of models dynamically. 

 This paper aims to provide a flexible 
dynamic structure DEVS algorithm and integrate it 
into the Real-Time DEVS-based experimental 
environment. The proposed dynamic structure 
DEVS not only concerns Real-Time context but also 
cooperates with the regular simulation engine 



seamlessly. The algorithm derives from the existing 
dynamic structure DEVS specifications but employs 
a different message set and abstract simulators.  
The Flexible Dynamic Structure DEVS Algorithm 
carries out a more elegant Real-Time development 
framework.  

2. BACKGROUND 

Dynamic structure DEVS is a dynamic 
structure algorithm based on DEVS theory. It is a 
new simulation paradigm supporting structural 
changes to full extent, ranging from simple 
model/connection addition/deletion to the exchange 
of models between networks of models [9]. 
Moreover, the structure should be dynamically 
adjusted according to internal or external changes of 
the systems. Therefore, the system structures are 
able to adapt to the system real requirements. 
Dynamic structure DEVS is a promising solution to 
the changing environments, such as Real-Time 
systems and embedded systems. 

There are two kinds of dynamic structure 
DEVS. DSDE [10-11] (Dynamic Structure Discrete 
Event System Specification) divides models into 
two groups: basic models and network models. The 
basic models are atomic structure units which cannot 
be split. Network models are coupled components, 
consisting of multiple basic structure models and 
interconnections that involve structural changes. A 
Network Executive is a modified basic model to 
conduct structural changes in the network models. 
Network Executive stores all possible states of 
structural changes and their corresponding 
component sets in each structural state. Network 
Executive is a structure control component that 
knows all possible structural states within its action 
domain. In a network model, Network Executive is 
the only component to conduct the structural 
changes. The centralized Network Executive 
ensures that the structure transition is executed 
sequentially without any conflicts between 
structural change functions of the models. 
Differently, the dynDEVS formalism [12] does not 
introduce an extra component to conduct dynamic 
structural changes. dynDEVS and dynNDEVS 
present atomic and coupled dynamic structure 
models respectively. Structural changes can be 
conducted both in atomic model and coupled model 
separately. ρα, the atomic model transition function, 
and ρN, the coupled model transition function, are 
included to conduct the structural changes. However, 
structural conflicts might occur due to the 
independency of the model transformations. Proper 

constraints should be added to avoid the conflicts. 
These constraints make the structural transition 
functions more complicated. 

CD++ [13] is a modeling and simulation tool 
that implements DEVS models simulation based on 
an abstract simulator mechanism. Atomic models 
are defined using a state-based approach (encoded in 
C++ or an interpreted graphical notation); while 
coupled models contain atomic models composition 
and interconnecting information of those atomic 
models. CD++ has been widely used in various 
applications from simple queuing systems to 
complex urban traffic systems or physical systems. 
CD++ employs the abstract simulators proposed in 
[14]. Message drives the simulation according to the 
scheduled time points. Different versions of CD++ 
have been developed to facilitate various 
applications. 

q Stand alone CD++ implements DEVS and 
Cell-DEVS simulation.  

q Parallel CD++ is aiming to enhance the 
performance of Cell-DEVS simulation by 
distributing calculation of different cells over 
multiple processors.  

q Distributed CD++ is developed to facilitate the 
coordination of the different simulating engines 
in different sites through the standard 
distributed computing protocols. 

q Real time embedded CD++ is constructed 
especially for Real-Time embedded system. A 
timing feature of the Real-Time systems has 
been included in CD++ to check the timing 
deadlines of given points of the systems, based 
on which the scheduability of the Real-Time 
system can be judged.  

3. REAL-TIME CONTROL CONTEXT   

“A real time computer system is the one in 
which the correctness of the system behaviour 
depends not only on the logical results of the 
computation, but also on the physical instant at 
which these results are produced” [15].Real-Time 
systems are well known for their critical timeliness. 
Besides, hard Real-Time Systems (RTS) are highly 
reactive artificial systems that deliver data from/to 
devices interacting with the surrounding 
environment (another artificial/natural system). As 
improper decisions may lead to catastrophic 
consequences for assets or lives, correctness is 
another distinct characteristic.  



