
VLE – A Multimodeling and Simulation Environment
Gauthier Quesnel

Institut de Recherche pour le Développement
Sète, France

gauthier.quesnel@ifremer.fr

Éric Ramat
Laboratoire d’Informatique du Littoral

LIL UPRES EA 4029
Calais, France

ramat@lil.univ-littoral.fr

Raphaël Duboz
Institut de Recherche pour le Développement

Sète, France
duboz@ird.fr

Mamadou K. Traoré
Laboratoire d’Informatique de Modélisation et

d’Optimisation des Systèmes
LIMOS CNRS UMR 6158

Aubière, France
traore@isima.fr

Keywords: Multimodeling, Modeling and Simulation Cycle,
DEVS Extensions

Abstract
Modeling and Simulation (M&S) is becoming the core of sci-
entific activities addressing nature complexity. To tackle com-
plexity, we need to integrate heterogeneous formalisms in the
same model. Models then become multimodels. Furthermore,
M&S softwares have to assist take into account the M&S ac-
tivity cycle, i.e. modellers to design and to implement mod-
els, to define experimental frames and to analyse simulation
results. Therefore, the M&S field needs reliable softwares ori-
ented towards multimodels design and execution. The aim of
this article is to introduce the Virtual Laboratory Environment
(VLE). VLE is a both a software and an API which supports
multimodeling and simulation. It addresses the reliability is-
sue by using recent developments of the theory of M&S pro-
posed by Zeigler. We present VLE in the context of the M&S
cycle.

1. INTRODUCTION
The increasing complexity in systems modeling and Sim-

ulation (M&S) need reliable softwares to be addressed. In-
deed, research fields such as ecology or sociology for in-
stance, use M&S softwares to better understand dynamics of
systems they focus on. The main difficulty for these disci-
plines is to integrate heterogeneous knowledges in a unique
representation. Heterogeneous knowledges are supported by
heterogeneous languages or formalisms. Therefore, M&S to-
ols addressed to complex systems modeling must be able to
take into account this heterogeneity. Some works refer to the
modeling of heterogeneous systems as multiparadigm model-
ing [19] or multimodeling [6]. The multimodeling methodol-
ogy is well defined in [5]. Works undertaken since the years
1970 and initiated by Zeigler [23, 24] define a formal frame-
work that we can use for multimodeling. We recall some basis
of these works in the first part of this paper.

Figure 1. modeling and simulation cycle: Boxes are actions
and ellipses are products of actions.

Another important aspect of M&S tools is to respect the
classical M&S cycle as presented figure 1. Indeed, the mod-
eller must be able to design his model. This model must be
specified using one or several formalisms. Then the mod-
eller has to construct an experimental frame. This experimen-
tal frame is introduced as a context for the simulator of the
model, providing results to be analyzed. This is a cycle since
we can reiterate these actions from analysis by modifying ei-
ther the experimental frame or the model design.

We assume that the integration of heterogeneous models
and the respect of M&S cycle are the fundamental key is-
sues to provide a complete and reliable software for com-
plex systems studies. Our works have started with multidis-
ciplinary issues, mixing computer scientists and biologists.
These works leaded to a first version of the Virtual Labora-
tory Environment (VLE) [15]. In this paper, we present re-
cent advances in VLE. The first implementation of VLE did
not consider multimodeling nor M&S cycle. We think that
VLE is now mature enough to deal with a large number of
complex systems.

We start by introducing the fundamental basis of our
works. Then, we describe the concrete architecture of VLE
in the context of the M&S cycle. We close this paper by a
discussion and some opened works.

2. BACKGROUND
2.1. Formal Background

Our works take place in the M&S theory defined by Zeigler
[23]. M&S theory tends to be as general as possible. It ad-

SCSC 2007 367 ISBN # 1-56555-316-0

gauthier.quesnel@ifremer.fr
ramat@lil.univ-littoral.fr
duboz@ird.fr
traore@isima.fr


dresses major issues of computer sciences. From artificial in-
telligence to model design and distributed simulations, M&S
theory aims to develop a common framework (formal and op-
erational) for the specification of dynamical systems. In this
section, we focus on DEVS formalisms and associated exten-
sions. Many theoretical basis and formal extensions to DEVS
were carried out, therefore, we advise the second edition of
B.P. Zeigler’s book [24] to have an overall picture of those
works.

