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Abstract 
 

Tanenbaum’s MINIX operating system [1] was 
extended by Wainer with Real-Time (RT) services to 
conform RT-MINIX [2,3]. This work is on RT-
MINIXv2, a new version for academic uses that 
includes a RT-microkernel with more flexible IPC 
facilities supporting basic priority inheritance 
protocol, a fixed priority scheduler, timer and event 
driven interrupt management, statistics and RT-
metrics collection keeping backward compatibility 
with standard MINIX versions. 
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1. Introduction 
 

Computer science students and professionals 
working on Real-Time Operating Systems (RTOS) 
need a deep knowledge of every software component 
and the interactions with hardware devices 
considering timing constraints.  

RTOS instructors can choice among commercial or 
free licence software to develop their laboratory 
practice. Commercially available RTOS are too costly 
and proprietary to be used by academic institutions. 
Free licence and open source RTOS have been 
designed focusing on predictability as a key design 
feature with complex source code readability.  

The design and implementation of RT-MINIXv2 is 
proposed to teach RTOS and covers the following 
topics: 

4 MINIX and RT-MINIX Background 
Information 

4 System Architecture 
4 Interrupt Handling 
4 Process Management 
4 Time Management 
4 Process Scheduling 

4 Interprocess Communications 
4 Real-Time System Calls  
4 Statistics Collection 
4 Performance Tests 
4 Sample Source Code and System Data 

Structures 
This article address the first three topics raised 

above and describes a way to transform a time sharing 
OS (MINIX) into a hard Real-Time one (RT-
MINIXv2). 

The experience earned in well-planed course 
assignments and projects using systems like RT-
MINIXv2 provides education, advanced technical 
training, and enhances personal performance for the 
deployment and use of RTOS to the academic 
community worldwide. 

The rest of this work is organized as follows. 
Section 2 describes the motivation of this project. 
Section 3 and 4 are about MINIX and RT-MINIX 
features respectively. Section 5, the proposed  RT-
MINIXv2 is introduced. Section 6 describes MINIX 
architecture, and the proposed RT-MINIXv2 
architecture is discussed in Section 7. The Section 8 is 
the longest and covers the RT-MINIXv2 interrupt 
handling approach, its Interrupt Request Level 
architecture, the effect of priorities on interrupt 
service, software IRQs, nested interrupts and a 
technique to estimate interrupt handlers latency inside 
the kernel. Finally, Section 9 amd 10 presents 
conclusions future works respectively. 

 
2. Motivation 

 
The aim of the RT-MINIXv2 project is to provide 

an educational tool for RTOS courses as MINIX [7, 8, 
9] or Linux [6] do for OS Design and Implementation 
courses. 

The decision to adopt MINIX among other OS as 
foundation for this work is based on: 

4 The author’s previous experience. 
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4 Its documentation availability.  
4 Its hardware platform requirements. 
4 It’s modular and elegant design. 
RT-MINIXv2 implementation focus on source code 

readability (perhaps sacrificing performance) to let 
instructors make easily a multiplicity of grade courses 
assignments, laboratory tests, projects and other 
academic uses with an open source RTOS.  

Some interesting projects could be: 
4 Port a hard real-time network protocol stack as 

RTNET [13] or RETHER [14] 
4 Design a real-time Distributed Operating 

System. 
4 Implement Remote Device Drivers 

A lot of interesting system statistics are collected  to 
make the OS more educational.  

Students can experience with programming 
interrupt-driven systems and get a deep understanding 
of how RT-systems work with a minimal software 
infrastructure. 

 
3. MINIX Time Sharing Features 
 

MINIX is a complete, time-sharing, multitasking 
OS developed from scratch by Andrew S. 
Tanenbaum[1]. It is a general-purpose OS broadly 
used in Computer Science degree courses. 

Though it is copyrighted, the source has been made 
widely available to universities for study and research. 
Its main features are: 

4 Microkernel based: Provides process 
management and scheduling, basic memory 
management, interprocess communication, 
interrupt processing and low level I/O support. 

4 Multilayer system:  Permits a modular design 
and clear implementation.  

4 Client/Server model: All system services and 
device drivers are implemented as server 
processes with their own execution 
environment. 

4 Message Transfer Interprocess 
Communications (IPC): Used for process 
synchronization and data sharing. 

4 Interrupt hiding: Interrupts are converted in 
message transfers. 

 
4. RT-MINIX Features 
 

Gabriel Wainer [2, 3] changed  the standard 
MINIX OS to support RT-processing named it “RT-
MINIX”. Its main features are: 

4 Scheduling Algorithms Selection 
4 Joined Scheduling Queues  
4 Real-Time Metrics collection 
4 Timer Resolution Management 
Several changes was made to MINIX source code 

of the kernel in order to provide the user a set of 
system calls to create and manage tasks, both periodic 
or aperiodic.  

