

Adaptive Systems for Smart Buildings Utilizing

Wireless Sensor Networks and Artificial Intelligence

By

Blerim Qela

A Thesis Submitted to the

Faculty of Graduate and Postdoctoral Studies

In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

In

Electrical and Computer Engineering

School of Electrical Engineering and Computer Science

University of Ottawa

Ottawa, Ontario, Canada

Copyright © Blerim Qela, Ottawa, Canada, 2012

ii

DEDICATION

To the Universal Light of Knowledge

And

All the People of Good Will

iii

ABSTRACT

In this thesis, research efforts are dedicated towards the development of practical adaptable

techniques to be used in Smart Homes and Buildings, with the aim to improve energy

management and conservation, while enhancing the learning capabilities of Programmable

Communicating Thermostats (PCT) – “transforming” them into smart adaptable devices, i.e.,

“Smart Thermostats”. An Adaptable Hybrid Intelligent System utilizing Wireless Sensor

Network (WSN) and Artificial Intelligence (AI) techniques is presented, based on which, a novel

Adaptive Learning System (ALS) model utilizing WSN, a rule-based system and Adaptive

Resonance Theory (ART) concepts is proposed. The main goal of the ALS is to adapt to the

occupant’s pattern and/or schedule changes by providing comfort, while not ignoring the energy

conservation aspect. The proposed ALS analytical model is a technique which enables PCTs to

learn and adapt to user input pattern changes and/or other parameters of interest.

A new algorithm for finding the global maximum in a predefined interval within a two

dimensional space is proposed. The proposed algorithm is a synergy of reward/punish concepts

from the reinforcement learning (RL) and agent-based technique, for use in small-scale

embedded systems with limited memory and/or processing power, such as the wireless

sensor/actuator nodes. An application is implemented to observe the algorithm at work and to

demonstrate its main features. It was observed that the “RL and Agent-based Search”, versus

the “RL only” technique, yielded better performance results with respect to the number of

iterations and function evaluations needed to find the global maximum. Furthermore, a “House

Simulator” is developed as a tool to simulate house heating/cooling systems and to assist in the

practical implementation of the ALS model under different scenarios. The main building blocks

of the simulator are the “House Simulator”, the “Smart Thermostat”, and a placeholder for the

“Adaptive Learning Models”. As a result, a novel adaptive learning algorithm, “Observe, Learn

and Adapt” (OLA) is proposed and demonstrated, reflecting the main features of the ALS model.

Its evaluation is achieved with the aid of the “House Simulator”. OLA, with the use of sensors

and the application of the ALS model learning technique, captures the essence of an actual PCT

reflecting a smart and adaptable device. The experimental performance results indicate

adaptability and potential energy savings of the single in comparison to the zone controlled

scenarios with the OLA capabilities being enabled.

iv

ACKNOWLEDGEMENTS

I fall short of words to express gratitude and appreciation to my supervisor Dr. Hussein T.

Mouftah, for his valuable advice, encouragement, moral support and outmost professionalism

shown during my research and preparation of this thesis. I thank you for your patience; devotion

and guidance in helping me reach here today. It was an honor to have a chance to work under

your supervision.

I would like to thank Dr. T. Yeap and Dr. R. Yu for their valuable comments and inputs

during my research. I would also like to thank Dr. J. Yao and Dr. J. Zhao for their moral support

and understanding. In addition, I would also like to thank my colleague Mark Trigg for proof

reading my thesis.

I am deeply grateful to my parents for raising me with love and care, and to my wife Edi

for her love, moral support, patience and understanding during my studies. And to my children

Jeta, Rrezarta and Endrit…I cannot turn back time; however, I will try to make up for the times

that I have missed spending with you.