VLE is based on the Discrete Event System Specification
(DEVS)[23]. In addition to classic DEVS models, VLE sup-
ports four DEVS extensions:

1. The Quantified State System (QSS1 and QSS2) embed-
ded in DEVS [10] for the M&S of continuous systems.

2. The Dynamic Structure DEVS (DSDEVS) [1] for the
M&S of systems where drastic changes of structures and
behaviors occurred.

3. The Cellular automata DEVS (CellDEVS) [22] for the
M&S of spatialized systems.

4. The CellQSS specification [20], a merge of CellDEVS
and QSS extensions for the integration of spatialized dif-
ferential equation systems.

Staying in a “DEVS world”, we ensure the compatibility of
models at formal and operational levels. Then, we can couple
simulators with a well known algorithmic. We discuss this
point in the following.

2.2. Operational Background
In this section, we deal with the operational integration of

heterogeneous models. We do not give algorithms rather that
describe the general framework. Algorithms can be found in
the referenced literature. Here, we want to recall that it is pos-
sible to couple heterogeneous models using DEVS abstract
simulators and then to build an operational framework for
multimodeling.

We can address multimodeling or multiparadigm modeling
following three orthogonal directions:

• The integration of several formalisms in a new one.
We can cite Vangheluwe [18] who introduced the DEA
(Differential Algebraic Equations), Zeigler [24] with the
DEV&DESS and Barros [2] with the Heterogeneous
Flow System Specification (HFSS) for the integration of
continuous and discrete time systems.

• The specification of all sub-systems in one unique for-
malism.
This approach implies to rewrite all sub-models using
one common formalism.

• The co-simulation approach.
Every sub-model has its own simulator specific to its
own formalism. The main difficulty here is to couple
these simulators.

Our works consider the second and the third aspect of mul-
timodeling. Vangheluwe [18] has proposed DEVS as a com-
mon denominator for multimodeling. Indeed, it was shown
that discrete time systems, Petri net and state charts, can be
considered as DEVS sub-formalism [24]. Then, when possi-
ble, we use DEVS, QSS, DSDEVS or CellDEVS frameworks
for models specification and simulation. It is not always pos-
sible to adopt a common formalism for all sub-models of the
system. Therefore, we adopt the concept of the DEVS-Bus in-
troduced by Kim [9]. DEVS-Bus enables interoperating with
diverse discrete event modeling formalism. Any formalism
to be integrated must be wrapped in a DEVS form through
a suitably defined simulator. The VLE framework uses the
wrapping concept [12]. In the following section, we present
the concrete architecture of the VLE framework.

3. THE VIRTUAL LABORATORY ENVI-
RONMENT: VLE

As we have said before, VLE is oriented towards the inte-
gration of heterogeneous formalisms. Furthermore, VLE is
able to integrate specific models developed in most popu-
lar programming languages into one single multimodel. To
achieve that, VLE provides a complete library and graphi-
cal tools for models design and simulation. In the following,
we introduce the VLE architecture and Application Program-
ming Interface (API).

3.1. General framework
There are four interdependent applications in VLE, each

one using a set of particular components (i.e. plug-ins):

• GVLE is a graphical user interface. It provides tools to
visually construct a hierarchy of coupled models. Fur-
thermore, a modeling plug-in can be use to define and
to modify the behaviours of atomic models displaying a
text editor where DEVS functions can be coded.
GVLE enables the parameterization of experimental fra-
mes through the definition of experimental plans.

• EOV, the Eyes Of VLE, is a graphical application which
observes the states of models at run-time of simulation.
EOV is a set of visualization plug-ins. Every plug-in cor-
respond to a type of display like colored grided surfaces
or curves.

• VLE is the core of the environment. The three other ap-
plications depend on VLE (that is why the name of this
application is the same as the general framework). VLE

ISBN # 1-56555-316-0 368 SCSC 2007



implements the DEVS abstracts simulators and the ex-
tensions cited previously. To perform simulations, VLE
main program load the experimental frame generated by
GVLE (see next section) and then dynamically loads
simulation components and visualisation components of
EOV. Simulation plug-ins simulate the behaviours of the
DEVS atomic models and VLE coordinates the simula-
tion.

