

A Formalization of Global Simulation Models for Continuous/Discrete Systems

L. Gheorghe, F. Bouchhima, G. Nicolescu, H. Boucheneb
Ecole Polytechnique Montréal

luiza.gheorghe@polymtl.ca

Keywords: Co-Simulation, Heterogeneous Systems,
Continuous/Discrete Simulation, Formal Representation

Abstract
 Many of the modern systems integrate components
specific to different application domains. Frequently these
systems combine continuous and discrete sub-systems and
therefore their design involves solving specific global
modeling and simulation problems. This paper addresses the
formal representation of a continuous/discrete global
synchronization model and the corresponding simulation
interfaces. This representation enables the definition of
generic language independent co-simulation tools that can
be used to provide global simulation models for
continuous/discrete heterogeneous systems. The model was
validated through simulation, using UPPAAL toolbox and
its verification was realized by defining and checking the
main properties.

1. INTRODUCTION
 Today, systems-on-chip are growing in complexity as a
result of not only a higher density of hardware components
on the same chip but also because of the integration of
different modules that are particular to different application
domains [12]. Many domains benefit from these system’s
advantages, among them the defense, medical, electronic,
communication, and automotive. Given the diversity of
concepts manipulated, the global design specification and
validation are extremely challenging. A large number of
these systems combine continuous and discrete sub-systems.
The heterogeneity of these systems makes more difficult the
elaboration of an executable model for the system’s
simulation (the simulation model). Generally these models
are very complex; they include the execution of different
components, the interconnects’ interpretation as well as the
adaptation between the continuous and the discrete
components.
 One of the methods generally used for the validation of
a continuous/discrete (C/D) system is the co-simulation. The
co-simulation allows joint simulation of heterogeneous
components with different execution models. This technique
presents many benefits. One of them is the reusability of the
models already developed in a well known language and
using already existing powerful tools (i.e. Simulink for the
continuous domain and VHDL, Verilog or SystemC for the

discrete domain). Thus, the development time, the time-to-
market and the costs are reduced. This methodology
requires the elaboration of a global co-simulation model
(Figure 1). In this model, the co-simulation bus is in charge
of transferring data between the different models [15].

Figure 1: Generic continuous/discrete co-simulation model

 For C/D systems co-simulation, the simulation
interfaces have to provide efficient synchronization models
for the adaptation of the domain specific models. In a C/D
heterogeneous system, we find two distinct models:
- a continuous model where the computation is realized in
the continuous domain by solving differential or algebraic
equations;
- a discrete model where the computation is realized in
cycles and every cycle represents the computation of a
selected sub set of variables.
Thus, in the case of a global validation tool several
execution semantics have to be taken into consideration in
order to perform global simulation. A global model has to
define clearly the computation and the communication (and
implicitly the synchronization) and verify the behavior of
the co-simulation interfaces given certain restrictions.
 The automatic generation of the co-simulation
interfaces is very suitable, since their design is time
consuming and an significant source of errors. The
simulation interfaces play an important role in accuracy and
performance of global simulation. The strategy currently
used for the automatic generation of the co-simulation
interfaces is based on the configuration of the components
and their assembly. These components are selected from a
co-simulation library.
 An efficient tool for the automatic generation of the co-
simulation interfaces must rely on a formal definition of the
simulation interfaces. Some characteristics of the formalism
for interface generation are [19] the executability for
automatic generation and formal properties for analyses and
verifications. The formalism allows the verification of
correctness, liveness and safety properties such as the
deadlock, the correct answer to a change in the behavior of

