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Abstract

In this article, the author argues that simulation is an undervalued technique to draw 
conclusions about empirical phenomena in economics. If the aim is to learn about 
the behavior of socioeconomic systems of interest, simulations have a variety of 
advantages relative to alternatives such as mathematical (pen and paper) modeling and 
laboratory experimentation. Therefore, the author has a good prima facie reason to 
exploit this method more fully. The author proceed by demonstrating that frequently 
heard arguments against simulations are wrong, and finally the author discusses a 
number of more specific empirical phenomena, criticisms of one type of simulation 
methodology used in economics.
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Although the number of experiments performed by economists is increasing every 
year, and it may be the case that “experimentalism” has finally reached economic 
methodology (Reiss, 2008, chap. 5), it is still true that one cannot subject whole econo-
mies to experimental control and that many smaller scale economic phenomena are 
inaccessible experimentally for ethical, technological, and other practical reasons. It is 
also true that observational studies in economics tend to suffer from what has been 
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called the “problem of confounders” (e.g., by Steel, 2004)—the researcher’s inability 
to distinguish causal hypotheses by empirical means. Does this mean that those parts 
of the economy that are characterized by such difficulties for traditional empirical 
methods are inscrutable to rational evidence-based investigation?

My answer is “no,” and in this article, I argue that computer simulations can help 
economics on its way to a full-fledged experimental science. The reason is simple: 
some computer simulations are experiments. Of course, this does not mean that draw-
ing valid conclusions about simulation models or using these conclusions to predict 
the behavior of real economies is a trivial business, but it does provide a strong reason 
why economists should be willing to explore the potential of simulation techniques.

My plea proceeds as follows: After briefly discussing various attempts to define 
computer simulation and giving my own proposal, I motivate my worry by showing 
that simulations are an underemployed method in economics. At least prima facie this 
seems odd as simulations are used far more frequently in other domains that share 
many relevant aspects with the subject matter of economics, such as complexity and 
lack of experimental control. I therefore discuss an attempt that has been made to 
explain why economists eschew simulation, but it is one thing to explain why a group 
of researchers rejects a method and quite another to give reasons for holding that they 
are justified in doing so. I discuss some arguments that could be made to that effect and 
show that they are unfounded. Finally, I introduce some methodological challenges 
faced by the simulationist and discuss proposals to overcome them.

What is a (Computer) Simulation?
Two definitions of (computer) simulation1 dominate the methodological and philo-
sophical literature today:

(a) � Simulation refers to the use of a computer in solving an equation that is 
not or cannot be solved analytically (see Frigg & Reiss, 2009, “narrow 
sense”; Humphreys, 1991; Küppers, Lenhard, & Shinn, 2006; Pritzker, 
1979; Troitzsch, 1997, §1.1.; Winsberg, 2001)

(b) � Simulation is the mimicking of one process by another (computer) process 
(see Hartmann, 1996; Humphreys, 2004; Korb & Mascaro, in press; Pritzker, 
1984; Troitzsch, 1997, §1.2; Zeigler, 1976)

Definition (a) has the advantage that it describes the notion that was relevant when 
simulations were first introduced in the sciences. An important factor in the original 
development of simulation techniques was that methods were sought to circumvent 
problems with the analytical intractability of equations describing nonlinear phenom-
ena in the context of research into thermonuclear weapons at the Los Alamos National 
Laboratories (Galison, 1996; Keller, 2003). Today, however, the notion is more 
broadly used and includes application to so-called cellular automata (see, for example, 
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Wainer, Liu, Dalle, & Zeigler, 2010) and agent- or individual-based models in which 
the solution of equations plays no or at best an attenuated role.

Definition (b) seems to be more topical in contemporary parlance. However, that 
definition applies exclusively to dynamical models, and simulations are often employed 
in the context of investigating static and abstract objects (Lehtinen & Kuorikoski, 
2007). The most important use of simulations in economics, for example, is still the 
examination of properties of statistical distributions in econometrics.

For the purposes of this article, I want to propose an alternative definition:

(c) � Simulations in economics explore the properties of computer-implemented 
models; they are aimed at drawing inferences about properties of a socio-
economic system or socioeconomic systems of interest

Definition (c) is neutral on the static versus dynamic issue. It points out that simu-
lations are used for a purpose—to learn about relevant aspects of an economy—but, 
for now, does not make explicit what kinds of inferences are made on the basis of 
simulations. I will say something more about this issue later.

The Dearth of Simulations in Economics
Economics is, to a large extent, a model-based science. Indeed, models pervade virtu-
ally all areas of economic inquiry. Naturally, theoretical models are the main engines 
of theoretical progress in economics, but models are just as important in applied areas, 
such as econometrics and economic policy. Even economic experiments usually 
(although not necessarily, see Guala, 2005, chap. 10) require models at some point or 
another.

Simulations, by contrast, are relatively rare in economics. It is certainly true that the 
number of publications citing simulations have become much more numerous in the 
past decades. In order to give some quantitative bite to this claim, I conducted a search 
on EconLit, a database of economic publications that covers some 400 journals, col-
lections, books, working papers, and PhD dissertations. Between 1969 and 2006, the 
number of publications that had “simulation” or “simulate” (and its declensions) in 
the title or abstract grew from less than 30 publications per year in the first decade to 
more than 900 publications per year in last decade covered, or by about 4.4% per year 
(see Chart 1).

