
Mapping PIOVRA in GDEVS/HLA Environment

Gregory Zacharewicz, Claudia Frydman, Norbert Giambiasi
LSIS UMR CNRS 6168
Université Paul Cézanne

Avenue Escadrille Normandie Niemen
13397 - Marseille cedex 20, FRANCE

{gregory.zacharewicz, claudia.frydman, norbert.giambiasi}@lsis.org

Keywords: DEVS, G-DEVS, Distributed Simulation, HLA.

Abstract
The aim of this paper is to specify the G-DEVS / HLA

Environment developed within the PIOVRA project.

1. INTRODUCTION
In the following sections, we introduce in a first part the

components involved in the distributed G-DEVS environ-
ment. In a second part, we give a detailed specification of
data, behavior and function for each component of the envi-
ronment presented in this document. In the last section, we
present the G-DEVS HLA compliant environment.

2. RECALLS
2.1. G-DEVS

Traditional discrete event abstraction (e.g. DEVS) ap-
proximates observed input-output signals as piecewise con-
stant trajectories. G-DEVS defines abstractions of signals
with piecewise polynomial trajectories [4]. Thus, G-DEVS
defines the coefficient-event as a list of values representing
the polynomial coefficients that approximate the input-
output trajectory. Therefore, a DEVS model is a zero order
G-DEVS model (the input-output trajectories are piecewise
constants).

G-DEVS possesses the concept of coupled model intro-
duced in [12]. Every basic model of a coupled model inter-
acts with the other models to produce a global behavior. The
basic models are, either atomic models, or coupled models
stored in a library. The model coupling is done using a hier-
archical approach.

The concept of abstract simulator of [12] to define the
simulation semantics of the formalism can be used for G-
DEVS models. The architecture of the simulator is derived
from the hierarchical model structure. Processors involved
in a hierarchical simulation are Simulators that insure the
simulation of the atomic models, Coordinators, which insure
the routing of messages between coupled models, and the
Root Coordinator, which insures the global management of
the simulation. The simulation runs by exchanging specific
messages (corresponding to different kind of events) be-
tween the different processors. The specificity of G-DEVS

model simulation is that the definition of event is a list of
coefficient values as opposed to a unique value in DEVS.

2.2. Distributed Simulation System: HLA (High Level

Architecture)
The High Level Architecture (HLA) is a software archi-

tecture specification that defines how to create a global
simulation composed of distributed simulations. In HLA,
every participating simulation is called federate. A federate
interacts with other federates within a HLA federation,
which is in fact a group of federates. The HLA definitions
set gave place to the creation of the standard 1.3 in 1996,
which then evolved to HLA 1516 in 2000 [6].

The interface specification of HLA describes how to
communicate within the federation trough the implementa-
tion of HLA specification: the Run Time Infrastructure
(RTI).

Federates interact among them using the services pro-
posed by the RTI. They can notably “Publish” to inform
about an intention to send information to the federation and
“Subscribe” to reflect some information created and updated
by other federates. The information exchanged in HLA is
represented in the form of classical object oriented pro-
gramming. The two kinds of object exchanged in HLA are
Object Class and Interaction Class. The first kind is persis-
tent during the simulation, the other one is just transmitted
between two federates. These objects are implemented with
XML format. More details on RTI services and information
distributed in HLA are presented in [6].

In order to respect the temporal causality relations in the
simulation; HLA proposes to use classical conservative or
optimistic synchronization mechanisms [3].

3. TRANSFORMATION OF WORKFLOW SPECIFI-

CATIONS INTO G-DEVS MODELS
3.1. Local Coupled Models and Simulators G-DEVS «

flattened »
We based the environment on the Generalized Discrete

EVent System Specification (G-DEVS) formalism [4]. It
defines behavioural (atomic) models and, by hierarchical
composition, structural (coupled) models (e.g. Figure 1 left
hand).

ISBN # 1-56555-316-0 1086 SCSC 2007

mailto:gregory.zacharewicz@lsis.org
mailto:claudia.frydman@lsis.org
mailto:norbert.giambiasi@lsis.org

The concept of abstract simulator used by G-DEVS is
based on [12] to define the simulation semantics of the for-
malism. The architecture of the simulator is derived from
the hierarchical model structure as illustrated in Figure 1
right hand.

Root
Coordinator

Coordinator
B

Coordinator
D

Coordinator
C

Coordinator
A

Simulator
B1

Simulator
D1

Simulator
C1

Simulator
D2

Coupled
Model B

Coupled
Model D

Coupled
Model C

Coupled
Model A

Atomic Model
B1

Atomic Model
D1

Atomic Model
C1

Atomic Model
D2

Figure 1. DEVS G-DEVS hierarchical modeling and
simulation structure

The processors involved in a hierarchical simulation are

Simulators, which insures the simulation of the atomic mod-
els, Coordinators, which insures the routing of messages
between coupled models, and the Root Coordinator, which
insures the global management of the simulation (e.g.
Figure 1. a, without considering crosses out). The simulation
runs by exchanging specific messages (corresponding to
different kind of events) between the different processors.
The simulator for G-DEVS models is similar to DEVS in its
structure.

