
Conflict Management in PDEVS: An Experience in Modelling and Simulation of

Time Petri Nets

Franco Cicirelli, Angelo Furfaro, Libero Nigro

Laboratorio di Ingegneria del Software

Dipartimento di Elettronica Informatica e Sistemistica

Università della Calabria, 87036 Rende (CS) – Italy

{f.cicirelli,a.furfaro}@deis.unical.it, l.nigro@unical.it

Keywords
PDEVS, modelling and simulation, conflict management, time Petri

nets, Java.

Abstract
PDEVS (Parallel DEVS) is a well-known formalism for the

specification of complex concurrent systems organized as an

interconnection of atomic and coupled interacting components. The

abstract simulator of a PDEVS model is normally founded on the

assumption of maximal parallelism: multiple components are

allowed to undertake at the same time an independent state

transition. This paper argues that the hypothesis of maximal

parallelism does not allow PDEVS to adequately model and simulate

systems where simultaneous state transitions are conflicting to one

another. As an example, an original PDEVS model of Merlin and

Farber Time Petri Nets is proposed. The realization owes to

ActorDEVS, a lean and efficient PDEVS M&S framework in Java,

which enables the simulation control structure to be customized.

The accomplished experience suggests that some points in the

formal definition of PDEVS should possibly be adapted in order to

widen the applicability of the language.

1. INTRODUCTION
Parallel DEVS (Zeigler et al., 2000) PDEVS is a well-known

and accepted formalism for the specification of complex discrete or

continuous systems abstracted as a network of concurrent, timed

and interacting atomic or coupled models. The formalism borrows

from systems theory and enables a seamless transformation of a

specification into an executable system, e.g. using an object-

oriented modelling and simulation framework directly based on

software architecture concepts (Shaw & Garlan, 1996)(Zeigler &

Sarjoughian, 2003).

PDEVS defines a simulation architecture which associates a

simulator with each atomic component. Moreover, in a coupled

model a coordinator is used which orchestrates the behaviour of the

various internal simulators in order to guarantee coherent time

advancement. The simulation architecture makes it possible for

multiple components to undergo simultaneous state transitions. In

other words, PDEVS naturally relies on the hypothesis of maximal

parallelism, thus exploiting the intrinsic degree of concurrency

which comes with many models.

PDEVS expressive power has been used as a common

denominator for supporting other formalisms (Ziegler et al.,

2000)(Vangheluwe, 2000). This work argues, however, that the

definition of PDEVS does not allow for proper management of

conflicts which may arise in systems modelling. As an example,

this paper describes an original mapping of the Time Petri Nets

(TPNs) (Merlin & Farber, 1976)(Berthomieu & Diaz, 1991)

formalism often used for communication protocols or embedded

real-time systems modelling, onto PDEVS. The experience was

concretely carried out using ActorDEVS (Cicirelli et al., 2006), a

minimal flexible and efficient agent-based M&S framework

developed in Java, which makes it possible to specialize the event-

driven simulation engine. The experience indicates that some points

of PDEVS should possibly be adapted in order to widen the

applicability of the formalism.

The paper is structured as follows. Section 2 reviews basic

concepts of PDEVS. Section 3 discusses aspects of PDEVS which

relate to conflict management. Section 4 summarizes concepts of

Time Petri Nets together with a model example. Section 5

introduces ActorDEVS. Section 6 describes the proposed mapping of

TPNs onto ActorDEVS. Finally, conclusions are presented along with

an indication of on-going and future work.

2. PDEVS CONCEPTS

2.1 Atomic components
A PDEVS atomic component is a structure M defined as

M=<X,S,Y, int, ext, con, ,ta> where

X is the set of input values

S is a set of states

Y is the set of output values

int:S S is the internal transition function

ext:Q Xb S is the external transition function, where

Q={(s,e)|s S, 0 e ta(s)} is the set of total states

e is the elapsed time since last transition

Xb denotes the collection of bags over X (in a bag some

elements may occur more than once)

con:Q Xb S is the confluent transition function

:S Yb is the output function

ta:S R+
0, is the time advance function.

The sets X, S and Y are typically products of other sets. S, in

particular, is normally the product of a set of control states (said

also phases) and other sets built over the values of a certain number

of variables used to describe the system at hand.

At any time the component is in some state s S. The

component can remain in s for the time duration (dwell-time) ta(s).

ta(s) can be 0, in which case s is said a transitory state, or it can be

, in which case it is said a passive state because the component

can remain forever in s if no external event interrupts. Provided no

external event arrives, at the end of (supposed finite) time value

ta(s), the component moves to its next state s’= int(s) determined by

the internal transition function int. In addition, just before making

the internal transition, the component produces the output

computed by the output function (s). During its stay in s, the

component can receive an external event x which can cause s to be

SCSC 2007 349 ISBN # 1-56555-316-0

exited earlier than ta(s). Let e ta(s) be the elapsed time since the

enter time in s (or, equivalently, the time of last transition). The

component then exits state s moving to next state s’= ext(s,e,x)

determined by the external transition function ext. As a particular

case, the external event x can arrive when e=ta(s). In this case two

events occur simultaneously: the internal transition event and the

external transition event. The next state s’, in this collision

situation, is determined by the confluent transition function con,

after having applied the output function. The default behaviour of

con first applies the internal transition function and then the

external transition function. This behaviour, though, can be

redefined.

