
RT-MINIXv2: Architecture and Interrupt Handling

Pablo A. Pessolani
Facultad Regional Santa Fe

Departamento de Sistemas de Información
Universidad Tecnológica Nacional

Lavaise 610. (3000) Santa Fe. Argentina
ppessolani@hotmail.com

Abstract

Tanenbaum’s MINIX operating system [1] was
extended by Wainer with Real-Time (RT) services to
conform RT-MINIX [2,3]. This work is on RT-
MINIXv2, a new version for academic uses that
includes a RT-microkernel with more flexible IPC
facilities supporting basic priority inheritance
protocol, a fixed priority scheduler, timer and event
driven interrupt management, statistics and RT-
metrics collection keeping backward compatibility
with standard MINIX versions.

Keywords: Operating Systems, Minix, Interrupt

Handling, Real-Time.

1. Introduction

Computer science students and professionals
working on Real-Time Operating Systems (RTOS)
need a deep knowledge of every software component
and the interactions with hardware devices
considering timing constraints.

RTOS instructors can choice among commercial or
free licence software to develop their laboratory
practice. Commercially available RTOS are too costly
and proprietary to be used by academic institutions.
Free licence and open source RTOS have been
designed focusing on predictability as a key design
feature with complex source code readability.

The design and implementation of RT-MINIXv2 is
proposed to teach RTOS and covers the following
topics:

4 MINIX and RT-MINIX Background
Information

4 System Architecture
4 Interrupt Handling
4 Process Management
4 Time Management
4 Process Scheduling

4 Interprocess Communications
4 Real-Time System Calls
4 Statistics Collection
4 Performance Tests
4 Sample Source Code and System Data

Structures
This article address the first three topics raised

above and describes a way to transform a time sharing
OS (MINIX) into a hard Real-Time one (RT-
MINIXv2).

The experience earned in well-planed course
assignments and projects using systems like RT-
MINIXv2 provides education, advanced technical
training, and enhances personal performance for the
deployment and use of RTOS to the academic
community worldwide.

The rest of this work is organized as follows.
Section 2 describes the motivation of this project.
Section 3 and 4 are about MINIX and RT-MINIX
features respectively. Section 5, the proposed RT-
MINIXv2 is introduced. Section 6 describes MINIX
architecture, and the proposed RT-MINIXv2
architecture is discussed in Section 7. The Section 8 is
the longest and covers the RT-MINIXv2 interrupt
handling approach, its Interrupt Request Level
architecture, the effect of priorities on interrupt
service, software IRQs, nested interrupts and a
technique to estimate interrupt handlers latency inside
the kernel. Finally, Section 9 amd 10 presents
conclusions future works respectively.

2. Motivation

The aim of the RT-MINIXv2 project is to provide

an educational tool for RTOS courses as MINIX [7, 8,
9] or Linux [6] do for OS Design and Implementation
courses.

The decision to adopt MINIX among other OS as
foundation for this work is based on:

4 The author’s previous experience.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

4 Its documentation availability.
4 Its hardware platform requirements.
4 It’s modular and elegant design.
RT-MINIXv2 implementation focus on source code

readability (perhaps sacrificing performance) to let
instructors make easily a multiplicity of grade courses
assignments, laboratory tests, projects and other
academic uses with an open source RTOS.

Some interesting projects could be:
4 Port a hard real-time network protocol stack as

RTNET [13] or RETHER [14]
4 Design a real-time Distributed Operating

System.
4 Implement Remote Device Drivers

A lot of interesting system statistics are collected to
make the OS more educational.

Students can experience with programming
interrupt-driven systems and get a deep understanding
of how RT-systems work with a minimal software
infrastructure.

3. MINIX Time Sharing Features

MINIX is a complete, time-sharing, multitasking
OS developed from scratch by Andrew S.
Tanenbaum[1]. It is a general-purpose OS broadly
used in Computer Science degree courses.

Though it is copyrighted, the source has been made
widely available to universities for study and research.
Its main features are:

4 Microkernel based: Provides process
management and scheduling, basic memory
management, interprocess communication,
interrupt processing and low level I/O support.

4 Multilayer system: Permits a modular design
and clear implementation.

4 Client/Server model: All system services and
device drivers are implemented as server
processes with their own execution
environment.

4 Message Transfer Interprocess
Communications (IPC): Used for process
synchronization and data sharing.

4 Interrupt hiding: Interrupts are converted in
message transfers.

4. RT-MINIX Features

Gabriel Wainer [2, 3] changed the standard
MINIX OS to support RT-processing named it “RT-
MINIX”. Its main features are:

4 Scheduling Algorithms Selection
4 Joined Scheduling Queues
4 Real-Time Metrics collection
4 Timer Resolution Management
Several changes was made to MINIX source code

of the kernel in order to provide the user a set of
system calls to create and manage tasks, both periodic
or aperiodic.

