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ABSTRACT

Tanenbaum’s MINIX operating system [1] was extended by Wainer with Real-Time
services to comform RT-MINIX[2, 3]. This work add new extensions that includes a
Real-Time microkernel, more flexible Interprocess Communication facilities, basic
priority inheritance protocol, statistics and Real-Time metrics collection, timer and
event driven interrupt management and a new scheduling algorithm, keeping
backward compatibility with standard MINIX versions. This report discuss the design
decisions, explain the programming interfaces and added system calls, system data
structures,  sample pseudocode and evaluation results of RT-MINIX version 2.0.2.
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1. INTRODUCTION
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In these days the existing number of Hard Real-Time systems is growing rapidly and the functionality
that Real-Time applications require of their operating system is much different from the functionality
required by non time constrained timesharing applications.
Engineers and Computer Science professionals working on Real-Time projects need to have a deep
knowledge of every software component and the interactions with hardware devices considering
timing constraints. The experience earned in well-planed assignments and projects in OS course
enhance their knowledge and personal performance.

1.1. Motivation

MINIX[1] is a general-purpose time sharing Operating System broadly used in OS degree courses
[11, 23, 24, 25].
The aim of the project is to provide an educational tool like MINIX but for Real-Time OS courses.
Several reasons lead us to select MINIX among other operating systems as the base for RT-
MINIXv2. These are:

- Our previous experience.
- Existing documentation.
- Hardware platform requirements.
- It’s clear and modular design.

The RT-MINIXv2 keeps MINIX modular design to let Real-Time OS teachers make easily a
multiplicity of grade courses assignments, laboratory tests, projects and other academic uses with a
well documented and known Real-Time OS.

1.2. Terminology and Notation

Before describing RT-MINIXv2, it is useful to clear some Computer Science terminology.

In MINIX terminology, a process is an instance of a program in execution and a task is as a special
process type used in the implementation of MINIX device drivers. In Real-Time terminology, task is
the term used for process.
MINIX distinguish among three kinds of processes:

- USER: to refer to a MINIX user’s process.
- SERVER:  is special process type used to serve requests from user’s processes

as the Memory Manager Server (MM) or the File System Server (FS).
- TASK: to refer to a MINIX device driver task

We will use this words in uppercase to refer to MINIX terminology.

Other confusing term is the IBM-compatible PCs device that can produce interrupts at regular periods
(ticks). MINIX routines refer it as the clock device but the correct term is timer device.

To simplify the notation, for the following paragraphs all Real-Time related words will be preceded
by "RT-" and Non Real Time words will be preceded by “NRT-“.

1.3. MINIX Time Sharing Features

MINIX is a complete, time sharing, multitasking operating system developed from scratch by
Andrew S. Tanenbaum. Though it is copyrighted, the source has been made widely available to
universities for study and research in computer science courses. Its design is highly modular, clear and
elegant.
Its main features are:

ü Microkernel based: Provides process management and scheduling, basic memory
management, interprocess communication, interrupt processing and low level I/O
support.

ü Multilayer system:  Permits a modular design and clear implementation.
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ü Client/Server model: All system services and device drivers are implemented as server
processes with their own execution environment.

ü Message Transfer Interprocess Communications (IPC): Used for process
synchronization and data sharing among processes.

ü Interrupt hiding: Interrupts are converted in message transfers.

1.4. RT-MINIX Features

Wainer[2, 3] changed  the standard MINIX operating system to support Real-Time processing named
it “RT-MINIX”. Its features are:

ü Different Scheduling Algorithms Can Be Selected
ü Joined Scheduling Queues
ü Real-Time Metrics collection
ü Timer Resolution Management

1.5. RT-MINIXv2 Features

Existing real-time operating systems (RTOS) can be divided in two categories:
ü Systems implemented using somewhat stripped down and optimized (or specialized)

versions of conventional timesharing OS
ü Systems starting from scratch, focusing on predictability as a key design feature.

RT-MINIXv2 is based on the first design approach  using MINIX as the conventional OS.
This special version offers predictable Real-Time computing environment at lower cost than
propietary RTOS used to teach Real-Time systems and other academic purposes.

The major features of RT-MINIXv2 are summarized as follows:
ü Real-Time microkernel
ü Modular Architecture that simplify enhancements and changes
ü Timer/Event Driven Interrupt Management
ü Periodic and Sporadic processing
ü Timer Resolution Management
ü Priority Based Real-Time Scheduling
ü Synchronous/Asynchronous Message Transfer using ports.
ü Basic Priority Inheritance Protocol support in Message Transfer IPC.
ü Receive and Synchronous Send Timeout support.
ü Statistics and Real-Time Metrics Collection.
ü Two levels of Interrupt Handling with Software IRQs

Is widely believed that microkernel based systems are inherently inefficient and a multilayer message
transfer kernel have performance disadvantage over monolitic kernel. But in [26] is presented
evidence that the inefficiency is not inherited from the basic idea but from improper implementation.
Current CPU’s speeds, system modularity and the academic purposes let us to focalize our design in
concepts other than performance like flexibility, schedulability, preemptability, timing precision, etc.

The advantage of using a microkernel for Real-Time applications is that the preemptability of the
kernel is better, the size of the kernel becomes much smaller, the addition/removal of services is
easier.

RT-MINIXv2 provides the capability of running special realtime tasks and interrupt handlers on the
same machine as standard MINIX. These tasks and handlers execute when they need to execute no
matter what  MINIX is doing.

RT-MINIXv2 works by treating the MINIX OS kernel as a task executing under a small realtime
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operating system. In fact, MINIX is like the idle task for the realtime operating system, executing
only when there are no realtime tasks to run.

The MINIX task can never block interrupts or prevent itself from being preempted. The technical
key to all this is a software emulation of interrupt control hardware. When MINIX tells the hardware
to disable interrupts, the realtime system intercepts the request, records it, and returns to MINIX.

MINIX is not ever allowed to really disable hardware interrupts. No matter what state MINIX is in, it
cannot add latency to the realtime system interrupt time.

RT-MINIXv2 is a general purpose Real-Time Operating System with a default Fixed Priority
scheduler that can be used for:

• Interrupt driven devices: As MINIXv2 is designed for 32 bits INTEL PCs [9], the interrupt
levels of the standard devices like keyboard, serial ports, etc cannot be changed and may
produce priority inversion problems with other devices.

• Timer driven devices: the devices are polled or some job is done on the device at regular
periods. As in standards PCs the timer has the top priority level, no priority inversion
problems can occurs.

The current version of RT-MINIX is based on MINIX version 2.0.2 for 32 bits INTEL [9] processors
therefore it requires the same hardware platform.
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2. ARCHITECTURE AND INTERRUPT HANDLING

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com


2.1 MINIX System Architecture

MINIX is structured in four layers as it can see in Figure 1.
1. The microkernel
2. Input/Output Tasks
3. Server Processes
4. User Processes

Interrupts are the heartbeats of the operating system. An interrupt is usually defined as an event that
alters the sequence of instructions executed by a processor [28].
In MINIX, when a hardware device interrupts the CPU, an Interrupt Service Routine (ISR) or an
interrupt handler is called too partially process the interrupt. If the interrupt needs more time to
complete its job, the ISR sends a message to the Interrupt Service Task (IST) and returns calling the
process scheduler. An IST is like a kernel thread that share kernel address space and have processing
attributes. We call this approach Two Layer Interrupt Handling.

Figure 1 
from Operating Systems: Design and Implementation, 2nd ed.

2.2 RT-MINIXv2 System Architecture

As RT-MINIXv2 intends to be used in an academic environment, we decide to be as least intrusive as
possible in the standard MINIX source code. Yodaiken and Barabanov [8] have proposed that
approach for RT-LINUX. The key idea is how interrupt management is done.

As result, one Real-Time Operating System (RT-MINIXv2) hosts a standard time sharing Operating
System (MINIX). These two OS have their own set of system calls.

