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Abstract 
 Many of the modern systems integrate components 
specific to different application domains. Frequently these 
systems combine continuous and discrete sub-systems and 
therefore their design involves solving specific global 
modeling and simulation problems. This paper addresses the 
formal representation of a continuous/discrete global 
synchronization model and the corresponding simulation 
interfaces. This representation enables the definition of 
generic language independent co-simulation tools that can 
be used to provide global simulation models for 
continuous/discrete heterogeneous systems. The model was 
validated through simulation, using UPPAAL toolbox and 
its verification was realized by defining and checking the 
main properties. 
 
1. INTRODUCTION  
 Today, systems-on-chip are growing in complexity as a 
result of not only a higher density of hardware components 
on the same chip but also because of the integration of 
different modules that are particular to different application 
domains [12]. Many domains benefit from these system’s 
advantages, among them the defense, medical, electronic, 
communication, and automotive. Given the diversity of 
concepts manipulated, the global design specification and 
validation are extremely challenging. A large number of 
these systems combine continuous and discrete sub-systems. 
The heterogeneity of these systems makes more difficult the 
elaboration of an executable model for the system’s 
simulation (the simulation model). Generally these models 
are very complex; they include the execution of different 
components, the interconnects’ interpretation as well as the 
adaptation between the continuous and the discrete 
components.  
 One of the methods generally used for the validation of 
a continuous/discrete (C/D) system is the co-simulation. The 
co-simulation allows joint simulation of heterogeneous 
components with different execution models. This technique 
presents many benefits. One of them is the reusability of the 
models already developed in a well known language and 
using already existing powerful tools (i.e. Simulink for the 
continuous domain and VHDL, Verilog or SystemC for the 

discrete domain). Thus, the development time, the time-to-
market and the costs are reduced. This methodology 
requires the elaboration of a global co-simulation model 
(Figure 1). In this model, the co-simulation bus is in charge 
of transferring data between the different models [15]. 

 
Figure 1: Generic continuous/discrete co-simulation model 

 For C/D systems co-simulation, the simulation 
interfaces have to provide efficient synchronization models 
for the adaptation of the domain specific models. In a C/D 
heterogeneous system, we find two distinct models: 
- a continuous model where the computation is realized in 
the continuous domain by solving differential or algebraic 
equations; 
- a discrete model where the computation is realized in 
cycles and every cycle represents the computation of a 
selected sub set of variables. 
Thus, in the case of a global validation tool several 
execution semantics have to be taken into consideration in 
order to perform global simulation. A global model has to 
define clearly the computation and the communication (and 
implicitly the synchronization) and verify the behavior of 
the co-simulation interfaces given certain restrictions. 
 The automatic generation of the co-simulation 
interfaces is very suitable, since their design is time 
consuming and an significant source of errors. The 
simulation interfaces play an important role in accuracy and 
performance of global simulation. The strategy currently 
used for the automatic generation of the co-simulation 
interfaces is based on the configuration of the components 
and their assembly. These components are selected from a 
co-simulation library.  
 An efficient tool for the automatic generation of the co-
simulation interfaces must rely on a formal definition of the 
simulation interfaces. Some characteristics of the formalism 
for interface generation are [19] the executability for 
automatic generation and formal properties for analyses and 
verifications. The formalism allows the verification of 
correctness, liveness and safety properties such as the 
deadlock, the correct answer to a change in the behavior of 
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one of the simulators as well as the synchronization given 
by the continuous interface and the discrete interface.  
 The main contribution of this paper is the convergence 
of formal and co-simulation based approaches in the context 
of global validation of C/D systems. We focus on the co-
simulation interfaces required for C/D global simulation. A 
formal representation of the behavior of these interfaces 
using timed automata is proposed. This representation was 
realized with respect to the generic canonical 
synchronization model [10]. This allows for the definition 
and the verification of some of the system’s properties and 
constraints. In order to validate and check our model we 
used UPPAAL [5].  
 This formal representation (also called here model) 
constitutes the foundation for the definition of a generic co-
simulation tool that can provides global simulation models 
for C/D systems validation using the automatic generation 
of the co-simulation interfaces. This work generalizes our 
previous works presented in [3] and [15]. In these works, 
the co-simulation interfaces were not verified formally. 
 The article is structured as follows. Section 2 will 
present several of the related works and previous 
approaches to the simulation of the C/D systems. Section 3 
introduces some of the basic concepts such as the 
synchronization model, timed automata and UPPAAL, a 
tool that is used to verify systems that can be modeled as 
timed automata. Section 4 presents the canonical 
synchronization model in the context of the C/D co-
simulation, the co-simulation interfaces, their behavior and 
formal models. Section 5 shows the experimental results; 
more precisely the model simulation and validation as well 
as the properties verification are detailed. Finally, section 6 
gives our conclusions. 
 
