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ABSTRACT 

  

In this thesis, research efforts are dedicated towards the development of practical adaptable 

techniques to be used in Smart Homes and Buildings, with the aim to improve energy 

management and conservation, while enhancing the learning capabilities of Programmable 

Communicating Thermostats (PCT) – “transforming” them into smart adaptable devices, i.e., 

“Smart Thermostats”. An Adaptable Hybrid Intelligent System utilizing Wireless Sensor 

Network (WSN) and Artificial Intelligence (AI) techniques is presented, based on which, a novel 

Adaptive Learning System (ALS) model utilizing WSN, a rule-based system and Adaptive 

Resonance Theory (ART) concepts is proposed.  The main goal of the ALS is to adapt to the 

occupant’s pattern and/or schedule changes by providing comfort, while not ignoring the energy 

conservation aspect. The proposed ALS analytical model is a technique which enables PCTs to 

learn and adapt to user input pattern changes and/or other parameters of interest.  

A new algorithm for finding the global maximum in a predefined interval within a two 

dimensional space is proposed.  The proposed algorithm is a synergy of reward/punish concepts 

from the reinforcement learning (RL) and agent-based technique, for use in small-scale 

embedded systems with limited memory and/or processing power, such as the wireless 

sensor/actuator nodes. An application is implemented to observe the algorithm at work and to 

demonstrate its main features.   It was observed that the “RL and Agent-based Search”, versus 

the “RL only” technique, yielded better performance results with respect to the number of 

iterations and function evaluations needed to find the global maximum. Furthermore, a “House 

Simulator” is developed as a tool to simulate house heating/cooling systems and to assist in the 

practical implementation of the ALS model under different scenarios.  The main building blocks 

of the simulator are the “House Simulator”, the “Smart Thermostat”, and a placeholder for the 

“Adaptive Learning Models”.  As a result, a novel adaptive learning algorithm, “Observe, Learn 

and Adapt” (OLA) is proposed and demonstrated, reflecting the main features of the ALS model. 

Its evaluation is achieved with the aid of the “House Simulator”. OLA, with the use of sensors 

and the application of the ALS model learning technique, captures the essence of an actual PCT 

reflecting a smart and adaptable device. The experimental performance results indicate 

adaptability and potential energy savings of the single in comparison to the zone controlled 

scenarios with the OLA capabilities being enabled.   
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CHAPTER 1 

 

1.1  Introduction 

The need for energy efficient and intelligent systemic solutions has led many researchers 

around the world to investigate and evaluate the existing technologies in order to create 

solutions that would be adopted in near future intelligent homes and buildings [HAG08] 

[CHA08].  The emergence of powerful embedded micro-computer systems, and wireless 

sensor networks (WSN), provides a good ground for in-depth research and adaptation of 

existing intelligent technologies and concepts, while exploring the new ones.   

The above initiatives have motivated and led to many scientific endeavors and 

contributions to our society, where the existing state-of-the-art intelligent technologies and 

concepts are used in integration of many intelligent systems towards a new era of “Smart 

Homes and Buildings” [RED06][RIC06]. The leading edge technology in the area of 

intelligent systems and smart sensor networks are an essential part of our everyday life. 

Their evolution will help us to better utilize our energy resources (i.e. energy saving 

initiatives), and enhance our way of living. Indeed, many governments and utilities are 

interested to better utilize electricity, and encourage initiatives leading towards the 

development of intelligent systems. Thus, numerous research groups are closely involved in 

bringing forward efficient “Smart Home and Building” systems for our living environments, 

furthering the research in intelligent and automatic control systems.  

Programmable thermostats [DOU94][DOU09] are used widely for automatic control of 

temperature and humidity, and nowadays extend into a Programmable Communication 

Thermostat (PTC) [MEI08]. PCTs are equipped with LCD user interfaces, push button 

controls, and wireless interface, for communications and network capability to a multitude of 

sensors/actuators, offering a variety of options for controlling thermal comfort and/or other 

appliances [RED07][KUS07]. Today’s PCTs are able to communicate with home 

appliances, electricity generating utility (EGU) meters (i.e., Smart Meters) helping in the 

peak load control (demand response initiatives) and offering efficient use of energy 

resources. The utilization and integration of PCT devices and multiple WSN into Home 
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Automation Systems contribute to the accomplishment of “Smart Homes and Buildings” 

[YUP07].   

 Many sophisticated fuzzy control systems, WSN schemes [KAN10] and devices for 

“Smart Homes and Buildings” are being investigated and evaluated by researchers. The 

concepts of intelligent systems are being investigated and tested in many heating ventilation 

and air conditioning (HVAC) applications, such as for the utilization of sensors and 

intelligent thermostat systems for multi-zone HVAC control systems.   

Furthermore, the concepts of “Smart Thermostats” are being investigated in order to 

come up with systemic solutions which are adaptable, energy aware, and easy to use. As 

described in [MEI08], “intelligent thermostats” are used in many smart homes and buildings. 

However, the learning “intelligent thermostats” mentioned in [MEI08] are programmable 

thermostats, which are capable of learning the occupant’s pattern by interaction (i.e. when 

the user changes the set point temperature, the thermostat remembers it), and it uses those 

parameters in the next daily schedule. However, this does not address the problem of 

learning the schedules and/or pattern changes without user interactions.  Thus, compared to 

an actual “Smart Thermostat” only represents a programmable thermostat capable of 

remembering (i.e., store in memory) the user preferred set point temperatures or daily 

schedules (similar to any typical PCT). Nevertheless, it requires the user interaction/input to 

be modified, and it also does not address the problem of intelligent zone controlled 

environment. The effect of human behavior is also described in [MEI08], where about 25 to 

50 percent of the common U.S. households utilize the programmable thermostats as an 

on/off switch. Furthermore, homes relying on the programmable thermostats for energy 

savings, consumed more energy than the homes where the occupants set the temperatures 

manually. Moreover, in many cases, constant programming of the thermostat poses a 

“hassle”, for many users. The results from the survey about “the amounts of time users 

operate the air conditioner/heater” [MEI08] indicate only an occasional usage pattern.  

Additionally, it shows that even the “tech-savvy users” were dissatisfied with the complexity 

of the programmable thermostats and its user interface.    

In many present commercial buildings, the amount of sensors used for the purpose of 

energy efficiency is relatively small, and in residential buildings is typically reduced 

furthermore, and has little use of embedded intelligence [ARE05] i.e., single programmable 
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thermostats. The energy use in U.S. alone, for heating/cooling of the commercial and 

residential buildings is around 38 percent [ARE05].  From this total energy usage, the energy 

consumption for the commercial buildings is 28 percent, for residential buildings is 43 

percent, and the rest of consumption is for the water heating, lighting, and miscellaneous 

usage. The energy usage for space heating and cooling in residential buildings is the highest 

(43 percent).  Thus, utilizing multiple wireless sensors/actuators, applying Artificial 

Intelligence (AI) techniques and Ambient Intelligence (AmI) perspective for energy aware 

smart environments, is very significant. 

Moreover, the advantages of using multi-sensor versus single sensor systems for control 

of HVAC are also described in [LIN02].  Although the energy performance and comfort is 

improved in a multi-sensor system, the described system utilizes only one actuator to control 

the HVAC.  The use of a multi-actuator system for control of air dampers in individual 

rooms, in addition to the control of the HVAC, would prove to be more efficient solution.  

Since the preferences of occupants and their perceived comfort might be different, the 

optimal thermal comfort of a multi-zone environment i.e. use of multiple actuators to control 

the air dampers into individual zones based on the occupants’ preferences, is advantageous.   

Furthermore, as the demand for electricity continues to grow, transition to the smart 

grid/smart metering environment, among others, as described in [VOJ08] requires “smart 

devices and in-home energy management systems, such as PCTs capable of making 

intelligent decisions based on smart prices”. The peak load curtailment, demand response 

(DR) and Time-Of-Use (TOU) rates are among many factors considered in smart grid 

initiatives, where the importance of investing in dynamic and flexible designs and smart 

devices is essential [VOJ08]. The importance of peak shifting (i.e., redistribution of a task 

away from the time of peak demand) and energy conservation via a computer-based system 

to measure and manage energy consumption is described in [WIL06].  The peak shifting is 

essentially a pre-programmed thermostat schedule based on EGU (i.e., utility) TOU rates 

and DR energy management incentives. However, the cost of the described monitoring and 

control system is estimated to be $2,500 per home, requires user input/interaction and does 

not reflect adaptive learning capabilities.  

With the advancement and broad application of AI models in technology, the emergence 

of adaptive learning systems [WIR00] is obvious.  The rule-based expert systems are widely 
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used in technology and are considered to be the best option for building knowledge based 

systems [SHE08], where the formulation of knowledge is based on the expert’s opinion, 

represented by simple production rules. Typically with an IF-THEN structure, where 

multiple conditions can be joined by ‘AND’ and ‘OR’ keywords, facilitating representation 

of relations, recommendations, and strategies for different scenarios.  In a nutshell, structure 

of the rules-based expert systems consists of the knowledge base, database of facts, inference 

engine (i.e. links facts and knowledge), explanations facilities (i.e. enables user to ask and 

see how a particular conclusion is reached), user interface and the user. One of the 

disadvantages of the rule-based expert systems is their incapacity to learn and their slow 

response (if a very large set of rules is considered).  

Other AI models, such as, the Adaptive Resonance Theory (ART) [CAR87a], Fuzzy 

ART [CAR91], self-organizing Neural Networks, Genetic Algorithms (GA), Fuzzy Logic 

and Particle Swarm Optimization (PSO) are also being used in cases of machine learning 

endeavors, such as the unsupervised learning system and optimization problems. In 

particular the ART1 and Fuzzy ART models are being used in different technological and 

biological applications involving unsupervised learning for binary and analog input patterns. 

Moreover, the emergence of ‘intelligent agents’ [POS08], which perceive their environment 

through sensors and act upon that stimulus via actuators, is obvious as well. 

In many real-world applications, the use of only one AI model (in most cases) would not 

suffice to bring forward the best systemic solutions. While the combination of different 

techniques has led to the emergence of more sophisticated intelligent systems, known as 

hybrid intelligent systems (i.e., which combine at least two intelligent technologies).  

 

1.2 Motivation and Objective 

The need for efficient environmental controls is becoming apparent as the EGUs are looking 

to better utilize and manage power, its use and control of the peak load demands, while the 

consumers are looking for comfort and conservation.  To better manage the ever-increasing 

energy demands, electricity costs, and environmental impacts, many governments and 

companies are looking for more efficient solutions to the existing problem. The purpose of 

Advanced Metering Infrastructure (AMI) and DR initiatives is to assist EGUs to meet their 
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energy needs, by introducing TOU prices/rates, with the intention of encouraging users to 

shift part of their electricity use to off peak hours.  Thus, allowing the customers to conserve 

and save (on high electricity costs), and respectively, assist the EGUs to better manage the 

peak load demands.   

On the other hand, the role of a programmable thermostat is to provide the consumer 

with a means to manage and reduce energy use, while accommodating their every day 

schedules.  The changing schedules, comfort set point temperatures, preferences, needs and 

patterns of consumers, are different. The constant interaction and/or programming of the 

thermostat might not prove flexible, nor optimal enough with respect to comfort and the 

conservation aspect of it, due to the available features, difficulty of use or programmability, 

limited number of sensors/actuators nodes, lack of system interaction and/or communication, 

lack of systems intelligence, etc.   

The PhD Thesis objective is to investigate, and address the above issues via simulation, 

experiment and development of an “Adaptive Learning System”, providing a smart and 

adaptable energy management systemic solution for intelligent buildings. Thus, bringing 

forward a “Smart Thermostat” for optimal energy management in intelligent buildings – a 

hybrid intelligent system solution, which utilizes WSN and AI techniques to learn and adapt. 

The “Smart Thermostat” uses sensors to observe/monitor, actuators to control, and AI 

techniques to learn and adapt.  It does not require constant programming input of the 

occupant(s), learns and adapts to the occupant(s) preferences, schedules and/or pattern 

changes, offers zone-controlled environment solution, and responds to utility DR and TOU 

price rates incentives. Thus, further improving the comfort and conservation of energy 

management in intelligent buildings, and simultaneously offering new insights and solutions 

that can help towards the advancement of science, in general.   

1.3 Research Description 

The envisioned concept of “Adaptive Systems Utilizing WSN and AI” encompasses a WSN 

consisting of numerous “intelligent agents” (smart sensor/actuator nodes) and a central 

controller unit. It offers intelligent energy management for smart homes and buildings by 

using the rule-based expert system and adaptive learning principles.  Thus, it is an “energy 

aware” system solution, capable of acting, learning and/or adapting to the occupant(s) 
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preferences, schedules and pattern changes, rates of heating/cooling of different rooms (i.e., 

zone control). When applied to the environmental control problem, AI techniques enable the 

overall system to adapt and learn from the system dynamics, utilizing a rule-based expert 

system strategy and adaptive learning principles.   

The rule-based expert systems cannot offer the best possible solution alone.  They have 

a drawback, which is their dependence on prior knowledge and also the amount of time 

required to match the rule with the memory. Using only one AI technique, in this case, 

would not render a flexible solution. Thus, the goal is to investigate and utilize other AI 

concepts, such as AI models based on the unsupervised learning strategies.   

In the proposed research, AI techniques, such as the rule-based expert systems and 

unsupervised learning with biological motivations will be investigated, in order to provide 

the overall system flexibility to learn and adapt to new knowledge, without destroying the 

existing knowledge. Thus, offering a hybrid intelligent system solution for conservation of 

energy and comfort zone adjustment. Because our main objective is to create an adaptive 

learning system, existing models, such as ART, self-organizing neural networks, expert 

systems and potential new techniques are of vital importance and shall be investigated to 

determine the best possible choice for the hybrid intelligent system being proposed and 

considered. One critical element of this research is to combine several AI techniques leading 

to an “Adaptive Learning System” – a hybrid intelligent system capable of learning in our 

living environments.  

The Hybrid Intelligent System (refer to Figure 1.1) proposed, is based on the rule-based 

expert system and unsupervised learning techniques (where the problem is how to adapt to 

new knowledge without destroying the existing knowledge). The “Smart Thermostat” core 

controller unit is equipped with distributed sensors (i.e., intelligent agents), which use the 

rule-based expert system and ART concepts to learn and/or adapt.  The role of sensors in the 

proposed scheme is to monitor the environment (i.e. temperature, occupancy detection, air 

flow, etc.), while the actuators are used to control the heater/cooler stages and for the 

adjustment of the air flow (i.e. via air dampers) in a zone-controlled environment.  The 

proposed system enables the comfort zone adjustment, i.e., the control of heating/cooling of 

individual rooms and/or of the entire house; and is capable of processing inputs to and/or 

from the EGU (i.e. Utility/Smart Meter) to the core controller unit.   
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The research approach taken emphasizes a scalable solution, considering only a few 

inputs / outputs and simple user interface (UI) at the initial stages of research, and afterwards 

emerging to a more complex system with multiple sensors, sources of information, and a 

variety of output types. 

 

Figure 1.1 - Hybrid intelligent system 

 

The aim is to create an adaptive system which enables intelligent power management in 

“Smart Homes and Buildings”. Thus, the solution extends beyond a programmable 

thermostat, by proposing an adaptive hybrid intelligent system – a “Smart Thermostat”, 

which does not require constant programming input by the occupant(s) and is capable of 

learning and adapting, while offering the optimal energy conservation and comfort of the 

occupant(s). In addition, “Smart Thermostat” communicates with the Smart Meter, providing 

efficient energy savings, and helping EGUs to better manage the peak load demand, by 

responding to TOU price rates, and DR incentives.   
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1.4 Summary of Contributions 

In this thesis, the research efforts are devoted to the development of adaptive learning 

techniques to be used in Smart Homes and Buildings, with the aim to improve energy 

management (comfort and conservation aspect of it), and propose learning capabilities to 

current PCTs.  The main contributions of this thesis are shown below:  

• An Adaptive – Hybrid Intelligent System Solution utilizing Wireless Sensor 

Networks and Artificial Intelligence Techniques for Energy Management in Smart 

Homes and Buildings is proposed. 

o Analytical Model of the Adaptive Learning System (ALS) is proposed. 

• A novel algorithm based on the Reinforcement Learning and Agent-based technique, 

for finding the global maximum in a predefined interval for use in small-scale 

embedded systems with limited memory and/or processing power, such as the 

wireless sensor/actuator nodes is proposed, implemented and demonstrated.   

o A specific application is implemented and developed to verify and confirm its 

performance.   

• A House Simulator constructed with ‘thoughtful consideration’ for its use as an 

‘expert system shell’, is proposed. 

o Analytical model of the “Simulation Engine” is presented. 

o House Simulator is designed and implemented in order to prove the 

envisioned concepts of: 

� “Adaptive Systems using WSN and AI” and  

� Its use for evaluation, implementation, and verification of new 

adaptive learning techniques for future “Smart Thermostats”. 

• A novel adaptive learning technique: “Observe, Learn and Adapt” for future “Smart 

Thermostats” using wireless sensors and AI is implemented and demonstrated based 

on the proposed Adaptive Learning System model.   

o Knowledge-base technique is implemented and applied in conjunction with 

the OLA algorithm, and demonstrated as an essential part of it. 
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1.5 Thesis Outline 

The organization of subsequent sections of thesis is as follows: A survey of background 

material is provided in Chapter 2. In Chapter 3 a methodological approach, analytical 

modeling, and the key steps and synopsis of the proposed solution are described. In Chapter 

4 a new algorithm for finding the global maximum of a function in a predefined interval for 

small-scale embedded systems with limited memory and processing power is presented, as a 

result of applying the concepts of the Reinforcement Learning (RL) and agent-based 

techniques. A specific application was developed and implemented in order to verify and 

establish the benefits of applying the above mentioned technique. Chapter 5 describes and 

demonstrates the simulator model, design architecture, and its aim to be used as an ‘expert 

system shell’ for further stages of research.  Initial results and discussion of the simulator are 

presented in this section.  In Chapter 6 a novel algorithm ‘Observe, Learn and Adapt’ (OLA) 

for smart homes, utilizing wireless sensors and artificial Intelligence concepts is presented.  

The implementation fundamentals, validation and performance results showing OLA’s 

feasibility for adaptable learning thermostats is shown via simulation results and 

performance evaluation;  necessary improvements to the existing simulator (‘expert system 

shell’) are depicted and presented as well.  In Chapter 7 the concluding remarks and findings 

of the research efforts are presented. Recommendations for future research are also 

discussed.  Appendices include additional valuable information related to the thesis. 

Appendix A introduces a simulation model of WSN by implementing the Topology Control 

Algorithm using the Cell-DEVS (Discrete Event System Specification) formalism.  Further, 

in Appendix B, focus is to design and emulate a few potential features of a Heater-Cooler 

System Prototype by experiment (utilizing hardware and firmware tools), which could be 

beneficial for the interested reader. In Appendix C, the complete structure of Master and 

Daily clusters used for OLA algorithm are included. Whilst, in Appendix D confidence 

interval calculations used for statistical analysis of OLA results are included for 

completeness. 
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CHAPTER 2 

 

INTELLIGENT SYSTEMS AND WIRELESS SENSOR NETWORKS 

 

The development of intelligent electronic sensing devices, powerful embedded 

microcontrollers and wireless communication devices is a foundation for new advanced 

sensor devices, which can monitor actuate, compute and communicate, yet are small in size 

and cost [ELK08][HAR07][HON10].  The wireless sensor devices have the capability to 

self-organize into the so-called WSN.  Their ability to sense diverse variables of interest, 

such as the temperature, humidity, pressure, airflow, occupancy, sunlight and other, could 

greatly improve the limitations of the existing and future energy management systems; many 

governments and EGUs are interested in finding solution to manage the ever-increasing 

energy demand, electricity costs and environmental impacts. 

 The Energy Management in Intelligent Buildings, by utilizing WSN, AmI, Advanced 

Control Systems and AI are key elements that embody the concept of “Intelligent Buildings” 

by striving to make them more adaptable, autonomous and aware of our environment; yet 

flexible and intelligent to sense, actuate, compute and evolve into “Adaptive Systemic 

Solutions” -  adaptable, re-configurable systems, which act and adapt by exploiting wireless 

sensor/actuator network capabilities and system intelligence; enabling efficient energy 

management in our homes and buildings, enriching automation and control systems, and 

exploiting the renewable energy resources.   

2.1 Wireless Sensor Networks   

The emergence of powerful embedded micro-computer systems for WSN provides a good 

ground for creation of new smart sensor systems, which can be useful to further promote 

new scientific endeavors and enhance our lives. WSN are used in many different 

applications, such as medicine, transportation and urban monitoring, traffic control, military, 

environment and habitat monitoring, energy management, smart homes, automatic meter 

readings, industrial applications, telemedicine, etc [BYO08][CHE08][KAN10][NEW07] 

[SUH08][WU08]. The effectiveness of WSN is not just their monitoring, actuating, 
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computing and communications capabilities - with the added microcomputer processing 

power, analog and digital ports, transceivers and available memory, they have the 

capabilities to self-organize and communicate in the deployed area. Their processing power 

is limited, however WSN are usually deployed in large numbers and their load is shared 

accordingly.  

2.1.1 Wireless Sensor Node Architecture 

The main components of a Wireless Sensor Node as depicted in Figure 2.1 are the 

sensor/actuator, embedded controller (microcomputer) unit, power supply, memory and 

communication device (i.e., transceiver).   

 

 

 

 

 

 

 

 

 

 

Figure 2.1 - Wireless sensor node architecture 

 

Sensor nodes are attractive for use in WSN due to their low cost, small size, versatility, 

easy deployment and energy efficiency. Sensor node architecture [HEA08][ZHE06], 

including its hardware and software platform chosen, depends on the application and 

requirements.   

Due to the fact that sensor nodes have limited bandwidth, computing power and limited 

energy resources, one of the main constraints in WSN is the energy efficiency of sensor 

nodes (i.e., power consumption) [SAK07][ELI07][ZHE07]. The main sources of energy 

consumption of sensor nodes are the microcontroller and transceiver.  Consequently, the 

energy consumption of sensor nodes is an essential factor when considering the wireless 

sensors for a specific application [YEA07]. In order to reduce the power consumption, 
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sensor nodes support different modes of operation, such as active, idle and sleep modes. The 

WSN Topology Control is one of the approaches used to solve the energy efficiency 

problem in sensor networks (refer to Appendix A for Simulation of Large WSN using Cell-

DEVS). 

2.1.1.1  Embedded Controller 

Microcontrollers are most commonly as a core controller unit of the sensor nodes, due to 

their low cost, with memory build in, rich peripheral set and flexibility to connect to other 

devices, low power consumption in comparison to high-end processors (i.e., used in desktop 

computers) and rich set of peripherals including many input/output (I/O) ports; equipped 

with analog and digital converters, internal oscillators, comparators, timers, etc. In addition, 

microcontrollers can be programmed many times and there are plenty of debugging and 

development tools and kits (hardware and software) for prototyping and development 

purposes.   

Some examples of microcontrollers used in sensor nodes are: 

Texas Instrument  

Texas Instruments MSP 430 is a 16-bit RISC microcontroller suitable for embedded 

application; powerful enough to handle the computational tasks that are required by wireless 

sensor nodes. MSP 430 is equipped with RAM (from 2 to 10 kB), A to D (analog to digital), 

D to A (digital to analog) converters, RTC (real time clock), many I/O ports and other 

interconnection possibilities. 

Microchip PIC series 

The PIC18F6720 series are Microchip’s RISC based microcontrollers that contains 8-bit 

CPU core, RAM (4 kB), and most of the peripherals inside a single integrated circuit, 

including A to D, D to A, RTC, PLL, UART, many peripherals and I/O ports; enabling easy 

interface for sensor nodes.   



Chapter 2 

 

14 
 

Atmel Atmega128L 

Atmega128L is an 8-bit micro (RISC architecture), feature rich, has 4 kB of RAM, 8 MHz 

oscillator, peripheral interconnection possibilities; intended for embedded applications - 

feasible for use in sensor nodes.  

2.1.1.2  Memory 

There are different types of memory used in microcontrollers:   

• RAM (Random Access Memory) 

o Fast, mainly used for data  

• ROM/EEPROM (Read only memory / Electronically Erasable Programmable ROM)   

o Used for external data storage and program code – erase and programming 

cycles are slow (in bytes)  

• FLASH Memory 

o Program code memory 

o Enables many erase and programming cycles (in blocks/faster) 

2.1.1.3  Transceivers 

Transceiver is a communication device that consists of a transmitter and a receiver, which 

enables the two-way wireless communications among sensor nodes. The essential task 

performed by the transceiver in sensor nodes is be able to receive and transmit data via radio 

waves at a specific frequency (e.g. wireless sensor networks typically use frequencies 

between 433 MHz and 2.4 GHz).  Main parts of the transceiver are the radio frequency 

building block (performs analog signal processing) and the baseband building block 

(performs the digital signal processing).  There are many manufacturers that offer 

transceivers particularly suited for WSN, which incorporate all the necessary circuitry for 

transmit and receive operation. 
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Some examples of transceivers used in sensor nodes are: 

RFM Monolithics RFM TR1000  

• Designed for short range wireless communications 

• Frequency ranges 868 MHz and 916 MHz 

• Supports short-range radio communications (up to 115.2kb/s) 

• Radiated power 1.5 dBm 

Chipcon CC1000   

• Designed for very low power and low voltage wireless sensor applications 

• Wide frequency ranges (300 – 1 GHz) 

• Programmable output power 

 

Ember EM2420 

• Wide Frequency ranges 868 MHz, 915 MHz and 2.4 GHz 

• Data rate of 20, 40 and 250kb/s respectively 

• Radiated power -0.5dBm 

• Tx mode (22.7mA), Rx mode (25.2mA) 

2.1.1.4  Sensor Node Power Supply 

Batteries are the main source of power for the sensor nodes.  For the purpose of tiny sensor 

nodes, batteries should be small in size, preferably rechargeable (via means of vibrations, 

solar and other), and with high capacity to operate for long periods of time.  The capacity of 

the battery needs to withstand different modes of operations (active mode or high power, idle 

or sleep modes with low power consumption).  Due to the fact that throughout the operation 

of the sensor node, the voltage level of batteries drops, delivering marginal power which 

might impair the sensor nodes’ readings, the need for DC-to-DC converters is needed in 

order to overcome this problem. The challenge is to design efficient switching power supply, 

which would potentially reduce the power dissipation in the process of conversion (i.e. 

voltage level boosting).    
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 2.1.1.5 Sensor Node Operating System 

A typical example of an operating system used mainly for sensor nodes is the TinyOS 

[HIL00][LYN05]. TinyOS is an operating system that supports modularity and event based 

programming paradigms, hence it is suitable for wireless sensor nodes. TinyOS is based on 

the component based model approach. Therefore, the modularity of TinyOS (reuse of its 

components) permits it to be the main driver for implementation of different WSN 

applications.  

TinyOS is not like a traditional operating system, but rather a programming structure 

(with base code less than 400 bytes) for embedded systems (in particular well suited for 

sensor nodes) with a set of components, which enable development of different applications, 

and reuse of the existing components.    

Some examples of sensor nodes are: 

Mica Mote family 

Mica2 

• Tiny wireless platform for sensor 

networks 

• Uses AA battery (greater than 1 yr. 

Lifetime when using sleep modes) 

• Can be used as a router 

• Has multi-channel radio transceiver 

• Equipped with expansion connector 

for external sensors  

 

 

 

 

  

Figure 2.2 - Mica2 sensor node 

Source: Crossbow (www.xbow.com) 

 

XYZ sensor node 

• Open source wireless sensing platform 

• Equipped with OKI ML67Q500x ARM THUMB 

processor and CC2420 Chipcon radio (IEEE 

802.15.4 compliant) 

• Supports different sleep modes 

• Capable to operate at different speeds and power 

configurations  

 

 

 

 

Figure 2.3 - XYZ sensor node 

Source:www.eng.yale.edu/enalab/xyz/ 
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Eyes 

 

• Three year European project on Wireless 

Sensor Networks (self-organization and 

energy-efficiency of sensor nodes) 

• Tiny sensor node platform based on the 

MSP430 controller 

• Equipped with RFM10001low power 

radio module 

 

 

 

 

 

 

 

Figure 2.4 - Eyes sensor node 

Source: www.eyes.eu.org/sensnet.htm 

 

            

2.1.2 WSN Topology Control 

The objective of WSN Topology Control in general, is related to the efficiency of WSN 

network in order to increase its lifetime. In a ‘nutshell’ Topology Control exploits the 

redundant deployment of the sensor nodes, to overcome the energy limitations by restricting 

the set of nodes, which are considered neighbors of a given node. While making sure that 

sensing area is still covered by a sufficient number of sensors. Moreover, reducing the 

interference problems (i.e., which is noticeable when large number of sensor nodes are 

active).   

The effectiveness of WSN is not just in their monitoring, actuating, computing and 

communications capabilities: with the added processing power, analog and digital ports, 

transceivers and memory, they can self-organize and communicate in the deployed area (as 

depicted in Figure 2.5). 

 

Figure 2.5 - Sensor nodes self-organized 
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The Topology Control in flat networks is mainly concerned with the power control of 

the sensor nodes – controlling the transmission range and/or the number of nodes’ neighbors.  

On the other hand, we have the WSN Topology Control in hierarchical networks by 

dominating sets and/or clustering; the main idea here is to choose a set of active nodes 

within a network, such as to effectively utilize and conserve the nodes’ energy by assigning 

a specific role to the chosen nodes.  One example of the Topology Control in hierarchical 

networks by clustering is Low Energy Adaptive Clustering Hierarchy (LEACH) [HEI02].  

The assumption here is that the number of nodes and coverage area is known.   

From each node’s neighborhood (a cluster of sensor nodes) a ‘clusterhead’ is chosen.  