With sensitive timeliness and rigorous 
correctness, Real-Time systems pose critical 
challenges to software design and development. 
Fortunately, DEVS-based experimental 
environment with dynamic structure function 
provides a sound underlying platform for the 
Real-Time systems. Dynamic structure DEVS, to 
some extent, makes it possible for the system 
designers and developers to tackle those challenges. 
The following points out how dynamic structure 
DEVS works to improve the reliability and 
performance of the Real-Time systems. 

q Sensitive timeliness of Real-Time systems 
requires higher precision on schedulability. 
Explicit formal specification of DEVS presents 
a solid base for the accuracy of schedulability. 
Sometimes the critical timing constraints are 
achieved only by dynamic scheduling. The 
dynamic structure function brings more space 
for the development of dynamic scheduling. 

q Fault tolerance is a distinct trait of Real-Time 
systems. Due to the rigorous requirements on 
the result correctness, the Real-Time systems 
should be able to recover from the faults 
automatically. If the structure is static, it is 
difficult to rectify these errors dynamically. 
Dynamic structure allows more possibilities for 
fault tolerance design. For example, if a DEVS 
model or a piece of hardware is crashed, the 
error would be detected and reported to the 
controller, a standby model or hardware can be 
initiated to replace the crashed one without 
interrupting the system running.  

q In most cases, it is difficult to predict the 
situation of the surrounding environment. 
Some unexpected events from the surrounding 
environment may cause overheads or 
oscillations of the systems. The dynamic 
structure function is capable of dealing with 
these unpredicted situations by adjusting the 
system organization to the situation 
dynamically.  

q Embedded systems are an important group of 
Real-Time system. Memory in embedded 
systems is an expensive resource and should be 
managed properly during running time. 
Dynamic structure can remove the unused parts 
of the systems and keep the minimum usage of 
memory dynamically. 

4. ABSTRACT SIMULATORS FOR DYNAMIC 
STRUCTURE DEVS  

   Barros [9] [10] introduced a model of executive 
to execute structural changes of network models. 
The executive, as the only structural change 
conductor at each level of the model hierarchy, 
prevents ambiguity resulting from different 
components’ structural change requirements. We 
defined a model of Structure Agent at each level to 
undertake the structural changes. Different from the 
Network Simulator in DSDE, which is a combined 
processor for both a coupled model and a model of 
executive, we assigned an independent abstract 
simulator to each model of Structure Agent, called 
Revised Simulator for Structure Agent. Hence, the 
Coordinator, the processor for a coupled model, 
skips the details of the structural changes. In 
addition, a different message set is employed to 
accommodate the existing regular simulation 
algorithm (Chow’s algorithm [14]). Accordingly, the 
Root Coordinator, the Coordinator and the Simulator 
should be modified to link the dynamic structural 
changes with the regular simulation. The 
Coordinator delivers the structural change message 
to its children or to the corresponding Revised 
Simulator for Structure Agent. The Simulator 
informs the structural changes when the conditions 
of the structural changes are satisfied.  

Root Coordinator  
t := tN of the topmost Coordinator 
Structure change value: request = 0 
While t ≠ ∞  
  Send (@, t) message to topmost Coordinator 
  Wait for (done, t) message  
  Send (*, t) message with the value of 
‘request’ to topmost Coordinator 
  Wait for (done, tN) message 
  Request = msg.value() (structural change 
value) 
End while 

 
Coordinator  
When (@, t) is received 
    // Use Chow et al. (1994) algorithm. 
End when 
 
When (*, t) is received { 
if(msg.value() != 0) // structural change 
{ 
if (the coupled model is a structure 
component)  
{ 

catch the structure agent model of the 
coupled model into the structured set. 

} //end if 
for the component i of the coupled model 
{ 
if (the component is a structure component) 
{ 



catch the component into the structured 
set. 

} end if 
} // end for 
for the component i in the structured set 
{ 
send (*, t) to the component i 

} // end for 
Wait until all (done, tN)’s are received from 
the components in structured set 
if(i ∈ D – D’)  
//where D is the component set before the 
structural change while D’ is the component 
set after the structural change. 
if(I is in the synchronized set) erase i. 
// the deleted models are removed from the 
synchronized set 
if(i ∈ D’ - D) send (St, t) to i. 
// the newly added models are initialized 
Wait until (done, tN)’s are received from all 
new models 
 
tL := t 
tN := minimum of components’ tN’s 
send (done, tN) to the parent Coordinator 
} // end if (msg.value() != 0) 

else //regular simulation 
{ 
...//use Chow et al. (1994) procedure for 
(*,t) 
 Wait until all (done, tN)’s are received 
If(the msg.value != 0) add the component into 
structure request set. 

