
DEVSView: A Tool For Visualizing CD++ Simulation Models

Wilson Venhola Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

wvenhola@connect.carleton.ca gwainer@sce.carleton.ca

ABSTRACT: We present an application developed to
visualize the results of a simulation created using the CD++
modeling and simulation toolkit. The tool, called
DEVSView, allows users to create visualizations from the
simulation log files generated by the CD++ toolkit.
DEVSView has implicit support for DEVS and Cell-DEVS
models, using OpenGL and the OpenGL Utility Toolkit for
hardware accelerated rendering. DEVSView provides a
graphical user interface and a text file format for the
creation of visualizations. Visualizations, in DEVSView,
consist of visual models that translate CD++ log files into
animations. Each visual model corresponds directly to an
atomic or coupled model from a CD++ simulation. These
visual models contain visual states and event animations
which are used to represent the simulation graphically. The
user can set up the rules, to trigger state changes and event
animations, within the GUI or in the visualization file, and
the user can use the GUI to playback the visualization.
Future work will include loading Maya model files for
complex objects, and more advanced model positioning
capabilities.

Keywords: DEVS, Cell-DEVS, Visualization, CD++,
OpenGL

1. INTRODUCTION

We will introduce the features of DEVSView, a
visualization tool implemented to improve the available
options for visualizing Discrete Event Systems Specification
(DEVS) simulations [1] executed in the CD++ toolkit
environment [2][3]. DEVS provides a framework for the
construction of discrete event hierarchical models in a
modular manner. A system modeled with DEVS consists of
behavioural (called atomic) models and structural (called
coupled) models. A structural model is composed of several
atomic or coupled sub-models. The coupled models are
composed of atomic models connected through input and
output ports defined in their interfaces. The Cell-DEVS

formalism extends this behaviour to enable defining cellular
models to model systems that operate over area of space.

CD++ is a tool to create simulations that follow the
DEVS specifications. A new atomic model is generated by
designing a new class derived from the Atomic class. First,
the model must be registered using the method
MainSimulator.registerNewAtomics(). Then, the following
methods should be overloaded:

• initFunction: this method is invoked at the
beginning the simulation. It allows to define initial
values and to execute initial functions for the
model. When this method is executed, the value of
sigma (next scheduled event) is set to infinite and
the model phase to passive.

• externalFunction: this method is invoked when an
external event arrives from an input port.

• internalFunction: this method is started when the
value of sigma is zero, since an internal event has
occurred.

• outputFunction: this method executes before the
internal function, allowing to provide outputs for
the model.

These methods have been built following the formal
specifications of DEVS models. In addition, several
primitives have been defined to allow interacting with the
abstract simulator:

• holdIn(state, time): it is used to define that the
model will remain in state during time. When this
time is consumed (sigma = 0), the model executes
an internal transition. This function is devoted to
implement the D (lifetime) function of the DEVS
formal specification.

• passivate(): the model enters in passive mode and
it will be reactivated by an external event.

• sendOutput(time, port, value): it sends an output
message through the given port.

• state(): it returns the present model phase.
• getParameter(modelName, parameterName): it

allows to access to the model state variables.

Coupled models are defined using a specification
language specially defined with this purpose. This
specification language also follows the formal definitions
for DEVS coupled models. Each coupled model is
composed by a set of definitions. Optionally, configuration
values for the atomic models can be included. Each set
indicates the name of the model and its attributes. The [top]
model defines the coupled model at the top level.

Four properties must be configured: components (using
the clause “components”), output ports (clause “out”), input
ports (clause “in”) and links between models (clause
“link”). The syntax is:

• Components: It describes the models composing
the coupled model. The syntax is:
model_name@class_name. The name of the model
is needed because we can use more than one
instance of the same model. The class’ name can
reference to either atomic or coupled models. The
last ones should be defined in the same
configuration file as a new group. The order used
when the models are set defines the priority for the
select function (that is, the execution order under
simultaneous events).