• AVLE (Analysis for VLE) is a graphical interface bind-
ing the experimental frame defined by GVLE and the R
statistical tool [14].

All plug-ins are connected to the applications using a mem-
ory transfer or a TCP/IP protocol. Therefore, it is possible to
develop components in any programming languages and op-
erating systems. The format of data exchange between the
four applications is an eXtensible Markup Language (XML1)
application. It describes the structure of atomic and coupled
models, the experimental frames and the parameterization of
visualization tools.

The VLE framework provides the developers a complete
and portable Application Programming Interface (API) (fig-
ure 2) written in C++ [16]. C++ is a standardized2 and ensure
compatibility with a large number of operating systems and
interoperability with major programming languages (Java,
Fortran or Python for instance).

We use the portable libraries provided by the GNU Project
Gnome [7, 8] (the graphical toolkit GTKmm and the XML
parser library libxml2 for instance). The choices of C++, the
concepts of components and the Gnome libraries, enable to
build an efficient and portable framework, easily modifiable
and fast to develop.

3.2. Distributed simulation
VLE framework enables distributed simulation into a clus-

ter of computers. It couples several simulators within a
DEVS-Bus architecture and uses the algorithms of Parallel
DEVS (PDEVS) for the coordination of models’ simulators
[24]. VLE does not natively support the parallelization of one
isolated simulator. Nevertheless, this can be done specifically
by a programmer for a particular atomic model. In VLE, dis-
tributed simulation is possible in two ways:

1. Distributed models: Every simulators and coordinators
of a particular experiment are distributed over several

1The main issue of XML is to facilitate the sharing of data across differ-
ent systems. XML applications are described in a formal way, allowing some
programs to modify and validate documents using these languages without
prior knowledge of their content. A complete description of the XML lan-
guage can be found on the W3C website or in several books [4].

2C++ has been standardized by ANSI (The American National Standards
Institute), BSI (The British Standards Institute), DIN (The German national
standards organization), ISO (The International Standards Organization) and
several other national standards bodies.

Figure 2. Representation of the VLE framework Applica-
tion Programming Interface (API). Dark grey boxes are the
libraries that we have developed. Clear grey boxes are model
specific plugins developped by users and white boxes are ex-
ternal libraries coming from the GNU project to increase the
portability.

computers. In this case, the communications between
distant simulators use a network XML protocol (figure
3). This protocol is available for several programming
languages and platforms by using the SWIG [17] soft-
ware3.

2. Distributed experiment instances: It is possible to dis-
tribute experiment instances. Indeed, we often have to
perform experiments with different parameter values. In
addition, it can be useful to repeat several instances of
a single experiment because of the stochasticity of mod-
els. Therefore, VLE provides the description of simula-
tion instances (replicas) through its XML application.

The first type of distributed simulation we use permits to
run simulators dedicated to a particular operating system and
to couple it with other simulators. The main limitation here
relies on message passing. Indeed, if models perform intense
communications, it can be very time consuming for the sim-
ulation. The second type of distributed simulation depends
on the number of available processors. It is not distributed
simulation strictly speaking but it makes the execution of the
experimental frame faster by distributing the replicas.

VLE is published under the free software licence GPL
(GNU General Public License available at http://www.gnu.
org/copyleft/gpl.html), thus allowing to copy, execute, mod-
ify and publish the software. The VLE environment is down-
loadable at http://vle.univ-littoral.fr.

3SWIG is a software development tool that reads C or C++ headers and
generated wrapper code to make C/C++ accessible from other languages like
Python, Java, C# etc. Nowadays, it supports around 19 programming lan-
guages.

SCSC 2007 369 ISBN # 1-56555-316-0

http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://vle.univ-littoral.fr


Figure 3. In this figure, we show how the user’s model
is connected to the DEVS-Bus of VLE (the gray box).
The DEVS simulator is implemented with two classes
(devs::Simulator and devs::Dynamics) to allow
distributed simulation. We use the SWIG program [17] to
build the bindings for different programming languages.

4. VLE AND THE MODELING AND SIMU-
LATION CYCLE

In this section, we describe the M&S activity using VLE
and referring to the M&S cycle described figure 1. Doing
that, we go deeper within the VLE framework architecture
showing how the modeller can use it.