That approach implies some limitations in its uses 
because: 

4 It is not an architecture, is a patch for MINIX. 
4 It does not serve hardware interrupts by 

priority. This could produce priority inversion 
because while a higher priority RT-handler is 
running, lower priority NRT-interrupts could 
be attended increasing the RT-handler 
interference. 

4 It has only one level of priority for all RT-
tasks, but MINIX tasks and servers have 
higher priorities. This could produce priority 
inversion because while a RT-process is 
running, a standard MINIX non real-time task 
or server could preempt it. 

4 Its use standard MINIX message transfers as 
its IPC primitives. As MINIX use FIFO 
discipline to receive messages from several 
processes offen creates a priority inversion 
problem. 

4 It does not have any protocol agains priority 
inversion limiting its utilization on projects 
that use cooperating tasks. 

4 Increasing the timer resolution also increase 
the overhead because the standard MINIX 
timer interrupt handler is executing at higher 
frequency. 

4 A RT-process can make NRT-system calls, 
therefore the NRT-servers that receive the 
request will execute in behalf of  the RT-
process but without RT-attributes. 

4 As its uses a modified MINIX clock (timer) 
handler for RT-alarms, other NRT-tasks in 
ready to run state could be executed before the 
clock handler increasing the RT-alarms 
latency. 

RM and EDF scheduling were included. These 
strategies were later combined with other traditional 
strategies, such as Least Laxity First, Least Slack First 
and Deadline Monotonic.  

Several data structures in the OS were modified to 
consider tasks period, execution time and criticality.  
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Task execution priority was implemented using a 
multiqueue scheme to accommodate RT-tasks along 
with interactive and CPU-bound tasks. 

RT-MINIX defines a new set of signals to indicate 
special situations, such as missed deadlines, overload 
or uncertainty of the schedulability of the task set.  
 
5. RT-MINIXv2 Features 
 

As Wainer and Rogina said in [2], existing RTOS 
can be divided in two categories: 

1. Systems implemented using somewhat stripped 
down and optimized (or specialized) versions 
of conventional timesharing OS. 

2. Systems starting from scratch, focusing on 
predictability as a key design feature.  

RT-MINIXv2 is based on the first design approach  
using MINIX as the conventional OS. 

This special version offers predictable RT- 
computing environment at lower cost than propietary 
RTOS used for academic purposes. 

The major features of RT-MINIXv2 are 
summarized as follows: 

4 Real-Time preemptive Microkernel. 
4 Layered Architecture. 
4 Timer/Event Driven Interrupt Management. 
4 Fixed Priority Hardware Interrupt  Processing. 
4 Two Stages Interrupt Handling using Software 

IRQs. 
4 Periodic and Sporadic processing. 
4 Timer Resolution Management detached from 

MINIX timer. 
4 Fixed Priority Based Real-Time Scheduling. 
4 Synchronous/Asynchronous Message Transfer 

using Mailboxes. 
4 Basic Priority Inheritance Protocol support in 

Message Transfer IPC. 
4 Receive and Synchronous Send Timeout 

support. 
4 Priority discipline on message reception. 

Deadline expiration watchdogs. 
4 Software timers for alarms, timeouts and other 

time related uses.  
4 Statistics and Real-Time Metrics Collection. 
The advantage of using a microkernel for RT- 

applications is that the preemptability of the kernel is 
better, the size of the kernel becomes much smaller, 
and the addition/removal of services is easier. 

RT-MINIXv2 provides the capability of running 
special RT-tasks and interrupt handlers on the same 
machine as standard MINIX. These tasks and 

handlers execute when they need to execute no matter 
what  MINIX is doing. 

The RT-microkernel works by treating the MINIX 
OS kernel as a task executing under a small RTOS 
based on software emulation of interrupt control 
hardware. In fact, MINIX is like the idle task for the 
RT-microkernel executing only when there are no RT-
tasks to run. When MINIX tells the hardware to 
disable interrupts, the RT-microkernel intercepts the 
request, records it, and returns to MINIX.  

RT-MINIXv2 can handle devices in two ways: 
4 Interrupt driven: As RT-MINIXv2 is designed 

for 32 bits INTEL PCs [5], the interrupt levels 
of the standard devices like keyboard, serial 
ports, etc cannot be changed and may produce 
priority inversion problems with other devices. 

4 Timer driven: the devices are polled or some 
job is done on the device at regular periods. As 
in standards PCs the timer has the top priority 
level, no priority inversion problems can 
occurs.  

The current version of RT-MINIXv2 is based on 
version 2.0.2 for 32 bits INTEL processors of MINIX 
therefore it requires the same hardware platform.  