From the hierarchical structure of abstract simulation de-
fined by [12], we propose a hierarchical “compact” structure
for the PIOVRA G-DEVS / HLA Environment. We based
our specification on the works proposed by [7] with the aim
of decreasing the local exchange of messages between the
coordinators and the simulators. We reduce the classical G-
DEVS hierarchical structure [2] of intermediate Coordina-
tors between the Root Coordinator and Simulators, at two
hierarchical levels in our G-DEVS simulation structure.
Thus, components remaining locally are a Local Coordina-
tor (LC) and a set of atomic Simulators linked as direct suc-
cessors (named LCS). The example Figure 2 right illustrates
the LCS groups. For more details on Flattening techniques,
please refer to [5], [7] and [9].

 Root

Coordinator

Coordinator
B

Coordinator
D

Coordinator
C

Coordinator
A

Simulator
B1

Simulator
D1

Simulator
C1

Simulator
D2

Local
Coordinator

ABCD

Simulator
B1

Simulator
C1

Simulator
D2

Simulator
D1

Root
Coordinator

Coordinator
B

Coordinator
D

Coordinator
C

Coordinator
A

Simulator
B1

Simulator
D1

Simulator
C1

Simulator
D2

Local
Coordinator

ABCD

Simulator
B1

Simulator
C1

Simulator
D2

Simulator
D1

Figure 2. “Flattening” hierarchical simulation structure

Then, because the various models can be executed on
distant computers, we require a technique to interconnect
distributed models.

4. DISTRIBUTED SIMULATION COMPONENTS

Our goal is to obtain a distributed simulation environ-
ment. To achieve this objective, several LCS groups, de-
fined previously, must intercommunicate to obtain a global
distributed simulation (e.g. Figure 3 Computer 2 and 3). For
that purpose, it is necessary to manage messages exchanged
between the distributed components.

According to classical Distributed Computers hardware
platform [3], the entities involved in a generic distributed
simulation are described in Figure 3, we assumed that the
different computers will be interconnected thanks to an in-
terconnection network.

The LC manipulates local events regarding its local
Logical Time and manages its local simulators. In the case
of integrating this local coordinator in a distributed simula-
tion, this component will also have to manage the events
resulting from other distant LCS group.

To achieve the global synchronization of the simulation,
a Distributed Root Coordinator (DRC) needs to be added.
DRC corresponds in the example Figure 3 to group Com-
puter 1. This DRC is designed for routing the events ex-
changed between the LCS groups; DRC has also to syn-
chronize the sending-reception of these events by respecting
the causality of the events treatment. DRC uses an event list
containing events exchanged in the global simulation and a
set of tables describing the coupling relations between the
distant coupled models (EICList, EOCList, ICList).

The distant LCSs communicate by events passing trough
the DRC. On receiving an event from a LC, DRC trans-
forms it regarding to coupling relations from output to input
events and inserts it in its EventList. Then, when a LC asks
for event pending to be delivered, the DRC delivers it re-
garding to Synchronization imperatives in order to respect
causality.

Distributed
Root

Coordinator

Coordinator
AB

Coordinator
ACD

Simulator
B1

Simulator
C1

Simulator
D2

Simulator
D1

Computer 1

Computer 2 Computer 3

Figure 3. Distributed simulation structure

These modeling and simulation components presented
above will be detailed in the next section of this document.

SCSC 2007 1087 ISBN # 1-56555-316-0

5. DETAILED ENVIRONMENT SPECIFICATION

+externelTransitionFunction()
+internalTransitionFunction()
+confluentTransitionFunction()
+outputFunction()
+timeLifeFunction()

-name : string
-phases : object
-graphicalData : object
-inputPort : InfluentPort
-outputPort : InfluentPort
-OtherStateVariablesSet : object
-eventOrder : object

LSIS_DME_Atomic_Model

-name : string
-timeLife : int
-graphicalData : object

phases
1..*

1

-name : string
-hierarchicalLevel : int
-inputPort : InfluencedPort
-outputPort : InfluentPort
-includedModelWithHierarchyList : includedModel
-influentPortListWithHierarchy : InfluentPortList
-includedModelWithoutHierarchyList : includedModel
-nonHierarchicalInfluentPortList : InfluentPortList
-graphicalData : object

LSIS_DME_Coupled_Model

-name : string
-type : string
-parentName : string
-InfluencedPortList : InfluencedPortList

InfluentPort

0..*

1

-name : string
-type : string
-parentName : string

InfluencedPort

0..*

1

0..*

1

0..*

1

-List : List
InfluencedPortList

0..1
1

1..*0..*

-List : List
InfluentPortList

0..1

1

1..*
1..*

-List : List
includedModel

1

1

0..*

0..*

5.1. Data Model
We define UML class diagrams to describe the data

structure of the environment by showing the environment
classes and the relationships between them.

