
This work was partially supported by ANPCYT Project
11-04460, UBACYT Project JW10, and COMPAQ Latin America
Corporation.

APPLICATION OF THE CELL-DEVS PARADIGM USING N-CD++

Javier Ameghino Gabriel Wainer.

Departamento de Computación. Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires.

Planta Baja. Pabellón I. (1428) Buenos Aires. ARGENTINA
gabrielw@dc.uba.ar

http://www.dc.uba.ar/people/proyinv/celldevs

ABSTRACT

Cell-DEVS is an extension of the DEVS formalism that
allows the definition of cellular models. We have
developed a tool implementing these theoretical concepts,
making easy the definition of complex cell spaces with
explicit timing delays. Here, we show the use of the
paradigm through different application examples.
Complex applications can be implemented in a simple
fashion, and they can be executed effectively.

Keywords: Modeling methodology: DEVS models,
cellular automata, Cell-DEVS models; Simulation tools.

INTRODUCTION

The DEVS formalism, defined in (Zeigler 1976, Zeigler
1984, Zeigler et al. 2000) is a modular and hierarchical
approach for discrete-event simulation. A DEVS model
can be described as composed of several submodels,
which, once tested, can be reused.

We have interested in describing real systems that can be
represented as cell spaces. Cellular Automata (Wolfram
1986) is a well-known formalism to describe these
systems. They are defined as an infinite n-dimensional
lattice of cells whose values are updated according to a
local rule. This is done simultaneous and synchronously,
using the present cell state and those of a finite set of
nearby cells (called its neighborhood).

Cellular automata usually require large amounts of
compute time. The use of a discrete time base also
constrains the model precision. Timed Cell-DEVS solves
these problems by using the DEVS paradigm to define a
cell space where each cell is defined as an atomic model
(Wainer and Giambiasi, 2000). The goal is to build
discrete-event cell spaces, improving their definition by
making the timing specification more expressive. Cell-
DEVS atomic models can be specified as:

TDC=< X, Y, I, S, N, delay, d, δINT, δEXT, τ, λ, D >

In this case, X is the set of external input events, Y is the
set of external output events, and I is the model's modular
interface. S is the set of sequential states for the cell, and N
is the set of input events. Delay defines the kind of delay
for the cell, and d its duration. Finally, there are several
functions: δINT for internal transitions, δEXT for external
transitions, τ for local computations, λ for outputs and D
for the state's duration function.

Each cell uses a set of N inputs to compute the future state.
They are received through the model interface, and are
used to activate the local function. A delay can be
associated with each cell, allowing deferring the
transmission of the execution results. A transport delay
allows us to model a variable commuting time for each
cell with anticipatory semantics (every scheduled event is
executed). Using inertial delays, the semantics is
preemptive: some scheduled events are not executed due
to a small interval between two input events. Therefore,
the outputs of a cell are not transmitted instantaneously,
but after the consumption of the delay. The model
advances through the activation of the internal, external,
output and state's duration functions, as in other DEVS
models.

Once each cell is defined, they can form a coupled model:

GCC=< Xlist, Ylist, I, X, Y, n,{t1,..,tn}, N, C, B, Z >

Here, Xlist is an input coupling list, Ylist is an output
coupling list and I represents the model interface. X is the
set of external input events and Y the external output
events. The n value defines the dimension of the cell
space, {t1,...,tn} is the number of cells in each dimension
and N is the neighborhood set. C is the cell space, B is the
set of border cells, and Z a translation function.

This specification defines a coupled model composed of
an array of atomic cells. Each of them is connected to its
neighborhood. As the cell space is finite, the borders
should be provided with a different behavior than the rest
of the space. Otherwise, the space is wrapped, meaning
that cells in a border are connected with those in the
opposite one. Finally, the Z function defines internal and
external couplings.

Using these formal specifications, a simulation tool was
developed. The following sections will be devoted to show
how the tool can be used to develop cellular models.