• Out: It defines the names of output ports.
• In: It defines the names of input ports.
• Link: it describes the internal and external coupling

schema. The syntax is: source_port[@model]
destination_port[@model]. The name of the model
is optional since if it is not indicated the coupled
model being defined will be used.

Cell-DEVS specifications are completed by adding the
following parameters:

- type: [cell | flat].
- width: INTEGER.
- height: INTEGER.
- link: in this case it must use the name of the cell

space and the corresponding input/output cell
(Model(x,y)).

- border: [WRAPPED | NOWRAPPED].
- delay: [TRASPORT | INERTIAL].

 - neighbors: Cell-DEVS_name(x1, y1), ..., Cell-
DEVS_name(xn, yn).

- localTransition: It defines the description for the
behavior specification used for the local
computation function.

- zone: transitionName {range1..rangen}. It associates
a behavior specification with the cells included into
the rage defined by the sentence. In this way,
different ranges can provide different behavior.

Simulations in CD++ produce complicated results,

and can depict interactions that occur in three
dimensions. The results of CD++ are recorded in text
based log files. These results sometimes require

extensive interpretation and reconstruction to clearly see
what is occurring during the simulation.

MessageI/0:0:0:00/Root(0) for top(1)
MessageI/0:0:0:00/top(01) for incdec(2)
MessageD/0:0:0:00/incdec(02)/... for top(1)
MessageD/0:0:0:00/top(01)/... for Root(0)
MessageX/0:0:0:00/Root(0)/op0/1 for top(1)
MessageX/0:0:0:00/top(01)/op0/1 for incdec(2)
MessageY/0:0:05:00/incdec(02)/res0/1 for top(1)
MessageY/0:0:05:00/incdec(02)/res1/0 for top(1)
MessageY/0:0:05:00/incdec(02)/res2/0 for top(1)
MessageY/0:0:05:00/incdec(02)/res3/0 for top(1)
MessageY/0:0:05:00/incdec(02)/res4/0 for top(1)
MessageD/0:0:0:00/incdec(02)/... for top(1)
MessageY/0:0:05:00/top(01)/res0/1 for Root(0)
MessageY/0:0:05:00/top(01)/res1/0 for Root(0)
MessageY/0:0:05:00/top(01)/res2/0 for Root(0)
MessageY/0:0:05:00/top(01)/res3/0 for Root(0)
MessageY/0:0:05:00/top(01)/res4/0 for Root(0)

Figure 1: DEVS simulation results in CD++.

 The purpose of all DEVS visualization tools is to

provide the capabilities to accomplish this task. CD++ log
files contain an event per each line of the log file. Each
event specifies: source model, destination model, time sent,
value sent, port over which the value was sent, and event
type. The tool uses this information and a couple of
visualization techniques to provide the capability of
visualizing simulations.

CD++ was provided with different software tools to
visualize the results of the simulations:

• Java Applet VRML viewers [3]
• Alias Maya 3D Software [4]

These methods have some limitations. The Java applets

use Java3D libraries and the VRML specification, both
which are no longer actively developed. The current VRML
viewers also lack functionality and ease of use. Alias Maya
is an excellent tool for creating environments and objects to
visualize simulations; however the installation size,
workstation requirements, and licensing issues of the Maya
software prevent it from being the optimal viewer for every
user (moreover considering that CD++ is an open-source
tool available for academia [5][6].

Although all CD++ simulations conform to the DEVS
specifications, the results they produce often require
different interpretation. For example, some simulations
output values over a continuous range, while others may
output a sequence of discrete states. Therefore visualizing
simulation results requires a tool which provides a flexible
methodology to visualize the various simulations
appropriately.

The proposed solution, the DEVSView visualization
tool, provides several constructs to enable visualizing the
results of DEVS simulations. The models used to create the
simulations, are directly translated to visual models. These
visual models each contain a visual state transition system,

and an event animation creation system that allow the
simulation to be visualized appropriately. DEVSView
provides the graphical user interface to define and playback
visualizations in three dimensions.