That approach implies some limitations in its uses
because:

4 It is not an architecture, is a patch for MINIX.
4 It does not serve hardware interrupts by

priority. This could produce priority inversion
because while a higher priority RT-handler is
running, lower priority NRT-interrupts could
be attended increasing the RT-handler
interference.

4 It has only one level of priority for all RT-
tasks, but MINIX tasks and servers have
higher priorities. This could produce priority
inversion because while a RT-process is
running, a standard MINIX non real-time task
or server could preempt it.

4 Its use standard MINIX message transfers as
its IPC primitives. As MINIX use FIFO
discipline to receive messages from several
processes offen creates a priority inversion
problem.

4 It does not have any protocol agains priority
inversion limiting its utilization on projects
that use cooperating tasks.

4 Increasing the timer resolution also increase
the overhead because the standard MINIX
timer interrupt handler is executing at higher
frequency.

4 A RT-process can make NRT-system calls,
therefore the NRT-servers that receive the
request will execute in behalf of the RT-
process but without RT-attributes.

4 As its uses a modified MINIX clock (timer)
handler for RT-alarms, other NRT-tasks in
ready to run state could be executed before the
clock handler increasing the RT-alarms
latency.

RM and EDF scheduling were included. These
strategies were later combined with other traditional
strategies, such as Least Laxity First, Least Slack First
and Deadline Monotonic.

Several data structures in the OS were modified to
consider tasks period, execution time and criticality.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

Task execution priority was implemented using a
multiqueue scheme to accommodate RT-tasks along
with interactive and CPU-bound tasks.

RT-MINIX defines a new set of signals to indicate
special situations, such as missed deadlines, overload
or uncertainty of the schedulability of the task set.

5. RT-MINIXv2 Features

As Wainer and Rogina said in [2], existing RTOS
can be divided in two categories:

1. Systems implemented using somewhat stripped
down and optimized (or specialized) versions
of conventional timesharing OS.

2. Systems starting from scratch, focusing on
predictability as a key design feature.

RT-MINIXv2 is based on the first design approach
using MINIX as the conventional OS.

This special version offers predictable RT-
computing environment at lower cost than propietary
RTOS used for academic purposes.

The major features of RT-MINIXv2 are
summarized as follows:

4 Real-Time preemptive Microkernel.
4 Layered Architecture.
4 Timer/Event Driven Interrupt Management.
4 Fixed Priority Hardware Interrupt Processing.
4 Two Stages Interrupt Handling using Software

IRQs.
4 Periodic and Sporadic processing.
4 Timer Resolution Management detached from

MINIX timer.
4 Fixed Priority Based Real-Time Scheduling.
4 Synchronous/Asynchronous Message Transfer

using Mailboxes.
4 Basic Priority Inheritance Protocol support in

Message Transfer IPC.
4 Receive and Synchronous Send Timeout

support.
4 Priority discipline on message reception.

Deadline expiration watchdogs.
4 Software timers for alarms, timeouts and other

time related uses.
4 Statistics and Real-Time Metrics Collection.
The advantage of using a microkernel for RT-

applications is that the preemptability of the kernel is
better, the size of the kernel becomes much smaller,
and the addition/removal of services is easier.

RT-MINIXv2 provides the capability of running
special RT-tasks and interrupt handlers on the same
machine as standard MINIX. These tasks and

handlers execute when they need to execute no matter
what MINIX is doing.

The RT-microkernel works by treating the MINIX
OS kernel as a task executing under a small RTOS
based on software emulation of interrupt control
hardware. In fact, MINIX is like the idle task for the
RT-microkernel executing only when there are no RT-
tasks to run. When MINIX tells the hardware to
disable interrupts, the RT-microkernel intercepts the
request, records it, and returns to MINIX.

RT-MINIXv2 can handle devices in two ways:
4 Interrupt driven: As RT-MINIXv2 is designed

for 32 bits INTEL PCs [5], the interrupt levels
of the standard devices like keyboard, serial
ports, etc cannot be changed and may produce
priority inversion problems with other devices.

4 Timer driven: the devices are polled or some
job is done on the device at regular periods. As
in standards PCs the timer has the top priority
level, no priority inversion problems can
occurs.

The current version of RT-MINIXv2 is based on
version 2.0.2 for 32 bits INTEL processors of MINIX
therefore it requires the same hardware platform.

6. MINIX System Architecture

Figure 1- MINIX architecture (from [1])

MINIX is structured in four layers as it can see in
Figure 1.

1. The microkernel.
2. Input/Output Tasks.
3. Server Processes.
4. User-level Processes.
An interrupt is usually defined as an event that

alters the sequence of instructions executed by a
processor [10].

In MINIX, when a hardware device interrupts the
CPU, an interrupt handler is called, but if more time is
needed to complete the job, the handler sends a
message to the device Interrupt Service Task (IST)

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

and calls the scheduler on exit. As I/O Tasks have
greater priority than regular User-level processes and
system servers, the IST is executed to resume the
interrupt service.
This approach is often called Two Stages Interrupt
Handling.