Above all, I give thanks to God for giving me strength and inspiration to follow my

dream.

v

Table of Contents

CHAPTER 1 ... 1

1.1 Introduction .. 1

1.2 Motivation and Objective ... 4

1.3 Research Description.. 5

1.4 Summary of Contributions ... 8

1.4.1 List of Publications... 9

1.5 Thesis Outline .. 10

CHAPTER 2 ... 11

INTELLIGENT SYSTEMS AND WIRELESS SENSOR NETWORKS 11

2.1 Wireless Sensor Networks ... 11

2.1.1 Wireless Sensor Node Architecture ... 12

2.1.1.1 Embedded Controller .. 13

2.1.1.2 Memory ... 14

2.1.1.3 Transceivers .. 14

2.1.1.4 Sensor Node Power Supply ... 15

2.1.1.5 Sensor Node Operating System.. 16

2.1.2 WSN Topology Control ... 17

2.1.3 Data Aggregation in WSN ... 19

2.1.4 Transport Protocol for WSN .. 21

2.2 Artificial Intelligence ... 23

2.2.1 Expert Systems ... 25

2.2.2 Intelligent Agents ... 27

2.2.3 Reinforcement Learning ... 29

2.2.4 Adaptive Resonance Theory .. 30

2.3 Ambient Intelligence .. 31

2.3.1 Overview of Ambient Intelligence ... 31

2.3.2 Applications of Artificial Intelligence Techniques in Ambient Intelligence 32

vi

CHAPTER 3 ... 34

ADAPTABLE SYSTEMS FOR SMART BUILDINGS UTILIZING WSN AND AI 34

3.1 Methodological Approach .. 34

3.2 Analytical Modeling ... 37

3.2.1 Adaptive Learning System (ALS) Model .. 39

3.3 Synopsis of the Solution ... 50

3.3.1 High Level Architecture ... 50

3.3.2 Wireless Sensor Networks for Energy Management in Smart Homes and Buildings: ‘An

Adaptable Intelligent System’... 53

3.3.3 System Integration.. 54

3.4 Development Tools .. 56

CHAPTER 4 ... 57

FINDING OPTIMAL SOLUTION IN A PREDEFINED INTERVAL 57

4.1 Introduction .. 57

4.2 Description of the Algorithm ... 59

4.2.1 Reward Method .. 61

4.2.2 Discover Method .. 61

4.2.3 Alert Method .. 62

4.2.4 Optimal Method ... 62

4.2.5 Main Steps of the Algorithm .. 63

4.2.5.1 Problem Definition ... 63

4.2.5.2 Algorithm.. 63

4.3 Synergy of Reinforcement Learning and Agent-Based Search Technique 66

4.4 Reinforcement Learning and Agent-Based Search Application .. 66

4.4.1 Graphical User Interface – Main Features ... 67

4.5 Performance Results .. 67

4.6 Summary .. 74

CHAPTER 5 ... 75

SIMULATOR OF A HOUSE HEATING-COOLING SYSTEM .. 75

5.1 Introduction .. 75

5.2 Model of a House Heating-Cooling System .. 75

5.2.1 Zone Controlled Environment for Smart Homes and Buildings 77

vii

5.2.2 Thermal Model of a House for ‘Simulation Engine’ ... 79

5.2.3 Estimated Equivalent Thermal Resistance of a House ... 82

5.3 Simulator Design ... 83

5.3.1 C# Programming Language ... 83

5.3.2 Graphical User Interface – Main Features ... 84

5.4 Simulator Model .. 86

5.5 Performance Results .. 89

5.6 Summary .. 94

CHAPTER 6 ... 96

6.1 Introduction .. 96

6.2 Description of the OLA Algorithm .. 97

6.2.1 Overview .. 97

6.2.2 Main Steps of the Algorithm .. 99

6.2.3 Main Routines of the Algorithm .. 101

6.3 Application of OLA and the Big Picture ... 110

6.4 Improvements of the Simulator ... 111

6.5 Performance Results .. 112

6.6 Summary .. 118

CHAPTER 7 ... 119

CONCLUSIONS AND FUTURE RESEARCH .. 119

7.1 Conclusions .. 119

7.2 Future Research ... 122

BIBLIOGRAPHY ... 124

APPENDIXES .. 137

APPENDIX A ... 137

SIMULATION OF LARGE WIRELESS SENSOR NETWORKS USING CELL-DEVS 137

A.1 Introduction .. 137

A.2 Model Definition .. 139

A.3 WSN Behavior Definition ... 143

A.4 Simulation Results ... 146

A.5 Conclusions .. 154

APPENDIX B ... 156

viii

HEATER-COOLER SYSTEM PROTOTYPE .. 156

B.1 Introduction .. 156