After entering state s’, the new time advance value ta(s’) is

computed and the same story continues.

It is worth noting that “there is no way to generate an output

directly from an external transition” (see page 12 in (Zeigler &

Sarjoughian, 2003)). An output can only occur just before an

internal transition. To have an external transition cause an output

without a delay, a transitory state can be entered from which the

exiting internal transition is preceded by output generation.

PDEVS emphasizes that a bag of simultaneous inputs can be

received by the atomic component which in general can have a

reaction to the combination of inputs which is different from the

effect of sequential reactions to the separately received inputs.

The above description does not mention the component

interface ports. In practice, inputs are effectively received from

corresponding typed input ports and similarly, outputs are

generated through typed output ports. Actually X is a set of pairs

<inp,v> where inp is an input port and v the type of values which

can flow through inp. Y is a set of pairs <outp,v> where outp is an

output port. Ports are architectural elements which favour modular

system (re)configuration. A component refers only to its interface

ports. It has no knowledge about the identity of cooperating

partners which can potentially be changed at runtime.

2.2 Coupled components
A coupled component (subnet) is an interconnection of existing

atomic or coupled components (see Fig. 1). Formally, it is a

structure N defined as N=(X,Y,D,{Md|d D},EIC,EOC,IC}, where

X and Y are input and output sets of the coupled component

D is a set of (sub) component identifiers (or names)

M is a set of (sub) PDEVS components whose interconnection

gives rise to the coupled model

EIC is the external to internal coupling function

EOC is the internal to external coupling function

IC is the internal to internal coupling function.

Fig. 1. Schema of a coupled model

Coupling is actually based on port interconnections. An

external input coupling, for instance, is a binding from an input port

of the coupled model to a matching input port of an internal

component, and so forth. In the case an internal component is itself

a coupled model, composition naturally generates a hierarchical

model.

2.3 Simulation structures
In its basic formulation (Ziegler et al., 2000), a PDVES atomic

component comes with an associated distinct simulator which is

responsible of its time management. The simulators of the various

internal components of a coupled model are orchestrated by a

coordinator which ensures consistent time management through

proper message interchange. The coordinator, in particular,

guarantees that multiple internal simulators can make simultaneous

internal/confluent transitions (maximal parallelism). Toward this,

first all the outputs generated by parallel components are collected,

then they are processed by relevant destination components.

As pointed out e.g. in (Himmelspach & Uhrmacher, 2006), the

default simulation architecture for PDEVS has a negative impact on

the execution performance which prevents simulation of large

models. The overhead is mainly due to individual simulators which

map on distinct execution threads which obviously introduce space

and time problems. In addition, the number of exchanged messages

among simulators and the coordinator also contributes to execution

overhead. In the literature, either a hierarchical model is

preliminarily flattened into one in which coupled models no longer

exist, e.g. (Kim et al., 2000), or some form of a sequential non-

threaded simulation algorithm is employed (Glinsky & Wainer,

2005)(Himmelspach & Uhrmacher, 2006) which e.g. retains the

hierarchical structure but improves specifically the simulation

operation. In this work, an agent-based M&S framework is used for

the experiments where both flattening and a single simulation

engine are adopted for executing a PDVES system.

3. CONFLICT AND TIME MANAGEMENT

ISSUES
PDEVS formal definition does not account for the existence of

conflicts among parallel components. When a component exhausts

its dwell-time in its current state, its behaviour is committed: the

output function gets executed, then either the internal (no external

event arrived) or confluent (an external event arrived) function is

run to establish the next state. In other terms, the arrival of an

external event in the last time of staying in the current state, does

not prevent the output function to be executed. This behaviour

seems to contradict the assumption that “there is no way to generate

an output from an external transition”. Indeed, in many modelling

examples the confluent function is redefined to behave exactly as

the external function. In this case, an output is generated just before

an external transition! Independently from any function signature

consideration, the question is not of purely syntactical nature

because it affects semantics and directly leads to the problem of

conflict management in PDVES.

Consider a component which models a sender in a protocol,

which after each message transmission is willing to await a certain

maximum time (timeout) for an ack to be received, before re-

sending the message (as part of the output function). In the case the

ack event arrives strictly before timeout expiration (the external

transition function is invoked) there is no doubt that the timeout

ISBN # 1-56555-316-0 350 SCSC 2007

consequence (message resend) must be cancelled and the timeout

reset. The same behaviour should be allowed to occur even when

the ack event arrives in the last time of the timeout. In the light of

standard PDEVS, the arrival of ack in the last moment of sender

timeout, causes in any case (i.e., with or without a redefinition of

the confluent function) the message to be resent. Situations like this

demand for proper management of conflicts. This work argues that

it is prudent to not anticipate execution of the output function when

the confluent function is to be invoked. Rather this matter should be

left to the semantics of the confluent function itself.