The RT-MINIXv2 effectively puts in place a new scheduler that treats the MINIX operating system
kernel as the lowest priority process executing under the RT-kernel. Under that design, MINIX only
executes when there are no RT-process to run, and the RT-kernel is inactive. Thus, the MINIX
process can never block interrupts or prevent itself from being preempted, yielding all resources to a
RT-process.  MINIX kernel may be preempted by a RT-process even during a system call, so no
MINIX routine can be safely called from a RT-process.

Some problems must be solved.
1. The interrupts must be captured by a RT-kernel.
2. Real-Time schedulers and services must be implemented.
3. Real-Time applications need an interface layer to interact with the Real-Time kernel.
4. RT-applications may need transfer data and synchronize with NRT-applications.
5. Full process and interrupt handler preemptability is needed
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2.3 Interrupt Handling

RT-MINIXv2 uses Virtual Machine (VM) concept limited to interrupt emulation o virtualization. Its
microkernel is underneath of MINIX and the scheduler runs NRT-processes when there are not RT-
processes ready to run.

The task of capturing and redirecting the interrupts was addressed by creating a small Real-Time
microkernel, which captures all hardware interrupts and redirects them to either standard MINIX
handler or to RT-MINIXv2 handler. The Real-Time microkernel provides a framework onto which
RT-MINIXv2 is mounted with the ability to fully preempt MINIX.

A key component in the architecture is the Interrupt Descriptor Table (IDT). The IDT is an array of 8
byte interrupt descriptors in memory devoted to specifying (at most) 256 interrupt service routines.
The first 32 entries are reserved for processor exceptions, and any 16 of the remaining entries can be
used for hardware interrupts. The rest are available for software IRQs.

MINIX defines a table called irq_table[] that has the pointers to C language written interrupt
handlers. This table lets easily change among Real-Time and standard handlers.

At start, RT-MINIXv2 virtual machine sets all irq_table[] pointers to the address of a common
interrupt handler named RTM_IRQ_dispatch() that uses an interrupt descriptor table to dispatch the
interrupt processing to a Real-Time or to a standard MINIX handler. The interrupt descriptor table,
RTM_desc_table[] is an array of a RTM_irq_desc_t data structures.

All MINIX standard kernel functions that handle interrupts and the PIC are replaced with virtualized
ones to avoid that MINIX could not be preemptive when a Real-Time interrupt occurs.

RT-MINIXv2 defines three types of  interrupt handlers:
1. Standard MINIX interrupt handlers or NRT-handlers.
2. Real-Time Timer-Driven interrupts handlers.
3. Real-Time Event-Driven interrupts handlers.]

Figure 2 

Changes to standard MINIX are minimal with the Virtual Machine approach. This low level of
intrusion on the standard MINIX kernel improves the code maintainability to keep the Real-Time
modifications up-to-date with the latest release of the MINIX kernel.
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RT-MINIXv2 avoids disabling interrupts for extended periods of time to improve system
responsivity. Its design algorithms and data structures can be used with interrupts enabled or they are
disabled only for very short intervals.

RT-interrupt handlers can easily be replaced  with standard ones. This is especially useful in certain
debugging situations.

A drawback is that the MINIX kernel suffers a slight performance loss when RT-MINIXv2 Virtual
Machine is added due to the redirection (through pointers), to the interrupt mask/unmask functions. In
consideration of both strengths and weaknesses, this technique has shown itself to be both efficient
and flexible because it removes none of the capability of standard MINIX, yet it provides guaranteed
scheduling and response time for critical tasks.

2.3.1. RT-MINIXv2 microkernel interrupt dispatcher
RT-MINIXv2 microkernel traps all interrupts and, depends on the interrupt type, dispatchs
the apropiated handler or registers its occurence for delayed processing.

2.3.2. Standard MINIX Non Real-Time interrupts
When the RT-interrupt dispatcher is invoked by a NRT-interrupt, it inserts the interrupt
descriptor in interrupt pending queue RTM_intQ[]. There are RTM_NR_PRTY queues, one
for each priority level.
The RT-scheduler is not invoked when the handler returns if a RT-process or a RT-ISR was
interrupted by a non RT-interrupt.
When the running RT-process or RT-ISR leaves the CPU, a routine named RTM_flush_int()
is called. All delayed interrupts are checked and the handlers are executed in priority order.
Suppose that the keyboard is specified as a NRT-device with priority 14. The keyboard uses
IRQ level 1 in a standard PC hardware. When the user do a keystroke, the keyboard
hardware interrupts the CPU an the RT-interrupt dispatcher is called that insert the interrupt
descriptor RTM_desc_table[1] in the 14th interrupt pending queue RTM_intQ[14].
Next, when all RT-processes of higher priority will be blocked, all NRT-interrupts are
flushed, the Standard MINIX keyboard interrupt handler is called and descriptor is removed
from the queue.

2.3.3. Real-Time Timer-Driven Interrupts
Some devices can be attended in a Timer-Driven manner. If the device does not raise an
interrupt, a periodic process can be created to poll the device checking the status and taking
an action.
Some other devices will raise interrupts but the interrupt processing may be delayed to be
managed by a periodic process in the next schedule.
When the RT-interrupt dispatcher is invoked by a Timer-Driven interrupt, it inserts the
interrupt descriptor in the interrupt pending queue RTM_intQ[].
On the next timer interrupt, the Timer RT-handler calls RTM_flush_int() that scans the
interrupt pending queue in priority order. The Timer Driven interrupt handler is called only at
the end of each period and if the priority of the interrupt is greater than the process/handler
that has been interrupted. Otherwise it must wait until all process/handlers with higher
priorities will finish their processing or at the end of its current  period .

2.3.4. Real-Time Event-Driven Interrupts
When the RT-interrupt dispatcher is invoked by a Event-Driven interrupt, it checks if the
priority of the interrupted process/handler is greater than the priority of the interrupt..
If the interrupted process/handler priority is greater than the interrupt priority, the dispatcher
inserts the interrupt descriptor in interrupt pending queue RTM_intQ[].
Next, when all higher priority processes/handler will be blocked, all Event Driven interrupts
are flushed in priority order until another higher priority process will be ready.
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If the interrupt priority is greater than the interrupted process/handler priority, its RT-handler
is invoked with minimal latency.

2.4 Interrupt Handler Dispatcher

The function RTM_IRQ_dispatch() attends all hardware interrupt types running the interrupt handler
or registering the interrupt for delayed processing.

/*=======================================================================*
 * RTM_IRQ_dispatch    *
 * This is the common Hardware Interrupt Handler pointed by all IRQ vectors       *
 * for Timer Interrupts:                                                   *
 *           increase RTM_counter.ticks          *
 *           enqueues the interrupt descriptor in a interrupt pending queue    *
 * for Event Driven Interrupts:                                               *
 *           runs the handler only if it's priority is greater than the      *
 *           current interrupted process                                      *
 * for Timer Driven and Non Real Time Interrupts:                             *
 *           enqueues the interrupt descriptor in a interrupt pending queue    *
 *========================================================================*/
PRIVATE int RTM_IRQ_dispatch(irq)
int irq;
{

int pty,  retval;
scounter_t before;
RTM_irq_desc_t  *d;

if (irq < 0 || irq >= NR_IRQ_VECTORS)  panic("invalid call to RTM_dispatch. IRQ= ", irq);

/* interrupts are enabled, disabled them */
RTM_lock(); /* ENTER_CRITICAL_SECTION */
d = &RTM_desc_table[irq];

if( RTM_RTswitch == RTM_STDMODE) /* Processing MODE?  */
{ /* For Standard processing mode */
RTM_unlock(); /* enable interrupts */
retval = d->nrthandler(d->irq); /* run the Non Real-Time Handler */
RTM_lock(); /* disable interrupt */
return(retval); /* return to restart() */
}