B.2 Brief Overview of PIC24F PICmicro® and Design Tools .. 156

B.2.1 PICmicro®MCU- PIC24F series ... 156

B.2.2 Design Tools .. 157

B.3 Design Implementation of a System ‘Emulator’ .. 158

B.3.1 Implementation of a Simple Test Bed for Heater-Cooler System Prototype 159

B.4 Prototype Design Algorithm .. 163

B.5 Source Code ... 165

APPENDIX C ... 173

C.1 Master Cluster Structure... 173

C.2 Daily Cluster Structure ... 173

APPENDIX D ... 175

Confidence Intervals ... 175

ix

List of Figures

Figure 1.1 - Hybrid intelligent system .. 7

Figure 2.1 - Wireless sensor node architecture ... 12

Figure 2.2 - Mica2 sensor node... 16

Figure 2.3 - XYZ sensor node ... 16

Figure 2.4 - Eyes sensor node ... 17

Figure 2.5 - Sensor nodes self-organized .. 17

Figure 2.6 - The usefulness of data aggregation in different scenarios .. 20

Figure 2.7 - Generic network layering structure ... 22

Figure 2.8 - Generic conceptual model used in rules-based(frame-based) expert system 26

Figure 2.9 - Agent interacting with the environment .. 28

Figure 2.10 - ART network architecture ... 30

Figure 3.1 – ALS conceptual block diagram .. 35

Figure 3.2 – Basic ALS model flowchart ... 38

Figure 3.3 – Leave time patter changes adapted via ALS vs. averaging 48

Figure 3.4 – Adapted set points via ALS vs. averaging.. 49

Figure 3.5 - Main controller unit for energy management in intelligent buildings 50

Figure 3.6 - WSN for energy management in smart homes and buildings 53

Figure 3.7 - System integration for energy management in smart homes and buildings 55

Figure 4.1 - Graphical view of the main concepts .. 61

Figure 4.2 – Basic flowchart of the RL and Agent-based search algorithm 65

Figure 4.3 - Reinforcement learning and agent-based search application 67

Figure 4.4 - Finding maximum value of utility function y1 .. 69

Figure 4.5 - Finding maximum value of utility function y2 .. 71

x

Figure 4.6 - Finding maximum value of utility function y3 .. 73

Figure 5.1 - Basic blocks of a house heating-cooling system ... 76

Figure 5.2 - Simulator graphical user interface .. 84

Figure 5.3 - Simulator schedule control .. 85

Figure 5.4 - Simulator DR and TOU rates control... 85

Figure 5.5 - Simulator conceptual model .. 86

Figure 5.6 - Diagram of a simulator model... 87

Figure 5.7 - Response time of a system (step size 5 min)... 90

Figure 5.8 - Response time of a system (step size 2 min)... 90

Figure 5.9 - Total heat consumption for 3 months (KWh) ... 91

Figure 5.10 - Total cost of heating for 3 months in dollars .. 92

Figure 5.11 - Total heat consumption of a two zone system .. 93

Figure 5.12 - Total cost of heating of a two zone system ... 93

Figure 5.13 - Energy consumed based on different TOU Rates (KWh) 94

Figure 6.1 - Conceptual diagram of the elements used in OLA ... 97

 Figure 6.2 - Main steps of OLA algorithm .. 99

Figure 6.3 - Populate adapt vectors... 103

Figure 6.4 - Adapt routine ... 105

Figure 6.5 - Weight process .. 107

Figure 6.6 - Airflow rate and heater adjustment ... 109

Figure 6.7 - Improvements of the simulator ... 111

Figure 6.8 - Simulation (entire house and zone controlled).. 113

Figure A.1 - Sensor nodes self-organized ... 138

Figure A.2 - Plane 0 organization (zones) .. 142

Figure A.3 - Plane 0 organization (improved model) ... 143

Figure A.4 - Cell space definition ... 144

xi

Figure A.5 - Possible sensor states of the initial WSN model .. 146

Figure A.6 - Plane 0 (left, red) and Plane 1 (right, green) prior to execution 146

