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Abstract

We develop a method for finding approximate solutions to the continuous agent type principal-

agent problem when analytical methods are not available. The solution is calculated by solving

a discrete agent type version of the problem using sample average approximation and bootstrap-

ping. We show how a solution to the approximate problem can be used to derive a lower bound

and expected upper bound for the optimal objective function, and evaluate the error associated

with the approximation. Numerical examples illustrate convergence in the approximate solu-

tion to the true solution as the number of samples increases. This works yields a method for

obtaining some tractability in continuous type principal-agent problems where solutions were

previously unavailable.

Keywords: pricing; mechanism design; principal-agent models; sample average approximation

1 Introduction

In the principal-agent problem, the principal optimizes the terms of an exchange with an agent who

may have some private characteristic θ that is unknown to the principal. For example, the agent

∗Corresponding author. Email to: dsingham@nps.edu
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may have private demand θ for a product produced by the principal. While the exact value of θ

may be unknown to the principal, both parties know the distribution of θ across different agents.

The principal seeks to maximize her expected profit given uncertainty in θ by offering the agent

quantity q units of the product at total price t.

This paper studies the principal-agent problem when the distribution of θ is continuous over a

bounded range [θ, θ] with density f(θ). We refer to this setting as the “continuous problem” and the

setting where θ is a discrete random variable as the “discrete problem.” In the continuous problem,

the principal offers the agent contract functions q(θ) and t(θ), so the agent chooses the quantity

and price option depending on his private demand θ. In the discrete problem, the principal offers

an option (qm, tm) for each possible realization of the random variable θm,m = 1, . . . ,M according

to the revelation principle.

Many principal-agent results rely on the ability to derive analytical solutions for the contract

options. This paper explores the case where such analytical solutions are intractable either because

the formulation is too complex, or the space of possible values for θ is too large. For the continuous

problem, the solution can be found analytically for some specific functions f(θ). See Laffont and

Martimort (2009) for the foundations behind the continuous problem, and Singham and Cai (2017)

for a specific solution example. Performing optimization over a function space for q(θ) and t(θ)

is generally a difficult problem. This paper provides a method for bounding the optimal profit

and finding solution estimates for the continuous problem. This method can be used when the

density f(θ) is too complex to yield analytical solutions, or when f(θ) may not be available but

data samples of θ are present to estimate the distribution.

We refer to both the continuous problem formulation and its optimal objective value as Φ. We

approximate the continuous problem using an empirical distribution with M discrete samples from

f(θ) when M is very large. We call this discrete formulation and its optimal objective value ΦM .

ΦM can be solved numerically, but for arbitrarily large M becomes computationally intractable

due to the large number of decision variables and constraints. We show how a sample average

approximation (SAA) to ΦM , based on a smaller sample size N bootstrapped from the M samples,

yields an upper bound in expectation on ΦM . Call this SAA problem and its optimal objective

value Φ̃N . The solution to Φ̃N can be interpolated to provide a feasible solution which is a lower

bound to the continuous problem Φ. Without needing to solve ΦM , we show how a series of smaller
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Φ̃N problems can be used to bound the solution to ΦM which closely approximates the continuous

problem Φ.

Given recent advances in computing, optimization methods can be applied in new ways to

solve traditional contracting problems. Bertsimas and Thiele (2005) show how historical data can

be used to formulate linear programs to solve newsvendor formulations. Of particular interest is

the work by Cecchini et al. (2013) which formulates and solves bilevel nonlinear programs to solve

principal-agent problems numerically. The bilevel structure is apparent from the principal’s problem

incorporating the agent’s optimization over his set of possible actions. The authors motivate the

work by citing the limitations of the assumptions of the traditional principal-agent model, quoting

Lambert (2006) who argues that limitations of relying on closed-form results limit the type and

complexity of models that can be solved. Dempe (1995) originally suggested modeling the principal-

agent problem as a bilevel program, and Cecchini et al. (2013) construct a version of the ellipsoid

method for obtaining numerical solutions. This paper focuses on solving continuous principal-

agent problems, but there has also been recent work to expand the types of discrete problems

that can be solved using numerical methods. Cai and Singham (2018) developed a nonlinear

programming formulation to solve principal-agent problems when agents were subject to one of

multiple discrete demand distributions. The principal faces the adverse selection problem with

regards to the possible demand distribution and both the principal and the agent face stochastic

uncertainty within the distribution. Finally, Singham and Cai (2017) present the idea of using

sample average approximation for principal-agent models and show an example without formalizing

the reasoning. This paper aims to fully demonstrate and formalize this idea.

