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Abstract 
PDEVS (Parallel DEVS) is a well-known formalism for the 

specification of complex concurrent systems organized as an 

interconnection of atomic and coupled interacting components. The 

abstract simulator of a PDEVS model is normally founded on the 

assumption of maximal parallelism: multiple components are 

allowed to undertake at the same time an independent state 

transition. This paper argues that the hypothesis of maximal 

parallelism does not allow PDEVS to adequately model and simulate 

systems where simultaneous state transitions are conflicting to one 

another. As an example, an original PDEVS model of Merlin and 

Farber Time Petri Nets is proposed. The realization owes to 

ActorDEVS, a lean and efficient PDEVS M&S framework in Java, 

which enables the simulation control structure to be customized. 

The accomplished experience suggests that some points in the 

formal definition of PDEVS should possibly be adapted in order to 

widen the applicability of the language. 

1. INTRODUCTION
Parallel DEVS (Zeigler et al., 2000) PDEVS  is a well-known 

and accepted formalism for the specification of complex discrete or 

continuous systems abstracted as a network of concurrent, timed 

and interacting atomic or coupled models. The formalism borrows 

from systems theory and enables a seamless transformation of a 

specification into an executable system, e.g. using an object-

oriented modelling and simulation framework directly based on 

software architecture concepts (Shaw & Garlan, 1996)(Zeigler & 

Sarjoughian, 2003). 

PDEVS defines a simulation architecture which associates a 

simulator with each atomic component. Moreover, in a coupled 

model a coordinator is used which orchestrates the behaviour of the 

various internal simulators in order to guarantee coherent time 

advancement. The simulation architecture makes it possible for 

multiple components to undergo simultaneous state transitions. In 

other words, PDEVS naturally relies on the hypothesis of maximal 

parallelism, thus exploiting the intrinsic degree of concurrency 

which comes with many models. 

PDEVS expressive power has been used as a common 

denominator for supporting other formalisms (Ziegler et al.,

2000)(Vangheluwe, 2000). This work argues, however, that the 

definition of PDEVS does not allow for proper management of 

conflicts which may arise in systems modelling. As an example, 

this paper describes an original mapping of the Time Petri Nets 

(TPNs) (Merlin & Farber, 1976)(Berthomieu & Diaz, 1991) 

formalism often used for communication protocols or embedded 

real-time systems modelling, onto PDEVS. The experience was 

concretely carried out using ActorDEVS (Cicirelli et al., 2006), a 

minimal flexible and efficient agent-based M&S framework 

developed in Java, which makes it possible to specialize the event-

driven simulation engine. The experience indicates that some points 

of PDEVS should possibly be adapted in order to widen the 

applicability of the formalism. 

The paper is structured as follows. Section 2 reviews basic 

concepts of PDEVS. Section 3 discusses aspects of PDEVS which 

relate to conflict management. Section 4 summarizes concepts of 

Time Petri Nets together with a model example. Section 5 

introduces ActorDEVS. Section 6 describes the proposed mapping of 

TPNs onto ActorDEVS. Finally, conclusions are presented along with 

an indication of on-going and future work. 

2. PDEVS CONCEPTS 

2.1 Atomic components 
A PDEVS atomic component is a structure M defined as 

M=<X,S,Y, int, ext, con, ,ta> where 

X is the set of input values 

S is a set of states 

Y is the set of output values 

int:S S is the internal transition function

ext:Q Xb S is the external transition function, where

Q={(s,e)|s S, 0 e ta(s)} is the set of total states 

e is the elapsed time since last transition 

Xb denotes the collection of bags over X (in a bag some 

elements may occur more than once) 

con:Q Xb S is the confluent transition function 

:S Yb is the output function

ta:S R+
0, is the time advance function.

The sets X, S and Y are typically products of other sets. S, in 

particular, is normally the product of a set of control states (said 

also phases) and other sets built over the values of a certain number 

of variables used to describe the system at hand.  

At any time the component is in some state s S. The 

component can remain in s for the time duration (dwell-time) ta(s).

ta(s) can be 0, in which case s is said a transitory state, or it can be 

, in which case it is said a passive state because the component 

can remain forever in s if no external event interrupts. Provided no 

external event arrives, at the end of (supposed finite) time value 

ta(s), the component moves to its next state s’= int(s) determined by 

the internal transition function int. In addition, just before making 

the internal transition, the component produces the output 

computed by the output function (s). During its stay in s, the 

component can receive an external event x which can cause s to be 
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exited earlier than ta(s). Let e ta(s) be the elapsed time since the 

enter time in s (or, equivalently, the time of last transition). The 

component then exits state s moving to next state s’= ext(s,e,x)

determined by the external transition function ext. As a particular 

case, the external event x can arrive when e=ta(s). In this case two 

events occur simultaneously: the internal transition event and the 

external transition event. The next state s’, in this collision

situation, is determined by the confluent transition function con,

after having applied the output function. The default behaviour of 

con first applies the internal transition function and then the 

external transition function. This behaviour, though, can be 

redefined.  

After entering state s’, the new time advance value ta(s’) is 

computed and the same story continues. 