The confluent function of PDEVS replaced the select() function

of Classic DEVS (Zeigler et al., 2000) which was specifically

introduced for tie-breaking when multiple components of a coupled

model have state transitions occurring at the same simulation time.

select() typically realizes a deterministic tie-breaking. It is the

viewpoint of this work that also the use of select() is unsatisfactory

for conflict management because it tends to resolve conflicts in an

inflexible way.

Another critical issue of PDEVS semantics concerns time

management in states. When an external transition is chosen which

does not cause current state to be abandoned (i.e., self-loop

transition), there is no need to stop time advancement in current

state. As a matter of fact, in DEVSJAVA (Zeigler & Sarjoughian,

2003) a continue() function is used to explicitly state that time

should be allowed to continue advancing when a self-loop

transition occurs. This work favours the more natural choice of

letting time implicitly to continue during self-loop transitions. In

the case the modeller wants a different behaviour (pre-emption and

time restart) a transitory state can be introduced so as to be entered

and then immediately exited by returning back to the original state.

The time advancement issue also interacts with the conflict

problem. Suppose that an external event arrives in the last time of

current state of a component, but the confluent function is redefined

to coincide with the external function which commands a self-loop

transition (i.e., no effective conflict occurs which pre-empts the

component). In this case, restarting time would be wrong because

the component persists in its current behaviour despite the arrival of

the external event. The same argument can obviously be repeated

when the external event arrives before the last time and the event

effectively does not conflict with the behaviour of the receiving

component. In this case too time should not be restarted.

The above observations are at the basis of the experience

described in this paper, related to modelling the Time Petri Nets

TPNs (Merlin & Farber, 1976) formalism on top of PDEVS. TPN

models are representative of a large class of time dependent

systems (e.g., communication protocols, embedded real time

systems and so forth) where conflicts are to be managed at runtime

(race policy of transition firing).

4. TIME PETRI NETS CONCEPTS
The following provides the definition of Time Petri Nets

(Merlin & Farber, 1976) assumed in this paper. Basically, Merlin &

Farber formalism is augmented with inhibitor arcs. A TPN is a tuple

TPN=(P,T,A,Inh,W,M0,Is) where

P and T are non empty and disjoint sets respectively of places

and transitions of the underlying Petri net (Murata, 1989)

A is a set of arcs: A P T T P

Inh is a set of inhibitor arcs: Inh P T

W associates weights to arcs: W:A Inh N, with N the set of

natural numbers. Weights are assumed strictly positive for arcs

in A, 0 for inhibitor arcs

M0 is the initial marking: M0:P N in the usual sense of Petri

nets

Is is the static firing interval function: Is:T R (R { }).

Place p P is an input place for transition t if there is an arc (p,t)

in A. Place p is an inhibitor place for t if (p,t) Inh, i.e. there exists an

inhibitor arc connecting p to t. An inhibitor arc is graphically

represented by a dot terminated line. A place p is an output place

for t if there exists an arc (t,p) in A. The set of input and inhibitor

places of t is said its preset. The set of output places constitutes the

transition postset.

Is associates with each transition t a dense firing interval whose

bounds are assumed to be specified by non negative reals: Is(t)=[a,b]

with 0 a b, b can be . Bound a is said the (static) earliest firing

time (EFTs) of t, b the (static) latest firing time of t (LFTs).

Let M be a marking. Transition t is said enabled in M, denoted

by M[t>, iff

 M(p) W(p,t) if (p,t) Inh

M(p)==0 if (p,t) Inh

As soon as a transition t is enabled, it starts firing (server

perspective). The firing end event is constrained to occur in the

time interval associated with the transition. Let be an instant in

time when transition t is enabled. Provided t is continuously

enabled, t cannot fire before +a but must fire before or at +b,

unless it is disabled by the firing of another transition (race firing

policy). At the time transition firing ends, tokens are removed from

the input places and new tokens are generated to output places as in

classic Petri nets. Let Mbefore be the net marking just before t
completes its firing. Firing end of t transforms Mbefore in Mafter,

denoted by Mbefore[t>Mafter, by an instantaneous and atomic process in

two phases:

(phase 1-token withdrawal)

p P if p preset(t) then M’(p)=Mbefore(p)-W(p,t)
else M’(p)=Mbefore(p) endif

(phase 2-token deposit)

p P if p postset(t) then Mafter(p)=M’(p)+W(t,p)
else Mafter(p)=M’(p) endif

where M’ represents the intermediate marking generated after token

withdrawal.

 A transition tp is said to be persistent to the firing of transition t
if Mbefore[tp> and M’[tp> and Mafter[tp>. After the token deposit phase one

or more transitions tnew can become enabled, i.e. Mafter[tnew>.They are

said newly enabled transitions. The token deposit phase, though,

because of the existence of inhibitor arcs, can also reveal non

persistent transitions tnp which lose their enabling in Mafter, i.e.