Figure A.7 - Snapshot of simulations results after 6 time steps.. 147

Figure A.8 - Snapshot of simulations results after 15 time units .. 147

Figure A.9 - Snapshot of simulations results after 62 time units .. 148

Figure A.10 - Initial WSN simulation results using Cell-DEVS .. 148

Figure A.11 - Possible sensor states of the improved WSN model .. 149

Figure A.12 - Snapshot of Plane 0 (left, red) and Plane 1 (right, green) prior to execution 150

Figure A.13 - Snapshot of simulations results after 40 time units .. 150

Figure A.14 - Snapshot of simulations results after 134 time units .. 151

Figure A.15 - Snapshot of simulations results after 164 time units .. 151

Figure A.16 - Number of active sensors with the algorithm using Cell-DEVS 152

Figure A.17 - Number of stand-by sensors with the algorithm using Cell-DEVS 152

Figure A.18 - Number of sensors alive with the algorithm using Cell-DEVS 153

Figure A.19 - Sensor network coverage area (%) using Cell-DEVS .. 153

Figure A.20 - Number of active sensors with the algorithm... 154

Figure B.1 - Block diagram of design tools used .. 158

Figure B.2 - Block diagram of a system ... 159

Figure B.3 – Experimental setup .. 162

Figure B.4 - Prototype design algorithm... 164

xii

List of Tables

Table 3.1 – Daily PCT schedule of temperature SPs .. 48

Table 3.2 – Tolerances and weights for ‘Leave’ time and heat set points 48

Table 4.1 - Simulation results for ‘Reinforcement Only’ ... 68

Table 4.2 - Simulation results for ‘Reinforcement Learning and Agent based Search’ 68

Table 4.3 - Simulation results for ‘Reinforcement Only’ ... 70

Table 4.4 - Simulation results for ‘Reinforcement Learning and Agent based Search’ 70

Table 4.5 - Simulation results for ‘Reinforcement Only’ ... 71

Table 4.6 - Simulation results for ‘Reinforcement Learning and Agent based Search’ 72

Table 4.7 - Simulation results for ‘Reinforcement Only’ ... 73

Table 4.8 - Simulation results for ‘Reinforcement Learning and Agent based Search’ 73

Table 5.1 - Report data.. 88

Table 5.2 - Monday to Friday schedule .. 89

Table 5.3 - Saturday and Sunday schedule ... 89

Table 5.4 - Initial house parameters .. 89

Table 6.1 - FEL structure .. 101

Table 6.2 - Monday to Friday schedule .. 112

Table 6.3 - Saturday and Sunday schedule ... 112

Table 6.4 - House parameters Table 6.5 - TOU rates ... 113

Table 6.6 - Results of OLA (Entire house vs. zone controlled) .. 114

Table 6.7 - Results of OLA (with and without FEL/Sensors) .. 115

Table 6.8 - Statistics of set points start/stop times .. 116

Table 6.9 - Statistics of heat set points ... 117

xiii

List of Acronyms

AI Artificial Intelligence

ALS Adaptive Learning System

AMI Advanced Metering Infrastructure

AmI Ambient Intelligence

ANN Artificial Neural Networks

ART Adaptive Resonance Theory

ASCENT Adaptive Self-Configuring Sensor Networks

ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers

CODA Congestion Detection and Avoidance in Sensor Networks

CPU Central Processing Unit

DEVS Discrete Event System Specification

DR Demand Response

EEPROM Electronically Erasable Programmable ROM

EGU Electricity Generating Utility

FEL Future Event List

GA Genetic Algorithms

GUI Graphical User Interface

HVAC Heating, Ventilation and Air Conditioning

KB Knowledge-Base

LEACH Low Energy Adaptive Clustering Hierarchy

LED Light Emitting Diode

LCD Liquid Crystal Display

xiv

MAC Medium Access Control

OOD Object Oriented Design

OLA Observe, Learn and Adapt

OSI Open System Interconnection

PCT Programmable Communicating Thermostat

PLL Phased Locked Loop

PSO Particle Swarm Optimization

RAM Random Access Memory

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RL Reinforcement Learning

RTC Real Time Clock

SCADA Supervisory Control and Data Acquisition

SQL Structured Query Language

TAG Tiny Aggregation

TCP Transmission Control Protocol

TOU Time of Use

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

VAV Variable Air Volume

WSN Wireless Sensor Networks

xv

List of Symbols

Ac Adapting vector

L Learning vector

A* Set of adapting vectors

L
*
 Set of Learning vector

Sg Set of wireless sensor groups

w Weight associated with learning element

ϵ Tolerance (based on which particular weight elements are evaluated)