2. RELATED WORK 

 Some of the existing works on C/D systems 
validation propose the utilization of a single language for 
the specification of the C/D system. These tools may be 
obtained by extension of existing HDLs [9], [11], [16], [17]. 
This requires the abandonment of well established efficient 
tools for the continuous domain (ex. Simulink). There are 
tools such as Ptolemy in which the systems are designed by 
assembling together different components [18]. These works 
do not consider the accurate synchronization for the 
continuous/discrete integration. Moreover, the different 
systems and components need to be developed in the same 
environment in order to be compatible thus they do not 
solve the problem of real components-based approach to 
system design. 

 Several formal representation approaches propose 
definitions for heterogeneous systems modeling. In [14], a 
formal framework for comparing computation used in 
heterogeneous models is presented. The authors propose a 
formal classification framework that makes it possible to 

compare and express differences between models of 
computation. The intent is “to be able to compare and 
contrast its notions of concurrency, communication, and 
time with those of other models of computation” [14].  The 
role of the computation in abstracting functionalities of 
complex heterogeneous systems was presented in [13]. The 
author proposes the formalization of the heterogeneous 
systems by separating the communication and the 
computation aspects; however verification on the interfaces 
between domains were not taken into consideration.   
 In [20] the author introduced an interesting formalism 
defined for the modeling and simulation of discrete event 
systems (Discrete EVent System Specifications - DEVS) 
where the time advances on a continuous time base. DEVS 
is a formal approach to build models, using hierarchy and 
modularity and more recently it integrates object-oriented 
programming techniques. Based on this formalism, [7] 
proposes a tool for the modeling and simulation of hybrid 
systems using Modelica and DEVS. The models are 
“created using Modelica standard notation and a translator 
converts them into DEVS models” [7].  
 Compared to these works, we concentrate on the formal 
models of the co-simulation interfaces that enable the 
interfaces verification.  
 
3. BASIC CONCEPTS 
 This section introduces some of the basic concepts that 
are used in this work. The first part of the section presents 
the canonical synchronization model. The next two parts 
will introduce the timed automata formalism and a brief 
presentation of the UPPAAL modeling and validation tool.  
 
3.1. Canonical Synchronization Model in 

Discrete/Continuous Co-simulation   
The synchronization, defined as coordination with 

respect to time, represents an important aspect in co-
simulation models. The synchronization between the 
continuous domain and the discrete event domain is realized 
using a canonical algorithm as it was presented in [10].  For 
a rigorous synchronization the discrete kernel has to detect 
the events generated by the analog (continuous) solver and 
the continuous solver must detect the scheduled events from 
the discrete kernel.  

For the discrete event processes, the time does not 
advance during the execution. The next execution time is 
the next time in the event queue. The execution of the 
analog solver advances the simulation time. Let be tk the 
synchronization time for the discrete kernel and the analog 
solver. The analog solver advances to the next 
synchronization time tk+1, known in advance from the digital 
kernel. At this point the analog solver suspends while the 
digital kernel resumes and the events in tk+1 are executed.  If 
a state event occurs in the time interval [tk, tk+1], the analog 
solver suspends to allow the digital kernel to take this event 
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into consideration. This way the analog solver and the 
digital kernel are synchronized again. 
 
3.2. Timed Automata 
 Proposed by Alur and Dill in 1990 [1], timed automata 
is a formalism for modeling and verification of real time 
systems.  

A timed automaton can be seen as a classical finite state 
automata with clock variables and logical formulas on the 
clock (temporal constraints). The constraints on the clock 
variables are used to restrict the behavior of the automaton.  
The logical clocks in the system are initialized to zero when 
the system is started and then increase at a uniform rate 
counting time with respect to a fixed global time frame [1].  
The clock constraints are the guards on the transitions. A 
transition can be taken when the clocks’ values satisfy the 
guard labeled on it. Figure 2 illustrates an example of a 
timed automaton. 