RTM_counter.interrupts++; /* update the global interrupt counter */
d->count++; /* update the irq descriptor interrupt counter */

if ( irq == CLOCK_IRQ) /* for timer Interrupts... */
{
RTM_IRQ_latency = RTM_hz_elapsed(); /* saves the IRQ latency */

RTM_IRQ_maxlat  =
 MAX(RTM_IRQ_latency,RTM_IRQ_maxlat); /* update the maximun latency */
   

RTM_counter.ticks++; /* update the timer interrupt counter */

if(RTM_counter.ticks == 0 ) /* Does the counter walk arond  */
 RTM_counter.highticks++;  /* uptdate the more significative timer int counter */

d->timestamp = RTM_counter.ticks;  /* stamp the tick counter in the int. descriptor */
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RTM_irqQ_insert(d); /* enqueue the descriptor for delayed processing */
if(RTM_flush_lock == RTM_FLUSH_ENABLED)  /* Can flush pending interrupts ? */

  RTM_flush_int(); /* YES, flush then */
return(RTM_IRQ_DISABLED); /* return to restart */

 }

/* for all interrupt types, except timer interrupt */
d->timestamp = RTM_counter.ticks; /* stamp the tick counter in the int. descriptor */

if( (d->irqtype & RTM_EDINT) /* Event Driven interrupt with   */
 && (d->priority < RTM_p_epri(proc_ptr))) /* higher priority than interrupted process */

{
    RTM_do_handler(d);           /* run the handler and more */

if( d->flags & RTM_RESCHED )/* does the handler could change the current process */
 RTM_pick_proc();    /* call the Real-Time Scheduler */

}
else /*  Timer Driven ints, Non Real-Time Ints and Event Driven (with lower priority)  */

{
RTM_irqQ_insert(d); /* enqueue the descriptor for delayed processing */
}

if(RTM_flush_lock == RTM_FLUSH_ENABLED)  /* Can flush pending interrupts ? */
 RTM_flush_int(); /*YES, flush then */

/* hwint00 - 15 wait interrupts to come disabled */
return(RTM_IRQ_DISABLED); /* return to restart */

}

2.5 Returning from Interrupts, Exceptions and System Calls

We will examine the termination phase of interrupt/exception handlers and system calls. The main
objetive is to execute the highest priority process, but several issues must be considered before doing
it:

- Pending Event Driven Interrupt handlers to be executed
- Pending Software IRQ handlers to be executed
- Pending Timer Driven Interrupts handlers
- Pending Standard MINIX interrupt handlers

Only that pending issues that have a greater priority than the current running process are executed.
The kernel function that accomplish with this issues is RTM_flush_int().

INSERTAR DIAGRAMA DE FLUJO Y EXPLICARLO

TAMBIEN PONER PARTE DE CODIGO ASSEMBLER DE _restart()

2.6 Real-Time Processing

In [4]  the authors classify Real-Time implementations in two categories:
1. Event Driven Implementation
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• Integrated Interrupt Event Driven Scheduling: is integrated in the sense that
hardware interrupt priorities are matched with the software process priorities. All
process are initiated by external interrupts.

• Non-Integrated Interrupt Event Driven Scheduling: the priority of the interrupt
associated with process arrival has no correspondence to the software priority of
the process, an is thus non-integrated.

2. Timer Driver Implementation
• Timer Driven Scheduling: A timer expires every Ttic seconds causing a non-

maskable interrupt that force a scheduling point. The scheduler moves all
process that have next scheduling points greater or equal than  the current time
to the ready queue.

• Timer Driven Scheduling with counter: The Timer handler decrements a counter
on every timer interrupt and will only invoke the scheduler when the counter
expires. The counter limits the scheduler to run only on  timer interrupts that
correspond to process arrivals.

RT-MINIXv2 does not match strictly in any of these categories but it depends on the set of process
running on the system and the type of hardware where it runs.
We could consider RT-MINIXv2 as an Event Driven with Non-Integrated Interrupts Scheduling and
Timer Driven with counter system.

• Event Driven:  On an Evend Driven interrupt the handler is called without delay.
• Non-Integrated Interrupts: Hardware interrupts priorities could no match with processes

priorities.
• Timer Driven with counter: The RT-Timer interrupt handler invokes the scheduler only

when a Timer Driven process must be scheduled or when Timer Driven interrupt have
occured in the last timer period.

2.7 Real-Time Process Dispatch Latency Time

A Real-Time process dispatch latency time is the agreggation of [29]:
1. Interrupt response time that includes:

• Hardware delay
• Completion of current instruction
• Interrupt latency

2. Interrupt routine
• preprocessing: This time includes the processing costs of RTM_IRQ_dispatch().
• interrupt servicing: This is the time consumed by the handler itself.
• post processing: this time includes the processing costs of RTM_flush_int().

3. Software recognition of the need for context switch: this time includes the processing
costs of RTM_pick_proc().

4. Context switch
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Figure 3 – (from [29])

2.8 Timer Driven Latency  and Processing Costs

The next could be a sequence of events showing the processing costs and source of latency for a
Timer Driven interrupt.
The processes priorities assumed are:

PRT-Timer < PTD < PUSER

PRT-Timer = RT-Timer interrupt handler priority
PTD        = Timer-Driven interrupt handler priority
PUSER    = A standard USER process priority
Note: higher priority number indicates lower priority level

1. A USER process is running.
2. The CPU receives a Timer-Driven interrupt and the kernel saves USER process’s context.
3. RTM_IRQ_dispatch() inserts the interrupt descriptor in the interrupt pending queue

RTM_intQ[PTD].
4. On return, RTM_flush_int() is called and because there are no higher priority interrupts pending

the kernel restore USER process’s context.
5. The USER process continues running.
6. The CPU receives a timer interrupt and the kernel saves the USER process’s context.
7. RTM_IRQ_dispatch() increases the tick counter RTM_counter.ticks and calls the RT-Timer

handler.
8. On return, RTM_flush_int() is called. For each Timer Driven pending interrupt priority two

conditions must be met to invoke the handlers:
A. The priority of the interrupt handler must be greater than the interrupted USER process

priority.
B. The last period of the Timer Driven interrupt priority has finished.

For this sample the Timer Driven Interrupt handler is called.
9. After each call, the RT-scheduler is invoked to compare priorities among the handler and the next

current process (proc_ptr).  If  the next current process priority is greater than all pendings
interrupts, its suspends the invocation of the remainding handlers. All pending interrupts will be
flushed by RTM_flush_int() later.

The interrupt blocking time is reduced because the processing is done out of interrupt time delayed
until the next Timer interrupt. This fact could increase latency but enhance preemptability.

2.9 Event Driven Latency  and Processing Costs

The next is a possible sequence of events to show the processing costs and source of latency of a
Event-Driven interrupt.
The processes priorities assumed are:

PRT-Timer < PED < PUSER

PRT-Timer = RT-Timer interrupt handler priority
PED        = Event-Driven interrupt handler priority
PUSER    = A standard USER process priority
Note: higher priority number indicates lower priority level

1. A USER process is running.
2. The CPU receives an Event-Driven interrupt and the kernel saves the USER process’s context.
3. RTM_IRQ_dispatch() compares priorities among the current process (proc_ptr) and the Event-

Driven Interrupt handler. If the priority of the interrupt handler is greater than the priority of the
current process the handler is called, else inserts the interrupt descriptor in the interrupt pending
queue RTM_intQ[PED] to be processed later when pending interrupts are flushed by
RTM_flush_int().
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4. If the priority of the current process is greater than the Event-Driven interrupt, the blocking time
is reduced because the processing is done out of interrupt time delayed until all higher priority
interrupts and processes are blocked. This fact reduce the latency and enhance preemptability.