Straightforward sample average approximation methods cannot be directly applied to the con-

tinuous problem Φ in the usual way because the solution space of the discrete approximation ΦM

is fundamentally different from that of the continuous problem. The solution to Φ lies in a contin-

uous function space, while any discrete problem has a finite-sized solution space which depends on

the number of sampled values used. As N and M increase, the number of decision variables and

constraints increases in the principal-agent problem, and so the feasible space also changes and is

different from that of Φ. We construct ΦM as a way of compiling all discrete problems on the same

space, allowing us to invoke known SAA convergence properties. The main result is that we can use

an easily solvable discrete problem to obtain useful information about an intractable continuous
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problem.

Section 2 details the formulations for the continuous and discrete problems. Section 3 presents

the approximation problem and bounds. Section 4 presents numerical examples that demonstrate

convergence of the optimal objective value as the number of bootstrap samples increases. Section

5 concludes.

2 Formulation

Maskin and Riley (1984) establish the conditions for adverse selection to be studied in the principal-

agent setting, and show the nature of nonlinear pricing schemes for the principal using quantity

discounts. Burnetas et al. (2007) study asymmetric information between a supplier and a retailer

where there is uncertainty in the demand distribution and quantity discounts can be used to improve

the supplier’s profits. Babich et al. (2012) study contracting options with buyback between a

supplier and a retailer where the retailer has private knowledge of the demand for the product,

which can follow a discrete or continuous distribution. Our formulation models a similar setting

and focuses on the effect of agent demand uncertainty in the adverse selection problem without

considering a moral hazard in terms of agent effort, though we note the principal can can balance

investing in monitoring both demand and effort to improve profits (Kung and Chen 2012).

First, we describe the continuous problem and the standard assumptions made. See Appendix

3.1 of Laffont and Martimort (2009) for a complete reference on continuous principal-agent prob-

lems. Let θ be a bounded continuous random variable for the demand of the agent on [θ, θ] with

bounded density f(θ). The principal faces a nonnegative, differentiable, increasing cost function

s(q) for producing q units of the product. The agent has a value function v(q, θ) for receiving q

units of the product when his demand is θ. Standard assumptions include v(0, θ) = 0, and v(q, θ)

is nonnegative, twice-differentiable and convex in q, and increasing in q and θ. To ensure good

behavior of our sampling approximation, we also assume that the functions v(q, θ) and s(q) are

bounded over the space of q, θ ∈ [0, θ].

The principal’s objective is to offer the agent contract functions (q(θ), t(θ)) that maximize her

expected profit E[t(θ) − s(q(θ))] with respect to the random variable θ. Let the information rent

(excess utility to the agent) be defined as ∆(θ) ≡ v(q(θ), θ) − t(θ). We adopt the convention to
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rewrite the decision variables for the principal using (q(θ),∆(θ)) instead of (q(θ), t(θ)). Then, the

principal’s problem for a continuous demand distribution is

Φ = max
{q(θ),∆(θ)}θ∈[θ,θ]

θ∫
θ

[v(q(θ), θ)−∆(θ)− s(q(θ))] f(θ)dθ (2.1)

subject to ∆(θ) = 0 (IRθ)

∆(θ) ≥ ∆(θ′) + v(q(θ′), θ)− v(q(θ′), θ′) θ, θ′ ∈ [θ, θ], θ′ ≤ θ (ICθθ′)

q(θ) ≥ q(θ′) θ, θ′ ∈ [θ, θ], θ′ ≤ θ (MONθθ′).

We call the optimal profit value to the continuous demand problem Φ, and abuse notation and

also refer to this formulation as Φ. The optimal profit is a probability-weighted integral over the

possible demand values, where the profit to the principal t(θ)−s(q(θ)) is rewritten using the utility

function v(q(θ), θ) and information rent ∆(θ). The optimization occurs over the space of almost

everywhere (a.e.) differentiable functions q(θ) and ∆(θ) on the domain [θ, θ].