It is worth noting that “there is no way to generate an output 

directly from an external transition” (see page 12 in (Zeigler & 

Sarjoughian, 2003)). An output can only occur just before an 

internal transition. To have an external transition cause an output 

without a delay, a transitory state can be entered from which the 

exiting internal transition is preceded by output generation. 

PDEVS emphasizes that a bag of simultaneous inputs can be 

received by the atomic component which in general can have a 

reaction to the combination of inputs which is different from the 

effect of sequential reactions to the separately received inputs. 

The above description does not mention the component 

interface ports. In practice, inputs are effectively received from 

corresponding typed input ports and similarly, outputs are 

generated through typed output ports. Actually X is a set of pairs 

<inp,v> where inp is an input port and v the type of values which 

can flow through inp. Y is a set of pairs <outp,v> where outp is an 

output port. Ports are architectural elements which favour modular 

system (re)configuration. A component refers only to its interface 

ports. It has no knowledge about the identity of cooperating 

partners which can potentially be changed at runtime. 

2.2 Coupled components 
A coupled component (subnet) is an interconnection of existing 

atomic or coupled components (see Fig. 1). Formally, it is a 

structure N defined as N=(X,Y,D,{Md|d D},EIC,EOC,IC}, where

X and Y are input and output sets of the coupled component 

D is a set of (sub) component identifiers (or names) 

M is a set of (sub) PDEVS components whose interconnection 

gives rise to the coupled model 

EIC is the external to internal coupling function 

EOC is the internal to external coupling function 

IC is the internal to internal coupling function. 

Fig. 1. Schema of a coupled model 

Coupling is actually based on port interconnections. An 

external input coupling, for instance, is a binding from an input port 

of the coupled model to a matching input port of an internal 

component, and so forth. In the case an internal component is itself 

a coupled model, composition naturally generates a hierarchical 

model.

2.3 Simulation structures 
In its basic formulation (Ziegler et al., 2000), a PDVES atomic 

component comes with an associated distinct simulator which is 

responsible of its time management. The simulators of the various 

internal components of a coupled model are orchestrated by a 

coordinator which ensures consistent time management through 

proper message interchange. The coordinator, in particular, 

guarantees that multiple internal simulators can make simultaneous 

internal/confluent transitions (maximal parallelism). Toward this, 

first all the outputs generated by parallel components are collected, 

then they are processed by relevant destination components.  

As pointed out e.g. in (Himmelspach & Uhrmacher, 2006), the 

default simulation architecture for PDEVS has a negative impact on 

the execution performance which prevents simulation of large 

models. The overhead is mainly due to individual simulators which 

map on distinct execution threads which obviously introduce space 

and time problems. In addition, the number of exchanged messages 

among simulators and the coordinator also contributes to execution 

overhead. In the literature, either a hierarchical model is 

preliminarily flattened into one in which coupled models no longer 

exist, e.g. (Kim et al., 2000), or some form of a sequential non-

threaded simulation algorithm is employed (Glinsky & Wainer, 

2005)(Himmelspach & Uhrmacher, 2006) which e.g. retains the 

hierarchical structure but improves specifically the simulation 

operation. In this work, an agent-based M&S framework is used for 

the experiments where both flattening and a single simulation 

engine are adopted for executing a PDVES system. 

3. CONFLICT AND TIME MANAGEMENT 

ISSUES
PDEVS formal definition does not account for the existence of 

conflicts among parallel components. When a component exhausts 

its dwell-time in its current state, its behaviour is committed: the 

output function gets executed, then either the internal (no external 

event arrived) or confluent (an external event arrived) function is 

run to establish the next state. In other terms, the arrival of an 

external event in the last time of staying in the current state, does 

not prevent the output function to be executed. This behaviour 

seems to contradict the assumption that “there is no way to generate 

an output from an external transition”. Indeed, in many modelling 

examples the confluent function is redefined to behave exactly as 

the external function. In this case, an output is generated just before 

an external transition! Independently from any function signature 

consideration, the question is not of purely syntactical nature 

because it affects semantics and directly leads to the problem of 

conflict management in PDVES.

Consider a component which models a sender in a protocol, 

which after each message transmission is willing to await a certain 

maximum time (timeout) for an ack to be received, before re-

sending the message (as part of the output function). In the case the 

ack event arrives strictly before timeout expiration (the external 

transition function is invoked) there is no doubt that the timeout 
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consequence (message resend) must be cancelled and the timeout 

reset. The same behaviour should be allowed to occur even when 

the ack event arrives in the last time of the timeout. In the light of 

standard PDEVS, the arrival of ack in the last moment of sender 

timeout, causes in any case (i.e., with or without a redefinition of 

the confluent function) the message to be resent. Situations like this 

demand for proper management of conflicts. This work argues that 

it is prudent to not anticipate execution of the output function when 

the confluent function is to be invoked. Rather this matter should be 

left to the semantics of the confluent function itself. 

The confluent function of PDEVS replaced the select() function 

of Classic DEVS (Zeigler et al., 2000) which was specifically 

introduced for tie-breaking when multiple components of a coupled 

model have state transitions occurring at the same simulation time. 

select() typically realizes a deterministic tie-breaking. It is the 

viewpoint of this work that also the use of select() is unsatisfactory 

for conflict management because it tends to resolve conflicts in an 

inflexible way. 