2.10 PIC and Interrupt Masking Virtualization

One of the problems with doing hard real-time on a standard MINIX system is the fact that the kernel
uses disabling interrupts as a means of synchronization and to avoid race conditions on kernel
variables. Promiscuous use of disabling and enabling interrupts inflicts unpredictable interrupt
dispatch latency.

In RT-MINIXv2,  this problem is solved by putting a layer of emulation software between the MINIX
kernel and the interrupt controller hardware.

These virtualizations are quite simples because MINIX use the following functions:
• lock(): to disable maskable interrups (CLI for Intel x86)
• unlock(): to enable maskable interrupts  (STI for Intel x86)

RT-MINIXv2 change the behavior of this functions and simulate then for MINIX kernel. Whenever
an NRT-interrupt happens, a bit in a bitmap is set by RTM_IRQ_dispatch() as is explained in
Standard MINIX Non Real-Time interrupts. Later, RTM_flush_int() is called, and if MINIX has
virtualy disabled interrupts using lock(), or the IRQ has been disabled in the virtual PIC with
disable_irq(), the standard MINIX handler of the interrupt will not be executed.
When MINIX kernel re-enables interrupts using unlock(), all pending interrupts are executed in the
next return from system call or return from interrupt.

2.11 Interrupt Priorities

The PIC treats interrupts according to their priority level. This is a function of which interrupt line
they use to enter the interrupt controller. For this reason, the priority levels are directly tied to the
interrupt number. Higher-priority IRQ may improve the performance of the devices that use them.
The PC hardware have assigned priorities for standard interrupts related to IRQ number as shown in
Figure 4. A lower IRQ number implies higher priority.

RT-MINIXv2 manages interrupts using a priority field  in the interrupt descriptor RTM_irq_desc_t.
When the kernel services a hardware interrupt, it sets the interrupt controller to mask out lower
priority interrupts using the mask field.
If the interrupt cannot be serviced because it has interrupted a higher priority process, the interrupt
descriptor is inserted in one of the interrupt pending queues (RTM_intQ[irq_priority]) and a bit is set
in RTM_irqQ_bitmap as show in Figure 5.
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Figure 4 
from Operating Systems: Design and Implementation, 2nd ed.

RTM_flush_int() scans RTM_irqQ_bitmap for the first non zero bit until the priority of the current
process. If  it finds pending interrupts, it invokes their handlers and the bit in the bitmap is reset.

Not all pending interrupts handlers in the queue are executed by RTM_flush_int(), exceptions are:
- Non Real Time pending interrupts when MINIX has disabled interrupts (virtually).
- Non Real Time pending interrupts when MINIX has disabled the IRQ in the PIC.
- Timer Driven pending interrupts that have not reach their launching period.
- Periodic software IRQs that have not reach their launching period.
- All pending interrupts with lower priority than the current process proc_ptr.

The “next” current process (proc_ptr) is evaluated (RTM_pick_proc()) after running each handler
because it could change the state of a higher priority process from RT-BLOCKED to RT-READY.
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Figure 5 

2.12 Preventing from interrupt showers

In Real-Time systems unpredictability is introduced by interrupts from some devices.
A type of unbounded priority invertion is produced when a higher priority process is executing and a
lower priority hardware device produce an interrupt shower.

We describe the behavior of some common PC interrupts.
• Timer Interrupt: It is a periodic interrupt type generated by the PIT (Programmable

Interrupt Timer). The kernel only need to set the period once.
• Kerboard Interrupt: It is an aperiodic, asynchronous, and input interrupt type. It’s occurs

when the user press or release a key. It is common to use a buffer to keep the typed keys
until the keyboard interrupt handler can process it.

• Diskette/Disk Interrupt: Is an aperiodic input/output interrupt. The interrupts occurs
when the hardware has finished with a diskette/disk command. The commands sent to
the device are as requests and the interrupts are as replies, then they are synchronized
with the operating system.

• RS232 Interrupts: produce tree types of interrupts when:
ü a character is received in the communication port (sporadic).
ü an error or a status change occurs in the communication port (sporadic).
ü a character has been sent by the communication port. If no character is sent to

the RS232 port, no interrupts of this type occurs. Therefore they are syncronized
with the operating system.

• Network Interrupts: produce tree types of interrupts:
ü when a packet is received from the network device (sporadic).
ü when an error or a status change occurs in the network device (sporadic).
ü when a packet has been sent by the network device. If no packet is sent to the

network, no interrupts of this type occurs. Therefore they are syncronized with
the operating system .

Because it is common that drivers tasks are not reentrant,  they will not send new requests to the
hardware until they finish with the last interrupt servicing, therefore no synchronous interrupts can
occur and the system could only receive asynchronous  interrupt showers.

To limit interrupts showers all processes descriptors have a hardware interrupt mask. To reduce the
priority inversion all interrupt descriptors have an interrupt mask too.  These masks could filter some
hardware interrupts types avoiding that they could occurs while the process or interrupt handler are
running. The default value for that masks is set to permit all types of hardware interrupts.

2.13 Interrupt Timestamps

RT-MINIXv2 includes a timestamp field in the interrupt descriptor RTM_irq_desc_t that is set by
RTM_IRQ_dispatch().
The units of the timestamp field are Real-Time ticks since the system startup or since the last
rtm_restart() system call execution.
RTM_flush_int() uses the interrupt timestamp field to decide for the invocation of Timer-Driven
interrupt handlers.

2.14  Software IRQs

One of the main problems with interrupt handling is how to perform longish tasks within a handler.
Often a substantial amount of work must be done in response to a device interrupt, but interrupt
handlers need to finish up quickly and not keep interrupts blocked for long. These two needs (work
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and speed) conflict with each other, leaving the driver writer in a bit of a bind. Therefore it is desirable
that the interrupt handlers could delay the execution of some tasks so that they don't block the system
for too long.

As it is explained in 2.1, MINIX uses splitted interrupt management where an interrupt handler
partially process the interrupt and then send a message to a device driver task to resume the interrupt
processing. This approach implies at least a context switch to restore the TASK state.

LINUX kernel resolves this problem by splitting the interrupt handler into two halves. The so-called
top half is the routine that actually responds to the interrupt. The bottom half is a routine that is
scheduled by the top half to be executed later, at a safer time.

In RT-MINIXv2, device driver writers could decide among three approaches:
- Complete interrupt processing in the handler.
- Splitted interrupt management like MINIX using TASKs and message transfers.
- Splitted interrupt management using Software IRQs

Software IRQs are kernel routines that are invoked by RTM_flush_int() as it do with pending
hardware interrupts.

Software IRQ descriptors are the same as Hardware Interrupts descriptors, therefore they have
priority, mask,  counter and timestamps fields.

The motivation for introducing software IRQs is to allow a limited number of functions related to
interrupt handling to be executed in a deferred manner. This increase the system responsiveness
because some work is executed out of interrupt time. Addicionally the processing overhead is lower
than using the TASK model because it avoids the context switch among the interrupted process and a
TASK and does not need of message transfers.

The kernel functions that operate on software IRQs are:
- RTM_set_softirq(p_irqd): assigns a software IRQ descriptor and set it with the

parameters passed in p_irqd.
- RTM_free_softirq( irq): frees a software IRQ.

An interrupt handler could activate a software IRQ inserting its descriptor in the interrupt pending
queue RTM_intQ[] as RTM_irq_dispatch() do with hardware interrupts.
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3. PROCESS MANAGEMENT AND SCHEDULING
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3.1 Real-Time Process Creation

RT-MINIXv2 does not have new system calls to create a Real-Time process.  All Real-Time
processes are created transforming a standard MINIX processes into a RT-MINIXv2 process using
the rtm_setproc() system call.

To convert a standard MINIX process in a RT-MINIXv2 process, one of the Real-Time bits is set in
the process’s p_flags, and the descriptor is removed from any MINIX ready queue using the
unready() function when the process calls rtm_setproc().