The ‘clusterhead’ collects data readings from cluster members and performs data 

aggregation, prior to transmission of data to the data sink (sensor nodes where the data has to 

be delivered, typically sinks are more powerful sensor nodes with high transmission power 

capabilities, more energy resources and computational power). In order to avoid the energy 

drainage, ‘clusterheads’ rotate their role among cluster members.  In addition to the above, 

there are many other strategies that consider the problem of WSN Topology Control, such as 

the hybrid adaptable approaches, which tend to take advantage of both power and 

hierarchical control; one such example is The Adaptive Self-Configuring Sensor Networks’ 

Topologies (ASCENT) [CER02].  In the case of ASCENT Topology Control algorithm, the 

network adapts to the needs of the ongoing communications rather than constructing a 

‘backbone’ or a clustering structure, where each node assesses its connectivity and adept 

their participation in a multihop network topology based on the operating region.   

Sensor nodes that are ‘active’ participate in the dissemination of data to the sinks, while 

the other nodes, which are in ‘passive’ state, wake up periodically to check if their 

participation is needed.  Therefore, in the initial state only few sensors are active, taking care 

of the transmission of data.  In the scenarios where the range of transmission from the source 

to sink (destination node) is at the limit of transmission range, the sink might experience 

high data packets losses.  Consequently, sink issues a ‘help message’ to the currently passive 

neighbors (sensor nodes which are in a listening mode) to join the network. After receiving 

the ‘help message’ node can decide to join the network and announces its change of status 

by sending a ‘neighbor announcement message’ to its neighboring sensor nodes.  This 

process continues until the active sensor node stabilizes, and the network comes to a reliable 
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operational state (where packet losses from source to sink are minimal e.g. acceptable 

threshold). During the operation some sensor nodes might fail due to their consumption of 

energy resources, obstacles or other, where the data packet losses happen again, in which 

case the above-described process is re-initiated again.  

The essence of Topology Control for WSN is to exploit the redundancy of sensor nodes 

in a network and minimize the number of active nodes, whilst ensuring a reliable and 

efficient service. In addition, Topology Control helps to extend the life of sensor nodes by 

compensating for their energy limitations, optimizing the utilization of many sensor 

operational states. In addition to the above considerations, it is of vital importance to observe 

and evaluate the behavior of WSN model under different test scenarios prior to adopting any 

approach. An example of the Topology Control for WSN is provided in Appendix A.  

2.1.3 Data Aggregation in WSN 

The basic principle of data aggregation can be described as a collective operation of the 

intermediate nodes performing some form of aggregation function on the data from the 

neighbouring sensor node e.g. by gathering the data and computing the representation of 

several messages, which is equivalent or a close approximation of the messages; examples of 

data aggregation are calculating the average, median, minimum, maximum or other practical 

values from the measured readings of sensors, prior to forwarding the aggregated value 

towards a data sink.  Therefore, operating on a data whilst is being transported from the 

sources to the sink. This process is also known as in-network processing.   

Main characteristics of data aggregations are: 

• Accuracy 

o How well does the value received at the data sink correlates to the true value 

• Completeness 

o Percentage of data messages involved in the calculation of the final – 

aggregated value 

• Latency  

o Time element that is involved in the process of data aggregation among nodes 

could lead to the possible delays in the intermediate nodes 
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• Message overhead 

o Reduced overhead as a result of a lower number of messages being forwarded 

throughout a network; data aggregation implies computation of a smaller 

representation of a large number of data messages at the intermediate nodes 

within a network 

 

Benefits of data aggregation depend on where the sensors are located with respect to the 

sink(s). As depicted in the following Figure 2.6 (on the left), the scenario where the sensors 

are located e.g. in a radial configuration – whereas all the sensor nodes are only hop away 

from the sink, represent a scenario where data aggregation would not prove to be beneficial.  

However, in Figure 2.6 (on the right), it can be seen that the data aggregation proves to be 

beneficial, since the sensor nodes along the network are more than one hop away from the 

sink, hence the aggregation of the data in the intermediate nodes would lead to less messages 

overhead through the network, towards a sink. Therefore, data aggregation usefulness 

depends on the location of the sources of data relative to the sink. 

   

Figure 2.6 - The usefulness of data aggregation in different scenarios 

 

The intermediate result of the aggregated values, typically are representation of the 

aggregated value and the number of sensor readings that contributed to compute the given 

aggregated value. In other words, the data aggregation at the intermediate nodes when 

transported along the network consists of the aggregated value and the count of sensors that 

contributed in the computed value.   
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A practical example of data aggregation is Tiny Aggregation (TAG) [MAD02].  TAG is 

a generic service for aggregation, similar to SQL query languages, which was developed for 

the ad hoc networks of TinyOS sensor motes. TAG is a popular scheme used for WSN.  The 

basic operation of TAG aggregation scheme is based on the convergecast tree - gathering of 

data from many or all available sources to a single or several sinks.  TAG processes the data 

aggregation while the data is transported in the network, discarding the redundant and 

irrelevant data, whilst combining the more important sensor readings into more compact 

results, when available.     

An example of query syntax in TAG would be: 

SELECT AVG (Temperature), Room FROM sensors 

WHERE floor 5 

GROUP BY Room 

HAVING Temperature > 25 

EPOCH DURATION 45s 

The interpretation of the above is the following: The selected parameter of interest is the 

average temperature in floor 5; sensors are partitioned into group by rooms, query reports 

when the temperatures are above 25 °C, and the process is repeated every 45 seconds. 

2.1.4 Transport Protocol for WSN 

The architecture of computer and communications network is usually structured in different 

layers, such as physical, data, network, transport, presentation, session, and application layer 

based on the open systems interconnection (OSI) reference model; where each layer provides 

service to its immediate upper layer as shown in Figure 2.7. The physical layer is the 

hardware platform of the network responsible for transmission over the physical medium, 

whereas the data layer provides link services to the network layer. The network layer 

provides routing and addressing services to the transport layer, and the transport layer 

provides message transportation services to the layers above it.  Transport layer in general 

provides end-to-end segment transportation, where messages are segmented into a series of 

segments at the source node, and afterwards are reassembled at the destination node. 
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Figure 2.7 - Generic network layering structure 

Examples of transport protocols are Transmission Control Protocol (TCP) and User 

Datagram Protocol (UDP). Since there is no interaction between the TCP/UDP and lower 

layer protocols, TCP/UDP might not be a feasible solution for WSN, where the interaction 

with lower layers can provide valuable information to the transport protocol, and enhance the 

overall system performance. In WSN, typically there is a small amount of data to be sensed; 

hence, the TCP/UDP protocol might be a large overhead.  The energy conservation in WSN 

transport protocol could possibly be related not only to physical layer, but also to data link, 

network, and other layers. Therefore, the WSN transport protocol design emphasis should be 

towards the energy conservation and congestion control, loss recovery, security, and 

management, by taking into account that the energy, memory and computational constraints 

of sensor nodes.   

The aim of congestion control in WSN is to generate less traffic, have limited number of 

packets being lost, fewer re-transmissions, therefore energy savings in sensor nodes.  The 

congestion in WSN typically happens near the sink (i.e. data transmission is typically from 

the sensors to the sinks) where Medium Access Control (MAC) can recover the segment loss 

due to bit errors, however cannot recover the errors due to buffer overflow (i.e. limited 

memory/processing capabilities of sensor nodes), leading to packets being lost.  The packet 

loss in WSN is mainly due to the congestion, quality of wireless channel or sensor node 

failure. A practical protocol used for congestion control is “CODA: Congestion Detection 

and Avoidance in Sensor Networks” [WAN03]. The Congestion Control and Avoidance 
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(CODA) protocol is an upstream congestion control protocol, consisting of congestion 

detection, open loop hop-by-hop backpressure (from the node where the congestion occurred 

back to the source) and closed loop end-to-end multi-source regulation. CODA attempts to 

detect congestion by monitoring the buffer occupancy and wireless channel load. Hence, if 

buffer occupancy and/or wireless channel load exceed the certain set threshold, implies that 

the congestion has occurred; where node that has detected the congestion notifies its 

upstream neighbors (hop-by-hop backpressure process) to reduce their transmission rate, and 

the neighboring nodes trigger the reduction of their output rate.  Although, under normal 

operation sensor nodes would regulate themselves at predefined rates, when this rate exceeds 

its theoretical threshold, a source is prone to contribute to congestion hence, it sets a 

‘regulation bit’ in the event packet, and the closed loop control is triggered. This in fact 

forces the sink to send the ACK signal to all the sources associated with that particular data 

event.  The ACK, which sources expect to receive from the sink, are related to the 

predefined transmission rate, or to the number of ACK expected to receive over a predefined 

period. If the source node receives a prescribed number of ACK it maintains its rate.  

However, since during this process the congestion can build up, ACK can be lost; in which 

case the sources would reduce their rates independently (e.g. according to some 

multiplicative decrease function) and the sink stops sending the ACK based on the network 

conditions (e.g. when the source reporting rates are less than the desired rate).  When the 

congestion is cleared, the sink starts sending the ACK control message to the sources, 

informing them to increase their rates (e.g. according to some additive increase function). 

2.2 Artificial Intelligence 

 Artificial intelligence is a science with defined objectives of making machines perform 

things which would require intelligence if performed by humans, which implies capability of 

performing some forms of cognitive tasking.  Thus, here lies the challenge of most 

intelligent systems today. 

One of the major ‘paradigm shifts’ in AI field was its change of focus from general 

purpose, weak methods to domain specific methods, which initially lead to the development 

of expert systems.  In addition to the expert systems, AI field was further enriched by 

introduction of techniques such as fuzzy logic, biologically inspired techniques such as 
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artificial neural networks (ANN) [NEG05], ART [GRA07], clustering algorithms, 

evolutionary computations - GA, simulated annealing, PSO, intelligent agents [RUS03] etc; 

hence, providing vast methods for building intelligent systems with supervised and/or 

unsupervised learning capabilities [FAU94]. 

Among vast applications of AI in many facets of our lives, “Intelligent Building and 

Homes” is an interesting and ever-growing area of research for many scholars, researchers 

and engineers.  Multiagent framework for intelligent building equipped with sensors and 

actuators, where multiple agents control the parts of the environment using fuzzy logic rules 

linking sensors and actuators, was described by Rutishauser et al in [RUT05].   However, the 

proposed system cannot address the stability-plasticity dilemma (i.e. how to learn the new 

knowledge without destroying the existing knowledge base); as a result the long-term 

knowledge could be degraded or rendered insufficient for making right decisions if 

misleading/erroneous samples are introduced.  The existing AI techniques such as, ART 

[GLO76a][GLO76b] could be valuable for scenarios described above, since it resolves the 

stability-plasticity dilemma (i.e. by clustering together new concepts which are similar to the 

existing ones, while creating new clusters when encountering new knowledge). 

Brdiczka et al in [BRD09]  in their research associated to learning situation models for 

providing context-aware services in a dynamic smart home environment, present intelligible 

framework consisting of different layers of situation model; the approach taken utilizes 

expert knowledge, and it consists of several methods which are used to acquire different 

levels of situation model (i.e., role detection, unsupervised extraction of data, and supervised 

learning, and integration of user feedback/preferences).   

The conducted experiments utilize multiple tracking cameras, microphones, and sensors 

having to be installed in room, including many processors for processing and analyzing 

video and audio streams.  Incorporating occupancy sensors with capacitive sensing [GEO09] 

might prove efficient with respect to price and processing power for scenarios such as, 

sitting and/or lying down. The feasibility of intelligent systems lies in its ability to learn and 

adapt with minimal required interaction by the user during its operation.  A vital role and 

purpose of AI techniques (among others) is to reduce the complexity of hardware by 

introducing low computational overhead.  
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2.2.1 Expert Systems 

The rule-based and/or frame-based expert systems are a typical approach taken to represent 

and build knowledge-based systems [SHO76][DUD79][NEG05][WAN10].  The rule-based 

expert system uses if-then rules, while the frame-based expert system uses ‘frames’ (i.e. 

objects and/or structures) to represent the knowledge.   

A rule-based expert system consists of if-then rules (conditions and actions) and can 

have multiple conditions to represent the knowledge needed to solve a problem in a 

particular domain of study. 

If x1, x2… xn represent the conditions for a particular problem; and y1, y2… yn represent 

the actions to be taken if a particular condition(s) are true, in a rule-based expert system, 

rules can be expressed as shown in examples below: 

 

A simple if-then rule: 

if (x1)  

then (y1) 

 

A rule with multiple conditions: 

if (x1 AND x2 AND x3…AND xn) 

then (y2) 

 

A rule with multiple mixed (AND/OR) conditions: 

if (x1 AND x2 OR x3 OR x4 … AND xn) 

then (yn) 

 

The main idea behind rules as a knowledge representation technique is to reflect the 

knowledge of an expert in a specialized narrow domain, for which the system is being 

developed.  Depicted in Figure 2.8 is a conceptual model of typical rule-based and/or frame-

based expert systems.   

The knowledge-base contains the domain knowledge as a collection of if-then rules, 

which in conjunction with facts (database of facts) is used as a ‘filtering criteria’ of the 
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reasoning process, by linking the rules with the facts and inferring the conclusion (i.e. 

solution of a particular problem and/or user inquiry). 

 

Figure 2.8 - Generic conceptual model used in rules-based(frame-based) expert system 

There are two fundamental principles based on which the rules are executed: the 

forward and backward chaining.  The forward chaining is based on data driven reasoning, 

where the reasoning starts with the known data, and the rules are fired only if there is a 

match of facts in the database (of facts).  And it continues forward each time (i.e., when a 

rule is fired) adding new facts to the database.  This is a technique which first gathers the 

data, and afterwards infers from it.  Whilst the backward chaining instead is a goal driven 

reasoning, where the expert system starts with a hypothetical solution or a goal, and the aim 

is to prove it.  The inference engine in backward chaining does not fire the rules based on the 

known facts (as is the case of forward chaining) instead, it checks to find the rule that 

matches the hypothetical solution or the set goal.  If the solution is not found, it sets up a 

new sub-goal and continues by checking if the sub-goal can be proven based on the existing 

database of facts.  The process continues until the goal is found and/or there are no matching 

rules to fire (throughout the search process).   

The frame-based expert systems on the other hand, offer several advantages which are 

not available in rule-based expert systems, such as, using data structures in order to 

encompass the necessary knowledge about a particular object and/or concept [WAN10] 

[RAT07] instead of simple if-then rules.  Frames are described by a collection of attributes 
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and characteristics of objects of interest, which are called slots. In addition, frames consist 

also of facets which are value based (extended knowledge about a particular attribute) and 

prompt (user) based facets, which allow user to enter attribute values for a particular object 

of interest.  The instance-frames are distinct-particular objects and the class-frames are a 

group of similar objects. The concepts of object oriented programming such as the 

inheritance and also methods associated with objects and/or classes are adopted also in 

frame-based expert systems.   

In addition to the rule-based and frame-based expert systems [ALT85] [KAM94] 

[WEN10], the so-called ‘expert system shells’ nowadays are also very useful [PAM10]; they 

enable the researchers to concentrate on the knowledge-base representation instead of 

programming language.  Although being able to understand and interpret both can be 

beneficial during the implementation and development stages.  

2.2.2 Intelligent Agents  

In the context of AI and AmI, an agent is a device that senses the environment via sensors 

and acts upon sensory inputs via actuators.  The added features of an agent could be its 

capabilities to make intelligent decision about certain operation(s) to be performed, leading 

to intelligent agent concept [RUS03].  The agent function defines the actions of an intelligent 

agent related to sensory data inputs, whilst the agent program is its very implementation.  An 

agent program is a tangible implementation of code for i.e., wireless sensor/actuator node 

which percepts via sensor, executes a matching rule, and takes action via actuator, as 

depicted in Figure 2.9.  There are several different agent program types, such as simple 

reflex agents, model-based reflex agents, goal-based agents and utility-based agents [YIG09] 

[SCH07][SAK93][WU08][BOG06][HAR10][CUN08][SIL08].  Simple reflex agents are the 

simplest form of intelligent agents, which do not take into account the percept history during 

their actions, and only consider the sensory input being sensed. This is mainly done via 

matching of the sensory input with the rule matching function. The model-based reflex 

agents, on the other hand, use an internal model to keep track of the current state of the 

environment around the agent; it also includes additional state(s) which assists the agent to 

understand the consequence of actions (if taken).    
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Figure 2.9 - Agent interacting with the environment  

The goal-based agent, in addition to the capabilities of model-based reflex agents, 

includes information about a set of goals which an agent is trying to achieve; which, aids in 

the decision process of an agent related to the desired state and/or action to be taken.  

However, considering the goal as the only option for the high quality solution might not 

always be the best choice, especially for scenarios when more than one solution exists (i.e. 

due to the complexity of the environment, etc.).  A distinctive attribute of the utility-based 

agents is utility function - a measure which describes the performance element i.e. ‘degree of 

happiness’ associated with a certain action being taken.  In other words, utility function 

introduces the means to measure the likelihood of success against the importance of a certain 

goal.   

The above mentioned agent programs are the ‘essential ingredients’ necessary to create 

a learning agent and multi-agent learning systems [BI04][REN03][GEL01][JAV10].  The 

learning element is one essential component of the learning agent, which is responsible for 

potential agent’s improvements, such as to perform better in the future.  This is achieved via 

a feedback element of the learning agent which decides how well the agent is performing 

based on some defined criteria.  The learning agent, encompass also the exploration of 

environment as an important element of learning process and finding potential alternative 

solutions.  
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2.2.3 Reinforcement Learning  

Reinforcement learning (RL) is a widely used learning technique for agent and multi-agent 

based systems. An agent-based model without feedback could have a limited set of 

capabilities to learn and adapt in an open environment.  The feedback mechanism of an agent 

interacting with the environment provides a ‘good ground’ to learn optimal ‘agent’s action 

policies,’ which can be evaluated by means of reward and punishment; assisting into 

‘awareness’ of agent about success and failure rates of its actions via feedback (i.e., 

reinforced learning), which leads to an improvement of agent performance.  However, it has 

to be noted that the agent’s action policies can lead to local instead of global optimum; 

hence, in addition to the choice of optimal parameters of the reinforcement learning 

algorithms, cooperation and coordination in multi-agent systems during the learning process 

can be more effective means to achieve better results [JU04][BER00][ARA00].  

One of the limitations of RL techniques is the required memory of a system to store 

possible states and actions when an agent operates in a dynamic environment, such as for 

example, as described by Yen et al.[YEN02] tradeoff between exploration and exploitation 

of the environment are very important factors to be considered; in problems involving large 

number of states and/or actions, learning process of an agent might turn out to be very slow, 

and on the other hand, storing all possible states could take vast amounts of memory. 

Amongst other AI techniques, RL has a vital role in the emergence of autonomous 

agents and/or robots in real environments and vast range of applications and or variations of 

RL approaches in machine learning [JIN10][YAM96][HES10].  RL techniques have the 

capabilities to learn from experience, whilst approximate reasoning technique lacks this 

attribute, however provide simple yet powerful means for knowledge representation; when 

both schemes are combined can lead to efficient hybrid systems used for control (where RL 

is used for fine-tuning of fuzzy logic rules)  [BER91].  

The RL techniques are also used in context aware systems [TUD10], whereas a self-

adapting algorithm characterized by four phases, uses the reinforcement learning technique 

in its planning phase, in order to explore the possible system’s states and for the selection of 

actions to be executed by system in case of context changes.  
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2.2.4 Adaptive Resonance Theory 

ART is an unsupervised learning algorithm with biological motivations. ART1 [CAR87a] 

network model is a self-organizing architecture, designed for clustering binary vectors.  

ART1 works with objects called feature vectors, which are a collection of binary values 

representing information, which can be separated into different clusters. Typically, new 

clusters are created when new data are encountered, whereas the vigilance parameter (0 ≤ ρ 

< 1) is used to determine where to place new data, based on the threshold (i.e. to determine 

the cluster size).  The vigilance parameter enables one to control the degree of similarity of 

data which can be placed on a same cluster (i.e. set of similar data). ART efficiently solves 

the problem of stability/plasticity dilemma by learning without destroying existing 

knowledge (i.e. existing cluster are not altered).  The basic architecture of ART network is 

depicted in Figure 2.10.   

 

 

Figure 2.10 - ART network architecture 

Where, 

F1 layer:  Comparison layer (short term memory)  

F2 layer:  Recognition layer (long term memory) 

ρ:  Vigilance parameter (  0 ≤ ρ < 1) (controls the cluster size) 

bij:  Bottom-up weight vectors 

tij:  Top-down weight vectors 
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The comparison layer F1 processes the input patterns, whilst the recognition layer F2 

classifies the cluster units based on similarities.  The F1 layer is connected to F2 layer via 

bottom-up weight vector bij, and the F2 layer is connected to F1 layer via top-down weight 

vector tij. Similarity of top-down weight vector with the input vector is a factor which 

decides whether a particular cluster unit is allowed to learn or not. The G1 and G2 are gain 

control units, used to aid the reset mechanism to disable or enable competing units to fire. 

A variety of different ART implementations have been demonstrated since the 

introduction of ART1; such as ART2 [CAR87b] and Fuzzy ART [CAR91a] models, which 

were designed to work with analog and/or binary input patterns.  Furthermore, ART1 was 

also used to design ARTMAP [CAR91b] in order to be able to learn arbitrary mapping of 

binary input and output patterns.   

The ART network models applications include and are not limited to pattern and image 

recognition, engineering and manufacturing, remote sensing, medical diagnosis, robot 

behavior learning and vision [FUN03] [LI10] [SMI94][AMI10][BRA09].    

2.3 Ambient Intelligence 

Ambient Intelligence (AmI) is a new multidisciplinary paradigm, a concept and vision of 

future technologies embedded in our living environment, providing support and assistance 

while preserving security and privacy of the users. 

2.3.1 Overview of Ambient Intelligence 

Vision of AmI and ubiquitous computing, involves integration of sensing/actuating 

“intelligent agents” into our living environment, where integration and communication 

among different types of these smart devices is essential [WEB05].  From the technical point 

of view, AmI utilizes the existing technologies and intelligent techniques in order to 

orchestrate the distribution of electronic intelligence - embedded in our living environment. 

Today, there are no established standards that cover all the aspect of AmI concepts.  

However, there is a consistent and active research being done in this new and interesting 

area.  The concepts such as the multi-agent sensors and AI techniques are being considered 

for integration within the AmI concepts.  
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The development of AmI applications that adapt to the user preferences and 

environment, among others, requires a well defined architecture and a planning mechanism 

for a goal-oriented behavior [AMI05].  This aspect of AmI has not been fully explored nor 

addressed extensively, especially the aspect of coordination among devices and application 

of distributed intelligence, in order to provide a more versatility that can be applicable for 

different applications and use.     

The lack of a general reference models for AmI system designs, has led many 

researchers to investigate and bring forth hierarchical conceptual model for AmI 

architectures [RUI09], where versatility and applicability is essential element of system 

design space; while the importance of network and middle-ware layer (intelligent kernel) is 

considered as “the brain” of the AmI space.  In addition, multi-agent model and interaction 

of different agents and challenges of heterogeneous data exchange among agents is an 

important aspect considered in AmI space design. However, lack of self-organization is an 

additional aspect which has to be considered carefully for scalable and flexible AmI 

solutions, since one of the main objectives of AmI applications should encompass design 

characteristics, such as autonomous, adaptive and learning systems. Thus, a challenge 

remaining for the AmI to evolve - is the necessity to expand its boundaries, by embracing 

more critically AI techniques. 

2.3.2 Applications of Artificial Intelligence Techniques in Ambient Intelligence 

AI techniques are essential for AmI to become a successful multidisciplinary model 

[REM05] and perhaps ‘The next step in AI’s evolution’ [RAM08].  In order for AmI to 

reflect adaptability, anticipation and learn the user needs and patterns, it requires some form 

of intelligence.  Applications of AI techniques related to machine learning, intelligent agents 

and robotics complement the AmI vision of a smart environment - capable of sensing, 

interpreting and representing the information, learning about the environment, anticipating, 

perform variety of tasks, and interact with humans in a non-intrusive and user-friendly 

manner [AUG07a][COO09][LOC10].   

From the AmI enabling technologies and main architectural blocks of AmI 

[INF01][RAM08], the ‘Knowledge and Reasoning Layer’ is where the contribution of AI is 

noticeable [HOO10],  where the application of techniques such as knowledge representation, 
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information retrieval, expert systems, computational intelligence, multi-agent systems, etc. 

are an integral part of AmI overall system architecture. 

Application of AI techniques in AmI context, encompassing not only intelligent system 

design, but also consider the user friendly interfaces, efficient services support, user-

empowerment and support for human interaction in a context of an intelligent transport 

system are discussed in [MIL06].  Furthermore, embedded intelligent agents [HAG04] are 

utilized in iDorm in order to add ‘the intelligence factor’ to the AmI, by aiding in reasoning, 

learning and planning aspect of the overall system; hence, assisting in building a vision of 

AmI.   

In [JIA08] Jian et al] propose Multi-Agent System based architecture of the AmI 

system.  Whereas, multiple intelligent agents are distributed in different appliances and react 

and reflect autonomy and cooperates with other agents in order to provide personalized and 

automated services to the user.  Whilst, Augusto and McCullagh in [AUG07b] describe the 

concepts and applications of AmI, in particular the relationship between AmI and related 

areas, such as human computer interaction, sensors, networks, ubiquitous computing and 

artificial intelligence; whereas the AI reasoning, knowledge repository, discovery learning 

and decision making, fit into the architecture of a typical AmI system.  
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CHAPTER 3 

ADAPTIVE SYSTEMS FOR SMART BUILDINGS                  

UTILIZING WSN AND AI 

 

3.1 Methodological Approach 

In order to provide adaptive systemic solutions for our living environments, one should 

observe and analyze the problem from a ‘systems perspective’ and not just focus on the sole 

problem of how to make a PCT smarter. The emphasis of this research is to utilize multiple 

variables at hand (i.e., WSN agents and AI adaptive learning techniques) in order to bring 

forward an adaptive system for PCTs. By introducing multiple variables, albeit it might seem 

that we are adding complexity to the problem. However, by applying the principles of 

system interaction (i.e., utilizing the diversity of resources: WSN, AI and AmI) we facilitate 

and simplify the overall control, and the learning process of the system itself.  The principles 

of system interaction are in fact analogous to interdisciplinary research concepts, where 

many fields of science work together to acquire a needed solution to multi-dimensional 

problems. Similar principles can be applied to any problem which encompasses many facets 

of discovery; in this particular case, development of an Adaptive System for Smart Buildings 

Utilizing WSN and AI.  

The envisioned system mentioned above, consists of few subsystems sharing knowledge 

and data to achieve a better outcome (i.e. considering that a system is a collection of several 

subsystems).  The WSN agents and AI based techniques enable the system to interact with a 

multitude of sensor data and to use the existing knowledge base. Furthermore, by exploiting 

the rule-based expert system and adaptive learning principles, the system is capable of 

learning and adapting, by using existing knowledge, and creating new knowledge, as well.   

The rule-based expert systems cannot offer the best possible solution alone. They have a 

drawback, which is their dependence on prior knowledge and also the amount of time 

required to match a rule with the memory. Thus, using only one AI technique in this case 

would not render a flexible solution.   Therefore, the goal is to provide a flexible adaptation 



Chapter 3 

35 
 

of the overall system to new knowledge without destroying the existing knowledge, i.e., an 

adaptive learning system for energy conservation and comfort zone adjustment.  Since our 

main objective is to create an adaptive learning system, existing models, such as ART, 

expert systems, and other AI techniques are investigated to determine the best possible 

choice, for the system being proposed and considered in this research. One critical element 

of this research is to combine several AI techniques, and explore innovative solutions, 

leading to an Adaptive Learning System (ALS) - a hybrid intelligent system capable of 

adapting and learning in our living environments.  

 

 

Figure 3.1 – ALS conceptual block diagram 

The ALS conceptual block diagram shown in Figure 3.1 depicts the main buildings 

blocks of the system.  The rule-based expert system provides the decision rules, and is used 

to compare the existing knowledge with the new knowledge being introduced.  The 

Knowledge-base contains information about the heating/cooling stages of the HVAC system 

being used, available zones to control, air flow rates for different temperature ranges, 

thermal characteristics of the house, etc.  

The environment is constantly monitored via sensors which are capable of detecting the 

temperature changes, airflow, and the activity/presence of occupants.  Thus, allowing the 



Chapter 3 

36 
 

ALS system to gather input data, and detect when the occupant’s schedules or patterns are 

changing.  The actuators enable control of the air dampers within different zones of the 

environment being conditioned, and the heater/cooler stages of the HVAC being controlled.  

The learning vectors learn preferences and patterns based on the user input and sensors 

(i.e. which is reflected in the weight factor of each element), while the adapting cluster 

vectors extract information from the learn vectors and adapt to the changes, when new 

patterns (preferences) are detected.  The term cluster in the ALS model refers to an initial set 

of clustered data (i.e., group of data, daily clusters), which in our case are: PCT daily 

schedules consisting of temperature set points and their associated time intervals (based on 

the occupant’s preferences) for each day of the week, DR and TOU price incentives, offset 

temperature tolerances, number of zones to control, etc. In addition to daily clusters, a master 

cluster maintains the record of each active daily clusters (refer to the Appendix C for further 

information on the Daily and Master structures used in the implementation of ALS model 

via OLA algorithm).  