β Weight multiplier coefficient

λ Learning rate

ϴ Resulting value of adapted element

Af Airflow rate

Ht Heater

βh Heater stages used

Tn Room temperatures

∆T Temperature difference

ρn Airflow offsets

µn Heater offset

Kb Knowledge base function used to optimize zone control

c Specific heat capacity of the air at constant pressure

d Density of the air

k Thermal resistivity of materials

qh Heated air supply

Req Equivalent thermal resistance of the house

Rwall Thermal resistance of a wall

Rwindow Thermal resistance of a window

xvi

l Wall Thickness

Lwall Thickness of walls

Lwindow Thickness of windows

Kwall Thermal coefficient of walls

Kwindow Thermal coefficient of windows

Awall Area of walls

Awindow Area of windows

λth Thermal conductivity

Troom Room (indoor) temperature

Texternal External (outdoor) temperature

Mf Air mass flow rate through heater

Mair Mass of air

V Volume of the house

Theat Heat temperature set point

Tcool Cool temperature set point

Troom Room temperature set point

Qheat Heat gain of a house

Qcool Cool gain of a house

Qlosses Heat losses of a house

Qcool_losses Cool losses of a house

Troom_increment Room temperature increment

Troom_decrement Room temperature decrement

hT∆ Difference of heat and room temperature

lT∆ Difference of room and external temperature

cT∆ Difference of room and cool temperature

mT∆ Difference of external and room temperature

1

CHAPTER 1

1.1 Introduction

The need for energy efficient and intelligent systemic solutions has led many researchers

around the world to investigate and evaluate the existing technologies in order to create

solutions that would be adopted in near future intelligent homes and buildings [HAG08]

[CHA08]. The emergence of powerful embedded micro-computer systems, and wireless

sensor networks (WSN), provides a good ground for in-depth research and adaptation of

existing intelligent technologies and concepts, while exploring the new ones.

The above initiatives have motivated and led to many scientific endeavors and

contributions to our society, where the existing state-of-the-art intelligent technologies and

concepts are used in integration of many intelligent systems towards a new era of “Smart

Homes and Buildings” [RED06][RIC06]. The leading edge technology in the area of

intelligent systems and smart sensor networks are an essential part of our everyday life.

Their evolution will help us to better utilize our energy resources (i.e. energy saving

initiatives), and enhance our way of living. Indeed, many governments and utilities are

interested to better utilize electricity, and encourage initiatives leading towards the

development of intelligent systems. Thus, numerous research groups are closely involved in

bringing forward efficient “Smart Home and Building” systems for our living environments,

furthering the research in intelligent and automatic control systems.

Programmable thermostats [DOU94][DOU09] are used widely for automatic control of

temperature and humidity, and nowadays extend into a Programmable Communication

Thermostat (PTC) [MEI08]. PCTs are equipped with LCD user interfaces, push button

controls, and wireless interface, for communications and network capability to a multitude of

sensors/actuators, offering a variety of options for controlling thermal comfort and/or other

appliances [RED07][KUS07]. Today’s PCTs are able to communicate with home

appliances, electricity generating utility (EGU) meters (i.e., Smart Meters) helping in the

peak load control (demand response initiatives) and offering efficient use of energy

resources. The utilization and integration of PCT devices and multiple WSN into Home

Chapter 1

2

Automation Systems contribute to the accomplishment of “Smart Homes and Buildings”

[YUP07].

 Many sophisticated fuzzy control systems, WSN schemes [KAN10] and devices for

“Smart Homes and Buildings” are being investigated and evaluated by researchers. The

concepts of intelligent systems are being investigated and tested in many heating ventilation

and air conditioning (HVAC) applications, such as for the utilization of sensors and

intelligent thermostat systems for multi-zone HVAC control systems.

Furthermore, the concepts of “Smart Thermostats” are being investigated in order to

come up with systemic solutions which are adaptable, energy aware, and easy to use. As

described in [MEI08], “intelligent thermostats” are used in many smart homes and buildings.