An IST is like a thread that shares kernel address
space but it has its own processing attributes.

The use of ISTs to complete the interrupt
processing works well in a time sharing environment
but can introduce unbounded delay in RT-processing.
Two factors affects the interrupt response time:

1. MINIX scheduler uses three priority queues,
one for ISTs, one for Server Processes and one
for User-level Processes. As the IST queue is
arranged in FIFO order, it is not suitable to be
used in time constrained systems.

2. MINIX hides interrupts using message
transfers. On each hardware interrupt, a
message is sent to an IST forcing a context
switch before running the task. This fact
increases the system latency and reduces the
schedulability of RT-tasks.

7. RT-MINIXv2 System Architecture

As RT-MINIXv2 intends to be used in an academic

environment, its design has been done to be as least
intrusive as possible in the standard MINIX source
code. Yodaiken and Barabanov [4] have proposed that
approach for RTLinux. The key idea is how interrupt
management is done.

As result, one RTOS (RT-MINIXv2) hosts a
standard time sharing OS (MINIX). These two OS
have their own set of system calls.

The RT-MINIXv2 effectively puts in place a new
process scheduler that treats the MINIX kernel as the
lowest priority process executing under the RT-kernel.

As Non Real-Time - (NRT) interrupt handlers
could block RT-Process or RT-interrupt handlers, the
RT-microkernel installs an interrupt dispatcher that
only executes the handler if it has a greater priority
than the running process/handler.

Under that design, MINIX only executes when
there is no RT-process to run, and the RT-kernel is
inactive. Thus, a MINIX process can never block
interrupts or prevent itself from being preempted,
yielding all resources to a RT-process. MINIX kernel
may be preempted by a RT-process even during a
system call, so no MINIX routine can be safely called
from a RT-process.

Thus, some problems must be solved:

4 The interrupts must be captured by a RT-
kernel.

4 RT-scheduler and services must be
implemented.

4 RT-applications need an interface layer to
interact with the RT-kernel.

4 RT-applications may need transfer data and
synchronize with NRT-applications.

4 Full process and interrupt handler
preemptability is needed.

8. RT-MINIXv2 Interrupt Handling

As RTLinux does, RT-MINIXv2 uses the Virtual
Machine (VM) concept limited to interrupt emulation
or virtualization. Its microkernel is underneath of
MINIX and the scheduler runs NRT-processes when
there are not RT-processes ready to run.

Since interrupts can come at any time, the kernel
might be handling one of them while another one (of a
different type) occurs. This should be allowed as much
as possible since it keeps the I/O devices busy. As a
result, the interrupt handlers must be coded to run in a
nested manner.

When each interrupt handler terminates, the kernel
must be able to resume execution of the interrupted
process or switch to another process if the interrupt
signal has caused a rescheduling activity or execute
another lower priority interrupt handler.

Although the kernel may accept a new interrupt
signal while handling a previous one, some critical
regions exist inside the kernel code where interrupts
must be disabled. Such critical regions must be limited
as much as possible since, the kernel, and in particular
the interrupt handlers, should run most of the time
with the interrupts enabled.

RT-MINIXv2 avoids disabling interrupts for
extended periods to improve system response time.
RT-interrupt handlers can easily be replaced with
standard ones. This is especially useful in certain
debugging situations.

RT-MINIXv2 starts in Non Real-Time processing
mode. In this mode, only NRT-interrupt handlers are
executed and a limited number of RT-system calls are
allowed.

To start the RT-processing mode, the rtm_RTstart()
system call must be executed. In this mode, when an
interrupt occurs, a RT-handler is invoked for RT-
defined interrupts; otherwise standard MINIX
handlers are called.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

8.1. Interrupt Virtualization

One of the problems with doing hard Real-Time on
a standard MINIX system is the fact that the kernel
uses disabling interrupts as a means of
synchronization. Promiscuous use of disabling and
enabling interrupts inflicts unpredictable interrupt
dispatch latency.

In RT-MINIXv2, this problem has been solved by
adding a layer of emulation software between the
MINIX kernel and the interrupt controller hardware.
The emulator catches all hardware interrupts.

All MINIX kernel functions that handle the
processor Interrupt Flag (IF) (lock()/unlock()) are
replaced with virtualized ones to avoid that MINIX
could not be preemptive when a RT-interrupt occurs.

All MINIX kernel functions that operate on
interrupt handlers are virtualized. These functions are:
4 intr_init():

° Initializes the 8259 Programmable
Interrupt Controller (PIC).

° Initializes counters, indexes, etc and the
table of RT-interrupt handlers.

° Initializes the interrupt pending queues
bitmap.