Mbefore[tnp> and M’[tnp> and not Mafter[tnp>. A subtle case concerns non

persistent transitions characterized by Mbefore[tnp> and not M’[tnp> and

Mafter[tnp>. Firing of these transitions is pre-empted. After that they

behave as newly enabled transitions.

4.1 An Example
 Fig. 2 shows a TPN model based on the Alternating Bit

Protocol (ABP) (Berthomieu & Diaz, 1991). ABP allows

transmission of messages between a sender and a receiver over an

M[t> p preset(t)

SCSC 2007 351 ISBN # 1-56555-316-0

unreliable transmission medium. Messages or acknowledgments

can be lost in transit. Recovery from losses is supported by a

timeout mechanism followed by re-transmission. The sender

records the time at which it sends a message and in the case the

acknowledgment of this delivery is not received in time, the

message is re-sent. The mechanism is intended for recovering from

losses and for preventing the acceptance of duplicate messages.

Upon receiving a message, the receiver must be able to detect if it is

a new message or a duplicate of a previous message. Toward this,

the sender attaches as header of messages, prior to transmission, a

modulo-2 sequence number. In addition, for each received message,

an acknowledgment is sent back to the sender that carries the same

sequence number of the received packet. Since the sender alternates

the transmission of messages with header 0 and header 1, two

subnets in Fig. 2 model the sender in the two cases. Two subnets

for the channel and the receiver are correspondingly defined.

Fig. 2. A TPN model for the Alternating Bit Protocol

 Transition t0 represents the sender which transmits a packet

with header 0. t1 models the sender which sets a timeout to occur

after 5 or 6 time units since message transmission. t2 denotes the

sender which receives the acknowledgment of sent message and

moves to the lower section in which it transmits a message with

header 1. Transitions t3, t4 and t5 have the same meaning

respectively of transitions t0, t1 and t2. Transitions t12 and t13 (and

similarly t14 and t15) model respectively the channel which can lose

a transmitted message or its ack. Receiver transition t6 accepts a

message with header 0. Transition t7 sends the ack. However,

would a message be received again with header 0 (duplicate), the

receiver discards it and then re-transmits the ack. In a similar way

operates the subnet t9, t10 and t11 of receiver which handles a

message with header 1.

 In Fig. 2 some transitions are conflicting to one another. For

example, t1 and t2 can never complete their firing together. In the

case both transitions should fire at the same time, one of the two is

chosen non deterministically and prevents the other to complete its

firing. These situations are not directly supported by PDEVS.

5. ActorDEVS
This section summarizes ActorDEVS (Cicirelli et al., 2006), an

actor (agent) based minimal framework supporting modelling and

simulation of PDEVS models in Java. The hosting architecture

(Cicirelli et al., 2007a-b) rests on a variant of the Actors Model

(Agha, 1986). Adopted actors are light-weight thread-less reactive

objects. They have a message interface, an encapsulated internal

data state and a behaviour patterned as a finite state machine. The

communication model centres on asynchronous message passing.

The arrival of a message to an actor triggers a response (handler()
method) which includes the following basic actions: (a)

modification of internal data (b) control state change (become()
method) (c) creation of new actors (d) transmission (send() method)

of messages to known actors (acquaintances), including itself for

proactive behaviour. Elementary actions are exported by the Actor
base class. Messages are heir of Message base class. A subsystem of

co-located actors (theatre) runs on a computing node. Message

scheduling/dispatching services are provided in a theatre by a

control machine which can be specialized to discrete-event

simulation or real-time operation. Multiple theatres can synchronize

to one another for distributed simulation (Cicirelli et al., 2007a).

Fig. 3. UML class diagram of ActorDEVS

The UML class diagram in Fig. 3 depicts the ActorDEVS
framework, which rests on a few design patterns (Gamma et al.,

1995). For example, the strategy pattern is employed to

transparently weave the control structure, i.e. the simulation engine,

to an application; the template method is adopted for structuring the

AtomicDEVS abstract actor class which is the base for achieving,

through inheritance, the concrete atomic components required by

the application. Typed input/output ports of components are

directly mapped on to messages. Toward this, the Output<V> and

Input<V> derived classes of Message are introduced which are

generic in the type V of the carried data. In particular, Input<V> is

derived from Output<V>. Class Output<V> exploits the command and

prototype design patterns. As a command, it has a route() operation to

transmit its content to its destination actor, whose identity is

established at configuration time. As a prototype, an output

message is cloned in order to create an initialized copy of itself

Timer
Output<V>

Input

V

ControlMachine

PDEVS_Simulation Output
V

Actor

AtomicDEVS

*

1

*

*

java.lang.Cloneable

Message

ISBN # 1-56555-316-0 352 SCSC 2007

which is actually sent to its destination actor. Services get()/set()
permit respectively to retrieve/modify the data component of an

Output<V> message. Method linkTo(receiver) allows an output

message to be bound to a given receiver actor. The Output<V> class

is provided of a recycler so as to avoid cloning when a consumed

(i.e., yet processed) output message is available for recycling. A

Timer class is provided which inherits from Message and supports

the notion of a timed message. A timer can be set()/reset() and the

elapsed time since its setting or the remaining time before its

expiring can be checked. When a timer is set, the identity of a

timeout message, its receiver actor, and the relative expiration time

must be given. Before expiring, a timer can be reset. In this paper a

discrete time model is assumed. However, a dense time model

could in alternative be used. Current time is available to any

component through the method now() of Actor which in turn depends

on the time notion of a control machine.