It is known that the principal can restrict herself to contracts that are incentive feasible, which

refers to two types of constraints needed to ensure optimality given asymmetric information. First

individual rationality constraints ensure the agents achieve nonnegative utility from participating,

i.e., ∆(θ) ≥ 0. The IRθ constraint ensures individual rationality is met for the smallest demand

agent θ (the information rent will always be zero for this agent), and ICθθ′ ensures information

rent is nonnegative for other values of θ. Second, the incentive compatibility constraints ICθθ′

ensure the agent of type θ prefers the contract designed for him more than those designed for other

types θ′ ≤ θ, i.e., v(q(θ), θ) − t(θ) ≥ v(q(θ′), θ) − t(θ′). Finally, it can be shown that q(θ) should

be increasing according to a monotonicity constraint MONθθ′ , and this combined with the ICθθ′

constraint implies that a local incentive compatibility check implies global incentive compatibility.

Suppose problem Φ does not yield an analytical solution, but M samples drawn from f(θ)

are available, either from a simulator or through observations of real demand. Without loss of

generality, assume samples θ1, . . . , θM are arranged in increasing order. In this case, we formulate

the discrete problem with these M samples using a sample average objective:
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ΦM = max
{qm,∆m}m=1,...,M

1

M

M∑
m=1

[v(qm, θm)−∆m − s(qm)] (2.2)

subject to ∆1 = 0 (IR1)

∆m ≥ ∆m−1 + v(qm−1, θm)− v(qm−1, θm−1) m ∈ 2, ...,M (ICm,m−1)

qm ≥ qm−1 m ∈ 2, ...,M (MONm,m−1).

Each sample θm, m = 1, . . . ,M , has empirical weight 1/M . The constraint set is formed

from these sampled θm values. The size of the decision variable space is now finite (qm,∆m,m =

1, . . . ,M), and needs to be no larger than the space of possible demand values according to the

revelation principle. We call the discrete formulation (2.2) and its optimal profit solution ΦM . The

discrete problem is often solvable using a nonlinear or mixed-integer nonlinear solver, for example,

when v(qm, θm) −∆m − s(qm) is concave. In Cai and Singham (2018), a more complex version of

this formulation is solved with multiple possible discrete demand distributions.

While taking a large sample M and solving ΦM may yield a promising approximation to Φ,

there are some technical challenges to showing directly that the optimal solution of the sample

average problem converges to that of the continuous problem. Unlike in standard sample average

approximation methods, the decision variable space increases as M increases. The number and

exact form of the constraints also increases and changes with increasing M . Finally, the discrete

problem solution yields a sequence of contract points (qm,∆m), and this is not a solution to the

continuous problem. The next section presents an approximation method for addressing these

challenges.

3 Approximate Problem Formulation

3.1 Large M-problem and bootstrap

Recalling the assumptions on boundedness for the terms in the objective functions of Φ and ΦM ,

we note the objective function of ΦM is a Monte Carlo approximation of the integral objective

function in Φ. The error, for a fixed q(θ),∆(θ), between the objective in Φ and that of
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1

M

M∑
m=1

v(q(θm), θm)−∆(θm)− s(q(θm)) (3.1)

is O(1/
√
m). The objective profit function (3.1) converges uniformly to the objective function in

Φ because of a.e. differentiability and boundedness of the included terms. Establishing concretely

the convergence of the optimal objective function value in ΦM to the optimal value of Φ is outside

the scope of this paper and relies on functional law of large numbers results, but we know that a

Monte Carlo approximation for Φ using ΦM for a given solution q(θ),∆(θ) has error O(1/
√
m).

We fix a large sample size M for which we believe the error in the continuous objective function

using a discrete approximation for the distribution is sufficiently small.

While M may be large enough to provide a close approximation to Φ, the discrete problem may

not be computable directly if there are too many samples. The numerical results at the end of the

paper will give an idea of how large the sample size can be while still having reasonable run times.

