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ABSTRACT 
 
Cell-DEVS is an extension of the DEVS formalism that 
allows the definition of cellular models. We have 
developed a tool implementing these theoretical concepts, 
making easy the definition of complex cell spaces with 
explicit timing delays. Here, we show the use of the 
paradigm through different application examples. 
Complex applications can be implemented in a simple 
fashion, and they can be executed effectively. 
 
Keywords: Modeling methodology: DEVS models, 
cellular automata, Cell-DEVS models; Simulation tools. 
 
INTRODUCTION 
 
The DEVS formalism, defined in (Zeigler 1976, Zeigler 
1984, Zeigler et al. 2000) is a modular and hierarchical 
approach for discrete-event simulation. A DEVS model 
can be described as composed of several submodels, 
which, once tested, can be reused.  
 
We have interested in describing real systems that can be 
represented as cell spaces. Cellular Automata (Wolfram 
1986) is a well-known formalism to describe these 
systems. They are defined as an infinite n-dimensional 
lattice of cells whose values are updated according to a 
local rule. This is done simultaneous and synchronously, 
using the present cell state and those of a finite set of 
nearby cells (called its neighborhood). 
 
Cellular automata usually require large amounts of 
compute time. The use of a discrete time base also 
constrains the model precision. Timed Cell-DEVS solves 
these problems by using the DEVS paradigm to define a 
cell space where each cell is defined as an atomic model 
(Wainer and Giambiasi, 2000). The goal is to build 
discrete-event cell spaces, improving their definition by 
making the timing specification more expressive. Cell-
DEVS atomic models can be specified as: 

TDC=< X, Y, I, S, N, delay, d, δINT, δEXT, τ, λ, D > 
 

In this case, X is the set of external input events, Y is the 
set of external output events, and I is the model's modular 
interface. S is the set of sequential states for the cell, and N 
is the set of input events. Delay defines the kind of delay 
for the cell, and d its duration. Finally, there are several 
functions: δINT for internal transitions, δEXT for external 
transitions, τ for local computations, λ for outputs and D 
for the state's duration function. 
 
Each cell uses a set of N inputs to compute the future state. 
They are received through the model interface, and are 
used to activate the local function. A delay can be 
associated with each cell, allowing deferring the 
transmission of the execution results. A transport delay 
allows us to model a variable commuting time for each 
cell with anticipatory semantics (every scheduled event is 
executed). Using inertial delays, the semantics is 
preemptive: some scheduled events are not executed due 
to a small interval between two input events. Therefore, 
the outputs of a cell are not transmitted instantaneously, 
but after the consumption of the delay. The model 
advances through the activation of the internal, external, 
output and state's duration functions, as in other DEVS 
models. 
 
Once each cell is defined, they can form a coupled model:  
 

GCC=< Xlist, Ylist, I, X, Y, n,{t1,..,tn}, N, C, B, Z > 
   
Here, Xlist is an input coupling list, Ylist is an output 
coupling list and I represents the model interface. X is the 
set of external input events and Y the external output 
events. The n value defines the dimension of the cell 
space, {t1,...,tn} is the number of cells in each dimension 
and N is the neighborhood set. C is the cell space, B is the 
set of border cells, and Z a translation function. 
 



This specification defines a coupled model composed of 
an array of atomic cells. Each of them is connected to its 
neighborhood. As the cell space is finite, the borders 
should be provided with a different behavior than the rest 
of the space. Otherwise, the space is wrapped, meaning 
that cells in a border are connected with those in the 
opposite one. Finally, the Z function defines internal and 
external couplings.  
 
Using these formal specifications, a simulation tool was 
developed. The following sections will be devoted to show 
how the tool can be used to develop cellular models. 
 
 
A SIMULATION TOOL BASED ON CELL--DEVS 
 
N–CD++ (Rodríguez and Wainer, 1999) is a tool built 
following the formal specifications of Cell-DEVS. The tool 
includes a specification language that allows describing the 
behavior of each cell. A cell space is defined including its 
size, influencees, neighborhood and borders. Using these 
parameters, a complete Cell-DEVS is built using the formal 
specifications. 
 
The behavior of a cell is defined using rules with the form: 
 

 VALUE    DELAY  { CONDITION } 
 
Each rule indicates that if the CONDITION is satisfied, the 
state of the cell will change to the designated VALUE, and 
it will be DELAYed the specified time. If the condition is 
not valid, the next rule is evaluated (according to the order 
in that they were defined), repeating this process until a 
rule is satisfied.  
 
The specification shown in Figure 1 shows the rules for the 
"Life" Game (Gardner, 1970). They indicate that if a cell 
will remain active when the number of active neighbors is 
3 or 4 (using a transport delay of 10 ms). If the cell is 
inactive and the neighborhood has 3 active cells, the cell 
activates. Otherwise case, the cell is inactive. 
 