 
If the structure request set is not empty 
{ 
if the component is also in the imminent 
children set 
{ 
capture the component into the 
structured set 
send (done, tN) with the structural 
change value to the parent Coordinator 
clear structure request set. 

} 
} 
else  
send (done, tN) with (vaue = 0) to the 
parent Coordinator 

}//else 
} end when 
 
Simulator 
// Use Chow et al. (1994) algorithm for (@,t)  
  and (*,t) messages. 
 
When receive (*, t) message { 
If (msg.value() == 0) 
{ 
      case tL≤ t < tN 
             e := t – tL 
             s := δext( s, e, bag ) 

if structure request is not set 
   empty bag 

  end case 
  case t = tN and bag is empty  

s := δint( s ) 
end case 
case t = tN and bag is not empty 

             s := δcon( s, bag ) 

             if structure request is not set 
                 empty bag 
      end case 
tL := t 
tN := ta(s) 
if(structure request is set) 
send (done, tN) with the structural change 
value to the Coordinator 
else  
send (done, tN) with (value = 0) to the 
Coordinator 
} 
} // End when 
When receive (start, t) message from parent 
{ 
tL := t;   
tN := tL + ta 
s := s0 (the initial state of the model) 
Send (done, tN) to parent Coordinator 
} // End when 
 
Revised Simulator for Structure Agent 
When receive (*, t) messages  
{ 
if (msg.value() != 0) // structural change 
message 

{ 
value = msg.value() 
tL = t 
tN = Infinity; 
s := δint( s, value, t ) 
send (done, t) to the Coordinator 
} 

}// end when 
Fig. 1 Abstract Simulators  

5. FLEXIBLE DYNAMIC STRUCTURE DEVS 
ALGORITHM 

     In CD++, simulation is driven by the message 
passing among processors. In the regular abstract 
simulators, six kinds of messages are used: @ 
(collect message used to collect output of each 
model), I (initial message indicating the start of the 
simulation), *(internal message used to signal a state 
change due to an internal event), X (external 
message used when an external event arrives), Y 
(output message carrying out the models’ output) 
and D (done message indicating the completion of 
the task. According to different waiting modes of the 
abstract simulators, three kinds of done messages 
are defined: an initial done message is sent back 
when the initial message is finished processing; a 
collect done message indicates the processing of 
collect message has been finished; an internal done 
message follows an internal message to complete the 
internal message processing.). In the regular 
simulation, both the internal message and the done 
message do not need specific message values. 
However, in order to keep consistence with the 
existing abstract simulators, we extended them to 
carry structural change values which indicate 
different structural organizations. The following 



messages are used in the structural change process: 

q Structural Change Request ((done, t) (sc)): as 
shown in the abstract simulator for atomic 
models - Simulator (Fig.1), a (*, t) message 
triggers the state calculation of a model. A 
value which indicates a structural change 
request could be assigned to the internal done 
message if the structural change conditions of 
a model are satisfied. The non-zero value in 
the internal done message will be detected by 
the Root Coordinator and the Coordinator. 
And then the process of structural change 
starts.   

q Structural Change ((*, t) (sc)): according to 
Chow’s algorithm, an internal message 
triggers the model’s external/internal 
transition functions. If we consider all possible 
model structures as the state space of a model 
of Structure Agent (SA), we can use an 
internal message to trigger the structural 
transition function of the SA. The Root 
Coordinator issues an internal message with a 
structural change value to execute the required 
structural changes. 

q Start Message (St, t): When the structural 
changes are completed and all the structural 
done messages has been returned, the 
Coordinator will issue a (St, t) message to 
initialize the newly added models and retrieve 
their tNs. And then a new regular simulation 
phase starts.  