A SIMULATION TOOL BASED ON CELL--DEVS

N–CD++ (Rodríguez and Wainer, 1999) is a tool built
following the formal specifications of Cell-DEVS. The tool
includes a specification language that allows describing the
behavior of each cell. A cell space is defined including its
size, influencees, neighborhood and borders. Using these
parameters, a complete Cell-DEVS is built using the formal
specifications.

The behavior of a cell is defined using rules with the form:

 VALUE DELAY { CONDITION }

Each rule indicates that if the CONDITION is satisfied, the
state of the cell will change to the designated VALUE, and
it will be DELAYed the specified time. If the condition is
not valid, the next rule is evaluated (according to the order
in that they were defined), repeating this process until a
rule is satisfied.

The specification shown in Figure 1 shows the rules for the
"Life" Game (Gardner, 1970). They indicate that if a cell
will remain active when the number of active neighbors is
3 or 4 (using a transport delay of 10 ms). If the cell is
inactive and the neighborhood has 3 active cells, the cell
activates. Otherwise case, the cell is inactive.

Rule: 1 10 { (0,0) = 1 and (truecount = 3 or
 truecount = 4) }
Rule: 1 10 { (0,0) = 0 and truecount = 3 }
Rule: 0 10 { t }

Figure 1. Definition for the Life game.

The language permits to manipulate n-dimensional
references. Likewise, a neighborhood can be composed of
non-adjacent cells, and the neighborhood’s dimension can
be similar or inferior to the model's dimension.

The most common operators are included: boolean (AND,
OR, NOT, XOR, IMP and EQV), comparison (=, !=, <, >,

<= and >=), and arithmetic (+, -, * and /). In addition,
different types of functions are available: trigonometric,
roots, power, rounding and truncation, module, logarithm,
absolute value, minimum, maximum, G.C.D. and L.C.M.
Other existing functions allow to check if a number is
integer, even, odd or prime.

Some functions allow to query the cell state of the
neighborhood: truecount, falsecount, undefcount and
statecount(n).

Some common constants are defined: pi, e, certain
constants used in the domains of the physics and the
chemistry (gravitational constant, acceleration, light speed,
Planck’s constant).

The Time function returns the global simulated time.
Functions RadToDeg and DegToRad are used for the
conversion of angles expressed in radians to degrees and
viceversa. There are functions for the conversion of polar
and rectangular coordinates and temperatures in Celsius,
Fahrenheit or Kelvin degrees.

Other functions allow to obtain values depending on the
evaluation of a certain condition. IFU(c, t, f, u) evaluates
the c condition, and if it is True, it returns the t value. If it
is False, it return f, and u if it is undefined. On the other
hand, the function IF(c, t, f) returns t if c evaluates to True,
and f otherwise.

Finally, several functions are used to generate
pseudorandom numbers using different probability
distributions. We have included Uniform, Chi Square,
Beta, Exponential, Φ, Gamma, Gaussian, Binomial and
Poisson distributions. The introduction of random
conditions presents new problems. For example, in the rule:

10 100 { random >= 0.4 }

the condition is evaluated to True in the 60 % of the cases,
and to False in the rest. Therefore, the model could return
all the rules evaluated to False, even when the model is
well specified. The tool automatically identifies these
cases, and assigns the Undefined value to the cell,
informing this situation and continuing with the simulation.

Space zones, defined by a cell range, can be associated with
a set of rules different than the rest of the cell space.

Figure 2. A Zone defined by the range {(3,3)..(5,7)}

Cellular models can be integrated to a standard DEVS
hierarchy. Therefore, input/output ports can be defined for
the cell space. The portInFunction directive is used to
query the value of a message arrived in an input port. On
the other hand, output ports are activated using the send
function.

APPLICATION EXAMPLES

This section is devoted to describe how to implement
different Cell-DEVS models using N-CD++.

We first show an example of excitable media, a
phenomenon appearing in several real systems. For
instance, the nervous tissue of the heart muscle is an
excitable medium where a wave travels through the heart
in every heartbeat. Magnetic fields, forest fires, etc. also
can be represented as modifications of these models.