° Clears the interrupt pending queues.
4 put_irq_handler():

° Registers an interrupt handler.
° Inserts a NRT-handler in the interrupt

pending queue.
The task of capturing and redirecting the interrupts

was addressed by creating a small RT-microkernel,
which captures all hardware interrupts and redirects
them to either standard MINIX handlers or to RT-
MINIXv2 handlers.

The RT-microkernel provides a framework onto
which RT-MINIXv2 is mounted with the ability to
fully preempt MINIX.

A drawback is that the MINIX kernel suffers a
slight performance loss when RT-MINIXv2 VM is
added due to:

4 The redirections of interrupt handlers to a
common interrupt dispatcher.

4 The interrupt mask/unmask functions.
4 The search of pending interrupts in the

interrupt pending queues.
4 The deferred execution of interrupt handlers.
4 The added statistics collection as part of

interrupt handling.
 In consideration of both strengths and weaknesses,

this technique has shown itself to be flexible because it
removes none of the capability of standard MINIX, yet

it provides guaranteed scheduling and response time
for critical tasks.

Changes to standard MINIX are minimal with the
VM approach. This low level of intrusion on the
standard MINIX kernel improves the code
maintainability to keep the Real -Time modifications
up-to-date with the latest release of the MINIX kernel.

8.2. User and Kernel Stacks

In MINIX and RT-MINIXv2 each process has two
stacks:

4 User stack: In userspace, only this stack can be
used.

4 Kernel stack: When entering the kernel, the
system switches to this stack.

On interrupt, the state of a process is saved in
kernel stack. If new interrupts occur during the service
of other interrupts (nested interrupts), the state of the
interrupted handler is saved in the kernel stack.

To let monitor the kernel stack use, each interrupt
descriptor have a field named reenter that keeps the
maximum kernel reentrancy level for each IRQ. This
helps to size the kernel stack for specific uses.

As is expected that a RTOS receives much more
interrupts than a time-sharing OS, by default, RT-
MINIXv2’s kernel stack doubles in size MINIX’s
kernel stack.

8.3. Interrupt Handler Types

Not all interrupts have the same urgency. In fact,

the interrupt handler itself is not a suitable place for
all kind of actions. Long non-critical operations
should be deferred, since while an interrupt handler is
running, the signals on the corresponding IRQ line are
ignored.

RT-MINIXv2 defines the following types of
hardware interrupt handlers:

4 Non RT-handler: The handler is executed only
if its priority is greater than the priority of the
interrupted process otherwise it is signaled for
later processing.

4 RT Event-Driven handler: Idem Non RT-
handler.

4 RT Timer-Driven handler: It is signaled to be
for deferred processing once it reaches its
period.

One special case is the Timer handler that executes
some actions when the timer interrupt occurs and
other are deferred as the control of timers, alarms,
Timer-Driven IRQs and periodic processes.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

8.4. Interrupt Service Routines

At startup, RT-MINIXv2 initializes the Interrupt

Descriptor Table (IDT) pointing each entries of master
PIC hardware interrupts to a routine generated by the
macro hwint_master(irq). The entries for the slave PIC
hardware interrupts are filled with the address of a
routine generated by the macro hwint_slave(irq).

All interrupt service routines perform the same
basic actions:

1. Save the registers´ contents in the Kernel
Mode stack.

2. Increase the kernel variable k_reenter
(initialized in –1).

3. If k_reenter = 0, the state of the User Mode
process is saved, otherwise the system is
already in kernel mode.

4. Send an acknowledgment to the PIC that is
servicing the IRQ line, thus allowing it to
issue further interrupts.

5. Execute the interrupt handler dispatcher
RTM_IRQ_dispatch().

6. Terminate by jumping to the restart label if
the k_reenter = 0 or to restart1 label for
k_reenter > 0. More details in Section 8.9
(Returning from System Calls and Interrupts
Service Routines).

The k_reenter variable counts the reentrancy level
of interrupts and system calls in the kernel.

4 k_reenter = –1: when the system is in User
Mode.

4 k_reenter = 0: when one kernel control path is
running. That can be a system call, an
exception/fault handler or an interrupt service
routine.

4 k_reenter > 0: when more than one kernel
control path is running. This occurs on nested
hardware interrupts.

8.5. Interrupt Descriptor Data Structure

This section explains the data structures that

support interrupt handling and how they are laid out
in various descriptors used to store information on the
state, statistics and behavior of interrupt handler s.

The kernel has its own interrupt descriptor table
(other than INTEL’s IDT) named RTM_desc_table[].
It is an array of RTM_irq_desc_t data structures. It has
one descriptor for each hardware or software IRQ.

The RTM_irq_desc_t data structure has the
following fields:

- nrthandler: A pointer to a function that is the
NRT-handler.

- rthandler: A pointer to a function that is the
RT-handler.