It is usually much easier to generate the M samples than to solve the corresponding optimization

problem ΦM . We next derive bounds for ΦM using a bootstrap formulation. Take N empirical

samples θ̃1, . . . , θ̃N with replacement from the M samples to solve problem Φ̃N in (3.2), Again,

assume that the samples θ̃1, . . . , θ̃N are sorted in increasing order. We assume N < M and Φ̃N is

solvable numerically. The bootstrap formulation is

Φ̃N = max
{q̃n,∆̃n}n=1,...,N

1

N

N∑
n=1

[
v(q̃n, θ̃n)− ∆̃n − s(q̃n)

]
(3.2)

subject to ∆̃1 = 0 (IR1)

∆̃n ≥ ∆̃n−1 + v(q̃n−1, θ̃n)− v(q̃n−1, θ̃n−1) ∀n = 2, ..., N (ICn,n−1)

q̃n ≥ q̃n−1 ∀n = 2, ..., N (MONn,n−1).

The decision variables q̃n, ∆̃n correspond to the bootstrap samples θ̃n. We next show how

solving Φ̃N yields bounds on Φ and ΦM .
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3.2 Lower bound for Φ

A feasible lower bound for Φ can be constructed using a solution to Φ̃N . This lower bound solution,

(q̂(θ), ∆̂(θ)), can be constructed by using the points of the discrete solution to Φ̃N as a skeleton:

q̂(θ) =


0, θ ≤ θ < θ̃1

q̃n−1, θ̃n−1 ≤ θ < θ̃n, n = 2, . . . , N

q̃N , θ̃N ≤ θ < θ

∆̂(θ) =


0, θ ≤ θ < θ̃1

∆̃n−1 + v(q̃n−1, θ)− v(q̃n−1, θ̃n−1), θ̃n−1 ≤ θ < θ̃n, n = 2, . . . , N

∆̃N + v(q̃N , θ)− v(q̃N , θ̃N ), θ̃N ≤ θ < θ.

Proposition 3.1. The solution (q̂(θ), ∆̂(θ)) is feasible for Φ.

Proof. The solution (q̃n, ∆̃n)n=1,...,N is feasible for Φ̃N , and q̂(θ), ∆̂(θ) takes the same values on the

discrete skeleton θ = θ̃n as Φ̃N . By inspection, we see that q̂(θ) is nonnegative and monotonically

increasing.

It remains to show that ∆̂(θ) is increasing and meets the ICθθ′ constraint for all θ′ < θ. Recall

the assumption that v(q, θ) is increasing in θ and q. Thus, ∆̂(θ) is increasing on the points of

the discrete skeleton. ∆̂(θ) is also increasing within each interval [θ̃n−1, θ̃n], and does not exceed

∆̃n = ∆̂(θ̃n) because of the ICn,n−1 constraint. Thus, ∆̂(θ) is increasing.

To show global incentive compatibility, we need to show local incentive compatibility. We show

that for any θa, θb ∈ [θ̃n−1, θ̃n] with θa < θb, the ICθaθb constraint is met. Write the following:

∆̂(θa) = ∆̃n−1 + v(q̃n−1, θa)− v(q̃n−1, θ̃n−1)

∆̂(θb) = ∆̃n−1 + v(q̃n−1, θb)− v(q̃n−1, θ̃n−1).

To prove incentive compatibility, we need to show

∆̂(θb) ≥ ∆̂(θa) + v(q(θa), θb)− v(q(θa), θa).
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Substituting for ∆̂(θa) and ∆̂(θb) yields:

∆̃n−1 + v(q̃n−1, θb)− v(q̃n−1, θ̃n−1) ≥ ∆̃n−1 + v(q̃n−1, θa)− v(q̃n−1, θ̃n−1) + v(q(θa), θb)− v(q(θa), θa)

v(q̃n−1, θb) ≥ v(q̃n−1, θa) + v(q(θa), θb)− v(q(θa), θa)

v(q̃n−1, θb) ≥ v(q̃n−1, θa) + v(q̃n−1, θb)− v(q̃n−1, θa)

All terms canceling yields the result.

Thus, the solution to any problem Φ̃N yields a feasible lower bound solution (q̂(θ), ∆̂(θ)) for Φ.