On the other hand, the learning vectors hold the occupant’s temperature set points and 

offset tolerances for different times of the day, preferences and the associated weights, 

indicating if the element’s value has changed or not (i.e., learning vectors hold information 

for each daily cluster).  The learning vectors are updated based on the activity being detected 

by the sensors; hence, changes related to each particular element, are recorded in the 

adapting vectors.  Based on the changes being detected, the initial weights associated with 

each particular element are updated.  Since our objective is to adapt to pattern changes, 

rules-based expert system is used to analyze and decide (i.e., based on the weights associated 

with each element, and the existing knowledge).  Hence, if the pattern and/or preference 

change of a user is persistent (i.e., not just a onetime occurrence) it is considered for 

adaptation.  The weights created based on the user preferred tolerances (for any parameter of 

interest) are used to determine if the change is considered for adaptation or not. Thus, the 

detected values are applied in order to update the existing elements with the new values. 

Thus, the adapting cluster vectors are created.  Based on the number of occurrences (i.e. the 

number of occurrences after which the adaptation takes place), the adapting cluster vectors 

values are compared. If the values are within the scope of the occupant’s set limits and/or 

tolerances, a new cluster is created.  Thus, offering a new clustered knowledge (i.e. without 
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destroying the existing knowledge) based on the occupant’s preferences, pattern and/or 

schedule changes.  

This PhD thesis roadmap and approach taken underline the importance of making a 

scalable solution, starting with only a few inputs / outputs and simple UI, and emerging into 

a more complex system with multiple sensors, sources of information, and a variety of 

output types. The solution extends beyond a PCT by proposing an adaptive – hybrid 

intelligent system, which does not require constant programming input by the occupant, a 

system that learns and adapts (while offering optimal comfort and energy conservation). The 

system communicates with the EGU Smart Meter to provide the most efficient savings 

(TOU price rates), and to help manage the peak load demand (DR incentives). The aim is to 

create a system which can optimize the comfort with respect to energy consumption by 

learning the occupancy preferences, schedule changes and patterns; enabling energy savings 

and comfort zone adjustment of the environment.  

3.2 Analytical Modeling 

The ALS model proposed therein utilizes WSN and AI concepts from a rule-based expert 

system and ART, in order to bring forward a novel ALS technique, as described in detail 

below.  Moreover, the ALS model could potentially find its use in other applications, which 

require some form of adaptive learning and/or intelligence, in addition to its sensing 

capabilities, where the system learns and adapts based on the occupant’s schedule, 

preferences, and/or pattern changes. The main objective of the ALS is to adapt to the 

occupant’s pattern and/or schedule changes by providing comfort, while not ignoring the 

energy conservation aspect. It has to be noted that the ALS model ensures that the existing 

knowledge is not destroyed by the new knowledge (i.e. by pattern and/or schedule changes 

of the occupant). Thus, the ALS verifies if the new knowledge is already available, and if 

not, it is added to the existing knowledge-base as new knowledge. A simplified flowchart 

showing the main concepts of the ALS model is depicted in Figure 3.2, while further details 

are provided in the following subsection 3.2.1 “Adaptive Learning System (ALS) Model”.   
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Figure 3.2 – Basic ALS model flowchart  
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3.2.1 Adaptive Learning System (ALS) Model 

Let m represent the number of wireless sensors: s1, s2,…, sm available in a smart 

environment, and let g = 1,2, …, R represent the readings of each sensor group, for every 

week day, such as: 

 

Sg = {S1, S2,…, SR} . (1.1) 

The sensor groups Sg represent active wireless sensor readings in different locations (or 

rooms) within a smart environment. 

Let L represent a learning vector with the following elements, each associated with a 

weight placeholder: 

 

L = {l1, l2,…, lN, wN+1, wN+2,…, wN+N} . (1.2) 

The l1 to lN elements of the learning vector represent the actual values of interest, such as heat 

and/or cool set points, set point start and end times, user preferences, etc. The weights are 

associated with each element of the learning vector i.e., wN+1 is the weight associated with 

the learning element l1, wN+2 is the weight associated with the learning element l2, etc. 

Let Ac represent an adapting vector: 

 

Ac = {a1, a2,…, aN} . 

 

(1.3) 

 

The vector Ac includes only the values of interest (and not the associated weights). Thus, for 

each elements l1 to lN of the learning vector, there is a corresponding element of the adapting 

vector a1 to aN. Furthermore, let cij represent all the existing clusters under consideration, 

where i = 1,2, …, 7 represent the number of weekdays under observation, and j = 1, 2,…, N 

number of occurrences for every event under observation, for each weekday. In addition, let 

A* represent a set of the corresponding adapting cluster vectors:  

 

A* = {Aci1, Aci2,…, AciN} . 

 

(1.4) 

The vectors Ac11 to Ac1N represent a set of adapting vectors (daily cluster) under observation 

i.e., for every event under observation, for each weekday occurrences. 
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And let L* represent a set of learning vectors under observation, where: 

 

L* = {L1, L2,…, LN} . (1.5) 

 

Where L* is a set of learning (cluster) vectors Li, ∀ i = 1, 2,…, N, where N is the maximum 

number of learning occurrences (i.e., for each weekday).  Furthermore, for every learning 

vector Li, for a weight wN+k, initial weight conditions are: 

 

  w N+k   = -1 . (1.6) 

Where constant N is a number representing the size of learning vector elements, and k = 1, 2, 

…, N represents the corresponding weights associated with learning vector elements. From 

the Equation 1.6, it has to be noted that the assigned value of -1 is the initial default value of 

the weight wk, which signifies that the value of learning vector element corresponding to its 

associated weight has not changed; whilst, any other value indicates a change of element’s 

value.  

Expression 1.7 is used to perform the conditional checks, in order to initially populate the 

cluster vectors. For each learning vector element, where k = 1, 2,…, N ( adapting vector is 

half of the size of learning vector, i.e., it does not include the weights): 

The Acij[k] assigned value of 0 signifies that the value of the element at index k did not 

change, whilst the value of 1 means it has changed. It has to be noted that the above 

expression (1.7) is repeated for every existing cluster (the occurrences of patterns within a 

reasonable interval of interest). 

Now, after the initialization of all the adapting vectors with default values, according to 

the number of occurrences considered and detected by sensors Si, the conditional expression 

1.8 is necessary, in order to record if any of the elements were changed. 

  

if (Li[N+k] == -1) 

    Acij[k] = 0 

else     

   Acij[k] = 1 

(1.7) 
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Let T be a temporary vector and Acij vectors to adapt (i.e., new vectors of a specific cluster 

indicating the state of elements needed to be modified within each cluster, due to the 

occurring changes). 

 

if(Ac11[k]== 1 AND Ac12[k]== 1 AND … AND Ac1N[k]== 1) 

     T[k] = 1 

else 

     T[k] = 0 

 

(1.8) 

After which the values of T are assigned to the Ac1j vectors to adapt, for each element.   

 

Ac1j[k] = T[k] . 

 

(1.9) 

 

The same procedure shown in (1.8) and (1.9) is repeated for all the vectors to adapt Acij, for 

each existing cluster. Where, c1j, c2j,…, cNj, represent different clusters. And j represents the 

number of occurrences within a particular cluster data. 

The new data extracted from the sensor sets i.e. Sg are used by learning vector L, for every 

existing cluster (i.e. daily cluster) in order to compare the currently sensed values with the 

previous ones; hence, detect if a change is obvious or not, for each element. 

 

∀ i = 1, 2…N and ∀ k = N+1, N+2, …,N+N 

L1[i] � S1[i], L2[i] � S2[i] … LN[i] � SR[i] . 

L1[k] = -1, L2[k] = -1, … LN[k] = -1 . 

 

 

(1.10) 

Where S1, S2,…SR are the sets of wireless sensor readings of each sensor group Sg, for each 

day of a week; representing the sets of sensor readings for different instances of interest (i.e., 

different days of a week, different patterns and/or scenarios under observation). 

The values, 1 to N - represent the number of elements in a learning vector, and the values 

N+1 to N+N - represent the number of the elements’ associated weights. Note, that the 

weights associated with elements initially are populated (initialized) as -1 indicating that yet 
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no change has occurred.  Thus, prior to starting learning process, each weight is assigned the 

value of -1. 

Now, based on the cluster data available in learning vectors L, the Lcij learning vectors 

include each particular daily cluster changes (each representing a different vector 

corresponding to a specific occurrence), as shown in the following equation: 

Lc11 [k1] =  L1 [k1] . 

Lc12 [k2] =  L1 [k2] . 

… 

Lc1N [kn] =  L1 [kn] . 

(1.11) 

Where, 

k1 – represents the number of elements in the 1st set under evaluation 

k2 – represents the number of elements in the 2nd set under evaluation 

… 

kn – represents the number of elements in the nth set under evaluation 

The same equation is applied also for the Lc2k, Lc3k,…, LcNk clusters. 

Let ϵ represent different tolerances based on which the particular elements’ weights are 

evaluated, and the decision with respect to adaptation is considered. 

Where, 

ϵlow < ϵmed < ϵhigh (1.12) 

Let wlow, wmed, whigh represent different weights associated with the elements of clusters, 

decided by the expert system based on the application considered. The following expression 

(1.13) ensures that the weights for different elements are assigned according to their values 

chosen for a particular problem at hand. In this case, for each element of the learning vector 

if the corresponding weight value is not -1, it indicates that a change was observed, hence 

based on the sensed value and its tolerances with respect to typical desired value, new 

weight is assigned, corresponding to that particular element of the learning vector.    
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∀ i = 1, 2,…, N 

 if (Lc11[N+i] ≠ -1 AND L1[N+i] ≠ -1 ) Then 

         if (Lc11[i]- ϵlow ≤ L1[i] ≤ Lc11[i] + ϵlow) 

                               Lc11[N+i] = whigh . 

              if (Lc11[i] - ϵmed  ≤ L1[i] ≤ Lc11[i] + ϵmed) 

                                           Lc11[N+i] = wmed . 

              if (Lc11[i] - ϵhigh  ≤ L1[i] ≤ Lc11[i] + ϵhigh) 

                                           Lc11[N+i] = wlow . 

 

 

 

 

 

(1.13) 

The above expression (1.13) is repeated for all existing elements Lc1k, Lc2k, Lc3k,…, LcNk 

of clusters under observation (i.e., daily cluster occurrences) with respect to learning vectors: 

L1, L2,…, LN. Thus, it establishes the adaptive approximation between the values and 

weights, based on the resulting sensor inputs (values received) and set tolerances.  

Following the weights associated with each element of cluster vectors Lcik for each 

particular cluster, another conditional check is performed.  The weight checking process is 

the final check where previous steps (i.e. weights assigned based on data tolerances ϵ) are 

used, and the rule-based knowledge is used in the decision making process, in order to adapt 

the new knowledge within the existing clusters. Based on the weights assigned i.e. wlow, 

wmed, whigh, the possible outcomes related to the adaptation, for each element of every cluster 

considered are used (i.e. the following approach, can be modified for use in different 

applications with similar requirements): 

λ - is the learning rate, where: 0 ≤ λ ≤ 1 

wlow, wmed, whigh  - are the weights associated with each element of the vector under 

consideration, and does not necessarily have to be only three weights.  Number of weights 

can be chosen based on the complexity and granularity of the adapted values under 

consideration.  

β - is the weight multiplier coefficient, which can be adapted, based on the problem at hand 

(typically, β = 1). 

Therefore, for the problem under consideration, which consists of three important 

weights, noted as whigh, wmed and wlow, we have: 
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whigh  = β λ . 

wmed  = (β/2) λ . 

wlow  = (β/4) λ . 

 

(1.14) 

Furthermore, for simplicity, we consider the case of three different clusters, for learn 

and adapt process.  

Let k = 1, 2, 3 and cluster vectors under consideration Lc1k, Lc2k, Lc3k. Hence, the following 

clusters are considered for adaptation:  

Lc11, Lc12, Lc13 - are three occurrences of cluster one, 

Lc21, Lc22, Lc23 - are three occurrences of cluster two, and 

Lc31, Lc32, Lc33 - are three occurrences of cluster three, while 

ϴ[k] - are the resulting values of the adapted elements. 

There are three different weights: whigh, wmed and wlow, which can be assigned to any daily 

vector based on the proximity of the actual value to the  particular element’s value (i.e. three 

consecutive occurences of a particular day). The rules-based decision according to the 

weights, is based on the following possible combinations: LLL, LLH, LHL, LHH, HLL, 

HLH, HHL, HHH, MMM, MMH, MHM, MHH, HMM, HMH, HHM, LLM, LML, LMM, 

MLL, MLM, MML, LMH, LHM, MLH, MHL, HML, HLM. Where, H stands for whigh, M 

for wmed and L for wlow. 

The resulting values returned from the rules-based decisions are based on the weight 

occurences i.e. in cases when all three weekly occurences have the same weights, average of 

the weekly elements is returned. Otherwise, if only two weekly occurences of any particular 

elements have high weights, while the third one has low weight, the resulting value returned 

is based on the average of the data elements corresponding to high weights, ignoring the low 

weight element.  Furthermore, the low weight signifies a major shift from a typical existing 

value, hence the approach is slightly conservative and tends not to make radical changes to 

the existing schedule or set points.  Hence, in cases, such as when major shifts from the 

existing schedules and/or setpoints occur, adaptation will take place only after three 

consecutive occurences of the low weights. 

Rule-based decisions (1.15) according to the weights (high, medium and low) are 

depicted below, ∀ i = 1, 2,…, N: 
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if (Lc11[N+i] == whigh AND Lc12[N+i] == whigh AND Lc13[N+i]== whigh) 

 

ϴ[i] = (Lc11[i] + Lc12[i] + Lc13[i])/3   

 

if (Lc11[N+i] == wlow AND Lc12[N+i] == whigh AND Lc13[N+i]== whigh) 

 

ϴ[i] =( Lc12[i] + Lc13[i])/2   

 

if (Lc11[N+i] == whigh AND Lc12[N+i] == wlow AND Lc13[N+i]== whigh) 

 

ϴ[i] =( Lc11[i] + Lc13[i])/2  

 

if (Lc11[N+i] == whigh AND Lc12[N+i] == whigh AND Lc13[N+i]== wlow) 

 

ϴ[i] = (Lc11[i] + Lc12[i])/2 

 

if (Lc11[N+i] == whigh AND Lc12[N+i] == wlow AND Lc13[N+i]== wlow) 

 

ϴ[i] = Lc11  

 

if (Lc11[N+i] == wlow AND Lc12[N+i] == whigh AND Lc13[N+i]== wlow) 

 

ϴ[i] = Lc12 

 

if (Lc11[N+i] == wlow AND Lc12[N+i] == wlow AND Lc13[N+i]== whigh) 

 

ϴ [i] = Lc13 

 

if (Lc11[N+i] == wlow AND Lc12[N+i] == wlow AND Lc13[N+i]== wlow) 

 

 

 

 

 

 

       

(1.15) 
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ϴ[i] =( Lc11[i] + Lc12[i] + Lc13[i])/3  

  

if ((Lc11[N+i] == wmed  OR Lc11[N+i] == whigh) AND (Lc12 [N+i] == wmed  OR 

Lc12[N+i] == whigh)  AND (Lc13 [N+i]== wmed OR Lc13[N+i] == whigh)) 

 

ϴ[i] = (Lc11[i] + Lc12[i] + Lc13[i])/3 

 

if (Lc11[N+i] == wlow  AND Lc12[N+i] == wlow AND Lc13[N+i]== wmed) 

 

ϴ[i] = Lc13 [i] 

 

if (Lc11[N+i] == wlow AND Lc12[N+i] == wmed AND Lc13[N+i]== wlow) 

 

ϴ[i] = Lc12 [i] 

 

if (Lc11[N+i] == wlow AND Lc12[N+i] == wmed AND Lc13[N+i]== wmed) 

 

ϴ[i] =(Lc12[i] + Lc13[i])/2  

 

if (Lc11[N+i] == wmed AND Lc12[N+i] == wlow AND Lc13[N+i]== wlow) 

 

ϴ[i] = Lc11[i] 

 

if (Lc11[N+i] == wmed AND Lc12[N+i] == wlow AND Lc13[N+i]== wmed) 

 

ϴ[i] =(Lc11[i] + Lc13[i])/2  

 

if (Lc11[N+i] == wmed AND Lc12[N+i] == wmed AND Lc13[N+i]== wlow) 

 

ϴ[i] = (Lc11[i] + Lc12[i])/2  
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if (Lc11[N+i] == wmed AND (Lc12[N+i] == wmed OR Lc12[N+i] == whigh) AND 

(Lc13[N+i]== wmed OR Lc13[N+i]== whigh)) 

 

ϴ[i] = (Lc12[i] + Lc13[i])/2 

 

if ((Lc11[N+i] == whigh OR Lc11[N+i] == wmed ) AND Lc12[N+i] == wlow AND 

(Lc13[N+i]== whigh OR Lc13[N+i]== wmed)) 

 

ϴ[i] = (Lc11[i] + Lc13[i])/2  

 

if ((Lc11[N+i] == whigh OR Lc11[N+i] == wmed ) AND (Lc12[N+i] == wmed OR 

Lc12[N+i] == whigh )  AND Lc13[N+i]== wlow) 

 

ϴ[i] = (Lc11[i] + Lc12[i])/2 

 

Finally, the values obtained are assigned to the adapting vector corresponding to the Ac1 

cluster vector under observation. Thus, ∀ i = 1, 2,…, N:                                        

Ac1 [i] = ϴ[i] . (1.16) 

The rules-based decisions, as depicted in expressions (1.15) and (1.16), are repeated 

similarly for all the existing clusters under observation, in this case Ac2 and Ac3; by using the 

same logic and the existing knowledge within Lc21, Lc22, Lc23 and Lc31, Lc32, Lc33 cluster 

occurrences.  Furthermore, the adapted values based on the Ac1, Ac2 and Ac3 are used to 

replace the previous values (which are added, if not available in the existing knowledge 

base). Thus, new clusters of data are created, reflecting the adaptability of a system under 

observation, based on the occurrences. As an example, if Ac1 to Ac7 represent daily clusters 

under observation (i.e., Monday to Sunday), Lc11, Lc12, Lc13 are three occurrences during 

Monday (i.e., cluster vector Ac1), Lc21, Lc22, Lc23 are three occurrences during Tuesday (i.e., 

cluster vector Ac2), etc.  

In order to verify the ALS model, two different scenarios involving pattern changes of 

heat set point of PCT and also leave time, are considered. Table 3.1 below shows different 

heat/cool set points (SP) and time of the day default schedules, set by an occupant.  Hence, 
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the scenarios under consideration are the pattern of ‘Leave’ time and ‘Heat’ SP pattern 

changes initiated by the occupant. 

Table 3.1 – Daily PCT schedule of temperature SPs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.3 – Leave time patter changes adapted via ALS vs. averaging 

The graph in Figure 3.3 depicts the adapted ‘Leave’ time after three consecutive 

occurrences of occupant’s pattern changes (i.e. occupant leaving the house at different times 

compared to the pre-programmed PCT daily schedule).  The tolerances used in this example 

for the ALS model are depicted in Table 3.2, which are considered while executing the rules-

based decisions in a response to the occupant’s pattern changes. Fig. 3.3 depicts how the 

ALS model after few occupant’s pattern changes of ‘Leave’ time (three occurrences in our 

case), it adapts the leave time value of 7.5 hr (7:30 AM) instead of 8 hr (8:00 AM).  In 

addition, Fig. 3.3 also shows the example of an averaged value (i.e. averaging of the 

occurrences instead of applying ALS model), which corresponds to 8.58 hr (8:34:48 AM). 

Table 3.2 – Tolerances and weights for ‘Leave’ time and heat set points 
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   Taking into account that occupant’s first leave time was at 7.5 hr, second time at 10.5 

hr and third time at 7.5 hr, the ALS model adapted value is 7.5 hr, which is closer to the 

occupant’s preferred value.  Thus, ALS, whilst adapting to the occupant’s preferred values, it 

also takes into account the energy conservation aspect.   

 

 

 

 

 

 

 

 

 

 

Figure 3.4 – Adapted set points via ALS vs. averaging 

In Figure 3.4 are depicted the results of adapted value via ALS model versus average, 

for three different daily cluster occurrences of the heat SP pattern changes. The first week’s 

‘Wake’ heat SP (refer to Table 3.1) was changed from 18 °C to 22 °C, on the second week it 

was changed to 19 °C, and on the third week it was changed again to 17 °C. If the average of 

three occurrences was taken, the adapted value would have been 19.33 °C, indicating a shift 

of 1.33 °C from a typical schedule initially chosen by the occupant.  Thus, ALS adapted 

value of 18 °C, is closer to the occupant’s scheduled heat SP, and it also signifies better 

energy conservation. The ALS Model proposed and discussed above was applied in a 

practical example, hence a new algorithm: “Observe, Learn and Adapt (OLA) - A new 

algorithm for Smart Homes using Wireless Sensors and Artificial Intelligence” was 

developed. The OLA algorithm and the tools developed (House Simulator – expert system 

shell) in order to prove the ALS model, are described in Chapter 5 and 6.   
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3.3 Synopsis of the Solution 

3.3.1 High Level Architecture 

The envisioned concept of an “Adaptive Systemic Solution” – consists of an adaptive 

environmental control system, utilizing WSN and AI, which can provide energy 

management in a Smart Home and/or Building; The WSN consisting of numerous 

‘intelligent agents’ (i.e., smart sensor/actuator nodes) and central controller unit that utilizes 

rule-based expert system concepts in conjunction with the learning and adaptability, related 

to the user preferences, rates of heating/cooling of different zones, and added ‘system 

awareness aspect’ for energy savings. The AI to the environmental control problem enables 

the main controller unit to adapt and learn from the system dynamics, using a rule-based 

expert system strategy and adaptive learning, which are the building blocks of the main 

controller unit, as depicted in Figure 3.5.   

 

 

 

 

 

 

 

 

 

 

Figure 3.5 - Main controller unit for energy management in intelligent buildings 

The main controller unit consists of a “System Core”, which includes the ALS and rule-

based expert system concepts. Since the rule-based expert system depends on prior 

knowledge and the amount of time required matching the rule with the memory, using only 

one AI technique in this case would not render a flexible solution.  Therefore, the goal is to 

blend and utilize AI models based on unsupervised learning strategies, such as the proposed 

ALS model implementation (via OLA) as described in previous Section 3.2.1 “Adaptive 
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Learning System (ALS) Model.”  The capabilities of a system to monitor and control, 

maintain, and upgrade are also vital components of the overall system and should be taken 

into account.  One of the main features of the primary main control system must be its 

robustness, ability to adapt and perform autonomous functions, and maintain its operational 

state in case of faults (system recovery).  Also, capabilities to remotely upgrade sensor 

nodes’ firmware over-the-air assist the overall system performance and capabilities.  

The main controller unit, in a way should reflect a ‘magnified’ and more powerful 

version of a PCT with wireless interface – two way communication and network capability, 

interface to a multitude of sensors/actuators, offering a variety of options for controlling 

thermal comfort and/or other appliances.  Today’s PCTs are able to communicate with the 

home appliances, electricity generating utility meters - helping in the peak load control 

(demand response initiative), offering efficient use of energy resources, thermal comfort and 

energy savings.  The integration of PCT devices and multiple wireless sensor networks into 

Home Automation Systems, contributes in the implementation of “Smart Homes and 

Buildings”.  The main controller unit has the ability to access and retrieve information 

constantly from the sensor nodes placed in many essential parts of the building, managing 

more closely the HVAC and lighting control systems within that building.  Hence, this 

reduces the unnecessary waste of energy resources when not needed. 

The wireless sensors on the other hand, offer the freedom to place sensors in any 

possible part of the building without the need of wires, while providing abundant 

reading/monitoring information for the optimal energy management within a building.  The 

capabilities of sensor nodes to sense different variables of interest, such as temperature, 

humidity, pressure, airflow, occupancy, sunlight and other, could greatly reduce the 

limitations of the existing energy management systems. Thus, enabling a better management 

of energy, by using the sensors’ data to analyze and control efficiently HVAC system(s) for 

optimal adjustment of heated and/or cooled air flow in multi-zones via actuators (controlling 

air valves, fans, etc.). In addition, utilizing indoor and outdoor sensors/actuators to sense the 

light intensity, open and close windows and/or blinds, in order to optimize the yield with 

respect to energy conservation and comfort, can apply in this case, as well. By turning lights 

on/off only when needed (i.e., lighting control system) in specific parts of the buildings, 

sensors/actuators further contribute in conserving energy. The present and near future 
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intelligent building designs, should be equipped and/or consider the means to exploit solar 

energy (i.e., via solar panels), making use of renewable energy resources, as a secondary 

source of power. 

The intelligent building system should be able to take actions based on its ‘sensor 

inputs’ (i.e., sensor/actuator node data) where the overall aggregated and/or compiled 

information is used to achieve the optimal results associated with the energy efficiency and 

comfort.   

The sensor nodes are capable to communicate among each other and the main controller 

unit.  Whilst, the main controller unit also communicates with the AMI infrastructure 

(directly or indirectly via central controller unit), in order to monitor the TOU prices/rates 

and implement the DR Electricity Management, in order to save energy and manage the peak 

load demands.   

In addition to the two-way communication capabilities of the main controller unit and 

sensor nodes, the ability (via gateways) to access the internet - opens many opportunities to 

explore the power of WSN and control units within a system (equipped with the state-of-the-

art intelligent software) to remotely access, analyze, act and forecast best suitable actions, 

leading to energy conservation and comfort.   Thus, as a result, the ability to communicate 

with the AMI devices (i.e., Smart Meters) enables thriving implementation of DR Energy 

Management initiatives, help EGU to reduce the peak load demand, improve the control of 

energy supply and demand, and reduce the overall energy costs.   

The WSN contribute in actuation, sensing and dissemination of the real-time 

information to the main control system. In a way, WSN represents the “awareness of a 

building”, and the AmI is a result of it.  The strategy for creation of such a system, should 

encompass not only the system automation, AI and AmI, but furthermore must take 

advantage of a low cost and compact size, yet powerful wireless sensors. A well-thought 

composition of such a “systemic solution” could lead in fact, to a brilliant synthesis of WSN 

technology, AI techniques and AmI.  
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3.3.2 Wireless Sensor Networks for Energy Management in Smart Homes and 

Buildings: ‘An Adaptive Intelligent System’ 

The methodology for creation of proficient Intelligent Buildings is by striving to make them 

more adaptable, autonomous and aware of our environment, flexible and intelligent enough 

to sense, actuate, compute and evolve into ‘An Adaptive Intelligent System’ which is 

adaptable and re-configurable; can respond and adapt to new changes and requirements by 

exploiting the wireless sensor/actuator network capabilities, and the overall system 

intelligence. Thus, providing the means for efficient energy management and helping to 

accomplish many other essential operations of Intelligent Buildings, such as tapping into the 

renewable energy resources, in addition to the automation and control.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 - WSN for energy management in smart homes and buildings  

The Figure 3.6 depicts a conceptual design of the Energy Management in Intelligent 

Buildings, by utilizing WSN, AmI, Advanced Control Systems and AI.   

The Ambient Intelligence (distributed electronic intelligence) is a modern technology 

embedded into our natural surroundings with sensing, adaptability and/or reaction to the 

presence of people and objects. Thus, WSN mutually with the AI and AmI capture the 
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essential ingredients that could be incorporated into Intelligent Buildings in order to 

accommodate many needs, such as the energy management, security, and/or other needs.   

3.3.3 System Integration 

Considering that different parts of the building might experience different load profiles 

and occupancy preferences, having only one centralized control unit for HVAC system for 

energy management would not suffice.  A reasonable approach to the problem is system 

integration of several sub-systems with dedicated functionality (i.e., based on the size of 

building and its needs) contributing towards the achievement of a single objective - efficient 

energy management.  

Figure 3.7 depicts a conceptual system design where the system integration and 

interaction among several sub-systems is considered.  The shared effort of the envisioned 

system to augment its performance is by dissemination of data and control power to the 

peripheral parts of the system, as required.  The idea of system interaction, combined with 

the power of wireless sensor nodes, strengthens the system ability to react in different 

scenarios i.e., when different zones within a building require different accommodations 

(heating or cooling). The overhead in wireless sensor nodes and main control system is 

removed by the peripheral controller unit taking the role of a ‘clusterhead’ or sink within a 

neighborhood of sensor nodes responsible for specific coverage areas (i.e. zones within a 

building), to process, aggregate and exchange gathered data with the main control system, in 

order to achieve the optimal energy management schemes for the entire building, at any 

given time.  

The peripheral controller unit is equipped with high-energy resources (plug-in device) 

and transmission power, whereas the sensor nodes are equipped with limited transmission 

range and energy resources (batteries). Therefore, a benefit of peripheral control systems is 

also in removing the burden from limited energy resources of the sensor nodes (shorter 

transmission range required i.e. less power consumption) far away from the main controller 

unit. Thus, reducing the need to replace and/or charge sensors’ batteries frequently, leading 

to less interruption of data feed from the sensors and reducing the system maintenance cost).  

Thus, the real-time response of the system is improved by faster computations, less error 
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prone communications, prolonged lifetime of sensor node energy resources, and finally 

better overall system efficiency.  

 

 

  

 

 

 

 

 

 

 

 

 

Figure 3.7 - System integration for energy management in smart homes and buildings 

Considering all the factors that influence intelligent building system operation, it must 

be said that the system can accommodate different building requirements with respect to 

energy savings and management of electricity within it. As described earlier, the role of 

sensor nodes in this matter is of vital importance.  However, based on the size of a building, 

its requirements, thermal characteristics and geographic position, for better-controlled 

environment and energy management, system integration encompassing WSN, main 

controller and peripheral units, leads to a more advantageous intelligent building system 

design.  The emergence of WSN has lead to the advancement in Ambient Intelligence, and 

has opened an abundant source of opportunities for application of powerful controllers, and 

AI concepts.  The main objective of this section is to convey the key elements of an 

‘Adaptive Systemic Solution,’ a glimpse of a design paradigm to be considered in energy 

management system implementations in intelligent buildings, in general. An adaptive system 

should not only monitor and control, but adapt and optimize the comfort with respect to 

energy consumption by observing the surrounding and external elements of design, utilizing 

the power of WSN, learning occupancy patterns and preferences; enabling efficient comfort 

zone adjustment of the entire building.     
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“In order to achieve paramount results in our efforts to design an ‘Adaptive Systemic 

Solution,’ we must cross the boundaries of a single discipline and consider the problem from 

a ‘Systems perspective.’ Where the interaction of several subsystems, each with different 

attributes and specific qualities are considered - complementing each other as a whole, thus 

applying and using the gathered knowledge of inter-disciplines, towards the creation of 

complex intelligent systems.” 