Different control machines can be built. PDEVS_Simulation used

in this paper manages the simulation clock and the following

message data structures: a priority queue (heap-based) of set timers,

and a collection of bags of instantaneous messages, separately

maintained on a per component basis, which are to be dispatched at

current simulation time. Instantaneous messages take precedence

with respect to timers. The control structure repeats a basic loop. At

each iteration, a bag of instantaneous messages, if there are any,

directed to a receiver atomic actor is selected and passed to an

invocation of the handler() method of AtomicDEVS. If there are no

pending instantaneous messages, the most imminent timer is

allowed to fire thus advancing the simulation time. The

corresponding timeout message is then passed to receiver handler()
method.

PDEVS_Simulation is an efficient control engine. Sources of

efficiency are: (a) the adopted message data structures, (b) the

flattening of coupled models (more is said later in this section)

which implies a reduction in the number of exchanged messages,

(c) the automatic recycling of processed messages which in most

applications reduces the risks of garbage collection interventions.

The programming style descends from the abstract class

AtomicDEVS which exports basic PDEVS functions as abstract

methods which a user-defined component class must override. The

actual signature of functions is clarified in Fig. 4.

public abstract int delta_int(int phase);
public abstract int delta_ext(int phase, long e, Iterable<Message> x);
public int delta_con(int phase, long e, Iterable<Message> x){//default
 lambda(phase);
 return delta_ext(delta_int(phase), 0, x);
}//delta_con
public abstract long ta(int phase);
public abstract void lambda(int phase);

Fig. 4. Signatures of PDEVS functions

As one can see, all transition functions return an int which

codifies the next phase of the atomic component (from the

perspective of the actor model, a PDEVS component is a finite state

machine built over the control states or phases of the component).

For simplicity, functions receive only the phase portion of the

component state. The remaining part of the state (i.e. state

variables) is assumed to be directly accessed from within the

function bodies in the Java class which realizes the component. The

delta_con() method is concrete in AtomicDEVS and implements the

default behaviour of the confluent function. Of course, a concrete

component can redefine delta_con() to achieve a different behaviour.

A bag of inputs is an object created by PDEVS_Simulation, of an

Iterable<Message> class. This way the modeller can navigate over

the received messages (i.e. external events) by iterating the x object.

The void handler(Iterable<Message> x) method of AtomicDEVS
implements PDEVS semantics, i.e. it is in charge of making

internal/external transitions and of checking simultaneity of an

external event and an internal event (internal transition) in which

case the confluent function is invoked. AtomicDEVS uses a timer and

a timeout built-in message to enforce the temporal behaviour of the

component.

ActorDEVS naturally borrows from the underlying actor model

its component-based character and the compositional mechanism

for making coupled models (Cicirelli et al., 2007b). Mechanisms

prove effective for building highly dynamic systems whose

structure can change in the runtime. To avoid message overhead

during communications with coupled models, i.e. to ensure

hierarchical models are flattened from the point of view of the

control machine, it is sufficient to override the send() method in

coupled model/actors. The overridden send() can (synchronously)

redirect to internal components the external incoming messages

directed to the coupled model. Similarly, internally generated

messages destined to external components can be relayed to their

final destinations by having the coupled component which directly

(and transparently) configures the output ports of internal

components so as to refer to their relevant external receivers.

6. MODELLING TIME PETRI NETS USING

ActorDEVS
The following describes a mapping of Time Petri Nets (TPNs)

on to ActorDEVS. The approach can easily be adapted to work with

other time-extended Petri net formalisms. The modelling process

associates each transition with a distinct PDEVS atomic component.

Every transition gets equipped of its preset and postset. Places are

passive topological objects, holding configuration information only.

Each place knows transitions of which it is an input place. At each

marking change, a place automatically notifies its relevant

transitions which thus have a chance to check their

enabled/disabled status. TPN modelling is based on a few classes as

shown in Fig. 5.

Fig. 5. Class diagram for TPN modelling in ActorDEVS

TimeAdvance defines the long timeAdvance() method which

returns the firing time of a transition. Uniform is a specialization of

TimeAdvance. It receives the static firing interval of a transition.

Info

Place Transition

Uniform

notify

*

preset
*

*

postset
TimeAdvance

AtomicDEVS

Statistics

SCSC 2007 353 ISBN # 1-56555-316-0

Time advancement is uniformly distributed in the firing interval.

Info objects are used by a place when notifying transitions. An info

object contains the id of a place, the marking of the place and a

boolean value telling if this marking was generated by a withdraw

or a deposit operation. Statistics is the ancestor of transducer

classes. Transitions of a given TPN model can be fed by a specific

statistics object useful for collecting information about model

dynamics. A statistics object can be initialized with the entire

model marking vector. Method fire() of Statistics receives the id of a

fired transition and the associated occurrence time.

