
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321657487

QoS-aware parallel job scheduling framework for simulation execution as a

service

Conference Paper · October 2017

DOI: 10.1109/DISTRA.2017.8167689

CITATIONS

0
READS

14

7 authors, including:

Some of the authors of this publication are also working on these related projects:

large scale ABMS of artificial Beijing for emergency response View project

pedestrian modeling View project

Zhen Li

National University of Defense Technology

12 PUBLICATIONS 18 CITATIONS

SEE PROFILE

Bin Chen

National University of Defense Technology

100 PUBLICATIONS 198 CITATIONS

SEE PROFILE

Wei Duan

National University of Defense Technology

31 PUBLICATIONS 110 CITATIONS

SEE PROFILE

Zhichao Song

National University of Defense Technology

104 PUBLICATIONS 224 CITATIONS

SEE PROFILE

All content following this page was uploaded by Bin Chen on 16 October 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/321657487_QoS-aware_parallel_job_scheduling_framework_for_simulation_execution_as_a_service?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/321657487_QoS-aware_parallel_job_scheduling_framework_for_simulation_execution_as_a_service?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/large-scale-ABMS-of-artificial-Beijing-for-emergency-response?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/pedestrian-modeling?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Li125?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Li125?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhen_Li125?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin_Chen138?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin_Chen138?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin_Chen138?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Duan6?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Duan6?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Duan6?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhichao_Song2?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhichao_Song2?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National_University_of_Defense_Technology?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Zhichao_Song2?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Bin_Chen138?enrichId=rgreq-ff91d2472253598f90724785ca1abfad-XXX&enrichSource=Y292ZXJQYWdlOzMyMTY1NzQ4NztBUzo4MTQ0NjUyMTM4MTY4MzNAMTU3MTE5NTA0NzI4OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

QoS-aware Parallel Job Scheduling Framework for
Simulation Execution as a Service

Zhen Li, Bin Chen∗, Xiaocheng Liu, Dandan Ning, Wei Duan, Xiaogang Qiu
College of Information System and Management

National University of Defense Technology
Changsha, 410073, China

Chengda Xu
Bengbu Automobile NCO Academy

Bengbu, 233000, China

Abstract—Cloud computing is attracting an increased number
of researches in delivering modeling and simulation abilities
as a service. Among which, simulation execution as a service
(EaaS) is a hot spot. It aims at releasing users from complex
running configurations and meanwhile guaranteeing the QoS
requirements. Under the motivation, focusing on EaaS for paral-
lel and distributed simulation (PADS) application , the paper
proposes a QoS-aware job scheduling framework in two-tier
virtualization-based private cloud data center. In PADS EaaS,
an adaptive job size adjustment component is designed to realize
intelligent and adaptive job size setting for PADS instead of
assigning by users. Furthermore, an adaptive deadline-aware job
size adjustment algorithm, named ADaSA, is designed in the
adjustment component to realize efficient job scheduling with
high job responsiveness. ADaSA algorithm firstly computes a
minimum processor requested that leads to maximum runtime
stretch. It makes sure that more jobs can be scheduled at the
same time while satisfying current job’s deadline requirements.
On other hand, ADaSA tries to pick up all possible idle CPU
time in background virtual machines and reserved ones for other
jobs. Through that way, more chances are generated to response
more jobs in waiting queue. Finally, we conduct extensive
experiments with trace-driven simulation. The results show that
ADaSA outperforms both cloud-based job scheduling algorithm
KCEASY and traditional EASY in terms of response time (up
to 90%) and bounded slow down (up to 95%), and at the same
time guarantees approximately equivalent deadline-missed rate.
ADaSA also outperforms two representative moldable scheduling
algorithms in terms of deadline-missed rate (up to 60%).

Keywords—Parallel Simulation; Job Scheduling; QoS; Cloud-
based Simulation; Execution as a Service.