Three states can be recognized. For instance, in a heart
tissue these states represent a cell that is resting, excited or
recovering. In a forest fire, the states could represent a cell
without fire, burning or burnt. Any of these models are
defined as:

[ExMedia]
type : cell dim : (9,9)
delay : transport border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (0,1) (1,-1) (1,0) (1,1) (0,0)
localtransition : Ex-rules

[Ex-rules]
rule : 0 100 {(0,0)=0 and statecount(2)=0 }
rule : 2 100 {(0,0)=0 and statecount(2)>0 }
rule : 1 100 { (0,0) = 2 }
rule : 0 100 { (0,0) = 1 }
rule : { (0,0) } 100 { t }

Figure 3. Definition of an excitable media model.

We first define the Cell-DEVS coupled model and its
parameters: size, neighborhood shape, kind of delay and
borders. The Ex-rules section represents the local
computing function for the model. Here, the first rule
defines that when the cell and its neighbors are not excited
(value 0), the cell must keep resting. The second rule
means that if the cell is resting and there are excited
neighbors (value 2), the cell is excited. Third and fourth
rules mean that the cells remain in a specific state. In every
other case (t means "True"), the cell keeps its present state.

Figure 4 shows the results obtained when this model
executes. It shows the evolution of this excitable media
model using different neighborhoods. Figure 4a uses all

the adjacent neighbors, as defined in Figure 3 (Moore
neighborhood). Figure 4b uses four adjacent cells (N-S-E-
W), and Figure 4c shows a hexagonal lattice on a square
grid.

Figure 4. Results of ExMedia with different

Neighborhoods: (a) Moore; (b) Von Neumann; (c)
hexagonal grid.

The following example represents a surface tension model.

[Tension]
type : cell dim : (40,40)
delay : transport border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (1,-1) (1,0) (1,1) (0,0) (0,1)
localtransition : Ten-rules

[Ten-rules]
rule : 0 100 { statecount(0) >= 5 }
rule : 1 100 { t }

Figure 5. Surface tension model specification

We see the definition of the Cell-DEVS coupled model
parameters: a grid of 40x40, Moore neighborhood,
transports delays and wrapped borders. We have two
states: the presence (value 1) or absence (value 0) of
particles. This model can be represented as a "majority
vote" system. In each step, the new state depends of most
neighbors. It remains in the cell if at least 5 of the 9 are
occupied; otherwise it becomes empty. The following
figure shows how particles concentrate where there is
bigger tension. The resulting behavior of the surface is a
high level representation of the majority vote rules defined
earlier.

Figure 6. Execution results of the Surface Tension
model.

The next example is an ecological model of ants moving in
the ground. The ants eat grass in two steps: first, they eat
the leaves and then the root. Hence, we have three grass
states: 1 when there is grass in the cell, 2 when the leaves
have been eaten, and 3 or 4 for empty cells. When an ant
find grass, she eat it and rotates 90º to the right. When the
leaves have been eaten, she eats the root and rotates 90º to
the left. If there is no grass, she continues moving ahead.

[vants]
type : cell dim : (10,10,2)
delay : transport border : wrapped
neighbors: (-2,0,0) (-1,-1,0) (-1,0,0)
neighbors: (-1,1,0) (0,2,0) (0,0,1)
neighbors: (0,-2,0) (0,-1,0) (0,0,0) (0,1,0)
neighbors: (1,-1,0) (1,0,0) (1,1,0) (2,0,0)

localtransition : calculus
[calculus]
...
rule:{if((0,0,0)=45,31,(trunc((0,0,0)/10)*10)+
1) } 100 { cellpos(2)=0 and (0,0,1)=2 and
((0,0,0)=25 or (0,0,0)=35 or (0,0,0)=45) and
(fractional((-1,0,0)/10)*10)!=7 and
((fractional((-1,1,0)/10)*10)=8 or
(fractional((-2,0,0)/10)*10)=7 or
(fractional((-1,-1,0)/10)*10)=6) }
...
rule : { (trunc(((0,0,0)/10))*10) + 1 } 100
{cellpos(2)=0 and (0,0,1)=4 and ((1,0,0)=25 or
(1,0,0)=35 or (1,0,0)=45)}
...
rule : { (0,0,0) + 1 } 100 {cellpos(2)=1 and
(0,0,0)<7}
rule : 1 100 {cellpos(2)=1 and (0,0,0)>=7}

