
A Flexible Dynamic Structure DEVS Algorithm towards Real-Time Systems

Hui Shang
Gabriel A. Wainer

Department of Systems and Computer Engineering

Carleton University
1125 Colonel By Drive Ottawa ON.

K1S 5B6, Canada
email: {shanghui, gwainer} @ sce.carleton.ca

Keywords: Dynamic Structure, DEVS, Real-Time
Systems, Experimental Environment

ABSTRACT

A dynamic structure DEVS algorithm –
Flexible Dynamic Structure DEVS is introduced in
this paper. The dynamic structure is a salient
supplementary of the Real-Time DEVS-based
experimental environment we proposed before. By
adapting the system organization to the changing
internal/external environments while the systems
are in progress, the functionality of the
experimental environment is improved greatly.
Consequently, it is possible to build more reliable
and flexible Real-Time systems. This paper
describes the abstract simulators for dynamic
structure DEVS; moreover, the implementing
process is presented to show how the dynamic
structure abstract simulators work seamlessly with
the regular DEVS simulating engine. The
Real-Time DEVS-based experimental environment
with the dynamic structure function exploits a new
space to build reliable and adaptive Real-Time
systems.

1. INTRODUCTION

Real-Time systems are extremely noted for
the critical timeliness requirement and rigorous
correctness of results. Development of Real-Time
systems calls for a unified process to bridge the gaps
between design and implementation.

Discrete EVent System Specification (DEVS)
[1] is a popular approach in the simulation domain.
Modularity and hierarchy of DEVS make it easy to
represent systems in a structured way. DEVS
formalism has been extended to the Real-Time
domain, which is helpful to build a DEVS-based

framework to enhance the seamless transformation
from the system design to the implementation of
Real-Time systems [2-5]. However, they did not
mention that how the seamless transformation
between the different development stages. MDA
(Model Driven Architecture) technology proposed
in [6-8] exhibits a Real-Time DEVS-based
experimental environment, in which substantial
examples are offered to show how the large-scale
Real-Time systems are built up from the virtual
DEVS models. In the experimental environment,
DEVS models are integrated as a portion of a
Real-Time system. The Real-Time DEVS-based
experimental framework makes it possible to
analyze and test models in a risk-free environment.
In addition, the DEVS models can be replaced by
real world processes gradually after they are safely
tested in the Real-Time simulation environment. The
experimental environment provides a sound
platform to analyze the reliability. Accordingly, the
performance of the Real-Time systems is improved.

In common, the experimental environment is
represented by DEVS models statically. For instance,
the elevator system [7] and the AMS system [8] are
both of static structures. These systems interact with
their external worlds statically by the specified input
and output ports. The static structured systems are
not reasonable to represent the systems residing in a
changing environment. It is essential to introduce a
dynamic structure function to fit the varied
requirements of responding to the changing external
environment or recovering from errors automatically.
Flexibility and reliability, therefore, are reached by
adjusting the structures of models dynamically.

 This paper aims to provide a flexible
dynamic structure DEVS algorithm and integrate it
into the Real-Time DEVS-based experimental
environment. The proposed dynamic structure
DEVS not only concerns Real-Time context but also
cooperates with the regular simulation engine

seamlessly. The algorithm derives from the existing
dynamic structure DEVS specifications but employs
a different message set and abstract simulators.
The Flexible Dynamic Structure DEVS Algorithm
carries out a more elegant Real-Time development
framework.

2. BACKGROUND

Dynamic structure DEVS is a dynamic
structure algorithm based on DEVS theory. It is a
new simulation paradigm supporting structural
changes to full extent, ranging from simple
model/connection addition/deletion to the exchange
of models between networks of models [9].
Moreover, the structure should be dynamically
adjusted according to internal or external changes of
the systems. Therefore, the system structures are
able to adapt to the system real requirements.
Dynamic structure DEVS is a promising solution to
the changing environments, such as Real-Time
systems and embedded systems.

There are two kinds of dynamic structure
DEVS. DSDE [10-11] (Dynamic Structure Discrete
Event System Specification) divides models into
two groups: basic models and network models. The
basic models are atomic structure units which cannot
be split. Network models are coupled components,
consisting of multiple basic structure models and
interconnections that involve structural changes. A
Network Executive is a modified basic model to
conduct structural changes in the network models.
Network Executive stores all possible states of
structural changes and their corresponding
component sets in each structural state. Network
Executive is a structure control component that
knows all possible structural states within its action
domain. In a network model, Network Executive is
the only component to conduct the structural
changes. The centralized Network Executive
ensures that the structure transition is executed
sequentially without any conflicts between
structural change functions of the models.
Differently, the dynDEVS formalism [12] does not
introduce an extra component to conduct dynamic
structural changes. dynDEVS and dynNDEVS
present atomic and coupled dynamic structure
models respectively. Structural changes can be
conducted both in atomic model and coupled model
separately. ρα, the atomic model transition function,
and ρN, the coupled model transition function, are
included to conduct the structural changes. However,
structural conflicts might occur due to the
independency of the model transformations. Proper

constraints should be added to avoid the conflicts.
These constraints make the structural transition
functions more complicated.