Another critical issue of PDEVS semantics concerns time 

management in states. When an external transition is chosen which 

does not cause current state to be abandoned (i.e., self-loop 

transition), there is no need to stop time advancement in current 

state. As a matter of fact, in DEVSJAVA (Zeigler & Sarjoughian, 

2003) a continue() function is used to explicitly state that time 

should be allowed to continue advancing when a self-loop 

transition occurs. This work favours the more natural choice of 

letting time implicitly to continue during self-loop transitions. In 

the case the modeller wants a different behaviour (pre-emption and 

time restart) a transitory state can be introduced so as to be entered 

and then immediately exited by returning back to the original state. 

The time advancement issue also interacts with the conflict 

problem. Suppose that an external event arrives in the last time of 

current state of a component, but the confluent function is redefined 

to coincide with the external function which commands a self-loop 

transition (i.e., no effective conflict occurs which pre-empts the 

component). In this case, restarting time would be wrong because 

the component persists in its current behaviour despite the arrival of 

the external event. The same argument can obviously be repeated 

when the external event arrives before the last time and the event 

effectively does not conflict with the behaviour of the receiving 

component. In this case too time should not be restarted. 

The above observations are at the basis of the experience 

described in this paper, related to modelling the Time Petri Nets 

TPNs  (Merlin & Farber, 1976) formalism on top of PDEVS. TPN

models are representative of a large class of time dependent

systems (e.g., communication protocols, embedded real time 

systems and so forth) where conflicts are to be managed at runtime 

(race policy of transition firing). 

4. TIME PETRI NETS CONCEPTS
The following provides the definition of Time Petri Nets 

(Merlin & Farber, 1976) assumed in this paper. Basically, Merlin & 

Farber formalism is augmented with inhibitor arcs. A TPN is a tuple 

TPN=(P,T,A,Inh,W,M0,Is) where

P and T are non empty and disjoint sets respectively of places 

and transitions of the underlying Petri net (Murata, 1989) 

A is a set of arcs: A P T T P

Inh is a set of inhibitor arcs: Inh P T

W associates weights to arcs: W:A Inh N, with N the set of 

natural numbers. Weights are assumed strictly positive for arcs 

in A, 0 for inhibitor arcs 

M0 is the initial marking: M0:P N in the usual sense of Petri 

nets

Is is the static firing interval function: Is:T R (R { }).

Place p P is an input place for transition t if there is an arc (p,t)

in A. Place p is an inhibitor place for t if (p,t) Inh, i.e. there exists an 

inhibitor arc connecting p to t. An inhibitor arc is graphically 

represented by a dot terminated line. A place p is an output place

for t if there exists an arc (t,p) in A. The set of input and inhibitor 

places of t is said its preset. The set of output places constitutes the 

transition postset.

Is associates with each transition t a dense firing interval whose 

bounds are assumed to be specified by non negative reals: Is(t)=[a,b]

with 0 a b, b can be . Bound a is said the (static) earliest firing 

time (EFTs) of t, b the (static) latest firing time of t (LFTs).

Let M be a marking. Transition t is said enabled in M, denoted 

by M[t>, iff 

        M(p) W(p,t) if (p,t) Inh

M(p)==0 if (p,t) Inh

As soon as a transition t is enabled, it starts firing (server 

perspective). The firing end event is constrained to occur in the 

time interval associated with the transition. Let  be an instant in 

time when transition t is enabled. Provided t is continuously 

enabled, t cannot fire before +a but must fire before or at +b,

unless it is disabled by the firing of another transition (race firing 

policy). At the time transition firing ends, tokens are removed from 

the input places and new tokens are generated to output places as in 

classic Petri nets. Let Mbefore be the net marking just before t
completes its firing. Firing end of t transforms Mbefore in Mafter,

denoted by Mbefore[t>Mafter, by an instantaneous and atomic process in 

two phases: 

(phase 1-token withdrawal)  

p P if p preset(t) then M’(p)=Mbefore(p)-W(p,t)  
else M’(p)=Mbefore(p) endif

(phase 2-token deposit)  

p P if p postset(t) then Mafter(p)=M’(p)+W(t,p)  
else Mafter(p)=M’(p) endif

where M’ represents the intermediate marking generated after token 

withdrawal. 

 A transition tp is said to be persistent to the firing of transition t
if Mbefore[tp> and M’[tp> and Mafter[tp>. After the token deposit phase one 

or more transitions tnew can become enabled, i.e. Mafter[tnew>.They are 

said newly enabled transitions. The token deposit phase, though, 

because of the existence of inhibitor arcs, can also reveal non 

persistent transitions tnp which lose their enabling in Mafter, i.e. 

Mbefore[tnp> and M’[tnp> and not Mafter[tnp>. A subtle case concerns non 

persistent transitions characterized by Mbefore[tnp> and not M’[tnp> and

Mafter[tnp>. Firing of these transitions is pre-empted. After that they 

behave as newly enabled transitions. 