4.1. Modeling
GVLE sustains the modeling activity. It is the Graphical

User Interface (GUI) for VLE. GVLE modeling components
are represented by pictures in the GUI. One component is
associated with one atomic model. Using this interface, the
modeller can couple models together. The resulting model is
called a coupled model represented as an atomic model (a
black box4). Doing that, the modeller can construct a hier-
archy of coupled models. There is one window per coupled
model. The whole hierarchy is shown in the right window as
illustrated by the figure 4. There is at least one coupled model,
the “top model”.

The modeling components or plug-ins share informations
about the dynamic of models they represent. They define
which simulation components must be used and some other
features specific to particular simulation components. For in-
stance, the ordinary differential equation wrapper [12] com-
ponent shown figure 4 specify the number and the form of
equations to be used.

In addition to predefined modeling components, the mod-
eller can use a more generic component that represents a
generic atomic DEVS model. He can use this component to
indicate a particular dynamic he has embedded in DEVS

As we have said in section 3.1., we use an XML appli-
cation for data exchange between components and core pro-

4Remain that the DEVS property of closure under coupling ensures that
a coupled model is equivalent to an atomic one [24].

Figure 4. GVLE is used for the modeling and experimen-
tal design. It provides graphical user interfaces to manipulate
atomic and coupled models. Icons on the top right represent
tools for models management. The window at the center is
a view of coupled model and the top left window shows the
hierarchy of coupled models.

grams. Results of the modeling activity described are stored
in a VPZ (Virtual laboratory Project Zip) file. This latter can
be generated by GVLE or by editing XML application in any
text editor.

It can be very time consuming building complex coupled
models. Furthermore, if there is a large number of models
and complex connections between them, it can be difficult
to simply modify the whole structure. To help the modeller,
we have introduced the concept of Translator in VLE. The
objective of the Translator component is to translate a partic-
ular XML application in a VPZ formated file. Doing that, the
modeller can define a simple syntax to dynamically modify
the structure of her/his model.

For instance, if we need to build a CellDEVS model, we
must describe models, ports, connections and dynamics for
each cells. The modeller can define an XML application as
follow:

<cell rows="20" columns="20" dynamics="lifegame">
<init>

<cell x="2" y="5" value="false" />
<cell x="3" y="5" value="false" />
<cell x="4" y="5" value="false" />

</init>

ISBN # 1-56555-316-0 370 SCSC 2007



</cell>

In this example, the modeller creates a 20×20 cellular au-
tomata of the life game with particular initial conditions. The
Translator parses this file and generates the corresponding
VPZ file. It is then very easy to change the dimension or ini-
tial condition of the system.

Another possibility of using a Translator is the translation
of any other format of model structure in the VPZ format.
This open VLE to the use of any modeling tools. Neverthe-
less, building a translator component is a complex task and re-
quire knowledges in the DEVS formalism and the VLE XML
application. As we have seen in the simple example above,
the Translator must take into account both the model struc-
ture and the experimental frame (initial conditions etc.). This
increases the complexity of its definition. In the following
section, we discuss the construction of experimental frame
using GVLE.

4.2. Experimental design
The VLE XML application (see section 3.1.) enables the

definition of experimental frames. This construction is named
“experimental design” i.e. the sates to observe and how to
look at their evolution over time.

The modeller defines the initial conditions, the state vari-
ables to observe, the visualization components to use, the du-
ration of the simulation and the execution mode, local or dis-
tant. In addition, the modeller can build an experimental plan.
This latter is the definition of the variation domain for param-
eters and initial conditions and then the deduction of the num-
ber of simulations needed to achieve the experimental plan.

In VLE, we have define two particular types of model
ports, initialization and state ports. The first are used for send-
ing initial conditions, the second for sending state value to vi-
sualization components. Figure 6 gives an illustration of the
use of state ports in VLE. Outputs can be treated by visual-
ization components or stored directly in VLE. The outputs are
first sent to one or more measure objects. A measure object
can be attached to several different models.

The measures can be triggered in two ways:

• The modeller defines a time step and the simulator in-
serts the measure events in the simulator scheduler.

• When an internal or external transition occurs, the as-
sociated simulator receives measure events at the same
time. The measure event is raised just after the transition
event.