Rule: 1 10 { (0,0) = 1 and ( truecount = 3 or              
              truecount = 4 ) } 
Rule: 1 10 { (0,0) = 0 and truecount = 3 } 
Rule: 0 10 { t } 

Figure 1. Definition for the Life game. 
 
The language permits to manipulate n-dimensional 
references. Likewise, a neighborhood can be composed of 
non-adjacent cells, and the neighborhood’s dimension can 
be similar or inferior to the model's dimension.  
 
The most common operators are included: boolean (AND, 
OR, NOT, XOR, IMP and EQV), comparison (=, !=, <, >, 

<= and >=), and arithmetic (+, -, * and /). In addition, 
different types of functions are available: trigonometric, 
roots, power, rounding and truncation, module, logarithm, 
absolute value, minimum, maximum, G.C.D. and L.C.M. 
Other existing functions allow to check if a number is 
integer, even, odd or prime. 
 
Some functions allow to query the cell state of the 
neighborhood: truecount, falsecount, undefcount and 
statecount(n).  
 
Some common constants are defined: pi, e, certain 
constants used in the domains of the physics and the 
chemistry (gravitational constant, acceleration, light speed, 
Planck’s constant).   
 
The Time function returns the global simulated time. 
Functions RadToDeg and DegToRad are used for the 
conversion of angles expressed in radians to degrees and 
viceversa. There are functions for the conversion of polar 
and rectangular coordinates and temperatures in Celsius, 
Fahrenheit or Kelvin degrees. 
 
Other functions allow to obtain values depending on the 
evaluation of a certain condition. IFU(c, t, f, u) evaluates 
the c condition, and if it is True, it returns the t value. If it 
is False, it return f, and u if it is undefined. On the other 
hand, the function IF(c, t, f) returns t if c evaluates to True, 
and f otherwise. 
 
Finally, several functions are used to generate 
pseudorandom numbers using different probability 
distributions. We have included Uniform, Chi Square, 
Beta, Exponential, Φ, Gamma, Gaussian, Binomial and 
Poisson distributions. The introduction of random 
conditions presents new problems. For example, in the rule: 
 

10   100  { random >= 0.4 } 
 
the condition is evaluated to True in the 60 % of the cases, 
and to False in the rest. Therefore, the model could return 
all the rules evaluated to False, even when the model is 
well specified. The tool automatically identifies these 
cases, and assigns the Undefined value to the cell, 
informing this situation and continuing with the simulation. 
 
Space zones, defined by a cell range, can be associated with 
a set of rules different than the rest of the cell space. 
  

 



Figure 2. A Zone defined by the range {(3,3)..(5,7)} 
 

Cellular models can be integrated to a standard DEVS 
hierarchy. Therefore, input/output ports can be defined for 
the cell space. The portInFunction directive is used to 
query the value of a message arrived in an input port. On 
the other hand, output ports are activated using the send 
function. 
 
 
APPLICATION EXAMPLES 
 
This section is devoted to describe how to implement 
different Cell-DEVS models using N-CD++.  
 
We first show an example of excitable media, a 
phenomenon appearing in several real systems. For 
instance, the nervous tissue of the heart muscle is an 
excitable medium where a wave travels through the heart 
in every heartbeat. Magnetic fields, forest fires, etc. also 
can be represented as modifications of these models. 
 
Three states can be recognized. For instance, in a heart 
tissue these states represent a cell that is resting, excited or 
recovering. In a forest fire, the states could represent a cell 
without fire, burning or burnt. Any of these models are 
defined as: 
 
[ExMedia] 
type : cell  dim : (9,9) 
delay : transport border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)  
neighbors : (0,1) (1,-1) (1,0) (1,1) (0,0) 
localtransition : Ex-rules 
 
[Ex-rules] 
rule : 0 100 {(0,0)=0 and statecount(2)=0 } 
rule : 2 100 {(0,0)=0 and statecount(2)>0 } 
rule : 1 100 { (0,0) = 2 } 
rule : 0 100 { (0,0) = 1 } 
rule : { (0,0) } 100 { t } 

Figure 3. Definition of an excitable media model. 
 
We first define the Cell-DEVS coupled model and its 
parameters: size, neighborhood shape, kind of delay and 
borders. The Ex-rules section represents the local 
computing function for the model. Here, the first rule 
defines that when the cell and its neighbors are not excited  
(value 0), the cell must keep resting. The second rule 
means that if the cell is resting and there are excited 
neighbors (value 2), the cell is excited. Third and fourth 
rules mean that the cells remain in a specific state. In every 
other case (t means "True"), the cell keeps its present state.  
 