 

 
Figure 2: Example of a timed automaton 

 The process shown in Figure 2 starts at the location p 
with all its clocks (x and y) initialized to 0. The values of 
the clocks increase synchronously with time at the location 
q. At any time, the process can change the location 

following a transition qp ra;g;⎯⎯ →⎯  if the current values of 

the clocks satisfy the enabling condition g (guard). A 
guard is a Boolean combination of integer bounds on 
clocks and clock-differences. With this transition, the 
variables are updated by r (reset) which is an action 
performed on the clocks. The actions are used for 
synchronization and are expressed by a (action) [2]. A 
synchronization label is of the form Expression? or 
Expression! where ! represents the operator send and ? 
represents the operator receive.  
 The semantics for a time automaton is defined as “a 
transition system where a state or configuration consists of 
the current location and the current values of clocks” [2]. 
Thus, the state is represented by the tuple:   (location, x) 
where x is the clock. Given the system, we can have two 
types of transitions between locations: a delay transition 
when the automaton may delay for some time or an action 
transition when the transition follows an enabled transition. 

Timed automata can be extended with parallel composition 
that is the product of the automata. 
 
3.3. A Verification Tool for Timed Systems – UPPAAL  
 UPPAAL [5] is an integrated tool environment for 
modeling, simulation and verification of timed automata 
developed jointly by Aalborg University in Denmark and 
the Uppsala University in Sweden. It consists of three parts: 
a model descriptor, a simulator and a model-checker. The 
descriptor models systems that can be represented as a 
collection of non-deterministic processes with finite control 
structure and real-valued clocks (i.e. timed automata), 
communicating through channels and (or) shared data 
structures. A model consists of one or more concurrent 
processes (also named simulators), local and global 
variables, and channels. There are three types of locations in 
UPPAAL: normal locations with or without invariants, 
urgent locations and committed locations. No delay is 
allowed in urgent or committed locations. The transitions 
out from an urgent location have higher priority than that of 
time progress. 
 The expressions cover clocks and integer variables and 
are used with the labels: guards, synchronization, 
assignments or invariant. The models synchronize with each 
other via channels. In UPPAAL the assignments are 
evaluated sequentially (not concurrently). On synchronizing 
transitions, the assignments on the !-side (the emitting side) 
are evaluated before the ?-side (the receiving side).  
 The model checker engine in UPPAAL is based on the 
theory of timed automata and its query language is a subset 
of computational tree logic, the timed computational tree 
logic (TCTL). The query language [5] consists in path 
formulae and state formulae. The states formulae describe 
individual states while the path quantifies over traces of the 
model.  
 The main advantage of UPPAAL is that the product 
automaton is computed on-the-fly during verification. This 
reduces the computation time and the required memory 
space.  It also allows interleaving of actions as well as hand-
shake synchronization. 
 In our approach UPPAAL was used for the formal 
representation and verification of the simulation interfaces. 
Our formal representation needs to support concurrency 
between the two models, the continuous and the discrete 
therefore they were represented as a parallel composition of 
several timed automata. 
 
4. METHODOLOGY  
 To enable the design of flexible, modular, scalable and 
accurate co-simulation tools, a methodology independent of 
the simulation tools used for the continuous and discrete 
components of the system should consider the following 
main steps:  
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1) Definition of the operational semantics for the 
synchronization in C/D global execution models  
2) Distribution of the synchronization functionality to the 
simulation interfaces 
3) Formalization and verification of the simulation 
interfaces behavior 
4) Definition of the library elements and the internal 
architecture of the simulation interfaces  
5) The analysis of the simulation tools for the integration 
in the co-simulation framework.  
6) The implementation of the library elements specific to 
different simulation tools.  
 The work presented in this article covers steps 2 and 3 
defined above: the distribution of the synchronization 
functionality to the simulation interfaces and the 
formalization and the verification of the simulation 
interfaces.  
 
5. FORMAL DEFINITION OF THE CONTINUOUS 

/DISCRETE SIMULATION INTERFACES  
     This section details the global simulation model for a 
C/D system. In the global simulation model already 
presented in section 1 (see Figure 1) the co-simulation 
interfaces are in charge with the synchronization and the 
communication between the simulators. 
 