Because there are two process schedulers that run on RT-MINIXv2 (the Real-Time and the standard
MINIX scheduler),  there must be a way to distinguish among Real-Time and Non Real-Time
processes.

3.2 Process States and States Transitions

As there are two kernels that can operate on the same set of processes, there are two dimensions of
states: one for standard  MINIX processes and other for Real-Time ones.

The following are the possible process states for a standard MINIX process(Figure 6):
- READY:  The process is ready to run and waiting to be selected by the standard

MINIX process scheduler.
- BLOCKED : The process is blocked trying to send/receive a message.
- BLOCKED REALTIME: The process is a Real-Time one. It must be ignored

by the MINIX process scheduler.
- RUNNING: The process is running under MINIX kernel control.

Figure 6 

The process state transitions are:
1. READY to RUNNING: The process has been selected to run by the MINIX

process scheduler. RUNNING to READY: The process has been preempted by
a higher priority process or by the kernel when the process's timeslice reaches
zero.

2. RUNNING to BLOCKED:The process has done a blocking system call.
3. BLOCKED to READY: The system has finished the process system call.
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4. READY to BLOCKED REALTIME: The process has done a rtm_setproc()
system call and has changed the process type to RTM_P_PERIODIC or
RTM_P_SPORADIC.

5. BLOCKED REALTIME to READY: The process has done a rtm_setproc()
system call and has changed the process type to RTM_P_STANDARD.

The following are the possible process states for a RT-MINIXv2 process (Figure 7):
- RT-READY:  The process is ready to run and waiting to be selected by the RT-

MINIXv2 process scheduler.
- RT-BLOCKED : The process is blocked trying to send/receive a RT-message.
- RT-BLOCKED STANDARD: The process is a standard one. It must be ignored

by the RT-MINIXv2 process scheduler.
- RT-RUNNING: The process is running under RT-MINIXv2 kernel control.

Figure 7 

The process state transitions are:
A. RT-READY to RT-RUNNING: : The process has been selected to run by the RT-

MINIXv2 process scheduler. RT-RUNNING to RT-READY: The process has been
preempted by higher priority process.

B. RT-RUNNING to RT-BLOCKED:The process has done a blocking Real-Time
system call.

C. RT-BLOCKED to RT-READY: The system has finished to process the Real-Time
system call.

D. RT-READY to RT-BLOCKED STANDARD: The process has done a
rtm_setproc() system call and has changed the process type to RTM_P_STANDARD.

E. RT-BLOCKED STANDARD to RT-READY: The process has done a
rtm_setproc() system call and has changed the process type to RTM_P_PERIODIC
or RTM_P_SPORADIC.
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Really, two states does not exist as shown in Figure 8. They are RT-BLOCKED STANDARD and
BLOCKED REALTIME.

- BLOCKED REALTIME: is the set of RT-MINIXv2 process states.
- RT-BLOCKED STANDARD: is the set of MINIX process states.

Figure 8 

3.3 Process Descriptor Real-Time fields

The standard MINIX kernel uses a process descriptor table to keep the status information of every
process in the system.

Each process descriptor have a  field named p_flags to indicates the reason why a process is blocked.
If  p_flags = 0, the process can be scheduled by the standard MINIX process scheduler.
The meanings of each bit in p_flags are listed in Appendix A.

RT-MINIXv2 defines two new bits in p_flags for Real-Time processes to avoid that they can be
scheduled by the standard MINIX kernel. Therefore, the RT-MINIXv2 process scheduler can only
schedule processes with one of this new bits in ON(1) and the other bits in OFF(0).

To check for a RT-process the RT-kernel uses  the macro RTM_is_realtime(X).
To check for a ready RT-process the RT-kernel uses the macro RTM_is_rtready(X).

RT-MINIXv2 adds new fields to the process data structure for Real-Time process management and
statistics collection. Some of these fields are RT-process characterization parameters:

- The scheduling period for a RT-periodic process
- A limit for the number of RT-schedulings.
- The process deadline.
- The process latency.
- The process laxity.

RT-MINIXv2 kernel only uses the period field for RT-periodic processes.
The period  and deadline fields are specified in Real-Time timer ticks or RT-ticks.
The maxlat  and  minlax fields are filled by the system on each process scheduling. More about this
parameters is detailed in the Statistics Collection chapter.

When a RT-process does not complete it’s work until it’s deadline, the RT-kernel can send a
MT_WATCHDOG message to a watchdog process specified in the process descriptor.
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3.4 The Real-Time Process Scheduler

The process scheduler is the component of the kernel that selects which process to run next. The
scheduler can be viewed as the code that divides, using a defined policy, the finite resource of
processor time between the runnable processes on a system.

Policy is the behavior of the scheduler that determines what runs when. A scheduler's policy often
determines the overall feel of a system and is responsible for optimally utilizing processor time.
The policy behind a Real-Time scheduler is simple:

”A priority scheduled Real-Time system must ensure that the highest priority runnable process can
start to run in a bounded time—and the bound needs to be small.”.

The RT-MINIXv2 process scheduler always selects the highest priority runnable process for
execution. All unvoluntary context switches are triggered by interrupts. Timer interrupts can cause
preemption due to Timer-Driven process activation. If the priority of the activated process is higher
than the priority of the current process, the current process is preempted. When there is no Real-Time
process ready to run, the MINIX scheduler is invoked.

The RT-MINIXv2 process scheduler (RTM_pick_proc()) tries to find a ready RT-process with the
highest priority. If there are not such process, the standard MINIX process scheduler is called
(pick_proc()).

The RT-scheduler uses an optimized process-selection algorithm, based on a set of 16 priority queues
and a 16 bits bitmap [9]. Each bit in the bitmap represents a priority queue. If a bit is set, it means that
at least one process is ready in that queue.
Typically, the bit-map is scanned for the highest priority non-empty queue, and the first process in
that queue is selected to run.

The RT-scheduler implements fully O(1) scheduling. The algorithm completes in constant-time,
regardless of the number of running processes.

In standard MINIX (and other time-sharing operating systems), the timeslice is the numeric value that
represents how long a process can run until it is preempted.
RT-MINIXv2 does not use a timeslice for preempt a process. Only a higher priority process can
preempt the running process or it must relinquish the CPU by itself.
When a higher priority process enters the RT-READY state, the kernel checks whether its priority is
higher than the priority of the currently executing process. If it is, the scheduler is invoked to pick a
new process to run (presumably the process that just became runnable).

3.5 Process Priority.

A common type of scheduling algorithm is priority-based scheduling. The idea is to rank processes
based on their worth and need for processor time. Processes with a higher priority will run before
those with a lower priority, while processes with the same priority are scheduled round-robin (one
after the next, repeating).

The standard MINIX kernel uses 3 priority queues to schedule a process as it is shown in Figure 9:
• TASK_Q: for device drivers or TASKS.
• SERVER_Q: for SERVERs like Memory Manager (MM) and File System Manager (FS).
• USER_Q: for USER processes.

The TASK_Q has more priority than the SERVER_Q that has more priority than the USER_Q.
All process in the same queue have the same priority and the process scheduler selects the next
process to run in FCFS order for TASKs and SERVERs and in FIFO order for USER processes.
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Figure 9 
from Operating Systems: Design and Implementation, 2nd ed.

RT-MINIXv2 provides static priority-based scheduling with RTM_NR_PRTY (16) priority queues,
therefore a new field was added in the process descriptor named priority. This field is used for:

A. Store the Real-Time ready queue number for the process in the RT-READY state.
B. Reduce the Interrupt Blocking time for the process because only interrupt handlers with

higher priorities are executed during process running.
C. To implement the Priority Inheritance Protocol for RT-IPC.

The number of the Real-Time ready queue is defined by the last four bits of priority field named its
Effective Priority(epri).