rule : { (0,0,0) } 100 { t }

Figure 7. Specification of the ant’s model

We use four states to represent the present direction,
combined with the grass state. For instance, a value 13
means that there is grass (1) and the ant is going north (1:
S; 2: E; 3: N; 4: W). This model needs extra information to
control the movement of the ants to avoid collisions. Then,
we define auxiliary ant directions to analyze the possibility
of collision (5: S; 6: E; 7: N; 8: W).

We have two surfaces, the first representing the grass and
the ants, and the second used as collision flags. When a cell
in the second surface have the value 1 we must analyze
only rules that determine whether there are collisions or
not. When the value of the cell is 2 we must analyze only
rules to compute the next position of the ants. This is
shown in the first rule in Figure 7. The following rule is
used to move the ant once we know that we can move it.

The cellpos function allows us to know which surface we
are using, providing two different behaviors.

The following figure shows the execution of the model
using the tool. The dark cells contain grass, and an ant
moving in the lower rows is eating them. The ant behaves
using the rules recently explained. We also can see the
growth of the grass, represented as a change of state for
the lighter cells, where a long delay is used.

Figure 8. Execution results of an ant foraging model.

Our last example shows the simulation results for a
watershed model. This model, previously introduced in
(Moon et al. 1996), represents a hydrology system built as
a cell space. The watershed is represented as small cells
organized in several layers (air, surface water, soil, ground
water, and bedrock). The rainfall input is partially retained
by vegetation, and the rest infiltrates.

[Watershed]
type : cell dim : (30,30,2)
delay : transport border : nowrapped
neighbors : (-1,0,0) (0,-1,0) (0,0,0) (0,1,0)
neighbors : (1,0,0) (-1,0,1) (0,-1,1) (0,0,1)
neighbors : (1,0,1) (0,1,1)
localtransition : Hydrology

[Hydrology]

rule : {0.0022 + (0,0,0) – if ((-1,0,0)!=?) and
((0,0,1)+(0,0,0) > ((-1,0,1) + (-1,0,0)),
((0,0,0)+(0,0,1)-(-1,0,0)-(-1,0,1))/1000)*
(0,0,0))/1000),0)-
if((1,0,0)!=?) and ((0,0,1)+(0,0,0))> ((1,0,1) +
(1,0,0)),((0,0,0) + (0,0,1) - (1,0,0) -
(1,0,1))/1000)*(0,0,0))/1000),0) - if((((0,-1,0)
!= ?) and
((0,0,1)+(0,0,0)) > ((0,-1,1)+(0,-1,0)) ,((0,0,0)
+ (0,0,1)-(0,-1,0)-(0,-1,1))/1000)
*(0,0,0))/1000),0) –
if((0,1,0) != ?) and ((0,0,1) + (0,0,0)) >
((0,1,1) + (0,1,0)),(((0,0,0) + (0,0,1) - (0,1,0)
- (0,1,1))/1000) * (0,0,0))/1000),0) + if((-
1,0,0) != ?) and ((-1,0,1) + (-1,0,0)) > ((0,0,1)
+ (0,0,0)),((-1,0,0) + (-1,0,1) - (0,0,0)-
(0,0,1))*(-1,0,0))/1000),0) + if((1,0,0) != ?)
and ((1,0,1) + (1,0,0)) > ((0,0,1) +
(0,0,0)),((1,0,0) + (1,0,1) - (0,0,0) - (0,0,1))
* (1,0,0))/1000),0) + if((0,-1,0) != ?) and ((0,-
1,1) + (0,-1,0)) >((0,0,1) + (0,0,0)), ((0,-1,0)
+ (0,-1,1) - (0,0,0) - (0,0,1)) * (0,-
1,0))/1000),0) + if((0,1,0) != ?) and (((0,1,1) +
(0,1,0)) > (0,0,1) + (0,0,0)),((0,1,0) + (0,1,1)
- (0,0,0) - (0,0,1)) * (0,1,0))/1000),0) } 1000 {
cellpos(2)=0 }
rule : { (0,0,0) } 1000 { t }

Figure 9. Watershed model specification

Figure 9 shows the implementation of the model using the
tool. The rules represent the accumulation of water. It takes
the present water of the cell, and the rain fell up to the
present moment is added. Then, we consider how much
water must be passed to the neighbors, and how much
water is received from the inverse neighborhood. Several
layers are represented as planes in a three dimensional
model.