3.4 Development Tools 

 

To facilitate the proof of concept, in addition to PC, the following software / hardware 

development tools were used: 

• Microsoft Visual C# for the implementation of the House/Thermostat Simulator 

system and proof of concept for the proposed adaptive learning technique (its 

implementation) via OLA. Implementation of the RL and Agent-based technique for 

finding optimal solution in a predefined interval 

• CD++ toolkit for Discrete-Event modeling and simulation of wireless sensors and 

initial Thermostat Simulator System using DEVS and Cell-DEVS 

• Embedded development tools (hardware and software) 

� CCS C Compiler for 24 bit PICmicro®MCUs 

� In-Circuit Debugger (ICD-U40) 

� PICmicro®MCU 24FJ128GA006 development board 

� One off board Temperature sensor (DS1631) 

� One on board Digital Potentiometer / Two on board Push Button(s) 

� Three onboard LED(s) / One off board 2x7 segment LED Display 

� Two off board LEDs and one off board Push Button 
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CHAPTER 4 

FINDING GLOBAL MAXIMUM IN A PREDEFINED INTERVAL 

In this chapter, a new algorithm for use in embedded controllers with limited memory, 

processing power and/or energy resources for finding the global maximum of a function in a 

predefined interval, by using the reward/punish concepts from reinforcement learning and 

agent based techniques is presented. “Reinforcement Learning and Agent-based Search” 

application was implemented in C# to observe the algorithm at work and demonstrate its 

main features. The performance results for several different functions are presented in order 

to demonstrate the efficiency of the algorithm at work. Thus, its usefulness in embedded 

systems with limited memory and/or processing power, such as the wireless sensor and/or 

actuator nodes is discussed.  

4.1 Introduction 

In many real world applications use of only one technique to solve a particular problem 

will not suffice to bring forward the best possible solution. Hence, the combination of 

different techniques has led to the emergence of more sophisticated intelligent hybrid 

systemic solutions, which combine at least two different artificial intelligent (AI) techniques 

and/or intelligent technologies.  The change of focus from weak to domain specific methods 

within AI, lead to exploration and discovery of biologically inspired techniques such as 

ANN, GA, simulated annealing, PSO, RL, intelligent agents, etc.  The RL and agent-based 

computing, as a part of AI techniques, has shown to be capable of solving complex real 

world problems in vast engineering and computer science applications [POS08][SON98] 

[TAN09].  The GA and PSO are also known to be useful in solving optimization problems 

[IZQ08].  In addition, the use of multi-agent based approaches is apparent also in wireless 

sensor networks, where sensor and/or actuator nodes act as intelligent agents cooperating 

among themselves to achieve a particular objective.  The advantages of efficient problem 

solvers are numerous, however, in our case, of particular interest are the problems which are 

closely related to small-scale embedded systems, or better say sensor/actuator nodes with 
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limited computational power, memory and energy resources, implying that fast and efficient 

processing algorithms, should be considered as an essential part of the overall system design. 

The role of DR and TOU rate incentives applied by utilities (EGUs), have great impact 

in peak load curtailment, and are used to control the peak load demands to be able to cope 

with ever-increasing energy demands and available resources i.e. capacity which is limited 

due to the number of generators available. On the other hand, DR and TOU incentives help 

the consumers to save on high electricity prices.   

However, there are many parameters which play a role in achieving a peak load 

curtailment during the cold winter and/or hot summer days.  The control of power usage in 

homes and buildings is not related just to HVAC systems and appliances; it includes the load 

control switches for water heaters, pool pumps, hybrid electric vehicles, lighting etc. Thus, 

the pattern of electricity usage by consumers in general, is not constant.  Different parts of a 

city and/or province might have different power usage patterns, where the control of peak 

load demand, poses a challenge to predict and control. Different zones within a city might 

have to Opt-in (engage) and Opt-out (disengage) to DR commands and TOU rates, at 

different times of a day, based on the demand for electricity.   

The dynamic nature of a problem at hand implies that utilities must forecast many 

possible scenarios, based on the weather data and/or previous knowledge-base history in 

order to respond quickly, better optimize and control the power usage during peak load 

periods. The utilities communicate (via Smart Meters) with “Smart Thermostats”, in order to 

manage the usage of power during peak load events, accordingly.  Taking into account the 

randomness of possible power usage patterns, hence peak load demands, utilities can send to 

each zone of a city several possible predefined functions, reflecting forecasted daily power 

usage; hence, providing information to the consumer about the DR and high TOU rate prices 

about the power usage during the peak load periods.  The “Smart Thermostats” share this 

information with the existing WSN in a building and/or home, to better manage the power 

(i.e. pre-heating and/or pre-cooling of zones), based on the patterns (and prices) extracted 

from the functions delivered by the utility.  

Thus, the main benefits of the proposed algorithm described herein, are to ‘bridge a gap’ 

between the EGUs (i.e., utilities) and “Smart Thermostats” into “Smart Grid” initiatives. 

While, from the “Smart Environment” perspective, benefits are that the “Smart Thermostats” 
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and/or WSNs (sensor/actuator nodes) are not required to receive and store hundreds or 

thousands of daily data in memory for many possible daily energy usage patterns.  But, can 

easily extract the information from functions (i.e. delivered by the utility) describing those 

daily patterns. The “Smart Thermostat” and/or sensor nodes can process the information 

from functions, find the optimal points (i.e. global and local maxima), make decisions and 

act accordingly. Thus, helping utilities to better manage and control the power (i.e. load 

curtailment) during high peak load periods, and furthermore provide energy savings for 

consumers.   

The algorithm is intended for use in sensor/actuator nodes i.e., microcontrollers with 

limited memory, processing power and/or energy resources. Thus, the objective is to find the 

global maximum value of a function in a predefined interval with minimal number of 

function evaluations and iterations, given a function y = f(x).  

4.2 Description of the Algorithm 

The main idea adopted for the algorithm is based on the reinforcement learning 

(feedback evaluation) and agent based techniques.  The feedback evaluation of an agent 

interacting with the environment provides a means to learn optimal agent’s action policies, 

which are evaluated via reward and punishment. This feedback mechanism aids in the 

‘awareness’ of the agent about success and failure rates of its actions and its performance.  

Utilities can provide many possible peak load profiles for any particular day, from 

which “Smart Thermostats” and/or sensor nodes can extract the possible peak load profile of 

critical periods and conform to the DR and TOU rate incentives, accordingly. Based on the 

granularity needed to properly evaluate a given function, a few hundred or even thousands of 

function evaluations could be needed to determine the peak load profiles of a day (i.e. to find 

global and local optima). In this case, sequential search techniques are impractical. On the 

other hand, the uncertainty in finding the optimal points, would pose a problem if the GA 

approach was used.  Since, it would require additional verification i.e. comparison of the 

results of same function from different runs, under different mutation rates to ensure that the 

actual optimal points are found. Thus, demanding more processing power by the 

sensor/actuator nodes. Furthermore, based on the dynamic nature of power distribution and 

usage, potential functions reflecting the possible peak load profiles of a day (i.e. provided by 
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utility), can be numerous, and different each time. Therefore, it cannot be assumed that there 

is only one-time daily processing of a given function. 

The use of RL concepts, such as the action selection mechanism, where the action 

evaluation (i.e., reward or punishment) comprise the basic strategy considered for the 

problem at hand. However, the algorithm described therein, builds on the synergy of 

concepts from the RL and agent-based approaches.  It introduces four guidance methods: 

Reward, Discover, Alert, and Optimal, and ‘Create Agents’ concept (described in Section 

4.3). The ‘Reinforcement Learning and Agent-based Search’ algorithm can be used in 

embedded systems with limited memory, power and processing resources, such as wireless 

sensor nodes. On the other hand, other methods, such as the sequential search techniques 

would demand more resources and processing power in order to find the global maximum of 

a function. Similarly, use of GA techniques in this case would prove impractical, due to the 

lack of generalization i.e., need for specific implementation required for each class of 

problems considered at hand. 

The ‘Reinforcement and Agent-based Search’ algorithm could be useful for scenarios 

such as the ‘intelligent agents’ which are required to perform autonomous operations, 

involving decision making, prediction, learning capabilities and/or adaptability.  Hence, the 

main sink node of the system (core controller unit) could feed the information by only a few 

characters, representing the function to be evaluated. Furthermore, hundreds or thousands of 

P(x, y) values could be expensive to transmit and require a large amount of memory on the 

sensor/actuator side, in comparison to transmitting several characters needed to represent 

different functions. Additionally, sensor/actuator node could extract the function under 

consideration (by parsing the string) and executing the algorithm. Therefore, find the optimal 

points for further processing and/or autonomous decision making without a need to receive 

and store large amounts of information. The reinforcement component of the algorithm is 

implemented as a simple rule consisting of the following enumeration (named ‘Judge’) and 

corresponding ‘guidance methods’: Reward, Discover, Alert, and Optimal.   

Figure 4.1 depicts the main ‘guidance methods’ used in the algorithm. Initially, the 

‘guidance methods’ - Reward, Discover, Alert and Optimal are described.  Additionally, the 

synergy of reinforcement learning and agent-based search techniques is shown by the use of 

new concept ‘Create Agents’ in addition to the ‘guidance methods’.  
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4.2.1 Reward Method 

Reward is one of the ‘guidance methods’ which moves the point forward sequentially while 

the function is increasing (refer to Figure 4.1, point P0 moving towards new position i.e. 

point P1).  The Reward method, only the first time has a step size of one, and increments by 

two and more (if necessary for accelerated search of the space).  The ability not to miss the 

maximum points, even though the step size is larger is by collaboration with the other 

methods (i.e. Alert, Discover and Optimal). If during the search no optimal point is found 

and the limit of the subinterval is reached a flag is set to indicate that the boundary is 

reached. 

 

Figure 4.1 - Graphical view of the main concepts 

4.2.2 Discover Method 

Discover method is executed when the function is decreasing, otherwise it is analogous to 

the Reward method (refer to Figure 4.1, point Pk moving towards point Pk+1) 
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4.2.3 Alert Method 

Alert method is executed if the global or local maximum is close or is found (i.e., function 

goes from increasing to decreasing within the subinterval, as depicted in Figure 4.1).  If the 

previous step (prior to execution of the Alert method) was Reward, step size is reduced 

accordingly to what the increment step size was performed by Reward method, and the 

consequent movements of the point are made slowly, until the optimal point is reached.  For 

each step, the P(x, y) point is evaluated if it is within the ±Tolerance limits set at the initial 

stage, and if true, Optimal method is executed and the point Pmax (xm, ym) is recorded (refer to 

Figure 4.1). Otherwise, if the optimum point is not reached on the first trial, Alert moves 

slowly until the point is reached. 

4.2.4 Optimal Method 

As shown by former Alert method, Optimal method is executed during tracking for the 

global maximum point of the function.  The Optimal, checks if the point exists and if not it 

records the point as a new point found. The optimal point indicates to the search method that 

the global maximum point is found, hence the subinterval completes (this gives flexibility to 

define subintervals and/or different implementation techniques of the algorithm). One could 

divide the function interval into several subintervals, approximately sufficient not to miss 

any maximum (local or global). Otherwise, one could record the coordinates of global 

maximum point, and adjust the minimum value of the next subinterval to the optimal point 

value plus given Tolerance, and the maximum value to the previous maximum or a new 

maximum; taking into account that the new maximum of the subinterval is less than the 

maximum of the entire predefined interval (refer to Figure 4.1, subinterval 1, subinterval 2 

and the predefined interval). Furthermore, in Section 4.3 it will be described how the 

synergy between RL i.e., ‘guidance methods’ and agent-based techniques, provides a more 

effective solution to the above described scenario. 
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4.2.5 Main Steps of the Algorithm 

4.2.5.1 Problem Definition 

Given function y = f(x), where x ϵ [a, b] find maximum value of a function in a predefined 

interval [a, b] with minimal number of function evaluations and iterations. 

4.2.5.2 Algorithm 

The main steps of the algorithm are depicted in Figure 4.2. The interval under observation, is 

divided into several subintervals of interest, and accordingly, for each subinterval the 

minimum and maximum range is adjusted (total should be equal to the predefined interval).  

In addition to the ‘guidance methods’ described earlier, few methods, such as SearchProcess 

and CheckBoundaryPoints are discussed below. 

The ‘SearchProcess’ method executes while the point of interest is not found or the 

maximum range of the subinterval is not reached. During each execution, function is 

evaluated and checked against the old and new x values, and increasingFunction flag is 

assigned accordingly. If the function under consideration is increasing i.e. function value is 

greater for the input value Xnew versus the value Xold then increasingFunction is true, 

otherwise it is false. Additionally, for each specified subinterval method SearchProcess is 

executed, while keeping track of the reference points and values for the old and new steps 

taken.   

The CheckBoundaryPoints method checks each subinterval boundary points using the 

references to Xold and Xnew values by evaluating the function under consideration. Thus, 

marks the increasingFunction as true if the function is increasing and false otherwise. If the 

boundary of the search space is reached (maximum predefined interval value) method 

terminates, otherwise consequent subinterval is executed following the same principles. 

Furthermore, the method ‘Create Agents’ is described in Section 4.3. The step size ∆s can be 

chosen based on the granularity of a function under consideration.  Moreover, the term α is 

the tuning factor of the step size ∆s (i.e. Xnew = Xold + α· ∆s), which directly affects the search 

process (i.e. α > 1 accelerate the search, and α < 1 decelerate).  When the search process is in 

the accelerated mode, and transition from the Reward to Discover state happens while no 

optimal point is detected, the Alert state becomes active and moves back to the step which 
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was active prior to the Discover state. Thus, it ensures that no optimal point is missed during 

the search process. Furthermore, while in the Alert state, value of α is decreased (i.e. α < 1) 

and is neither modified nor updated until the optimal point is found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

START

Initialize Min and Max values of function boundaries:

MinRange = a

MaxRange = b 

Initialize Step Size:

Step = Δs

Divide interval in several subintervals of interest:

i1, i2,…, in

For each subinterval adjust the Min and Max range:

a1 < i1 < b1

a2 < i2 < b2

…

an < in < bn

Assign small tolerance to boundaries of each subinterval:

Tolerance = ϵ 

Initialize Array OptimumList placeholder for 

points of interest

Initialize 

functionEvaluationCounter = 0

processingCounter = 0

Initialize 

increasingFunctionFlag = false

Declare guidance methods: 

enum Judge { REWARD, ALERT, DISCOVER, OPTIMAL }

For sub-interval i1 and following subintervals of interest 

i2,…, in
perform the following actions: 

Initialize min and max values of first sub-interval i1
Min = a1

Max = b1 

Xold =  Min

Xnew =  Xold + α· Δs

α ≥ 1

1
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Figure 4.2 – Basic flowchart of the RL and Agent-based search algorithm 
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4.3 Synergy of Reinforcement Learning and Agent-Based Search 

Technique 

The agent-based technique, in addition to the reinforcement learning i.e. ‘guidance methods,’ 

randomly generates a cluster of agents, whereas each point P(x, y) is evaluated for its fitness.  

Taking into account that we are looking for the maximum value (i.e., global maxima) of a 

function within a specified interval [a, b], point Pmax (xm, ym) which gives the highest value is 

chosen as a starting point of the search process.  It will be shown (in Section 5) with tangible 

simulation results that agent-based technique complements very well the reinforcement 

learning strategy applied to this problem, and indeed it offers much better results in 

comparison to the reinforcement ‘guidance methods’ alone (referred also as “Reinforcement 

Only”). The addition of a new concept ‘Create Agents’ was introduced to the previously 

discussed algorithm, in order to make it more flexible and efficient in finding the optimal 

solution (i.e., global and local maxima), for much shorter processing time and with less 

functional evaluation overhead.  The basic principle applied is the following: Based on the 

function y = f(x) under investigation, agent-based concept involves creation of generation of 

agents for the given predefined interval [a, b]. The list of agents is sorted in ascending order, 

and the best agent, i.e. the one that produces maximum value for the function y = f(x) in a 

sub-interval [a1, b1] where a ≤ a1 and b1 ≤ b, is chosen as the initial starting point of the 

SearchProcess method described priori.  Agent size being used can be set to any number; 

however it was observed that agent size of 10 would suffice for most of the problems with 

small interval range. Predefined interval can be divided in several sub-interval based on the 

granularity of the solution space required, and the functions being evaluated.  It is not 

prudent to use unnecessarily large number of subintervals for problems where the solution 

can be achieved with only a few.   

4.4 Reinforcement Learning and Agent-Based Search Application  

The application software “Reinforcement Learning and Agent-based Search” was 

implemented in C# in order to evaluate and demonstrate the algorithm proposed, by 

simulating the algorithm at work (for several functions) under different scenarios, in 
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particular ‘Reinforcement Only’, in isolation from the ‘Agent-based Search’ technique 

applied, and finally the synergy of the reinforcement learning and agent-based technique. 

4.4.1 Graphical User Interface – Main Features 

 

On the right hand side of the application GUI (refer to Figure 5.3), functions being 

evaluated are displayed, including the points of interest. While on the left hand side of the 

GUI, function being evaluated, its range and step size used, following which are displayed 

the output results including the optimum points found (and their coordinates), number of 

iterations taken during this process, including the number of function evaluations during the 

search process. Clicking on the ‘Reinforcement Only’ button invokes the Reinforcement 

algorithm whilst, clicking on the ‘Reinforcement and Agent’ button, invokes the 

Reinforcement and Agent-based search algorithm, for the selected function under test, which 

gets executed.  The output results are displayed in the output text window and also drawn in 

the graph. 

4.5 Performance Results  

Several functions with different characteristics were tested in order to verify the algorithm, 

its main features; and also to compare the “Reinforcement Only” versus “Reinforcement 

Learning and Agents-based Search” techniques. The first function considered is depicted in 

Figure 4.3.  Function: y = 2 ((cos (πx) / x) + 1) where x ϵ [1, 5]; Step size = 0.005; Tolerance 

= 0.05; Pmax (x, y) to be found; 

 

Figure 4.3 - Reinforcement learning and agent-based search application 
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From the results shown in Table 4.1, it can be observed that by applying the 

‘Reinforcement Only’ technique, the maximum is found after 189 iterations, while the 

number of function evaluations is 382. However, the results depicted in Tables 4.2 indicate 

better performance of the “Reinforcement Learning and Agent-based Search” when 

compared to the “Reinforcement Only” technique. As shown in Tables 4.2, for the 

“Reinforcement Learning and Agent-based Search” technique, the maximum value of a 

function was found after 30.8 iterations (calculated from 10 trials) versus 189 for the 

“Reinforcement Only”. Similarly, the number of function evaluations was found to be 109.2 

versus 382. The effectiveness of “Reinforcement Learning and Agent-based Search” is likely 

not to be affected by the step size as much as the “Reinforcement Only” technique.  Thus, it 

indicates a much better performance, and validates the optimality of former against the later 

technique.   

Table 4.1 - Simulation results for ‘Reinforcement Only’ 

 

 

Table 4.2 - Simulation results for ‘Reinforcement Learning and Agent based Search’ 

 

In addition, the error of maximum value Pmax (1.95, 3.01) is less than the set Tolerance 

(0.05).  Noticeably, introduction of the new concept ‘Create Agents’ within the algorithm 

offers competitive performance advantages to the algorithm. The scenario shown above 

verifies the effectiveness of algorithm for finding optimal solution in a predefined interval. 
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However, further scenarios are considered, in order to show its usefulness in real-world 

applications, as mentioned earlier, in the Introduction section of this Chapter.  Thus, in order 

to show the algorithm at work for different situations (related to the utility’s peak load 

demand), several possible scenarios are considered and verified, as depicted in Figures 4.4, 

4.5 and 4.6.  The functions being considered reflect different peak load profiles described by 

polynomials of 6th degree. The x-axes of the graph represents the time of a day 0 to 24 hours, 

while y-axes represents the probable utility load profiles of energy usage (in percentage) at 

different times of a day. During cold winter and/or hot summer days, the demand for 

electricity can be higher that the supply, due to the number of generators available and/or 

active at a time. The existing infrastructure is getting older and cannot keep up with the ever-

increasing electricity demand (i.e. new generators are not build as the demand for electricity 

grows).  In addition, utilities are more interested in balancing the power profile (i.e. peak 

load curtailment), rather than activating and/or building new generators just to meet the low 

occurring extra energy demands (i.e. several occurrences per month), needed possibly just 

for few hours a day.  

Figure 4.4 depicts the first load profile of the utility function y1 under consideration.  

y1 = 0.941 x 6-7.3795 x 5+21.2895 x 4-28.0191 x 3 + 16.540 x 2 - 2.8859 x + 0.6294.  

Where x ϵ [0, 2.4]; Step size: 0.005; Tolerance = 0.05; Pmax (x, y) to be found;  

 
Figure 4.4 - Finding maximum value of utility function y1  

 

Global and local max of energy 

usage (%) during 24 hr period 
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Table 4.3 - Simulation results for ‘Reinforcement Only’ 
Simulation 

Trial 

Iterations Nr. of 

Function 

evaluations 

Global max Local max 

Time of 

day (hr) 

Energy usage 

(%) 

Time of day 

(hr) 

Energy usage 

(%) 

1 126 256 18.3  167.6694 8.3  111.2027 

 
Table 4.4 - Simulation results for ‘Reinforcement Learning and Agent based Search’ 

Simulation 

Trial 

Iterations Nr. of 

Function 

evaluations 

Global max Local max 

Time of 

day (hr) 

Energy usage 

(%) 

Time of day 

(hr) 

Energy usage 

(%) 

1 16 73 18.3144  167.6841 9.88252  111.4962 

2 15 74 18.3603  167.7214 8.86443  111.4060 

3 23 85 18.2849 167.6525 10.01474  111.5465 

4 6 58 18.2870 167.6550 10.12052  111.6004 

5 14 74 18.3879 167.3370 10.14696  111.6160 

6 22 84 18.3308  167.6991 10.06763  111.5718 

7 8 54 18.2925  167.6612 9.61808  111.4410 

8 6 56 18.3114  167.6811 9.68419  111.4501 

9 9 54 18.3682  167.7263 9.72386 111.4569 

10 14 69 18.3089 167.6787 10.2130 111.6588 

Average 13.3 68.1    

 

From the results depicted in Tables 4.3 and 4.4 we can observe the global maximum of 

the energy usage (%) at specific time of a day (shown in hours).  Similarly to the previous 

case, the results indicate clearly better performance of the ‘Reinforcement Learning and 

Agent-based Search’ versus ‘Reinforcement Only’ for the utility function y1 being evaluated.  

The improvement factor is 9.47 for the number of iterations (i.e. 13.3 versus 126 iterations) 

and 3.75 for the number of function evaluations (i.e. 68.1 versus 256).  The maximum value 

Pmax with respect to time of a day (hrs) and energy usage (%) is (18.5, 167.74).  The error of 

maximum value found via algorithm Pmax (18.3, 167.67) is much less than the set Tolerance 

(i.e. time of a day: 0.05 x 10 = 0.5 hrs, energy usage: 0.05 x 100 = 5 %).  For the utility’s 

load profile y1, based on the results obtained, the estimated global peak (maximum power 

load demand) is most likely to occur at 18:18 PM ± 30 min. Where the electricity demand 

exceeds utility’s capacity by 67 % (global maximum). During this time period, the energy 

usage patterns leading to minimum energy usage can be applied (i.e. “Smart Thermostat” 

tolerance settings leading to maximum conservation), while consumers help utilities to 

manage the peak load demand by their participation in DR and TOU rate incentives.  
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Additionally, during the time periods, when energy usage is about 11% above the capacity 

(i.e. local maximum, refer to the Tables 4.3 and 4.4), medium tolerances can be applied, to 

help utilities in peak load management, and consumers to achieve energy savings, 

respectively.  

Figure 4.5 depicts the second load profile of the utility function y2 under consideration.   

Function:  y2 = 0.946 x 6-7.3805 x 5+21.275 x 4-28.067 x 3 + 16.492 x 2 - 2.8414 x + 0.6194.  

Where x ϵ [0, 2.4]; Step size: 0.005; Tolerance = 0.05; Pmax (x, y) to be found;  

 
Figure 4.5 - Finding maximum value of utility function y2  

 
Table 4.5 - Simulation results for ‘Reinforcement Only’ 

Simulation 

Trial 

Iterations Nr. of 

Function 

evaluations 

Global max Local max 

Time of 

day (hr) 

Energy usage 

(%) 

Time of day 

(hr) 

Energy usage 

(%) 

1 112 228 17.6  130.4727 7.6  107.3728 

 

The results shown in Tables 4.5 and 4.6, reveal the performance consistency of the 

‘Reinforcement Learning and Agent-based Search’ versus ‘Reinforcement Only’ for the 

utility function y2 being evaluated.  The improvement factor is 7.46 for the number of 

iterations (i.e. 15 versus 112 iterations) and 3.02 for the number of function evaluations (i.e. 

75.3 versus 228).  The maximum value Pmax with respect to time of a day (hrs) and energy 

usage (%) is (17.8, 130.57).  The error of maximum value found via algorithm Pmax (17.68, 

130.5) is much less than the set Tolerance (i.e. time of a day: 0.05 x 10 = 0.5 hrs, energy 

usage: 0.05 x 100 = 5 %).  For the utility’s load profile y2, based on the results obtained, the 

Global and local max of energy 

usage (%) during 24 hr period 
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estimated global peak (maximum power load demand) is most likely to occur at 17:48 PM ± 

30 min. Where the electricity demand exceeds utility’s capacity by 30.578 % (global 

maximum). Still, in this case maximum and/or medium tolerances leading to energy 

conservation can be applied by “Smart Thermostats” (around the peak period 17:48 PM), 

based on the utility’s load curtailment response due to the energy load profiles associated i.e. 

within different zones of a city. 

 
Table 4.6 - Simulation results for ‘Reinforcement Learning and Agent based Search’ 

Simulation 

Trial 

Iterations Nr. of 

Function 

evaluations 

Global max Local max 

Time of 

day (hr) 

Energy usage 

(%) 

Time of day 

(hr) 

Energy usage 

(%) 

1 25 88 17.6825  130.5416 7.72735  107.4475 

2 30 118 17.6554  130.5228 7.65304  107.4094 

3 7 56 17.6819  130.5412 7.608359  107.3791 

4 17 78 17.6767  130.5379 7.617477  107.3858 

5 13 64 17.6010  130.4738 7.767022  107.4616 

6 7 56 17.6332  130.5046 7.780243  107.4654 

7 14 73 17.6846  130.5429 7.589818  107.3649 

8 12 64 17.6360  130.5070 7.614589  107.3837 

9 23 90 17.6983  130.5508 7.632827 107.3964 

10 15 66 17.6332 130.5046 7.578267 107.3555 

Average 15 75.3    

 

  The local maximum point found for energy usage is about 7% above the existing 

capacity during the early morning hours (7:42 AM).  Thus, utilities may decide to shed the 

load among many zones of a city, whereas minimum tolerances can be applied by “Smart 

Thermostats”. Otherwise, if the load is shared among few zones of a city, medium tolerances 

can be applied in order to balance the power usage to less than or equal to 100 %.  

Moreover, in Figure 4.6 another load profile expressed by the utility function y3 is 

shown for comparison.   

Function:  y3 = 0.7325 x 6-5.6931 x 5+16.597 x 4-22.278 x 3 + 13.183 x 2 - 2.1656 x + 0.5997.  

Where x ϵ [0, 2.4]; Step size: 0.005; Tolerance = 0.05; Pmax (x, y) to be found;  

The results depicted in Tables 4.7 and 4.8, for the ‘Reinforcement Learning and Agent-based 

Search’ versus ‘Reinforcement Only’ for the utility function y3 being evaluated, which 

indicate a global maximum very close to the local maximum. The algorithm is able to find 

the optimal point for energy usage, and not get trapped in a local maximum. The 
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improvement factor is 5.94 for the number of iterations (i.e. 15 versus 112 iterations) and 

2.48 for the number of function evaluations (i.e. 18 versus 108).  The maximum value Pmax 

with respect to time of a day (hrs) and energy usage (%) is (18.6, 106.15).  

 

Figure 4.6 - Finding maximum value of utility function y3  
 

Table 4.7 - Simulation results for ‘Reinforcement Only’ 
Simulation 

Trial 

Iterations Nr. of 

Function 

evaluations 

Global max Local max 

Time of 

day (hr) 

Energy usage 

(%) 

Time of day 

(hr) 

Energy usage 

(%) 

1 107 220 18.35  106.0736 7.4  102.2437 

 

Table 4.8 - Simulation results for ‘Reinforcement Learning and Agent based Search’ 
Simulation 

Trial 

Iterations Nr. of 

Function 

evaluations 

Global max Local max 

Time of 

day (hr) 

Energy usage 

(%) 

Time of day 

(hr) 

Energy usage 

(%) 

1 38 113 18.3715  106.0872 7.40805  102.2507 

2 23 93 18.2764 106.0180 7.42294 102.2632 

3 18 77 18.2898 106.0291 7.49483 102.3140 

4 26 96 18.2983 106.0364 7.46504 102.2948 

5 17 79 18.3305 106.0603 7.43981 102.2765 

6 20 80 18.3497 106.0734 7.39680 102.2409 

7 19 87 18.2983 106.0360 7.56869 102.3504 

8 12 66 18.3439 106.0695 7.47492 102.3015 

9 31 110 18.2952 106.0336 7.45775 102.2897 

10 18 86 18.3384 106.0658 7.46838 102.2971 

Average 18 88.7    

Global and local max of energy 

usage (%) during 24 hr period 
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The error of maximum value found via algorithm Pmax(18.3, 106.07) is again within set 

limits, much less than the set Tolerance (time of a day: 0.05 x 10 = 0.5 hrs, energy usage: 

0.05 x 100 = 5 %).  In this scenario, since both global and local energy usage peak loads 

(shown in Figure 4.6) are slightly above the available capacity, utility might decide to send 

the DR and/or TOU rate incentives, such as to spread the load among all the zones within a 

city. Thus, having minimal impact on consumers (i.e., requiring minimum adjustment of 

tolerance settings via “Smart Thermostat”), while achieving the load shedding during the 

critical high demand times of a day. 