In UML, a class is represented by a box with the name

of the class written inside it. A compartment below the class
name shows the classes attributes:

• Variables (prefixed with -)
• Functions of the class (prefixed with +).

Each attribute is described with at least its name, and op-
tionally with its type, initial value, and other properties.

We use two types of logical connections on the class dia-

grams of this document:
Figure 4. G-DEVS Atomic and Coupled Data Model

Simulator and Local Coordinator Data Model • Generalization-Specialization
A “solid line with a large hollow triangle” used to
connect lines between two classes denotes the gen-
eralization (or inheritance) relationship.

We separate the modelling part from the simulation part
as recommended in [12]. Figure 5 class diagram represents
the local coordinator structure; it contains in particular the
lists used to handle events and the coupling relations ac-
quired from the model definition. • Association

A direct line between two classes denotes the asso-
ciation relationship; it indicates that (at least) one
of the two related classes refers to the other. This
association relationship is also known as the “has
a” relationship.

+JoinFederationRequest()
+GetInfluencedBy()
+initialiseXmessage ()
+When receive Back message packet()
+Extract Dmessage()
+Get-Influenced-By()
+Send selected message()
+GetInfluencerOf()
+SendAutorisation()
+Compute LBTS()
+Extract Ymessage()
+Extract Lookahead()

-GlobalEqList : List
-GlobalWaitList : List
-GlobalStopList : List
-DistributedlInfluentPortListWithoutHierarchy : List
-GlobalLocalCoordinatorTimeList
-GlobalLookaheadList
-LBTS
-LocalCoordinatorList : List
-LookaheadList

Distributed_Root_Coordinator

-name : string
-type : string
-parentName : string
-InfluencedPortList : InfluencedPortList

InfluentPort

-name : string
-type : string
-parentName : string

InfluencedPort

-List : object
InfluencedPortList

11

1..*
0..*

-PortList : List
DistributedInfluentPortListWithoutHierarchy

1

1..*

+Increment-NbElement()
+Decrement-NbElement()
+Reset-NbElement()
+EmptyList()
+SearchElement()
+InsertElement()
+SuppressElement()

-Tete
-Nb Element

List

+Classify with priority()
+Get first Message Timestamp()

-EventList : List
-tn

GlobalWaitList

+Classify with priority()
+Get first Message Timestamp()

-EventList : List
-tn

GlobalEventList
-EventList : List
-tn

GlobalStopList

-messageType : char
-receiver : string
-eventTimeStamp : float
-concernedPort : string
-EventValue : List

Event
0..*

1

1

0..* 10..*

1

1

1

1

1
1

1

1

A notation at each end of the association relationship

conveys cardinality/multiplicity of each class by indicating
the multiplicity of instances of that entity (the number of
objects that participate in the association). Common multi-
plicities are:

• 0..1 No instances, or one instance
• 1 Exactly one instance
• 0..* or * Zero or more instances
• 1..* One or more instances

 Figure 5. Simulator and Local Coordinator Data Model
G-DEVS Atomic and Coupled Data Model

The class diagram depicted in Figure 4 presents the data
used to define G-DEVS atomic model and a coupled model.

In the atomic description, we present the state variables

involved in particular the phase use to de-scribe graphical
models. We define also an attribute to define the order of
the event that can be treated by the model.

In the coupled models, we define two coexistent struc-

tures, the first is the hierarchical structure representation of
the model (used in the modular modeling) and the non-
hierarchical equivalent structure (used in the simulation for
performance purpose as described in § 2.1).

5.2. Function model
The functions are presented in the form of pseudo code

algorithms. These algorithms detail the functions of the
component involved in the simulation: Root Coordinator,
Local Coordinator and Simulator. In this paper, we detail
the Function of LC and S in Figure 6 and Figure 7. DRC
functions are not detailed because, in the implementation,
HLA RTI will handle these features. Details of RTI func-
tions can be found in [6].

The comments are noted with the prefix ‘//’, the classical
control structure are noted in bold in the pseudo code. The
main function involved into the environment, are presented
by underlined words. The data used referred to the class
diagram presented above.