However, this does not mean that simulations are also widely employed in the 
profession. Although the percentage of articles about simulations has also steadily 
risen (see Chart 2), the share of simulation articles among all articles is still below 
3%.2 This is exacerbated by the fact that on average more than four fifths of all papers 
publishing simulation results are in fact Monte Carlo experiments that study proper-
ties of statistical distributions (i.e., mathematical) and only indirectly economic phe-
nomena (Fontana, 2006).3
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Chart 1. Number of economics publications that had “simulation” or “simulate” in title or 
abstract
Data obtained from EconLit—www.aeaweb.org/econlit/

Chart 2. Percentage of economics articles about simulations
Data obtained from EconLit—www.aeaweb.org/econlit/
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This is, to say the least, odd if we consider the many advantages simulations have. 
Paul Humphreys, for example, writes (Humphreys, 2004):

Because of their increased computational power, simulations usually allow a 
reduction in the degree of idealization needed in the underlying model, idealiza-
tions that often must be made in analytical modeling to achieve tractability. 
Because they are free from many of the practical limitations of real experiments, 
simulations and numerical experiments allow more flexibility and scope for 
changing boundary and initial conditions than do empirical experiments. (p. 115)

Simulations, thus, are said to have advantages vis-à-vis mathematical models as 
well as laboratory experiments. On one hand, simulations allow a larger class of 
empirical phenomena to be modeled because they require less stringent idealizations. 
On the other hand, simulations are not subject to many of the practical limitations of 
real experiments, which are always costly, often unethical, and sometimes impossible 
for technological reasons.

The potential usefulness of simulations because of the first advantage can be illus-
trated by a complaint that Nancy Cartwright makes about mathematical models in eco-
nomics. She argues that an intended interpretation of many such models is a Galilean 
experiment, in which many causal factors are idealized away in order to focus on the 
operation of one factor all by itself (or a small number of factors by themselves). The 
problem is that (Cartwright, in press)

. . . most Galilean thought experiments have many more `unrealistic’ assump-
tions than those they should.  Again, this would not be a problem if these 
assumptions did not play a role in deducing the final results. But of course gen-
erally they do  - that is the point of including them in the first place. Just by 
inspection we can see that they are a necessary part of the deduction offered by 
the model. 

In these cases I say that the results of the model are overconstrained. All the con-
ditions sufficient to ensure that the model describes a Galilean experiment are 
met. So (pace mistakes in the driving principles) the results must be ones we 
would see in a real Galilean experiment. The problem is that the Galilean experi-
ment takes place in a very special and unusual setting. What we see is indeed the 
result of the cause acting on its own without impediment but it is a very special 
result that we cannot expect in other Galilean experiments. We know we cannot 
expect it because we can see by inspection that the description of the special set-
ting plays a necessary role in the derivation offered. So unrealistic assumptions 
that overconstrain the results are a problem for learning lessons that apply else-
where even if the model does function as a Galilean thought experiment.

Simulations are vastly more flexible than mathematical models in that they require 
fewer assumptions to produce useful results (Mitchell, 2009). Simulation can thus be 
used in order to ameliorate the problem of overconstraining assumptions, thereby 
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allowing the modeling of systems that are more Galilean in nature (and, at the same 
time, reaping the epistemic fruit that comes with Galilean experiments).

Advantages that simulations have relative to real experiments include the following:

•	 the possibility of precise replication (but see Axelrod, 1997)
•	 the possibility of varying parameters that cannot be varied in nature
•	 dramatically reduced costs (financial and ethical)
•	 improved speed of implementation

For the sake of completeness, one might also mention that simulations have some 
advantages vis-à-vis thought experiments proper.4 About them, Humphreys says (2004),

Indeed, many simulations are examples of what would have been, in techno-
logically more primitive times, thought experiments, as when one removes a 
planet from a planetary system to see how the orbits of the other planets are 
affected. The enormous flexibility and precision of simulation methods provide 
an opportunity to implement Gedankenexperiment in contexts providing much 
greater precision than is possible with traditional mental implementations, and 
they are free from the psychological biases that can affect even simple thought 
experiments. (pp. 115-116)

These various advantages relative to other methods provide at least a prima facie 
reason to expect simulations to play important roles on the economists’ methodologi-
cal landscape. Alas, this does not seem to be the case. The following section reports an 
attempt to explain this situation.

Why Do Economists Shun Simulations?
Simulations have various characteristics that appear to be desirable from the point of 
view of an economist who is interested in modeling real socioeconomics systems. 
However, simulations are, by and large, ignored by the community of economists. In 
a recent article, Aki Lehtinen and Jaako Kuorikoski (2007) have taken up the chal-
lenge to dissolve this seeming paradox. Formulating the paradox thus:

1.	 Simulation techniques are methods with desirable characteristics for economists
2.	 If methods have desirable characteristics, economists will employ them (with 

a high frequency)
3.	 Simulations are not used by economists (with a high frequency)

One can summarize Lehtinen and Kuorikoski’s (2007) article by saying that they 
dissolve the paradox by denying the first premises: Economists do not find the char-
acteristics of simulations desirable.
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Essentially (and paraphrasing), Lehtinen and Kuorikoski (2007) argue that econo-
mists pursue two desiderata with their model building practices: certainty and (a spe-
cific kind of) understanding. Simulation delivers neither. Simulation results are not as 
certain as results reached by mathematical deduction—we cannot (usually) check 
them step by step, a large part of the work is done by what remains a black box to the 
economist; simulations may introduce more artifacts as they, unlike mathematical 
deductions, are never entirely general, but rather function by computing the results 
for specific combinations of parameter values.