4.6 Summary 

  

In this chapter, a new algorithm for finding the optimal solution in a two dimensional space 

within a predefined interval is presented. The synergy of Reinforcement Learning and 

Agent-based technique was found to be practical. It was demonstrated with the simulation 

results as a viable and flexible technique to be used in finding global and local maximum of 

different functions.  

A number of example functions were used to validate its performance with respect to 

the number of iterations and function evaluations, including possible real-world scenarios, 

which can be implemented by utilities in order to improve the control of power usage via 

peak load DR and TOU rate incentives. From the “Smart Grid” perspective, the algorithm 

‘bridges a gap’ and offers a viable solution for further exploitation of “Smart Environments” 

by utilities, to better manage the peak load demand while offering the consumers options to 

save on ever-increasing energy costs. Hence, the role of utilities in potential future 

implementation of such strategies is of vital importance, to further enhance the existing peak 

load control methods, and/or their efficiency.     

During the simulation process, neither the algorithm nor the application code needed to 

be modified, hence it provides good foundation as a sound method for general use, where no 

particular implementation is necessary to evaluate and find solutions for different problems.   

Its usefulness in scenarios such as those of wireless sensor nodes with limited memory and 

processing power was discussed. The proposed algorithm was implemented, tested and 

evaluated for finding global maximum of a function in a predefined interval. 
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CHAPTER 5 

SIMULATOR OF A HOUSE HEATING-COOLING SYSTEM 

 

5.1 Introduction 

The simulator of a house heating-cooling system was implemented using C# in order to 

simulate different scenarios of house heating/cooling system efficiency, energy consumption 

and associated costs under different scenarios. And more importantly for its use as an 

“expert system shell” to assist in development – proof of concept and implementation of the 

advanced intelligent algorithms for future “Smart Thermostats,” such as, the proposed ALS 

model and zone controlled environment technique for Smart Homes and Buildings.    

Hence, the simulator shall aid in investigation of the advantages of multi-zone versus 

single controlled house heating system; furthermore, to assist in proof of concept, 

development and implementation of ALS model (described in Chapter 6). Initial results 

showing the benefits of a controlled and programmable schedule achieved by a PCT versus 

the fixed (permanent hold) set points are presented, including the total energy consumption 

in KWh, and corresponding energy costs for several test cases. Additionally, the results of 

having a programmable weekly schedule based on the occupancy preferences and utility 

TOU rates, to optimize comfort and conservation of energy accordingly, are presented and 

further on elaborated in Chapter 6 (i.e., via “Observe, Learn and Adapt” algorithm, which is 

a practical implementation of the ALS model with the aid of a simulator described therein).   

5.2 Model of a House Heating-Cooling System 

The main building blocks of a house heating-cooling system model considered for the 

simulator, consists of the Outdoor Temperature Generator, Transducer, House Heating/ 

Cooling and a Thermostat unit, as shown in Figure 5.1. The simulator was implemented 

using C# high level language, by following the principles of object oriented design (OOD), 

and friendly user interface aspect of it.  The complexity of a user interface in PCT is one of 
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the main reasons why most of the people do not utilize at their potential current PCTs 

[MEI08]. 

The purpose of Outside Temperature Generator is to read the outside temperature data 

from a comma separated value file and provide the hourly temperature data to the 

Thermostat.  The Transducer computes the approximate heating losses of a house based on 

the outdoor and indoor temperature inputs and thermal isolation of a house model.  House 

Heating Unit receives the inputs from a Thermostat and reacts by applying the control signal 

to turn on/off the heater (or air conditioner) and provides the heated/cooled air with the 

constant air flow and temperature to the house. Similar principles apply for a multi-stage 

heater/cooler units in a zone control environment, where multiple variables (instead of one) 

are needed to control the heater/cooler stages and/or adjust the heated/cooled air flow, based 

on the user preferred settings and/or requirements. The following subsection 5.2.1, 

elaborates on the multi-zone controlled environment concepts, which takes into account 

additional blocks and parameters of interest i.e. control of multiple heater/cooler stages and 

adjustment of the heated/cooled air flow rates in different zones.  

 

Figure 5.1 - Basic blocks of a house heating-cooling system 

The Thermostat unit consists of the Indoor Temperature Sensor and a Controller.  The 

Indoor Temperature Sensor receives the input from the Heating-Cooling System and 

Transducer, and computes the room temperature accordingly (taking into account the heat 

being generated by the heater and also the loss generated based on the house 

thermodynamics).  
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The Controller part of the Thermostat reacts when temperature values received from the 

Indoor Temperature Sensor are different than set point temperatures of a day.   

5.2.1 Zone Controlled Environment for Smart Homes and Buildings 

This section describes the proposed Knowledge-Base concepts applied in the simulator, 

which complement the ALS model for achieving a zone controlled environment in Smart 

Home and/or Building. The basic building blocks of the conceptual model used during 

design of the simulator were depicted in Figure 5.1. However, consideration for the zone 

controlled environment aspect, multiple heater/cooler stages of the HVAC units and air flow 

control, involves additional building blocks and parameters of interest to be considered.   

Based on the energy savings incentives, time of the day, DR and TOU rates, 

desired/chosen set points and offsets, etc, one should consider control of the dampers within 

different zones of a house/building i.e. making use of sensors and/or actuators to adjust the 

heated/cooled air flow to different zones. Therefore, utilizing wireless sensors (i.e., 

monitoring) and actuators (i.e., variable air volume control) within the house and/or building 

are emphasized as the ‘necessary ingredients’ to complement the ALS model in achieving 

the optimal results.  

A Knowledge-Base is created to receive input values for the air flow rate, heater 

temperature, and current room temperature. House simulator inquires the Knowledge-Base 

library, which after processing the information returns the recommended air flow rate, and it 

decides if only the first stage of heater should remain on, or if the second stage should be 

turned on or off.  Whereas, air flow offsets and heat / cool offset, are variables which can be 

adjusted for best results based on the house thermal dynamics. 

Notation: 

Af – airflow rate 

Ht – heater 

βh – heater stages used 

Tn  - room temperatures 

∆T – temperature difference (gap between outside and inside temperature) 

ρn – airflow offsets 

µn - heater offset 
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Kb – Knowledge base function used to optimize zone control 

Let βh  = 2; signifying HVAC system with two heater stages. 

Let ρ1, ρ2… ρn represent the available airflow offsets (which are controlled via actuators) 

Let Kb = f (Af, Ht, ∆T) represent a Knowledge-Base as function which relies on the airflow 

rate, heater and temperature difference within a specific zone. 

Therefore, Kb = f (Af, Ht, ∆T) in a generalized form is implemented as follows: 

 

if (∆T < T1) 

     Af = Af  ± ρ1  

βh =1 

 

if (∆T >= T1 AND ∆T < T2) 

     Af = Af  ± ρ2 

βh =1 

 

 if (∆T >= T2 AND ∆T < T3)         (1.17) 

            Af = Af  ± ρ3  

… 

     

if (∆T >= Tk) 

βh =2  

Ht = Ht  + µn 

            Af = Af  ± ρn-1  

 

if (∆T >= Tn-2 AND temperature  < Tn-1) 

βh =2 

Ht = Ht  + µn 

  Af = Af ± ρn 

     

    return Af 

 

The above Knowledge-Base rules depend mainly on the house parameters, such as 

house size (air volume), number of windows, estimated air leakage, ventilation, zones to 

control, etc.  Therefore, it is considered as a part of expert system, as an applicable approach, 

which can be fine tuned for optimal performance, for any specific house and/or building.   

Similar approach as depicted in (1.17) can be used for adjusting the daily temperature 

offsets based on the desired set points of a day/night and also based on the occupancy 

detection via sensors. Thus, zones which are not frequently used, can be optimized, such as 

to conserve energy, by keeping them at the maximum tolerable offsets (set by the user), 
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while the set point temperatures in living room and/or frequently used spaces are being kept 

at the comfortable settings.  

The following subsection describes the thermal model of a house used, based on the 

fundamental principles of thermodynamics and [AME09] recommendations, from which 

simulation formulas are derived. 

5.2.2 Thermal Model of a House for ‘Simulation Engine’ 

Initial thermal model used in the ‘simulation engine’ is a simplified model of house heat and 

cool gain/loss system, in order to observe and analyze its response, and to enable planning 

for a feasible implementation of a ‘Smart Thermostat’. Heat flow through a house depends 

on many factors, such as the difference in inside and outside temperature, conductivity of 

building materials, thickness of materials, etc. In order to provide better approximation to the 

real world scenarios, implementation of the model considers the contributing parameters in 

the overall heat loss, such as the ventilation losses and house air leakage. Heat transfer 

process (i.e., from the warmer side to the colder side) is affected by thermal resistivity of 

materials k, temperature difference ∆t, wall thickness L and area A [AME09], as depicted 

below: 

 

(1.18) 

 

While the heated air supply into the house is represented as: 

 (1.19) 

 

Where ∆T is the difference between indoor and outdoor temperature, Aflow is the heated 

airflow, and c is the specific air capacity. 

Based on the equations above and principles of thermodynamics, the derived thermal model 

considered for the rate of heat/cool losses and gain of a house, is the following: 

 

   (1.20) 
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 (1.21) 

eqR        - Equivalent thermal resistance of the house 



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l        - Wall Thickness (m)  

λth    - Thermal conductivity









⋅ Km

W ; for air @ 20°C λ = 0.0257 









⋅ Km

W  

room
T        - Room temperature (°C); this is temperature as read by the room sensors. 

external
T    - External temperature (°C); this is the temperature read by outside sensor at the 

outside wall of the house. 

The initial model of a heated air supply to the house is modeled as follows: 

 

(1.22) 

Where,  

dt

dQ
  - Heat flow from the heater into the room 

f
M - Air mass flow rate through heater (kg/sec) 

 c – Specific heat capacity of the air at constant pressure (J/kg K) 
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dt

dT
incrementroom  - Rate of temperature change inside the room 

air
M = Vd ⋅  

air
M - Mass of air (kg) 

V  - Volume of the house (m3) 
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Constants: 

c = 1010 J/kg K 

d = 1.21 kg/m3  

Temperature in Kelvin )(15.273)( CTKT °+=  

When calculating 
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5.2.3 Estimated Equivalent Thermal Resistance of a House 

 

    

    (1.23) 

 

 

eq
R     -     Equivalent thermal resistance of a house 
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 wallR  -       Thermal resistance of a wall 
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windowR  -     Thermal resistance of a window 

















W

Km
2

 

wallL   -     Thickness of walls [m] 

windowL -    Thickness of windows [m] 

wallK   -    Thermal coefficient of a walls [W/mK] 

windowK -   Thermal coefficient of a windows [W/mK] 

wallA     -   Area of a walls [m2] 

windowA   -  Area of a windows [m2] 
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A simplified Heater-Cooler Prototype System was also implemented in order to 

‘emulate’ few of its potential features by experiment utilizing hardware and firmware.  The 

proposed system was experimented utilizing PIC24F microcontroller development board 

suitable for this scheme, other additional components and integrated circuits.  In addition to 

the hardware, for firmware development, Embedded C language for PICmicro® family from 

Custom Computer Systems Inc. (shortly CCS) was chosen. For further details refer to the 

Appendix B. 

5.3 Simulator Design 

The House Simulator is a discrete event simulator, designed with the following key concepts 

in mind:  

• To be able to simulate house heating/cooling systems under different test scenarios. 

• To be able to utilize it as an “expert system shell” for development of future 

advanced smart thermostat learning algorithms. 

• To be simple, user friendly and beneficial for everyone that is enthusiastic to invest 

little effort to save money and energy, and most importantly to aid in initiatives 

leading towards a sustainable environment for future generations.  

5.3.1 C# Programming Language 

C# is a relatively new programming language, which inherits the best from both worlds ‘C 

and C++’. It is a fully object oriented language, with extensive features available for 

development of Windows and Internet applications.  Among some of the features of C# are 

also the highly expressive syntax, full support for classes, OOD principles, type-safe coding, 

memory management, and vast available resources (advanced code editor, debugger, and 

toolbox) at fingertips of the programmer. Indeed, C# is simple, elegant, type-safe and 

powerful programming language for development of Windows and Internet applications, by 

making use of .NET Framework (platform for the development, deployment and execution 

of distributed applications).      
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5.3.2 Graphical User Interface – Main Features 

The Graphical User Interface (GUI) of a House Simulator is depicted in Figure 5.2, which 

captures the main elements of a simulator look and feel. The left hand side of the Figure 5.2 

shows the indoor and outdoor temperature graphs.  The outside temperature profiles are part 

of the Outdoor Temperature Generator – where the weather profiles are read by the 

simulator, and represent the real weather data taken from the Canada’s National Climate 

Archive and/or user defined.  The indoor temperature profile represents a dynamic response 

of the house heating/cooling system which takes into account factors such as the thermal 

model of a house, heating loss and gain.  

On the right bottom side of the Figure 5.2 is the Thermostat interface, which displays 

the data as simulation progresses, such as the indoor/outdoor temperatures, total energy 

consumed (KWh), total cost ($), heat/cool set points at different stages of simulation, TOU 

Rates at different points of simulation and the mode of operation (Heat, Cool, Auto, Off). 

The right top corner of Fig.5.2 depicts a multi-zone layout of a typical two storey house.  

 

Figure 5.2 - Simulator graphical user interface 

The user can also select different parameters of the house (dimensions, windows, walls, 

thermal coefficients, thickness of walls, windows etc.) and zones to simulate and analyze 

energy efficiency and heat losses that occur. 

Indoor 

temperature 

Outdoor 

temperature 
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Figure 5.3 - Simulator schedule control 

The simulator schedule control shown in Figure 5.3, enables one to select different daily 

schedules, including set points and time intervals during the simulation process (i.e. user can 

adjust heat and cool set points at different times of the day based on his/her preferences and 

working schedule). 

The Figure 5.4 depicts the simulator DR and TOU rates control, which enables one to 

Opt-In and/or Opt-Out (i.e. participation) in utility DR events, thus enabling cost reduction 

incentives for the user, and helping utilities in peak load curtailments. Independently, the 

user can also enter different TOU Rates (typically set by the utilities: On Peak, Mid Peak and 

Off Peak) and observe its impact on monthly costs for different simulation scenarios.   

 

 

Figure 5.4  - Simulator DR and TOU rates control 

Based on the selected values one can use different house parameters during simulation. 

The user can also select to simulate the house for different number of days, adjust the time 

intervals for any possible simulation scenario. Further improvements of the simulator and 
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additional controls are presented in Chapter 6 since they are closely related to the proposed 

OLA algorithm, which is a practical implementation of the ALS model. 

5.4 Simulator Model 

As described earlier in Section 5.2, heat flow through a house depends on many factors, such 

as the difference in inside and outside temperature, conductivity of building materials, 

thickness of materials, etc. Initial thermal model used in the ‘simulation engine’ mimics a 

house heat and cool gain/losses in order to observe and analyze its response; it enables for a 

feasible implementation of a ‘Smart Thermostat’ and furthermore implementation of 

practical adaptive learning system strategies (i.e. OLA).   

The simulator conceptual model depicted in Figure 5.5 signifies the main conceptual 

blocks of the simulator model, such as the “House Simulator,” “Smart Thermostat” and a 

placeholder for “Adaptive Learning” models to be implemented. Thus, taking into account 

the feasibility and ensuring that the placeholders -‘hooks’ for the ALS models within the 

simulator environment exist, prior to their implementation.  The flow of information is from 

the “House Simulator” to “Smart Thermostat” and vice versa, similarly the same applies for 

“Adaptive Learning,” which can be incorporated into the overall design, and affect the 

“House Simulator” and “Smart Thermostat” interchangeably.  

The simulator conceptual model was translated and closely adapted into C# classes as 

depicted in Figure 5.6; indeed, as it will be seen at later stages of research in Chapter 6, 

implementation strategy is essential for the effective proof of concepts (i.e. typically, designs 

which do not account for scalability might become obsolete later on). 

 

Figure 5.5 - Simulator conceptual model 
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The class Thermostat represents the main class of the simulator, where the control 

algorithm resides, while classes House, Room, Schedule and Utility are the other classes 

which represent a ‘has-a’ relationship with a main class, and are instantiated within main 

application with default system values, and properties. These values can be adjusted for 

different house system models and parameters. The main advantage in the implementation of 

the following design strategy is to be able to change any class parameters on the fly (i.e. 

simulation step size, interval, initial conditions, schedules, etc.). Enabling a flexible house 

model for experimentation and simulation under different conditions; furthermore, to be 

utilized as an ‘expert system shell,’ to explore and implement new adaptive learning system 

models. 

 

 

Figure 5.6 - Diagram of a simulator model 

Indoor and Outdoor Temperature - provides information about the indoor and outdoor 

temperatures to the simulator. 

Time - provides the necessary info for the simulation process, including simulation step size, 

speed, time of the day, set points at different instances of a day, etc. 
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HVAC System Parameters - react based on the heater and cooler state, temperature profiles, 

heating gain/loss, and other house system parameters of the design.  

Utility / TOU Rates - provides the electricity cost at different times of day based on the TOU 

rates set by the Utility (e.g. On Peak, Mid Peak and Off Peak). 

Graph - Plots 24 hour daily outside temperatures from the weather data; plots the indoor 

room temperatures at different time intervals (based on granularity of simulation step size 

selected i.e. 12 sec, 1 min, 2 min, 5 min, etc.).  

Schedule – enables user to select and set the desired heat and cool set points for different 

times of day (hour: min) for each week day and weekends.  

House System Parameters - enables the user to select different house parameters, including 

house volume, wall and window area, wall and window thickness and thermal coefficients, 

number of windows, etc. 

Report – For each step of simulation, data is saved into a log file, which includes heat loss, 

heat gain, total energy consumption, energy consumption for different TOU rates, total cost 

for each step and the total cost for the entire simulation period as shown in table below. 

Table 5.1 - Report data 

 

Thermostat & Control Algorithm – provides the main control of the heating/cooling system, 

by orchestrating the input output relationships, calculating the essential values based on the 

parameters supplied to the simulator (i.e. equivalent thermal resistance of a house, heat/cool 

set points, air flow rate, heater capabilities, etc).  Improvement and prevalent features of 

adaptive learning for Smart Thermostat, such as use of OLA and Knowledge-Base shall be 

introduced and discussed in the subsequent chapter. 
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5.5 Performance Results 

The TOU Rates are based on the projected rates that are in effect since 2010, from the Hydro 

One website, (On Peak rate = 0.093$, Mid Peak rate = 0.08$ and Off Peak rate = 0.044$).  

The set point (SP) values for typical schedule used are based on the Tables 5.2 and 5.3. 

Table 5.2 - Monday to Friday schedule 

 

Table 5.3 - Saturday and Sunday schedule 

 

The default house parameters used during the simulation are shown in Table 5.4.   

Table 5.4 - Initial house parameters 

 

 

The response time of a system based on the parameters indicated on the Table 5.4, for 

different average output temperatures (0 °C, -2.5 °C and -5 °C) and set point of 20 °C are 

shown in Figures 5.7 and 5.8, whereas the initial inside house temperature is 0 °C.  

The response time of a system depicted in figure 5.7, to reach the desired set point based 

on an average outside temperatures of -5 °C, - 2.5 °C and 0 °C is approximately 175 min, 
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130 min and 105 minutes, respectively.  In this case, the actual set point has an offset of ± 

0.5 °C, however due to the step size (min on/off time of HVAC system set at 5 minutes) the 

average offset i.e. dead band of the system is approximately ± 1°C.    

 

 

Figure 5.7 - Response time of a system (step size 5 min) 

   

 

 Figure 5.8 - Response time of a system (step size 2 min) 

In Figure 5.8, response time of system - settling time is similar to the one shown in 

Figure 5.7. Based on identical conditions i.e. an average outside temperatures of -5 °C, - 2.5 

°C and 0 °C set point is reached after approximately 180 min, 130 min and 108 minutes, 
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respectively.  The actual set point has an offset of ± 0.5°C, similar to the previous case. 

However, due to better granularity of a step size (min on/off time of HVAC system set at 2 

minutes) the average offset i.e. dead band of the system is maintained within ± 0.54 °C.   

 The Figure 5.9 depicts the simulation results of a house for the duration of three months 

during the winter season (weather data for outdoor temperatures, used for simulation is from 

the Canada’s National Climate Archive for month of December 2008, January and February 

2009).  The actual simulator model was compared to the HOT 2000 Simulator [NAT08].  

Thus, for an average indoor temperature set point of 20 °C, analogous house parameters and 

initial conditions, monthly report was compared against a similar case of the proposed 

simulator (considering an average outdoor temperature of 0°C); whereas the monthly margin 

of the calculated error for the estimated energy consumption was 7.57%.  

The simulation results of total energy consumption for house heating in KWh (duration 

of 3 months) are shown in Figure 5.9. Respectively, in Figure 5.10 total associated costs in 

dollars for the energy consumed, are shown.  In both Figures 5.9 and 5.10, the first column 

shows the consumption for three months (KWh or dollars spent), based on a typical weekly 

schedule of set points.  While, the second to fifth column show the consumption (KWh or 

dollars spent) for fixed set points during the entire period of 3 months (i.e. set point of 20 °C, 

22 °C, 24 °C and 25 °C). 

 

 

Figure 5.9 - Total heat consumption for 3 months (KWh) 
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The potential savings in energy consumption and cost is possible to achieve with only 4 

different set points weekly schedule preferences, instead of fixed/permanent set points.  

Taking as an example the permanent set point of 20 degrees C for 3 months versus the 

typical schedule, one would observe that the cost associated with keeping a heat set point of 

20 degrees C for 3 months is $1374.1, while typical schedule total costs are $1319.49, 

savings of $54.6 (equates to 906 KWh energy savings). 

 

Figure 5.10 - Total cost of heating for 3 months in dollars 

In addition, Figure 5.11 depicts the results of the simulation for a zone controlled house 

environment, which reflect a better yield with respect to energy conservation; hence, more 

cost savings for a zone controlled house.  While, in Figure 5.12, simulation results of energy 

costs demonstrate the energy consumed and TOU rates, during 3 month period of heating.  

The effect of a zone controlled environment can be considered very important step 

towards better energy conservation and management.  The role of sensor nodes in this case is 

obvious necessity for any “Smart Thermostat,” which would be used to control the indoor 

temperatures in a zone controlled environment.  Furthermore, it can be said that in addition 

to the possible lack of intelligence in current PCTs, another important factor which impacts 

their performance, is when PCTs are equipped with only one or two sensors i.e. typically for 
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an intelligent PCT, more than a few sensor/actuator nodes are needed for an optimal control 

of a multi-zone controlled environment. 

 

 

Figure 5.11 - Total heat consumption of a two zone system 

From the simulation results shown in Figure 5.11 (energy consumption) and Figure 5.12 

(associated costs), it can be observed that the zone control environment yields better energy 

efficiency and cost savings results, when compared to a single zone controlled environment. 

 

Figure 5.12 - Total cost of heating of a two zone system 
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Figure 5.13 - Energy consumed based on different TOU Rates (KWh) 

Figure 5.13 shows the energy consumption for simulation of a typical weekly schedule 

of set points and permanent set points of 20 °C, 22 °C, 24 °C and 25 °C, based on the 

different TOU rates applied (at different times of  day) for a period of 3 months.  

An indication of TOU rates, comfort and consumption portrays the main concepts which 

are leading to incentives proposed by EGUs, and are being endorsed by many customers 

around the globe.  Hence, the effect of an adaptable thermostat could prove to be beneficial 

into balancing the effect of higher costs with the comfort of the user, minimizing the energy 

consumption, whilst maintaining the user comfort.  

5.6 Summary 

The outcome results from the simulation of a house heating system, indicate possible energy 

conservations by utilizing a PCT with flexible schedule(s), and furthermore by zone 

controlled systems.  The energy and cost savings of a house heating system for a period of 

three months were demonstrated by analyzing different test scenarios. The disadvantages of 

current PCTs are their user interface and lack of intelligence, which if enhanced, indeed 

could lead us one incremental step forward towards a more efficient energy conservation and 

comfort in our living environments.  However, it has to be noted that the schedules and 

patterns change, and in most cases users utilize permanent hold set points instead of using 
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the existing schedules due to many factors, including PCTs complexity to program, frequent 

schedule changes, etc.  Last but not least, one of the main objectives for enhanced 

performance and learning capabilities of PCTs is also the minimal possible user intervention, 

whilst not jeopardizing the user comfort. Thus, an intelligent PCT would prove to be more 

satisfactory for consumers, too.  In order to attest beneficial for further energy savings, cost 

reduction and sustainable resources, PCTs can be complex systems, however, must be 

“smart and adaptable devices,” with a simple user interface.  

In addition to its usefulness for simulation of a house heating/cooling system under 

different scenarios, more importantly the simulator was built to be used as a tool to assist in 

implementation and further development of the intelligent algorithms (learning strategies) 

for future PCTs i.e. “Smart Thermostats.”  

Therefore, the simulator conceptual model described herein, which consists of a “House 

Simulator,” “Smart Thermostat,” with a ‘hook’ for the “Adaptive Learning” algorithm, 

facilitates the efforts during the implementation phase (i.e. practical ALS model 

implementation).  Thus, as depicted previously in Section 5.4, Figure 5.5, the “House 

Simulator” and “Smart Thermostat” are two integral parts of the simulator, which interact 

with each other (same is in a real-world scenario i.e. HVAC and PCT in a house 

environment), and allow integration of supplementary functionality, components/objects, 

and/or new algorithms.  

Moreover, the interaction of building blocks within a simulator, provide a good ground 

for evaluation of different scenarios, as shown in this chapter.  Few extra features closely 

related to the practical ALS model implementation are described in the Chapter 6. 

  



 

95 

CHAPTER 6 

 

ADAPTIVE LEARNING SYSTEM IMPLEMENTATION 

 

6.1 Introduction 

 

The leading edge technology in the area of intelligent systems and smart sensor networks, 

are an essential part of our everyday life; their evolution will help us to better utilize our 

resources (energy saving initiatives) and enhance our way of living.  The role of PCT is to 

provide consumer with a means to manage and reduce energy use, whilst accommodating 

their every day schedules, preferences and needs.  It has to be noted that the use of only one 

AI model, would not always suffice to bring forward the best systemic solutions; hence, the 

utilization of different techniques has lead to the materialization of many hybrid intelligent 

systems (which combine at least two intelligent technologies).  

The concepts of an adaptable PCT herein are being investigated in order to aid in 

bringing forward systemic solutions which are adaptable, ‘energy aware’ and easy to use.  

The Observe Learn and Adapt (OLA) algorithm proposed and described in this chapter, 

illustrates the actual implementation of the proposed ALS model; an integration of wireless 

sensors and artificial intelligence concepts towards the same objective: adding more 

intelligence to a PCT for better energy management and conservation in Smart Homes and 

Buildings.  Moreover, as described earlier in Chapter 5, a simulator tool was designed in 

order to be used as an “expert system shell” to assist in development, implementation and 

verification of ALS model via OLA.  In addition, the actual performance results of learning 

and adaptability of a PCT equipped with OLA, as a result of the occupant’s changing 

schedules and/or patterns are shown. Additionally, the overall system improvements with 

respect to energy consumption and savings are demonstrated via simulation for the zone 

controlled home equipped with OLA and Knowledge-Base, versus a home without zone 

control, Knowledge-Base nor OLA. 
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6.2 Description of the OLA Algorithm 

6.2.1 Overview 

  

OLA in essence is a ‘reflection’ of hybrid intelligent system concepts, combining rules-

based expert system, unsupervised learning approaches, and wireless sensors, in order to 

bring forward a new algorithm which can be used to add learning capacity to the existing 

PCTs; ‘transforming’ current PCT into a ‘Smart Thermostat’ concept - a PCT with adaptable 

learning capabilities.   

In a ‘nutshell’ OLA behavior is as follows: observe via sensors, acquire and learn from 

the new inputs (by comparing new knowledge with the existing one), and adapt outputs (via 

actuators) or other, based on the decision made (if decision is true, adds new clustering 

knowledge to the dedicated cluster group, i.e. see Daily Clusters).  The main building blocks 

of the OLA algorithm for ‘Smart Thermostats’ are depicted in Figure 6.1 below.   

 

 

Figure 6.1 - Conceptual diagram of the elements used in OLA  
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Knowledge-Base - is an additional knowledge to the ‘Smart Thermostat’ which contains 

information about the tuned settings and weight options, necessary for optimality in case of 

the entire house or zone control scenarios. In Figure 6.1, the wide arrow from OLA to 

Knowledge-Base and to the Master Cluster, indicate that OLA can request and retrieve 

information from the Knowledge-Base and Master cluster (and its Daily Clusters). Whilst 

the narrow arrow from the Future Event List (FEL) to the OLA, indicate that FEL is an input 

to OLA. The Knowledge-Base is the existing knowledge implemented within OLA. 

Master Cluster - contains information for every existing cluster and includes also additional 

information necessary for adapting the best solution at any time. Further information related 

to the structure of Master Cluster structure is given in Appendix C.1. 