The DEVSView visualization tool provides basic
services that enable visualizations:

1) Graphical user interface based on the OpenGL
Utility Toolkit [7]: it includes a windowing system
that provides buttons, text fields, list boxes,
resizable windows, and other controls necessary for
a GUI. The rendering of the controls is accelerated
by OpenGL [8].

2) Visual state transition and event animation
systems: the visual state transition system is a
collection of visual states and transition rules
defining what simulation events trigger state
changes. The event animation system is a
collection of rules to define which events trigger
certain animations.

3) Design and Implementation of an octtree scene
database to enable efficient view culling: the visual
models are stored in an octary space partitioning
tree. This data structure recursively divides the
scene extents into eight regions, which enables
efficient algorithms for rendering scenes, object
selection, and other frequently used scene
operations.

The tool was implemented using C++ and OpenGL.
OpenGL is supported by many platforms, and is actively
developed and extended to accommodate the advancing
field of computer graphics. GLUT provides simple
windowing services, and does not reduce OpenGL rendering

performance. This approach also produces a small
installation size, and no licensing issues.

2. VISUALIZATION METHODOLOGY
Each DEVS simulation result consists of several atomic
and/or coupled models communicating with each other over
input/output ports using messages, which represent events in
the simulated system. The DEVSView tool provides a
general method of mapping simulation results to a visual
representation. The method and data used to map the results
are called a Visualization in the DEVSView tool. A
Visualization consists of a set of visual models, and a set of
events that manipulate them. The set of events used in the
Visualization corresponds directly to the external and output
events from a CD++ simulation log file. A visualization
progresses by sending these events to the visualization
models for processing. Events are sent to both the source
and destination models for this processing. The visual
model’s transition rules specify how an event affects the
visual representation of the model, and the event animation
creation rules specify whether an event produces certain
event animations.

The tool can create visual representations of systems by
parsing the log files of a CD++ simulation and creating
visual models for each atomic and coupled model found.
Once created, the visual models can be customized to follow
a visual state transition system (described in 2.1) and/or
produce animations following certain events (described in
Section 2.2). Alternatively, the visualization models can be
created by editing the visualization file directly. Figure 1
shows an example visual model named pinver (Pin
Verifier), from an ATM simulation, in its idle state.

Figure 2: A visual model in its ‘idle’ visual state. This visual state is a cube visual state. The options for selecting the color are provided in

the Visual state edit panel shown in the bottom left.

Each visualization model has a:
• Unique name
• List of output ports
• List of input ports
• Information about location, orientation and size
• List of visual states
• List of visual state transition rules
• List of event animation creation rules
• Current visual state

Cell Visualization models extend the regular models by
adding a three dimensional array of cells. The cells store
their own current visual state, position, orientation and size;
but they each use the same visual states, visual state
transition rules, and event animation rules.

Both the visual state transition system and the event
animation system described in 2.1 and 2.2 operate on the
events passed to visual models as the Visualization
progresses through simulation time. When the Visualization
reaches the time an event occurred during the simulation, it
is processed by both models involved in the exchange. For
example, an event sent from an ATM model to a Customer
model will be processed at the ATM visual model and the
Customer visual model.

Each event contains the following information:
• The source visual model name
• The destination visual model name
• The time the event occurs
• The port the value is sent through
• The value sent

The source and destination visual models use this
information to process the event. Typically, this involves
comparing the port and value with behavioral rules such as
transition rules or event animation rules. These rules use the
concept of a DEVSView Value rule to operate. A Value rule
is a procedure which accepts a real value, typically the event
value, and returns a Boolean indicating whether the value
passes the rule or whether it fails. The DEVSView tool
currently provides a couple basic value rule types to enable
guard conditions on transition rules and conditions for
creating event animations.

These value rule types are:
1) All Values: this rule returns true for all values

passed to it.
2) Equals Value: this rule passes if the value passed to

it is equal to a predetermined constant.
3) Range of Values: this rule passes if the value

passed to it is greater than the lower pre-
determined constant and less than the higher
predetermined constant.