7 6 5 4 3 2 1 0
bpri = Base Priority epri = Effective Priority

The first four bits of the priority define the process Base Priority (bpri). On process creation,  epri =
bpri.. The RT-kernel only considers the Effective Priority (epri) to put a process in one of it’s ready
queues. The Base Priority (bpri) is used by IPC primitives to return the Effective Priority (epri) at is
original value after using the priority inheritance protocol (PIP). More about  IPC are detailed in the
Real-time Interprocess Communications chapter.

3.6 Priority Queues Management

RTM_NR_PRTY is the number of priority levels on the system. By default, this is 16. Thus, there is
one RTM_priQ_t for each priority.

RTM_priQ_bitmap is a unsigned int variable that have one bit for each valid priority level.
Initially, all the bits are zero. When a process of a given priority becomes runnable (that is, its state
becomes RT-READY), the corresponding bit in the bitmap is set to one.
Finding the highest priority process on the system is therefore only a matter of finding the first set bit
in the bitmap. Because the number of priorities is static, the time to complete this search is constant
and unaffected by the number of running processes on the system.

Each priority queue descriptor RTM_priQ_t have two pointers, one for the head and one for the tail of
the queue. The insertions in the queue can be in FIFO or LIFO order. Processes of the same priority
will be managed under a FIFO policy.
Each descriptor also contains a counter, inQ. This is the number of runnable process in this priority
queue.

A process that inherits priority by RT-IPC must be inserted and removed from the queues in LIFO
order as it is explained in the RT-IPC chapter [10].
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These kernel functions help to manage priority queues.
§ RTM_priQ_fifo() : FIFO insertion in a priority queue.
§ RTM_priQ_lifo() : LIFO insertion in a priority queue.
§ RTM_priQ_rmv() : remove a process from a priority queue.

Figure 10 

Several kernel functions operate on priority queues:
• RTM_pick_proc(): It is the RT-scheduler. It selects the highest priority ready-to-run process.
• RTM_ready(): It changes the state of a process to the RT-READY, appending the descriptor

at the end of the priority queue using RTM_priQ_fifo().
• RTM_unready(): It changes the state of a RT-READY process to a RT-BLOCKED state

and removes it from the priority queue using RTM_priQ_rmv().
• RTM_pri_inh() function: RT-IPC could change the priority of  the destination process of a

message. It uses RTM_priQ_rmv() and  RTM_priQ_lifo().
• The RTM_pri_reset() function: change the priority of a process when it has done a reply. It

uses RTM_priQ_rmv() and RTM_priQ_lifo().
• The RTM_setpri(): set the process priority using RTM_priQ_rmv() and RTM_priQ_fifo().

3.7 RT-process Termination

Para terminar un proceso RT es conveniente retornarlo a NRT usando rtm_setproc().

Si un proceso NRT hace un kill de un proceso RT debería interceptarse la llamada

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
src/mm/forkexit.c  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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.....
16924 /*===========================================================================*
16925  *                              mm_exit                                      *
16926  *===========================================================================*/
........
16948   /* Tell the kernel and FS that the process is no longer runnable. */
Aqui habria que informar a la tarea RTMTASK que convierta al proceso nuevamente en NRT.
16949   tell_fs(EXIT, proc_nr, 0, 0);  /* file system can free the proc slot */
16950   sys_xit(rmp->mp_parent, proc_nr, &base, &size);

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
src/mm/signal.c  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
18262 /*===========================================================================*
18263  *                              check_sig                                    *
18264  *===========================================================================*/
18280   /* Return EINVAL for attempts to send SIGKILL to INIT alone. */
18281   if (proc_id == INIT_PID && signo == SIGKILL) return(EINVAL);
Aqui tambien se podría retornar EINVAL si se intenta enviar cualquier señal a un proceso RT
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4. TIME MANAGEMENT
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4.1 Timer Management Design Patterns [31] [32]

Timer strategies play an integral role in Real-Time systems.
The following timer management design patterns are used very frequently in Real-time systems:

• A pause() function
• Recovering from Message Loss
• Recovering from Software Faults
• Sequencing Operations
• Polling
• Periodic Operations
• Failure Detection
• Collecting Messages
• Inactivity Detection

A pause() function
A function pause() is used to suspend the active task for a specified number of milliseconds.
As is explained in [32], an inaccuracy could occur because the pause function use the timer
interrupt as is time base and it depends on the timer resolution.

Recovering from Message Loss
Usually a timer is kept while awaiting for a message. If the message is received, timer is
stopped. If the timer expires, message loss is registered. In such a case, a retry logic is
implemented by restarting the timer and awaiting for the message again. If the number of
retries reaches a threshold, the activity is aborted and appropriate recovery action is initiated.

Recovering from Software Faults
Whenever a feature is initiated, a feature wide timer is kept to ensure feature success. If some
software or hardware module involved in the feature hits recovery, the feature will fail and
the timer expiry will be the only method to detect the feature failure. On expiry of the feature
wide timer, the feature may be reinitiated or recovery action might be taken.
It is a good design practice to keep at least one timer active during the execution of a feature.
The timer guards the system against unforeseen failure conditions.

Sequencing Operations
Timers are used for sequencing time based state transitions. Consider the traffic light
controller where after each light operation, the controller has to wait for some defined amount
of time. For example, timers can manage the transition between green, yellow and red. When
a timer expires, the traffic light is moved to its next logical condition and a timer is started for
the next transition.

Polling
In most systems, events are reported via messages. But sometimes it may not be practical to
report the occurrence of an event via a message. So a timer is kept and the system polls for
that condition on every timeout.
Consider the implementation of a congestion control system. The software runs a periodic
congestion polling timer that polls for the CPU utilization and other congestion triggers.
When the CPU utilizations reaches a threshold, the congestion control action is taken.

Periodic Operations
For implementing audits, periodic timers are kept. On each timer expiry, software audit is
initiated. Another example where periodic timers are used could be implementing periodic
billing of calls in telecom systems. When the call enters conversation, the periodic timer is
started. On every timeout, the subscriber meter is incremented.
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Failure Detection
For monitoring the health of other modules, a module runs a timer. It expects a sanity punch
message periodically from all the other modules before the expiry of the timer. If certain
number of sanity punches are missed in succession from a module, module failure is declared
as failed.

Collecting Messages
Many times timers are used to collect messages. For example, in the digit collection
procedure for a call, the system restarts a timer each time a digit message is received. The end
of dialing is either received in the message or the timer expiry indicates it. No timer is started
after the end of dialing is detected. Partial dialing is reported if the end of dialing is detected
before the receipt of minimum number of digits required to route the call

Inactivity Detection
Timers are also used for detecting the inactivity in a session. Consider the case of a user
session on the internet. Each time there is any kind of action by the user, the inactivity timer
is restarted by the ISP. If the timer expires, the ISP terminates the user session and the
internet connection is lost.

4.2 MINIX virtual timer interrupts

PIT interrupts are real interrupts. RT-MINIXv2 kernel emulates timer interrupts calling MINIX
handler with a lower (or equal) rate than the PIT. These are virtual timer interrupts.

The timer interrupt rate of standard MINIX is defined as a constant  in HZ as follow:
#define HZ           60    /* clock freq (software settable on IBM-PC) */

RT-MINIXv2 redefines HZ as follow:
#define HZ           50    /* clock freq (software settable on IBM-PC) */

The timer interrupt rate of standard RT-MINIXv2 is RTM_tickrate defined as a variable.
HZ and RTM_tickrate must be armonics frequencies to virtualize a timer interrupt for the MINIX
kernel only when PIT interrupts occur, therefore they must related by an integer value:

RTM_tickrate = RTM_timercoef * HZ; where RTM_timercoef = 1,2,3,.....N

Figure 11 
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To preserve the illusion of the standard MINIX tick rate (HZ), the standard MINIX interrupt handler
clock_handler() is called after RTM_timercoef timer interrupts. This lower interrupt rate is emulated
using a virtual clock (explained later)  with a period = RTM_timercoef. (See Figure 11)

To avoid that the MINIX timer interrupt handler could be executing with the interrupt priority of the
RT-timer handler, a software IRQ is used to defer its processing with priority equals to
(RTM_PRILOWEST – 1).