3.3 Upper bound in expectation for ΦM

We use sample average approximation to find an upper bound in expectation for ΦM . First, we

show how the solution to Φ̃N can be used to find a feasible solution to ΦM . Consider the following

solution to (q̂m, ∆̂m) to ΦM based on the solution to Φ̃N :

q̂m =


0, θ ≤ θm < θ̃1

q̃n−1, θ̃n−1 ≤ θm < θ̃n, n = 2, . . . , N

q̃N , θ̃N ≤ θm < θ,

(3.3)

∆̂m =


0, θ ≤ θm < θ̃1

∆̃n−1 + v(q̃n−1, θm)− v(q̃n−1, θ̃n−1), θ̃n−1 ≤ θm < θ̃n, n = 2, . . . , N

∆̃N + v(q̃N , θm)− v(q̃N , θ̃N ), θ̃N ≤ θm < θ.

(3.4)

The solution q̂m, ∆̂m is feasible for ΦM following similar reasoning to that of Proposition 3.1.

Let m(θ̃n) be the index m of the ordered sample (θ1, . . . , θM ) that corresponds to the sample θ̃n,

so θm(θ̃n) = θ̃n. SAA often refers to optimization using a function that is the sample average

approximation of an expectation. The sample average approximation to ΦM using samples θ̃n can
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be written as:

Φ̃M = max
{qm,∆m}m=1,...,M

1

N

N∑
n=1

[
v(qm(θ̃n), θ̃n)−∆m(θ̃n) − s(qm(θ̃n))

]
(3.5)

subject to ∆1 = 0 (IR1)

∆m ≥ ∆m−1 + v(qm−1, θm)− v(qm−1, θm−1) ∀m = 2, ...,M (ICm,m−1)

qm ≥ qm−1 ∀m = 2, ...,M (MONm,m−1).

The goal is to show that as the bootstrap samples N increases, the solution to Φ̃N approaches

the solution for ΦM . Formulation Φ̃M will be used to demonstrate how the solution to Φ̃N can be

represented as a solution to ΦM in the next proposition. Thus, the solution to the solvable problem

Φ̃N can be used to approximate ΦM using Φ̃M to place all instances of Φ̃N on the same feasible

space as ΦM .

Proposition 3.2. The solution (q̂m, ∆̂m) based on the solution to Φ̃N is optimal for Φ̃M .

Proof. Formulation Φ̃M has the same constraint set as ΦM , but the objective function only

depends on the sampled θ̃n values and the corresponding decision variables. Formulation Φ̃M using

(q̂m, ∆̂m) and Φ̃N using (q̃n, ∆̃n) have the same objective function value, but the feasible region of

Φ̃M is a subset of the feasible region of Φ̃N because the IC and MON constraints must hold for

all M original samples rather than just the N bootstrap samples. Because the optimal solution to

Φ̃N can be used to construct a feasible solution (q̂m, ∆̂m) to Φ̃M with the same objective function

value, (q̂m, ∆̂m) is optimal for Φ̃M .

Proposition 3.2 shows how we can use the solution to Φ̃N to find the solution to Φ̃M . This is

important because we can use properties of SAA to show that the solution to Φ̃M converges to

that of ΦM as N increases. The next results formalizes this and presents the key idea needed to

establish our bounds for ΦM using Φ̃N .

Theorem 3.3. ΦM ≤ E[Φ̃N ] and Φ̃N → ΦM as N →∞.

Proof. The result follows from standard SAA analysis (see 5.1 of Shapiro et al. (2009) for an

overview). First, the discrete problem Φ̃M is a SAA for ΦM using the same decision variables and

constraints, and the objective function of Φ̃M uniformly converges to that of ΦM , so Φ̃M → ΦM
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as N → ∞. By Proposition 3.2, solving Φ̃N yields the optimal value of Φ̃M . So as N → ∞,

Φ̃N = Φ̃M → ΦM .