CD++ [13] is a modeling and simulation tool
that implements DEVS models simulation based on
an abstract simulator mechanism. Atomic models
are defined using a state-based approach (encoded in
C++ or an interpreted graphical notation); while
coupled models contain atomic models composition
and interconnecting information of those atomic
models. CD++ has been widely used in various
applications from simple queuing systems to
complex urban traffic systems or physical systems.
CD++ employs the abstract simulators proposed in
[14]. Message drives the simulation according to the
scheduled time points. Different versions of CD++
have been developed to facilitate various
applications.

q Stand alone CD++ implements DEVS and
Cell-DEVS simulation.

q Parallel CD++ is aiming to enhance the
performance of Cell-DEVS simulation by
distributing calculation of different cells over
multiple processors.

q Distributed CD++ is developed to facilitate the
coordination of the different simulating engines
in different sites through the standard
distributed computing protocols.

q Real time embedded CD++ is constructed
especially for Real-Time embedded system. A
timing feature of the Real-Time systems has
been included in CD++ to check the timing
deadlines of given points of the systems, based
on which the scheduability of the Real-Time
system can be judged.

3. REAL-TIME CONTROL CONTEXT

“A real time computer system is the one in
which the correctness of the system behaviour
depends not only on the logical results of the
computation, but also on the physical instant at
which these results are produced” [15].Real-Time
systems are well known for their critical timeliness.
Besides, hard Real-Time Systems (RTS) are highly
reactive artificial systems that deliver data from/to
devices interacting with the surrounding
environment (another artificial/natural system). As
improper decisions may lead to catastrophic
consequences for assets or lives, correctness is
another distinct characteristic.

With sensitive timeliness and rigorous
correctness, Real-Time systems pose critical
challenges to software design and development.
Fortunately, DEVS-based experimental
environment with dynamic structure function
provides a sound underlying platform for the
Real-Time systems. Dynamic structure DEVS, to
some extent, makes it possible for the system
designers and developers to tackle those challenges.
The following points out how dynamic structure
DEVS works to improve the reliability and
performance of the Real-Time systems.

q Sensitive timeliness of Real-Time systems
requires higher precision on schedulability.
Explicit formal specification of DEVS presents
a solid base for the accuracy of schedulability.
Sometimes the critical timing constraints are
achieved only by dynamic scheduling. The
dynamic structure function brings more space
for the development of dynamic scheduling.

q Fault tolerance is a distinct trait of Real-Time
systems. Due to the rigorous requirements on
the result correctness, the Real-Time systems
should be able to recover from the faults
automatically. If the structure is static, it is
difficult to rectify these errors dynamically.
Dynamic structure allows more possibilities for
fault tolerance design. For example, if a DEVS
model or a piece of hardware is crashed, the
error would be detected and reported to the
controller, a standby model or hardware can be
initiated to replace the crashed one without
interrupting the system running.

q In most cases, it is difficult to predict the
situation of the surrounding environment.
Some unexpected events from the surrounding
environment may cause overheads or
oscillations of the systems. The dynamic
structure function is capable of dealing with
these unpredicted situations by adjusting the
system organization to the situation
dynamically.

q Embedded systems are an important group of
Real-Time system. Memory in embedded
systems is an expensive resource and should be
managed properly during running time.
Dynamic structure can remove the unused parts
of the systems and keep the minimum usage of
memory dynamically.

4. ABSTRACT SIMULATORS FOR DYNAMIC
STRUCTURE DEVS

 Barros [9] [10] introduced a model of executive
to execute structural changes of network models.
The executive, as the only structural change
conductor at each level of the model hierarchy,
prevents ambiguity resulting from different
components’ structural change requirements. We
defined a model of Structure Agent at each level to
undertake the structural changes. Different from the
Network Simulator in DSDE, which is a combined
processor for both a coupled model and a model of
executive, we assigned an independent abstract
simulator to each model of Structure Agent, called
Revised Simulator for Structure Agent. Hence, the
Coordinator, the processor for a coupled model,
skips the details of the structural changes. In
addition, a different message set is employed to
accommodate the existing regular simulation
algorithm (Chow’s algorithm [14]). Accordingly, the
Root Coordinator, the Coordinator and the Simulator
should be modified to link the dynamic structural
changes with the regular simulation. The
Coordinator delivers the structural change message
to its children or to the corresponding Revised
Simulator for Structure Agent. The Simulator
informs the structural changes when the conditions
of the structural changes are satisfied.