SCSC 2007 559 ISBN # 1-56555-316-0

one of the simulators as well as the synchronization given
by the continuous interface and the discrete interface.
 The main contribution of this paper is the convergence
of formal and co-simulation based approaches in the context
of global validation of C/D systems. We focus on the co-
simulation interfaces required for C/D global simulation. A
formal representation of the behavior of these interfaces
using timed automata is proposed. This representation was
realized with respect to the generic canonical
synchronization model [10]. This allows for the definition
and the verification of some of the system’s properties and
constraints. In order to validate and check our model we
used UPPAAL [5].
 This formal representation (also called here model)
constitutes the foundation for the definition of a generic co-
simulation tool that can provides global simulation models
for C/D systems validation using the automatic generation
of the co-simulation interfaces. This work generalizes our
previous works presented in [3] and [15]. In these works,
the co-simulation interfaces were not verified formally.
 The article is structured as follows. Section 2 will
present several of the related works and previous
approaches to the simulation of the C/D systems. Section 3
introduces some of the basic concepts such as the
synchronization model, timed automata and UPPAAL, a
tool that is used to verify systems that can be modeled as
timed automata. Section 4 presents the canonical
synchronization model in the context of the C/D co-
simulation, the co-simulation interfaces, their behavior and
formal models. Section 5 shows the experimental results;
more precisely the model simulation and validation as well
as the properties verification are detailed. Finally, section 6
gives our conclusions.

2. RELATED WORK

 Some of the existing works on C/D systems
validation propose the utilization of a single language for
the specification of the C/D system. These tools may be
obtained by extension of existing HDLs [9], [11], [16], [17].
This requires the abandonment of well established efficient
tools for the continuous domain (ex. Simulink). There are
tools such as Ptolemy in which the systems are designed by
assembling together different components [18]. These works
do not consider the accurate synchronization for the
continuous/discrete integration. Moreover, the different
systems and components need to be developed in the same
environment in order to be compatible thus they do not
solve the problem of real components-based approach to
system design.

 Several formal representation approaches propose
definitions for heterogeneous systems modeling. In [14], a
formal framework for comparing computation used in
heterogeneous models is presented. The authors propose a
formal classification framework that makes it possible to

compare and express differences between models of
computation. The intent is “to be able to compare and
contrast its notions of concurrency, communication, and
time with those of other models of computation” [14]. The
role of the computation in abstracting functionalities of
complex heterogeneous systems was presented in [13]. The
author proposes the formalization of the heterogeneous
systems by separating the communication and the
computation aspects; however verification on the interfaces
between domains were not taken into consideration.
 In [20] the author introduced an interesting formalism
defined for the modeling and simulation of discrete event
systems (Discrete EVent System Specifications - DEVS)
where the time advances on a continuous time base. DEVS
is a formal approach to build models, using hierarchy and
modularity and more recently it integrates object-oriented
programming techniques. Based on this formalism, [7]
proposes a tool for the modeling and simulation of hybrid
systems using Modelica and DEVS. The models are
“created using Modelica standard notation and a translator
converts them into DEVS models” [7].
 Compared to these works, we concentrate on the formal
models of the co-simulation interfaces that enable the
interfaces verification.

3. BASIC CONCEPTS
 This section introduces some of the basic concepts that
are used in this work. The first part of the section presents
the canonical synchronization model. The next two parts
will introduce the timed automata formalism and a brief
presentation of the UPPAAL modeling and validation tool.

3.1. Canonical Synchronization Model in

Discrete/Continuous Co-simulation
The synchronization, defined as coordination with

respect to time, represents an important aspect in co-
simulation models. The synchronization between the
continuous domain and the discrete event domain is realized
using a canonical algorithm as it was presented in [10]. For
a rigorous synchronization the discrete kernel has to detect
the events generated by the analog (continuous) solver and
the continuous solver must detect the scheduled events from
the discrete kernel.

For the discrete event processes, the time does not
advance during the execution. The next execution time is
the next time in the event queue. The execution of the
analog solver advances the simulation time. Let be tk the
synchronization time for the discrete kernel and the analog
solver. The analog solver advances to the next
synchronization time tk+1, known in advance from the digital
kernel. At this point the analog solver suspends while the
digital kernel resumes and the events in tk+1 are executed. If
a state event occurs in the time interval [tk, tk+1], the analog
solver suspends to allow the digital kernel to take this event

ISBN # 1-56555-316-0 560 SCSC 2007

into consideration. This way the analog solver and the
digital kernel are synchronized again.

3.2. Timed Automata
 Proposed by Alur and Dill in 1990 [1], timed automata
is a formalism for modeling and verification of real time
systems.