Moreover, although techniques for verifying simulation results are available, these 
techniques are experimental in nature and therefore lack the conviction achieved by 
purely deductive methods. Nor does deriving a result by computer simulation bestow 
us with the kind of understanding of the model system that comes with deducing 
theorem?

[T]he cognitive process of solving a model [analytically!] constitutes the under-
standing of the model, and only by understanding the (perfect) model can “the 
economics” of a given social phenomenon be understood. (Lehtinen & Kuorikoski, 
2007, p. 323)

Lehtinen and Kuorikoski (2007) then liken the type of understanding they argue 
economists seek to Philip Kitcher’s (and, one should add, Michael Friedman’s) account 
of understanding as unification by derivation from common argument patterns and 
point out that their project is descriptive, not normative:

However, we stress that this is strictly a descriptive claim, and that we in no way 
endorse Kitcher’s theory as a normatively cogent account of what good science 
should be like. Moreover, although Kitcher’s theory seems to be descriptive of 
economics in particular, we definitely do not wish to use it to defend main-
stream economics. (p. 324, emphasis original)

The same is probably true of the other desideratum, certainty.
Although one may or may not endorse the claim that certainty and that particular 

sense of understanding are desiderata that economists actually pursue, many reasons 
exist to doubt their normative cogency. Increased certainty is always bought at the 
expense of reduced scope. An agent who requires all his beliefs to be certain before 
asserting or acting on them asserts and acts on little indeed. At any rate, the certainty 
achieved by building models of the kind that economists prefer is chimerical. Although 
we know that our results are true, given the assumptions, we never know where the 
results hold once we leave the model world (see Cartwright, 2007, chap. 15). In other 
words, the high degree of certainty achieved by mathematically deducing a result from 
a set of assumptions is paid for by the high degree of uncertainty in using the result 
outside the model.
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Moreover, we questioned whether the understanding gained by going through the 
cognitive process of analytically solving a mathematical model is so useful and impor-
tant. Economists certainly accept and use the results derived by other economists with-
out always checking other researchers’ proofs themselves. Why should simulations 
not provide understanding also? Already in the 1960s it was argued that (Buneman & 
Dunn, 1965)

One encounters, at times, a prejudice against computer experiments. Partly, 
such prejudice is based on mathematical snobbery (the formal description of the 
skin effect in Bessel-functions of complex argument enjoys higher prestige than 
a few graphs showing how it actually goes!). But often one hears the complaint 
that a computer can at best say “this is how it happens” and never “this is why 
it happens.” The examples produced here should suffice to answer this com-
plaint. The mere fact that the computer was able to produce the “how” has, 
many times, told us the “why.” (p. 56; quoted from Keller, 2003, p. 208, empha-
sis original)

In the remainder of this article, I will therefore focus on defending simulations 
against those who accept that we can learn from experiments, but deny that simula-
tions are experiments or that we learn from simulations in essentially the same way as 
we learn from other kinds of experiments rather than on defending simulations against 
those who seek certainty and understanding found in analytically solving mathemati-
cal models.

Simulations as Experiments
Instead of defining an experiment and then showing that simulations fall under the 
definition as a special case, I want to show that the epistemology of simulation is 
essentially an experimental epistemology. Naturally, the kinds of systems in which 
simulations are run—models implemented on digital computers—differ in more or 
less significant ways from the kinds of systems on which, say, physical experiments 
are performed. In a second step, I will therefore argue that this difference does not 
provide an in-principle reason against regarding simulation results against which to 
test theoretical claims.

Scientific experimentation is a kind of systematic observation aimed at drawing 
inferences about certain phenomena of interest. Now, at this point already an impor-
tant distinction must be made. Sometimes these observations are of the phenomena of 
interest themselves. Observations, say, of our planetary system or of other galaxies are 
of this kind. Any inferences made about the systems responsible for these observations 
will, if true, automatically be true also of the systems responsible for the phenomena 
of interest because the two systems are the same. At other times, we observe one 
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system—a proximate or epistemically accessible system—in order to draw inferences 
about another system—the system we are ultimately interested in. For instance, we 
perform experiments on a sample to draw inferences about the underlying population; 
we observe the behavior of model animals to draw inferences about humans; we per-
form wind tunnel experiments to learn about flight behavior in the atmosphere. In 
these cases, we have two inferential steps: first, from the observation to the observed 
system and second, from the observed system to the system of interest.