Daily Clusters - contain specific information related to the user patterns, schedule and 

activity for each day of a week (updates knowledge when required). Further information 

related to the structure of Daily Cluster structure is given in Appendix C.2. 

Future Event List (FEL) - emulates actual sensory/actuator data: “Sense via sensors, Act 

via actuators.” Contains information about future events and is used to emulate different 

patterns and also to verify the learning and adaptability of the algorithm at work. Few FEL 

parameters used emulate wireless sensors functions (occupancy detection, temperature 

readings at different spaces, actuation); hence, wireless sensors play a major role in a smart 

home application of OLA. On the other hand, actuators are the key contributors used for 

adjustment of the air flow (variable air valves) in different zones and/or rooms.  Although, 

wireless and wired sensor can measure the same physical properties, feasibility of wireless 

sensors is their ease of integration in the existing building environments, where wired 

sensors are not preferred due to the wiring.  Furthermore, in cases when relocation of sensors 

in necessary within a house and/or a building, wireless sensors offer greater flexibility, 

whilst wired sensors would pose a challenge.  On the other hand, actuators are the key 

contributors used for adjustment of the air flow rates in different zones and/or rooms. 
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6.2.2 Main Steps of the Algorithm 

Figure 6.2 depict the main implementation steps of the OLA algorithm based on the 

proposed ALS model (illustrated and described in Chapter 3, Section 3.2.1). Each block has 

an associated number based on which additional description is given below, while in the 

subsequent Section 6.2.3 the main routines are explained.  

 Figure 6.2 - Main steps of OLA algorithm  

1.  Create and initialize Master and Daily clusters with default parameters. 

2.  Create and initialize FEL. 

3.  For each day of a week, create and initialize Learn vectors (Learn vectors extract 

information from the wireless sensors i.e. FEL). 

4.  For each day of a week, create and initialize Adapt vectors based on the Learn vector 

inputs.  Adapt vectors add adaptability parameter status (value 0 for unchanged and 

1 for changed). 
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5.  Keep track of each daily cluster by ensuring not to overlap existing data elements 

(three consecutive weeks) with the new ones, when populating the vectors. 

6.  Evaluate daily cluster ‘adaptWeek’ flag (based on the ‘adaptWeek’ value invoke 

proper Daily Cluster Adapt method). 

7.  Invoke ‘Adapt’ and initialize vectors of adaptation.  Decide which particular 

elements for a period greater than two weeks need to adapt (from Adapt vectors). 

8.  Perform ‘Weight Update and Decision’ based on the active daily cluster (day of a 

week). 

9.  Invoke ‘Get Active Cluster’ of the day and ‘Read Cluster’ data. 

10.  Initialize and populate ‘Weight Learn’ vectors (with cluster data from Learn vector 

for particular week only (not the entire set). 

11.  Invoke ‘Weight Process’.  Compare each element of weight decision vectors.  Based 

on the initial set of tolerances for elements of the vectors, decide which weight to 

assign to each one. 

12.  Repeat the ‘Weight Process’ - by invocation of a method for all subsets of data (i.e. 

since limit for learning and adaptability is set to perform adaptation after three 

occurrences of the daily cluster). 

13.  Invoke ‘Adapt Elements,’ which takes as an input day of a week and potential 

vectors to be adapted. 

14.  Invoke ‘Check Weights,’ which takes as an input the element to be analyzed, day of 

a week and the associated daily cluster vector.  ‘Check Weights’ makes a decision 

based on a set of rules according to the weights of daily cluster vectors. It returns the 

adapted value (after evaluating the vector elements and the associated weights) for 

each element of the cluster. 

15.  Update Daily Cluster (Monday, Tuesday, etc.) based on the adapted vector values, 

and currently active cluster). 

16.  Update Master Cluster knowledge base – reads and adapts Master cluster with new 

cluster updated information, related to daily cluster updated. 

17.  Clear Learn and Adapt vectors. 
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18.  When processing temperature data, query the Knowledge-Base for optimal settings, 

and if necessary adjust the amount of heat, and/or offsets into the dedicated zones of 

the smart home. 

19.  Continue with the next Daily Cluster.  

6.2.3 Main Routines of the Algorithm  

The main routines of OLA algorithm are explained below. 

Initialize FEL 

Reads FEL file and creates a new FEL object which contains read data to emulate sensory 

inputs. Thus, it has different occupant’s patterns and/or schedule changes for the simulation 

process, in order to emulate different scenarios. Structure of FEL file is as shown in Table 

6.1 below. 

Table 6.1 - FEL structure 

 

Populate Learn Vectors 

Learn vectors are populated from the FEL information and have a size of 120 elements (40 

elements * 3 weeks, representing data available for 3 consecutive daily cluster occurrences).  

The Learn vectors contain information based on the schedule of a day and have the 

following structure:  
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{Heat SetPoint, Cool SetPoint, Start time, Stop time, Heat weight, Cool weight, Start time 

weight, Stop time weight}; where the vector elements in positions 0 to 3 are Heat Set Point, 

Cool Set Point, Start and Stop time of Set Points, while in positions from 4 to 7 are their 

respective weights (associated with elements from 0 to 3). The adapted schedule for ‘Smart 

Thermostat’ has five Set Points (SP): {SP1, SP2, SP3, SP4, SP5}.  Therefore, we have in 

total:  5 SP multiplied by 8 elements in each, which equals to 40 elements for each 

occurrence of the ‘specific daily schedule’, and 120 for a total of three occurrences.  If the 

data elements are not changed, value of -1 is entered for that particular element of the Learn 

vector. 

Populate Adapt Vectors 

Adapt vectors are populated only after comparison with the Learn vector data and 

adaptWeekDay indicator (takes note of occurrences of particular day of a week i.e. 

adaptWeekMon for Monday, adaptWeekTue for Tuesday, etc. and based on which 

occurrence of the day it is (first, second or third) it retrieves correct set of elements from 

Learn vector. 

Adapt vector structure is as follows: {Heat Set Point, Cool Set Point, Start Time, Stop 

Time}.  Adapt vector is populated only after comparison with the Learn vector data. The 

adaptWeekDay indicator takes note of the occurrences of a particular day of a week i.e. 

adaptWeekMon for Monday, adaptWeekTue for Tuesday, etc. and based on the occurrence 

of a day (first, second or third) it retrieves the correct set of elements from the Learn vectors.  

Furthermore, for each element and particular daily occurrence (first, second or third) of the 

Learn vector, it performs the steps as depicted in Figure 6.3.   

Adapt vector does not keep track of weights associated with each element of the Learn 

vector; hence it has only 20 elements for each daily occurrence. Its structure is {Heat 

SetPoint, Cool SetPoint, Start Time, Stop Time} * five different SetPoints for the entire 

active daily cluster. 
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Figure 6.3 - Populate adapt vectors  
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The term “i�i+j” where j = 4, shown in Figure 6.3 indicates that the weights are 

skipped when populating the adapt vectors.  Thus, learn vectors, in addition to the Heat SP, 

Cool SP, Start time and Stop time, contain values of the weights associated with each 

element, While, the adapt vectors contain only the values to be adapted. The adaptWeekDay 

set to a value of 3 (i.e. before the Adapt method is invoked) is based on several assumptions.   

For example, considering a scenario when the occupant changes temporarily the heat set 

point temperature, perhaps in an extremely cold winter day; this might be one time 

occurrence, and not necessarily the preferred ‘permanent set point’ temperature. Therefore, 

prior to adapting to the occupant’s preferred set points, OLA compares at least 3 instances of 

the occurrence, before adapting to a change.  

Similarly, a PCT schedule has typically five different set points during a day, which 

implies that at least five different start and stop time intervals are available (refer to Table 2 

“Time of Day” column) where potential changes might occur.  Therefore, in cases when the 

occupant leaves a house one hour earlier than usual, this might be only one time occurrence, 

and not, a typical permanent schedule or pattern change.  Thus, the term adaptWeekDay = 3 

(refer to Figure 6.3) does not imply that three weeks are essential for OLA to learn. Instead, 

it indicates that three occurrences of a change are considered as a common factor for the 

adaptation of new values.  It has to be noted that OLA still reacts and applies optimal 

settings for savings, when house is unoccupied.  In addition, OLA will keep track of the 

occupant’s pattern changes and it adapts (without user interaction) if the similar pattern is 

repeated. 

Adapt  

Adapt routine has input parameter the day of the week. Hence it is triggered for each day (1 

for Monday, 2 for Tue, etc.). Three temporary vectors with a limit of 20 elements each are 

initialized (v1, v2, v3) and each one is populated with the data from Adapt vector (v1 for the 

first occurrence, v2 for the second occurrence, and v3 for the third occurrence of a specific 

day).  For each element and particular day occurrence, verification is done to see if the 

change is consistent or not. After which, the elements associated with the temporary vector 
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vt are copied to a permanently assigned vectorToAdapt of a day (vectorToAdapt1 for 

Monday, vectorToAdapt2 for Tuesday, etc.). Figure 6.4 depicts the main steps of the routine. 

 

 

Figure 6.4 - Adapt routine 

Weight Update Decision 

Consists of three main routines as described below under a, b and c. 

a) Read Cluster Data  

Reads the active daily cluster file; adds all data in a ReadData array list for further 

processing. Whereas all the necessary data is copied into a SPWeightDecision vector 

(size of 40 elements).  
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Afterwards, another SPWeightLearn vector extracts the data from the appropriate Learn 

vector of the daily cluster (new data from FEL) for comparison with the 

SPWeightDecision vector (existing data from the active daily cluster). 

b) Get Active Cluster of Day  

Based on the day of a week, it acquires the daily cluster active cluster file (information 

which is updated each time Master Cluster) and returns the cluster file name to the Read 

Cluster Data.  Next, it performs the above processing for all the elements of interest 

(Heat Set Point, Cool Set Point, Start and Stop times; for all Set Points defined in cluster 

data). And for each Weight Process completed (based on the day of the week) it assigns 

the data and weights to a Monday vector, Tuesday vector, etc. Whereas, HEAT_TOL = 

1, COOL_TOL = 1, START_TIME_TOL = 1 hr, STOP_TIME_TOL = 1 hr, are values 

that can be adjusted, and are available for further tuning. 

c) Weight Process 

First it initializes the weights to zero. Thereafter, for each week (first, second and third) 

it performs a weight process, whereas all the data elements from the SPWeightDecision 

and SPWeightLearn vector are compared, as depicted in Figure 6.5. 

Adapt Elements 

Adapt Elements routine, consists of four main sub-routine as described below under a, b, c 

and d. 

a) Check Weights (int elem, int day, double [] vec) 

Checks each element of a vector, of the specific day consisting of {Heat SetPoint, Cool 

SetPoint, Start Time, Stop Time, WeightHeat, WeightCool, WeightStart, WeightStop}, 

for five SetPoints of a day.  From ALS model description we know that β is a weight 

multiplier coefficient which can be adapted based on the problem at hand.  In case of 

ALS implementation via OLA, β = 1 and λ = 0.1.   
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Figure 6.5 - Weight process  
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Hence, there are three different weight: HIGH_WEIGHT = 0.1, MED_WEIGHT = 0.05 

and LOW_WEIGHT = 0.025, which can be assigned to any daily vector based on the 

proximity of the actual value to the  particular element for three consecutive occurences 

of a particular day. The rule-based decision according to weights is based on the 

following possible combinations: 

LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH, MMM, MMH, MHM, MHH, HMM, 

HMH, HHM, LLM, LML, LMM, MLL, MLM, MML, LMH, LHM, MLH, MHL, HML, 

HLM.  Where H stands for HIGH_WEIGHT, M for MED_WEIGHT and L for 

LOW_WEIGHT. 

The resulting value returned from the CheckWeights is based on the of weight 

occurences, i.e. if all three weekly occurences have the same weights, average of three 

weekly elements  is returned; if  only two weekly occurences of the particular vector 

elements have high weights while third one has low weight, the resulting value returned 

is based on the avarage of data elements corresponding to high weights, ignoring the 

low weight element.  The low weight signifies a major shift from typical existing value, 

hence the approach is slightly conservative and tends not to make radical changes to the 

existing schedule or set points. Hence, in cases such as when major shifts from the 

existing schedules and/or setpoints occur, adaptation will take place only after three 

consecutive occurences of the low weights.   

b) Update SetPoints 

Each time that CheckWeights routine is invoked, returned result is assigned to the 

appropriate element of the daily cluster schedule (when all the elements are updated the 

schedule is updated and becomes active). 

c) Update Master Cluster 

Invokes Read Cluster Data routine and it updates the master cluster active file 

parameter and file number that was replaced by current file. Master cluster structure is 

shown in Appendix C.1. 
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d) Update Daily Clusters 

Following the previous step, Update Daily Cluster routine creates new cluster based on 

the existing and new knowledge which was adapted (i.e. updated Set Points, Start and 

Stop times, or other parameters of interest). Daily Cluster Structure is shown in 

Appendix C.2.  

Knowledge-Base 

A sample method of how Knowledge base is used to adjust the air flow rate and to turn 

on/off different heater stages of HVAC (for different indoor and outdoor temperatures) is the 

Airflow Rate and Heater Adjustment depicted in Figure 6.6.  

Start

NrOfHeatStages 1

T < T1 Af Af – offset_1

T1 ≤ T < T2 Af Af – offset_2

T2 ≤ T < T3 Af Af + offset_3

T3 ≤ T < T4 Af Af + offset_4

Yes

Yes

Yes

Yes

No

No

No

No (must be ≥ T4)

Af Af + offset_5

NrOfHeatStages 2

Return NrOfHeatStages, Af

Heater NrOfHeatStages

 

Figure 6.6 - Airflow rate and heater adjustment 
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Each time the processing of temperature data from the ‘Smart Thermostat’ is performed, 

rules-based expert system checks for the optimal settings, and the acquired facts are used to 

by the system, in order to adjust the amount of heat, air flow rate and/or offsets into the 

dedicated zones of the smart home 

Airflow Rate and Heater Adjustment is a sample method from Knowledge-Base class, 

which receives as input, values for the air flow rate, heater temperature, and current room 

temperature and inquires the Knowledge-Base library. The Knowledge-Base after processing 

the information, based on the algorithm depicted in Figure 6.6, it returns the recommended 

air flow rate, and the necessary active heater stages to be turned on or off.  Whereas, the 

offset_0,…,offset_5 are differnt airflow rates (incremental) and NrOfHeatStages are the 

actual number of heater stages (both are variables which can be adjusted for best results 

based on the house thermal dynamics). While, T represent the difference between indoor and 

outdoor temperatures, and T1, T2, T3, T4 and T5 are the limits (i.e. T1 = 10 °C, T2 = 20 °C, T3 

= 30 °C and T4 = 40 °C). 

Knowledge-Base after processing the information returns the recommended air flow 

rate, and if the second stage of the heater should be turned on or not. 

6.3 Application of OLA and the Big Picture 

 

Most of the current PCTs are equipped with capabilities to communicate with a Smart Meter 

(a two way communication device, capable to monitor power consumption, communicate to 

Utility and/or other end devices, such as PCTs, home appliances, load switches, etc.).  

OLA can be used in current PCTs (leading to ‘Smart Thermostats’) in order to augment 

their performance, by introducing devices capable to learn and adapt (while offering optimal 

comfort and conservation) in a Smart Home environment.  Furthermore, ‘Smart 

Thermostats’ are meant to be used as devices which do not require constant programming 

input by the user.  

In order to provide the most efficient savings, and help manage the peak load demand; a 

multi-sensor system must be capable to communicate with the core controller unit (i.e. 

‘Smart Thermostat’), process inputs (TOU rates, DR) to and/or from the Utility to the core 

controller unit or dedicated end sensor/actuator nodes.  Since typically wireless sensors 

and/or actuators have limited memory and/or processing power, synergy of the 
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reinforcement learning and agent-based techniques such as described in subsequent chapter 

can be used to further enhance the performance of the overall system by enabling the sensor 

nodes to act as ‘intelligent agents’ and extract the possible future peak load events after 

receiving the potential functions and time of a day interval - from Utility (via Smart Meter).  

The aim of OLA is to optimize the comfort with respect to energy consumption by 

learning occupancy preferences and patterns, thus enabling the comfort zone adjustment, 

including the individual control of heating/cooling of rooms, and/or the entire home.    

6.4 Improvements of the Simulator 

Few new concepts were added and updated within the simulator, during the implementation 

of OLA, including Knowledge-Base and FEL (i.e., sensors) and controls, such as the 

Settings for Comfort and Savings and Offsets for Zone Controlled Environment, as depicted 

in Figure 6.7 below.   

 
Figure 6.7 - Improvements of the simulator 

Knowledge-Base and FEL, as described in previous section, were implemented as an 

integral part of OLA algorithm and added to the Simulator.  Similarly, ‘Settings for Comfort 

and Savings’ control enables the user to select the desired maximum and minimum 
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temperature offsets during DR events and/or high, medium and low TOU rates, while 

‘Offsets for Zone Controlled Environment’ control, enables user to select the desired zone 

offsets during particular times of day (i.e. set different offsets for different zones during day 

and night time).   The above settings are also captured within the FEL and Daily Cluster 

structure.  In addition, the displayed zone 1 and 2 data simultaneously, and the options to 

enable full house control versus zone controlled via OLA enabled algorithm, aids in overall 

performance verification of a system.     

6.5 Performance Results  

 

Several simulation scenarios are considered in order to demonstrate the performance and 

verification of OLA at work. The initial settings used for the scheduled set points and their 

daily intervals, for week days and weekends are depicted in Tables 6.2 and 6.3 below.  

Whilst, the main house parameters used for the simulation scenarios are shown in Table 6.4. 

Table 6.2 - Monday to Friday schedule 

 

Table 6.3 - Saturday and Sunday schedule 

 

 

The TOU rates used are the rates based on the projected rates that are taking effect in 

2010, from the Hydro One website, (On Peak rate = 0.093$, Mid Peak rate = 0.08$ and Off 

Peak rate = 0.044$).  The initial TOU rate intervals used for TOU Rates during the 

simulation are shown in Table 5.5.  The TOU rates applied during the weekends are assumed 

to be Off Peak.  
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Table 6.4 - House parameters    Table 6.5 - TOU rates 

 

 

A sample scenario of the updated simulator at work, is shown below in Figure 6.8, 

which shows two different simulation scenarios of the entire house and zone controlled 

house with OLA enabled. The zone controlled environment displays zone one (shown in red) 

and zone two (shown in blue) temperatures.  Based on the activity of persons in zones, OLA 

decides which offset tolerances to apply (i.e., typically, if a zone is sensed by wireless 

sensors as unoccupied the offset tolerance is greater, whilst if zone is occupied, the offset 

tolerances are smaller).  

 

 
Figure 6.8 - Simulation (entire house and zone controlled) 

Outdoor 

temperature 

Zone 1 Zone 2 
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The first case considered for verification of functionality was with and without learning 

enabled (no changes to the existing scheduled set points or intervals).  The average outside 

temperature set for this case was 0 °C for the duration thirty days. The results of simulation 

are shown in Table 6.6.  From the results, it can be observed that potential savings in case of 

entire house with OLA enabled versus the entire house with OLA disabled are 79 KWh.   

 

Table 6.6 - Results of OLA (Entire house vs. zone controlled) 

 
 

Furthermore, when comparing zone controlled house with OLA enabled versus the 

entire house with OLA disabled, potential savings equate to 279 KWh.  Hence, 

improvements with respect to relative energy consumption with and without algorithm at 

work are apparent. 

In order to further observe and verify the functionality of the algorithm, a 30 day 

simulation was run with and without the preconfigured FEL (i.e. with and without sensors) 

as inputs to OLA; weather data for outdoor temperatures used in this case was from the 

Canada’s National Climate Archive (with an average of – 7.06 °C). The configuration was 

set to zone controlled environment with OLA enabled (and FEL not active) for cases 2 to 5.  

The first case depicts energy consumption when the configuration is set for the 

simulation of entire house when OLA and Zone Control (ZC) are disabled.  Recorded results 

indicate estimated energy savings of 147 KWh when Zone Control and OLA are enabled. 

The learning and adaptation period of the algorithm is set to three weeks.  The different 

cases of OLA with and without FEL changes (to be detected by algorithm) are depicted in 

Table 6.7.  Algorithm adapts to a new change in the schedule and/or user pattern, after the 

third occurrence of a specific change in user pattern and/or schedule.   
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Table 6.7 - Results of OLA (with and without FEL/Sensors) 

 
 

For case study number 3, changes initiated/detected by FEL/Sensors and adapted by 

OLA are for Monday Cluster daily patterns, whereas the end time for Set Point 2 and start 

time for Set Point 3 changed from 6:00 to 8:00 AM, to 6 to 7:30 AM, respectively for 

Tuesday Cluster from 6:00 to 8:00 AM, to 6:00 to 7:15 AM.  The changes take effect during 

the last week of simulation only (i.e. first three weeks are dedicated to learning the patterns).  

The actual changes taking effect were observed in the Master Cluster and Monday/Tuesday 

Cluster files (although cumbersome, main idea why input/output file system method was 

used to implement Master and Daily Cluster objects, instead of arrays, is to be able to verify 

and analyze the changes only when program is running in debug mode, but also when the 

simulation process terminates); the changes taking effect, and the occurring total energy 

differences/savings due to the changes, validate the OLA successful adaptation to the 

change.     

The outcome of adapted and/or updated schedule for two concurrencies (only for two 

days of a month) of different patterns are reflected in the results of case study number 3 in 

comparison to case 2 (zone controlled heating with OLA enabled but FEL inactive); where 

the estimated energy savings are 5 KWh (and indeed are 152 KWh in comparison to case 1).   

Furthermore, case study number 4 reflect the adapted changes for Monday to Friday 

scheduled end time of Set Points 2 and start time of Set Point 3 as follows: 

Monday Cluster Set Points 2 and 3 changed from 6:00 to 8:00 AM, to 6:00 to 7:30 AM. 

Tuesday set points 2 and 3 changed from 6:00 to 8:00 AM, to 6:00 to 7:15 AM. Wednesday 

Cluster Set Point 2 and 3 changed from 6:00 to 8:00 AM, to 6:00 to 7:00 AM.  Respectively, 

Thursday Cluster Set Points 2 and 3 changed from 6:00 to 8:00 AM, to 6:00 to 7:00 AM, 

while Friday Cluster from 6:00 to 8:00 AM, to 6:00 to 7:45 AM.  The estimated energy 

saving of 11 KWh in comparison to reference case 2 are confirmed (since in this case the 
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occurrence of newly adapted patterns from the ‘Smart Thermostat’ takes place in the last 

week of the simulation process).  In addition to the case 4 scenario described before, case 5 

introduces two additional parameter changes; the additions are: Monday Cluster Heat Set 

Point 3 changed from 18 °C to 17 °C, and end time of Set Point 3 and start time of Set Point 

4 from 7:00 AM to 18:00 PM, to 7:30 AM to 18:30 PM. 

As before, the changes take place after three weeks of OLA learn and adapt schedule. 

The estimated savings of the daily adapted patters (only for the last week of simulation 

process) indicate 13 KWh in comparison to the reference case study 2.  

The significance of quantitative results (when multiplied by 4.2 as an approximate 

measure of monthly occurrences) shows savings of 54.6 KWh per month for very small 

changes in pattern behavior of the user; in fact the total conservations add up to a total of 

54.6 + 147 KWh = 201.6 KWh per month for OLA enabled, ZC enabled and FEL active.  

Hence, adapting to changes makes a difference in the overall results, and demonstrates 

performance and benefits of OLA and ZC enabled Smart Home with FEL/Sensors active.  

Table 6.8 - Statistics of set points start/stop times 

 
 

The statistical analyses of multiple tests performed in order to validate the OLA 

algorithm at work are shown in Tables 6.8 and 6.9. Two scenarios shown in Tables 6.8 and 

6.9 emulate pattern changes of user preferences, with respect to the Set Point Start and End 

times and Heat Set Points, for each day of the week.   
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Table 6.9 - Statistics of heat set points 

 
 

As presented in Tables 6.8 and 6.9, different input parameters were used for each day of 

the week (for both cases).  The outcomes of OLA adapted values (after three weeks of 

learning) are normally distributed and fall within the limits of the 95 percent confidence 

interval of the sample mean values (for confidence interval calculation refer to Appendix D). 

From Table 6.8, we can observe that the OLA adapted values, for example, for the 

Monday schedule when the occupant leaves a house at 7:30 AM (converted to 7.5 hours in 

simulator) first week, and on the second and third week leaves at 7:45 AM and 8:15AM, 

respectively. The OLA adapted value after the third occurrence is not the average value of 

three consecutive occurrences which is 7:49:48 AM (i.e. 7.83 hours), instead is 7:45:00 AM 

(i.e. 7.75 hours).  Thus, implies that OLA adapts the value which is closer to frequent 

occurrences. Furthermore, referring to Table 8, from Friday`s occupant pattern changes (time 

of leaving the house), it can be observed that OLA adapted value is 7:45:00 AM (7.75 hours) 

which, in fact is the occurrence of pattern on first and third week).  Hence, OLA did not 

adapt the average value of three weekly occurrences, which is 8:34:48 AM (8.58 hours) 

affected by a change of pattern on second week of observation 10:45 AM (7.75 hours).  

Instead it adapted the value which is closer to the typical user patterns observed during the 

first and third occurrence, and at the same time leads to energy conservation (if the occupant 

typically leaves a house at 7:45 AM, there is no need to keep the indoor temperature at 21°C, 

for an extra hour, knowing that scheduled leave heat set point, set by the occupant is 17 °C).  

The same principle is also valid for the heat set points scenario as depicted in Table 6.9.  By 

taking the week of Friday as an example, where the first week’s ‘Away’ set point (refer to 
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Table 6.2, Monday to Friday schedule) was changed from 18 °C to 19 °C, on second week it 

was set to 18 °C, and it was changed again to 22 °C in the third week. If the average of three 

occurrences was taken, the adapted value would have been 19.67 °C, which indicates a shift 

of almost two degrees from a typical schedule initially chosen by the occupant.  Thus, the 

OLA adapted value of 18.5°C, is closer to the occupant’s scheduled set point, and it leads to 

energy conservation.  

In all the scenarios described above, the relations of energy savings to the occupant’s 

comfort are in agreement with the occupant’s preferences of initial schedule, temperature 

limits and tolerances, based on which OLA acts.  One of the advantages of OLA enabled 

house is that the comfort of the occupant is not altered during the process.  Instead, 

occupant’s preferences are maintained, while energy savings are achieved.  

 

6.6 Summary 

 

The OLA algorithm enables ‘Smart Thermostat’ to utilizes FEL (i.e., sensors) and learning 

capabilities to adjust and adapt schedule based on user input pattern changes and 

preferences, taking into consideration parameters, such as zone offset tolerances, comfort 

settings, utility DR and TOU rates, etc.   

OLA encompasses the main attributes which could provide potential improvement to 

the current PCTs with regard to their lack of intelligence, by adding learning capabilities and 

flexibility to act and adapt without intervention due to the occupant’s pattern and/or schedule 

changes (as it was demonstrated in this chapter).  The notion of “Smart and Adaptable 

Devices,” has to be considered as an important attribute of current PCTs.  OLA with the aid 

of sensors and application of ALS model learning technique captures the essence of an actual 

PCT reflecting into a smart and adaptable device.  As it was demonstrated during the 

performance evaluation, the OLA adapted values (after three weeks of training) are obtained 

and are within 95 percent of the sample mean values. Moreover, performance results indicate 

potential savings with respect to energy consumption for zone controlled OLA enabled 

house versus a house with OLA disabled and no zone controlled environment.  
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE RESEARCH 

 

7.1 Conclusions 

The main objective of this thesis was to investigate and bring forward an ‘Adaptive Systemic 

Solution,’ with the aim of improving energy management and conservation in Smart Homes 

and Buildings, and by the same token enhancing the learning capabilities of current PCTs -

‘transforming’ them into smart and adaptable devices i.e. ‘Smart Thermostats’.   

Section 1.7 of Chapter 1, briefly summarizes thesis contributions, whilst below are 

described the concluding remarks of the thesis contributions, and research efforts. 

An Adaptable Hybrid Intelligent System utilizing WSN and AI techniques was 

proposed, based on which, a novel ALS model utilizing WSN, rule-based system and ART 

concepts, was proposed and demonstrated.  The proposed ALS analytical model (described 

in detail in Chapter 3) is a technique which enables PCTs to learn and adapt to the 

occupant’s input pattern changes and/or other parameters of interest. In order to verify the 

ALS model, two different scenarios involving pattern changes of temperature set point of the 

PCT, including leave time, were considered. In both cases, the ALS model adapted values 

were much closer to the occupant’s preferred values, and demonstrated improvement with 

respect to energy conservation, when compared to just averaging of values.   