However, the learning “intelligent thermostats” mentioned in [MEI08] are programmable

thermostats, which are capable of learning the occupant’s pattern by interaction (i.e. when

the user changes the set point temperature, the thermostat remembers it), and it uses those

parameters in the next daily schedule. However, this does not address the problem of

learning the schedules and/or pattern changes without user interactions. Thus, compared to

an actual “Smart Thermostat” only represents a programmable thermostat capable of

remembering (i.e., store in memory) the user preferred set point temperatures or daily

schedules (similar to any typical PCT). Nevertheless, it requires the user interaction/input to

be modified, and it also does not address the problem of intelligent zone controlled

environment. The effect of human behavior is also described in [MEI08], where about 25 to

50 percent of the common U.S. households utilize the programmable thermostats as an

on/off switch. Furthermore, homes relying on the programmable thermostats for energy

savings, consumed more energy than the homes where the occupants set the temperatures

manually. Moreover, in many cases, constant programming of the thermostat poses a

“hassle”, for many users. The results from the survey about “the amounts of time users

operate the air conditioner/heater” [MEI08] indicate only an occasional usage pattern.

Additionally, it shows that even the “tech-savvy users” were dissatisfied with the complexity

of the programmable thermostats and its user interface.

In many present commercial buildings, the amount of sensors used for the purpose of

energy efficiency is relatively small, and in residential buildings is typically reduced

furthermore, and has little use of embedded intelligence [ARE05] i.e., single programmable

Chapter 1

3

thermostats. The energy use in U.S. alone, for heating/cooling of the commercial and

residential buildings is around 38 percent [ARE05]. From this total energy usage, the energy

consumption for the commercial buildings is 28 percent, for residential buildings is 43

percent, and the rest of consumption is for the water heating, lighting, and miscellaneous

usage. The energy usage for space heating and cooling in residential buildings is the highest

(43 percent). Thus, utilizing multiple wireless sensors/actuators, applying Artificial

Intelligence (AI) techniques and Ambient Intelligence (AmI) perspective for energy aware

smart environments, is very significant.

Moreover, the advantages of using multi-sensor versus single sensor systems for control

of HVAC are also described in [LIN02]. Although the energy performance and comfort is

improved in a multi-sensor system, the described system utilizes only one actuator to control

the HVAC. The use of a multi-actuator system for control of air dampers in individual

rooms, in addition to the control of the HVAC, would prove to be more efficient solution.

Since the preferences of occupants and their perceived comfort might be different, the

optimal thermal comfort of a multi-zone environment i.e. use of multiple actuators to control

the air dampers into individual zones based on the occupants’ preferences, is advantageous.

Furthermore, as the demand for electricity continues to grow, transition to the smart

grid/smart metering environment, among others, as described in [VOJ08] requires “smart

devices and in-home energy management systems, such as PCTs capable of making

intelligent decisions based on smart prices”. The peak load curtailment, demand response

(DR) and Time-Of-Use (TOU) rates are among many factors considered in smart grid

initiatives, where the importance of investing in dynamic and flexible designs and smart

devices is essential [VOJ08]. The importance of peak shifting (i.e., redistribution of a task

away from the time of peak demand) and energy conservation via a computer-based system

to measure and manage energy consumption is described in [WIL06]. The peak shifting is

essentially a pre-programmed thermostat schedule based on EGU (i.e., utility) TOU rates

and DR energy management incentives. However, the cost of the described monitoring and

control system is estimated to be $2,500 per home, requires user input/interaction and does

not reflect adaptive learning capabilities.

With the advancement and broad application of AI models in technology, the emergence

of adaptive learning systems [WIR00] is obvious. The rule-based expert systems are widely

Chapter 1

4

used in technology and are considered to be the best option for building knowledge based

systems [SHE08], where the formulation of knowledge is based on the expert’s opinion,

represented by simple production rules. Typically with an IF-THEN structure, where

multiple conditions can be joined by ‘AND’ and ‘OR’ keywords, facilitating representation

of relations, recommendations, and strategies for different scenarios. In a nutshell, structure

of the rules-based expert systems consists of the knowledge base, database of facts, inference

engine (i.e. links facts and knowledge), explanations facilities (i.e. enables user to ask and

see how a particular conclusion is reached), user interface and the user. One of the

disadvantages of the rule-based expert systems is their incapacity to learn and their slow

response (if a very large set of rules is considered).