The pre-determined constants are entered using the user
interface. Alternatively, the constants can be edited in the
visualization file directly.

2.1 Visual State Transition System
The visual state transition system of the DEVSView tool
assigns a simple state machine to each visualization model.
The state machine consists of visual states, and transitions
between these states, which are triggered by events in the
simulation. The current state defines the visual appearance
of the model in three dimensions.

All Visual States have the following properties:
• Unique Id (per visual model)
• Label
• Type

Each visual state also implements entry and exit
methods to setup their visual appearance according to
various inputs. These inputs can be obtained from the event
triggering the transition or from other variables internal to
the visual model. The visual model specifies a position,
scaling and orientation of the model, which a visual state
may choose to use or ignore when rendering. A visual state
edit panel provides the services for editing the visual state of
the model. Depending on the visual state type, the properties
provided for editing may change. Figure 1 showed the cube
visual state with the color option it provides. The other
components of the visual state system are the transition rules
from state to state.

Each of these transition rules has several properties:
• Port name and direction (Output or Input)
• Value rule
• Next state
• Unique Id (per visual model)

When an event is processed by the visual model, each of
the transition rules for the current state are evaluated to
check if any transitions should be invoked. As well as
transition rules for the current state, a separate list of
transition rules, which apply for all states, are checked.
These special types of transitions are useful for reducing the
number of transitions required for certain state machines. A
transition rule is invoked when the transition rule port name
and direction match the event port name and direction, and
the value rule passes given the event value as input. When a
transition rule is invoked, the visual state of the model
changes to the next state specified in the rule. In addition,
the state change is recorded in the visual model history, so
the transition can be reversed when the playback is reversed.

2.2 Event animation system
The event animation system allows visual models to create
animations which visualize the processing of certain events.
Event animations provide facilities to visualize the reasons
why visual state transitions occur. Consider a secure login
visual model which accepts or rejects a password, and then
passes this information to a server visual model. Observing
the visual state of the server visual model may show the
server repeatedly attempting to validate a password with the
secure login model but it will not show why the server is

doing so. A text animation which displays ‘password
rejected’ at the secure login visual model would clearly
indicate the problem. Without such an animation it is
difficult to determine why the server is repeating the login
process. It could be timing out and resending, it could be
validating several passwords sequentially, etc. Event
animations solve this problem by creating animations when
certain events occur. Event animations can be any sort of
visual effect, and are triggered to occur when specific events
arrive at a visual model. The only event animation currently
provided by the tool is the text animation. A text animation
is a three dimensional piece of text which travels from one
location to another.

Each visual model contains a list of event animation
rules which contain the following information:

• Port name and direction (Output or Input)
• Value rule
• Source state
• Animation length
• Unique Id (per visual model)

When an event is processed by the visual model, the
event animation rules are evaluated to check if any event
animations should be created. An animation is created if the
current visual state equals the rule source state, the rule port
name and direction match the event port name and direction,
and the value rule passes given the event value as input.
Event animation rules create animations and specify their
properties based on the event value and other variables
internal to the visual model. After an animation is created, it
is guaranteed to last the amount of time specified in the
event animation rule.

2.3 Octary Spatial Partitioning Data Structure
Each visual model in the visualization has a current visual
state and this visual state defines the graphical
representation of the visual model. The octtree data structure
provides a data structure for organizing the graphical
representations by their location in space. This data structure
recursively divides the scene into 8 regions of space and
assigns scene nodes into the smallest region that contains
them completely. Each region is represented by a node in
the octtree. The initial region and one subdivision are shown
in Figure 3.

The reason for using an octtree data structure is that it
provides efficient view culling and other common scene
operations . Complex scenes require significant rendering
time and may contain many different objects. Determining
what objects to draw is important, since it is inefficient to
draw every object every frame. View culling is the process
of calculating which objects are in view and therefore
require rendering. The octtree data structure can optimize
the process of determining what is in view. The process
consists of traversing the octtree, and for each node (region)
determining whether the node is in view. If the node is out

of view, the entire tree extending from that node can be
culled, which potentially culls many objects with a single
node visibility check. Conversely if the node is completely
in view, the entire tree extending from that node is visible
and does not require a visibility check.