I. INTRODUCTION

Computer simulation techniques are widely used in many
domains, and they give domain users the opportunities to con-
duct intensive and repeatable experiments on simulated models
conveniently. However, computer simulation is an interdisci-
plinary science which combines domain related knowledge,
software engineering and computer science. Consequently, it
is often time-consuming and expensive when conducting large
scale complex system simulation.

With the emergency of cloud computing, cloud-based sim-
ulation has provided great opportunities to promote efficiency
and reducing cost for building and executing simulation. In
cloud computing, IT resources are provided transparently
through cloud computing service, eg., Infrastructure as a
Service (IaaS), Platform as a Service (PaaS) and Software

as a Service (SaaS); the consumers then access the IT re-
sources service in an easy-to-use, on-demand and pay-as-
you-go manner. Base on the underlying cloud computing
paradigm, cloud-based simulation consolidates the underlying
computation and simulation resources in data centers and
provides modeling and simulation as a service (M&SaaS) to
support the whole process of M&S. Different users (including
domain experts, modelers, execution operators and analysts
etc.) can concentrate on their own domains and complete the
whole simulation collaboratively and rapidly with extensively
reuse. Nevertheless, researches in cloud-based simulation are
still in a preliminary stage and have been mentioned as one
of the grand challenges in M&S by various experts [1] .

Among previous pioneering works, the CSim [2] proposed
by Xiaocheng Liu gave an architecture design of cloud-based
simulation. According to the whole process of simulation sys-
tem engineering, the M&SaaS was further divided into MaaS
(Modeling as a Service), EaaS (Execution as a Service) and
AaaS (Analysis as a Service) in CSim . Among which, EaaS
is thought to be the important and most valuable functionality
provided by cloud-based simulation [3]. With the help of auto-
scaling characteristic of cloud computing supported by hard-
ware virtualization, EaaS can realize automatic deployment of
simulation applications and offer fast response through scale
in/out and scale up/down of resources.

PADS (Parallel and Distributed Simulation) application uti-
lizes multi-processors to run multiply logical processes (LPs)
of simulation models cooperatively through communication
and synchronization mechanism. It has been extensively used
in simulating complex system to accelerate execution time.
Accordingly, realizing EaaS for PADS applications has be-
come a hot topic in cloud-based simulation. Guan et al. [4]
proposed a multi-layered scheme for distributed simulation in
the cloud. It is designed to ease the management of underlying
simulation resources and achieve rapid computing capacity
elasticity for different scale simulation applications consid-
ering energy consumption, security and scalability. Wang et
al. [5] proposed a simulation middleware called CloudRISE
which helps simplify the deployment and management pro-
cesses of simulation resources. Then, through the web service
interface in CloudRISE, end users can run simulation every-
where on demand. These researches above provide excellent

example implementations of EaaS, however they mainly care
about the deployment and resource management for single
simulation application, and seldom consider the underlying
PADS job scheduling problems in multi-tenancy cloud envi-
ronment. When multiple PADS jobs (in the paper we regard
a PADS application as a job) are submitted simultaneously
during a time window, how to arrange the execution priority
and map resources to jobs has critical influences on guaran-
teeing users’ QoS (Quality of Service) requirements and jobs’
response time.

Aiming at the PADS job scheduling problems in cloud, Liu
et al. [6] proposed a novel two-tier virtualization architecture
to make full use of the wasted idle CPU time caused by
communication and synchronization between LPs in PADS
application. Based on the two-tier virtualization architecture,
four novel consolidation-based PADS job scheduling algo-
rithms [7] [8] were devised to shorten the makespan of
scheduling submitted jobs and improve the average response
time. However, these proposed algorithms are designed based
on rigid jobs that users should specify the size (namely
number of processors needed) of their jobs before submission.
Actually, the PADS applications are moldable that job size
parameters can be assigned at any time before execution.
However, users are usually not familiar with the parallelism
characteristics of the underlying PADS jobs. In that case, users
often feel confused and simply request as many processors as
possible under budget constrain when submitting jobs, which
will cause low utilization of cloud data centers. Aiming at the
problems, realizing an intelligent and efficient adaptive pro-
cessor allocation component for PADS applications becomes
a valuable research issue in EaaS considering including jobs’
parallelism characteristics, current workloads in cloud and
users’ QoS requirements. The reason is due to: 1) It offers
more transparent and convenient simulation execution service
that users can easily obtain simulation results by simply
submitting jobs and specifying related QoS requirements (eg.
soft deadlines etc.). 2) It has the potential to improve the
response time for submitted jobs by adaptive job size setting
as long as the deadline constrains are guaranteed.