A transition admits two phases: PASSIVE (not enabled) and

FIRING (enabled and under firing). Input port interface (message

types) and constructor of Transition are illustrated in Fig. 6.

public class Transition extends AtomicDEVS{
 public static class Notify extends Input<Info>{}//Notify
 private static class Commit extends Message{}//Commit
 public Transition(int id, TimeAdvance tA, Statistics stat){
 this.id=id; this.tA=tA; this.stat=stat;
 initialPhase(PASSIVE);
 }

…
private final byte PASSIVE=0, FIRING=1;

 private Commit commit=new Commit();
…

}//Transition

Fig. 6. An excerpt of the Transition class

A transition receives Notify messages from its input places at

each marking change. Commit is a local message class. One single

commit message exists which the transition sends to itself during a

firing process. This particular ability of ActorDEVS atomic

components derives from their actor character.

Internal transition function delta_int() (Fig. 7) simply returns

PASSIVE as the next status.

public int delta_int(int phase){
 return PASSIVE;
}//delta_int

Fig. 7. Internal transition function

The time advance function ta() is shown in Fig. 8. As soon as the

transition moves to the FIRING phase, its dwell-time is established

by asking the TimeAdvance object tA.

public long ta(int phase){
 if(phase==PASSIVE) return INFINITY;
 return tA.timeAdvance();
}//ta

Fig. 8. Time advance function

The output function lambda(), which is invoked just before a
transition completes its firing, is depicted in Fig. 9.

Fig. 10 shows (partially in pseudo-code) the helper method

enabled() which checks the enabling status of the transition.

enabled() receives explicitly the marking to be checked. This

solution was adopted to properly implement the two phases of the

atomic firing process described in section 4. In particular, the

Transition component maintains a “withdraw marking” wm and a

“deposit marking” dm. wm captures the intermediate marking

generated just after the withdrawal sub-phase of a firing process. dm
corresponds to the marking at the end of the deposit sub-phase of

the firing process.

public void lambda(int phase){
 if(phase==FIRING){
 //token withdrawl
 for(Place p: preset){
 p.withdraw(preset.weight(p));
 }
 //token deposit
 for(Place p: postset){
 p.deposit(postset.weight(p));
 }
 if(stat!=null) stat.fire(id, now()); // signal this firing to statistics
 }
}//lambda

Fig. 9. Output function

private boolean enabled(Marking m){
 for(Place p: preset){
 int weight=preset.weight(p);
 if(weight==0 && m(p).tokens()!=0) return false;
 if(weight>0 && m(p).tokens()<weight) return false;
 }
 return true;
}//enabled

Fig. 10. Helper function checking the enabled status

public int delta_ext(int phase, long e, Iterable<Message> x){
 if(x.iterator().next()==commit){
 if(phase==PASSIVE && enabled(dm)) phase=FIRING;
 else if(phase==FIRING && !enabled(dm)) phase=PASSIVE;
 }
 else{//bag of notify messages
 //first scan
 for(Message m: x){
 if(m is a Notify message whose Info is tagged “withdraw”){
 update wm with marking information in m;
 update dm with marking information in m;
 }
 }
 //second scan
 for(Message m: x){
 if(m is a Notify message whose Info is tagged “deposit”){
 update dm with marking information in m;
 }
 }
 if(phase==PASSIVE && enabled(wm)) phase=FIRING;
 else if(phase==FIRING && !enabled(wm)) phase=PASSIVE;
 send(commit); //prepare to commit
 }
 return phase;
}//delta_ext

Fig. 11. External transition function

Fig. 11 portrays in pseudo-code the body of the external

transition function delta_ext(). delta_ext() gets invoked as soon as this

transition, which is under firing, receives a bag of Notify messages

from its input places. In response to this bag the transition verifies

its persistent or non persistent status with respect to just fired

ISBN # 1-56555-316-0 354 SCSC 2007

transition. All of this is important for properly disabling transitions

in effective conflict with the fired one. The delta_ext() function

navigates two times the bag of Notify messages. The first scan serves

for building the withdraw marking wm and (partially) the deposit

marking dm (some places are both input and output places). The

second scan completes definition of the deposit marking dm.

In order to separate the effect of withdraw from that of deposit,

this transition first takes consequence of marking wm, then it sends

to itself the commit message triggering again the execution of

delta_ext() which definitely establishes the next status of the

transition. It is guaranteed that this transition will receive the commit
message before another transition can begin its firing process. All

of this is a consequence of the fact that PDEVS_Simulation engine

sequentially fires internal transitions (time events) of components.

Fig. 12 shows the confluent function delta_con() which is

redefined so as to coincide with the delta_ext().

public int delta_con(int phase, long e, Iterable<Message> x){
 return delta_ext(phase, e, x);
}//delta_con

Fig. 12. Confluent transition function

The resultant behaviour ensures that when a transition t completes

its firing, it immediately notifies all its influencees, i.e. transitions

having in their preset places affected by t firing. As a consequence,

all conflicting transitions with t, even at last time in their firing

interval, can get disabled thus interrupting their current firing. On

the other hand, an under firing transition which persists to t firing,

keeps unaltered its time advancing status.