- irq: The IRQ number.
- count: An interrupt counter for statistics.
- rain: A counter for timer driven interrupts

since the last period.
- maxrain: Stores the maximum value of rain.
- timestamp: The last interrupt timestamp.
- latency: The estimated interrupt handler

latency in timer Hz.
- maxlat: The maximum value of latency.
- before: An auxiliary field that stores the timer -

2 latch counter of the Programmable Interrupt
Timer (PIT) in Hz on RTM_IRQ_dispatch()
entry.

- reenter: Stores the maximum value of
RTM_prtylvl (explained in Section 8.6)

- period: The processing period for a Timer
Driven (TD) interrupt handler in timer ticks
units.

- task: The ID number of the RT-IST to send a
message for deferred processing.

- priority: The priority of the handler
- irqtype: The type of handler. It must be:

° RTM_NRTINT: for Non Real-Time
handlers.

° RTM_TDINT: for Timer-Driven handler.
° RTM_EDINT: for Event-Driven handlers.
° RTM_SOFTIRQ: for Software IRQ

handlers.
- flags: Some status flags.
- next: A pointer to the next IRQ descriptor in

the interrupt pending queue.
- prev: A pointer to the previous IRQ descriptor

in the interrupt pending queue.
- name: The name of the handler.

8.6. Interrupt Handler Dispatching

RT-MINIXv2 VM sets all ISRs to call an interrupt
dispatcher function named RTM_IRQ_dispatch() that
uses the interrupt descriptor table RTM_desc_table[]
to process RT and NRT interrupts. See Figure 2.

A kernel variable called RTM_prtylvl stores the
current system priority level of execution. This
variable is set to the current process priority or to the
running interrupt handler priority. It is used to reduce
the priority inversion problem deciding on the
execution of an interrupt handler or to defer it.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

Figure 2– Interrupt Handling

If RT-MINIXv2 is running in NRT-mode, the
standard interrupt handlers are executed without any
interception, deferring and statistics collection.

In RT-mode, the function RTM_IRQ_dispatch()
perform the following actions:

4 If a flag for latency computation has been set
in the descriptor, the timer-2 of the PIT is read
before running the handler and its value is
stored in the before descriptor field.

4 Some statistics are collected as:
° The total number of interrupts.
° A counter for each kind of IRQ.
° The kernel reentrancy level when the

interrupt occurs.
4 If a Timer interrupt has occurred:

° The system tick counter
RTM_counter.ticks is increased.

° The interrupt descriptor timestamp field
is set.

° Timer interrupt descriptor is marked for
deferred processing.

4 For interrupts other than Timer, the interrupt
descriptor timestamp field is set to
RTM_counter.ticks.

4 If an Event-Driven (ED) interrupt has occurred
with its priority greater than or equal to
RTM_prtylvl, the handler is called. The
handler can set signal the kernel of the need of
calling the RT-scheduler on exit.

4 If an ED-interrupt has occurred with its
priority lower than RTM_prtylvl, the
descriptor is marked for deferred processing.

4 If a NRT-interrupt has occurred with its
priority greater or equal than RTM_prtylvl, the
handler is called and then exits.

4 If a NRT-interrupt has occurred with its
priority lower than RTM_prtylvl, its descriptor
is marked for deferred processing.

4 If a TD-interrupt has occurred, a bit in kernel
bitmap variable named RTM_TD_bitmap is set
to signal the Timer interrupt handler that the
TD-interrupt period must be checked. Later,
when the Timer Interrupt handler runs, the
TD-descriptor is signaled for deferred
processing once it reaches its period.

8.7. Interrupt Handler Priority

Figure 3– IRQ priorities (from [1])

The PIC treats interrupts according to their priority

level. This depends on the interrupt line they use to
enter the interrupt controller. For this reason, the
priority levels are directly tied to the interrupt number.
Higher-priority IRQs may improve the performance of
the devices that use them.

The standard PC hardware has assigned priorities
for standard interrupts related to IRQ number as
shown in Figure 3. A lower IRQ number implies
higher priority. Newer Advanced Programmable
Interrupt Controllers (APICs) allow programmers to
change the priority of each IRQ line. RT-MINIXv2

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

services each IRQ based on the priority field of a
descriptor.

If a lower priority interrupt occurs during the
execution of a running process or handler, its interrupt
descriptor is marked as triggered and its processing is
delayed. Later, after a context switch, system call or
return from interrupt, the kernel calls RTM_flush_int()
function to scan the queues for interrupt descriptors
that has been triggered to invoke their handlers.

RTM_flush_int() does not execute some pending
interrupt handlers . They are:

4 NRT-interrupts once MINIX has (virtually)
disabled processor interrupts using the lock()
function.

4 TD-interrupts that have not reach their
launching period.

4 All pending interrupts handlers with lower
priority than the current system priority level
of execution (RTM_prtylvl).

Each RT-handler must signal if it needs RT-
scheduler invocation on exit.

8.8. Software IRQs

One of the main problems with interrupt handling
is how to perform longish tasks within a handler.