Other AI models, such as, the Adaptive Resonance Theory (ART) [CAR87a], Fuzzy

ART [CAR91], self-organizing Neural Networks, Genetic Algorithms (GA), Fuzzy Logic

and Particle Swarm Optimization (PSO) are also being used in cases of machine learning

endeavors, such as the unsupervised learning system and optimization problems. In

particular the ART1 and Fuzzy ART models are being used in different technological and

biological applications involving unsupervised learning for binary and analog input patterns.

Moreover, the emergence of ‘intelligent agents’ [POS08], which perceive their environment

through sensors and act upon that stimulus via actuators, is obvious as well.

In many real-world applications, the use of only one AI model (in most cases) would not

suffice to bring forward the best systemic solutions. While the combination of different

techniques has led to the emergence of more sophisticated intelligent systems, known as

hybrid intelligent systems (i.e., which combine at least two intelligent technologies).

1.2 Motivation and Objective

The need for efficient environmental controls is becoming apparent as the EGUs are looking

to better utilize and manage power, its use and control of the peak load demands, while the

consumers are looking for comfort and conservation. To better manage the ever-increasing

energy demands, electricity costs, and environmental impacts, many governments and

companies are looking for more efficient solutions to the existing problem. The purpose of

Advanced Metering Infrastructure (AMI) and DR initiatives is to assist EGUs to meet their

Chapter 1

5

energy needs, by introducing TOU prices/rates, with the intention of encouraging users to

shift part of their electricity use to off peak hours. Thus, allowing the customers to conserve

and save (on high electricity costs), and respectively, assist the EGUs to better manage the

peak load demands.

On the other hand, the role of a programmable thermostat is to provide the consumer

with a means to manage and reduce energy use, while accommodating their every day

schedules. The changing schedules, comfort set point temperatures, preferences, needs and

patterns of consumers, are different. The constant interaction and/or programming of the

thermostat might not prove flexible, nor optimal enough with respect to comfort and the

conservation aspect of it, due to the available features, difficulty of use or programmability,

limited number of sensors/actuators nodes, lack of system interaction and/or communication,

lack of systems intelligence, etc.

The PhD Thesis objective is to investigate, and address the above issues via simulation,

experiment and development of an “Adaptive Learning System”, providing a smart and

adaptable energy management systemic solution for intelligent buildings. Thus, bringing

forward a “Smart Thermostat” for optimal energy management in intelligent buildings – a

hybrid intelligent system solution, which utilizes WSN and AI techniques to learn and adapt.

The “Smart Thermostat” uses sensors to observe/monitor, actuators to control, and AI

techniques to learn and adapt. It does not require constant programming input of the

occupant(s), learns and adapts to the occupant(s) preferences, schedules and/or pattern

changes, offers zone-controlled environment solution, and responds to utility DR and TOU

price rates incentives. Thus, further improving the comfort and conservation of energy

management in intelligent buildings, and simultaneously offering new insights and solutions

that can help towards the advancement of science, in general.

1.3 Research Description

The envisioned concept of “Adaptive Systems Utilizing WSN and AI” encompasses a WSN

consisting of numerous “intelligent agents” (smart sensor/actuator nodes) and a central

controller unit. It offers intelligent energy management for smart homes and buildings by

using the rule-based expert system and adaptive learning principles. Thus, it is an “energy

aware” system solution, capable of acting, learning and/or adapting to the occupant(s)

Chapter 1

6

preferences, schedules and pattern changes, rates of heating/cooling of different rooms (i.e.,

zone control). When applied to the environmental control problem, AI techniques enable the

overall system to adapt and learn from the system dynamics, utilizing a rule-based expert

system strategy and adaptive learning principles.

The rule-based expert systems cannot offer the best possible solution alone. They have

a drawback, which is their dependence on prior knowledge and also the amount of time

required to match the rule with the memory. Using only one AI technique, in this case,

would not render a flexible solution. Thus, the goal is to investigate and utilize other AI

concepts, such as AI models based on the unsupervised learning strategies.