 
6. MINIX System Architecture 

Figure 1- MINIX architecture (from [1]) 
 

MINIX is structured in four layers as it can see in 
Figure 1.  

1. The microkernel. 
2. Input/Output Tasks. 
3. Server Processes. 
4. User-level Processes. 
An interrupt is usually defined as an event that 

alters the sequence of instructions executed by a 
processor [10]. 

In MINIX, when a hardware device interrupts the 
CPU, an interrupt handler is called, but if more time is 
needed to complete the job, the handler sends a 
message to the device Interrupt Service Task (IST) 
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and calls the scheduler on exit. As I/O Tasks have 
greater priority than regular User-level processes and 
system servers, the IST is executed to resume the 
interrupt service.  
This  approach is often called Two Stages Interrupt 
Handling. 

An IST is like a thread that shares kernel address 
space but it has its own processing attributes.  

The use of ISTs to complete the interrupt 
processing works well in a time sharing environment 
but can introduce unbounded delay in RT-processing. 
Two factors affects the interrupt response time: 

1. MINIX scheduler uses three priority queues,  
one for ISTs, one for Server Processes and one 
for User-level Processes. As the IST queue is 
arranged in FIFO order, it is  not suitable to be 
used in time constrained systems. 

2. MINIX hides interrupts using message 
transfers. On each hardware interrupt, a 
message is sent to an IST forcing a context 
switch before running the task. This fact 
increases the system latency and reduces the 
schedulability of RT-tasks. 

 
7. RT-MINIXv2 System Architecture 

 
As RT-MINIXv2 intends to be used in an academic 

environment, its design has been done to be as least 
intrusive as possible in the standard MINIX source 
code. Yodaiken and Barabanov [4] have proposed that 
approach for RTLinux. The key idea is how interrupt 
management is done.  

As result, one RTOS (RT-MINIXv2) hosts a 
standard time sharing OS (MINIX). These two OS 
have their own set of system calls. 

The RT-MINIXv2 effectively puts in place a new 
process scheduler that treats the MINIX kernel as the 
lowest priority process executing under the RT-kernel. 

As Non Real-Time - (NRT) interrupt handlers 
could block RT-Process or RT-interrupt handlers, the 
RT-microkernel installs an interrupt dispatcher that 
only executes the handler if it has a greater priority 
than the running process/handler. 

Under that design, MINIX only executes when 
there is no RT-process to run, and the RT-kernel is 
inactive. Thus, a MINIX process can never block 
interrupts or prevent itself from being preempted, 
yielding all resources to a RT-process.  MINIX kernel 
may be preempted by a RT-process even during a 
system call, so no MINIX routine can be safely called 
from a RT-process. 

Thus, some problems must be solved: 

4 The interrupts must be captured by a RT-
kernel. 

4 RT-scheduler and services must be 
implemented.  

4 RT-applications need an interface layer to 
interact with the RT-kernel. 

4 RT-applications may need transfer data and 
synchronize with NRT-applications. 

4 Full process and interrupt handler 
preemptability is needed. 

 
8. RT-MINIXv2 Interrupt Handling 
 

As RTLinux does, RT-MINIXv2 uses the Virtual 
Machine (VM) concept limited to interrupt emulation 
or virtualization. Its microkernel is underneath of 
MINIX and the scheduler runs NRT-processes when 
there are not RT-processes ready to run. 

Since interrupts can come at any time, the kernel 
might be handling one of them while another one (of a 
different type) occurs. This should be allowed as much 
as possible since it keeps the I/O devices busy. As a 
result, the interrupt handlers must be coded to run in a 
nested manner. 

When each interrupt handler terminates, the kernel 
must be able to resume execution of the interrupted 
process or switch to another process if the interrupt 
signal has caused a rescheduling activity or execute 
another lower priority interrupt handler.  

Although the kernel may accept a new interrupt 
signal while handling a previous one, some critical 
regions exist inside the kernel code where interrupts 
must be disabled. Such critical regions must be limited 
as much as possible since, the kernel, and in particular 
the interrupt handlers, should run most of the time 
with the interrupts enabled. 

RT-MINIXv2 avoids disabling interrupts for 
extended periods to improve system response time. 
RT-interrupt handlers can easily be replaced with 
standard ones. This is especially useful in certain 
debugging situations. 

RT-MINIXv2 starts in Non Real-Time processing 
mode. In this mode, only NRT-interrupt handlers are 
executed and a limited number of RT-system calls are 
allowed.  

To start the RT-processing mode, the rtm_RTstart() 
system call must be executed. In this mode, when an 
interrupt occurs, a RT-handler is invoked for RT-
defined interrupts; otherwise standard MINIX 
handlers are called.  
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8.1. Interrupt Virtualization 
 

One of the problems with doing hard Real-Time on 
a standard MINIX system is the fact that the kernel 
uses disabling interrupts as a means of 
synchronization. Promiscuous use of disabling and 
enabling interrupts inflicts unpredictable interrupt 
dispatch latency. 