Often a substantial amount of work must be done in
response to a device interrupt, but interrupt handlers
need to finish up quickly and not keep interrupts
blocked for long. These two needs (work and speed)
conflict with each other, leaving the driver writer in a
bit of a bind. Therefore it is desirable that the interrupt
handlers could delay the execution of some tasks so
that they do not block the system for too long.

As it is explained above, MINIX uses a two stages
interrupt management where an interrupt handler
partially process the interrupt and then sends a
message to a device driver task to resume the interrupt
processing. This approach implies at least a context
switch to restore the state of the IST.

Linux kernel resolves this problem by splitting the
interrupt handler into two halves. The so-called top
half is the routine that actually responds to the
interrupt. The bottom half is a routine that is
scheduled by the top half to be executed later, at a
safer time.

In RT-MINIXv2, device driver writers could decide
among three approaches:

4 Complete interrupt processing in the handler.
4 Two stages interrupt management like MINIX

using ISTs and message transfers.

4 Two stages interrupt management using
Software IRQs as Linux does.

Triggered Software IRQs are kernel routines that
are invoked by RTM_flush_int() as it do with pending
hardware interrupts.

Software IRQ descriptors have the same data
structure RTM_irq_desc_t than Hardware IRQ
descriptors; therefore they have priority, counters,
timestamps and other fields.

The motivation for introducing software IRQs is to
allow a limited number of functions related to
interrupt handling to be executed in a deferred
manner. This increases the system responsiveness
because some work is executed out of interrupt time.
Additionally the processing overhead is lower than
using the IST model because it avoids the context
switch among the interrupted process and the IST.

Software IRQ can be used as kernel threads
triggered by time using virtual clocks (system virtual
timers).

8.9. Returning from System Calls and

Interrupts Service Routines

Although the main objective of the termination
phase of interrupt and exception handlers is to resume
execution of some program, several issues must be
considered before doing it:

4 The number of kernel control paths being
concurrently executed: if there is just one
(k_reenter = 0), the CPU must switch back to
User Mode.

4 If there are Triggered Interrupt descriptors that
were deferred, their handlers are executed.
This is accomplished by the RTM_flush_int()
kernel function.

4 If (k_reenter = 0), the kernel must flush any
held-up interrupt messages from handlers to
ISTs.

8.10. Flushing Deferred Interrupts

Before returning the CPU to User Mode those

interrupt handlers that has been deferred must be
executed. The kernel function that accomplishes with
these issues is RTM_flush_int().

RT-MINIXv2 uses a system of priority ordered
interrupt queues based on a bitmap named
RTM_irqQ_bitmap. A bit set in the i-th position of the
bitmap implies that at least one descriptor in the i -th
interrupt pending queue has been triggered for
deferred processing as it can see in Figure 4.

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

RTM_flush_int() scans the queues for hardware and
software IRQ handlers to run. The scan stops when the
priority of the queue is lower than RTM_prtylvl.

A handler is executed only if its descriptor status
flags have the RTM_TRIGGERED bit set.

 Once all triggered interrupt descriptors in the
same queue has been serviced, the bit in the interrupt
queue bitmap is cleared and if one of the handlers has
set that it need rescheduling, and the RT-scheduler is
invoked.

Figure 4 - IRQ bitmap and IRQ Priority Queues

As during the execution RTM_flush_int(), new

interrupts can occur, a lock bit in the kernel variable
RTM_flags is set to avoid that RTM_flush_int() could
be called again at RTM_IRQ_dispatch() exit. If the
new interrupt have greater priority than the
interrupted handler, another bit in RTM_flags is set to
signal RTM_flush_int() that it needs to restart the scan
again from the highest priority interrupt queue to find
the new higher priority triggered interrupt descriptor.

8.11. Running the Handler

Before running the handler:
4 The kernel saves the current system priority

level of execution RTM_prtylvl.
4 The RTM_prtylvl is set to the handler priority.
4 The CPU interrupts are enabled.
Once the handler exits:
4 The CPU interrupts are disabled.
4 An estimation of the handler latency could be

computed (see Section 8.14).
For hardware interrupts, the value returned by the

handler signal the kernel if the IRQ line in the PIC
must be enabled.

8.12. Interrupt Descriptor Timestamp

RT-MINIXv2 includes a timestamp field in the
interrupt descriptor data structure RTM_irq_desc_t
that is set by RTM_IRQ_dispatch() to
RTM_counter.ticks.

The units of the timestamp field are RT-ticks since
the execution of the rtm_rtstart() or rtm_restart()
system call execution.

The Timer interrupt handler uses the descriptor
timestamp field to decide about triggering Timer -
Driven interrupt handlers.