ISBN # 1-56555-316-0 1088 SCSC 2007

Eq // queue to store the Event List
Lq // queue to store the lookahead of coordinators Ports
Wq // queue to store the List of coordinators waiting
LBTS // value of lower bound time stamp
Event // Event message structure (Message Type, addressee/transmitter, event timestamp, concerned Port, Event Value)
WaitList // queue to store the Event sent
StopList // queue to store the Event treated
EICList // queue to store the list of couple (Root Coord, Port) (Coord, Port) that express the coupling between the global model

Input Port and the local Model Input Port
EOCList // queue to store the list of couple (Coord, Port) (Root Coord, Port) that express the coupling between the local Model

Output Port and the global model Output Port
ICList // queue to store the list of couple (CoordA, PortA) (CoordB, PortB) that express the coupling between a local Model

Output Port and another local model Intput Port
Value value in YMessage and Xmessage is a list of value for G-DEVS

When receive Ymessage (‘y’, Children_Coordinator, t, Children_Coordinator_Port, Value)

Get-Internal-Influenced-By (Children_Coordinator, Children_Coordinator_Port)
for each children influenced by output // According to ICList

Add Xmessage (‘x’, Children_Coordinator_Influenced, t, InfluencedPort, Value) in Eq // According to priority def
 Get-External-Influenced-By (Children_Coordinator, Children_Coordinator_Port)

Print Output Event (Message)

When receive Dmessage (‘d’, Children_Coordinator, t, - , Value)
 Add to StopList
// check for Message in process in WaitList
 if Message also WaitList) (
 then remove this message from WaitList and StopList
 Print Event (Message also WaitList) done
 else routing error

When receive Lookahead message (‘l’, Children_Coordinator, t, OutputPort, Lookahead Value)

add Lookahead (Children_Coordinator, OutputPort, Lookahead Value) in Lq
Get
if ((Children_Coordinator influences Another_Children_Coordinator) & (Another_Children_Coordinator, InputPort, LocalTime, Ad-

vance_Requested_Time) is in Wq

-Internal-Influenced-By (Children_Coordinator, Children_Coordinator_Port)

// a coordinator influenced is waiting for Next-Event grant
then Remove Another_Children_Coordinator from queue Wq

Compute-LBTS (Another_Children_Coordinator, InfluencedPort)
// using the lookahead min of the influences of the model that is simulated by
 Another_Children_Coordinator

if (there is a Message for Another_Children_Coordinator in Eq with timestamp t < LBTS & t < Advance_Requested_Time)
then Add in WaitList (Message)

send selected (Message) & mark it “send”
// as an answer to the request

 else if (Advance_Requested_Time < LBTS)
then Add in WaitList Autorisation (Advance_Requested_Time) & mark it “send”

send Autorisation (Advance_Requested_Time)
// as an answer to the request
else if ((Advance_Requested_Time >= LBTS) or (Advance_Requested_Time == null)) & (LocalTime =! LBTS)

then Add in WaitList nullmessage(“null”, coordinator, LBTS, InputPort,-)
send nullmessage(“null”, coordinator, LBTS, InputPort,-) & mark it “send”
//

else if (LocalTime == LBTS)
as an answer to the request

then add (Another_Children_Coordinator, LocalTime, Advance_Requested_Time) in Wq

When receive for Next-Event-Request (Children_Coordinator, InfluencedPort, LocalTime, Advance_Requested_Time)
Get-Internal-Influencer-Of (Children_Coordinator, InfluencedPort)
Compute-LBTS (Children_Coordinator, InfluencedPort)

// using the lookahead min of the influences of the model that is simulated by
 Children_Coordinator

if (there is a Message for Children_Coordinator in Eq with timestamp t < LBTS & t < Advance_Requested_Time)
then Add in WaitList (Message) & mark it “send”

send selected(Message)
// a

else if (Advance_Requested_Time < LBTS)
s an answer to the request

then Add in WaitList Autorisation (Advance_Requested_Time) & mark it “send”
send Autorisation (Advance_Requested_Time)
// as an a

else if ((Advance_Requested_Time >= LBTS) or (Advance_Requested_Time == null)) & (LocalTime =! LBTS)
nswer to the request

then Add in WaitList nullmessage(“null”, coordinator, LBTS, InputPort,-) & mark it “send
send nullmessage(“null”, coordinator, LBTS, InputPort,-)”
//

else if (LocalTime == LBTS)
as an answer to the request

then add (Children_Coordinator, LocalTime, Advance_Requested_Time) in Wq

When receive for Join-Federation-Request (Coordinator, EIC, EOC, IC)
// A local Coordinator ask to join a federation.
// EIC List of couple of External Input Coupling
// EOC List of couple of External Output Coupling
// IC List of couple Internal Coupling

Add EIC couple ((Root Coord, Port) (Coord, Port)) in EICList
Add EIC couple ((Coord, Port) (Root Coord, Port)) in EOCList
Add EIC couple ((CoordA, PortA) (CoordB, PortB)) in ICList

B = Get-Internal-Influenced-By (A) // According to the couple ((CoordA, PortA) (CoordB, PortB)) in the IC List, the Output