A new algorithm for finding global maximum of a function with minimal function 

evaluation/iterations in a predefined interval within a two dimensional space was proposed 

(Chapter 4).  The proposed algorithm represents a synergy of concepts from the RL and 

agent-based techniques, for use in small-scale embedded systems with limited memory 

and/or processing power, such as wireless sensor/actuator nodes (i.e., intelligent agents). The 

“Reinforcement Learning and Agent-based Search” application was implemented in order to 

observe the algorithm at work and demonstrate its main features. The main benefits of the 

proposed algorithm are to ‘bridge a gap’ between the EGUs (i.e., utilities) and “Smart 

Thermostats” into “Smart Grid” initiatives. Several sample functions with different 
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characteristics were tested in order to verify the performance of the algorithm with ‘RL only’ 

versus ‘RL and Agent-based Search’ - emulating different scenarios, such as finding critical 

global and local peak load demand points, which can be used in conjunction with the utilities 

(via DR and TOU rate incentives) in managing peak load demands. During the verification 

process of the algorithm at work for function: y = 2 ((cos (πx) / x) + 1) where x ϵ [1, 5], step 

size of 0.005 and tolerance of 0.05, it was observed that for the ‘RL and Agent-based 

Search’ technique global and local maximum was found after 30.8 iterations (calculated 

from 10 trials) versus 189 for ‘RL Only, while the number of function evaluations was found 

to be 109.2 versus 382 for ‘RL Only’. The error of points was less than the set tolerance of 

0.05. Thus, the enhancement to the algorithm provided by the integration of agent-based 

concepts is shown to yield better performance (i.e., less function evaluation needed to find 

the optimal points within a predefined interval). Additionally, several other functions more 

closely related to the real-world scenarios i.e., load profile functions representing the peak 

load demand at different times of a day were considered.  As an example, based on the 

results obtained via the algorithm at work, during the execution of the utility load profile 

function represented by y1 = 0.941 x
 6-7.3795 x

 5+21.2895 x
 4-28.0191 x

 3 + 16.540 x
 2 - 

2.8859 x + 0.6294 with time interval 0 to 2.4 (x10 hrs), step size of 0.005 and tolerance of 

0.05, the results indicated better performance of the ‘Reinforcement Learning and Agent-

based Search’ versus ‘Reinforcement Only’ for the utility function y1 being evaluated.  The 

improvement factor was 9.47 for the number of iterations (i.e., 13.3 versus 126 iterations) 

and 3.75 for the number of function evaluations (i.e. 68.1 versus 256). Furthermore, the 

maximum value Pmax with respect to time of a day (hrs) and energy usage (%) was (18.5, 

167.74) and the error of maximum value found via algorithm Pmax (18.3, 167.67) was much 

less than the set Tolerance (i.e., time of a day: 0.05 x 10 = 0.5 hrs, energy usage: 0.05 x 100 

= 5 %). Similar results were obtained for other utility load profile functions, reflecting 

different patterns of possible peak load demand.   

The ‘House Simulator’ (Chapter 5) was developed as a tool to simulate house 

heating/cooling systems (equipped with PCTs) under different scenarios and for different 

TOU rates applied. More importantly, the role of a ‘House Simulator’ was to assist in 

implementation and evaluation of the proposed OLA algorithm; thus, representing an ‘expert 

system shell’ whereas the main blocks consist of a ‘House Simulator,’ a ‘Smart Thermostat,’ 
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and a placeholder for ‘Adaptive Learning’ models to be implemented and evaluated. The 

approximate energy savings of the scheduled set point settings (refer to Tables 2 and 3) 

versus fixed set point (20 ºC) for a period of three months demonstrated potential energy 

savings of 906 KWh. Moreover, the comparison of simulation results for the zone controlled 

house (i.e., scheduled set points for zone 1, and 17 ºC for zone 2) versus the entire house 

(with scheduled set points), confirmed additional energy savings of 614 KWh.   

Furthermore, a novel adaptive learning algorithm ‘Observe, Learn and Adapt’ based on 

the ALS model was proposed and implemented (Chapter 6). Its evaluation was achieved 

with the aid of a tool being developed for this purpose i.e., ‘House Simulator’ (Chapter 5).  

Based on the ASHRAE recommendations [AME09], the thermal model for a house was 

derived and ‘Simulation Engine’ implemented. The Knowledge-Base technique for Zone 

Controlled Environment (i.e., airflow rate and heater adjustment) was proposed. It was 

demonstrated via emulation of real-world scenarios, that the OLA algorithm is a practical 

implementation reflecting the main features of the ALS learning technique. In 

configurations, such as of the entire house with OLA enabled versus entire house with OLA 

disabled, for the duration of 30 days and minimal changes, the results of OLA’s performance 

assessment, showed potential energy savings of 79 KWh. While in comparison to 

configurations which consider a zone controlled OLA enabled house, provides an additional 

279 KWh of energy savings.  Thus, the improvements with respect to relative energy 

consumption/savings with and without application of OLA algorithm are obvious. It has to 

be noted that the Knowledge-Base implementation for the zone controlled environment 

(depicted in a general form in 1.17), is an integral part of the overall OLA’s design.   

Moreover, in order to further evaluate and validate the performance of OLA, a 30 day 

simulation was executed with FEL active and inactive (i.e., with and without input from 

sensors) where several occupants’ pattern/schedule changes occurred. In the case of OLA 

with FEL inactive (i.e. no sensors, incapable to observe and adapt) the system is unable to 

detect the occupant’s changing patterns/schedules, while in the case of OLA with FEL 

active, this is possible, and therefore is utilized to adapt and apply the new pattern changes to 

the current schedule.  For a small change of only two Set Point end times for daily clusters of 

Monday: Set Point 2 changed from 6:00 to 8:00 AM, to 6 to 7:30 AM, respectively for 

Tuesday Cluster from 6:00 to 8:00 AM, to 6:00 to 7:15 AM, for only two occurrences of the 
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above scenario within a 30 day period (since the learning rate of OLA is 3 weeks before 

adapting to the changes) the estimated savings for a daily adapted pattern was 5 KWh for an 

OLA enabled house with zone controlled and FEL active versus configuration with FEL 

inactive; which in fact is 152 KWh when compared to a configuration without zone control, 

with FEL inactive and OLA disabled. The resulting changes were observed in the Master 

Cluster file, and scheduled event occurrences, which took place after the changes were 

adapted, validating the successful adaptation of OLA to the changes. Further experiments 

were conducted with a multitude of actual Heat Set Points and start and end time changes, 

and the adapted values taking effect were obvious (as described in detail in Chapter 6, 

Section 6.5).   

The results of OLA’s performance evaluation confirm improvements of an actual OLA 

enabled house with respect to energy savings, and validate the ALS model implementation 

via OLA. In addition, it also brings to fruition the concept of a ‘Smart Thermostat’ - a PCT 

with enhanced learning and adapting capabilities (based on the occupant’s input pattern 

changes and other preferences).  Moreover, a zone controlled OLA enabled house with FEL 

active (i.e., equipped with sensors), shows further performance improvements with respect to 

optimized energy conservation and comfort.   

7.2 Future Research 

 The convergence of AI techniques and WSN, and their blend into AmI (perhaps the next 

step in AI’s evolution) indicate an interesting area to be considered and explored further for 

numerous applications in Smart Homes and Buildings.   

Moreover, finding an intelligent solution for optimal tuning of the zone controlled 

heating/cooling system parameters, which complements the OLA and Knowledge-Base of a 

‘Smart Thermostat’ presented in this thesis, could be very practical and challenging 

interdisciplinary research (i.e., taking into account that in addition to size, type of materials 

used, layout, orientation, number of occupants, type of heating/cooling system used, thermal 

dynamics of each building are different). Possible further improvement of OLA to be 

considered might be the addition of a fuzzy logic approach for potential self-tuning of offsets 

related to control of airflow rate and heating/cooling stages applied for different zones i.e., 

within large buildings. Investigation of fuzzy logic in conjunction with rules-based technique 
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application could prove to be an effective approach to be considered in this case.  On the 

other hand, consideration of OLA’s behavior during seasonal transitions could be another 

interesting issue to be considered for further improvement. Although, typical schedules for 

the first occurrence of each season can be chosen as a starting point for the learning process, 

other approaches might be worth while investigating.    

The concept of a ‘Smart Grid’ which extends beyond the work presented in this thesis is 

an extension which could be a viable direction to follow in order to achieve interoperability 

of different systems on a bigger scale. The ALS model can be utilized to further extend the 

applicable research of ‘Adaptable Systems for Smart Buildings’ into ‘Smart Grids’.  One key 

point to be mentioned is further exploration of AmI and non-intrusive means to incorporate 

autonomous distributed sensors i.e. ‘intelligent agents’ within Smart Homes and Buildings, 

which in addition to complementing the ‘Smart Thermostats’, assist in the overall picture of 

‘Smart Grid’ by helping in peak load adjustment (i.e. controlling of smart appliances, load 

control switches, plug-in hybrid electric vehicles, lighting control, HVAC systems, etc.) 

during peak load hours and/or other times. Managing and/or predicting the peak load 

scenarios, while acting in a harmonized manner within different geographic areas of a city 

and/or state, where demands are not necessarily uniformly distributed, could pose an 

interesting challenge to address; it could encompass EGU, SCADA systems, Smart Meters, 

‘Smart Thermostats’, ‘intelligent agents’ and/or other.   In addition, the application of RL 

and Agent-based technique such as presented in Chapter 4 could be further extended by 

adding more ‘awareness’ and intelligence to sensor/actuator nodes (related to control of 

appliances, load control switches, etc), which could aid in load curtailment. In addition, the 

algorithm might be further enhanced by considering its implementation and feasibility in 

three dimensional spaces. 
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APPENDIXES 

APPENDIX A 

SIMULATION OF LARGE WIRELESS SENSOR NETWORKS USING CELL-DEVS 

A.1 Introduction 

The advancement of electronic sensing devices, microcomputers and wireless 

communication devices has lead to creation of new smart sensors, which can monitor 

actuate, compute and communicate. Typically, these sensors are deployed in non-

deterministic mode (randomly) when deployed in large numbers. These sensor devices have 

the capability to self-organize into the so-called Wireless Sensor Networks (WSN). WSN are 

ad-hoc networks, consisting of these spatially distributed sensing and processing devices. 

We introduce a model and a simulation study of Large Wireless Sensor Networks (WSN) by 

implementing the Topology Control Algorithm. We use the Cell-DEVS formalism, which 

enables efficient execution of cellular models. Thereafter, we observe and evaluate the 

behavior of sensor nodes and entire WSN from the simulation results obtained, under 

different test scenarios. 

The emergence of powerful embedded micro-computer systems for wireless sensor 

networks provides a good ground for creation of new smart sensor systems, which can be 

useful to further promote new scientific endeavors and enhance our lives.   Wireless sensors 

can monitor actuate, compute and communicate, yet are small in size and low in cost. The 

WSN are ad-hoc networks, consisting of these spatially distributed sensing and processing 

devices [HEA08]. WSN are used in many different applications, such as medicine, 

transportation and urban monitoring, traffic control, military, environment and habitat 

monitoring, energy management, smart homes, industrial applications, etc. The effectiveness 

of WSN is not just in their monitoring, actuating, computing and communications 

capabilities: with the added processing power, analog and digital ports, transceivers and 

memory, they can self-organize and communicate in the deployed area (as depicted in Figure 

A.1). Their processing power is limited however, and WSNs are usually deployed in large 

numbers and their load is shared accordingly.  
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Figure A.1 - Sensor nodes self-organized 

Due to the fact that sensor nodes have limited bandwidth, computing power and limited 

energy resources, one of the constraints in WSN is the energy efficiency of sensor nodes 

(i.e., their power consumption). There are many different approaches to solving the energy 

efficiency problem, such as the Topology Control Algorithm [CUN05] [YE02] [SHEN07].   

The objective of this algorithm is related to the efficiency of WSN network, and it focused 

on how to increase its lifetime. The rationale of the network topology control algorithm is to 

reduce the number of redundant sensor nodes monitoring a particular region, hence 

increasing the efficiency and lifetime of the WSN network. In a nutshell, topology control 

exploits the redundant deployment of the sensor nodes, overcoming their energy limitations 

by restricting the set of nodes which are considered neighbors of a given node, while making 

sure that sensing area is still covered by a sufficient number of sensors. Furthermore, it 

reduces interference problems (which are noticeable when large number of sensor nodes are 

active).  

We here introduce a model and a simulation of Wireless Sensor Networks (WSN) by 

implementing the Topology Control Algorithm using the Cell-DEVS formalism (which 

enabled efficient execution of this cellular model). The complexity of the problem can be 

simplified using the CD++ toolkit and the Cell-DEVS formalism (implementing this 

simulation in a other high level programming language is much more complex).  

The rest of the work is organized as follows: we first give an overview of the Cell-

DEVS formalism, followed by the WSN model definition. Thereafter, we observe and 

evaluate the behavior of sensor nodes and entire WSN from the simulation results obtained, 

under different test scenarios. We then describe and discuss the simulation results, analysis 

and discussion of the initial and improved results for different scenarios.  

 



 

139 
 

A.2 Model Definition 

Due to the complexity of the model under study, we used Cell-DEVS [WAI02] and the 

CD++ toolkit [WAI02], as an efficient way to model and simulate cellular models [CHO98], 

in our case the WSN topology problem. Cell-DEVS is an extension to the DEVS formalism 

[8], which has been used to model systems that can be represented as cell spaces. A Cell-

DEVS model is represented as a cell space, where each cell is represented as an atomic 

DEVS model. Each cell is connected to the local neighboring cells. A delay mechanism in 

each cell (transport delay or inertial delay) is used to delay the propagation of state change 

events through the cell space, providing the means for defining complex temporal behavior. 

An Atomic Cell-DEVS can be defined as follows: 

 

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 

 

Where X is the set of external input events; Y is the set of external output events; I 

represents the definition of the model’s modular interface; S is the set of possible states for a 

given cell; θ is the definition of the cell’s state variables, N is the set of values for the input 

events; d is the delay of the cell; δint is the internal transition function; δext is the external 

transition function; τ is the local computing function; λ is the output function, and D is the 

duration function. 

A Coupled Cell-DEVS model is built by connecting a number of Atomic Cell-DEVS 

models together into a cell space of any shape (including 2D and 3D cell spaces). The 

borders of the cell space can be either wrapped, in which case the cells at the border from 

one side of the cell space are considered neighbors to the cells at the border on the opposite 

side of the cell-space, or non-wrapped, in which case the border cells must have special rules 

defined by the modeler. A formal definition of Coupled Cell-DEVS is: 

 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,….,tn}, N, C, B, Z, select > 

 

Where Xlist is the input coupling list; Ylist is the output coupling list; I represents the 

definition of the model’s modular interface; X is the set of external input events; Y is the set 



 

140 
 

of external output events; n is the dimension of the cell space; {t1,….,tn}is the number of 

cells in each of the dimensions; N is the neighborhood set; C is the cell space; B is the set of 

border cells; Z is the translation function; and select is the tie-breaking function; 

CD++ is an M&S toolkit that implements DEVS and Cell-DEVS theory [WAI01] 

[WAI02][ZEI02]. Atomic models can be defined using a state-based approach (coded in 

C++ or an interpreted graphical notation), while coupled and Cell-DEVS models are defined 

using a built-in specification language. CD++ also includes an interpreter for Cell-DEVS 

models. The model specification includes the definition of the size and dimension of the cell 

space, the shape of the neighborhood and borders. The cell’s local computing function is 

defined using a set of rules with the form: POSTCONDITION DELAY 

{PRECONDITION}. This indicates that when the PRECONDITION is satisfied, the state of 

the cell will change to the designated POSTCONDITION, who’s computed value will be 

transmitted to other components after consuming the DELAY.  

We have used these facilities to create an advanced model of WSN, in which we can 

analyze the WSN topology problem. This problem is closely related to the minimum 

configuration of nodes for fully operational WSN, taking into account sensor node energy 

limitations for a long lasting - survivable WSN networks. In our model, we have structured 

the area as a two-dimensional cell space of size n x n, where every cell represents one sensor 

node. The WSN considered is such as all the sensor nodes have same properties 

(homogeneous WSN) and flat (i.e. no hierarchy among nodes). Each node can have up to 8 

neighbors and there are 3 possible states for each cell (active, stand-by, and inactive). For 

this model, Moore’s neighborhood is adopted (i.e., the origin cell and its 8 close neighbors). 

As a result, the Cell-DEVS simulation model, gives an insight into an elegant way of 

implementation the Topology Control Algorithm for a large WSN; in our particular case, 

addressing the issue of sensor node energy conservation to achieve a longer lifetime 

operation of the WSN.  

During the active mode of operation, the node emulates an active sensor within the 

WSN (i.e. performs processing tasks, hence using energy which decreases with time). In the 

beginning of simulation, all the sensor nodes deployed, have the same amount of energy 

which decreases as time progresses while node is in active mode (maximum energy 

consumption) or in stand-by mode (minimum energy consumption). During the stand-by 
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mode, sensor node is consuming a minimal amount of energy; it wakes up randomly in order 

to see if other close-by nodes are already sensing/monitoring the predefined neighborhood 

area. If less than two sensor nodes within the neighborhood are active, the cell goes again 

into stand-by mode; otherwise it becomes active. After the entire energy of a cell is 

consumed, the cell becomes inactive; this process continues until all the sensor nodes’ 

energy is consumed (i.e. all the cells are inactive).  

The n x n cells in the cell space considered were organized in two planes reflecting a 

three dimensional space implemented to meet the basic constraints (of the defined WSN 

Topology problem) while exploring and capturing the main tasks of the problem considered. 

Each sensor node starts to operate with a fixed amount of energy. In this model the energy 

levels adopted based on [CUN05] [YE02] are the following: 

WSN sensor energy (at the beginning of operation) = 0.8 J 

The energy of an WSN sensor node in active mode decreases by 0.0165 J every time step (in 

our case every 1 sec) 

The energy of a WSN sensor node in stand-by mode decreases by 0.00006 J every time step 

(in our case every 1 sec) 

 

The WSN sensor node possible states are: 

Plane 0: 

2 - WSN sensor node is in active mode within the neighborhood (WSN sensor coverage 

area) 

1 - WSN sensor node is in stand-by mode within the neighborhood (WSN sensor coverage 

area) 

0 – WSN sensor node is passive (i.e. energy of a node is consumed) 

 

Plane 1: 

0.8 - initial energy level of WSN sensor nodes  

-1 - WSN sensor node is passive (i.e. energy of a node is consumed) 

Neighborhood ={ (-1,-1,0) (-1,0,0), (-1,1,0), (0,-1,0), (0,0,0), (0,1,0)( 1,-1,0),(1,0,0),(1,1,0), 

(0,0,1), (0,0,-1) }  
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Plane 0 contains the different deployed sensor nodes, and it is used to be observed 

throughout the simulation of the model. Plane 1 was used as “memory” for keeping track of 

the energy levels of active and stand-by nodes. The correct decrease of energy level and 

node behavior in the Plane 0 is interrelated to Plane 1 which contains the sensors energy 

information throughout the simulation. 

The Plane 0 areas are organized as follows: 

 

 

Figure A.2 - Plane 0 organization (zones) 

 

TL - Top left rule, sensor node in the top left corner, i.e. origin coordinate (0, 0) 

TC - Top center rule, sensor node coordinates (0, 1) to (0, 9) 

BC - Bottom center rule, sensor node coordinates (10, 1) to (10, 9) 

TR - Top right rule, sensor node coordinate (0, 10) 

BL - Bottom left rule, sensor node coordinate (10, 0) 

BR - Bottom right rule, sensor node coordinate (10, 10)  

Right rule, sensor node coordinates (1, 10) to (9, 10)  

Left rule, sensor node coordinates (1, 0) to (9, 0)  

The rest of a cell space is WSN rule, i.e. local transition rule of the model. 

The initial model was organized as shown in Figure A.2. The partitioning of the cell 

space into ‘zones’ was done to experiment with the problem at hand (initially) by isolating 

the ‘zones’. Hence, easing the task to be solved, by observing sensors’ operations at different 

‘zones’ (and their interaction) prior to optimizing the final solution. 

When compared to the initial model, the improved model (refer to Figure A.3) are the 

following: 

Entire cell-space can be populated with sensor nodes  
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There are no limitations to functionality of the model (Plane 0 organization)  

Cell space is not divided into zones 

Enables more flexibility to the initial model (reduces significantly the code size)  

Randomness was implemented within the model (it enables us to represent more closely the 

real-world applications related to WSN) 

 

Figure A.3 - Plane 0 organization (improved model) 

In addition to the existing states present in the initial WSN model (described earlier), an 

additional state was implemented in Plane 0 of the improved WSN model: 

3 – WSN sensor node is typically in stand-by mode; however, nodes randomly become 

active if one or two nodes are active 

Within the neighborhood (Moore’s neighborhood coverage area); node goes back to stand-

by mode if the condition is true  

(i.e. one or two neighborhood sensors are active), otherwise it remains in the active mode. 

 

A.3 WSN Behavior Definition  

 

In Plane 0, each Moore’s neighborhood (consisting of 9 cells) typically is covered by one 

active cell (with the value of 2) and the rest of the stand-by cells have a value of 1, whilst the 

passive cells have a value of 0. At the initial stage all the WSN sensor nodes deployed within 

the WSN network area (represented by cell space) are active for several time steps until they 

configure themselves to active and stand-by mode nodes.  

In Plane 1, for every time step, the energy of active cells is decreased; the amount of 

energy available x, for any active and stand-by mode cells before cell dies is 0 ≤ x ≤ 0.8. 

Each cells energy level in Plane 1 serves as a reference (memory) of the Plane 0 active and 

stand-by mode cells (represented by value of 2 and 1 respectively). Plane 0 refers to Plane 1 

by (0, 0, 1), while Plane 1 refers to Plane 0 by (0, 0,-1) neighborhood coordinate (refer to 
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Figure A.4). The neighboring cells which are in a stand-by mode are represented by the 

value of 1 within the cell, and are also decreased in negligible quantities during the stand-by 

mode; The active cells become passive after their energy is consumed and are replaced by 

the neighboring cells which are yet alive (cells currently in stand-by mode). 

 

 

Figure A.4 - Cell space definition 

 

The neighboring cells which are in a stand-by mode are represented by the value of 1 

within the cell, and are also decreased in negligible quantities during the stand-by mode; The 

active cells become passive after their energy is consumed and are replaced by the 

neighboring cells which are yet alive (cells currently in stand-by mode). The cell-space in 

Plane 0 defines sensor nodes, whilst in Plane 1 energy level corresponding to each node 

(refer to Figure A.4).  

The algorithm steps through each neighborhood and decides on which nodes stays 

active and which is to be configured as a stand-by nodes; where each neighborhood of cells 

is checked for present active cells by comparing the present cell’s value with the residual 

energy (which is check referenced in Plane 1) until they becomes passive (represented by 

value of 0 in the cell space); Afterwards, one of the stand-by neighboring cell is assigned to 

becomes active, and this process continues until all the cells become passive (i.e. the energy 

resources of all sensors is consumed). Plane 1 updates the energy levels of each cell during 

the simulation as per the specifications. 

The WSN simulation model provides closer approximation to the WSN topology 

algorithm by implementation of randomness within the WSN model; where randomness, 

redundancy and configuration of nodes play a significant role in reflecting the key factors in 

deployed networks, such as a network lifetime, coverage area and ratios of active and stand-
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by sensors at specific points in time. Randomness was implemented by adding another rule 

(refer to the rule 3 below) to the model, where stand-by cells randomly become active if only 

one or two active neighbors are active. The actual results obtained with the improved model, 

more closely reflect the real-world scenarios and provide better insight into the WSN 

topology problem.  

The problem could be reduced and coded with less than 30 lines of code utilizing the 

CD++ toolkit and Cell-DEVS, as shown in the following figure 

 

[WSN] 

type : cell  

dim: (33, 33, 2)       

delay : transport 

border : nowrapped  

neighbors :  (-1,-1,0)  (-1,0,0)  (-1,1,0) (0,-1,0)   (0,0,0)   (0,1,0) 

neighbors :  (1,-1,0)   (1,0,0)   (1,1,0)  (0,0,1)    (0,0,-1) 

 

localtransition : WSN-rule 

[WSN-rule] 

rule : { (0,0,0) - 0.0165 }  1000 {cellpos(2) = 1 and  (0,0,-1) = 2 } 

rule : { (0,0,0) - 0.00006 } 1000 {cellpos(2) = 1 and (0,0,-1) =1  } 

rule : { (0,0,0) - 0.0165 }  1000 {cellpos(2) = 1 and  (0,0,-1) = 3 } 

rule : 3 1000 {cellpos(2)=0  and (0,0,1)>0 and 

               ( (0,0,0)=1   and (statecount(2)=2 or statecount(2)=1) and randInt(30)=11 ) } 

rule : 2 1000 {cellpos(2)=0  and (0,0,0) !=0 and (0,0,0) !=3 and (0,0,1) > 0 and (0,-1,0)!=2           

             and (1,-1,0)!=2 and (1,0,0)!=2 and (1,1,0)!=2 } 

rule : 1 1000 {cellpos(2)=0  and (0,0,0) !=0 and (0,0,1)>0 and 

               ( (0,-1,0)=2  or (1,-1,0)=2 or (1,0,0)=2 or (0,1,0)=2 or (1,1,0)=2 or  

              (cellpos(2)=0  and (0,0,0)=3) or (-1,-1,0)=2 or (-1,0,0)=2 or (-1,1,0)=2 ) } 

rule : 0 1000 {cellpos(2)=0  and ((0,0,0)=1 or (0,0,0)=2 or (0,0,0)=0)  and (0,0,1) <= 0 } 
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A.4 Simulation Results 

 

We executed numerous tests, and in this section we present some of the simulation results 

obtained and discuss their meaning. The Figure A.5 shows the graphical representation of 

the sensor node states defined in the simulation model: 

 

 

Figure A.5 - Possible sensor states of the initial WSN model 

 

On the left side of the Figure A.5 we have the Plane 0 configuration, where 2 - indicates that 

a sensor node is active, 1 – indicates that a sensor node is in stand-by mode and 0 - indicates 

that a sensor node is in passive state (i.e. energy of a node is consumed); while on the right 

side of the Fig.A5 we have the Plane 1 configuration, where x – is the energy level of WSN 

sensor nodes (green cells are the sensor nodes with enough energy, while blue color signifies 

that the sensor nodes are close to dying), 1 - WSN sensor node is passive (i.e. energy of a 

node is consumed) 

The first simulation results presented are shown in Figure A.6 below. Based on the 

specification, we can see the sensor nodes active at the beginning of the simulation (red 

cells), while the light blue cells represent the unpopulated zones within the cell space.  

 

 

Figure A.6 - Plane 0 (left, red) and Plane 1 (right, green) prior to execution 
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The following Figure A.7 shows the WSN network during the process of 

reconfiguration, where nodes are trying to form a structure and every neighbor is trying to 

set some sensors in active mode while others remain in stand-by. The Plane 1 stores the 

energy level of each sensor node, which can be monitored. 

 

 

Figure A.7 - Snapshot of simulations results after 6 time steps 

 

Figure A.8 shows that the WSN sensors are reconfigured as per the specifications and 

each neighborhood is covered by typically one active node while others remain in stand-by 

mode (energy of each note is decreasing during each step based on the model specification). 

 

 

Figure A.8 - Snapshot of simulations results after 15 time units 

 

Figure A.9 shows that several active nodes (from previous step) are now passive (died 

cells - Plane 1 on the right, gray cells), while cells that were previously in stand-by mode are 

taking over by becoming active. 
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Figure A.9 - Snapshot of simulations results after 62 time units 

 

In these simulations, all the sensor nodes become passive after 197 time steps. By 

comparing the end result of our simulation and the results obtained in [CUN05] (in 

particular, the number of active sensors after 200 time units), it can be observed that after 

approximately 200 time steps all the active sensors become passive (as energy of all nodes is 

consumed). Hence, the simulation results obtained by our model very closely reflect the 

same behavior (i.e. after 197 time units the active sensors become passive). These results can 

be seen in Figure A.10. 

 

 

Figure A.10 - Initial WSN simulation results using Cell-DEVS 
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From the Figure A.10 it can be observed that in the worst case scenario (bottom left 

graph), when all nodes are active all the time, the sensor nodes die after 48.48 time units 

(where the energy of a node in each step is consumed by 0.0165 J and the initial level of 

sensors’ energy is 0.8 J), while when using the Topology Control Algorithm, where selected 

sensor nodes within a Moore’s neighborhood are alive (top left graph), the number of 

alive/active sensor nodes decreases gradually, extending the life of sensor nodes to 197 time 

units (top right graph) and the coverage area (bottom right graph).  

Our following results present an improved version of the WSN model, in which we use 

the following is the graphical representation of the sensor node states defined within the 

simulation model: 

 

Figure A.11 - Possible sensor states of the improved WSN model 

 

With respect to the initial model (refer to Figure A.5), in representing the sensor node states 

of the improved model, we have added an addition sensor state to indicate the randomly 

active sensor nodes, as depicted in Figure A.11. 

This model provides closer approximation to the WSN topology algorithm by 

implementation of the randomness within the WSN deployed. The actual results obtained, 

more closely reflect the real-world scenarios and provide better insight into the WSN 

topology problem and how efficiently similar problems can be implemented utilizing Cell-

DEVS and CD++ toolkit. The improved model is quite easy to modify in order to simulate 

different sizes of WSN networks. In this case, it requires to change only the values n and m 

(i.e., one line of specification, dim : (n, m, 2) where n is the number of columns and m is the 

number of rows in the model and provide the desired initial energy levels for the sensor 

nodes). The example below (refer to Figure A.12) represent the simulation model for 

WSN33, where the cell space is constituted by 33 rows and 33 column, and the total number 

of cells (sensor nodes) is 1089. 
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Figure A.12 - Snapshot of Plane 0 (left, red) and Plane 1 (right, green) prior to execution 

 

The following Figure A.13 shows the 33 x 33 WSN network during the process of 

reconfiguration, where nodes are trying to form a structure and every neighbor is trying to 

set some sensors in active while others remain in stand-by mode. Some of the stand-by 

nodes are randomly awaken (in Fig.A13 left, the cells in blue in Plane 0). In case that only 

one or two sensor nodes are active, stand-by nodes randomly become active and return to 

stand-by mode only if one or two more sensor nodes are currently active within the 

neighborhood. On the Plane 1 data (refer to Figure A.13 right), we can see the energy level 

of each sensor node up to this time step (see in green, indicating that the energy levels x of 

sensor nodes are: x ≥ 0.05J). 