Root Coordinator
t := tN of the topmost Coordinator
Structure change value: request = 0
While t ≠ ∞
 Send (@, t) message to topmost Coordinator
 Wait for (done, t) message
 Send (*, t) message with the value of
‘request’ to topmost Coordinator
 Wait for (done, tN) message
 Request = msg.value() (structural change
value)
End while

Coordinator
When (@, t) is received
 // Use Chow et al. (1994) algorithm.
End when

When (*, t) is received {
if(msg.value() != 0) // structural change
{
if (the coupled model is a structure
component)
{

catch the structure agent model of the
coupled model into the structured set.

} //end if
for the component i of the coupled model
{
if (the component is a structure component)
{

catch the component into the structured
set.

} end if
} // end for
for the component i in the structured set
{
send (*, t) to the component i

} // end for
Wait until all (done, tN)’s are received from
the components in structured set
if(i ∈ D – D’)
//where D is the component set before the
structural change while D’ is the component
set after the structural change.
if(I is in the synchronized set) erase i.
// the deleted models are removed from the
synchronized set
if(i ∈ D’ - D) send (St, t) to i.
// the newly added models are initialized
Wait until (done, tN)’s are received from all
new models

tL := t
tN := minimum of components’ tN’s
send (done, tN) to the parent Coordinator
} // end if (msg.value() != 0)

else //regular simulation
{
...//use Chow et al. (1994) procedure for
(*,t)
 Wait until all (done, tN)’s are received
If(the msg.value != 0) add the component into
structure request set.

If the structure request set is not empty
{
if the component is also in the imminent
children set
{
capture the component into the
structured set
send (done, tN) with the structural
change value to the parent Coordinator
clear structure request set.

}
}
else
send (done, tN) with (vaue = 0) to the
parent Coordinator

}//else
} end when

Simulator
// Use Chow et al. (1994) algorithm for (@,t)
 and (*,t) messages.

When receive (*, t) message {
If (msg.value() == 0)
{
 case tL≤ t < tN
 e := t – tL
 s := δext(s, e, bag)

if structure request is not set
 empty bag

 end case
 case t = tN and bag is empty

s := δint(s)
end case
case t = tN and bag is not empty

 s := δcon(s, bag)

 if structure request is not set
 empty bag
 end case
tL := t
tN := ta(s)
if(structure request is set)
send (done, tN) with the structural change
value to the Coordinator
else
send (done, tN) with (value = 0) to the
Coordinator
}
} // End when
When receive (start, t) message from parent
{
tL := t;
tN := tL + ta
s := s0 (the initial state of the model)
Send (done, tN) to parent Coordinator
} // End when

Revised Simulator for Structure Agent
When receive (*, t) messages
{
if (msg.value() != 0) // structural change
message

{
value = msg.value()
tL = t
tN = Infinity;
s := δint(s, value, t)
send (done, t) to the Coordinator
}

}// end when
Fig. 1 Abstract Simulators

5. FLEXIBLE DYNAMIC STRUCTURE DEVS
ALGORITHM

 In CD++, simulation is driven by the message
passing among processors. In the regular abstract
simulators, six kinds of messages are used: @
(collect message used to collect output of each
model), I (initial message indicating the start of the
simulation), *(internal message used to signal a state
change due to an internal event), X (external
message used when an external event arrives), Y
(output message carrying out the models’ output)
and D (done message indicating the completion of
the task. According to different waiting modes of the
abstract simulators, three kinds of done messages
are defined: an initial done message is sent back
when the initial message is finished processing; a
collect done message indicates the processing of
collect message has been finished; an internal done
message follows an internal message to complete the
internal message processing.). In the regular
simulation, both the internal message and the done
message do not need specific message values.
However, in order to keep consistence with the
existing abstract simulators, we extended them to
carry structural change values which indicate
different structural organizations. The following

messages are used in the structural change process:

q Structural Change Request ((done, t) (sc)): as
shown in the abstract simulator for atomic
models - Simulator (Fig.1), a (*, t) message
triggers the state calculation of a model. A
value which indicates a structural change
request could be assigned to the internal done
message if the structural change conditions of
a model are satisfied. The non-zero value in
the internal done message will be detected by
the Root Coordinator and the Coordinator.
And then the process of structural change
starts.

q Structural Change ((*, t) (sc)): according to
Chow’s algorithm, an internal message
triggers the model’s external/internal
transition functions. If we consider all possible
model structures as the state space of a model
of Structure Agent (SA), we can use an
internal message to trigger the structural
transition function of the SA. The Root
Coordinator issues an internal message with a
structural change value to execute the required
structural changes.

q Start Message (St, t): When the structural
changes are completed and all the structural
done messages has been returned, the
Coordinator will issue a (St, t) message to
initialize the newly added models and retrieve
their tNs. And then a new regular simulation
phase starts.