// PortA influences the Input PortB
A = Get-External-Influenced-By (C) // According to the couple ((CoordC, PortC) (CoordA, PortA)) in the EIC List, A is an

// internal model of C and the Intput PortC influences the Input PortA
A = Get-Internal-Influencer-Of (B) // According to the couple ((CoordA, PortA) (CoordB, PortB)) in the IC List, the Intput

// PortB is influenced by the Output PortA
B = Get-External-Influencer-Of (C) // According to the couple ((CoordB, PortB) (CoordC, PortC)) in the EOC List, B is an

// internal model of C and the Outtput PortB influences the Output PortC
Compute-LBTS (Children_Coordinator, InfluencedPort)

LBTS = min of (lookahead in Lq that influences InfluencedPort of Children_Coordinator)
// sub-models influencer are defined according to coupling store in IC List.

Figure 6. G-DEVS Conservative-Local-Coordinator

SCSC 2007 1089 ISBN # 1-56555-316-0

Parent // parent coordinator
tl // time of last event
tn // time of next event
G-DEVS // associated model with total state (s, e)

When receive Imessage (‘i’, Simulator, t, - , -)

 tl = t – e
tn = tl + ta(s)
compute lookahead
send Lookahead message (‘l’, Simulator, t, OutputPort, Lookahead Value) to parent
send Dmessage (‘d’, Simulator, t, - , Value) to parent

When receive *message (‘*’, Simulator, t, - , -) at time t
 if (t= tn)

then y = λ (s)
send Ymessage (y, t) to parent coordinator
s = δint (s)
tl = t
tn = tl + ta(s)
compute lookahead
send Lookahead message (‘l’, Simulator, t, OutputPort, Lookahead Value) to parent
send Dmessage (‘d’, Simulator, t, - , Value) to parent

 else error : bad synchronization
When receive Xmessage (‘x’, Simulator, t, InfluencedPort, x)

 if l<= t <= tn) (t
then e = t – tl

s = δext (s, e, x)
tl = t
tn = tl + ta(s)
compute lookahead
send Lookahead message (‘l’, Simulator, t, OutputPort, Lookahead Value) to parent
send Dmessage (‘d’, Simulator, t, - , Value) to parent

else error: bad synchronisation
When receive Nullmessage (‘null’, Simulator, t, InfluencedPort, -)

e = t – tl
compute lookahead
send Lookahead message (‘l’, Simulator, t, OutputPort, Lookahead Value)
send Dmessage (‘d’, Simulator, t, - , Value) to parent

get Lookahead(actual state)
if actual state has only internal transition) (
then lookahead = tn
else if (actual state has (only external transition) OR (external & internal transition))

then lookahead = tn of next state with only internal transition

δext (s, e, x) // the functions of the G-DEVS models are recalled in the first section.
λ (s)
δint (s)
end G-DEVS-Simulator

Figure 7. G-DEVS Simulator

5.3. Behavioral Model
For the Behavioral specification, we used the Unified

Modeling Language (UML) state diagram that is essentially
a state diagram with standardized notation. The following
tools have been used to make up the diagrams:
• Filled circle, denoting START.
• Hollow circle, denoting STOP.
• Rectangle, denoting state. Top of the rectangle contains

a name of the state. Can contain a horizontal line in the
middle, below which the activity is written that is done
in that state

• Arrow, denoting transition. An expression can be writ-
ten on top of the line, enclosed in brackets ([]) denot-
ing that this expression must be true for the transition to
take place

• Thick horizontal line with either x>1 lines entering and
1 line leaving or 1 line entering and x>1 lines leaving.
These denote join/fork, respectively.

Overall Behavioral model

The overall state diagram (Figure 8) introduces the main
objectives of the components, the objective of the LC is
treating events and the DRC is designed to route the event

exchanged between the distributed components of the global
simulation.

Request to process an event
Send an event
Send the Lookhead

Local processing of events

Answer

Distribute coordination of events

Figure 8. Overall Behavioral model

G-DEVS Conservative-Distributed-Root-Coordinator
Figure 9 diagram describes the treatments of the Conser-

vative-Distributed-Root-Coordinator. We distinguish two
main functions.

The first one is defined to receive message emitted by
Local components.

The second is defined to answer to components calls to
advance and treat their local messages.

In function of information, notably LBTS (Lower Bound
on Time Stamp = min of Lookahead of influencers), from
the different components, this component answers by grant-
ing calls or by delivering events time stamped earlier than
the grant. In some cases, it delivers a null massage in order
to avoid dead lock as described in [1].