A timed automaton can be seen as a classical finite state
automata with clock variables and logical formulas on the
clock (temporal constraints). The constraints on the clock
variables are used to restrict the behavior of the automaton.
The logical clocks in the system are initialized to zero when
the system is started and then increase at a uniform rate
counting time with respect to a fixed global time frame [1].
The clock constraints are the guards on the transitions. A
transition can be taken when the clocks’ values satisfy the
guard labeled on it. Figure 2 illustrates an example of a
timed automaton.

Figure 2: Example of a timed automaton

 The process shown in Figure 2 starts at the location p
with all its clocks (x and y) initialized to 0. The values of
the clocks increase synchronously with time at the location
q. At any time, the process can change the location

following a transition qp ra;g;⎯⎯ →⎯ if the current values of

the clocks satisfy the enabling condition g (guard). A
guard is a Boolean combination of integer bounds on
clocks and clock-differences. With this transition, the
variables are updated by r (reset) which is an action
performed on the clocks. The actions are used for
synchronization and are expressed by a (action) [2]. A
synchronization label is of the form Expression? or
Expression! where ! represents the operator send and ?
represents the operator receive.
 The semantics for a time automaton is defined as “a
transition system where a state or configuration consists of
the current location and the current values of clocks” [2].
Thus, the state is represented by the tuple: (location, x)
where x is the clock. Given the system, we can have two
types of transitions between locations: a delay transition
when the automaton may delay for some time or an action
transition when the transition follows an enabled transition.

Timed automata can be extended with parallel composition
that is the product of the automata.

3.3. A Verification Tool for Timed Systems – UPPAAL
 UPPAAL [5] is an integrated tool environment for
modeling, simulation and verification of timed automata
developed jointly by Aalborg University in Denmark and
the Uppsala University in Sweden. It consists of three parts:
a model descriptor, a simulator and a model-checker. The
descriptor models systems that can be represented as a
collection of non-deterministic processes with finite control
structure and real-valued clocks (i.e. timed automata),
communicating through channels and (or) shared data
structures. A model consists of one or more concurrent
processes (also named simulators), local and global
variables, and channels. There are three types of locations in
UPPAAL: normal locations with or without invariants,
urgent locations and committed locations. No delay is
allowed in urgent or committed locations. The transitions
out from an urgent location have higher priority than that of
time progress.
 The expressions cover clocks and integer variables and
are used with the labels: guards, synchronization,
assignments or invariant. The models synchronize with each
other via channels. In UPPAAL the assignments are
evaluated sequentially (not concurrently). On synchronizing
transitions, the assignments on the !-side (the emitting side)
are evaluated before the ?-side (the receiving side).
 The model checker engine in UPPAAL is based on the
theory of timed automata and its query language is a subset
of computational tree logic, the timed computational tree
logic (TCTL). The query language [5] consists in path
formulae and state formulae. The states formulae describe
individual states while the path quantifies over traces of the
model.
 The main advantage of UPPAAL is that the product
automaton is computed on-the-fly during verification. This
reduces the computation time and the required memory
space. It also allows interleaving of actions as well as hand-
shake synchronization.
 In our approach UPPAAL was used for the formal
representation and verification of the simulation interfaces.
Our formal representation needs to support concurrency
between the two models, the continuous and the discrete
therefore they were represented as a parallel composition of
several timed automata.

4. METHODOLOGY
 To enable the design of flexible, modular, scalable and
accurate co-simulation tools, a methodology independent of
the simulation tools used for the continuous and discrete
components of the system should consider the following
main steps:

SCSC 2007 561 ISBN # 1-56555-316-0

1) Definition of the operational semantics for the
synchronization in C/D global execution models
2) Distribution of the synchronization functionality to the
simulation interfaces
3) Formalization and verification of the simulation
interfaces behavior
4) Definition of the library elements and the internal
architecture of the simulation interfaces
5) The analysis of the simulation tools for the integration
in the co-simulation framework.
6) The implementation of the library elements specific to
different simulation tools.
 The work presented in this article covers steps 2 and 3
defined above: the distribution of the synchronization
functionality to the simulation interfaces and the
formalization and the verification of the simulation
interfaces.