Message-driven mechanism is the key in 
DEVS simulation. Each abstract simulator executes 
a specific message sequence to advance the 
simulation process. Fig. 2 shows the message 
sequences of each abstract simulator. The Root 
Coordinator, the Coordinator and the Simulator 
execute the regular simulation. If there is no 
structural change request, the Simulator returns an 
internal done message with a value of zero, 
indicating a regular process for the next simulation 
cycle. Whereas, when a non-zero structural change 
value (sc) is sent with the internal done message (a 
structural change request), the structural change 
process is triggered. As shown in Fig. 2, when the 
Root Coordinator detects a structural change 
request, it issues an internal message (*, t) with a 
structural change value (sc) to launch a structural 
change process. The Coordinator passes the 
message to the RevSimulator (Revised Simulator 
for Structure Agent) to execute the structural 
change process at each level of the model 
hierarchy. 

 

Fig. 2 Message Sequence with a Structural Change  

The Structural Change process contains three 
stages: creating structural change requests, 
structural change processing and structural change 
post-processing.  

If the state of an atomic model satisfies 
certain structural change conditions, the atomic 
model initiates a structural change process by 
sending a structural change request to its 
Coordinator.  

Coupled models are compositions of atomic 
models and links between them. They do not 
contain any states or execute the transitional 
functions. The outputs from coupled models stem 
from the corresponding atomic models. Hence, 
atomic models are the only entities that can raise 
structural change requests.  

The Root Coordinator invokes a structural 
change process by sending an internal message with 
a structural change value (*, t) (sc).  

Structure Agent is an exclusive atomic model 
that records structural states at each model level. 
RevSimulator is inserted into the simulating 
processor tree as a structural change conductor to 
take charge of structural changes. The 
RevSimulator only accepts and executes structural 
change messages while skips other regular 
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simulation messages. Fig. 3 shows the structure of 
the simulating processor tree with RevSimulators. 
SAXs represent the RevSimulators. CXs denote 
Coordinators and SXs are Simulators. 

  

Fig. 3 Simulating Processors Tree 

The Coordinator sends (St, t) and asks for the 
tNs of the newly added models when the structural 
change of this level is done. When the Root 
Coordinator gets the imminent tN, a new regular 
simulation cycle begins.  

6. OPERATION BOUNDARIES 

In the dynamic structure process, the 
operation boundary is defined as a safe scope to 
conduct a meaningful operation [17]. The operation 
boundary ensures clear and determined operations 
among models in dynamic structural process. 
Different design perspectives of the dynamic 
structure algorithms lead to different operation 
boundaries. There are four basic structural change 
types: (1). Addition of a component; (2) Removal of 
a component; (3) Addition of a link between 
components; (4) Removal of a link between 
components. In the DEVS-based systems, a 
component refers to an atomic model or a coupled 
model. Most structural change processes are the 
composition of the four basic forms. In each 
structural change operation, the following operation 
boundaries should be complied with: 

1. A model cannot add/remove itself. 
2. A model can only be added or removed by 

the Structure Agent residing at this level.  
3. A model cannot add/remove a link to other 

peer models. Models are hierarchically 
coupled. Each model is independent from 
others at the same level and cannot be 
controlled by its peers. 

4. A link between models at the same level 
can only be added/removed by the 
Structure Agent residing at this level. 

7. CONCLUSIONS 

Real-Time systems are a kind of systems with 
sensitive timeliness and rigorous correctness of 
results. The proposed Real-Time DEVS-based 
experimental environment facilitates the seamless 
development of Real-Time systems. Introducing a 
dynamic structure function provides a more 
reasonable platform for the transformation from 
design to implementation.   

The Real-Time context concerns explicitly 
unveil the advantages brought by the DEVS-based 
experimental environment together with the 
dynamic structure DEVS function. The proposed 
abstract simulators and the structural change process 
of Flexible Dynamic Structure DEVS Algorithm 
show the cooperation between the dynamic 
structural changes and the regular simulation. 
Undoubtedly, dynamic structure function is an 
important supplementary of the previous Real-Time 
DEVS-based experimental environment. Structural 
change levels and operation boundaries restrict the 
dynamic structural changes within a clear and 
determined range. The case study for the proposed 
dynamic structure DEVS algorithm is ongoing to 
verify the correctness. The proposed Real-Time 
DEVS-based experimental environment permits a 
unified process for designing and developing 
Real-Time systems. As a result, DEVS models can 
be easily tested and smoothly transformed to the real 
hardware benefited from the delicate Real-Time 
DEVS-based experimental environment.  
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