We consider that measure events do not influence the mo-
del simulator. This can occur for timed measures. To assert
there is no modification of models’ states when events of
measure occur, the function managing these events has the
following prototype:

Figure 5. Definition of experimental frame. The top window
on the left defines initial conditions. The top right window de-
fines the state variables to observe and the visualization com-
ponent to use. The window at the bottom defines the duration
of the simulation and the execution mode.

Value processStateEvent(const StateEvent&) const;

The C++ “const” keyword at the end indicates that this
function can not modify the model’s states.

The policy for building experimental plans and the number
of replicas can be defined in the VLE manager. The default
one is an exhaustive experimental plan (the cross products of
initials conditions).

The structure of the model and the experimental design ac-
tivity are stored in a VPZ file. The modeller can then repro-
duce exactly the same experimental frame if needed. Once the
modeling and experimental design activities have ended, the
VPZ file contains all necessary informations needed by the
VLE core program to perform simulations. That is the pur-
pose of the next section.

4.3. Simulation
The VLE core program performs simulations. It first parses

the VPZ file. Doing that, it gets all the necessary informations
in concern with models structures, dynamics and the experi-
mental frame. Thereafter, the VLE core program loads the
useful simulation and visualization components and builds

SCSC 2007 371 ISBN # 1-56555-316-0



Figure 6. The diagram presents an example of the output
management in VLE. It shows a coupling between an event
generator (left model) and a counter (right model). Each
model have one state port. The state ports are connected to
a measure object that send values to the visualization compo-
nent using network or memory transfer.

the coupled models network. Then, it sends an initialization
message to every models and starts the simulation.

VLE implements DEVS abstract simulators. The DEVS
extensions that we use in VLE implement their own abstract
simulators. In order to schedule events between simulators,
VLE uses the Parallel DEVS technique [24]. We have imple-
mented a risk-free (i.e. conservative) algorithm for the Paral-
lel DEVS simulation. This algorithm uses a global minimum
synchronization time and performs collections of simultane-
ous output and events distribution.

All atomic models inherit the Dynamics class to build
simulation component. The Dynamics class is a functional
interface to bind coordinators and users’ models. The follow-
ing Dynamics’s functions can be overloaded by the user:

1 Time init();
2 void processInternalEvent(const InternalEvent&);
3 void processExternalEvent(const ExternalEventList&);
4 Time getTimeAdvance();
5 void getOutputFunction(const Time&, EventList& out);
6 void finish();

In addition, the Parallel DEVS function is implemented as
follows:

1 type processConflict(InternalEvent&,
2 ExternalEventList&) const;

This function is called when events occur at the same time.
This function can be defined to choose the order of treatment
for events between internal and external events.

The two functions dedicated to the realization of the exper-
imental frame are:

1 void processInitEvent(const InitEventList&);
2 Value processStateEvent(const StateEvent&) const;

The first one processes the initialization events. The second
one gives the current state of a model at a specified time. In
the following section, we show how the measures performed
on a model are returned to the modeller for analysis.

4.4. Analysis
Analysis is in concern with the interpretation of simulation

results. VLE does not analyze data itself. As we have said in
paragraph 3.1., the EOV application enables VLE to commu-
nicate with the R statistical software. Furthermore, VLE pro-
vides the analyst some visualization and storing components
for data saving.

Visualisation components draw model states evolutions at
run-time. Nowadays, the VLE framework proposes the fol-
lowing Visualisation components:

• The two-dimensional discrete component to draw dis-
crete spatialized data (CellDEVS or CellQSS models for
instance).

• The two or three-dimensional continuous space data
component 5.

• The plot component, to draw curves and histograms (see
figure 7).

• The gauge component to show values between a mini-
mum and a maximum.

A Visualization components can use a parametrization
component. The latter enables the analyst to customize the
former (figure 7).

Visualization components can be developed by modellers
using inheritances of specific GVLE classes. The Visual-
ization components receive a parameterization message (in
XML format) at the beginning of simulation.

The use of synchronous coordination between simulators
and Visualization components can dramatically slow down
the simulation. Therefore, VLE proposes the UNIX pipe tech-
nique to separate simulation from data management. Data are
first encapsulated in an XML format, thereafter they are sent
in a stream. Then, the visualization component receives the
data and uses them. Data can also transit through the net-
work. Therefore, the Visualization components can be located
in another computer than the one used for simulation. A con-
sequence of this is that Visualization components can be writ-
ten in any language.