5. FORMAL DEFINITION OF THE CONTINUOUS

/DISCRETE SIMULATION INTERFACES
 This section details the global simulation model for a
C/D system. In the global simulation model already
presented in section 1 (see Figure 1) the co-simulation
interfaces are in charge with the synchronization and the
communication between the simulators.

5.1. Application of the Canonical Synchronization

Model in Co-simulation
 The continuous time system is described by the state
space equations:
x& c(t)=Acxc(t)+Bcu(t)

 y(t)=Ccxc(t)+Dcu(t) (1)
where xc is the state vector, u the input signal vector, y the
output signal vector and Ac, Bc, Cc and Dc are constant
matrixes that describe the dynamic of the system.
 The discrete system can be described by the state-space
equations [6]:
xd(tk+1)=f(xd(tk), u(tk), tk) x(t0)=x0
 y(tk)= g(xd(tk), u(tk), tk) (2)
where xd is the state vector, u the input signal vector, y the
output signal vector.
For the linear discrete systems, the equations 2 become:
xd(tk+1)= Adxd(tk)+Bdu(tk)
 y(tk)=Cdxd(tk)+Ddu(tk) (3)
where Ad, Bd, Cd and Dd are matrixes that can be time-
varying and describe the dynamic of the system.
 For the model presented here, the time interval for the
continuous system (equation 1) is included in [tk,tk+1]. The
input signal vector for the continuous domain is the output
signal vector from the discrete domain and vice versa.
 The events exchanged between the discrete and the
continuous simulators are:
- occurred /scheduled events that are timed events scheduled
by the discrete simulator.

- state events that are unpredictable events generated by the
continuous simulator. Their time stamp depends on the
values of state variables (e.g. a zero-passing or a threshold
crossing).
 Figure 3 presents the synchronization model in the C/D
co-simulation interface with and without state event.

Figure 3: The synchronization model in the continuous/discrete

simulation interface without (a) or with state event (b)
 In the case of the co-simulation, the global model that
integrates two different simulators has to respect the
synchronization model previously presented. The simulators
have to be controlled by the co-simulation interfaces in
order to provide the functionalities described below. At a
given time, the discrete simulator is in the state (xdk,tdk). At
this point, the discrete simulator had executed all the
processes sensitive to the event with the time stamp xdk and
sends the time of the next event tdk+1 and the data to the
continuous simulator and switches the context from the
discrete to the continuous simulator before advancing the
time. The state of the continuous simulator is (xck,tck) and the
advance in time of the simulator cannot be further then tdk+1,
the time sent by the discrete simulator. Consequently the
behavior of the continuous interface can be described by the
following transition state:

where the state (xck+1, tck+1) is the state of the continuous
simulator when no state event was generated in the time
interval [tck, ,tck+1] while the state (se,tse) represents the
state of the continuous simulator when a state event se was
generated and tse represents the time when the state event
occurred. In both situations the continuous simulator will
stop and send the data to the discrete simulator and then
switch the context to the time tdk. This work takes into
consideration the event generated within the time interval
[tk,tk+1] after the context switch from the discrete domain to
the continuous domain at the time tk. This event can be a
state event or the detection of an event scheduled by the
discrete simulator (in both cases a synchronization point)

 (xck+1, tck+1) if tck+1=tdk+1 (4)

 (se,tse) if tck+1< tdk+1 (5)

(xck,tck) ⎯→⎯

ISBN # 1-56555-316-0 562 SCSC 2007

 In the case described by the equation (4), after
switching the context, the discrete simulator will advance to
the time tdk+1 that is the next synchronization point, which
will execute all the processes sensitive to the scheduled
event with this time stamp. Before switching the context to
the continuous interface it sends the data and the time of the
next scheduled event tdk+2 (also the next synchronization
point) and the cycle restarts.
 In the case of the equation (5) the continuous simulator
will send not only the data but also the time when the state
event occurred tse. The discrete simulator will advance to
this time (state event detected by the discrete simulator)
where it will execute all the processes sensitive to the event.
Before switching the context to the continuous simulator the
discrete interface will send the data and the recalculated
time of the next scheduled event tdk’. Usually the developers
assume that the sampling intervals are constant. In this work
the time stamp can change after a state event. This time
stamp is bigger than tse and it can be smaller, equal or bigger
then the time stamp that previously existed in the discrete
simulator’s queue – tdk+1.
 The advantage of this model is that it avoids any need
of roll-back even if a state event was generated. This model
is used if the signal update events are unpredictable.
 A particular version of this model is when the events
are periodic [4]. In this case the time stamps of the update
events and sampling events are put in a queue. The time
stamp of the next output event is known by accessing the
queue to take out the smallest time stamp and send it to the
continuous model.