Figure 4 shows the results obtained when this model 
executes. It shows the evolution of this excitable media 
model using different neighborhoods. Figure 4a uses all 

the adjacent neighbors, as defined in Figure 3 (Moore 
neighborhood). Figure 4b uses four adjacent cells (N-S-E-
W), and Figure 4c shows a hexagonal lattice on a square 
grid. 
 
 
 
 
 

 
 
 
 
 

 
Figure 4. Results of ExMedia with different 

Neighborhoods: (a) Moore; (b) Von Neumann; (c) 
hexagonal grid. 

 
The following example represents a surface tension model.  
 
[Tension] 
type : cell          dim : (40,40) 
delay : transport    border : wrapped 
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1)  
neighbors : (1,-1) (1,0) (1,1) (0,0) (0,1) 
localtransition : Ten-rules 
 
[Ten-rules] 
rule : 0 100 { statecount(0) >= 5 } 
rule : 1 100 { t } 

Figure 5. Surface tension model specification 
 
We see the definition of the Cell-DEVS coupled model 
parameters: a grid of 40x40, Moore neighborhood, 
transports delays and wrapped borders. We have two 
states: the presence (value 1) or absence (value 0) of 
particles. This model can be represented as a "majority 
vote" system. In each step, the new state depends of most 
neighbors. It remains in the cell if at least 5 of the 9 are 
occupied; otherwise it becomes empty. The following 
figure shows how particles concentrate where there is 
bigger tension. The resulting behavior of the surface is a 
high level representation of the majority vote rules defined 
earlier. 
 
 
 
 
 
 
 
 
 
 
 



 
 

Figure 6. Execution results of the Surface Tension 
model. 

The next example is an ecological model of ants moving in 
the ground. The ants eat grass in two steps: first, they eat 
the leaves and then the root. Hence, we have three grass 
states: 1 when there is grass in the cell, 2 when the leaves 
have been eaten, and 3 or 4 for empty cells. When an ant 
find grass, she eat it and rotates 90º to the right. When the 
leaves have been eaten, she eats the root and rotates 90º to 
the left. If there is no grass, she continues moving ahead. 
 
[vants] 
type : cell             dim : (10,10,2) 
delay : transport       border : wrapped 
neighbors: (-2,0,0) (-1,-1,0) (-1,0,0)  
neighbors: (-1,1,0) (0,2,0) (0,0,1) 
neighbors: (0,-2,0) (0,-1,0) (0,0,0) (0,1,0)  
neighbors: (1,-1,0) (1,0,0) (1,1,0) (2,0,0) 
 
localtransition : calculus 
[calculus] 
... 
rule:{if((0,0,0)=45,31,(trunc((0,0,0)/10)*10)+ 
1) } 100 { cellpos(2)=0 and (0,0,1)=2 and 
((0,0,0)=25 or (0,0,0)=35 or (0,0,0)=45) and 
(fractional((-1,0,0)/10)*10)!=7 and           
((fractional((-1,1,0)/10)*10)=8 or         
(fractional((-2,0,0)/10)*10)=7 or          
(fractional((-1,-1,0)/10)*10)=6) } 
... 
rule : { (trunc(((0,0,0)/10))*10) + 1 } 100 
{cellpos(2)=0 and (0,0,1)=4 and ((1,0,0)=25 or 
(1,0,0)=35 or (1,0,0)=45)} 
... 
rule : { (0,0,0) + 1 } 100 {cellpos(2)=1 and 
(0,0,0)<7} 
rule : 1 100 {cellpos(2)=1 and (0,0,0)>=7} 
 
rule : { (0,0,0) } 100 { t } 

Figure 7. Specification of the ant’s model 
 
We use four states to represent the present direction, 
combined with the grass state. For instance, a value 13 
means that there is grass (1) and the ant is going north (1: 
S; 2: E; 3: N; 4: W). This model needs extra information to 
control the movement of the ants to avoid collisions. Then, 
we define auxiliary ant directions to analyze the possibility 
of collision (5: S; 6: E; 7: N; 8: W). 
 
We have two surfaces, the first representing the grass and 
the ants, and the second used as collision flags. When a cell 
in the second surface have the value 1 we must analyze 
only rules that determine whether there are collisions or 
not. When the value of the cell is 2 we must analyze only 
rules to compute the next position of the ants. This is 
shown in the first rule in Figure 7. The following rule is 
used to move the ant once we know that we can move it. 

The cellpos function allows us to know which surface we 
are using, providing two different behaviors.  
 
The following figure shows the execution of the model 
using the tool. The dark cells contain grass, and an ant 
moving in the lower rows is eating them. The ant behaves 
using the rules recently explained. We also can see the 
growth of the grass, represented as a change of state for 
the lighter cells, where a long delay is used.  
 
 
 
 
 
 
 
 
 

Figure 8. Execution results of an ant foraging model. 
 