4.1 An Example 
 Fig. 2 shows a TPN model based on the Alternating Bit 

Protocol (ABP) (Berthomieu & Diaz, 1991). ABP allows 

transmission of messages between a sender and a receiver over an 

M[t> p preset(t)
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unreliable transmission medium. Messages or acknowledgments 

can be lost in transit. Recovery from losses is supported by a 

timeout mechanism followed by re-transmission. The sender 

records the time at which it sends a message and in the case the 

acknowledgment of this delivery is not received in time, the 

message is re-sent. The mechanism is intended for recovering from 

losses and for preventing the acceptance of duplicate messages. 

Upon receiving a message, the receiver must be able to detect if it is 

a new message or a duplicate of a previous message. Toward this, 

the sender attaches as header of messages, prior to transmission, a 

modulo-2 sequence number. In addition, for each received message, 

an acknowledgment is sent back to the sender that carries the same 

sequence number of the received packet. Since the sender alternates 

the transmission of messages with header 0 and header 1, two 

subnets in Fig. 2 model the sender in the two cases. Two subnets 

for the channel and the receiver are correspondingly defined.  

Fig. 2. A TPN model for the Alternating Bit Protocol 

 Transition t0 represents the sender which transmits a packet 

with header 0. t1 models the sender which sets a timeout to occur 

after 5 or 6 time units since message transmission. t2 denotes the 

sender which receives the acknowledgment of sent message and 

moves to the lower section in which it transmits a message with 

header 1. Transitions t3, t4 and t5 have the same meaning 

respectively of transitions t0, t1 and t2. Transitions t12 and t13 (and 

similarly t14 and t15) model respectively the channel which can lose 

a transmitted message or its ack. Receiver transition t6 accepts a 

message with header 0. Transition t7 sends the ack. However, 

would a message be received again with header 0 (duplicate), the 

receiver discards it and then re-transmits the ack. In a similar way 

operates the subnet t9, t10 and t11 of receiver which handles a 

message with header 1.

 In Fig. 2 some transitions are conflicting to one another. For 

example, t1 and t2 can never complete their firing together. In the 

case both transitions should fire at the same time, one of the two is 

chosen non deterministically and prevents the other to complete its 

firing. These situations are not directly supported by PDEVS.

5. ActorDEVS
This section summarizes ActorDEVS (Cicirelli et al., 2006), an 

actor (agent) based minimal framework supporting modelling and 

simulation of PDEVS models in Java. The hosting architecture 

(Cicirelli et al., 2007a-b) rests on a variant of the Actors Model 

(Agha, 1986). Adopted actors are light-weight thread-less reactive 

objects. They have a message interface, an encapsulated internal 

data state and a behaviour patterned as a finite state machine. The 

communication model centres on asynchronous message passing. 

The arrival of a message to an actor triggers a response (handler()
method) which includes the following basic actions: (a) 

modification of internal data (b) control state change (become()
method) (c) creation of new actors (d) transmission (send() method) 

of messages to known actors (acquaintances), including itself for 

proactive behaviour. Elementary actions are exported by the Actor
base class. Messages are heir of Message base class. A subsystem of 

co-located actors (theatre) runs on a computing node. Message 

scheduling/dispatching services are provided in a theatre by a 

control machine which can be specialized to discrete-event 

simulation or real-time operation. Multiple theatres can synchronize 

to one another for distributed simulation (Cicirelli et al., 2007a). 

Fig. 3. UML class diagram of ActorDEVS

The UML class diagram in Fig. 3 depicts the ActorDEVS
framework, which rests on a few design patterns (Gamma et al., 

1995). For example, the strategy pattern is employed to 

transparently weave the control structure, i.e. the simulation engine, 

to an application; the template method is adopted for structuring the 

AtomicDEVS abstract actor class which is the base for achieving, 

through inheritance, the concrete atomic components required by 

the application. Typed input/output ports of components are 

directly mapped on to messages. Toward this, the Output<V> and 

Input<V> derived classes of Message are introduced which are 

generic in the type V of the carried data. In particular, Input<V> is 

derived from Output<V>. Class Output<V> exploits the command and 

prototype design patterns. As a command, it has a route() operation to 

transmit its content to its destination actor, whose identity is 

established at configuration time. As a prototype, an output 

message is cloned in order to create an initialized copy of itself 

Timer
Output<V>

Input

V

ControlMachine

PDEVS_Simulation Output
V

Actor

AtomicDEVS

*

1

*

*

java.lang.Cloneable

Message
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which is actually sent to its destination actor. Services get()/set()
permit respectively to retrieve/modify the data component of an 

Output<V> message. Method linkTo(receiver) allows an output 

message to be bound to a given receiver actor. The Output<V> class 

is provided of a recycler so as to avoid cloning when a consumed 

(i.e., yet processed) output message is available for recycling. A 

Timer class is provided which inherits from Message and supports 

the notion of a timed message. A timer can be set()/reset() and the 

elapsed time since its setting or the remaining time before its 

expiring can be checked. When a timer is set, the identity of a 

timeout message, its receiver actor, and the relative expiration time 

must be given. Before expiring, a timer can be reset. In this paper a 

discrete time model is assumed. However, a dense time model 

could in alternative be used. Current time is available to any 

component through the method now() of Actor which in turn depends 

on the time notion of a control machine. 