In RT-MINIXv2, this problem has been solved by 
adding a layer of emulation software between the 
MINIX kernel and the interrupt controller hardware. 
The emulator catches all hardware interrupts.  

All MINIX kernel functions that handle the 
processor Interrupt Flag (IF) (lock()/unlock()) are 
replaced with virtualized ones to avoid that MINIX 
could not be preemptive when a RT-interrupt occurs. 

All MINIX kernel functions that operate on 
interrupt handlers are virtualized. These functions are:  
4 intr_init():  

° Initializes the 8259 Programmable 
Interrupt Controller (PIC). 

° Initializes counters, indexes, etc and the 
table of RT-interrupt handlers. 

° Initializes the interrupt pending queues 
bitmap. 

° Clears the interrupt pending queues. 
4 put_irq_handler():  

° Registers an interrupt handler. 
° Inserts a NRT-handler in the interrupt 

pending queue. 
The task of capturing and redirecting the interrupts 

was addressed by creating a small RT-microkernel, 
which captures all hardware interrupts and redirects 
them to either standard MINIX handlers or to RT-
MINIXv2 handlers.  

The RT-microkernel provides a framework onto 
which RT-MINIXv2 is mounted with the ability to 
fully preempt MINIX. 

A drawback is that the MINIX kernel suffers a 
slight performance loss when RT-MINIXv2 VM is 
added due to: 

4 The redirections of interrupt handlers to a 
common interrupt dispatcher. 

4 The interrupt mask/unmask functions. 
4 The search of pending interrupts in the 

interrupt pending queues. 
4 The deferred execution of interrupt handlers. 
4 The added statistics collection as part of 

interrupt handling. 
 In consideration of both strengths and weaknesses, 

this technique has shown itself to be flexible because it 
removes none of the capability of standard MINIX, yet 

it provides guaranteed scheduling and response time 
for critical tasks. 

Changes to standard MINIX are minimal with the 
VM approach. This low level of intrusion on the 
standard MINIX kernel improves the code 
maintainability to keep the Real -Time modifications 
up-to-date with the latest release of the MINIX kernel. 

 
8.2. User and Kernel Stacks 
 

In MINIX and RT-MINIXv2 each process has two 
stacks: 

4 User stack: In userspace, only this stack can be 
used. 

4 Kernel stack: When entering the kernel, the 
system switches to this stack.  

On interrupt, the state of a process is saved in 
kernel stack. If new interrupts occur during the service 
of other interrupts (nested interrupts), the state of the 
interrupted handler is saved in the kernel stack. 

To let monitor the kernel stack use, each interrupt 
descriptor have a field named reenter that keeps the 
maximum kernel reentrancy level for each IRQ. This 
helps to size the kernel stack for specific uses. 

As is expected that a RTOS receives much more 
interrupts than a time-sharing OS, by default, RT-
MINIXv2’s kernel stack doubles in size MINIX’s 
kernel stack. 

 
8.3. Interrupt Handler Types 

 
Not all interrupts have the same urgency. In fact, 

the interrupt handler itself is not a suitable place for 
all kind of actions. Long non-critical operations 
should be deferred, since while an interrupt handler is 
running, the signals on the corresponding IRQ line are 
ignored.  

RT-MINIXv2 defines the following types of  
hardware interrupt handlers: 

4 Non RT-handler: The handler is executed only 
if its priority is greater than the priority of the 
interrupted process otherwise it is signaled for 
later processing. 

4 RT Event-Driven handler: Idem Non RT-
handler. 

4 RT Timer-Driven handler: It is signaled to be 
for deferred processing once it reaches its 
period. 

One special case is the Timer handler that executes 
some actions when the timer interrupt occurs and 
other are deferred as the control of  timers, alarms, 
Timer-Driven IRQs and periodic processes.  
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8.4. Interrupt Service Routines 

 
At startup, RT-MINIXv2  initializes the Interrupt 

Descriptor Table (IDT) pointing each entries of master 
PIC hardware interrupts to a routine generated by the 
macro hwint_master(irq). The entries for the slave PIC 
hardware interrupts are filled with the address of a 
routine generated by the macro hwint_slave(irq).  

All interrupt service routines perform the same 
basic actions: 

1. Save the registers´ contents in the Kernel 
Mode stack. 

2. Increase the kernel variable k_reenter 
(initialized in –1). 

3. If k_reenter = 0, the state of the User Mode 
process is saved, otherwise the system is 
already in kernel mode.  

4. Send an acknowledgment to the PIC that is 
servicing the IRQ line, thus allowing it to 
issue further interrupts. 

5. Execute the interrupt handler dispatcher 
RTM_IRQ_dispatch(). 

6. Terminate by jumping to the restart label if 
the k_reenter = 0 or to restart1 label for 
k_reenter > 0. More details in Section 8.9 
(Returning from System Calls and Interrupts 
Service Routines). 