Figure 3: Octtree region division

This view culling algorithm is shown in the following

pseudo code:

Let ON = the current octtree node
Let ParentON = the parent octtree node of ON
Let VF = the view frustum (i.e. the field of view) (See [4])
If ParentON intersects VF {
 Calculate ON visibility
 If ON is not visible {
 Stop traversing ON
 }
}
Else ParentON is completely visible {
 ON is therefore completely visible
}

If ON is completely visible or intersects VF {
 Draw each scene node contained in ON
}
If ON has children octtree nodes {

Draw each child octtree node by repeating this
pseudocode with ParentON = current ON, and new
ON = child octtree node.

}

The octtree also provides the capability for efficient

collision detection (Important for object selection), and
distance sorting (Important for transparency). Object
selection and transparency are features which could be
useful for future development but are not currently being
used.

The DEVSView implementation of the octtree has the
capability of assigning graphical objects to several octtree
regions to better define the outline of the object. Consider a

small object located at the centre of the root region. This
object will only fit inside the root region so it must be
assigned to that region. Therefore the small object will only
be culled if the root is culled, despite the fact that it may
rarely be in view. If the small object were added to the 8
smallest regions that contain it completely, then that object
will be culled much more efficiently by the Octtree. Figure
4 shows the principle in two dimensions.

Figure 4: a) the red circle is added to the smallest region that

entirely fits it. The field of view does not cull the region so the
circle is drawn. b) the red circle is added to the 4 smallest regions
that contain it completely. The field of view culls the regions and

the circle is not drawn.

3. THE DEVS VISUALIZATION TOOL

The following sections describe a couple of simulations
visualized using the DEVSView tool.

3.1 An ATM Simulation
The ATM simulation consists of several atomic models
interacting with each other to approximate the services
provided by an ATM machine. The visual models were
extracted from the simulation log file and the visual state
machines were defined using the DEVSView user interface.
Figure 4 shows the visual models, and the visual state
machine interface for the cardreader model.

The ATM simulation also provides a text animation
which displays “Card Inserted” whenever a bank card is
inserted. This text animation was added manually to the
visualization file. The text animation can be seen in Figure
5, which shows a frame from the visualization right after a
customer arrives at the ATM.

The visual model Root and top are always present in
DEVS simulations; however they rarely need a visual state.
The ATM has other visual models: auth (the authorization
component), balancever (in charge of verifying customer’s
balance), cardreader (to read the data from customer’s bank
cards), cashdispenser (to deliver cash), pinver (the
application to verify the correctness of pins typed), and
userface (the user’s interface). The visual states and
transition rules for the cardreader model are shown in the
model edit panel. The cardreader model can be in four
states: idle, card in, card read, ejecting, for each of the

states related to the card use. There are four transition rules
which travel from idle to card in, card in to card read, card
read to ejecting, and from ejecting back to card in.

Figure 5: ATM visual models and the interface to edit the visual

models.

Figure 6 shows text animation for the ATM model,
which reads Card Inserted, just above the cardreader
model. Since the card was inserted, the cardreader model
transitions to the card in state and the top model transitions
to the customer in system state.

Figure 6: A frame in the ATM visualization after a customer

arrives.

3.2 A Bouncing Ball Simulation
This model represents a bouncing ball within a closed area.
Each cell is represented by 5 possible states: 0, an empty
space; 1, the object moving SW; 2, the object moving SW;
3, the object moving NE; 4, the object moving NW. The
following figure presents the model representation in CD++

[bouncing]
type : cell width : 20 height : 15
delay : transport border : nowrapped
neighbors : (-1,-1) (-1,1)(0,0)(1,-1) (1,1)
localtransition : move
zone : ULcorner{ (0,0) }
zone : URcorner { (0,19) }
zone : BLcorner { (14,0) }
zone : BRcorner { (14,19) }
...