VLE proposes to directly store data in text files. Two for-
mats are possible. The first one records one line per date and
one column per saving state. The second one uses the Ex-
tended Markup Language, format for Statistical Data (Stat-
DataML). This format is compatible with statistical applica-
tions like R/Splus, MATLAB, Octave. Then, the analyst can

5The 3D visualization components use OpenGL libraries

ISBN # 1-56555-316-0 372 SCSC 2007



Figure 7. An example of visualisation component for
curves. The right window shows the parametrization com-
ponent useful for specifying the curves’ labels and colors for
instance.

directly load the simulation results in such statistical applica-
tions.

5. CONCLUSION AND PERSPECTIVES
In this paper, we have presented the VLE framework. It is a

complete and powerful DEVS environment for the modeling
and simulation of complex systems. We have mainly focused
on the need for such a tool to be able to take into account
the modeling and simulation cycle (figure 1). We have shown
how the general architecture of VLE can support this cycle.
Complex systems can better be addressed considering mul-
timodeling as a basis for there construction. Therefore, VLE
offers tools to couple heterogeneous models and to simulate
them. As VLE is based on the M&S theory defined by Zei-
gler [24], it has a formal basis. This is a very important fea-
ture considering scientific uses of M&S. There are important
classes of models that are not well suited to be specified as ex-
tension to DEVS. Nevertheless, many models can be wrapped
inside DEVS models.

We have compared some platforms based on the DEVS for-
malism and VLE (ADEVS, CD++, DEVS/C++, DEVS/Java,
JDEVS). This comparison is based on the list provided by
G. Wainer. References to these platforms can be found at http:
//www.sce.carleton.ca/faculty/wainer/standard/tools.htm. We
do not compare the whole of platform’s characteristics rather
than focus on the main features of VLE: i.e. the implemen-
tation of major DEVS extensions, experimental frames and
the ability to perform distributed simulation. Considering this
comparison and to our best knowledge, VLE appears to be a
relatively complete DEVS environment.

VLE is an open tool. Indeed, it provides XML applications
that permits to communicate with other frameworks. For in-
stance, experimental frames and model structures are stored
in an XML application. Then, any other simulation tool un-
derstanding this format is able to construct and simulate the
specified model, under precise experimental conditions. This
is a fundamental issue in complex scientific M&S activities
to be able to reproduce and compare models. The concept
of Translator we have briefly introduced in this paper seems
very promising. We are developing an XML application to de-
fine a complete specification for MultiAgent Systems based
on [3, 11].

Currently, the VLE Environment is used in two projects
of majors French research institutes, Ifremer and IRD6 and
funding by the ANR Agency (National Research Agency). In
the CHALOUPE project7 VLE supports a model for the sim-
ulation of the dynamic of exploited marine biodiversity and
the viability of fisheries. In the REMIGE project, VLE is used
to model the impact of climate changes on marine top preda-
tors. Moreover, recent papers in concern with VLE have been
published in international conferences [21, 13, 12]. Informa-
tions concerning VLE, including sources, examples, models
and documentations are available on the VLE website8.

REFERENCES
[1] F. J. Barros. Dynamic structure discret event system

specification: Formalism, abstract simulators and appli-
cations. 13(1):35–46, 1996.

[2] F. J. Barros. Dynamic structure multiparadigm model-
ing and simulation. ACM Transactions on Modeling and
Computer Simulation, 13(3):259–275, 2003.

[3] R. Duboz, E. Ramat, and G. Quesnel. Systèmes multi-
agents et théorie de la modélisation et de la simulation
: une analogie opérationnelle. In Olivier Boissier et Za-
hia Guessoum., editor, Actes des douzièmes Journées
Francophones sur les Systèmes Multi-Agents (JFSMA)
- Systèmes multi-agents défis scientifiques et nouveaux
usages, Paris, Novemver 2004.

[4] W. S. Means E. R. Harold. XML in a Nutshell, 2nd Edi-
tion. O’Reilly, 2002.

[5] P. A. Fishwick. Simulation Model Desing and Execu-
tion. Prentice Hall, 1995.