A popular epistemology for the first kind of experimental inference is that of elim-
inating artifacts. According to this story, data—the observable outcomes of experi-
ments, measurements, and so on—are not only the common product of numerous 
causal factors, including the phenomenon of interest, but also many idiosyncratic fac-
tors such as the specific details of the experimental system, the state of the observer, 
and so on. Inferring from data to phenomena consists in disentangling what is a prop-
erty of the specific setup used to produce the observation and what is a property of the 
phenomenon of interest.

To give an example from social science, the difference in the test score achieved by a 
specific student before and after implantation of a new training program can be a data 
point, many of which are used to make inferences about the training program. The dif-
ference in test score may partly be due to the program, but partly also to factors of no 
interest to the experimenter, such as the student’s ability to concentrate on the morning 
of the test, additional training received outside school, and the student’s stage of intel-
lectual development. The phenomenon of interest in this case is the efficacy of the train-
ing program. Information about it must be extracted from the data, for example, by 
averaging over a large number of students and controlling for possible confounders. 
Importantly, no matter how correct the results are about the test population studied in the 
experiment, a second step is always involved when inferences are made about other 
populations. When an experimental result is free of artifacts in inferring about the system 
on which the experiment is performed, it is said to be internally valid. When it is free of 
artifacts in inferring about some other system or target, it is said to be externally valid.

Especially, when observations are made using scientific instruments, epistemic strat-
egies employed can be quite complex and involve calibration against known results, 
empirical examination of the equipment, triangulation (independent confirmation using 
different types of instrument), the elimination of or controlling for confounders, theo-
ries of the instrument, and various statistical techniques (see, for example, Bogen & 
Woodward, 1988; Franklin, 1986, 1990).

The literature on simulations distinguishes precisely the two mentioned inferential 
steps, and the strategies used to make the inferences reliable are analogous. Eliminating 
error in the first step is called verification and eliminating error in the second step is 
called validation. That is, a simulation result is said to be verified if it has been shown 
to be true of the model implemented on the computer. It is said to be validated if it is 
shown to be true of the target—the phenomenon or system of interest.
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For verification, Nigel Gilbert proposes the following techniques among others 
(Gilbert, 2008, pp. 39f.):

•	 Add assertions. If you know that variables must take some values and not 
others, check for valid values as the simulation runs and display a warning if 
the value is out of range

•	 Test with parameter values for known scenarios. If any scenarios exist for 
which the parameters and the output are known with some degree of cer-
tainty, test that the model reproduces the expected behavior

•	 Use corner testing. Test the model with parameter values that are at the 
extremes of what is possible and ensure that the outputs are reasonable

They can all be regarded as kinds of calibration techniques. Further,

•	 Observe the simulation, step by step. Run the code one line or one function at 
a time, observing how the values of the variables, parameters, and attributes 
change and checking that they alter in the expected way

•	 Use unit testing. Unit testing is an increasingly popular software engineering 
technique for reducing bugs . . . It consists of writing some test code to exer-
cise the program at the same time as you write the code itself. The idea is to 
develop the program in small, relatively self-contained pieces or units

These are part of the empirical investigation of the equipment. Grimm and Railsback 
(2005) also mention that “when software reliability is of utmost importance, it is com-
mon for two (or even more) teams to program the entire model independently and then 
compare both intermediate and final model results” (p. 291)—a way of triangulating 
results.

Testing whether the experimental system is a good model of the target is consider-
ably less well understood. Consequently, fewer off-the-shelf techniques aimed at estab-
lishing validity are available—in the literature both on experiments and on simulations. 
One promising account is based on a method well known to social scientists, process 
tracing (Steel, 2008). The main idea is that the mechanisms responsible for the behavior 
of the experimental system are uncovered and then compared with the mechanisms 
responsible for the behavior of the target, but only at those points where the two are 
most likely to differ. It is then judged that greater the similarity of configuration and 
behavior of entities involved in the mechanism at these key stages, the stronger the 
basis for the inference from experiment to target (Steel, 2008).

This is precisely the methodology of validation too. Part and parcel of the process 
of validating a simulation is the analysis of the behavior of submodels and subsequent 
comparison with known facts about the target—before the various submodels are put 
together and aggregate patterns emerge. Other techniques known from experimenta-
tion that are also used for simulation validation are the independent prediction of 
results not known or used when the simulation model was built, the elimination of 
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alternative hypotheses and sensitivity as well as robustness tests. The epistemology of 
simulation is the same as the epistemology of experiments (see Figure 1; the idea that 
experiments and simulations share an epistemology can also be found in Grimm & 
Railsback, 2005, chap. 9; Korb & Mascaro, in press; Peck, 2004).

Some Common Objections
Perhaps I reached my conclusion—that simulations can be used to empirically test 
theoretical hypotheses in the same way as experiments—a bit hastily. Extracting 
empirical knowledge from a computer-implemented model seems a bit like a hat trick. 
Instead, are simulations not tools for theory development, rather than empirical test-
ing, and do we not require material experiments—experiments on the physical and 
social systems in which we are ultimately interested—to gain empirical knowledge? 
In this section, I will consider the following two objections:

(a)  Simulations as mere tools for theory development

A long5 tradition in the philosophical and methodological writing on simulation 
explicitly denies that simulation results constitute new empirical information.6 According 
to this literature, simulations do nothing, but explore the deductive consequences of 
theory. Hence, they are welcome tools for theory articulation and development, and 
they allow genuine learning—in so far as learning the deductive consequences of 
something constitutes genuine learning—but they do not teach us anything about the 
empirical world.