The k_reenter variable counts the reentrancy level 
of  interrupts and system calls in the kernel. 

4 k_reenter = –1: when the system is in User 
Mode. 

4 k_reenter = 0: when one kernel control path is 
running. That can be a system call, an 
exception/fault  handler or an interrupt service 
routine. 

4 k_reenter >  0: when more than one kernel 
control path is running. This occurs on nested 
hardware interrupts. 

 
8.5. Interrupt Descriptor Data Structure 

 
This section explains the data structures that 

support interrupt handling and how they are laid out 
in various descriptors used to store information on the 
state, statistics and behavior of interrupt handler s. 

The kernel has its own interrupt descriptor table 
(other than INTEL’s IDT)  named RTM_desc_table[]. 
It is an array of RTM_irq_desc_t data structures. It has 
one descriptor for each hardware or software IRQ. 

The RTM_irq_desc_t data structure has the 
following fields: 

- nrthandler: A pointer to a function that is the 
NRT-handler. 

- rthandler:  A pointer to a function that is the 
RT-handler. 

- irq:  The IRQ number. 
- count: An interrupt counter for statistics. 
- rain: A counter for timer driven interrupts 

since the last period. 
- maxrain: Stores the maximum value of rain. 
- timestamp: The last interrupt timestamp.  
- latency: The estimated interrupt handler 

latency in timer Hz. 
- maxlat: The maximum value of latency. 
- before: An auxiliary field that stores the timer -

2 latch counter of the Programmable Interrupt 
Timer (PIT) in Hz on RTM_IRQ_dispatch() 
entry. 

- reenter: Stores the maximum value of 
RTM_prtylvl (explained in Section 8.6) 

- period:  The processing period for a Timer 
Driven (TD) interrupt handler in timer ticks 
units. 

- task: The ID number of the RT-IST to send a 
message for deferred processing. 

- priority: The priority of the handler 
- irqtype: The type of handler. It must be: 

° RTM_NRTINT: for Non Real-Time 
handlers. 

° RTM_TDINT: for Timer-Driven handler. 
° RTM_EDINT: for Event-Driven handlers. 
° RTM_SOFTIRQ: for Software IRQ 

handlers. 
- flags:  Some status flags. 
- next:  A pointer to the next IRQ descriptor in 

the interrupt pending queue. 
- prev: A pointer to the previous IRQ descriptor 

in the interrupt pending queue. 
- name: The name of the handler. 

 
8.6. Interrupt Handler Dispatching 
 

RT-MINIXv2 VM sets all ISRs to call an interrupt 
dispatcher function named RTM_IRQ_dispatch() that 
uses the interrupt descriptor table RTM_desc_table[] 
to process RT and NRT interrupts. See Figure 2. 

A kernel variable called RTM_prtylvl stores the 
current system priority level of execution. This 
variable is set to the current process priority or to the 
running interrupt handler priority. It is used to reduce 
the priority inversion problem deciding on the 
execution of an interrupt handler or to defer it.  
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Figure 2– Interrupt Handling 
 

If RT-MINIXv2 is running in NRT-mode, the 
standard interrupt handlers are executed without any 
interception, deferring and statistics collection. 

In RT-mode, the function RTM_IRQ_dispatch() 
perform the following actions: 

4 If a flag for latency computation has been set 
in the descriptor, the timer-2 of the PIT is read 
before running the handler and its value is 
stored in the before descriptor field. 

4 Some statistics are collected as: 
° The total number of interrupts. 
° A counter for each kind of IRQ. 
° The kernel reentrancy level when the 

interrupt occurs. 
4 If a Timer interrupt has occurred: 

° The system tick counter 
RTM_counter.ticks is increased. 

° The interrupt descriptor timestamp field 
is set. 

° Timer interrupt descriptor is marked for 
deferred processing. 

4 For interrupts other than Timer, the interrupt  
descriptor timestamp field is set to 
RTM_counter.ticks. 

4 If an Event-Driven (ED) interrupt has occurred 
with its priority greater than or equal to 
RTM_prtylvl, the handler is called. The 
handler can set signal the kernel of the need of 
calling the RT-scheduler on exit.  

4 If an ED-interrupt has occurred with its 
priority lower than RTM_prtylvl, the 
descriptor is marked for deferred processing. 

4 If a NRT-interrupt has occurred with its 
priority greater or equal than RTM_prtylvl, the 
handler is called and then exits. 

4 If a NRT-interrupt has occurred with its 
priority lower than RTM_prtylvl, its descriptor 
is marked for deferred processing. 