5.1. Application of the Canonical Synchronization 

Model in Co-simulation 
 The continuous time system is described by the state 
space equations: 
x& c(t)=Acxc(t)+Bcu(t) 

 y(t)=Ccxc(t)+Dcu(t)  (1) 
where xc is the state vector, u the input signal vector, y the 
output signal vector and Ac, Bc, Cc and Dc are constant 
matrixes that describe the dynamic of the system. 
 The discrete system can be described by the state-space 
equations [6]: 
xd(tk+1)=f( xd(tk), u(tk), tk)  x(t0)=x0 
 y(tk)= g( xd(tk), u(tk), tk)  (2) 
where xd is the state vector, u the input signal vector, y the 
output signal vector. 
For the linear discrete systems, the equations 2 become: 
xd(tk+1)= Adxd(tk)+Bdu(tk) 
 y(tk)=Cdxd(tk)+Ddu(tk)  (3) 
where Ad, Bd, Cd and Dd are matrixes that can be time-
varying and describe the dynamic of the system. 
 For the model presented here, the time interval for the 
continuous system (equation 1) is included in [tk,tk+1]. The 
input signal vector for the continuous domain is the output 
signal vector from the discrete domain and vice versa.  
 The events exchanged between the discrete and the 
continuous simulators are:   
- occurred /scheduled events that are timed events scheduled 
by the discrete simulator.  

- state events that are  unpredictable events generated by the 
continuous simulator. Their time stamp depends on the 
values of state variables (e.g. a zero-passing or a threshold 
crossing).  
 Figure 3 presents the synchronization model in the C/D 
co-simulation interface with and without state event. 

 
Figure 3: The synchronization model in the continuous/discrete 

simulation interface without (a) or with state event (b) 
 In the case of the co-simulation, the global model that 
integrates two different simulators has to respect the 
synchronization model previously presented. The simulators 
have to be controlled by the co-simulation interfaces in 
order to provide the functionalities described below. At a 
given time, the discrete simulator is in the state (xdk,tdk). At 
this point, the discrete simulator had executed all the 
processes sensitive to the event with the time stamp xdk and 
sends the time of the next event tdk+1 and the data to the 
continuous simulator and switches the context from the 
discrete to the continuous simulator before advancing the 
time. The state of the continuous simulator is (xck,tck) and the 
advance in time of the simulator cannot be further then tdk+1, 
the time sent by the discrete simulator. Consequently the 
behavior of the continuous interface can be described by the 
following transition state: 
 
 
 
 
 
where the state (xck+1, tck+1) is the state of the continuous 
simulator when no state event was generated in the time 
interval [tck, ,tck+1] while the state (se,tse) represents the 
state of the continuous simulator when a state event se was 
generated and tse represents the time when the state event 
occurred. In both situations the continuous simulator will 
stop and send the data to the discrete simulator and then 
switch the context to the time tdk. This work takes into 
consideration the event generated within the time interval 
[tk,tk+1] after the context switch from the discrete domain to 
the continuous domain at the time tk. This event can be a 
state event or the detection of an event scheduled by the 
discrete simulator (in both cases a synchronization point) 

  (xck+1, tck+1)  if tck+1=tdk+1    (4) 
 
  (se,tse) if tck+1< tdk+1            (5) 

(xck,tck) ⎯→⎯  
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 In the case described by the equation (4), after 
switching the context, the discrete simulator will advance to 
the time tdk+1 that is the next synchronization point, which 
will execute all the processes sensitive to the scheduled 
event with this time stamp. Before switching the context to 
the continuous interface it sends the data and the time of the 
next scheduled event tdk+2 (also the next synchronization 
point) and the cycle restarts. 
 In the case of the equation (5) the continuous simulator 
will send not only the data but also the time when the state 
event occurred tse. The discrete simulator will advance to 
this time (state event detected by the discrete simulator) 
where it will execute all the processes sensitive to the event. 
Before switching the context to the continuous simulator the 
discrete interface will send the data and the recalculated 
time of the next scheduled event tdk’. Usually the developers 
assume that the sampling intervals are constant. In this work 
the time stamp can change after a state event. This time 
stamp is bigger than tse and it can be smaller, equal or bigger 
then the time stamp that previously existed in the discrete 
simulator’s queue – tdk+1.  
 The advantage of this model is that it avoids any need 
of roll-back even if a state event was generated. This model 
is used if the signal update events are unpredictable.  
 A particular version of this model is when the events 
are periodic [4]. In this case the time stamps of the update 
events and sampling events are put in a queue. The time 
stamp of the next output event is known by accessing the 
queue to take out the smallest time stamp and send it to the 
continuous model. 
  