I believe that this literature has the notion of simulation wrong. Exploring deduc-
tive consequences of theories is indeed a function of some—especially Monte Carlo—
simulations, but the concept is much broader.7 One kind of extension concerns 
equations that are not analytically solvable, but that require much additional input 
before a full simulation model can be built.

Figure 1. The joint epistemology of experiments and simulations
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Eric Winsberg shows that between theory and final output—he calls it a model of 
the phenomena—a sequence of models exist with increasing degree of concreteness 
that use much besides theory in their construction: general physical modeling assump-
tions, parameters, boundary values, initial data, ad hoc modeling assumptions, approx-
imations, degrees of freedom, discretization and coding, imaging techniques, data 
analysis, and interpretation (Winsberg, 1999). The simulation result or model of the 
phenomenon, then, does not simply represent a deductive consequence of the theory—
without these additional ingredients no consequence would follow. Korb and Mascaro 
(in press) make a similar point about a specific example. They argue that it is in no way 
clear that the mechanism represented in Hinton and Nowlan’s simulation result, which 
demonstrated the Baldwin effect, was in any sense implicit in Baldwin’s original 
theory.

This may just be the difference between theory articulation on one hand and theory 
development on the other hand. Over 20 years of philosophical analysis of model 
building in the sciences have taught us that theories have little representational power8 
by themselves, but they rather require idealizations, simplifications, approximations, 
and so forth—not much of which can be justified on the basis of theory alone.9 
Simulation, then, does more than demonstrate the deductive consequences of theory 
by adding a variety of model building tools that help to expand and improve theory 
and make it applicable to concrete phenomena, but nevertheless the whole set of prac-
tices remains in the realm of theorizing. However, the lesson that we need to draw 
from the recent literature on modeling and experimenting is stronger. It is that there is 
no clear-cut distinction between theorizing and experimenting, speculating and observ-
ing, conjecturing and refuting—pick your favorite pair of opposites. As explained 
above, experiments are almost always10 done on models (i.e., on proximate, epistemi-
cally accessible systems that act as stand-ins for the systems of ultimate interest). 
However, if that is true, all experimental inference involves an inference from the 
observations on a model to the behavior of something outside the model. Experiments 
on theoretical models may differ from other experiments with respect to the sub-
strate on which the experiment is performed (e.g., abstract theories, programming 
code, mental models, animal, mechanical, or other physical models), but not in the 
form of inference made when drawing conclusions about systems of interest.

Perhaps this, then, is where the crux of the matter lies: “Real” experiments are con-
ducted on material systems, systems that display a great deal of resemblance with their 
targets in that they are made of the same kind of “stuff.” I will now argue that this is not so.

(b) � Simulations and real experiments have a distinct epistemology because 
they differ in their materiality

Mary Morgan (2003, 2004) has made some claims to this effect. Essentially, she 
argues that inferences from model to target are less problematic when both are made 
of the same kind of stuff and that the differences in materiality result in an inferential 
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gap, which results in reduced reliability. One way of supporting that claim would be 
to say that the reliability of inferences is grounded in the number of properties that 
model and target share. In the case of material models—such as wind tunnels and 
laboratory mice—a large number of properties are automatically shared. However, 
theoretical and computer models abstract from all material properties of the systems 
represented, which makes the number of shared properties necessarily smaller.

However, the reliability of inferences from model to target is not a linear function 
of the number of shared properties. Scientific practice is rife with counter examples to 
this idea. Here, I consider three types of counter example: laboratory reenactments, 
scale models, and animal models (see Frigg & Reiss, 2009):

Laboratory reenactments. Aerodynamic features of vehicles such as cars, ships, and 
planes are frequently tested on models in wind tunnels before the vehicles see the 
outside world for which they are designed. Although often suitable for the purposes of 
research and development, contexts exist where the very fact that wind tunnels are 
material simulacra of their targets is damaging—because walls introduce turbulence 
affecting airflow past models and causing systematic airflow variations, which can 
be ameliorated, but not eliminated by experimental design and calibration corrections. 
That is, although a wind tunnel is in a sense “more similar” to the target than a simula-
tion model, we have no guarantee that inference conclusions drawn from wind-tunnel 
experiments will be more reliable than conclusions reached on the basis of simulations 
(Norton & Suppe, 2000): “Suitably done, enhanced computer modeling of data intro-
duces vicarious control every bit as good as, sometimes superior to, traditional experi-
mental control” (p. 72).