The adaptive processor allocation for PADS jobs can be
viewed as moldable parallel job scheduling problem. Several
moldable job scheduling algorithms were proposed in previous
researches [9] [10] [11] [12]. Most of them utilized Downey
model as the parallelism characteristic model, and decided
the job size based on different kinds of heuristic information
at scheduling time or submission time. Reference [9] [10]
designed fairness-based method through adding job weights
and parallelism characteristic information by revising tradi-
tional greedy-based algorithm , but they seldom considered the
current workload states and QoS demands of jobs. Reference
[11] synthesized multiple metrics (eg. over-deadline, makespan
and idle cpu time) as scheduling objects and designed sev-
eral heuristic scheduling algorithms to manage job allocation
among multi-clusters. But they are designed oriented to grid
environment which is quite different with cloud. Reference
[12] then designed a cloud-oriented moldable job scheduling

strategy that realized intelligent and efficient execution service
for end users. But its target jobs are general HPC workloads
which are quite different with PADS jobs in communication
and synchronization mechanisms between processes. Unlike
previous researches, our work focuses on the scheduling of
PADS jobs in cloud-based simulation platform considering
both job QoS demands and job response time. Our work is
designed based on CSim, and makes the following contribu-
tions: 1) a QoS-aware scheduling framework simulation EaaS
is proposed to realize adaptive processor allocation for PADS
jobs. 2) a deadline-aware moldable PADS job scheduling
algorithms is devised based on CSim. 3) extensive experiments
and comparisons are carried out to show the efficiency of our
proposed algorithm.

The rest of the paper is organized as follows: section II
presents the QoS-aware scheduling framework and the prob-
lem definition of the scheduling model. The detail illustrations
of deadline-aware moldable PADS job scheduling algorithm
are given in section III. Section IV shows the experiment
settings and result analysis. Section V concludes our work.

II. QOS-AWARE PARALLEL SIMULATION JOB SCHEDULING
FRAMEWORK

Because of high bandwidth delay, public cloud environment
is still not suitable for tightly coupling PADS jobs. However, as
PADS jobs can hardly make full use of requested processors
caused by the communication and synchronization between
LPs , local private cloud data center raises great opportunities
for improving the whole PADS jobs scheduling performance
[6] with advantage of hardware virtualization (resource reuse
and consolidation etc.) in spite of introducing acceptable
performance degrade of single job (less than 5% for HPC
application [13]). Therefore, in the paper, in order to realize
good performance for our PADS EaaS, we employ private
cloud environment and the two-tier virtualization architecture
proposed in CSim [2] .

A. QoS-aware scheduling architecture

Supposing that the speedup model of submitted PADS job
can be obtained through history data, then PADS-oriented
EaaS can offer effortless and high performance simulation
execution service for users which only requires job deadline
setting. Accordingly, in this paper, we extend the CSim
and design a QoS-aware scheduling architecture for PADS-
oriented EaaS, as shown in Figure 1.

The architecture consists of three layers: user layer, sched-
uler layer and data center layer. In PADS-oriented EaaS, multi-
users share the same service and submit their PADS jobs
dynamically to the scheduling broker. According to certain
optimization objects and users’ QoS requirements, scheduling
broker then decides job execution order and the mappings
between jobs and VMs. The data center layer is enhanced
with two-tier virtualization architecture and provides workload
consolidation opportunities to improve resource utilization.