4.3 Timer Resolution

IBM-compatible PCs include a device called 8253/4 Programmable Interval Timer (PIT).  This
device issues a special interrupt on IRQ0 called timer interrupt, which notifies the kernel that one
more time interval has elapsed.
The 8253/4 PIT uses an internal oscillator frequency at 1,193,180 Hz.
The PIT has a 16 bits LATCH register to set the ratio between the oscillator frequency and the the
number of interrupts per second.

tick_rate =  1193180/LATCH

Only some values of LATCH issues integer values of tick_rate. For other values of LATCH an
accuracy error occurs.

LATCH tick_rate
1 1193180
2 596590
4 298295
5 238636
10 119318
20 59659

59659 20

The PIT LATCH is a variable named RTM_timercount and it is initilized:
RTM_timercount = TIMER_FREQ/RTM_tickrate = 1193180/100 = 11931

with a  reminder of 80 Hz

This reminder represents:
- an additional timer interrupt every  (11931*100/80) = 15000 timer ticks
- a RT-timer interrupt frequency of 100.0067052217 [Hz]
- a RT-timer period of 0.009999329522788 [s]

resulting in an error in timer accuracy of  0.0000670478.
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The next table shows some Real timer interrupt frequencies, timer periods and resulting errors.

Specified
Tick
Rate
[int/s]

Specified
Period

[s]

Latch Reminder
[Hz]

Real Tick
Rate
[int/s]

Real Period
[s]

Period
Error

100 0.010000000 11931 80 100.006705 0.009999330 0.000067048
200 0.005000000 5965 180 200.030176 0.004999246 0.000150857
500 0.002000000 2386 180 500.075440 0.001999698 0.000150857
1000 0.001000000 1193 180 1000.15088 0.000999849 0.000150857
1500 0.000666667 795 680 1500.85535 0.000666287 0.000569906
2000 0.000500000 596 1180 2001.97987 0.000499506 0.000988954
3000 0.000333333 397 2180 3005.49118 0.000332724 0.001827050
4000 0.000250000 298 1180 4003.95973 0.000249753 0.000988954
5000 0.000200000 238 3180 5013.36134 0.000199467 0.002665147
7500 0.000133333 159 680 7504.27673 0.000133257 0.000569906
10000 0.000100000 119 3180 10026.7227 0.000099733 0.002665147

As RTM_tickrate is a multiple of HZ, it could be changed setting RTM_timercoef using rtm_restart()
system call.
rtm_restart()  can only be used before running any RT-process  o when no one RT-process/handler  is
running, otherwise all it’s system time reference would be erroneous.

MINIX has a global system variable realtime that stores the number of  elapsed timer ticks since the
system was started. It is set to 0 during kernel initialization
In RT-MINIXv2  the RTM_counter.ticks variable counts the number of elapsed timer ticks since the
system was started. o it coud be reset by rtm_restart() system call.

RTM_counter.ticks is an unsigned 32 bits integer, and its returns to 0 time depends on the tick rate.
The next table shows some return_to_zero time of RTM_tickcount vs PIT interrupt frequency.

Tick
rate

[int/s]

Days for
return_to_zero

of
RTM_counter.ticks

50 994
100 497
200 249
500 99
1000 50
1500 33
2000 25
3000 17
4000 12
5000 10
7500 7
10000 5

When RTM_counter.ticks returns to zero, anothe kernel variable named RTM_counter.highticks is
increased.
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4.4 8253/4 Programmable Interval Timer Programming

The 8253/4 Programmable Timer provides three independent 16-bit counters called timer channels
that can count in binary or BCD. It can run in one of the six programmable modes:

• Mode 0 : Interrupt on Terminal Count
• Mode 1 : Programmable One-shot
• Mode 2 : Rate Generator
• Mode 3 : Square Wave Rate Generator
• Mode 4 : Software Triggered Strobe
• Mode 5 : Hardware Trigger Strobe

The programming of a timer channel is initiated by writing a control word into the control register
port at 43H.

The control word has the following format:

D7 D6 D5 D4 D3 D2 D1 D0
SC1 SC0 RL1 RL0 M2 M1 M0 BCD

SC1 SC0 Comment
0 0 Select Counter 0
0 1 Select Counter 1
1 0 Select Counter 2
1 1 Illegal

RL1 RL0 Comment
0 0 Counter latching operation
0 1 Read/load MSB only
1 0 Read/load LSB only
1 1 Read/load LSB first, then MSB

M2 M1 M0 Mode
0 0 0 0
0 0 1 1
x 1 0 2
x 1 1 3
1 0 0 4
1 0 1 5

The BCD bit specifies whether to count in binary or BCD.
Since the counters are 16 bits long but the I/O port through which data is transferred is only 8 bits
long, two data transfer operations will be needed if we want to fill the whole counter.
Setting the bits D5 and D4 to 11 in order to load first the LSB then the MSB as the preset 16-bit word
count for the corresponding counter.

Here are some relevant I/O port addresses:
40H Timer Channel 0 Counter
41H Timer Channel 1 Counter
42H Timer Channel 2 Counter
43H Timer Control Register

Two kernel functions operates on the PIT Timer Channel 0.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com


• RTM_set_timer(): Used to change the timer interrupt rate. The function parameter is the
latch counter.

• RTM_read_timer(): Used to read the current value of the latch counter.

4.5 Latency Measurement

One of the most common measurements requested of real-time kernel and realtime operating system
is the interrupt latency [35]. This metric, while useful, is a very limited indication of the performance
capabilities of a RT-kernel.
Interrupt latency numbers are most useful when used to measure the effectiveness of an RT-kernel at
dealing with extremely high-priority interrupts or emergency interrupts.

Understanding the relative size of delays is important to the design of the real-time system. Most
sources of delay in an RT-kernel are due to either code execution or context switches. Virtually all of
these delays are fixed in length and repeatable. Bounded and repeatable is the fundamental
characteristic desired of an RT-kernel.

Interrupt latencies are not fixed in length. Because an interrupt is, by definition, an asynchronous
event, a system’s interrupt latency is dependent on the state of the machine when the interrupt
occurred. This state is a function of both the hardware and the software used in the system.

Interrupt latency is measured as the time that elapses between the instant when a hardware interrupt
request is made and when that request is honored by the CPU and software. In other words, it is the
delay encountered before execution of the interrupt service routine begins, following assertion of the
CPU’s interrupt input.

RT-MINIXv2 kernel uses the PIT timer counter 0 for timer interrupt latency measurement.
When the latch counter reachs zero, the PIT triggers an interrupt, and then the counter is reset to it’s
initial value RTM_timercount. As the PIT remains decrementing the counter, during the timer handler
is servicing the interrupt, the value of the counter lets compute the latency of the handler.

Timer_Handler_Latency = RTM_timercount - RTM_read_timer()

Figure 12 

To consider the overhead of executing RTM_read_timer(), the kernel computes it in initialization time
and store the number of timer Hz  elapsed in the global variable RTM_PIT_latency.
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When RTM_flush_int() is invoked to flush interrupts, it stores the current PIT latch counter in one
local variable named before, and the current value of RTM_counter.ticks in another local variable
named befRT-ticks before running the handler.
After the handler was run, the interrupt processing time (in timer Hz) can be computed as:

IRQ_proc_time [Hz] = before +
[RTM_timercount - RTM_read_timer() ]+
[(RTM_counter.ticks – befRT-ticks – 1 ) *

RTM_timercount]

 Note: This interrupt processing time includes interrupt and process interferences

Figure 13 

To compute the Interrupt Processing time in seconts

IRQ_proc_time [s] = IRQ_proc_time [Hz]/ TIMER_FREQ  = IRQ_proc_time [Hz]/ 1193180[Hz/s]

SE PUEDE AGREGAR UN CAMPO MAS A LOS DESCRIPTORES DE INTERRUPCION HRtstamp
(High Res Timestamp )

QUE GUARDEN EL TIMESTAMP DEL LATCH DEL PIT ADEMAS DEL  CONTADOR DE TICKS.