Scale models. Scale models are exact replicas of their targets, with the exception of 
size. They therefore share nearly all properties, but size matters. As Max Black has 
pointed out (Black, 1962),

Too small a model of a uranium bomb will fail to explode, too large a reproduc-
tion of a housefly will never get off the ground . . . Inferences from scale model 
to original are intrinsically precarious and in need of supplementary validation 
and correction. (p. 221)

Animal models. It is still standard to test drugs in animals for toxicity before the first 
human trials can be conducted. Animals are certainly not the same as humans, but 
depending on the species they share more or less genetic makeup and always material-
ity. However, animal models are notoriously bad predictors of toxicity in humans (see 
for instance Shanks, Greek, Nobis, & Greek, 2007), which causes much harm: adverse 
side effects, safe beneficial drugs that were never developed because of animal toxicity, 
loss of animal welfare, and so on. One reason for which the causal relationship between 
smoking and lung cancer was doubted for many years was that it does not have a coun-
terpart in mice (Clemmensen & Hjalgrim-Jensen, 1980). With respect to the develop-
ment of AIDS drug design, Greek and Greek (2000) write (http://www .satyamag.com/
march00/greek.html, retrieved on April 23, 2009),
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Computer models of HIV and AIDS have revolutionized AIDS drug design. 
Computer-designed nonnucleoside analogs have been shown to inhibit drug-
resistant HIV. The computer model takes into account structural changes and 
residue characteristics resulting from mutations associated with clinical resis-
tance to nonnucleoside inhibitors. Dr. Faith Uckun stated in Bioorganic & 
Medical Chemistry Letters, “We can predict how the AIDS virus will react to 
new agents that we develop with the computer model . . . we now have the 
opportunity to rationally design very effective drugs against the multidrug-
resistant AIDS virus.”

In light of this evidence, it is clear that animal models of human disease have 
never been predictive or effective. Today, they are stealing money from areas of 
research that hold promise for a vaccine to prevent AIDS.

My argument here concerns only the strong claim that simulations must, because of 
their lack of materiality, be less reliable than material experiments. This is not to say 
that material experiments are more successful than simulations in some areas and not 
even that material experiments across all fields are on average more reliable. It is also 
true that simulation modeling requires a great deal of prior understanding of how the 
target works, and if we have no such understanding, then simulations are bound to fail. 
We should also realize, however, that inferring reliably from a material model also 
requires such an understanding. In particular, as mentioned earlier, we require some 
understanding of the mechanisms responsible for a phenomenon of interest to have a 
good reason to believe that a material model is a good model of a target of interest (see 
Steel, 2008). The question of reliable inference is therefore one that needs to be 
addressed case by case, on the basis of the detailed circumstances of the situation at 
hand and not on the basis of a priori argumentation.

Simulations Good and Bad
I have argued that the epistemology of simulation is the epistemology of the experi-
ment, that there is no—a priori—reason to believe that simulations are less reliable 
than material experiments and that simulations have some advantages over mathemat-
ical models because they are more flexible. None of this means that useful simulation 
results are easy to have or that all simulations are equally valuable. After all, an expla-
nation of economists’ skepticism toward simulations, besides the one mentioned by 
Lehtinen and Kuorikoski (2007), may be that current simulation practice in economics 
is problematic for reasons that have nothing to do with simulation methods as such.

In this section, I argue that this might indeed be the case. One area where simula-
tions have become prominent is in the real business cycle literature that followed Finn 
Kydland and Edward Prescott’s seminal article “Time to Build and Aggregate 
Fluctuations” (Kydland & Prescott, 1982). Proponents of this so-called calibration 
approach use simulation techniques to analyze business cycles and draw policy impli-
cations from their analyses. Its basic methodology is as follows (see Hoover, 1995):
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Firstly, a general-equilibrium dynamic model describing the time-evolution of 
the economy as an optimal growth path with stochastic shocks to technology is 
built. Concrete functional forms are chosen to capture some general features of 
business cycles. Then these concrete functional forms are parameterized using 
data from microeconometric studies or national-income accounting. When 
parameters cannot be specified from previous data, the model is calibrated such 
as to reproduce certain key variances and covariances of the data. Finally, the 
model is tested by generating a large number of realizations of technology 
shocks for the number of periods considered and variances and covariances of 
important variables such as output and consumption, investment, real interest 
rates and so on are computed and compared with actual data. (pp. 26ff.)

Kydland and Prescott’s (1982) approach has been criticized as badly founded 
empirically on the following grounds, among others:

•	 The methodology does not allow distinguishing alternative causal hypotheses 
regarding the basic mechanism (in this case, regarding the source of business 
cycle fluctuations)

•	 There is no formal measure of fit or success of the model
•	 Neither estimation error nor model-specification error are part of the model’s 

output
•	 No sensitivity analyses are conducted
•	 The use of the device of the representative agent leads to aggregation prob-

lems
•	 Independent—and false—predictions are ignored

I will now go through each of these points in slightly more detail and show—by 
means of a comparison with the so-called, pattern-oriented modeling (POM) approach 
of agent-based complex systems—that none of these criticisms concerns a feature that 
is essential to simulation modeling and that researchers working in this alternative 
paradigm have developed strategies precisely to counter criticisms of this kind.11

Distinguishing Alternative Theoretical Hypotheses
Hansen and Heckman (1996) argue that the real business cycle modeler’s practice of 
using only time-series averages as inputs, but not correlations (which are saved to test 
the models), makes it difficult to answer the main question, namely, how quantitatively 
important are alternative sources of business cycle fluctuations? They write,