Message-driven mechanism is the key in
DEVS simulation. Each abstract simulator executes
a specific message sequence to advance the
simulation process. Fig. 2 shows the message
sequences of each abstract simulator. The Root
Coordinator, the Coordinator and the Simulator
execute the regular simulation. If there is no
structural change request, the Simulator returns an
internal done message with a value of zero,
indicating a regular process for the next simulation
cycle. Whereas, when a non-zero structural change
value (sc) is sent with the internal done message (a
structural change request), the structural change
process is triggered. As shown in Fig. 2, when the
Root Coordinator detects a structural change
request, it issues an internal message (*, t) with a
structural change value (sc) to launch a structural
change process. The Coordinator passes the
message to the RevSimulator (Revised Simulator
for Structure Agent) to execute the structural
change process at each level of the model
hierarchy.

Fig. 2 Message Sequence with a Structural Change

The Structural Change process contains three
stages: creating structural change requests,
structural change processing and structural change
post-processing.

If the state of an atomic model satisfies
certain structural change conditions, the atomic
model initiates a structural change process by
sending a structural change request to its
Coordinator.

Coupled models are compositions of atomic
models and links between them. They do not
contain any states or execute the transitional
functions. The outputs from coupled models stem
from the corresponding atomic models. Hence,
atomic models are the only entities that can raise
structural change requests.

The Root Coordinator invokes a structural
change process by sending an internal message with
a structural change value (*, t) (sc).

Structure Agent is an exclusive atomic model
that records structural states at each model level.
RevSimulator is inserted into the simulating
processor tree as a structural change conductor to
take charge of structural changes. The
RevSimulator only accepts and executes structural
change messages while skips other regular

(*, t) (sc)

(@, t) (@, t)

(done, tN)

(done, tN)

(St, t)

(@, t)

(*, t)

(done, t)

(done, t) (sc)
(*, t)

(x, t)
(y, t)

(done, tN)

Coordinator

RevSimulator

(done, tN)

(done, t) (sc)

(*, t)

(*, t) (sc)

(@, t)

(done, tN)

(done, tN)

Simulator Root Coordinator

T
ri

gg
er

simulation messages. Fig. 3 shows the structure of
the simulating processor tree with RevSimulators.
SAXs represent the RevSimulators. CXs denote
Coordinators and SXs are Simulators.

Fig. 3 Simulating Processors Tree

The Coordinator sends (St, t) and asks for the
tNs of the newly added models when the structural
change of this level is done. When the Root
Coordinator gets the imminent tN, a new regular
simulation cycle begins.

6. OPERATION BOUNDARIES

In the dynamic structure process, the
operation boundary is defined as a safe scope to
conduct a meaningful operation [17]. The operation
boundary ensures clear and determined operations
among models in dynamic structural process.
Different design perspectives of the dynamic
structure algorithms lead to different operation
boundaries. There are four basic structural change
types: (1). Addition of a component; (2) Removal of
a component; (3) Addition of a link between
components; (4) Removal of a link between
components. In the DEVS-based systems, a
component refers to an atomic model or a coupled
model. Most structural change processes are the
composition of the four basic forms. In each
structural change operation, the following operation
boundaries should be complied with:

1. A model cannot add/remove itself.
2. A model can only be added or removed by

the Structure Agent residing at this level.
3. A model cannot add/remove a link to other

peer models. Models are hierarchically
coupled. Each model is independent from
others at the same level and cannot be
controlled by its peers.

4. A link between models at the same level
can only be added/removed by the
Structure Agent residing at this level.

7. CONCLUSIONS

Real-Time systems are a kind of systems with
sensitive timeliness and rigorous correctness of
results. The proposed Real-Time DEVS-based
experimental environment facilitates the seamless
development of Real-Time systems. Introducing a
dynamic structure function provides a more
reasonable platform for the transformation from
design to implementation.