Our last example shows the simulation results for a 
watershed model. This model, previously introduced in 
(Moon et al. 1996), represents a hydrology system built as 
a cell space. The watershed is represented as small cells 
organized in several layers (air, surface water, soil, ground 
water, and bedrock). The rainfall input is partially retained 
by vegetation, and the rest infiltrates. 

 



[Watershed] 
type : cell         dim : (30,30,2) 
delay : transport   border : nowrapped 
neighbors : (-1,0,0) (0,-1,0) (0,0,0) (0,1,0) 
neighbors : (1,0,0) (-1,0,1) (0,-1,1) (0,0,1)  
neighbors : (1,0,1) (0,1,1) 
localtransition : Hydrology 
 
[Hydrology] 
 
rule : {0.0022 + (0,0,0) – if ((-1,0,0)!=?) and 
((0,0,1)+(0,0,0) > ((-1,0,1) + (-1,0,0)), 
((0,0,0)+(0,0,1)-(-1,0,0)-(-1,0,1))/1000)* 
(0,0,0))/1000),0)-  
if((1,0,0)!=?) and ((0,0,1)+(0,0,0))> ((1,0,1) + 
(1,0,0)),((0,0,0) + (0,0,1) - (1,0,0) - 
(1,0,1))/1000)*(0,0,0))/1000),0) - if((((0,-1,0) 
!= ?) and  
((0,0,1)+(0,0,0)) > ((0,-1,1)+(0,-1,0)) ,((0,0,0) 
+ (0,0,1)-(0,-1,0)-(0,-1,1))/1000) 
*(0,0,0))/1000),0) –  
if((0,1,0) != ?) and ((0,0,1) + (0,0,0)) > 
((0,1,1) + (0,1,0)),(((0,0,0) + (0,0,1) - (0,1,0) 
- (0,1,1))/1000) * (0,0,0))/1000),0) + if((-
1,0,0) != ?) and ((-1,0,1) + (-1,0,0)) > ((0,0,1) 
+ (0,0,0)),((-1,0,0) + (-1,0,1) - (0,0,0)-
(0,0,1))*(-1,0,0))/1000),0) + if((1,0,0) != ?) 
and ((1,0,1) + (1,0,0)) > ((0,0,1) + 
(0,0,0)),((1,0,0) + (1,0,1) - (0,0,0) - (0,0,1)) 
* (1,0,0))/1000),0) + if((0,-1,0) != ?) and ((0,-
1,1) + (0,-1,0)) >((0,0,1) + (0,0,0)), ((0,-1,0) 
+ (0,-1,1) - (0,0,0) - (0,0,1)) * (0,-
1,0))/1000),0) + if((0,1,0) != ?) and (((0,1,1) + 
(0,1,0)) > (0,0,1) + (0,0,0)),((0,1,0) + (0,1,1) 
- (0,0,0) - (0,0,1)) * (0,1,0))/1000),0) } 1000 { 
cellpos(2)=0 } 
rule : { (0,0,0) } 1000 { t }   

Figure 9. Watershed model specification 
 
Figure 9 shows the implementation of the model using the 
tool. The rules represent the accumulation of water. It takes 
the present water of the cell, and the rain fell up to the 
present moment is added. Then, we consider how much 
water must be passed to the neighbors, and how much 
water is received from the inverse neighborhood. Several 
layers are represented as planes in a three dimensional 
model.  
 
We can see the execution results of this model in the 
Appendix. In the first figure we show an initial state, 
representing the slope of the terrain before raining. Each 
cell occupies 1m x 1m. The second figure shows the 
execution results after intense rain (0.0022 mm/s) after 10 
minutes of simulated time. We can see that the rain is 
accumulated in the lower levels of the terrain, and a river is 
formed. 
 
 
CONCLUSION 
 
The tool N-CD++ can be used for modeling and simulation 
of n–dimensional Cell–DEVS. This approach improves the 

development, checking and maintaining phases, facilitating 
the testing and reuse of their components. Input/output port 
definitions allow defining multiple interconnection 
between Cell-DEVS or DEVS models. We also can 
develop multidimensional models, making the tool a 
general framework to define and simulate complex generic 
models. 
 
The tool was built using a standard version of C++, which 
allowed is to provide different versions running in several 
platforms without additional cost. At present, N–CD++ has 
been successfully tested in Windows 95/NT, Linux, AIX, 
IRIX, HP-UX and Solaris. A simulation server has been 
built, and soon it will be available to do simulations using a 
Web-based approach. 
 
The tool and the examples are the public domain and they 
can be obtained in:  
"http://www.dc.uba.ar/people/proyinv/celldevs". 
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APPENDIX – Execution results of the Watershed model. 
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Figure 10. Initial height values for a watershed. 
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Figure 11. Height values after rain. 