4 If a TD-interrupt has occurred, a bit in kernel 
bitmap variable named RTM_TD_bitmap is set 
to signal the Timer interrupt handler that the 
TD-interrupt period must be checked. Later, 
when the Timer Interrupt handler runs, the 
TD-descriptor is signaled for deferred 
processing once it reaches its period. 

  
8.7. Interrupt Handler Priority 

 

Figure 3– IRQ priorities (from [1]) 
 
The PIC treats interrupts according to their priority 

level. This depends on the interrupt line they use to 
enter the interrupt controller. For this reason, the 
priority levels are directly tied to the interrupt number. 
Higher-priority IRQs may improve the performance of 
the devices that use them. 

The standard PC hardware has assigned priorities 
for standard interrupts related to IRQ number as 
shown in Figure 3. A lower IRQ number implies 
higher priority. Newer Advanced Programmable 
Interrupt Controllers (APICs) allow programmers to 
change the priority of each IRQ line. RT-MINIXv2 
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services each IRQ based on the priority field of a 
descriptor. 

If a lower priority interrupt occurs during the 
execution of a running process or handler, its interrupt 
descriptor is marked as triggered and its processing is 
delayed. Later, after a context switch, system call or 
return from interrupt, the kernel calls RTM_flush_int() 
function to scan the queues for interrupt descriptors 
that has been triggered to invoke their handlers.  

RTM_flush_int() does not execute some pending 
interrupt handlers . They are: 

4 NRT-interrupts once MINIX has (virtually) 
disabled processor interrupts using the lock() 
function. 

4 TD-interrupts that have not reach their 
launching period. 

4 All pending interrupts handlers with lower 
priority than the current system priority level 
of execution (RTM_prtylvl).  

Each RT-handler must signal if it needs RT-
scheduler invocation on exit.  

 
8.8. Software IRQs 
 

One of the main problems with interrupt handling 
is how to perform longish tasks within a handler. 

Often a substantial amount of work must be done in 
response to a device interrupt, but interrupt handlers 
need to finish up quickly and not keep interrupts 
blocked for long. These two needs (work and speed) 
conflict with each other, leaving the driver writer in a 
bit of a bind. Therefore it is desirable that the interrupt 
handlers could delay the execution of some tasks so 
that they do not block the system for too long. 

As it is explained above, MINIX uses a two stages 
interrupt management where an interrupt handler 
partially process the interrupt and then sends a 
message to a device driver task to resume the interrupt 
processing. This approach implies at least a context 
switch to restore the state of the IST. 

Linux kernel resolves this problem by splitting the 
interrupt handler into two halves. The so-called top 
half is the routine that actually responds to the 
interrupt. The bottom half is a routine that is 
scheduled by the top half to be executed later, at a 
safer time.  

In RT-MINIXv2, device driver writers could decide 
among three approaches: 

4 Complete interrupt processing in the handler.  
4 Two stages interrupt management like MINIX 

using ISTs and message transfers. 

4 Two stages interrupt management using 
Software IRQs as Linux does. 

Triggered Software IRQs are kernel routines that 
are invoked by RTM_flush_int() as it do with pending 
hardware interrupts. 

Software IRQ descriptors have the same data 
structure RTM_irq_desc_t than Hardware IRQ 
descriptors; therefore they have priority, counters,  
timestamps and other fields. 

The motivation for introducing software IRQs is to 
allow a limited number of functions related to 
interrupt handling to be executed in a deferred 
manner. This increases the system responsiveness 
because some work is executed out of interrupt time. 
Additionally the processing overhead is lower than 
using the IST model because it avoids the context 
switch among the interrupted process and the IST. 

Software IRQ can be used as kernel threads 
triggered by time using virtual clocks (system virtual 
timers). 

 
8.9. Returning from System Calls and 

Interrupts Service Routines 
 

Although the main objective of the termination 
phase of interrupt and exception handlers is to resume 
execution of some program, several issues must be 
considered before doing it: 

4 The number of kernel control paths being 
concurrently executed: if there is just one  
(k_reenter = 0), the CPU must switch back to 
User Mode. 

4 If there are Triggered Interrupt descriptors that 
were deferred, their handlers are executed. 
This is accomplished by the RTM_flush_int() 
kernel function. 

4 If (k_reenter = 0), the kernel must flush any 
held-up interrupt messages from handlers to 
ISTs. 

 
8.10. Flushing Deferred Interrupts 

 
Before returning the CPU to User Mode those 

interrupt handlers that has been deferred must be 
executed. The kernel function that accomplishes with 
these issues is RTM_flush_int().  