[move]
rule : 1 100 { (-1,-1) = 1 }
rule : 2 100 { (1,-1) = 2 }
rule : 3 100 { (-1,1) = 3 }
rule : 4 100 { (1,1) = 4 }
rule : 0 100 { t }
...

[ULcorner]
rule : 1 100 { (1,1) = 4 }
rule : 0 100 { t }

[URcorner]
rule : 3 100 { (1,-1) = 2 }
rule : 0 100 { t }

[BLcorner]
rule : 2 100 { (-1,1) = 3 }
rule : 0 100 { t }

[esquinaDR-rule]
rule : 4 100 { (-1,-1) = 1 }
rule : 0 100 { t }

Figure 7: Cell-DEVS definition for the bouncing ball
simulation.

The simulation in Figure 8 shows three balls contained

in a 2d grid which bounce of the walls. The figure 6 shows a
composite of the visualization during playback. The image
shows the motion of the balls in the 2d grid.

Figure 8: A composite of several frames in the bouncing

ball simulation.

4. CONCLUSION
The DEVSView tool provides facilities for creating
visualizations of CD++ simulations, which are based on the
DEVS formalism. The tool reads CD++ simulation log files
to create the visual models needed to visualize the
simulation. The visual models have visual state transition
systems which define how the simulation models are
graphically represented during visualization. The visual
models also have event animation rules to create animations
when certain events occur. These constructs provide the
methodology required to visualize DEVS or Cell-DEVS
models. The tool provides a user interface, and file format to
create these constructs, and several visualizations have been
successfully created with the DEVSView tool.

There are several important features that could
potentially increase the utility of the DEVSView tool. The
following is a list of several improvements to the tool that
may prove useful.

• An interface to scripting languages for complicated
Value rules, Entry methods, Exit methods, and
other state machine operations.

• Maya 3D model loading for complex graphical
objects

• Environment detail objects. Terrains, Backdrops,
etc

• Cell model alignment and per cell position
manipulation. With this feature, one dimensional
cell models could be aligned to lines, 2D cell
models could be aligned to planes, and 3D cell
models could be aligned to containers.

• Multiple camera views and point and click object
selection.

• Simulation statistics display
• Graphical visual state machine editing

• Interfacing to a running CD++ simulation for
interactive simulations

The visualization facilities of the DEVSView tool
provide the beginnings of a powerful tool.

REFERENCES

[1] Zeigler, B; Kim, T; Praehofer, H. “Theory of Modeling

and Simulation”. Academic Press. New York, 2000.
[2] Wainer, G. 2002. CD++: A toolkit to develop DEVS

models. Software, Practice and Experience 32(3):1261-
1306.

[3] Wainer G, Chen W. 2003. A Framework for Remote
Execution and Visualization of Cell-DEVS Models.
SIMULATION, Vol. 79, Issue 11.

[4] Khan, A.; Wainer, G.; Venhola, W.; Jemtrud, M. “On
the use of CD++/Maya for visualization of discrete-
event models”. In Proceedings of IMACS 2005. Paris,
France. 2005.

[5] CD++ distribution.
 http://www.sce.carleton.ca/faculty/wainer/wbgraf
[6] Open Source DEVS
 http://sourceforge.net/projects/odevspp/
[7] Kilgard, M. J. “The OpenGL Utility Toolkit (GLUT)

Programming Interface: API Version 3”. Available:
http://www.opengl.org/resources/libraries/glut/glut-
3.spec.pdf. 1996.

[8] Gribb, G.; Hartmann, K. “Fast Extraction of Viewing
Frustum Planes from the World-View-Projection
Matrix”.Available:
http://www2.ravensoft.com/users/ggribb/plane%20extra
ction.pdf. 2001.

[9] Segal, M.; Akeley, K... “The OpenGL Graphics
System: A Specification”. Available:
http://www.opengl.org/documentation/specs/version2.0
/glspec20.pdf. 2004.