Using intuition from factor analysis, it is impossible to answer this question 
from a single time series. From two time series, one can isolate a single com-
mon factor . . . Only using multiple time series is it possible to sort out multiple 
sources of business cycle shocks. The current emphasis in the literature on using 
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only a few “key correlations” to check a model’s implications makes single-
factor explanations more likely to emerge from real business cycle analyses. 
(Hansen & Heckman, 1996, p. 96)

By contrast, distinguishing alternative theoretical hypotheses on the basis of the 
simulation results is a key feature of POM. POM is a type of agent-based modeling 
that uses simulations to replicate multiple “patterns”—systematic empirical features 
or phenomena such as a spatial mosaic pattern of successional stages of natural beech 
forests or the fact that the climax stage has closed canopy and little understory—for 
this purpose. Criticizing some studies that implement only one hypothesis—in this 
case, about agents’ decision-making behavior—Grimm et al. (2005) describe,

A more rigorous strategy for modeling agent decisions, or other bottom-up pro-
cesses, is to use “strong inference” by contrasting alternative decision models, 
or “theories.” First, alternative theories of the agent’s decisions are formulated. 
Next, characteristic patterns at both the individual and higher levels are identi-
fied. The alternative theories are then implemented in a bottom-up model and 
tested by how well they reproduce the patterns. Decision models that fail to 
reproduce the characteristic patterns are rejected, and additional patterns with 
more falsifying power can be used to contrast successful alternatives. (p. 988)

No Formal Success Criterion
The success criterion employed by the Kydland-Prescott (1982) methodology is 
whether the second moments of selected simulated time series reproduce observed 
correlations. Explicitly, they reject the mimicking of the historical realization as irrel-
evant and do not use any statistical measure of goodness of fit. In the words of one 
observer (Fair, 1992),

The disturbing feature of the RBC [real business cycle] literature is there seems 
to be no interest in computing RMSEs [root mean square errors] and the like. 
People generally seem to realize that the RBC models do not fit well in this 
sense, but they proceed anyway. (p. 141)

Within the POM paradigm and agent-based modeling in general, a battery of statis-
tical tests has been developed and is regularly employed to compare simulation output 
with observed patterns (see, for example, Grimm & Railsback, 2005, Section 9.5.4).

Parameter Value and Model Specification Uncertainty
Hansen and Heckman (1996) observe that data from the microstudies that are used as 
input for the business-cycle simulations are often incompatible with the general-
equilibrium assumptions of the macromodel, which creates specification uncertainty. 
They argue that the uncertainty about model parameters should be incorporated into 
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the outputs of simulations. Alas, “Current practices in the field of calibration and 
simulation do not report either estimation error and/or model-specification error” 
(Hansen & Heckman, 1996, p. 98). POM researchers are fully aware of parameter 
value and model structure uncertainty and have developed various ways to cope with 
it. One way is to make models more structurally realistic, which often makes them less 
sensitive to parameter uncertainty (Mooij & DeAngelis, 2003). Another is to separate 
the analysis of parameter and structure uncertainty to some extent (Grimm & 
Railsback, 2005, Section 9.3.3).

Sensitivity and Robustness Analyses
If parameter values and model structure are subject to uncertainty, then sensitivity and 
robustness analyses help in model validation. Once more, what seems to be absent 
from real business cycle modeling is part and parcel of the POM methodology (e.g., 
Grimm & Railsback, 2005, Section 9.6).

Representative Agents
In their quest for microfoundations, Kydland and Prescott (1982) employ the fiction 
of the representative agent to model optimizing behavior. Hoover (1995) argues that 
this leads to aggregation problems:

To understand (verstehen) their [humans’] behavior, one must model the indi-
vidual and his situation. [While t]his insight is clearly correct, it is not clear in 
the least that it is adequately captured in the heroic aggregation assumptions of 
the representative-agent model. The analogue for physics would be to model the 
behavior of gases at the macrophysical level, not as derived from the aggrega-
tion of molecules of randomly distributed momenta, but as a single molecule 
scaled up to observable volume—a thing corresponding to nothing ever known 
to nature. (p. 40)

The ability to model agent heterogeneity is, of course, one of the main advantages 
of agent-based modeling.

Independent Predictions
Real business cycle modelers explicitly ignore certain features that their models could 
be used to generate, in particular, facts about the nominal side of the economy. In 
private correspondence with Hansen and Heckman (1996), John Taylor has said about 
this practice:

I have found that the omission of aggregate price or inflation data in the 
Kydland-Prescott second moment exercise creates an artificial barrier between 
real business cycle models and monetary models. To me, the Granger causality 
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from inflation to output and vice versa are key facts to be explained. But 
Kydland and Prescott have ignored these facts because they do not fit into their 
models. (p. 96)

The correlation, Taylor describes, is one that could have been used to independently 
confirm the model on the basis of an observed fact not used in the construction of the 
model. The method of using additional implications of the model to confirm it is, once 
more, an important part of the POM approach: “Structurally realistic models can make 
independent and testable secondary predictions” (Grimm et al., 2005, p. 988; see also 
Grimm & Railsback, 2005, Section 9.9).