Different control machines can be built. PDEVS_Simulation used 

in this paper manages the simulation clock and the following 

message data structures: a priority queue (heap-based) of set timers, 

and a collection of bags of instantaneous messages, separately 

maintained on a per component basis, which are to be dispatched at 

current simulation time. Instantaneous messages take precedence 

with respect to timers. The control structure repeats a basic loop. At 

each iteration, a bag of instantaneous messages, if there are any, 

directed to a receiver atomic actor is selected and passed to an 

invocation of the handler() method of AtomicDEVS. If there are no 

pending instantaneous messages, the most imminent timer is 

allowed to fire thus advancing the simulation time. The 

corresponding timeout message is then passed to receiver handler()
method.

PDEVS_Simulation is an efficient control engine. Sources of 

efficiency are: (a) the adopted message data structures, (b) the 

flattening of coupled models (more is said later in this section) 

which implies a reduction in the number of exchanged messages, 

(c) the automatic recycling of processed messages which in most 

applications reduces the risks of garbage collection interventions. 

The programming style descends from the abstract class 

AtomicDEVS which exports basic PDEVS functions as abstract 

methods which a user-defined component class must override. The 

actual signature of functions is clarified in Fig. 4.  

public abstract int delta_int( int phase ); 
public abstract int delta_ext( int phase, long e, Iterable<Message> x ); 
public int delta_con( int phase, long e, Iterable<Message> x ){//default 
 lambda( phase ); 
 return delta_ext( delta_int( phase ), 0, x );  
}//delta_con 
public abstract long ta( int phase ); 
public abstract void lambda( int phase ); 

Fig. 4. Signatures of PDEVS functions 

As one can see, all transition functions return an int which 

codifies the next phase of the atomic component (from the 

perspective of the actor model, a PDEVS component is a finite state 

machine built over the control states or phases of the component). 

For simplicity, functions receive only the phase portion of the 

component state. The remaining part of the state (i.e. state 

variables) is assumed to be directly accessed from within the 

function bodies in the Java class which realizes the component. The 

delta_con() method is concrete in AtomicDEVS and implements the 

default behaviour of the confluent function. Of course, a concrete 

component can redefine delta_con() to achieve a different behaviour.  

A bag of inputs is an object created by PDEVS_Simulation, of an 

Iterable<Message> class. This way the modeller can navigate over 

the received messages (i.e. external events) by iterating the x object. 

The void handler( Iterable<Message> x ) method of AtomicDEVS
implements PDEVS semantics, i.e. it is in charge of making 

internal/external transitions and of checking simultaneity of an 

external event and an internal event (internal transition) in which 

case the confluent function is invoked. AtomicDEVS uses a timer and 

a timeout built-in message to enforce the temporal behaviour of the 

component.

ActorDEVS naturally borrows from the underlying actor model 

its component-based character and the compositional mechanism 

for making coupled models (Cicirelli et al., 2007b). Mechanisms 

prove effective for building highly dynamic systems whose 

structure can change in the runtime. To avoid message overhead 

during communications with coupled models, i.e. to ensure 

hierarchical models are flattened from the point of view of the 

control machine, it is sufficient to override the send() method in 

coupled model/actors. The overridden send() can (synchronously) 

redirect to internal components the external incoming messages 

directed to the coupled model. Similarly, internally generated 

messages destined to external components can be relayed to their 

final destinations by having the coupled component which directly 

(and transparently) configures the output ports of internal 

components so as to refer to their relevant external receivers. 

6. MODELLING TIME PETRI NETS USING 

ActorDEVS
The following describes a mapping of Time Petri Nets (TPNs)

on to ActorDEVS. The approach can easily be adapted to work with 

other time-extended Petri net formalisms. The modelling process 

associates each transition with a distinct PDEVS atomic component. 

Every transition gets equipped of its preset and postset. Places are 

passive topological objects, holding configuration information only. 

Each place knows transitions of which it is an input place. At each 

marking change, a place automatically notifies its relevant 

transitions which thus have a chance to check their 

enabled/disabled status. TPN modelling is based on a few classes as 

shown in Fig. 5. 

Fig. 5. Class diagram for TPN modelling in ActorDEVS

TimeAdvance defines the long timeAdvance() method which 

returns the firing time of a transition. Uniform is a specialization of 

TimeAdvance. It receives the static firing interval of a transition. 

Info

Place Transition

Uniform

notify

*

preset
*

*

postset
TimeAdvance

AtomicDEVS

Statistics
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Time advancement is uniformly distributed in the firing interval. 

Info objects are used by a place when notifying transitions. An info 

object contains the id of a place, the marking of the place and a 

boolean value telling if this marking was generated by a withdraw 

or a deposit operation. Statistics is the ancestor of transducer

classes. Transitions of a given TPN model can be fed by a specific 

statistics object useful for collecting information about model 

dynamics. A statistics object can be initialized with the entire 

model marking vector. Method fire() of Statistics receives the id of a 

fired transition and the associated occurrence time. 