The scheduling broker for PADS-oriented EaaS is the
primary concern of this paper. It consists of four major

Scheduler Broker for

PADS-oriented EaaS

Data Centers with Two-Tier VMs

Foreground VMs

Background VMs

Users

QoS-aware Controller

Priority

Job

Queue
Adaptive Job Size

Adjustment

Parallel Job

Scheduler
History

Running

Information

Application

Characteristic

Modelling

Deploy Jobs

Submit PADS Jobs

Return Results and Datas

Update Job Running Infomation

Fig. 1: The QoS-aware scheduling architecture for PADS EaaS

components: QoS-aware Controller (QaC), Priority Job Queue
(PJQ), Adaptive Job Size Adjustment (AJSA) and Parallel Job
Scheduler (PJS). QaC is responsible for ranking the jobs in
PJQ according to users’ QoS requirements and offering QoS-
based heuristic information for AJSA. PJQ accommodates the
waiting jobs. AJSA is responsible for making decision of job
size for waiting jobs in PJQ. Two sub-components are needed
for implementing the function: one is “History Running In-
formation Database component” and another is “Application
Characteristic Modeling component”. PJS is responsible for
scheduling PADS jobs to VMs in data centers.

B. Job scheduling method

Based on the architecture, we design an ADaSA (Adaptive
Deadline-aware Job Size Adjustment) algorithm for PADS
EaaS under two-tier virtualization architecture [2].

In two-tier virtualization architecture, the predicted exe-
cution time in foreground VMs is supposed to be accurate,
and the size of submitted jobs can be adjusted at any time
before running in VMs. Therefore, jobs have chances to adjust
job size according to current number of idle processors, as
designed in some popular moldable job scheduling algorithms,
such as parallel allocation strategy [12] and fair-shared alloca-
tion strategy [9] [14]. Parallel allocation strategy tries to sched-
ule as many jobs as possible at the same time which focuses on
minimizing the average response time. Fair-shared allocation
strategy tries to allocate as many processors as possible to the
first job in the queue which focus on minimizing the average
turnaround time. However, these methods above are all greedy
strategies which only focus on optimizing single objective
without considering jobs’ QoS requirements. Accordingly, our
proposed ADaSA algorithm tries to make a trade-off between
multiply optimization objectives defined in section II. The
algorithm is designed based on KCEASY(Kill&Consolidation

enhanced EASY) [8] in CSim. On VMfg layer, KCEASY acts
as an Extensible Argonne Scheduling sYstem (EASY, which is
actually an aggressive backfill algorithm), which ensures that
a job is dispatched to run in foreground VMs whenever it is
schedulable, and at the same time it should not delay the start
time in reserve of jobs with higher priority. Meanwhile, on
VM bg layer, it schedules waiting jobs to background VMs in
SJF (Short Job First) strategy when no jobs are schedulable
in VMfg layer, which improves the utilization of CPU time.

The main idea of ADaSA is to improve the response
performance, meanwhile keeping a relative low deadline vi-
olation. Previous parallel allocation strategy tries to allocate
as many jobs as possible to the idle VMs, which leads to
small setting of job size. However, in many cases, a job in
the setting of small job size leads long execution time and
may cause deadline violation. In order to solve the problem,
ADaSA firstly assigns each waiting jobs an initial minimum
job size setting that achieves maximum job runtime stretch.
Minimum job size of a job gives as job size setting constrain
that job cannot set smaller job size in order to satisfy the
deadline requirement. In this paper, we denote the minimum
job size setting as min size. When jobs are scheduled with
min size, the deadline requirements are guaranteed, and at
the same time more jobs can be scheduled in parallel to
improve response performance. Each job in waiting queue will
update its min size after any jobs is released from foreground
VMs. The min size setting of a job can be obtained through
a pre-schedule process (simulated scheduling process) of EDF
(Earliest Deadline First) according to the state of Priority
Queue Q(t) and foreground VMs set VMfg(t) at current time
t.

When there are no schedulable jobs in VMfg with current
job size settings, ADaSA then chooses jobs in waiting queue
and adjusts the job size to match the idle resource separately
on VMfg and VM bg .