5.2. Discrete domain co-simulation interface 
 Figure 4 presents the flowchart of the behavior of the 
discrete domain interface. 

  

Start ()

-detection of the end of discrete 

simulation cycle 

- get data from the discrete event 

simulator

- send data to co-simulation bus

- send time of next event to co-

simulation bus

- get data from the  co-simulation 

bus

- send data to the discrete event 

simulator

- get time of state event from the   co-

simulation bus

- state event detection

- get data from the  co-simulation bus

- send data to the discrete event 

simulator

Stop

from discrete event 

simulator

to discrete event 

simulator
to co-simulation bus

to co-simulation bus

Stop

wait data from the 

continuous simulator

wait  event from the 

continuous sim.

statevent┐statevent

wait data from the 

continuous simulator

 
Figure 4: Flowchart for discrete domain co-simulation 

interface 
 The behavior of the discrete domain interface can be 
described by its processing steps detailed subsequently.  
 During the first step, the interface: 

- detects the end of the simulation cycle in the discrete; 
- receives data and the time of the next event in the discrete 
domain; 
- sends the time and the data to the continuous simulator via 
the co-simulation bus and  
- switches the context from the discrete to the continuous 
domain. 
 After the first step is finalized, the discrete interface 
waits for the signal from the continuous simulator, the 
behavior of the interface depending on the data received 
from the continuous interface and if a state event is 
generated. Two cases are possible (see Figure 4). 
 Based on this flowchart we formalized the discrete co-
simulation interface. Figure 5 shows the formal model 
(using timed automata) for the discrete domain interface. 
The model has only one initial location (a double circle in 
Figure 5) Start. 
      The discrete interface will change location from Start to 
NextTimeGot following the transition 

tNextTimeGoStart sc?DataFromDi⎯⎯⎯⎯⎯ →⎯ . This is an external 
transition realized with zero time and it is triggered by the 
receiving of the data (that is also synchronization between 
the discrete simulator and the interface) from the discrete 
simulator (DataFromDisc?).  Here the interface receives 
the data from discrete simulator and the time of the next 
event in the discrete domain. 
   The location changes to WaitEvent following the 
transition:

WaitEventtNextTimeGo period]int[0,:cycle cycle,NextTime ,s!DataFromBu ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ = . 
In order to change the location, the continuous interface 
sends to the discrete interface the time of the next event 
(occurred/scheduled event) in discrete (the synchronization 
DataFromBus!). The variable NextTime is the time of 
the next event in the discrete domain. This variable takes, in 
this mode, the value cycle. The theory normally assumes 
equidistant sampling intervals. This assumption is not 
usually achieved in practice. For an accurate simulation we 
assume that cycle takes random values in an interval defined 
here as [0, period].  

 
Figure 5: The discrete domain interface model (IDiscrete) 

In WaitEvent location, the context is switched from the 
discrete to the continuous simulator.  
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 When the context is switched back to the discrete 
simulator, the location is changed to EventGot following the 
synchronization transition: EventGotWaitEvent Event?⎯⎯ →⎯ . 
During this transition the discrete interface receives from 
the continuous interface the synchronization Event?. In 
this location the occurrence of a state event in the 
continuous domain is considered. EventGot is an urgent 
location (as defined in section 3.4). This will not allow the 
discrete model to miss a state event generated by the 
continuous model. Two cases are possible: 
1)  When no state event was generated by the continuous 
domain, the location changes from EventGot to NoStEv. The 
transition NoStEvEventGot 0 StateEvent ⎯⎯⎯⎯⎯ →⎯ == is annotated in 
this case only with the guard StateEvent==0. 
2)  When a state event was generated by the continuous 
domain the location changes from EventGot to StEvDetect 
following the transition: 

StEvDetectEventGot StEvTime NextTime,StateEvent ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ = .  
 This transition is annotated with a guard 
(StateEvent) and the update of the NextTime in the 
discrete domain as the time when the state event occurred in 
the continuous domain StEvTime (for a rigorous 
synchronization, the discrete domain has to consume this 
event and stop at the time when it was generated by the 
continuous domain interface) This is the time of the next 
event that is going to be sent to the continuous simulator.   
      From both locations StEvDetect and NoStEv, the system 
can reach the next location: TimeOfStEvDisc. In both cases 
the model performs synchronization (DataToBus?). At 
this point the discrete interface will synchronize and send 
data to the discrete simulator (DataToDisc) and changes 
the location to WaitDataFromCont. The next location is 
Start, the discrete time variable is initialized on this channel 
(td=NextTime) and the cycle restarts. 
 