A transition admits two phases: PASSIVE (not enabled) and 

FIRING (enabled and under firing). Input port interface (message 

types) and constructor of Transition are illustrated in Fig. 6. 

public class Transition extends AtomicDEVS{ 
 public static class Notify extends Input<Info>{}//Notify 
 private static class Commit extends Message{}//Commit 
 public Transition( int id, TimeAdvance tA, Statistics stat ){ 
  this.id=id; this.tA=tA; this.stat=stat; 
  initialPhase( PASSIVE ); 
 } 

…
private final byte PASSIVE=0, FIRING=1; 

 private Commit commit=new Commit(); 
…

}//Transition 

Fig. 6. An excerpt of the Transition class 

A transition receives Notify messages from its input places at 

each marking change. Commit is a local message class. One single 

commit message exists which the transition sends to itself during a 

firing process. This particular ability of ActorDEVS atomic 

components derives from their actor character. 

Internal transition function delta_int() (Fig. 7) simply returns 

PASSIVE as the next status. 

public int delta_int( int phase ){ 
 return PASSIVE; 
}//delta_int 

Fig. 7. Internal transition function 

The time advance function ta() is shown in Fig. 8. As soon as the 

transition moves to the FIRING phase, its dwell-time is established 

by asking the TimeAdvance object tA.

public long ta( int phase ){ 
 if( phase==PASSIVE ) return INFINITY; 
 return tA.timeAdvance();
}//ta 

Fig. 8. Time advance function 

The output function lambda(), which is invoked just before a 
transition completes its firing, is depicted in Fig. 9. 

Fig. 10 shows (partially in pseudo-code) the helper method 

enabled() which checks the enabling status of the transition. 

enabled() receives explicitly the marking to be checked. This 

solution was adopted to properly implement the two phases of the 

atomic firing process described in section 4. In particular, the 

Transition component maintains a “withdraw marking” wm and a 

“deposit marking” dm. wm captures the intermediate marking 

generated just after the withdrawal sub-phase of a firing process. dm
corresponds to the marking at the end of the deposit sub-phase of 

the firing process. 

public void lambda( int phase ){ 
 if( phase==FIRING ){ 
  //token withdrawl 
  for( Place p: preset ){ 
   p.withdraw( preset.weight( p ) ); 
  } 
  //token deposit 
  for( Place p: postset ){ 
   p.deposit( postset.weight( p ) ); 
  } 
  if( stat!=null ) stat.fire( id, now() ); // signal this firing to statistics 
 } 
}//lambda 

Fig. 9. Output function 

private boolean enabled( Marking m ){ 
 for( Place p: preset ){ 
  int weight=preset.weight( p );
  if( weight==0 && m( p ).tokens()!=0 ) return false; 
  if( weight>0 && m( p ).tokens()<weight ) return false; 
 } 
 return true; 
}//enabled 

Fig. 10. Helper function checking the enabled status 

public int delta_ext( int phase, long e, Iterable<Message> x ){ 
 if( x.iterator().next()==commit ){ 
  if( phase==PASSIVE && enabled( dm ) ) phase=FIRING; 
  else if( phase==FIRING && !enabled( dm ) )  phase=PASSIVE; 
  } 
 else{//bag of notify messages 
  //first scan 
  for( Message m: x ){ 
   if( m is a Notify message whose Info is tagged “withdraw” ){ 
    update wm with marking information in m; 
    update dm with marking information in m; 
   } 
  } 
  //second scan 
  for( Message m: x ){ 
   if( m is a Notify message whose Info is tagged “deposit” ){ 
    update dm with marking information in m; 
   } 
  } 
  if( phase==PASSIVE && enabled( wm ) ) phase=FIRING; 
  else if( phase==FIRING && !enabled( wm ) ) phase=PASSIVE; 
  send( commit ); //prepare to commit 
 } 
 return phase; 
}//delta_ext 

Fig. 11. External transition function 

Fig. 11 portrays in pseudo-code the body of the external 

transition function delta_ext(). delta_ext() gets invoked as soon as this 

transition, which is under firing, receives a bag of Notify messages 

from its input places. In response to this bag the transition verifies 

its persistent or non persistent status with respect to just fired 
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transition. All of this is important for properly disabling transitions 

in effective conflict with the fired one. The delta_ext() function 

navigates two times the bag of Notify messages. The first scan serves 

for building the withdraw marking wm and (partially) the deposit 

marking dm (some places are both input and output places). The 

second scan completes definition of the deposit marking dm.

In order to separate the effect of withdraw from that of deposit, 

this transition first takes consequence of marking wm, then it sends 

to itself the commit message triggering again the execution of 

delta_ext() which definitely establishes the next status of the 

transition. It is guaranteed that this transition will receive the commit
message before another transition can begin its firing process. All 

of this is a consequence of the fact that PDEVS_Simulation engine 

sequentially fires internal transitions (time events) of components.  

Fig. 12 shows the confluent function delta_con() which is 

redefined so as to coincide with the delta_ext().

public int delta_con( int phase, long e, Iterable<Message> x ){ 
 return delta_ext( phase, e, x ); 
}//delta_con 

Fig. 12. Confluent transition function 

The resultant behaviour ensures that when a transition t completes 

its firing, it immediately notifies all its influencees, i.e. transitions 

having in their preset places affected by t firing. As a consequence, 

all conflicting transitions with t, even at last time in their firing 

interval, can get disabled thus interrupting their current firing. On 

the other hand, an under firing transition which persists to t firing, 

keeps unaltered its time advancing status. 