AL FINALIZAR LA INTERRUPCION, LA LATENCIA SERÁ:

LATENCY = (RTM_timercount – RTM_read_timer())

+ RTM_timercount ( RTM_counter.ticks – irqd->HRtstamp)
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4.6 Starting Real-Time processing

At startup, the system is not ready for Real-Time processing. All interrupt handlers pointed by the
RTM_irq_dispatch() are standard  MINIX handlers, and all processes types are RTM_P_STANDARD.
To start  Real-Time processing the rtm_RTstart() system call must be used.

Sometimes, it is necesary to reconfigure the system to change some parameters without system
recompilation and restarting. rtm_restart() could be used to change Real-Time processing parameters
and reset system statistics. One of this parameters may be the timer interrupt frequency changing the
kernel variable RTM_timercoef. But if the timer period is changed, all previous timing related
statistics will be erroneous.
The kernel variables that are affected by the timer interrupt frequency change are:

ü RTM_counter.ticks: counts the number of elapsed timer ticks since the system
startup or since the last call to RTM_restart(). If the timer tick rate is changed,
the value in this variable will be without of sense.

ü RTM_IRQ_latency: it uses RTM_counter.ticks to obtain the
RTM_IRQ_dispatch()  latency.

ü RTM_idlemax: it is the maximun count of idle loops in a RT-tick. As the period
of the RT-tick is changed the value in this variable will be without of sense

ü RTM_desc_table[irq].timestamp: for each interrupt descriptor, it is the
timestamp in RT-ticks of the last interrupt. If the timer tick rate is changed, the
value in this variable will be without of sense.

ü RTM_desc_table[irq].latency: for each interrupt descriptor, it is the last interrupt
latency  in PIT Hz, but as it uses RTM_counter.ticks to obtain the value.

To return to Non Real-Time processing a user process could use rtm_RTstop() system call that can
only be used when any RT-process is running.
Using rtm_RTstop()  all interrupt will be serviced by  Non Real-Time handlers.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com


4.7 Virtual Clocks

Some systems use software timers to handle periodic processing. Once the period of the timer has
elapsed, the periodic process is scheduled,  the timer is removed from a queue and inserted in other
position of the queue depending on the period. These approach produce significant overhead to the
periodic process and particulary in those that have small periods.

RT-MINIXv2 uses virtual clocks to manage periodic processing. It have NR_VCLOCKS virtual
clocks descriptors  RTM_vclock_desc_t  in kernel space.

4.7.1. Virtual Clocks Management

The kernel have a wheel of active virtual clocks that are checked on each timer interrupt. (See Figure
14).

Figure 14 

To reduce latency delay during the interrupt handling, some tasks are delayed to be processed by
RTM_flush_int() out of interrupt time.
When RTM_IRQ_dispatch() is called by a timer interrupt (CLOCK_IRQ) , it enqueue the RT-timer
interrupt handler to be processed by RTM_flush_int().
As the timer IRQ descriptor have the highest priority (RTM_PRIHIGHEST), it will be the first
handler called by RTM_flush_int().

To check  for virtual clocks that need to be triggered, the timer RT-handler does the following:

RTM_vclock_desc_t *pvc; /* virtual clock pointer */
for( i = 0, pvc = RTM_wheel.first; i < RTM_wheel.inQ; i++, pvc = pvc->next)

if( ((RTM_counter.ticks - pvc->offset) % pvc->period)  == 0 )
RTM_vclock_trigger(pvc->index);

pvc->offset: the timestamp of RTM_counter.ticks when the virtual clock  was activated.

As the overhead of virtual clock checking is high because it is done on every timer tick, it is important
to set the timer resolution to the lowest virtual clock period needed.

The available virtual clock actions are:
- RTM_ACT_NONE: do nothing. Used by software timers to keep the virtual clock data

structure assigned to a process and active, therefore avoiding the abuse of create and
delete operations.

- RTM_ACT_SCHED: clears the RTM_P_SLEEP flag of the process status flags, and if
the process is ready to run, it is inserted in it’s priority queue.

- RTM_ACT_MESS: send a message to the owner process mailbox
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- RTM_ACT_EXPIRED: do nothing. Once a virtual clock has reached the limit of
expirations, the kernel change the action type to RTM_ACT_EXPIRED and all virtual
clock statistics and counts are freezed.

- RTM_ACT_IPC: a RT-IPC function has reach its timeout. Se debe invalidad el estado de
send o receive del proceso rapidamente de tal modo de que el proceso receptor o emisor
no pueda recibir o enviar un mensaje una vez que el proceso vencio su timeout. Luego,
se utiliza una software IRQ previamente asignada para que remueva al proceso de la
cola de espera correspondiente.

- RTM_ACT_SOFTIRQ: activates the software IRQ specified in the virtual clock param.
The software IRQ must be previously assigned using RTM_set_softirq() kernel function.

The kernel functions that operate on virtual clocks are:
- RTM_vclock_create(): create a new virtual clock..
- RTM_vclock_delete(): removes the virtual clock from the wheel and free the resource.
- RTM_vclock_change(): change the parameters of an active virtual clock.

4.7.2. Periodic Process Scheduling

RT-MINIXv2 use virtual clocks to schedule periodic RT-USER processes.
A virtual clock is assigned to each periodic process. The virtual clock action type is
RTM_ACT_SCHED.
If a periodic process is scheduled by the virtual clock in a RT-READY state implies that it has missed
its deadline, therefore the kernel sends a MT_WATCHDOG message to a watchdog process specified
in the process descriptor.

4.7.3. Alarms

Alarms are a special kind of a virtual clocks.  The have the following behaviour.
- They are one shot.
- They have no period.
- They have a deadline.

To create an alarm using a virtual clock:
- vc.period = alarm.duration;
- vc.limit    = 1;
- vc.action  =  alarm.action;
- vc.param  =  alarm.param;

Once the alarm was triggered, the virtual clock could be remove with RTM_vclock_delete().

4.7.4. Timeouts Management

Timeouts could be created using virtual clocks. They have the following behaviour.
- They are one shot.
- They have no period.
- It is often that it is not reach their deadlines.

To create a timeout using a virtual clock:
- vc.period = timeout.duration;
- vc.limit    = 1;
- vc.action  =  timeout.action;
- vc.param  =  timeout.param;
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If the timeout has no reached it deadline, the virtual clock  could be removed using
RTM_vclock_delete() or its action could be set RTM_ACT_NONE using RTM_vclock_change() to
keep the virtual clock assigned.
 If the timeout has reached it deadline, the virtual clock could be remove with RTM_vclock_delete().

4.7.5. Send/Receive Timeouts

RT-IPC primitives can include timeouts that return E_TIMEOUT error code to the calling process
when a message can not be sent/received in a specified time period.

RT-MINIXv2 kernel uses virtual clocks to implement RT-IPC timeouts.
More about send/receive timeouts is detailed in the RT-IPC chapter.

4.8 Deadline Handler  using Software IRQs

A deadline handler permits to take corrective actions when a  process deadline have been missed[27].
Another use of virtual clocks is the implementation of deadline handler using software IRQs.
The  process must:

A. sets a software IRQ handler to be run on each missed deadline
B. sets a one-shot virtual clock with period equal to its deadline with the action =

RTM_ACT_SOFTIRQ and the param = software IRQ number.
C. runs its specific code.
D. removes the virtual clock and the software IRQ before exit..

If during the process execution the deadline is missed, the software IRQ handler is called and
corrective actions can be taken.

Figure 15  – From [27].
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