RT-MINIXv2 uses a system of priority ordered 
interrupt queues based on a bitmap named 
RTM_irqQ_bitmap. A bit set in the i-th position of the 
bitmap implies that at least one descriptor in the i -th 
interrupt pending queue has been triggered for 
deferred processing as it can see in Figure 4. 
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RTM_flush_int() scans the queues for hardware and 
software IRQ handlers to run. The scan stops when the 
priority of the queue is lower than RTM_prtylvl. 

A handler is executed only if its descriptor status 
flags have the RTM_TRIGGERED bit set. 

  Once all triggered interrupt descriptors in the 
same queue has been serviced, the bit in the interrupt 
queue bitmap is cleared and if one of the handlers has 
set that it need rescheduling, and the RT-scheduler is 
invoked.  

 

Figure 4 - IRQ bitmap and IRQ Priority Queues 
 
As during the execution RTM_flush_int(), new 

interrupts can occur, a lock bit in the kernel variable 
RTM_flags is set to avoid that RTM_flush_int() could 
be called again at RTM_IRQ_dispatch() exit. If the 
new interrupt have greater priority than the 
interrupted handler, another bit in RTM_flags is set to 
signal RTM_flush_int() that it needs to restart the scan 
again from the highest priority interrupt queue to find 
the new higher priority triggered interrupt descriptor.  

 
8.11. Running the Handler 

 
Before running the handler: 
4 The kernel saves the current system priority 

level of execution RTM_prtylvl. 
4 The RTM_prtylvl is set to the handler priority. 
4 The CPU interrupts are enabled. 
Once the handler exits: 
4 The CPU interrupts are disabled. 
4 An estimation of the handler latency could be 

computed (see Section 8.14).  
For hardware interrupts, the value returned by the 

handler signal the kernel if the IRQ line in the PIC 
must be enabled. 

 

8.12. Interrupt Descriptor Timestamp 
 

RT-MINIXv2 includes a timestamp field in the 
interrupt descriptor data structure RTM_irq_desc_t 
that is set by RTM_IRQ_dispatch() to 
RTM_counter.ticks. 

The units of the timestamp field are RT-ticks since 
the execution of the rtm_rtstart() or rtm_restart() 
system call execution.  

The Timer interrupt handler uses the descriptor 
timestamp field to decide about triggering Timer -
Driven interrupt handlers. 
 
8.13. Kernel Functions for Interrupt Handling 
 

RT-MINIXv2 microkernel has the following 
functions to handle interrupts: 

4 RTM_lock(): it is the true CLI assembler 
instruction to disable interrupts at the CPU.  

4 RTM_unlock(): it is the true STI assembler 
instruction to enable interrupts at the CPU. 

4 RTM_set_irqd(): sets all fields of an interrupt 
descriptor. This function inserts the descriptor 
in one of the interrupt pending queues too. 

4 RTM_free_irqd(): removes an interrupt 
descriptor from its interrupt pending queue. It 
resets all fields of an interrupt descriptor. The 
RT-handler and NRT-handler points to the 
spurious_irq() handler.   

4 RTM_set_softirq(): assigns a new interrupt 
descriptor from the software IRQ descriptor 
pool, then sets the descriptor using 
RTM_set_irq().  

4 RTM_free_softirq(): removes the descriptor 
from the interrupt pending queue using 
RTM_free_irqd() and free the descriptor to the 
software IRQ descriptor pool. 

 
8.14. Estimating Handlers Latency 

 
One of the most common measurements requested 

of RT-kernel and RTOS is the interrupt processing 
time latency [11]. This metric, while useful, is a very 
limited indication of the performance capabilities of a 
RT-kernel. RT-environments require the ability to 
predict how fast an OS will react to interrupts. 

Interrupt processing time latency numbers are most 
useful when used to measure the effectiveness of a RT-
kernel at dealing with extremely high-priority 
interrupts or emergency interrupts. Often a peripheral 
must be serviced within a certain time limit after an 
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event. For example, a packet must be read from a 
network port before the next on arrives. 

The interrupt processing time latency is the 
maximum time taken to respond to an interrupt 
request. This will include the time it takes for the 
current instruction to complete and the time for the 
CPU to respond to the interrupt. If an ISR is already 
executing and cannot be interrupted then this also 
increases the interrupt processing time latency.  

Understanding the relative size of delays is 
important to the design of the RT-system. Most 
sources of delay in a RT-kernel are due to either code 
execution or context switches. Virtually all of these 
delays are fixed in length and repeatable. Bounded 
and repeatable is the fundamental characteristic 
desired of a RT-kernel. 

 

Figure 5 - Interrupt Latency (from [12]) 
 
Interrupt processing time latencies are not fixed in 

length. Because an interrupt is, by definition, an 
asynchronous event, a system's interrupt latency is 
dependent on the state of the machine when the 
interrupt occurred. This state is a function of both the 
hardware and the software used in the system. 