ISBN # 1-56555-316-0 1090 SCSC 2007

[Reception Request autorizaation]

If coordinator waiting then take out from WaitList the coordinators waiting
Compute the minimum of all Lookhead of influencers

Compute the LBTS[Event to Local Coordinator in event list root coordinator
with TGlobalNext < TLocalNext && TGlobalNext < LBTS]

[No event for Local Coordinator in EventList of Root Coordinator
&& ((TLocalNext > LBTS) or ((TLocalNext == empty) and (TLocal < LBTS)))]

Add LBTS in message
Add event in WaitList
TL = TSGlobalNext
tn = t of the next event of EventList
Send the event to the applicant
Delete the event from EventList of Root Coordinator

Send event of EventList of Root Coordinator to Local Coordinator

Add LBTS in Autorization message
Add Autorization message to WaitList
Send Autorization message to Applicant

Allow to Local Coordinator to select the next event of ot its EventList

Add Null-Message to WaitList
Add Null-Message to Applicant

Send Null-message to Local Coordinator

Add Coordinator to WaitList Coordinators waiting

Change the request of Local Coordinator to Wait

[(No event for Local Coordinator in EventList of Root Coordinator)
and ((LBTS < TLocalNext)and (TLocal == LBTS)or ((TLocalNext == empty) and (TLoacal == LBTS))

]

[No event to Local Coordinator in ListEvent of the root coordinator
&& TLocalNexet < LBTS]

Updater lookahead from port and Coordinator local emiter
If Dmessage then add to StopList the sender of the Dmessage
If Ymessage then transform to Xmessage Si Ymessage to the concerned influenced
Add Xmessage to EventList of Root Coordinator

Take into account incoming events

/ Dmessage
/ Dmessage

/ Dmessage

[Lookhead concened
a cooridnator waiting]

Ditribute root coordinates events

Tlocal TSuivantGlobal LBTSTSuivantLocalTlocal TSuivantGlobal LBTSTSuivantLocal

Tlocal LBTSTSuivantLocalTlocal LBTSTSuivantLocal

Tlocal LBTS TSuivantLocalTlocal LBTS TSuivantLocal

Tlocal LBTSTlocal LBTS

Tlocal

LBTS

Tlocal

LBTS
Tlocal

LBTS

TSuivantLocalTlocal

LBTS

TSuivantLocal

[WaitList == StopList]

Figure 9. G-DEVS Conservative-Distributed-Root-Coordinator

G-DEVS ConservativeDistributedLocalCoordinator
After being registered at the DRC, the LC manages a lo-

cal ordered event list containing local events to be treated. It
calls the DRC to ask for a grant to treat its next message
regarding its local time as described in Figure 10.

[subscribed Coordinator
in the synchronisation module]

Get the date of the next event from the local event list

Autorization request of processing the next event of the local event list

[Receivet Message that holds an autorization
Message de reponse

reçu contient une autorisation]

[Received Message
that holds an event

]

Process of the received event from parent Processing of the first event in the local event list

Local processing of events

axk Compute the LBTS to Distributed Root Coordinator

to take into account the event at Root Coordinator level

from the Dstributed Root coordinator answer

Figure 10. Conservative-Distributed-LocalCoordinator

When the LC receives the grant or the message from the
DRC it transmits it to the local Simulator influenced and

wait for acquittal message from this simulator.
When receiving an acquittal message and an eventual

output messages from the simulator it sends to the DRC this
eventual message. Finally, it starts again loop turn.

Dstribution of Received Event

Local Simulator

Processing of Received Event
from Parent

Figure 11. Conservative-Distributed-LocalCoordinator

We detail in Figure 11 the process of sending a message
received from the DRC to the simulator concerned. Note
that it can be also possible to receive, from the DRC, a null
message to avoid deadlock situations.

Sending a local event is detailed in Figure 12; the event
is suppressed from the event list and sent to child Simulator.
This model describes the emission to the simulator con-
cerned and the reception of the message of treatment ac-
quirement corresponding.

SCSC 2007 1091 ISBN # 1-56555-316-0

Waiting the reception of authorization

Supress the Event that cooresponds to message of EventList with same timestamp
Add this event to WaitList
Send this message to WaitList (noetd sent)
TL = T
TN = T first event of EventList

Distribution of *message

Suppress the equivalent message from WaitList and StopList
Update EventList with the new *messages
Update StopList and WaitList
Send Dmessge to the successor
Send Ymessage
TL = T
TN = T first event of EventList

Distribution of Ymessage and Dmessage

[Message of end of simulation]

/ *message autorization

[Received Ymessage & Dmessage]

Processing first event of Local EventList

Waiting answer of Simulator

[Local influenced]

Vers simulateur

From Simulator

Transform Ymessage to Xmessage
Update in WaitList Xmessage for every concerned processors
Send first message of WaitList (noted sent)
TN =T first event of EventList
TL = T Xmessage

Distribution of Xmessage

[No Local influenced]

Waiting answer of SimulatorUpdate EventList with the new *message
Add to StopList the sender of Dmessage

Reception of Dmessage

Envoyer prochain message WaitList (non noté envoyé)

Distribution autres messages WaitList

[WaitList == StopList]

[WaitLMist != StopList]

From Simulator

Update Lookahead List
Compute Lookahead = min Lookahead of successeurs of LookaheadList by output port
Send Lookahead

Reception of Lookahead message

Figure 12. Local Event Processing

G-DEVS Conservative-Local-Simulator

Figure 13 model addresses the treatment of the different
kind of events by a Simulator. Notably, the notion of null
message has been added to classical events event took into
account in the sequential version introduced by [12]. This
message is used to avoid deadlock in conservative distrib-
uted time management.