Next, we establish E[Φ̃N ] as an upper bound for ΦM . Let p(q,∆, θ) = v(q, θ) − ∆ − s(q) be

the profit function in the objective summation. Let the feasible space of Φ̃M and ΦM be ΩM . To

simplify notation in what follows, we omit the full expression of indices in the decision variables so

rather than (qm,∆m)m=1,...,M ∈ ΩM we simply use qm,∆m ∈ ΩM . Define

ΦM = max
qm,∆m∈ΩM

1

M

M∑
m=1

p(qm,∆m, θm) = max
qm,∆m∈ΩM

Eθ̃n

[
1

N

N∑
n=1

p(qm(θ̃n),∆m(θ̃n), θ̃n)

]

because θ̃n is sampled directly from θm. Note that for any candidate solution (q̄m, ∆̄m) ∈ ΩM , we

have

1

N

N∑
n=1

p(q̄m(θ̃n), ∆̄m(θ̃n), θ̃n) ≤ max
qm,∆m∈ΩM

1

N

N∑
n=1

p(qm(θ̃n),∆m(θ̃n), θ̃n) = Φ̃M . (3.6)

Taking expectations of (3.6) with respect to θ̃n and choosing the candidate solution to maximize

the left hand side yields

max
q̄m,∆̄m∈ΩM

Eθ̃n

[
1

N

N∑
n=1

p(q̄m(θ̃n), ∆̄m(θ̃n), θ̃n)

]
≤ Eθ̃n [Φ̃M ]. (3.7)

Note that the left hand side of (3.7) is ΦM after changing notation. Also, we have Φ̃M = Φ̃N

from Proposition 3.2. Substituting into (3.7) yields ΦM ≤ E[Φ̃N ] which gives the result.

3.4 Algorithm

The reason for choosing a set of M fixed samples is to establish a fixed space for mapping problem

Φ̃N to Φ̃M and ΦM . Operating over the same space is critical in establishing a fixed constraint

region as N increases and showing the convergence of a sequence of smaller SAA Φ̃N problems

to ΦM . By solving the smaller problem Φ̃N , we can generate a lower bound for Φ, and an upper

bound in expectation for ΦM .

The error of estimation using a sample average approximation with N samples is O(1/
√
n). As

N increases, E[Φ̃N ] → ΦM . Because the difference in Φ and ΦM is O(1/
√
m) and the error in
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the sample average estimator is O(1/
√
n), it is likely that the error in E[Φ̃N ] overwhelms the error

between ΦM and Φ when N is relatively small compared to M . Thus, the solution to Φ̃N yields

a lower bound and an approximate upper bound in expectation for Φ. We suggest the following

algorithm leveraging these results to estimate Φ:

1. Sample M values of θ from f(θ), sort in increasing order as θm,m = 1, . . . ,M .

2. Sample N values of θm with replacement ordered increasingly as θ̃n, n = 1, . . . N .

3. Solve Φ̃N using the samples from Step 2.

4. Generate the lower bound solution (q̂(θ), ∆̂(θ)) from Φ̃N with objective value Φ.

5. Repeat Steps 2-4 multiple times to estimate E[Φ̃N ] and collect multiple lower bounds.

6. Calculate the gap between the estimate of E[Φ̃N ] and the largest lower bound solution Φ.

Increase N and repeat Steps 2–5 until the estimated optimality gap is small.

We note that there is much literature on estimating optimality gaps using the sample average

approximation method to choose sample sizes N and the number of replications needed to estimate

E[Φ̃N ] (see, for example, Bayraksan and Morton (2006), Bayraksan and Pierre-Louis (2012)).

4 Numerical Results

We demonstrate the performance of the algorithm with two examples. The first uses a past imple-

mentation of the principal-agent problem where an analytical solution to the continuous demand

problem has been derived. The second example is a different implementation where the true solu-

tion is not known. We construct the formulation using Pyomo (Hart et al. 2011, 2012) and employ

the nonlinear solver IPOPT (Wächter and Biegler 2006) for generating solutions. The computing

time for solving the optimization problems using a single processor was minimal, ranging from near

instantaneous for small N , to less than 10 minutes to solve Φ̃N for N=100,000, including the time

to numerically integrate to calculate the lower bound.