5.3. Continuous domain co-simulation interface 
 Figure 6 presents the flowchart of the behavior of the 
continuous domain interface. The following paragraph gives 
the description of the processing steps in this domain.  
 During the first processing steps the continuous 
simulator: 
- receives the data from the co-simulation bus; 
- sends the data to the continuous simulator; 
- sends the time of the next event in the discrete domain to 
the continuous simulator. 
 The second step consists of receiving the data from the 
discrete simulator. The behavior of the interface depends on 
the data received from the continuous simulator and if a 
state event was generated. Regarding the occurrence of a 
state event, two cases are possible (as shown in Figure 6). 
Figure 7 shows the continuous domain interface 
formalization that was developed based on the flowchart 
representing the behavior of this interface. 

  
Figure 6: Flowchart for the continuous domain co-simulation 

interface 

 
Figure 7: The continuous domain interface model 

(IContinu) 
 The continuous interface will leave the initial location 
Start following the transition: 

aFromBusReceiveDatStart s?DataFromBu⎯⎯⎯⎯⎯ →⎯ . This is 
also an external transition realized with zero time and it is 
triggered by the receiving of the data from the discrete 
interface (DataFromBus?) that is also the first 
synchronization point between the discrete interface and the 
continuous interface. The interface receives the data from 
discrete and the time of the next event in discrete. From 
ReceiveDataFromBus location the process will move to the 
next location SendDataToCont following the transition 

ContSendDataToR NextTimetcn ,!DataToCont ⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ =FromBuseceiveData

The value NextTime, the time of the next event 
(occurred/scheduled event) in the discrete simulator is 
assigned to tcn, the next time in the continuous simulator. 
In our model, the synchronization on this transition is 
between IContinu and SimCont (where SimCont is the 
continuous domain simulator), the interface sends to the 
simulator data received from IDiscrete and the time of the 
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next event in the discrete domain. The system changes the 
location from SendDataToCont to ReceiveDataFromCont 
following the synchronization transition: 

aFromContReceiveDatContSendDataTo nt?DataFromCo ⎯⎯⎯⎯⎯ →⎯
  During this transition the continuous interface receives 
data from the continuous simulator and eventually, if a state 
event occurs, the time of the state event. In the 
ReceiveDataFromCont location, the continuous interface 
evaluates if a state event was generated. Two cases are 
possible:  
1) When no state event is generated, the location changes 
from ReceiveDataFromCont to TimeOfStEv following the 
transition

TimeOfStEvaFromContReceiveDat 0  StateEventEvent! ⎯⎯⎯⎯⎯⎯⎯ →⎯ = . The 
transition is annotated in this case by the synchronization 
Event! and with the update StateEvent=0.  
2) When a state event is generated, the location changes 
from ReceiveDataFromCont to StEvDetect following the     
transition :  ReceiveDataFromCont 

StEvDetect period]int[0,:tse tcn,:tcn)?tsetseStEvTime1,StateEvent Event! ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯ <== (

 This transition is annotated with a synchronization 
(Event!) and three variable updates: StateEvent=1 
(for the detection of a state event),  
StEvTime=(tse<tcn)?tse:tcn,tse:int[0,period] 
(for the time of the state event that occurs during the time 
interval [0,period]; this time will be sent to the discrete 
simulator). StEvDetect is an urgent location. The location 
StEvDetect changes to TimeOfStEv following the transition: 

TimeOfStEvStEvDetect StEvTimetcn ⎯⎯⎯⎯⎯ →⎯ =  
At this point there is no synchronization, just an update of 
the time in the continuous domain having assigned the time 
of the state event StEvTime: tcn=StEvTime.  
TimeOfStEv location is common for both cases, 
StateEvent=0 or StateEvent=1. This location 
changes to WaitDataFromDisc. The system performs 
synchronization (DataToBus!) between the continuous 
interface and the continuous simulator. The next location is 
Start, the continuous time variable is initialized on this 
channel (tc=tcn) and the cycle restarts. 
 The model descriptor from UPPAAL allows the 
description of the interfaces behavior as a network of 
automata. The global formal model proposed in this paper is 
formed by four sub-models (processes): the continuous 
domain simulator (SimCont), the continuous domain 
interface (IContinu), the discrete domain simulator 
(IDiscrete) and the discrete domain interface (SimDisc).  
 Figure 8 shows the global formal model including the 
continuous domain and the discrete domain simulators and 
their interaction. The transitions show the synchronizations 
between the simulators and interfaces as well as the 
synchronization between the interfaces. The initial location 
for the global formal model is the discrete simulator; 

however, the continuous simulator is the first that advances 
in time. 