In VMfg layer, a set of VMs can be idle when the head
job is not schedulable under minimum job size constrain at
current time. Under the situation, ADaSA choose the jobs in
the waiting queue that can backfill to the idle VMs if they can
finish before the predicted start time of head job. In VM bg

layer, it can pick up the idle CPU time left without affecting
execution efficiency of jobs in VMfg . Accordingly, shorter
jobs (smaller job runtime) have higher priority to be scheduled
to VM bg , as they have higher probability to finish in VM bg .
At the same time, jobs scheduled to VM bg should queue up
in the PJQ for waiting resource in VMfg . If they come to the
head of priority queue before finishing in VM bg , they will
be killed and rescheduled or migrated to VMfg . Accordingly,
when selecting jobs running on VM bg , in order to satisfy the
deadline requirement when jobs are migrated to VMfg , the
minimum job size constrain should be considered.

III. PERFORMANCE EVALUATION

In this section, we evaluate ADaSA under PADS EaaS archi-
tecture by using trace-driven simulation. In the simulation, a
cluster with 300 physical processors is offered as data center,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

de

ad
lin

em
is

se
d

systemload

 EASY
 KCEASY
 Greedy Parallel + KCEASY
 Fair-shared + KCEASY
 ADaSA + KCEASY

(a) deadline missed rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2000

4000

6000

8000

10000

12000

14000

16000

re
sp

on
se

 ti
m

e

systemload

 EASY
 KCEASY
 Greedy Parallel + KCEASY
 Fair-shared + KCEASY
 ADaSA + KCEASY

(b) the average response time

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

30

60

90

120

150

sl
ow

 d
ow

n

systemload

 EASY
 KCEASY
 Greedy Parallel + KCEASY
 Fair-shared + KCEASY
 ADaSA + KCEASY

(c) the average bounded slow down

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
6.5

6.6

6.7

6.8

6.9

7.0

7.1

7.2

7.3

7.4

lo
g(

m
ak

es
pa

n)

systemload

 EASY
 KCEASY
 Greedy Parallel + KCEASY
 Fair-shared + KCEASY
 ADaSA + KCEASY

(d) scheduling makespan

Fig. 2: Performance comparison using janned parallel workload

and each processor is pinned with a foreground VM and a
background VM. “Janned workload” [15] is used as workload
model in the simulation.

In PADS EaaS, jobs are actually scheduled supported by two
components as shown in Figure 1. The first one is an Adaptive
Job Size Adjustment (AJSA) component with ADaSA, the
second one is a Parallel Job Scheduler (PJS) component with
KCEASY.

Accordingly, we compare PADS EaaS with other four
scheduling services including:
1) Scheduling service without AJSA, and use EASY-based
PJS;
2) Scheduling service without AJSA, and use KCEASY-based
PJS;
3) Scheduling service with greedy parallel algorithm-based
AJSA, and use KCEASY-based PJS;
4) Scheduling service with fair-shared algorithm-based AJSA,
and use KCEASY-based PJS;

The comparison is conducted under four different metrics
and the results are shown in Figure 2. From the observa-
tions above, it can be seen that our proposed PADS EaaS
with proposed ADaSA algorithm can offer good QoS, which
significantly improves service response time for users while
ensuring low deadline-missed rate.

IV. CONCLUSION

In this paper, we investigate the framework design of
simulation execution as a service for parallel and distributed
simulation applications in private cloud data center. An adap-
tive job size adjustment component is designed in order
to provide QoS-aware and intelligent job scheduling service
without any users’ running configurations before submission.
An adaptive deadline-aware job size adjustment algorithm,
named ADaSA, is devised in the adjustment component to
realize efficient job scheduling with high job responsiveness
and low deadline-missed rate. Through extensive experiments
with trace-driven simulation, our proposed algorithm obtains
significantly improvement compared with a popular cloud-
based job scheduling algorithm in terms of average job re-
sponse time (up to 90%) while keeping relative low deadline-
missed rate.