 

 

Figure A.13 - Snapshot of simulations results after 40 time units 
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Studying the simulation results of this Cell-DEVS model (presented in Figure A.14 and 

A.15), we can be see that the coverage area by sensors is reduced after 134 time steps, when 

more and more nodes become passive (as their energy is consumed). As time progresses, 

there is a smaller area of the WSN cell-space covered. Finally, after 193 time units, the WSN 

cell-space becomes passive. Similar, results were obtained when WSN22 and WSN11 were 

simulated.  

 

 

Figure A.14 - Snapshot of simulations results after 134 time units 

 

Figure A.15 - Snapshot of simulations results after 164 time units 

 

Figure A.16 shows the number of active sensors versus time within the WSN network; 

evaluated for WSN deployment scenarios within two dimensional cell-spaces, using Cell-

DEVS: 

WSN11 - representing 11x11 cell-space, with 121 sensor nodes 

WSN22 – representing 22x22 cell-space, with 484 sensor nodes 

WSN33 – representing 33x33 cell-space, with 1089 sensor nodes 
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Figure A.16 - Number of active sensors with the algorithm using Cell-DEVS 

 

As we can see, the number of active sensors decreases after the configuration of sensor 

nodes, following the deployment, after which, redundancy is reduced by having only one 

active node within the Moore’s neighborhood (while other nodes are in stand-by). In 

addition, within each Moore’s neighborhood, the stand-by nodes become active randomly 

and remain active if no sensor is active or return to stand-by mode if any sensor node is still 

active. The results obtained provide clear indication that network lifetime is increase 

approximately by 4, which was shown also in [CUN05]. 
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Figure A.17 - Number of stand-by sensors with the algorithm using Cell-DEVS 

 

In Figure A.17, it can be observed that the number of stand-by sensors increases while 

the WSN cell-space is being configured, and starts to decrease as the active sensors’ energy 



 

153 
 

is consumed (refer to Figure A.16) hence stand-by sensors become active. Similarly, in 

Figure A.18 we can be observe that the number of sensors alive is at it maximum when the 

simulation starts (i.e. all the WSN sensor nodes are active) and starts slowly decreasing as 

the time progresses.  
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Figure A.18 - Number of sensors alive with the algorithm using Cell-DEVS 

 

An important aspect considered in WSN networks is the coverage area, which is closely 

related to the active sensors within the cell-space. When the redundancy of sensor nodes 

within the WSN is controlled, the network lifetime is prolonged; hence wider coverage area 

is maintained for a longer time, as shown by the simulation results in Figure A.19. 
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Figure A.19 - Sensor network coverage area (%) using Cell-DEVS 
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Finally, in Figure A.20 we can see the number of active sensors in the worst case 

scenario when WSN sensor nodes are active the entire time until the energy of sensors is 

consumed just before time 50; the network lifetime is approximately 4 time less in 

comparison to the implementation of WSN topology control algorithm using Cell-DEVS 

(refer to Figure A.16, A.18 and A.19). 
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Figure A.20 - Number of active sensors with the algorithm 

A.5 Conclusions 

 

The objective of this research work was to simulate a large Wireless Sensor Network (WSN) 

using Cell-DEVS, by implementing the Topology Control Algorithm. By observing and 

evaluating the behavior of WSN simulation model, under different test scenarios, it was 

proven the effectiveness of Cell-DEVS and the CD++ toolkit, as an elegant approach to 

model, simulate and analyze, in this case the WSN topology problem.  

The initial WSN model was further enhanced in order to provide closer approximation 

to the WSN topology algorithm by implementation of the randomness within the WSN 

deployed. In addition, modification and simplification of model was done, where cell-space 

is not divided into zones; allowing more flexibility to model any possible WSN cell-space 

configuration (entire or partial cell-space populated with sensor node). 

The actual results obtained with the improved model, more closely reflect the real-world 

scenarios and provide a better insight into the WSN topology problem, in particular. As it 

was observed in section 3, the complexity of the problem can be simplified and coded with 



 

155 
 

less than 30 lines of code, utilizing CD++ toolkit and Cell-DEVS approach; whilst similar 

problem if implemented in C/C++ (or any other high level programming language) could 

possibly take up to several hundred or perhaps thousands of lines of code (based on the 

implementation approach taken). Thus, proving how efficiently complex problems of similar 

nature can be implemented simulated and analyzed utilizing CD++ toolkit and Cell-DEVS 

approach.  
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APPENDIX B 

HEATER-COOLER SYSTEM PROTOTYPE 

B.1 Introduction 

Focus of this work is to design and emulate few potential features of a Heater-Cooler System 

Prototype by experiment (utilizing hardware and software).   

In order to implement and experiment the main project ideas, in addition to the 

PICmicro®MCU 24FJ128GA006 which is a Microchip’s Technology product, Heater-

Cooler System Prototype utilizes the following peripheral devices: 

One off board Temperature sensor (DS1631) 

One on board Digital Potentiometer 

Two on board Push Button(s) 

Three onboard LED(s) 

One off board 2x7 segment LED Display 

Two off board LEDs 

One off board Push Button 

 

B.2 Brief Overview of PIC24F PICmicro® and Design Tools 

 

B.2.1 PICmicro®MCU- PIC24F series 

 

The PICmicro®MCU is Microchip’s RISC based microcomputer that contains CPU, 

memory, oscillator and most of the peripherals inside a single integrated circuit.  The PIC 

24FJ128GA006 PICmicro®MCU adopted in the current design belongs to the Microchip’s 

family of PIC24F series of general purpose microcontrollers based on FLASH technology.   

The PIC24F series are 16-bit microcontrollers with modified Harvard architecture (with 

separate internal busses for memory and data).  The enhancement of the PIC24F 16-bit CPU 

core with respect to the previous PIC18F family of the microcontrollers are the following:   
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• Uses 16-bit data bus and 24-bit address bus with the ability to move information 

from between data and memory spaces 

• Linear addressing of up to 8MB for program space and 64Kbytes of data 

• 16 working registers  

• 17x17 hardware multiplier with support for integer math 

• Hardware support for 32x16 bit division  

• Barrel shifting/rotation up to 15 bits, left or right, shift or rotate 

• Instruction set that supports multiple addressing modes and is optimized for high-

level languages  

• Operational performance up to 16 MIPS (million of Instructions per Second) 

• Instruction clocking Tclk = Fosc/2 (previous families had Tclk = Fosc/4) 

 

B.2.2 Design Tools 

 

One of the most recommended high level languages for programming PICmicro®MCU is C, 

although other languages such as Pascal and PICBasic are commonly used.  Many 

companies offer C compilers for PICmicro®MCU such as, IAR, Hi-Tech, CCS, etc.  

In this work the CCS C Compiler for 24 bit PICmicro®MCUs.  The CCS C compiler 

for 24-bit PICmicro®MCU family is called PCD compiler which supports dsPIC30, 

dsPIC33 and PIC24 family.  The compiler implements efficiently typical C constructs, 

input/output operations and bit manipulations.  All typical data types and many built-in 

(wrapper) functions are available for ease of use and are optimized for code efficiency.   

The compiler’s IDE is user friendly and comes with a build in debugger, providing good 

ground for debugging and code implementation.  The In-Circuit Debugger (ICD-U40) on the 

other hand, enables programming and debugging or the PICmicro®MCU board (connects 

via USB to the PC and via ICD connector to the development board).   

Main block diagram of the Design Tools used to accomplishment this project is depicted in 

Figure B.1. 
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Figure B.1 - Block diagram of design tools used 

B.3 Design Implementation of a System ‘Emulator’ 

A simplified Heater-Cooler Prototype System was implemented in order to ‘emulate’ few of 

its potential features by experiment utilizing hardware and firmware.  The proposed system 

was experimented utilizing PIC24F microcontroller development board suitable for this 

scheme, other additional components and integrated circuits.  In addition to the hardware, for 

firmware development, Embedded C language for PICmicro® family from Custom 

Computer Systems Inc. (shortly CCS) was chosen. 

Main system tasks covered in the experimental work done for the Heater-Cooler System 

Prototype would engage the following activities:  

 

• Read the temperature sensor analog input (representing outside temperature) and 

display that information in LED segment display 

 

• Utilize digital potentiometer to “emulate” inside temperature change (e.g. 0 to 5V 

representing different temperature levels in degree Celsius) hence, making system to 

decide and take actions accordingly 

 

• Use LEDs to indicate different “system states” based on the level of temperature and 

data logging to monitor the actual temperature reading from sensor  

 

• Use push button to indicate/emulate “room occupancy”; logic high indicating that 

someone is in the room hence, system acts by keeping the room temperature normal; 
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logic low indicating that room is empty, hence system drops the room temperature to 

minimum value  

 

• Utilize interrupts within a system to maintain time, perform critical system tasks 

which do not fall into the category of sequential commands, hence require fast 

response (i.e. monitoring of buttons/switches pressed, de-bouncing, etc. during each 

interrupt e.g. every 1 millisecond) 

B.3.1 Implementation of a Simple Test Bed for Heater-Cooler System Prototype 

Figure B.2 below is a block diagram representation of a test bed for the Heater-Cooler 

System Prototype.  Main components of the design are depicted in a simplified form. 

 

Figure B.2 - Block diagram of a system 

24FJ128GA006 PICmicro® - is a 16-bit microcontroller offers good computational power 

and has a rich peripheral set of features desirable in the design of digital and embedded 

systems; hence can be utilized in the Heater Control System, as well.   
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The initial tasks included the selection of adequate input/output pins of the microcontroller, 

selection and configuration of the system clock to be used (setting of proper fuses); setting 

and configuration of the I/O port bits (direction), and also the analog to digital converter 

configuration.   

The 20 MHz primary oscillator was chosen as a system clock.  

Timer 1 Interrupts - The 24FJ128GA006 PICmicro® Timer 1 is a 16 bit register which 

was configured and used in the current design to monitor the critical tasks of the design. 

Taking into account the 20 MHz oscillator frequency and the execution cycle for typical 

instruction which for the PIC24F series which is 2 clock cycles proper ‘system tick count’ of 

1 millisecond was implemented in a dedicated Interrupt Service Routine within the firmware 

(refer to the Appendix B, Timer1_ISR( ) source code). 

1/20MHz/2 = 0.1 usec ‘ticks’ every instruction cycle; Since Timer 1 is a 16 bit register (0 to 

65535), hence overflow occurs every 65535.  In order to implement 1 msec interrupts Timer 

1 register is loaded with the value of 65535, every time that a Timer 1 interrupt occurs. 

Digital Temperature Sensor - The DS1631 digital temperature sensor was interfaced (via 

breadboard implementation) to the 24FJ128GA006 PICmicro® board for the emulated 

‘external temperature measurements’.  The A to D conversion in this case was done by the 

DS1631, while the I2C communication between DS1631 and the 24FJ128GA006 

PICmicro® was used to communicate and receive the data.  The DS1631 in this case was set 

as a slave and the 24FJ128GA006 PICmicro® was as a master.  The processed data was 

used within the microcontroller to display the results and as a reference point for decision 

making process.   

Digital Potentiometer - The 24FJ128GA006 PICmicro® analog port 0(sAN0) of the 

development board (having 10 bit resolution) connected to the digital potentiometer is 

chosen for the analog to digital conversion of the emulated ‘internal temperature 

measurements’.  

Push Buttons - There are 3 buttons within the system (two on board) and one implemented 

in the breadboard. The button 0 is the system reset button for the microcontroller. The on 

board Button 1 was implemented in the firmware (within the interrupt routine) to switch the 

displayed temperature from the external (reading from the DS1631 digital sensor in the 
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breadboard) to internal temperature reading (digital potentiometer in the development board) 

each time that Button 1 is pressed.   

The Button 2 was implemented off board and interfaced to the PORTF pin F5 of the 

24FJ128GA006 PICmicro®. It was set as input to sense when the Button 2 is pressed; which 

in turn toggles the off board RED LED 2 and RED LED 3 while the Button 2 is pressed.   

De-bouncing factor was considered and implemented not as a delay to the function but using 

the Timer 1 interrupts and msec counter in order to allow for several cycles of ON/OFF de-

bouncing sequences prior to deciding that the button was pressed; De-bouncing period for 

the Button 2 (150msec) is different than the on board Button 1(100 msec); this was observed 

during the experimentation stage.  

2x7 Segment LED Display – is implemented off board and interfaced to the PORTD pin 

D10 and D11 (for the control of segments to be lit) of the 24FJ128GA006 PICmicro®, and 

PORTB pins are utilized to energize individual LEDs within each segment respectively.  

Each corresponding LED segment a1 to a2, b1 to b2, c1 to c2, d1 to d2, e1 to e2, and f1 to f2 

and g1 to g2 are connected together.  Only seven wires connect each particular segment to 

the particular PORTB output port.   

By controlling the common pins of the segment 1 and segment 2 (leaving a short delay 

(5 ms) in between ON and OFF commands issued to D10 and D11 – control lines of the 

segment one and two) using only 9 I/O lines, temperature values can be displayed.  

LED Indicators – There are 3 on board LEDs (red, green and yellow) and two off board red 

LEDs.  The on board LEDs are used to indicate different temperature levels (based on the 

reading from the emulated ‘internal temperature’, DS1631 temperature sensor reading.  Such 

as, if the temperature reading is below 15 ºC Red LED indicator is activated (i.e. Heater 

ON); if the temperature reading is above or equal to 15 ºC and less than or equal to 25 ºC, 

yellow LED indicator is activated (i.e. Heater OFF and AC OFF).  If the temperature reading 

is above 25 ºC green LED indicator is activated (i.e. AC ON).   

The two off board red LEDs are implemented and interfaced to PORTE pins E0 and E1 

respectively.  Their function is to emulate extra health indicators and/or possible actuators 

related to the Heater-Cooler System Prototype.  These LEDs toggle if the Button 2 is 

pressed. If the Button 2 is not pressed than the LEDs will lit if the emulated ‘internal 

temperature’ – i.e. analog to digital conversion value read from the digital potentiometer (as 
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we adjust the know). The settings of the LEDs is such as if the temperature reading is less 

than 25 ºC LED2 will lit; if the temperature reading is above or equal to 25 ºC LED3 will lit. 

RS-232 communications – In addition to the ICD interface the development board has also 

RS232 interface.  This interface was utilized for data logging during the system development 

stages. Section B.5 (Data Logging) shows the data from actual experimentation, where the 

‘Internal Temperature’ is the temperature emulated by turning the digital potentiometer knob 

slowly from its minimum to its maximum position; while the ‘External Temperature’ is the 

temperature read from the DS1631 digital temperature sensor. Figure B.3 below, shows the 

actual experimental setup. 

 

 

Figure B.3 – Experimental setup 
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B.4 Prototype Design Algorithm 
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Figure B.4 - Prototype design algorithm 



 

165 
 

 

B.5 Source Code 

/*  

* File name        :  Heater_Sys.c 

* Title      :  Heater System                  

* Author           :  Blerim Qela 

*/ 

#include <24FJ128GA006.h> 

#device ICD=TRUE 

#device ADC=10 

#fuses HS, NOWDT, PR 

//#use delay (clock = 20000000) 

//#use RS232 (baud=9600, UART1, stream=PORT1) 

#define CLK PIN_D0 

#define DATA PIN_D1 

#use i2c(master, sda=DATA, scl=CLK) 

#define GREEN_LED PIN_B5 

#define RED_LED PIN_B2 

#define YELLOW_LED PIN_B4 

#define RED_LED2 PIN_E1 

#define RED_LED3 PIN_E0 

#define pushButton1 PIN_F6 

#define pushButton2 PIN_F5 

signed int16 readTemp; 

signed int8 tempHigh, tempLow; 

float Temperature, InternalTemp; 

unsigned int16 digitalTemp; 

unsigned int16 tick_count,msec; 

unsigned int8 tp1,tp2, bDebounce; 

int1 button1Pressed,button2Pressed; 
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//using timer 1 interrupt functionality 

//create a delay routine (msec) 

void my_delay(unsigned int16 x){ 

   unsigned int16 temp; 

   temp = x; 

   msec=0; 

     

    do{ 

        #ASM NOP #ENDASM 

        

    }while(msec<temp); 

         

} 

// array of 7 segment LEDs; each element activates a specific number 

unsigned int16 const Segment_Leds[10]={0x3F00,0x0600,0x5B00,0x4F00, 

0x6600, 0x6D00,0x7D00,0x0700,0x7F00,0x6700}; 

//Timer 1 interrupt routine 

#int_TIMER1 

 

void TIMER1_ISR() 

{ 

   set_timer1(55535);  // overflow interrupt will occur approx. every 1msec 

   tick_count++;       //increments tick counter 

   msec++;              // keep track of msec ticks 

    

   //utilize timer to check for debouncing of button press  

   if(!input_state(pushButton1)){ 

       bDebounce++; 

        

       if(bDebounce >=100){ 

            button1Pressed = TRUE; 
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            bDebounce = 0;             

       } 

   } 

   if(!input_state(pushButton2)){ 

       bDebounce++; 

        

       if(bDebounce >=150){ 

            button2Pressed = TRUE; 

            bDebounce = 0;             

       } 

   }    

} 

 

void main(){ 

   //setup timer 1 as system "tick" counter 

   setup_TIMER1(TMR_INTERNAL|TMR_DIV_BY_1); 

    

   //setup A to D converter for digital potentiomete 

   setup_adc_ports(sAN0);         // setup port AN0 for reading the potentiometer 

   setup_adc(ADC_CLOCK_INTERNAL); //The ADC will use internal clock 

   set_adc_channel(0); 

   set_tris_b(0x02); 

   //initial setup sequence for reading temperature sensor 

   output_high(DATA);       //bring SDA and SCL high 

   output_high(CLK); 

   i2c_start();            //initiate communication with sensor 

   i2c_write(0x90);        //control byte send by master (micro)to slave (sensor) 

   i2c_write(0x51);        //initiate one temperature conversion 

   i2c_stop();             //stop command 

      button1Pressed = FALSE;      // set button flag to 0 initially 

   button2Pressed = FALSE;      // set button flag to 0 initially 



 

168 
 

   bDebounce = 0; 

   msec=0; 

      tick_count=0; 

   set_timer1(55535);            // overflow interrupt will occur approx. every 1msec 

      enable_interrupts(INT_TIMER1); 

    

   while(TRUE){ 

      digitalTemp = read_adc(); //read analog port AN0 of PIC micro 

      InternalTemp = (float)digitalTemp/10; // ADC value (0 to 1024)/10 

       

      //check and turn on external LED indicators based on temp. settings 

           

      if((digitalTemp < 25)&& !button2Pressed){ 

          

         output_high(RED_LED2); 

         output_low(RED_LED3); 

       

      } 

      if((digitalTemp >= 25)&& !button2Pressed){ 

       

         output_high(RED_LED3); 

         output_low(RED_LED2); 

      } 

           

      //toggle indicators/devices while button2 is pressed 

      if(button2Pressed){ 

            output_toggle(RED_LED2); 

            output_toggle(RED_LED3); 

            my_delay(500); 

            if(input_state(pushButton2)){ 

               button2Pressed=FALSE; 
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            }            

       }                  

      i2c_start();      //initiate communication with sensor 

      i2c_write(0x90);  //control byte send by master (micro)to slave (sensor) 

       

      //write command issued to DS1631 to read last temperature 

      //conversion from the register 

      i2c_write(0xaa);    

      i2c_start();         //initiating the read sequence 

      i2c_write(0x91);     //read command - requested by master 

      tempHigh=i2c_read(); //reading high byte of the temp register 

      tempLow=i2c_read(0); //reading low byte of the temp register 

      i2c_stop(); 

              

      // adjust the MSByte of reading to high byte of the result 

      readTemp = (signed long)tempHigh*0x100; 

      readTemp = readTemp & 0xFF00; 

      readTemp = readTemp + tempLow; 

            

      //add the LSByte part 

      Temperature =(float) readTemp /256; 

      disable_interrupts(INT_TIMER1); 

      printf("External Temp:%3.2f\n\r",Temperature); 

      printf("Internal Temp:%3.2f\n\r",InternalTemp); 

      //delay_ms(1000); 

      enable_interrupts(INT_TIMER1); 

       

      tp1 = (unsigned int8)Temperature; 

      tp2= (unsigned int8)InternalTemp; 

       

      //display temperature in 7 segment LEDs 
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      //displays the most significant digit 

      output_b(Segment_Leds[tp1/10]); 

      output_high(PIN_D11); 

      my_delay(5); 

      output_low(PIN_D11); 

       

      //displays the least significant digit 

      output_b(Segment_Leds[tp1%10]); 

      output_high(PIN_D10); 

      my_delay(5); 

      output_low(PIN_D10); 

       

      tp2= (unsigned int8)InternalTemp; 

       

      if(button1Pressed){ 

   //press button1 to alternate 7 segment display to show actual digital potentiometer readings  

            output_b(Segment_Leds[tp2/10]); 

            output_high(PIN_D11); 

            my_delay(5); 

            output_low(PIN_D11); 

            output_b(Segment_Leds[tp2%10]); 

            output_high(PIN_D10); 

            my_delay(5); 

            output_low(PIN_D10); 

                        if(input_state(pushButton1)){ 

              button1Pressed=FALSE; 

                   }            

       } if (Temperature < 15){ 

         //Heater ON - red LED indicator 

         output_high(RED_LED); 

         output_low(GREEN_LED); 
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         output_low(YELLOW_LED); 

         // my_delay(5); 

      } else if((Temperature <= 25) && (Temperature >= 15)){ 

         //Heater OFF / AC OFF - yellow LED indicator 

         output_high(YELLOW_LED); 

         output_low(GREEN_LED); 

         output_low(RED_LED); 

         //my_delay(5); 

      } else{ 

         // Temp must be greater than 30 degrees C 

         // turn ON the AC - green LED indicator 

         output_high(RED_LED); 

         output_low(GREEN_LED); 

         output_low(YELLOW_LED); 

      } 

   } 

  

} 

 

Data Logging File 

 

04/25/2009 02:23:08.197 --> Internal Temp:0.00     //digital potentiometer – knob gradually 

turned                                                                       

04/25/2009 02:23:09.239 --> External Temp:20.06  //reading from actual temperature sensor                                                              

04/25/2009 02:23:09.259 --> Internal Temp:1.00                                                                           

04/25/2009 02:23:10.290 --> External Temp:20.00                                                                          

04/25/2009 02:23:10.320 --> Internal Temp:1.10                                                                           

04/25/2009 02:23:11.352 --> External Temp:20.00                                                                          

04/25/2009 02:23:11.372 --> Internal Temp:1.79                                                                           

04/25/2009 02:23:12.403 --> External Temp:20.00                                                                          

04/25/2009 02:23:12.423 --> Internal Temp:2.29                                                                           
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04/25/2009 02:23:13.475 --> External Temp:20.06                                                                          

04/25/2009 02:23:13.485 --> Internal Temp:2.50                                                                           

04/25/2009 02:23:14.516 --> External Temp:20.06                                                                          

04/25/2009 02:23:14.536 --> Internal Temp:2.89                                                                           

04/25/2009 02:23:15.578 --> External Temp:20.00                                                                          

04/25/2009 02:23:15.598 --> Internal Temp:3.20                                                                           

04/25/2009 02:23:16.629 --> External Temp:20.00                                                                          

04/25/2009 02:23:16.649 --> Internal Temp:3.79                                                                           

04/25/2009 02:23:17.691 --> External Temp:20.00                                                                          

04/25/2009 02:23:17.711 --> Internal Temp:5.00                                                                           

04/25/2009 02:23:18.742 --> External Temp:20.00                                                                          

04/25/2009 02:23:18.762 --> Internal Temp:6.50                                                                           

04/25/2009 02:23:19.804 --> External Temp:20.00                                                                          

04/25/2009 02:23:19.814 --> Internal Temp:8.80                                                                           

04/25/2009 02:23:20.855 --> External Temp:20.00                                                                          

04/25/2009 02:23:20.875 --> Internal Temp:21.50                                                                          

04/25/2009 02:23:21.917 --> External Temp:20.00                                                                          

 

References 

1. N. Gardner, “PICmicro MCU C – An Introduction to Programming the Microchip 

PIC in CCS C” 

2. T. Wilmshurst, “Designing Embedded Systems with PIC Microcontrollers – 

Principles and Applications” 

3. CCS, Embedded C Language Development Kit for the PIC MCU by Custom 

Computer Systems, www.ccsinfo.com 

4. Microchip’s Technology, www.microchip.com 

5. Dallas Semiconductor Maxim, www.maxim-ic.com 



 

173 
 

APPENDIX C 

C.1 Master Cluster Structure 

Master cluster structure is organized as follows: 

1. Day of week/Cluster #: 1 for Monday, 2 for Tuesday, etc. 

2. File number (1 to 10)                           

3. Currently active ? (1 = yes, 0 = no)Note: only one file can be active at a time                             

4. Nr. of days used (weight counter)                             

5. This file replaced file number # (0 means not replaced, e.g. 1 = replaced Monfile#1                             

6. SetPoint#1 (0 - not changed, 1 - changed)                           

7. SetPoint #2 (0 - not changed, 1 - changed)                               

8. SetPoint #3 (0 - not changed, 1 – changed)                             

9. SetPoint #4 (0 - not changed, 1 - changed)                             

10. SetPoint #5 (0 - not changed, 1 - changed)                             

11.Time when previous file was changed by this one (string - date and time) and 0 - means 

no time available 

C.2 Daily Cluster Structure 

Daily cluster structure is organized as follows: 

1.  1 - Monday, 2 - Tuesday, etc. 

2.  SetPoint # 

3.  Heat SP 

4.  Cool SP 

5.  SP start time 

6.  SP end time 

7.  Zone1 Heat day Offset  

8.  Zone1 cool day offset  

9.  From (cZone1DayFrom.SelectedIndex) 

10. To (cZone1DayTo.SelectedIndex) 
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11. Zone1 heat night offset 

12. Zone1 cool night offset 

13. From (cZone1NightFrom.SelectedIndex) 

14  To (cZone1NightTo.SelectedIndex)                         

15. Zone1 Heat day Offset                          

16. Zone1 cool day offset                          

17. From (cZone1DayFrom.SelectedIndex)                         

18. To (cZone1DayTo.SelectedIndex)                         

19. Zone1 heat night offset                         

20. Zone1 cool night offset                  

21. From (cZone1NightFrom.SelectedIndex)                         

22. To (cZone1NightTo.SelectedIndex)                       

23. Maximum temperature offsets enabled by user during HIGH TOU rates - Heat Offset                    

24. Maximum temperature offsets enabled by user during HIGH TOU rates - Cool Offset                           

25. Maximum temperature offsets enabled by user during MEDIUM TOU rates - Heat 

Offset                         

26. Maximum temperature offsets enabled by user during MEDIUM TOU rates - Cool 

Offset                          

27. Maximum temperature offsets enabled by user during LOW TOU rates - Heat Offset                         

28. Maximum temperature offsets enabled by user during LOW TOU rates - Cool Offset                          

29. Maximum temperature offset enabled by user during DR Utility Events - Heat Offset                         

30. Maximum temperature offset enabled by user during DR Utility Events - Cool Offset                         

31. Settings for Savings (cPreferences.SelectedIndex)                         

32. OptIn to DR events (OptIn)                         

33. Demand Response Event (cDemandResponse);                         

34. Learn and Adapt (LearnAdapt) 
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APPENDIX D 

 

Confidence Intervals 

 

Different set points and/or pattern changes of the user, which represent the sample data for 

different occurrences observed during the simulation run.  Let X1, X2,…, Xn represent the 

random sample occurrences of different patterns with normal distribution, and the mean 

value X is:  

 X = ∑
=

n

i

iX
n 1

1
 (D.1) 

The mean of each daily occurrences (pattern changes for a particular day of a week) 

during the simulation run, provides the single numerical value for the estimated expected 

value E|X| =  µ.  In order to verify how close the real values are to the estimate, we compute 

the variance σ2: 

 σ2 = XX
n

n

i

i −
−
∑
=11

1
 (D.2) 

The small resulting values of σ2 signify that the results are close to the mean value X. Thus, 

we could be confident that X is close to the expected value E|X|.  On the other hand, if the 

resulting value of σ2 is large, it signifies that the results are widely dispersed around X; 

hence, we cannot be confident that X is close to E|X|.  Therefore, instead of seeking a single 

value to estimate the E|X|, we specify the confidence interval 100 (1 – α) %, which is highly 

likely to contain the true value of the parameter. Thus, we find the interval [L(X), U(X)] 

which define the limits of the expected value being within the chosen confidence interval. 

Thus, the probability P of µ being within the defined interval is defined as: 

 P = [L(X) ≤ µ ≤ U(X)] = 1 – α (D.3) 

Where lower limit L(X) is defined as: 

 L(X) = X – z α/2 

n

σ
 (D.4) 
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Furthermore, upper limit U(X) is defined as: 

 U(X) = X + z α/2 

n

σ
 (D.5) 

Thus, a 100(1 – α) % confidence interval for the mean µ of a normal population, when the 

value of standard deviation σ is known, is given by: 

 (X – z α/2 

n

σ
≤ µ ≤ X + z α/2 

n

σ
) (D.6) 

From the normal distribution table, choosing α = 0.05, we get the z value, z 0.05/2 = 1.96.  

Therefore the 95 % confidence interval is: 

 (X – 1.96 

n

σ
≤ µ ≤ X + 1.96

n

σ
 = 0.95) (D.7) 

Where, 

α = 0.05, 

σ = 
2σ = XX

n

n

i

i −
−
∑
=11

1
is sample standard deviation, 

σ2 is variance,  

X is sample mean, and 

n is the sample size. 

Thus, choosing α = 0.05, yields a 95% confidence interval. A confidence interval of 95% 

implies that 95 % of all the samples are within the interval that includes µ, and only 5 % of 

samples would yield erroneous interval.  In this thesis, the confidence interval of 95% is 

used to validate the adapted values for changing patterns and/or user preferences, from the 

simulation runs. 