5.2. Discrete domain co-simulation interface
 Figure 4 presents the flowchart of the behavior of the
discrete domain interface.

Start ()

-detection of the end of discrete

simulation cycle

- get data from the discrete event

simulator

- send data to co-simulation bus

- send time of next event to co-

simulation bus

- get data from the co-simulation

bus

- send data to the discrete event

simulator

- get time of state event from the co-

simulation bus

- state event detection

- get data from the co-simulation bus

- send data to the discrete event

simulator

Stop

from discrete event

simulator

to discrete event

simulator
to co-simulation bus

to co-simulation bus

Stop

wait data from the

continuous simulator

wait event from the

continuous sim.

statevent┐statevent

wait data from the

continuous simulator

Figure 4: Flowchart for discrete domain co-simulation

interface
 The behavior of the discrete domain interface can be
described by its processing steps detailed subsequently.
 During the first step, the interface:

- detects the end of the simulation cycle in the discrete;
- receives data and the time of the next event in the discrete
domain;
- sends the time and the data to the continuous simulator via
the co-simulation bus and
- switches the context from the discrete to the continuous
domain.
 After the first step is finalized, the discrete interface
waits for the signal from the continuous simulator, the
behavior of the interface depending on the data received
from the continuous interface and if a state event is
generated. Two cases are possible (see Figure 4).
 Based on this flowchart we formalized the discrete co-
simulation interface. Figure 5 shows the formal model
(using timed automata) for the discrete domain interface.
The model has only one initial location (a double circle in
Figure 5) Start.
 The discrete interface will change location from Start to
NextTimeGot following the transition

tNextTimeGoStart sc?DataFromDi⎯⎯⎯⎯⎯ →⎯ . This is an external
transition realized with zero time and it is triggered by the
receiving of the data (that is also synchronization between
the discrete simulator and the interface) from the discrete
simulator (DataFromDisc?). Here the interface receives
the data from discrete simulator and the time of the next
event in the discrete domain.
 The location changes to WaitEvent following the
transition:

WaitEventtNextTimeGo period]int[0,:cycle cycle,NextTime ,s!DataFromBu ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ = .
In order to change the location, the continuous interface
sends to the discrete interface the time of the next event
(occurred/scheduled event) in discrete (the synchronization
DataFromBus!). The variable NextTime is the time of
the next event in the discrete domain. This variable takes, in
this mode, the value cycle. The theory normally assumes
equidistant sampling intervals. This assumption is not
usually achieved in practice. For an accurate simulation we
assume that cycle takes random values in an interval defined
here as [0, period].

Figure 5: The discrete domain interface model (IDiscrete)

In WaitEvent location, the context is switched from the
discrete to the continuous simulator.

SCSC 2007 563 ISBN # 1-56555-316-0

 When the context is switched back to the discrete
simulator, the location is changed to EventGot following the
synchronization transition: EventGotWaitEvent Event?⎯⎯ →⎯ .
During this transition the discrete interface receives from
the continuous interface the synchronization Event?. In
this location the occurrence of a state event in the
continuous domain is considered. EventGot is an urgent
location (as defined in section 3.4). This will not allow the
discrete model to miss a state event generated by the
continuous model. Two cases are possible:
1) When no state event was generated by the continuous
domain, the location changes from EventGot to NoStEv. The
transition NoStEvEventGot 0 StateEvent ⎯⎯⎯⎯⎯ →⎯ == is annotated in
this case only with the guard StateEvent==0.
2) When a state event was generated by the continuous
domain the location changes from EventGot to StEvDetect
following the transition:

StEvDetectEventGot StEvTime NextTime,StateEvent ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ = .
 This transition is annotated with a guard
(StateEvent) and the update of the NextTime in the
discrete domain as the time when the state event occurred in
the continuous domain StEvTime (for a rigorous
synchronization, the discrete domain has to consume this
event and stop at the time when it was generated by the
continuous domain interface) This is the time of the next
event that is going to be sent to the continuous simulator.
 From both locations StEvDetect and NoStEv, the system
can reach the next location: TimeOfStEvDisc. In both cases
the model performs synchronization (DataToBus?). At
this point the discrete interface will synchronize and send
data to the discrete simulator (DataToDisc) and changes
the location to WaitDataFromCont. The next location is
Start, the discrete time variable is initialized on this channel
(td=NextTime) and the cycle restarts.

5.3. Continuous domain co-simulation interface
 Figure 6 presents the flowchart of the behavior of the
continuous domain interface. The following paragraph gives
the description of the processing steps in this domain.
 During the first processing steps the continuous
simulator:
- receives the data from the co-simulation bus;
- sends the data to the continuous simulator;
- sends the time of the next event in the discrete domain to
the continuous simulator.
 The second step consists of receiving the data from the
discrete simulator. The behavior of the interface depends on
the data received from the continuous simulator and if a
state event was generated. Regarding the occurrence of a
state event, two cases are possible (as shown in Figure 6).
Figure 7 shows the continuous domain interface
formalization that was developed based on the flowchart
representing the behavior of this interface.

Figure 6: Flowchart for the continuous domain co-simulation

interface

Figure 7: The continuous domain interface model

(IContinu)
 The continuous interface will leave the initial location
Start following the transition:

aFromBusReceiveDatStart s?DataFromBu⎯⎯⎯⎯⎯ →⎯ . This is
also an external transition realized with zero time and it is
triggered by the receiving of the data from the discrete
interface (DataFromBus?) that is also the first
synchronization point between the discrete interface and the
continuous interface. The interface receives the data from
discrete and the time of the next event in discrete. From
ReceiveDataFromBus location the process will move to the
next location SendDataToCont following the transition

ContSendDataToR NextTimetcn ,!DataToCont ⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ =FromBuseceiveData

The value NextTime, the time of the next event
(occurred/scheduled event) in the discrete simulator is
assigned to tcn, the next time in the continuous simulator.
In our model, the synchronization on this transition is
between IContinu and SimCont (where SimCont is the
continuous domain simulator), the interface sends to the
simulator data received from IDiscrete and the time of the

ISBN # 1-56555-316-0 564 SCSC 2007

next event in the discrete domain. The system changes the
location from SendDataToCont to ReceiveDataFromCont
following the synchronization transition:

aFromContReceiveDatContSendDataTo nt?DataFromCo ⎯⎯⎯⎯⎯ →⎯
 During this transition the continuous interface receives
data from the continuous simulator and eventually, if a state
event occurs, the time of the state event. In the
ReceiveDataFromCont location, the continuous interface
evaluates if a state event was generated. Two cases are
possible:
1) When no state event is generated, the location changes
from ReceiveDataFromCont to TimeOfStEv following the
transition

TimeOfStEvaFromContReceiveDat 0 StateEventEvent! ⎯⎯⎯⎯⎯⎯⎯ →⎯ = . The
transition is annotated in this case by the synchronization
Event! and with the update StateEvent=0.
2) When a state event is generated, the location changes
from ReceiveDataFromCont to StEvDetect following the
transition : ReceiveDataFromCont

StEvDetect period]int[0,:tse tcn,:tcn)?tsetseStEvTime1,StateEvent Event! ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ <== (

 This transition is annotated with a synchronization
(Event!) and three variable updates: StateEvent=1
(for the detection of a state event),
StEvTime=(tse<tcn)?tse:tcn,tse:int[0,period]
(for the time of the state event that occurs during the time
interval [0,period]; this time will be sent to the discrete
simulator). StEvDetect is an urgent location. The location
StEvDetect changes to TimeOfStEv following the transition:

TimeOfStEvStEvDetect StEvTimetcn ⎯⎯⎯⎯⎯ →⎯ =
At this point there is no synchronization, just an update of
the time in the continuous domain having assigned the time
of the state event StEvTime: tcn=StEvTime.
TimeOfStEv location is common for both cases,
StateEvent=0 or StateEvent=1. This location
changes to WaitDataFromDisc. The system performs
synchronization (DataToBus!) between the continuous
interface and the continuous simulator. The next location is
Start, the continuous time variable is initialized on this
channel (tc=tcn) and the cycle restarts.
 The model descriptor from UPPAAL allows the
description of the interfaces behavior as a network of
automata. The global formal model proposed in this paper is
formed by four sub-models (processes): the continuous
domain simulator (SimCont), the continuous domain
interface (IContinu), the discrete domain simulator
(IDiscrete) and the discrete domain interface (SimDisc).
 Figure 8 shows the global formal model including the
continuous domain and the discrete domain simulators and
their interaction. The transitions show the synchronizations
between the simulators and interfaces as well as the
synchronization between the interfaces. The initial location
for the global formal model is the discrete simulator;

however, the continuous simulator is the first that advances
in time.

Figure 8: The global formal simulation model

6. MODEL VALIDATION
 UPPAAL allows the validation of the global formal
model by simulation. We simulated all the possible dynamic
executions of our synchronization model and we formally
verified our model.
 The formal verification consists of checking properties
of the system for a broad class of inputs [8]. In our work we
checked properties that fall into two classes:
- Safety properties - the system does not get into an
undesirable configuration, (i.e. deadlock etc) [8].
- Liveness properties - some desired configuration will be
visited eventually or infinitely (i.e. expected response to an
input, etc.) [8].
 The properties verified in order to validate the
synchronization model are described below.
P0 Deadlock (safety property)
Deadlock exists among a set of processes if every process is
waiting for an event that can be caused only by another
process in the set. In UPPAAL deadlock is expressed by a
formula using the keyword deadlock. A state is a
deadlock state if there are no outgoing action transitions
either from the state itself or any of its delay successors [4].
The absence of the deadlock property was verified (and the
property was satisfied).
The property is expressed by the following query:
A[] not deadlock
P1 State event detected by the discrete domain (liveness
property)
The indication of a state event by the continuous interface
and its detection by the discrete interface is very important
for C/D heterogeneous systems. We defined a liveness
property in order to check this behavior:
Definition: A state event detected in the continuous domain
leads to a state event detected in the discrete.
The property is expressed by the following query:
IContinu.StEvDetect�IDiscrete.StEvDetect
(where IContinu and IDiscrete are the processes and
StEvDetect the locations).
P2 No state event in discrete if no state event in
continuous domain (safety property)
In order to avoid false responses from the discrete
simulators, we defined a safety property to verify if the

SCSC 2007 565 ISBN # 1-56555-316-0

system will “detect” a state event in the discrete when it was
not generated (and indicated) by the continuous domain:
Definition: Invariantly a state event detected in the
discrete domain imply state event in the continuous.
The property is expressed by the following query:
A[](IDiscrete.StEvDetect imply StateEvent)
P3 Synchronization between the interfaces (liveness
property)
One of the most important properties characterizing the
interaction between the continuous and the discrete domains
is the communication and implicitly the synchronization.
This property verifies that after a cycle executed by each
model, both of them are at the same time stamp (and by
consequence they synchronize)
Definition: Invariantly both processes in the Start
location (initial state) and each of them executed one cycle
imply the time in the continuous tc is equal with the time
in the discrete td.
The property is expressed by the following query:
A[]((IDiscrete.Start and IContinu.Start
imply (IContinu.tc - IDiscrete.td == 0))
P4 Causality principle (liveness property)
The causality can be defined as a cause and effect
relationship. The causality of two events describes to what
extent one event is caused by the other. This property
verifies that when a state event was generated by the
continuous domain, the discrete domain will detect this
event at the same precise time (the cause precedes or equals
the effect) and not some other possible event existing at a
different time in the continuous domain.
Definition: Invariantly both processes in the
StEvDetect location (detection of state event) imply the
time in the continuous tc is equal with the time in the
discrete td.
The property is expressed in UPPAAL by the following
query:
A[]((IDiscrete.StEvDetect and IContinu.
StEvDetect imply (IContinu.tc -
IDiscrete.td == 0))

7. CONCLUSION
 An efficient tool for the automatic generation of the co-
simulation interfaces must relay on the formal definition of
the simulation interfaces. This paper proposes solutions for
two of the steps of a generic methodology for C/D design:
the distribution of the synchronization functionality to the
simulation interfaces and formal representation and
verification of the behavior of the C/D co-simulation
interfaces. The formalization was realized with respect to a
generic canonical synchronization model using timed
automata. The model was validated through simulation. In
order to verify the formal representation, some properties
were defined and checked using the model checker from
UPPAAL.