As a final remark, class Transition exports addPreset(place[,weight])/ 
addPostset(place[,weight]) methods (when omitted, the weight 

defaults to 1) which facilitate configuration of a TPN coupled 

model.

6.1 Coupled Model for the Alternating Bit 

Protocol
Fig. 13 shows a summary of the configuration operations which 

create a coupled model corresponding to the ABP TPN model of 

section 4.1. For demonstration purposes, the statistics object is only 

bound to channel transitions t12, t13, t14 and t15 which lose a 

message or an ack, to transition t0 and t3 which transmit a message, 

and to transitions t1 and t4 which model timeout and message re-

transmission. The simulation lasts 106 time units. 

Setting the initial marking of places forces transitions to start 

querying their enabling status. 

As a simple example of property checking, “correct” setting of 

timeouts in Fig. 2 was monitored. To this end the minimal ABPStat
class shown in Fig. 14 was prepared which is able to compute (i) 

the maximum delay time of a loss event since its causing 

send/resend operation, and (ii) the minimum/maximum elapsed 

time between a loss event and its subsequent firing of timeout 

which resends the message.  

public class ABP{ 
 public static void main( String []args ){ 
  //create control machine 
  ControlMachine cm=new PDEVS_Simulation( 1000000 /*tEnd*/ ); 
  //create places 
  Place p0=new Place(0); //0 is the place ID 

  … 
  Place p11=new Place(11); 
  //create statistics object 
  Statistics stat=new ABPStat(); 
  //create transitions 
  Transition t0=new Transition( 0, new Uniform(0,0), stat); 
  Transition t1=new Transition( 1, new Uniform(5,6), stat ); 
  Transition t2=new Transition( 2, new Uniform(0,1), null ); 
  Transition t3=new Transition( 3, new Uniform(0,0), stat); 
  Transition t4=new Transition( 4, new Uniform(5,6), stat ); 
  … 
  Transition t12=new Transition( 12, new Uniform(0,1), stat ); 
  Transition t13=new Transition( 13, new Uniform(0,1), stat ); 
  Transition t14=new Transition( 14, new Uniform(0,1), stat ); 
  Transition t15=new Transition( 15, new Uniform(0,1), stat ); 
  //configure preset/postset of transitions 
  t0.addPreset( p3 ); t0.addPostset( p0 ); t0.addPostset( p8 ); 
  … 
  //configure place output ports 
  Output p0_out1=new Transition.Notify();
  Output p0_out2=new Transition.Notify();
  p0_out1.linkTo( t1 ); p0_out2.linkTo( t2 ); 
  p0.setOut( p0_out1, p0_out2 ); 
  … 
  //set model initial marking 
  p0.initMarking( 0 ); p1.initMarking( 0 ); 
  p2.initMarking( 0 );  p3.initMarking( 1 ); 
  … 
  cm.controller(); //start simulation 
  System.out.println( stat ); //display statistics 
 } 
}//ABP

Fig. 13. An ActorDEVS coupled model for the Alternating Bit 

Protocol 

public class ABPStat extends Statistics{ 

 private long tLoss, tSend, tResend, maxDelayToLoss=0, 

minDelayFromLossToResend=Long.MAX_VALUE, 

maxDelayFromLossToResend=0; 

 public void fire( int id, long now ){ 

  if( id==0 || id==1 || id==3 || id==4 ){ 

   tSend=now; 

   if( id==1 || id==4 ){ 

    tResend=now; 

    if( tResend-tLoss>maxDelayFromLossToResend ) 

     maxDelayFromLossToResend=tResend-tLoss; 

    else if( tResend-tLoss<minDelayFromLossToResend ) 

     minDelayFromLossToResend=tResend-tLoss; 

   } 

  } 

  else if( id>=12 || id<=15 ){ 
   tLoss=now; 
   if( tLoss-tSend>maxDelayToLoss ) 
    maxDelayToLoss=tLoss-tSend; 
  } 
 }//fire 
 public String toString(){ 
  return "Max delay from (re)send to loss="+maxDelayToLoss+"\n"+ 
  "Min delay from loss to resend="+minDelayFromLossToResend+"\n"+ 
  "Max delay from loss to resend="+maxDelayFromLossToResend+"\n"; 
 }//toString 
}//ABPStat 

Fig. 14. The ABPStat class 
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At simulation end the ABPStat furnished the following data:  

Max delay from (re)send to loss=4    (1) 
Min delay from loss to resend=1    (2) 
Max delay from loss to resend=6    (3) 

As one can see from point (1) a message can be lost after a 

maximum of 4 tu are elapsed from the send/resend message 

operation. Moreover, following a loss event, the consequent 

timeout event is fired after 1 to 6 tu (points (2) and (3)). The 

minimal delay of 1 tu occurs when the loss event delays of its 

maximum and the timeout (t1 or t4) fires at its earliest time. The 

maximum delay of 6 tu happens when the loss event occurs 

immediately (t12 or t14 fires after 0 tu) and the consequent timeout 

event fires at its latest time. In the light of above discussion, the 

simulation experiments confirmed that the time interval [5,6] of 

timeout transitions t1 and t4 is correctly established. 