RT-MINIXv2 uses the timer-2 of the 
Programmable Interrupt Timer (PIT) to estimates the 
handler latency. The PIT is programmed in 
SQUARE_WAVE mode and the divisor latch is set to 
65536, therefore its period is 65536/1193182 =  
0.0549 seconds. 

At the start of execution of RTM_IRQ_dispatch(),  
the value of the counter of the timer-2 latch of the PIT 
is stored in the before field of the interrupt descriptor. 
Once the handler finishes its execution, the counter is 
read again and the latency of the handler could be 
estimated as the difference between these two values. 
The unit of the estimated latency is PIT Hz or  
(1193182)-1 or  0.838 [µs].  

The estimated latency by this method represents the 
Interrupt processing time (Tint) in Figure 5.  

As PIT timer-2, the timer-0 is programmed in 
SQUARE_WAVE mode. The PIT timer-0 signals the 
Timer Interrupt once the counter reaches zero. As the 
PIT remains decreasing the counters, during the 
execution of the Timer handler, the value of the timer -
0 counter lets compute the latency of the handler. 

 
8.15. Nested Interrupts 

 
As has been mentioned above, RT-MINIXv2 

support nested interrupts. Worst-case timing 
considerations for unmasked interrupts must be 
included in the computation of the service time for all 
interrupts currently being processed. 

 

Figure 6- Nested Interrupts  (from [12]) 
 
The following criteria are established for nested 

interrupts: 
4 A higher (or equal) priority IRQ will preempt a 

running handler. The computation time of the 
higher priority handler must be added to the 
service time as a blocking time.  

4 A lower priority IRQ will not preempt a 
running handler. The execution of the new 
IRQ handler will be deferred for later 
processing and the function RTM_flush_int() 
will not be invoked on exit to reduce the 
blocking time. This blocking time is a priority 
inversion that must be added to the running 
handler service time. It must be consider only 
once because the lower priority IRQ will be 
disable at PIC level until the handler will re-
enable it later. 

Once the handler exits, the RT-scheduler could be 
invoked and another process/thread preempts the 
former as threads B and C that preempt thread A in 
Figure 6. 

 At present, the author is evaluating the 
performance impact on including an interrupt mask 
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for process/ handlers descriptors that lets change the 
PIC mask before running a handler/process to avoid 
that could be interrupted by a lower priority IRQ. 

 
8.16. Timer-Driven Interrupts 

 
This kind of interrupt processing lets that more 

than one interrupt (a rain) could occur  in a time 
period without running the handler. The handler only 
is executed at specified periods reducing system 
overload. 
 

Figure 7- Timer Driven Interrupts 
 
The processing of a TD-interrupt handler has 3 

stages (see Figure 7): 
1. The TD-interrupt occurs and a bit is set in the 

RTM_TD_bitmap to signal the Timer Interrupt 
to trigger the TD-descriptor when it reaches its 
period. The descriptor field rain that counts the 
number of interrupts since the last period has 
been increased. 

2.  The Timer interrupt occurs and it checks all 
bits in RTM_TD_bitmap for TD-interrupts 
since the last period. If the period of a TD-
descriptor has been met, it is triggered to be 
processed by RTM_flush_int() same as other 
delayed interrupt handlers. 

3. RTM_flush_int( ) runs the handler and resets 
the rain field of the descriptor. 

 
9. Conclusions 

 
MINIX proved to be a feasible testbed for OS 

development and RT-extensions that could be easily 
added to it. 

RT-MINIXv2 Virtual Machine architecture and 
source code readability make it suitable for course 
assignments and Real-Time project developments. Its 
microkernel offers device-drivers writers Event-

Driven, Timer-Driven, Software IRQs and Non-Real-
Time interrupt handler types. These features make it a 
good choice to conduct RT-experiences. 

 
10. Future Works 

 
The author is working on to the following topics: 
4 Process Management: to support periodic and 

sporadic RT-processes.  
4 Time Management: This topic covers the 

design and implementation of virtual timers to 
be used for timeouts, alarms, periodic 
execution, etc. 

4 Process Scheduling: It covers a new process 
scheduler with 16 priority levels. 

4 Interprocess Communications: A new set of 
RT-primitives to communicate RT-processes 
supporting the Priority Inheritance Protocol. 

4 Statistics Collection: As RT-MINIXv2 is 
intended to be used in academic environments, 
statistics collections is an important issue. 

Other planed projects based on RT-MINIXv2 are: 
4 /rtproc Filesystem: equivalent to Linux’s /proc 

Filesystem. 
4 RT-FIFOs: equivalents to RTLinux RT-FIFOs 

that communicates RT-proccess with NRT-
process. 

4 IRQ sharing: PCI requires shared interrupts, 
therefore this features is intended to support 
multiple interrupt handlers for the same IRQ.  
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