Conclusions
In a recent article defending an experimentalist stance toward simulations in evolution 
and ecology, Steven Peck (2004) argues,

Adopting the stance of simulation as experiment, currently being championed 
by philosophers and practitioners of science in the physical sciences, will help 
clarify the role that simulations can play in advancing ecology and evolutionary 
biology. (p. 533)

The same is true of economics. Simulations currently have bad press in economics 
because their characteristics are compared with theoretical models and of course 
simulations lack mathematical elegance, certainty of results, and analytical transpar-
ency, but simulations have a variety of advantages that are potentially highly useful 
for economics as science. Because they are far more flexible, they help with the prob-
lem of overconstraining assumptions that besets much mathematical modeling. They 
are also much more flexible, cheaper, and less ethically involved than laboratory 
experiments.

Of course, simulations are no panacea, although we currently witness a broad and 
growing literature on simulation modeling that is extremely conscious of the many 
methodological problems that the researcher faces when analyzing a model as a stand-
in for some target system of interest, and, as I hope to have shown, initial plausibility 
can be gained in using simulations for economic analysis.
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Notes

  1.	 In what follows, I will suppress the qualification computer and always mean by simulation 
“simulation using a digital computer.” Of course, analogue and many other kinds of simula-
tions exist, even in economics. For instance, one could consider runs of the Phillips machine 
as simulations of an actual economy. However, the greatest part by far of simulations that 
are produced today are run on digital computers, so I will not distinguish between computer 
and other kinds of simulations. A potential exception is thought experiments. Arguably, 
thought experiments can be regarded as a type of simulation, and thought experiments are 
not rare in economics. These, however, demand a separate analysis, and I will exclude them 
here too. On thought experiments in economics, see Reiss (2008, chap. 6) and Schabas 
(2008).

  2.	 As one commentator pointed out, these figures might well understate the extent to which 
simulations are used in economics as authors do not always emphasize the use of computers 
in deriving model results by putting the word in title or abstract. This is certainly true, and 
the data are to be understood as a rough indication rather than precise estimation of the use 
of the method in economics. Especially, in macroeconomics, for instance in the area of real 
business cycle modeling that I discuss below, simulations are certainly more frequent than 
these figures suggest. Fundamentally, the main point of this article is not about numerically 
solving equations—which is what computers do in these cases—but rather about using 
computers as experimental tools to draw inferences about socioeconomic systems. This lat-
ter activity remains rare in all areas of economics. See also Lehtinen and Kuorikoski (2007) 
who make the same observation.

  3.	 Fontana’s figures may be somewhat biased because she classifies 44% of simulations 
as “unexplained.” However, even of those she does categorize, by far the greatest share 
comes from statistics and econometrics. For example, in 2004, nearly 300 publications 
using simulations were in that area, while each of the other categories (system dynamics, 
multilevel simulations, microsimulations, agent-based simulations, discrete events, and 
learning models) had fewer than 50 publications in that year.

  4.	 Thought experiments proper—experiments on models implemented in the mind—are a 
relatively rare species in economics. For a discussion of these, see Schabas (2008).

  5.	 “Long” is of course relative to philosophical writing on simulations in general, which, start-
ing in the 1960s and properly taking off the ground only in the 1990s, is extremely young.

  6.	 This point has been made most forcefully by Oreskes et al. (1994). See also Di Paolo et 
al. (2000) and, for economics, Axelrod (1997). Lehtinen and Kuorikoski (2007) do not 
explicitly argue in favor of this position, but they seem to presuppose it, which is made 
plain by the following quotations: “The dearth of simulation models is most conspicuous in 
the most widely respected journals that publish papers on economic theory” (p. 305, italics 
added); “Economists have historically considered physics a paradigm of sound scientific 
methodology . . . , but they are still reluctant to follow physicists in embracing computer 
simulation as an important tool in the search for theoretical progress”; “For some reason, 
true simulation is considered inferior to analytically solvable equilibrium models in the 
construction of economic theory” (p. 312).

  7.	 Evelyn Fox Keller aptly calls these simulations experiments in theory (Keller, 2003). This is 
the kind of simulation that stood at the beginning of the development of this technique, and 
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they are still very important in many areas of science, but they are only one among various 
kinds of simulations.

  8.	 What I mean by this term is simply the ability to represent concrete empirical phenomena.
  9.	 This aspect of simulation is also emphasized by Humphreys (2004).
10.	 They are always done on models if we regard a particular—say, our planetary system at 

time t—as a stand-in for the corresponding type—say, our planetary system at all times 
and all systems that are exactly like it. I prefer to make a difference in the terminology 
because it is one thing to infer from the observation of a particular about the behavior of the 
corresponding token and a different thing to infer from the observation of a particular that 
belongs to Type X about the behaviour of a particular that belongs to Type Y, which differs 
from X or Type Y itself. Perhaps they are both problems of induction, but the first is mainly 
a philosophical problem, whereas the second has enormous methodological and practical 
repercussions.

11.	 One may argue that my comparison is unfair as the criticized approach was developed dur-
ing the 1980s, and even the mentioned criticisms are all over 10 years old, whereas pattern-
oriented modeling (POM) is very recent. However, here the point is less to criticize the 
calibration methodology or its proponents as such but rather to show that certain features of 
the calibration methodology that economists might take to be features of simulation meth-
odology in general are in no way essential to the latter.
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