Waiting the order to process Message

Processing *message

Processing Xmessage Processing Imessage

[Received Message == *Message and T = TN
]

[Received message == XMessage and TL <= T <= TN
]

[Received Message == IMessage
]

[Message d’arrêt de la simulation reçu]

Local Simulator

To level Distribution received event To level Distribution of received event

To level Distribution of received event

Processing Nullmessage

[Received Message == Nullmessage and TL <= T <= TN
]

Figure 13. Local Simulator

6. HLA COMPLIANT DISTRIBUTED G-DEVS EN-

VIRONMENT
This specification supplies a conceptual framework of

Distributed G-DEVS Simulation Structure. This abstract
structure needs to be developed regarding to implementation
requirement and context of the environment at a next step of
the project management. The standard selected, in the con-
ception step of the project development, for the project is
HLA. Indeed, HLA specifies a mechanism for exchanging
data between distributed components; in addition, it pro-
vides strong time management protocols. In addition, HLA
RTI manages network communication protocols for distrib-

uted simulation, in order not to another charge in the pro-
ject. Finally, others HLA compliant software can be added
without recoding.

A first approach, presented in [11], of DEVS coordina-
tors integration in an architecture respecting the HLA stan-
dard. They defined a local coupled model as a HLA federate
whose coordinator of higher level will have responsibility to
communicate with the federate Time Manager.

We choose to follow [11] mapping of LCS into HLA
federates, but we do not use the Time Management federate
and map the DRC, defined in this specification document,
directly into the RTI because this specification of interface
(RTI) proposes services which enclose those defined in our
Distributed Root Coordinator. Indeed, the RTI manages
Time Stamped messages and synchronizes the federates.
The “global distributed” model (i.e. the federation) is consti-
tuted by creating a communication link between federates.
Figure 14 illustrates this HLA mapping according to RTI
Specification of [6].

Central RTI
Component

Simulator
B1

Simulator
C1

Simulator
D2

Simulator
D1

Computer 1

Computer 2 Computer 3

Local
Coordinator

AB

Local
Coordinator

ACD

Local RTI
Component

Local RTI
Component

Federate 1 Federate 2

Interconnexion Network

Figure 14. HLA-compliant simulation structure

We choose also to follow [11] proposal to integrate G-
DEVS models coupling relations into HLA interactions.

Every G-DEVS coupled model and its associated LCS
possess a SOM defining the information, which they are
able to supply in a distributed simulation respecting HLA.
The common data of the SOM of various federate of the
local models allow producing the FOM of the federation G-
DEVS / HLA (Cf tables Figure 15, Figure 16).

More precisely, a model G-DEVS possessing an output
port "publishes" on a Class of Interaction (from its SOM)
defining the relation of coupling of output (IC and/or EOC)
by publishInteractionClass().

On the other side, G-DEVS model possessing an influ-
enced port of input "subscribes" to the Class of Interaction
(IC and/or EIC) published by the port which influences it by
using subscribeInteractionClass(). The FOM will contain
consequently all the coupling relations between the G-
DEVS models of the distributed coupled model, this infor-
mation will be shared in the form of classes of interaction.

ISBN # 1-56555-316-0 1092 SCSC 2007

CouplingRelation (PS)HLAinteractionRoot (N)

Interaction Class Structure Table

InternalCoupling (PS)

ExternalInputCoupling (S)

ExternalOutputCoupling (P)

Figure 15. Interaction Class Structure Table

The parameters of the interactions between federated are
defined "TimeStamped Order" (Cf. Figure 16) to respect the
principle of causality. These interactions are thus emitted
with a time stamp associated to the local logical time of fed-
erate publishing and are stored in a scheduler of the LRC
before being delivered to the influenced when this last one
will temporarily be capable of treating this message.