References

[1] Alur, R., Dill, D., 1990: “Automata for modeling real-time
systems”. In Proceedings, 17-th International Colloquium on
Automata, Languages and Programming, vol. 443, 322-335.

[2] Bengtsson, J., Yi, W, 1996: “Timed automata: Semantics,
Algorithms and Tools”, Department of Computer Science
Uppsala University. Denmark.

[3] Bouchhima, F. et al. 2005: “Discrete–Continuous Simulation
Model for Accurate Validation in Component-Based
Heterogeneous SoC Design”, Rapid Systems prototyping, pp
181-187.

[4] Bouchhima, F. et al. 2006: “A SystemC/Simulink
Cosimulation Framework for Continuous/Discrete-Events
Simulation”, Behavioral Modeling and Simulation
Conference, San Jose, California.

[5] Behrmann, G., David, A. and Larsen, K. 2005: “A Tutorial on
UPPAAL”, RTS Symposium, Miami.

[6] Cassandras, C. G. 1993: “Discrete event systems: Modeling
and performance analysis”, Richard Irwin, New York.

[7] D'Abreu, M.; Wainer G. 2005: “M/CD++ : modeling
continuous systems using Modelica and DEVS”, in
Proceedings of the IEEE International Symposium of
MASCOTS’05.

[8] Edwards, S., Lavagno, L., Lee, E., and Sangiovanni-
Vincentelli, A.L. 1997: “Design of Embedded Systems:
Formal Models, Validation, and Synthesis” In Proceedings of
the IEEE, vol. 85, pp. 366-390.

[9] Frey, P. et al. 2000: “Verilog-AMS: Mixed-signal simulation
and cross domain connect modules”, Behavioral Modeling
and Simulation Workshop

[10] Ghasemi, H.R. 2005: “An effective VHDL-AMS simulation
algorithm with event”, International Conference on VLSI
Design.

[11] IEEE Standard VHDL Analog and Mixed-Signal Extensions
(1999), IEEE Std 1076.1-1999

[12] International Technology Roadmap for Semiconductor
Design, available on line at http://www.itrs.net/links/2006

[13] Jantsch, J. 2003: Modeling Embedded Systems and SoCs -
Concurrency and Time in Models of Computation. Systems
on Silicon. Morgan Kaufmann.

[14] Lee, E.A. and Sangiovanni-Vincentelli A.L. 1996:
“Comparing Models of Computation”, In: Proceedings of the
International Conference on Computer-Aided Design
(ICCAD), IEEE Computer Society. pp.234-241.

[15] Nicolescu, G. et al. 2002: "Validation in a component-based
design flow for Multicore SoCs", in Proc. of ISSS.

[16] Patel, D. H, and Shukla, S. K. 2004: SystemC kernel –
Extensions for heterogeneous System modeling. Kluwer
Academic Publishers. Boston,

[17] Vachoux, A. et al. 2003: “Analog and mixed signal modeling
with SystemC”, In: Circuits and Systems, (ISCAS’03).

[18] Ptolemy project at http://ptolemy.eecs.berkeley.edu/
[19] Romitti, S., Santoni, C., François. P. 1997: “A design

methodology and a prototyping tool dedicated to adaptive
interface generation”, In Proceedings of the 3rd ERCIM
Workshop, Obernai, France.

[20] Zeigler, B.P.; Praehofer H. and Kim, T.G. 2000: Modeling
and Simulation - Integrating Discrete Event and continuous
complex dynamic systems. Academic Press, San Diego,

ISBN # 1-56555-316-0 566 SCSC 2007