As a final remark, class Transition exports addPreset(place[,weight])/
addPostset(place[,weight]) methods (when omitted, the weight

defaults to 1) which facilitate configuration of a TPN coupled

model.

6.1 Coupled Model for the Alternating Bit

Protocol
Fig. 13 shows a summary of the configuration operations which

create a coupled model corresponding to the ABP TPN model of

section 4.1. For demonstration purposes, the statistics object is only

bound to channel transitions t12, t13, t14 and t15 which lose a

message or an ack, to transition t0 and t3 which transmit a message,

and to transitions t1 and t4 which model timeout and message re-

transmission. The simulation lasts 106 time units.

Setting the initial marking of places forces transitions to start

querying their enabling status.

As a simple example of property checking, “correct” setting of

timeouts in Fig. 2 was monitored. To this end the minimal ABPStat
class shown in Fig. 14 was prepared which is able to compute (i)

the maximum delay time of a loss event since its causing

send/resend operation, and (ii) the minimum/maximum elapsed

time between a loss event and its subsequent firing of timeout

which resends the message.

public class ABP{
 public static void main(String []args){
 //create control machine
 ControlMachine cm=new PDEVS_Simulation(1000000 /*tEnd*/);
 //create places
 Place p0=new Place(0); //0 is the place ID

 …
 Place p11=new Place(11);
 //create statistics object
 Statistics stat=new ABPStat();
 //create transitions
 Transition t0=new Transition(0, new Uniform(0,0), stat);
 Transition t1=new Transition(1, new Uniform(5,6), stat);
 Transition t2=new Transition(2, new Uniform(0,1), null);
 Transition t3=new Transition(3, new Uniform(0,0), stat);
 Transition t4=new Transition(4, new Uniform(5,6), stat);
 …
 Transition t12=new Transition(12, new Uniform(0,1), stat);
 Transition t13=new Transition(13, new Uniform(0,1), stat);
 Transition t14=new Transition(14, new Uniform(0,1), stat);
 Transition t15=new Transition(15, new Uniform(0,1), stat);
 //configure preset/postset of transitions
 t0.addPreset(p3); t0.addPostset(p0); t0.addPostset(p8);
 …
 //configure place output ports
 Output p0_out1=new Transition.Notify();
 Output p0_out2=new Transition.Notify();
 p0_out1.linkTo(t1); p0_out2.linkTo(t2);
 p0.setOut(p0_out1, p0_out2);
 …
 //set model initial marking
 p0.initMarking(0); p1.initMarking(0);
 p2.initMarking(0); p3.initMarking(1);
 …
 cm.controller(); //start simulation
 System.out.println(stat); //display statistics
 }
}//ABP

Fig. 13. An ActorDEVS coupled model for the Alternating Bit

Protocol

public class ABPStat extends Statistics{

 private long tLoss, tSend, tResend, maxDelayToLoss=0,

minDelayFromLossToResend=Long.MAX_VALUE,

maxDelayFromLossToResend=0;

 public void fire(int id, long now){

 if(id==0 || id==1 || id==3 || id==4){

 tSend=now;

 if(id==1 || id==4){

 tResend=now;

 if(tResend-tLoss>maxDelayFromLossToResend)

 maxDelayFromLossToResend=tResend-tLoss;

 else if(tResend-tLoss<minDelayFromLossToResend)

 minDelayFromLossToResend=tResend-tLoss;

 }

 }

 else if(id>=12 || id<=15){
 tLoss=now;
 if(tLoss-tSend>maxDelayToLoss)
 maxDelayToLoss=tLoss-tSend;
 }
 }//fire
 public String toString(){
 return "Max delay from (re)send to loss="+maxDelayToLoss+"\n"+
 "Min delay from loss to resend="+minDelayFromLossToResend+"\n"+
 "Max delay from loss to resend="+maxDelayFromLossToResend+"\n";
 }//toString
}//ABPStat

Fig. 14. The ABPStat class

SCSC 2007 355 ISBN # 1-56555-316-0

At simulation end the ABPStat furnished the following data:

Max delay from (re)send to loss=4 (1)
Min delay from loss to resend=1 (2)
Max delay from loss to resend=6 (3)

As one can see from point (1) a message can be lost after a

maximum of 4 tu are elapsed from the send/resend message

operation. Moreover, following a loss event, the consequent

timeout event is fired after 1 to 6 tu (points (2) and (3)). The

minimal delay of 1 tu occurs when the loss event delays of its

maximum and the timeout (t1 or t4) fires at its earliest time. The

maximum delay of 6 tu happens when the loss event occurs

immediately (t12 or t14 fires after 0 tu) and the consequent timeout

event fires at its latest time. In the light of above discussion, the

simulation experiments confirmed that the time interval [5,6] of

timeout transitions t1 and t4 is correctly established.