We can see the execution results of this model in the
Appendix. In the first figure we show an initial state,
representing the slope of the terrain before raining. Each
cell occupies 1m x 1m. The second figure shows the
execution results after intense rain (0.0022 mm/s) after 10
minutes of simulated time. We can see that the rain is
accumulated in the lower levels of the terrain, and a river is
formed.

CONCLUSION

The tool N-CD++ can be used for modeling and simulation
of n–dimensional Cell–DEVS. This approach improves the

development, checking and maintaining phases, facilitating
the testing and reuse of their components. Input/output port
definitions allow defining multiple interconnection
between Cell-DEVS or DEVS models. We also can
develop multidimensional models, making the tool a
general framework to define and simulate complex generic
models.

The tool was built using a standard version of C++, which
allowed is to provide different versions running in several
platforms without additional cost. At present, N–CD++ has
been successfully tested in Windows 95/NT, Linux, AIX,
IRIX, HP-UX and Solaris. A simulation server has been
built, and soon it will be available to do simulations using a
Web-based approach.

The tool and the examples are the public domain and they
can be obtained in:
"http://www.dc.uba.ar/people/proyinv/celldevs".

REFERENCES

Gardner, M., 1970. “The Fantastic Combinations of John
Conway’s New Solitaire Game ‘Life’ ”. Scientific
American, 23 (4), pp. 120-123.

Moon, Y.; Zeigler, B.; Ball, G.; Guertin, D., 1996. "DEVS
representation of spatially distributed systems: validity,
complexity reduction". IEEE Transactions on Systems,
Man and Cybernetics. pp. 288-296.

Rodríguez, D.; Wainer, G., 1999. "New Extensions to the
CD++ tool". In Proceedings of SCS Summer
Multiconference on Computer Simulation. 1-7.

Wainer, G.; Giambiasi, N., 2000. "Timed Cell-DEVS:
modelling and simulation of cell spaces". In Discrete
Event Modeling & Simulation: Enabling Future
Technologies, to be published by Springer-Verlag.

Wolfram, S. , 1986. Theory and applications of cellular
automata. Vol.1, Advances Series on Complex Systems.
World Scientific, Singapore.

Zeigler, B., 1976. Theory of modeling and simulation.
Wiley.

Zeigler, B., 1984. Multifaceted Modelling and discrete
event simulation. Academic Press.

Zeigler, B.; Praehofer, H.; Kim, T., 2000. Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic Press.

BIOGRAPHIES

Gabriel A. Wainer received the Licentiate degree (M.Sc.,
1993) and Ph.D. degree (1998, with honours) of the
Universidad de Buenos Aires, Argentina, and
DIAM/IUSPIM, Université d'Aix-Marseille III, France. He
is Assistant Professor at the Computer Sciences Dept. of
the Universidad de Buenos Aires, Argentina. He has been
working in the same department since 1988. He published
more than 40 articles in the field of operating systems,
real-time systems and Discrete-Event simulation. He has
been head of several research projects related with
computer modelling and simulation. He is author of a book
on real-time systems and co-author of a book on Operating
Systems.

Javier Ameghino is a Licentiate (M. Sc.) student at the
Computer Sciences Department of the Universidad de
Buenos Aires, Argentina. He worked in several private
companies in Buenos Aires. At present he works at
COMPAQ Latin America Corporation (Buenos Aires).

APPENDIX – Execution results of the Watershed model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

Figure 10. Initial height values for a watershed.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110

Figure 11. Height values after rain.