4.1 Example 1: A Carbon Capture Example with Known Solution

In the first example, we use an implementation based on past work solving principal-agent models

from Singham and Cai (2017). In this context, the agent is a power plant who emits CO2 into

12



the atmosphere and demands the service of the principal, who is a CO2 storage operator. The

principal offers a menu of options to the agent, with each option corresponding a different demand

value θ from a continuous distribution. The agent demands θ units of CO2 storage based on his

anticipated power usage. If the agent does not choose to store any carbon, he will pay a penalty

p(x) = α
2x

2, x ≥ 0 and p(x) = 0, x < 0 for emitting x units of CO2 to the atmosphere. If the agent

participates and purchases q units of storage, he has a linear cost γq to capture CO2 emissions

before sending them to storage. We define the value function for the agent as

v(q, θ) = p(θ)− p(θ − q)− γq,

which is the penalty avoided by participating, minus the penalty actually paid on excess emissions

over the amount stored, and minus the capture cost. The principal has a linear cost s(q) = βq

associated with delivering q units of CO2 storage. Let the density of θ, f(θ), be uniform over

[θ, θ]. The optimal contract offering for the principal was derived in Singham and Cai (2017)

and employs a threshold policy. If agent demand is less than θc, the principal offers the agent a

shutdown/non-participation option, while for demand values larger than θc the principal will offer

a positive quantity and price to the agent. This threshold is derived as

θc = max

{
θ,

1

2

(
θ +

γ + β

α

)}
,

and the optimal contract to offer the agent is

q∗(θ) =

 0 if θ < θc

2θ − θ − γ+β
α if θ ≥ θc,

(4.1)

∆∗(θ) =

 0 if θ < θc

α(θ2 − θ2
c )− (αθ + γ + β)(θ − θc) if θ ≥ θc.

(4.2)

Thus when θ > θc, the quantity offered the agent is linear with respect to θ and the information

rent is quadratic with respect to θ. For θ < θc, the principal chooses not to service the agent

because the demand is too low. Relying on our past research on pricing carbon capture and storage
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systems, (Cai et al. 2014, Singham et al. 2015), the model parameters are set as follows. The range

of values for θ is [θ, θ] = [0.3, 1] Megatonnes of CO2 based on a sample of publicly available power

plant emissions data. The capture cost for the agent is γ =$45/tonne, and the storage cost for the

principal is β =$13/tonne. Assuming a carbon emissions tax of approximately $100/tonne when

θ = 0.7 Megatonnes, the penalty function is calibrated so that α = 2.86× 10−4. The end result is

that the optimal expected profit to the principal using (4.1) and (4.2) is $17.25 million.

We can use this known optimal result to assess the quality of the algorithm proposed in Section

3.4. Table 1 shows the results for this example. Let the total discrete sample size be M=1,000,000.

The problem Φ̃N is solved using 100 replications for each tested value of the bootstrap sample size

N . The major improvement over the results in Singham and Cai (2017) is that the greatest lower

bound from the 100 replications is now reported so the optimal profit is now clearly bounded on

both sides. As N increases, we see the bounds converging around the true optimal solution. The

intuition for the SAA solution being an upper bound is that the principal is assuming less variability

in demand using the sampled discrete distribution rather than the real continuous distribution, and

hence overestimates her expected profit.

Table 1: Uniform demand distribution results for the CO2 example using M=1 million. For each
sample size N we solve and collect 100 replications from different bootstrap samples. The best
lower bound, the expected upper bound, and the standard error of the upper bound estimates are
presented.

N Lower Bound Upper Bound (E[Φ̃N ]) Std Err of Φ̃N

10 16.277 24.911 6.776
100 16.997 18.750 1.976

1,000 17.211 17.538 0.610
10,000 17.237 17.291 0.161
100,000 17.248 17.260 0.059

∞ 17.250 —

The bounds are relatively tight for N=100,000. Recall that for small enough N the error in the

bounds will outweigh the error in ΦM with respect to Φ. If N becomes large, the bounds will likely

converge around ΦM which will differ from Φ depending on the size of M . Given good bounds

on the optimal expected profit, we next turn to the quality of the contract solutions delivered to

estimate q and ∆.

Figure 1 plots the optimal contract values computed for a single replication of the experiment
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Figure 1: Optimal contract values (q̃N , ∆̃N ) calculated for Example 1 (uniform distribution for
θ) using single replications of different values of N . The red line is the analytical solution to the
continuous problem.

for each value of N . The code produces optimal values of q̃N and ∆̃N given a bootstrap sample

θ̃n, n = 1, . . . , N . We observe that as N increases, the contract values appear to “converge” to

the known optimal solution for the continuous formulation, though as mentioned in Section 1

establishing functional convergence is difficult due to the discrete problem operating on a different

space from the continuous problem. However, the discrete solution can be interpolated to see the

similarity in the solution structure to the continuous problem.