7. CONCLUSIONS
This paper describes an experience about managing conflicts in

PDEVS. As an example, a mapping of Time Petri Nets (Merlin &

Farber, 1976) on to PDEVS is proposed, which permits modelling

and simulation of communication protocols or embedded real-time

systems. Experiments were conducted using ActorDEVS, a minimal

flexible and efficient agent-based framework developed in Java.

Owing to its underlying actor-based framework, ActorDEVS can

work with different control engines. For example, both standard

behaviour of (flattened) PDEVS and a particular control structure

suited to conflict management were implemented.

The following points emerged from the experience which affect

PDEVS operation:

it is wise to not anticipate execution of the output function

when the confluent function is up to be invoked. Rather the

matter should be left to the semantics of the confluent function

itself

it is convenient to not stop time advancement in states when an

external event triggers a self-loop transition

it is useful for an atomic component to possibly send messages

to itself.

The described work is being extended in the following

directions:

automating the construction of ActorDEVS coupled models

corresponding to TPN models expressed in XML (Billington et

al., 2003)

mapping in ActorDEVS other time-extended Petri net

formalisms, possibly with modularity constructs (e.g.

supporting an abstract transition notion which can be refined

with a subnet) and high-level concepts (tokens as colours)

using ActorDEVS for modelling and simulation variable

structure systems (Hu et al., 2005)(Cicirelli et al., 2007b)

experimenting with ActorDEVS in distributed simulations. The

framework is being ported to distributed contexts where the

transport layer can be either Java Socket, Java RMI or

HLA/RTI (Cicirelli et al., 2007a).

REFERENCES
Agha, G. (1986). Actors: A model for concurrent computation in

distributed systems, Cambridge, MIT Press.

Berthomieu B. and M. Diaz (1991). Modelling and verification of
time dependent systems using time Petri nets. IEEE Trans.
Software Eng., 17(3):259-273.

Billington J., S. Christensen, K. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber (2003). The
Petri net markup language: concepts, technology, and tools.
In Proc. of the 24th Int. Conf. on Application and Theory of
Petri Nets, LNCS 2679, pages 483–505. Springer.

Cicirelli F., A. Furfaro and L. Nigro (2006). A DEVS M&S
framework based on Java and actors. In Proc. of 2nd European
Modelling and Simulation Symposium (EMSS 2006), pp. 337-
342.

Cicirelli F., A. Furfaro, A. Giordano and L. Nigro (2007a). An
agent infrastructure for distributed simulations over HLA and
a case study using unmanned aerial vehicles. In Proc. of 40th

Annual Simulation Symposium, IEEE Computer Society
Press, pp. 231-238, March, Norfolk (VA).

Cicirelli F., A. Furfaro, L. Nigro and F. Pupo (2007b). A
component-based architecture for modelling and simulation
of adaptive complex systems. 21st European Conference on
Modelling and Simulation (ECMS’07), 4-6 June, Prague.

Hu X., B.P. Zeigler and S. Mittal (2005). Variable structure in
DEVS component-based modelling and simulation.
Simulation, 81(2):91-102.

Gamma E., R. Helm, R. Johnson, and J. Vlissides (1995). Design
Patterns. Addison-Wesley.

Glinsky E. and G. Wainer (2005). Devstone: a benchmarking
technique for studying performance of devs modelling and
simulation environments. In 9th IEEE Int. Symposium on
Parallel and Distributed Simulation and Real-Time
Applications, pp. 265-272.

Himmelspach J. and A.M. Uhrmacher (2006). Sequential
processing of PDVES models. In Proc. of 2nd European
Modelling and Simulation Symposium (EMSS 2006), pp. 239-
244.

Kim K., W. Kang, B. Sagong and H. Seo (2000). Efficient
distributed simulation of hierarchical DEVS models:
transforming model structure into a non-hierarchical one. In
Proc. of the 33rd Annual Simulation Symposium (ANSS’00),
IEEE Computer Society, pp. 227-233.

Merlin P. and D. Farber (1976). Recoverability of communication
protocols – implications of a theoretical study. IEEE
Transactions on Communications, 24(9):1036–1043.

Murata T. (1989). Petri nets: properties, analysis and applications.
Proc. of the IEEE, 77(4), pp. 541-580.

Shaw M. and D. Garlan (1996). Software architecture: perspective
on an emerging discipline. Prentice-Hall.

Vangheluwe H.L. (2000). DEVS as a common denominator for
multi-formalism hybrid systems modelling. In Andras Varga,
ed., IEEE Int. Symposium on Computer-Aided Control System
Design, pp. 129-134, IEEE Computer Society Press,
September, Anchorage, Alaska.

Zeigler B.P. and H.S. Sarjoughian (2003). Introduction to DEVS
modelling and simulation with Java: developing component-
based simulation models. http://www.acims.arizona.edu.

Zeigler B.P., H. Praehofer, and T.G. Kim (2000). Theory of
modeling and simulation. 2nd Edition, New York, NY,
Academic Press.

ISBN # 1-56555-316-0 356 SCSC 2007