8.13. Kernel Functions for Interrupt Handling

RT-MINIXv2 microkernel has the following
functions to handle interrupts:

4 RTM_lock(): it is the true CLI assembler
instruction to disable interrupts at the CPU.

4 RTM_unlock(): it is the true STI assembler
instruction to enable interrupts at the CPU.

4 RTM_set_irqd(): sets all fields of an interrupt
descriptor. This function inserts the descriptor
in one of the interrupt pending queues too.

4 RTM_free_irqd(): removes an interrupt
descriptor from its interrupt pending queue. It
resets all fields of an interrupt descriptor. The
RT-handler and NRT-handler points to the
spurious_irq() handler.

4 RTM_set_softirq(): assigns a new interrupt
descriptor from the software IRQ descriptor
pool, then sets the descriptor using
RTM_set_irq().

4 RTM_free_softirq(): removes the descriptor
from the interrupt pending queue using
RTM_free_irqd() and free the descriptor to the
software IRQ descriptor pool.

8.14. Estimating Handlers Latency

One of the most common measurements requested

of RT-kernel and RTOS is the interrupt processing
time latency [11]. This metric, while useful, is a very
limited indication of the performance capabilities of a
RT-kernel. RT-environments require the ability to
predict how fast an OS will react to interrupts.

Interrupt processing time latency numbers are most
useful when used to measure the effectiveness of a RT-
kernel at dealing with extremely high-priority
interrupts or emergency interrupts. Often a peripheral
must be serviced within a certain time limit after an

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

event. For example, a packet must be read from a
network port before the next on arrives.

The interrupt processing time latency is the
maximum time taken to respond to an interrupt
request. This will include the time it takes for the
current instruction to complete and the time for the
CPU to respond to the interrupt. If an ISR is already
executing and cannot be interrupted then this also
increases the interrupt processing time latency.

Understanding the relative size of delays is
important to the design of the RT-system. Most
sources of delay in a RT-kernel are due to either code
execution or context switches. Virtually all of these
delays are fixed in length and repeatable. Bounded
and repeatable is the fundamental characteristic
desired of a RT-kernel.

Figure 5 - Interrupt Latency (from [12])

Interrupt processing time latencies are not fixed in

length. Because an interrupt is, by definition, an
asynchronous event, a system's interrupt latency is
dependent on the state of the machine when the
interrupt occurred. This state is a function of both the
hardware and the software used in the system.

RT-MINIXv2 uses the timer-2 of the
Programmable Interrupt Timer (PIT) to estimates the
handler latency. The PIT is programmed in
SQUARE_WAVE mode and the divisor latch is set to
65536, therefore its period is 65536/1193182 =
0.0549 seconds.

At the start of execution of RTM_IRQ_dispatch(),
the value of the counter of the timer-2 latch of the PIT
is stored in the before field of the interrupt descriptor.
Once the handler finishes its execution, the counter is
read again and the latency of the handler could be
estimated as the difference between these two values.
The unit of the estimated latency is PIT Hz or
(1193182)-1 or 0.838 [µs].

The estimated latency by this method represents the
Interrupt processing time (Tint) in Figure 5.

As PIT timer-2, the timer-0 is programmed in
SQUARE_WAVE mode. The PIT timer-0 signals the
Timer Interrupt once the counter reaches zero. As the
PIT remains decreasing the counters, during the
execution of the Timer handler, the value of the timer -
0 counter lets compute the latency of the handler.

8.15. Nested Interrupts

As has been mentioned above, RT-MINIXv2

support nested interrupts. Worst-case timing
considerations for unmasked interrupts must be
included in the computation of the service time for all
interrupts currently being processed.

Figure 6- Nested Interrupts (from [12])

The following criteria are established for nested

interrupts:
4 A higher (or equal) priority IRQ will preempt a

running handler. The computation time of the
higher priority handler must be added to the
service time as a blocking time.

4 A lower priority IRQ will not preempt a
running handler. The execution of the new
IRQ handler will be deferred for later
processing and the function RTM_flush_int()
will not be invoked on exit to reduce the
blocking time. This blocking time is a priority
inversion that must be added to the running
handler service time. It must be consider only
once because the lower priority IRQ will be
disable at PIC level until the handler will re-
enable it later.

Once the handler exits, the RT-scheduler could be
invoked and another process/thread preempts the
former as threads B and C that preempt thread A in
Figure 6.

 At present, the author is evaluating the
performance impact on including an interrupt mask

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

for process/ handlers descriptors that lets change the
PIC mask before running a handler/process to avoid
that could be interrupted by a lower priority IRQ.

8.16. Timer-Driven Interrupts

This kind of interrupt processing lets that more

than one interrupt (a rain) could occur in a time
period without running the handler. The handler only
is executed at specified periods reducing system
overload.

Figure 7- Timer Driven Interrupts

The processing of a TD-interrupt handler has 3

stages (see Figure 7):
1. The TD-interrupt occurs and a bit is set in the

RTM_TD_bitmap to signal the Timer Interrupt
to trigger the TD-descriptor when it reaches its
period. The descriptor field rain that counts the
number of interrupts since the last period has
been increased.