7. CONCLUSIONS 
This paper describes an experience about managing conflicts in 

PDEVS. As an example, a mapping of Time Petri Nets (Merlin & 

Farber, 1976) on to PDEVS is proposed, which permits modelling 

and simulation of communication protocols or embedded real-time 

systems. Experiments were conducted using ActorDEVS, a minimal 

flexible and efficient agent-based framework developed in Java. 

Owing to its underlying actor-based framework, ActorDEVS can 

work with different control engines. For example, both standard 

behaviour of (flattened) PDEVS and a particular control structure 

suited to conflict management were implemented.  

The following points emerged from the experience which affect 

PDEVS operation: 

it is wise to not anticipate execution of the output function 

when the confluent function is up to be invoked. Rather the 

matter should be left to the semantics of the confluent function 

itself

it is convenient to not stop time advancement in states when an 

external event triggers a self-loop transition 

it is useful for an atomic component to possibly send messages 

to itself. 

The described work is being extended in the following 

directions:

automating the construction of ActorDEVS coupled models 

corresponding to TPN models expressed in XML (Billington et 

al., 2003) 

mapping in ActorDEVS other time-extended Petri net 

formalisms, possibly with modularity constructs (e.g. 

supporting an abstract transition notion which can be refined 

with a subnet) and high-level concepts (tokens as colours) 

using ActorDEVS for modelling and simulation variable 

structure systems (Hu et al., 2005)(Cicirelli et al., 2007b) 

experimenting with ActorDEVS in distributed simulations. The 

framework is being ported to distributed contexts where the 

transport layer can be either Java Socket, Java RMI or 

HLA/RTI (Cicirelli et al., 2007a). 

REFERENCES
Agha, G. (1986). Actors: A model for concurrent computation in 

distributed systems, Cambridge, MIT Press. 

Berthomieu B. and M. Diaz (1991). Modelling and verification of 
time dependent systems using time Petri nets. IEEE Trans. 
Software Eng., 17(3):259-273.

Billington J., S. Christensen, K. van Hee, E. Kindler, O. Kummer, 
L. Petrucci, R. Post, C. Stehno, and M. Weber (2003). The 
Petri net markup language: concepts, technology, and tools. 
In Proc. of the 24th Int. Conf. on Application and Theory of 
Petri Nets, LNCS 2679, pages 483–505. Springer. 

Cicirelli F., A. Furfaro and L. Nigro (2006). A DEVS M&S 
framework based on Java and actors. In Proc. of 2nd European 
Modelling and Simulation Symposium (EMSS 2006), pp. 337-
342.

Cicirelli F., A. Furfaro, A. Giordano and L. Nigro (2007a). An 
agent infrastructure for distributed simulations over HLA and 
a case study using unmanned aerial vehicles. In Proc. of 40th

Annual Simulation Symposium, IEEE Computer Society 
Press, pp. 231-238, March, Norfolk (VA). 

Cicirelli F., A. Furfaro, L. Nigro and F. Pupo (2007b). A 
component-based architecture for modelling and simulation 
of adaptive complex systems. 21st European Conference on 
Modelling and Simulation (ECMS’07), 4-6 June, Prague.

Hu X., B.P. Zeigler and S. Mittal (2005). Variable structure in 
DEVS component-based modelling and simulation. 
Simulation, 81(2):91-102. 

Gamma E., R. Helm, R. Johnson, and J. Vlissides (1995). Design 
Patterns. Addison-Wesley. 

Glinsky E. and G. Wainer (2005). Devstone: a benchmarking 
technique for studying performance of devs modelling and 
simulation environments. In 9th IEEE Int. Symposium on 
Parallel and Distributed Simulation and Real-Time 
Applications, pp. 265-272. 

Himmelspach J. and A.M. Uhrmacher (2006). Sequential 
processing of PDVES models. In Proc. of 2nd European 
Modelling and Simulation Symposium (EMSS 2006), pp. 239-
244.

Kim K., W. Kang, B. Sagong and H. Seo (2000). Efficient 
distributed simulation of hierarchical DEVS models: 
transforming model structure into a non-hierarchical one. In 
Proc. of the 33rd Annual Simulation Symposium (ANSS’00),
IEEE Computer Society, pp. 227-233. 

Merlin P. and D. Farber (1976). Recoverability of communication 
protocols – implications of a theoretical study. IEEE 
Transactions on Communications, 24(9):1036–1043. 

Murata T. (1989). Petri nets: properties, analysis and applications. 
Proc. of the IEEE, 77(4), pp. 541-580. 

Shaw M. and D. Garlan (1996). Software architecture: perspective 
on an emerging discipline. Prentice-Hall. 

Vangheluwe H.L. (2000). DEVS as a common denominator for 
multi-formalism hybrid systems modelling. In Andras Varga, 
ed., IEEE Int. Symposium on Computer-Aided Control System 
Design, pp. 129-134, IEEE Computer Society Press, 
September, Anchorage, Alaska. 

Zeigler B.P. and H.S. Sarjoughian (2003). Introduction to DEVS 
modelling and simulation with Java: developing component-
based simulation models. http://www.acims.arizona.edu.

Zeigler B.P., H. Praehofer, and T.G. Kim (2000). Theory of 
modeling and simulation. 2nd Edition, New York, NY, 
Academic Press. 

ISBN # 1-56555-316-0 356 SCSC 2007