Available
Dimensions

Message Type HLAASCIIchar TypeMessage

Transmitter HLAASCIIstring NA

Event time stamp HLATimeType NA
Concerned Port HLAASCIIstring NA

Event dimension HLAboolean
Event Value HLAopaqueData NA
Message Type HLAASCIIchar TypeMessage
Addressee HLAASCIIstring NA
Event time stamp HLATimeType NA
Concerned Port HLAASCIIstring NA
Event dimension HLAboolean

Event Value HLAopaqueData NA

Message Type HLAASCIIchar TypeMessage

Addressee or Transmitter HLAASCIIstring NA

Event time stamp HLATimeType NA

Concerned Port HLAASCIIstring NA

Event dimension HLAboolean

Event Value HLAopaqueData NA

HLAreliable TimeStampCouplingRelation.InternalCoupling

HLAreliable TimeStampCouplingRelation.ExternalOutputCoupling

Parameter Table

Interaction Parameter Datatype Transportat
ion Order

CouplingRelation.ExternalInputCoupling HLAreliable TimeStamp

Figure 16. Parameter table

We can also produce, in the FOM, a class of object which
defines elements shared by the local simulations. These ob-
jects allow, for example, following the evolution of the val-
ues of state variables of a model. In that case, federate pub-
lishing to a follow-up of these variables will use the func-
tion publishObjectClassAttributes(). For example, PIOVRA
Visualization/Interface Management Federate (VMF) will
be interesting in subscribing to the follow-up of these val-
ues, in that case the function subscribeObjectClassAttrib-
utes() will be called. The G-DEVS model integrated in this
HLA federate will also store its actual phase and its states
variables (used with the elapsed time to define the total state
of a G-DEVS model) in a HLA Object in order to inform
eventually other federation members on that federate status.

We can notice that in the implementation, thanks to the
HLA time management, we do not use the Null-message
specified in the conceptual algorithms of this document,
because the RTI have a global view of the simulation, so it
manages deadlock by granting minimum time stamped call
from a federate.

7. CONCLUSION
This paper presented the specification of a new distrib-

uted G-DEVS environment. Furthermore it detailed the con-
ception of this environment by conforming to the HLA

Standard. This Work is involved in the Piovra project and
based on the technical report [10].

REFERENCES
[1] Chandy K. M., Misra J., “Distributed simulation: A case

study in design and verification of distributed pro-
grams”. IEEE Transactions on Software Engineering,
Vol. SE-5 No.5, 1979, pp 440-452, (1979).

[2] Escudé B. PhD Thesis : ``Modélisation et simulation à
événements discrets de systèmes hybrides", Université
de Droit, d'Economie et des Sciences d'Aix-Marseille
III, IUSPIM-DIAM, Marseille, 2000.

[3] Fujimoto R. M. 2000 Parallel and Distributed Simula-
tion System. Wiley Interscience, NY.

[4] Giambiasi N., B. Escude and S. Ghosh, “G-DEVS A
Generalized Discrete Event Specification for Accurate
Modeling of Dynamic Systems”, Transactions of the SC
S International, 17(3):120-134, 2000.

[5] Glinsky E., G. A. Wainer: “DEVStone: a Benchmarking
Technique for Studying Performance of DEVS Model-
ing and Simulation Environments”. DS-RT 2005: 265-
272, Montreal CA, 2005.

[6] IEEE std 1516.2-2000. 2001. IEEE Standard for Model-
ing and Simulation (M&S) High Level Architecture
(HLA) - Federate Interface Specification The Institute
of Electrical and Electronic Engineers, March.

[7] Kim K., W. Kang., B. Sagong., H. Seo. 2000. “Efficient
Distributed Simulation of Hierarchical DEVS Models:
Transforming Model Structure into a Non-Hierarchical
One” 33rd Annual Simulation Symposium, ASS, (April
16-22, Washington, D.C).

[8] Zacharewicz G., N. Giambiasi, C. Frydman, “Looka-
head Computation in G-DEVS/HLA Environment”, in:
Simulation News Europe Journal (SNE) special issue 1
“Parallel and Distributed Simulation Methods and Envi-
ronments”, vol. 16, n° 2, pp. 15 - 24, September 2006.
ISSN, 0929-2268.

[9] Zacharewicz G., M. E.-A. Hamri, “Flattening G-DEVS /
HLA structure for Distributed Simulation of Work-
flows”, in: AIS-CMS International modeling and simu-
lation multiconference, pp. 11-16, Buenos Aires - Ar-
gentina, February 8-10 2007. ISBN 978-2-9520712-6-0

[10] Zacharewicz G., Massei M., Bruzzone A.G. 2006 "Defi-
nition of G-DEVS/HLA framework, tailored for
PIOVRA", PIOVRA EDA Tech Report., Genoa, Italy

[11] Zeigler, B. P., G. Ball., H. J. Cho., J. S. Lee. and H. Sar-
joughian. 1999. “Implementation of the DEVS formal-
ism over the HLA/RTI: Problems and solutions”. Spring
Simulation Interoperability Workshop (SIW), (Orlando,
FL, March 14-19), 99S-SIW-065.

[12] Zeigler, B.P.; H. Praehofer; T. G. Kim. 2000. Theory of
Modeling and Simulation. 2nd Edition, Academic Press,
New York, NY.

SCSC 2007 1093 ISBN # 1-56555-316-0