2. The Timer interrupt occurs and it checks all
bits in RTM_TD_bitmap for TD-interrupts
since the last period. If the period of a TD-
descriptor has been met, it is triggered to be
processed by RTM_flush_int() same as other
delayed interrupt handlers.

3. RTM_flush_int() runs the handler and resets
the rain field of the descriptor.

9. Conclusions

MINIX proved to be a feasible testbed for OS

development and RT-extensions that could be easily
added to it.

RT-MINIXv2 Virtual Machine architecture and
source code readability make it suitable for course
assignments and Real-Time project developments. Its
microkernel offers device-drivers writers Event-

Driven, Timer-Driven, Software IRQs and Non-Real-
Time interrupt handler types. These features make it a
good choice to conduct RT-experiences.

10. Future Works

The author is working on to the following topics:
4 Process Management: to support periodic and

sporadic RT-processes.
4 Time Management: This topic covers the

design and implementation of virtual timers to
be used for timeouts, alarms, periodic
execution, etc.

4 Process Scheduling: It covers a new process
scheduler with 16 priority levels.

4 Interprocess Communications: A new set of
RT-primitives to communicate RT-processes
supporting the Priority Inheritance Protocol.

4 Statistics Collection: As RT-MINIXv2 is
intended to be used in academic environments,
statistics collections is an important issue.

Other planed projects based on RT-MINIXv2 are:
4 /rtproc Filesystem: equivalent to Linux’s /proc

Filesystem.
4 RT-FIFOs: equivalents to RTLinux RT-FIFOs

that communicates RT-proccess with NRT-
process.

4 IRQ sharing: PCI requires shared interrupts,
therefore this features is intended to support
multiple interrupt handlers for the same IRQ.

11. Acknowlegements

The author gratefully acknowledges help received

from:
4 Telecom Argentina S.A. for sponsoring the

author’s UNLP Master.
4 German Maglione for supplying the IBM

Thinkpad 370 notebook used in the
implementation of RT-MINIXv2.

4 Nicolas Cesar and Felipe Ieder for the
implementation of system latency tests.

4 Dr. Silvio Gonnet for the revision of this
article.

12. References

[1] Tanenbaum Andrew S., Woodhull Albert S.,
Sistemas Operativos: Diseño e Implementación 2da
Edición, ISBN 9701701658, Editorial Prentice-Hall , 1999

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

[2] Pablo J. Rogina - Gabriel Wainer., “New Real-Time
Extensions to the MINIX operating system”, Proc. of 5 th
Int. Conference on Information Systems Analysis and
Synthesis (ISAS'99),August, 1999.

[3] Gabriel A. Wainer, “Implementing Real-Time

services in MINIX”, ACM Operating Systems Review, July
1995.

[4] Victor Yodaiken, Michael Barabanov, “A Real-Time

Linux”, ”, Proceedings of Linux Applications Development
and Deployment Conference (USELINUX), January, 1997
available online at http://rtlinux.cs.nmt.edu/

[5] Intel Corporation, Intel Architecture Software

Developer's Manual Volume 3: System Programming Guide,
1997

[6] Victor Yodaiken, “Cheap Operating System Research

and Teaching with Linux:”, available online at
http://citeseer.ist.psu.edu/75556.html

[7] Paul Ashton, Carl Cerecke,Craig McGeachie, Stuart

Yeates, “Use of interaction networks in teaching Minix”
Technical Remailbox . COSC 08/95, Dept. of Computer
Science . University of Canterbury,1995.

[8] Paul Ashton, Daniel Ayers, Peter Smith.SunOS

“MINIX: A tool for use in Operating System laboratories”,
Technical Remailbox, Australian Computer Science
Communications, 16(1): 259-269, 1994.

[9] Stephen J Hartley, “More Experience with MINIX in

Operating System lab”, available online at
ftp://ftp.mcs.drexel.edu/pub/shartley/minix.PO.gz .

[10] Daniel P. Bovet, Marco Cesati, Understanding the

Linux Kernel Second Edition, 2003 - O'Reilly – 2003.

[11] Radisys, “INtime Interrupt Latency Report”,
available on line at
http://www.profimatics.de/products/intime/manuals/in
time.interrupt.latency.report.pdf

[12] QNX Software Systems Ltd. 2002 – “QNX Neutrino
Realtime Operating System – System Architecture”,
available on line at
http://www.mikecramer.com/Qnx/momentics_nc_docs
/neutrino/sys_arch/kernel.html

[13] RTnet- Hard Real-Time Networking for
Linux/RTAI, available at
http://www.rts.uni-hannover.de/rtnet/index.html

[14] Rether: A Real-Time Ethernet Protocol, available at

http://www.ecsl.cs.sunysb.edu/rether/

PDF created with FinePrint pdfFactory trial version www.pdffactory.com

http://www.pdffactory.com