 
Figure 8: The global formal simulation model 

  
6. MODEL VALIDATION   
 UPPAAL allows the validation of the global formal 
model by simulation. We simulated all the possible dynamic 
executions of our synchronization model and we formally 
verified our model. 
 The formal verification consists of checking properties 
of the system for a broad class of inputs [8]. In our work we 
checked properties that fall into two classes: 
- Safety properties - the system does not get into an 
undesirable configuration, (i.e. deadlock etc) [8]. 
- Liveness properties - some desired configuration will be 
visited eventually or infinitely (i.e. expected response to an 
input, etc.) [8]. 
 The properties verified in order to validate the 
synchronization model are described below. 
P0  Deadlock (safety property) 
Deadlock exists among a set of processes if every process is 
waiting for an event that can be caused only by another 
process in the set. In UPPAAL deadlock is expressed by a 
formula using the keyword deadlock. A state is a 
deadlock state if there are no outgoing action transitions 
either from the state itself or any of its delay successors [4].  
The absence of the deadlock property was verified (and the 
property was satisfied).  
The property is expressed by the following query:   
A[] not deadlock   
P1 State event detected by the discrete domain (liveness 
property) 
The indication of a state event by the continuous interface 
and its detection by the discrete interface is very important 
for C/D heterogeneous systems. We defined a liveness 
property in order to check this behavior:  
Definition: A state event detected in the continuous domain 
leads to a state event detected in the discrete.  
The property is expressed by the following query:  
IContinu.StEvDetect�IDiscrete.StEvDetect 
(where IContinu and IDiscrete are the processes and 
StEvDetect the locations).  
P2  No state event in discrete if no state event in 
continuous domain (safety property) 
In order to avoid false responses from the discrete 
simulators, we defined a safety property to verify if the 
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system will “detect” a state event in the discrete when it was 
not generated (and indicated) by the continuous domain: 
Definition: Invariantly a state event detected in the 
discrete domain imply state event in the continuous.  
The property is expressed by the following query:   
A[](IDiscrete.StEvDetect imply StateEvent)  
P3  Synchronization between the interfaces (liveness 
property) 
One of the most important properties characterizing the 
interaction between the continuous and the discrete domains 
is the communication and implicitly the synchronization. 
This property verifies that after a cycle executed by each 
model, both of them are at the same time stamp (and by 
consequence they synchronize) 
Definition: Invariantly both processes in the Start 
location (initial state) and each of them executed one cycle 
imply the time in the continuous tc is equal with the time 
in the discrete td. 
The property is expressed by the following query:   
A[]( (IDiscrete.Start and IContinu.Start  
imply  ( IContinu.tc - IDiscrete.td == 0)) 
P4 Causality principle (liveness property) 
The causality can be defined as a cause and effect 
relationship.  The causality of two events describes to what 
extent one event is caused by the other. This property 
verifies that when a state event was generated by the 
continuous domain, the discrete domain will detect this 
event at the same precise time (the cause precedes or equals 
the effect) and not some other possible event existing at a 
different time in the continuous domain. 
Definition: Invariantly both processes in the 
StEvDetect location (detection of state event) imply the 
time in the continuous tc is equal with the time in the 
discrete td. 
The property is expressed in UPPAAL by the following 
query:   
A[]((IDiscrete.StEvDetect and IContinu. 
StEvDetect imply (IContinu.tc - 
IDiscrete.td == 0)) 
 
7. CONCLUSION  
  An efficient tool for the automatic generation of the co-
simulation interfaces must relay on the formal definition of 
the simulation interfaces. This paper proposes solutions for 
two of the steps of a generic methodology for C/D design: 
the distribution of the synchronization functionality to the 
simulation interfaces and formal representation and 
verification of the behavior of the C/D co-simulation 
interfaces. The formalization was realized with respect to a 
generic canonical synchronization model using timed 
automata. The model was validated through simulation. In 
order to verify the formal representation, some properties 
were defined and checked using the model checker from 
UPPAAL. 
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