[6] P. A. Fishwick and B. P. Zeigler. A multi-model method-
ology for qualitative model engineering. ACM transac-
tion on Modeling and Simulation, 2(1):52–81, 1992.

6http://www.ifremer.fr and http://www.ird.fr
7http://www.projet-chaloupe.fr
8http://vle.univ-littoral.fr

SCSC 2007 373 ISBN # 1-56555-316-0

http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm
http://www.ifremer.fr
http://www.ird.fr
http://www.projet-chaloupe.fr
http://vle.univ-littoral.fr


[7] Free Software Fundation. GNU Operating System:
GNU’s Not Unix, 1984. http://www.gnu.org.

[8] Free Sofware Fundation. Gnome: GNU Network Object
Model Environment, the Free Software Desktop Project.
http://www.gnome.org.

[9] J. Y. Kim and T. G. Kim. A heterogeneous simulation
framework based on the DEVS bus and the High Level
Architecture. In Winter Simulation Conference, Wash-
ington, DC, 1998.

[10] E. Kofman. A second order approximation for devs sim-
ulation of continuous systems. Journal of the Society for
Computer Simulation International, 78(2), 2002.

[11] G. Quesnel. Approche formelle et opérationnelle de
la multi-modélisation et de la simulation des systèmes
complexes – Apports pour les systèmes multi-agents.
PhD thesis, Université du Littoral Côte d’Opale, decem-
bre 2006.

[12] G. Quesnel, R. Duboz, and É. Ramat. DEVS wrapping:
A study case. In Proceedings of CMS 2004 conference,
pages 374–382, Genoa, Italy, October 2004.

[13] G. Quesnel, R. Duboz, D. Versmisse, and É. Ramat.
DEVS coupling of spatial and ordinary differential
equations: VLE framework. In Proceedings of OICMS
2005 conference, Clermont Ferrand, France, June 2005.

[14] R Development Core Team. R: A Language and En-
vironment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2006. ISBN 3-
900051-07-0.

[15] E. Ramat and P. Preux. Virtual laboratory environment
(VLE): a software environment oriented agent and ob-
ject for modeling and simulation of complex systems. In
Simulation Modelling Practice and Theory, volume 11,
pages 45–55, 2003.

[16] B. Stroustrup. The C++ Programming Language. Ad-
dison Wesley, 1986.

[17] Swig Development Team. Simplified Wrapper and In-
terface Generator, 1995. http://www.swig.org.

[18] H. Vangheluwe. Devs as a common denominator for hy-
brid systems modelling. In A. Varga, editor, IEEE Inter-
national Symposium on Computer-Aided Control Sys-
tem Design, pages 129–134, Anchorage, Alaska, 2000.
IEEE Computer Society Press.

[19] H. Vangheluwe, J. Lara, and P. J. Mosterman. An intro-
duction to multi-paradigm modelling and simulation. In

F.J. Barros and N. Giambiasi, editors, AIS’2002. Simu-
lation and Planning in High Autonomy Systems, pages
9–20, Lisbon, Protugal, April 2002. Society for Mod-
elling and Simulation International.

[20] D. Versmisse and E. Ramat. Management of pertur-
bations within a spatialized differential equations sys-
tem. In European Simulation and Modelling Confer-
ence, pages 520–524, Porto, Portugal, october 2005.
SCS.

[21] D. Versmisse, J. C. Soulié, and G. Quesnel. Une étude
de cas dans le domaine des pêcheries pour la simu-
lation de systèmes complexes. In Actes de la 6ème
Conférence Francophone de Modélisation et Simulation
Modélisation, Optimisation et Simulation des Systèmes
: Défis et Opportunités, Rabat, Maroc, april 2006.

[22] G. A. Wainer and N. Giambiasi. Application of the Cell-
DEVS paradigm for cell spaces modelling and simula-
tion. In Simulation, volume 76, pages 22–39, 2001.

[23] B. P. Zeigler. Theory Of Modeling and Simulation. Wi-
ley Interscience, 1976.

[24] B. P. Zeigler, D. Kim, and H. Praehofer. Theory of
modeling and simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Academic
Press, 2000.

ISBN # 1-56555-316-0 374 SCSC 2007

http://www.gnu.org
http://www.gnome.org
http://www.swig.org