The Real-Time context concerns explicitly
unveil the advantages brought by the DEVS-based
experimental environment together with the
dynamic structure DEVS function. The proposed
abstract simulators and the structural change process
of Flexible Dynamic Structure DEVS Algorithm
show the cooperation between the dynamic
structural changes and the regular simulation.
Undoubtedly, dynamic structure function is an
important supplementary of the previous Real-Time
DEVS-based experimental environment. Structural
change levels and operation boundaries restrict the
dynamic structural changes within a clear and
determined range. The case study for the proposed
dynamic structure DEVS algorithm is ongoing to
verify the correctness. The proposed Real-Time
DEVS-based experimental environment permits a
unified process for designing and developing
Real-Time systems. As a result, DEVS models can
be easily tested and smoothly transformed to the real
hardware benefited from the delicate Real-Time
DEVS-based experimental environment.

8. REFERENCES

[1] Zeigler, B.P.; T.G. Kim; and H. Praehofer.
2000. Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press.

[2] Cho, S., and T.G. Kim. 2001. “Real Time
Simulation Framework for RT-DEVS Models”.
Transactions of the Society for Computer
Simulation International.Vol. 18, No. 4, pp. 203 –
215.

[3] Cho, Y. K., B.P. Zeigler, H. J. Cho, H. S.
Sarjoughian, and S. Sen. 2000. “Design

C1

SA1 S1 S2 C2

SA2 S3 S4

Considerations for Distributed Real-Time DEVS”.
AIS 2000. Tucson, USA.

[4] Hong, J.S., H. Song, T.G. Kim, and K.H. Park.
1997. “A Real-time Discrete Event System
Specification Formalism for Seamless Real-time
Software Development”. Discrete Event Dynamic
systems: Theory and Applications. Vol. 7, No. 4,
pp. 355-375.

[5] Kim, T.G., S.M. Cho, and W.B. Lee. 2001.
“DEVS Framework for Systems Development”.
Discrete Event Modeling & Simulation: Enabling
Future Technologies. Springer-Verlag.

[6] Wainer, G., E. Glinsky, and P. Macsween.
2005. Model-Driven Architecture of Real-Time
Systems. Model-driven Software Development -
Volume II of Research and Practice in Software
Engineering. S. Beydeda and V. Gruhn eds.,
Springer-Verlag.

[7] Glinsky, E., and G. Wainer. 2004. “Modeling
and Simulation of Systems with
Hardware-in-the-loop”. In the Proceedings of the
2004 Winter Simulation Conference. Washington
DC, USA.

[8] Glinsky, E., and G. Wainer. 2004.
“Model-Based Development of Embedded Systems
with RT-CD++”. In the Proceedings of the WIP
session, IEEE Real-Time and Embedded
Technology and Applications Symposium. Toronto,
Canada.

[9] Barros, F.J. 1995. “Dynamic Structure Discrete
Event System Specifications: A New Formalism for
Dynamic Structure Modeling and Simulation”. In
the Proceedings of the 1995 Winter Simulation
Conference, pp.781-785. Arlington, USA.

[10] Barros, F.J. 1997. “Modelling Formalisms for
Dynamic Structure Systems”. ACM Transactions
on Modeling and Computer Simulation, Vol. 7, No.
4, pp. 501-515.

[11] Barros, F.J. 1998. “Abstract Simulators for the
DSDE Formalism”. In the Proceedings of the 1998
Winter Simulation Conference, pp.407-412.
Washington DC, USA.

[12] Uhrmacher, A. M. 2001. “Dynamic Structure
in Modeling and Simulation: A Reflective

Approach”. ACM Transactions on Modeling and
Computer Simulation. Vol. 11, No. 2, pp. 206-232.

[13] Wainer, G. 2002. “CD++: a toolkit to define
discrete-event models”. In Software, Practice and
Experience. Wiley. Vol. 32, No.3, pp. 1261-130.

[14] Chow, A.C., and B.P. Zeigler. 1994. “Revised
DEVS: A Parallel, Hierarchical, Modular Modeling
Formalism”. In the Proceedings of the SCS Winter
Simulation Conference.

[15] Kopetz, H. 2000. “Software Engineering for
Real-Time: A Roadmap”. In the Proceedings of the
Conference on the Future of Software Engineering,
pp.201-211, Limerick, Ireland

[16] Uhrmacher, A.M., and J. Himmeelspach. 2004.
“Processing dynamic PDEVS models”. In the
Proceedings of the IEEE Computer Society’s 12th
Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunications Systems (MASCOTS’04).
Volenlam, Netherlands.

[17] Hu, X.L., B.P. Zeigler, and S. Mittal. 2005.
“Variable Structure in DEVS Component- Based
Modeling and Simulation”. Simulation, Vol. 81,
Issue 2, February 2005, pp. 91-102.