ACKNOWLEDGMENT

The study is supported by the National Natural of Science
Foundation of China under Grant Nos.71673292, 61503402,

61403402, 61374185, 71373282 and Shanghai Special Foun-
dation of Software and Integrated Circuit under Grant No.
150312.

REFERENCES

[1] S. J. E. Taylor, A. Khan, K. L. Morse, A. Tolk, L. Yilmaz, and
J. Zander, “Grand challenges on the theory of modeling and simulation,”
in Symposium on Theory of Modeling & Simulation - Devs Integrative
M&s Symposium, 2013, pp. 34:1–34:8.

[2] X. Liu, X. Qiu, B. Chen, and K. Huang, “Cloud-based simulation:
The state-of-the-art computer simulation paradigm,” in Principles of
Advanced and Distributed Simulation, 2012, pp. 71–74.

[3] B. S. S. Onggo, S. J. E. Taylor, and A. Tulegenov, “The need for cloud-
based simulation from the perspective of simulation practitioners,” 2014.

[4] S. Guan, R. D. Grande, and A. Boukerche, “A multi-layered scheme for
distributed simulations on the cloud environment,” IEEE Transactions
on Cloud Computing, no. 99, pp. 1–1, 2015.

[5] S. Wang and G. Wainer, “Modeling and simulation as a service archi-
tecture for deploying resources in the cloud,” International Journal of
Modeling Simulation & Scientific Computing, vol. 07, no. 01, 2016.

[6] X. Liu, Q. He, X. Qiu, B. Chen, and K. Huang, “Cloud-based computer
simulation: Towards planting existing simulation software into the
cloud,” Simulation Modelling Practice & Theory, vol. 26, no. 6, pp.
135–150, 2012.

[7] X. Liu, C. Wang, B. B. Zhou, and J. Chen, “Priority-based consolidation
of parallel workloads in the cloud,” IEEE Transactions on Parallel &
Distributed Systems, vol. 24, no. 9, pp. 1874–1883, 2013.

[8] X. Liu, Y. Zha, Q. Yin, Y. Peng, and L. Qin, “Scheduling parallel jobs
with tentative runs and consolidation in the cloud,” Journal of Systems
& Software, vol. 104, pp. 141–151, 2015.

[9] S. Srinivasan, S. Krishnamoorthy, and P. Sadayappan, “A robust schedul-
ing strategy for moldable scheduling of parallel jobs,” in IEEE Interna-
tional Conference on CLUSTER Computing, 2003. Proceedings, 2003,
pp. 92–99.

[10] G. Sabin, M. Lang, and P. Sadayappan, “Moldable parallel job schedul-
ing using job efficiency: an iterative approach,” in International Con-
ference on Job Scheduling Strategies for Parallel Processing, 2006, pp.
94–114.

[11] L. He, S. A. Jarvis, D. P. Spooner, X. Chen, and G. R. Nudd, “Hybrid
performance-oriented scheduling of moldable jobs with qos demands in
multiclusters and grids,” in Grid and Cooperative Computing - GCC
2004: Third International Conference, Wuhan, China, October 21-24,
2004. Proceedings, 2004, pp. 217–224.

[12] K. C. Huang, T. C. Huang, M. J. Tsai, H. Y. Chang, and Y. H. Tung,
“Moldable job scheduling for hpc as a service with application speedup
model and execution time information,” JoC, vol. 4, pp. 14–22, 2013.

[13] A. Iosup, S. Ostermann, M. N. Yigitbasi, and R. Prodan, “Performance
analysis of cloud computing services for many-tasks scientific comput-
ing,” IEEE Transactions on Parallel & Distributed Systems, vol. 22,
no. 6, pp. 931–945, 2011.

[14] S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur, and P. Sa-
dayappan, “Effective selection of partition sizes for moldable scheduling
of parallel jobs,” 2002.

[15] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riordan,
“Modeling of workload in mpps,” in Job Scheduling Strategies for
Parallel Processing, 1997, pp. 95–116.

View publication statsView publication stats

https://www.researchgate.net/publication/321657487