The left plot of Figure 1 displays the optimal quantity functions for the discrete problem for

different values of N , and the solution approaches the piecewise linear solution (red line). The right

plot shows the optimal information rents, the solutions similarly approach the piecewise quadratic

solution. In addition to the optimal expected profit bounds converging as N increases, this example

demonstrates that the optimal contracts offered from the bootstrap may resemble the true optimal

in structure. Thus, the solution of a single problem Φ̃N can provide insight into the nature of the

solution to the continuous problem.
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4.2 Example 2: Triangular distribution

We can demonstrate algorithm performance for a more complicated formulation where analytical

solutions may not be readily obtainable. The goal is to demonstrate that the solution can converge

for more complicated functions. Consider the following arbitrary value and cost functions

v(q, θ) = αq(1− e−ηθ − q) s(q) = βq2 − γq.

Furthermore, let the demand density of θ be f(θ) = Tri(θ, θ̂, θ), which is the triangular density

function with minimum θ, mode θ̂, and maximum θ. We arbitrarily set the coefficients to be

α = 200, η = 2, β = 10, γ = 3. For the triangular distribution, we use θ = 0.3, θ̂ = 0.8, θ = 1. Table

2 displays the experimental results varying the value of N . We again see as N increases the lower

bound increases and the upper bound estimate decreases, with the variation in the upper bound

estimate decreasing.

Table 2: Alternative example using a triangular density function. The best lower bound, the
expected upper bound, and the standard error of the upper bound estimates are presented.

N Lower Bound Upper Bound (E[Φ̃N ]) Std Err of Φ̃N

10 18.720 23.240 2.251
100 19.038 19.780 0.884

1,000 19.087 19.269 0.243
10,000 19.107 19.136 0.084
100,000 19.112 19.127 0.026

Figure 2 displays the solutions for the optimal quantity and information rent menus for random

realizations of Φ̃N . While we do not know the exact structure of the optimal solution, we observe

as N increases the solutions may approach a smooth function of θ, implying that the underlying

optimal contract has some structure. This example again lends hope that a single solution of the

bootstrap problem for large enough N and M may allow us to closely bound the optimal profit and

deliver an optimal solution that can be interpolated to be similar in shape to the true optimum.
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Figure 2: Optimal contract values (q̃N , ∆̃N ) calculated for the triangular distribution example.

5 Conclusion

We present a method for computing approximate solutions to the continuous principal-agent prob-

lem when analytical solutions are not available. We rely on solutions to smaller discrete problems

that are easily solvable computationally to provide bounds for the solution to the continuous prob-

lem. These discrete problems provide lower bound solutions to the continuous problem, and upper

bounds in expectation to a large discrete problem that closely approximates the continuous prob-

lem. In addition to bounding the objective function value, the solutions from the discrete problem

can be used to provide intuition about the structure of the continuous solution.

This method can also be used for solving the discrete agent-type problem when the number

of agent types is too large to be solved computationally. We quantify the error associated with

the approximations, and present numerical results that illustrate how the bounds improve as the

sample size used in the approximate problem is increased. In the case where f(θ) is not available

but data samples are present, then the approximate problem becomes the actual problem to be

solved. Thus, this method can be used for analysis of continuous type principal-agent problems

that previously were intractable.
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Modeling and Theory . SIAM.

Singham, D.I., W. Cai. 2017. Sample Average Approximations for the Continuous Type Principal-Agent

Problem: An Example. W. K. V. Chan, A. D’Ambrogio, G. Zacharewicz, N. Mustafee, G. Wainer,

E. Page, eds., Proceedings of the 2017 Winter Simulation Conference.. Institute of Electrical and

Electronics Engineers, Inc., Piscataway, New Jersey.

Singham, D.I., W. Cai, J.A. White. 2015. Optimal Carbon Capture and Storage Contracts using Historical

CO2 Emissions Levels. Energy Systems 6(3) 331–360.
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