In the proposed research, AI techniques, such as the rule-based expert systems and

unsupervised learning with biological motivations will be investigated, in order to provide

the overall system flexibility to learn and adapt to new knowledge, without destroying the

existing knowledge. Thus, offering a hybrid intelligent system solution for conservation of

energy and comfort zone adjustment. Because our main objective is to create an adaptive

learning system, existing models, such as ART, self-organizing neural networks, expert

systems and potential new techniques are of vital importance and shall be investigated to

determine the best possible choice for the hybrid intelligent system being proposed and

considered. One critical element of this research is to combine several AI techniques leading

to an “Adaptive Learning System” – a hybrid intelligent system capable of learning in our

living environments.

The Hybrid Intelligent System (refer to Figure 1.1) proposed, is based on the rule-based

expert system and unsupervised learning techniques (where the problem is how to adapt to

new knowledge without destroying the existing knowledge). The “Smart Thermostat” core

controller unit is equipped with distributed sensors (i.e., intelligent agents), which use the

rule-based expert system and ART concepts to learn and/or adapt. The role of sensors in the

proposed scheme is to monitor the environment (i.e. temperature, occupancy detection, air

flow, etc.), while the actuators are used to control the heater/cooler stages and for the

adjustment of the air flow (i.e. via air dampers) in a zone-controlled environment. The

proposed system enables the comfort zone adjustment, i.e., the control of heating/cooling of

individual rooms and/or of the entire house; and is capable of processing inputs to and/or

from the EGU (i.e. Utility/Smart Meter) to the core controller unit.

Chapter 1

7

The research approach taken emphasizes a scalable solution, considering only a few

inputs / outputs and simple user interface (UI) at the initial stages of research, and afterwards

emerging to a more complex system with multiple sensors, sources of information, and a

variety of output types.

Figure 1.1 - Hybrid intelligent system

The aim is to create an adaptive system which enables intelligent power management in

“Smart Homes and Buildings”. Thus, the solution extends beyond a programmable

thermostat, by proposing an adaptive hybrid intelligent system – a “Smart Thermostat”,

which does not require constant programming input by the occupant(s) and is capable of

learning and adapting, while offering the optimal energy conservation and comfort of the

occupant(s). In addition, “Smart Thermostat” communicates with the Smart Meter, providing

efficient energy savings, and helping EGUs to better manage the peak load demand, by

responding to TOU price rates, and DR incentives.

Chapter 1

8

1.4 Summary of Contributions

In this thesis, the research efforts are devoted to the development of adaptive learning

techniques to be used in Smart Homes and Buildings, with the aim to improve energy

management (comfort and conservation aspect of it), and propose learning capabilities to

current PCTs. The main contributions of this thesis are shown below:

• An Adaptive – Hybrid Intelligent System Solution utilizing Wireless Sensor

Networks and Artificial Intelligence Techniques for Energy Management in Smart

Homes and Buildings is proposed.

o Analytical Model of the Adaptive Learning System (ALS) is proposed.

• A novel algorithm based on the Reinforcement Learning and Agent-based technique,

for finding the global maximum in a predefined interval for use in small-scale

embedded systems with limited memory and/or processing power, such as the

wireless sensor/actuator nodes is proposed, implemented and demonstrated.

o A specific application is implemented and developed to verify and confirm its

performance.

• A House Simulator constructed with ‘thoughtful consideration’ for its use as an

‘expert system shell’, is proposed.

o Analytical model of the “Simulation Engine” is presented.

o House Simulator is designed and implemented in order to prove the

envisioned concepts of:

� “Adaptive Systems using WSN and AI” and

� Its use for evaluation, implementation, and verification of new

adaptive learning techniques for future “Smart Thermostats”.

• A novel adaptive learning technique: “Observe, Learn and Adapt” for future “Smart

Thermostats” using wireless sensors and AI is implemented and demonstrated based

on the proposed Adaptive Learning System model.

o Knowledge-base technique is implemented and applied in conjunction with

the OLA algorithm, and demonstrated as an essential part of it.

Chapter 1

9

1.4.1 List of Publications

1. B. Qela and H.T. Mouftah, “Intelligent Systems for Energy Management in

Wireless Sensor-based Smart Environments,” in Sustainable Green Computing:

Practices, Methodologies and Technologies, ed. W. Hu and N. Kaabouch, IGI

Global, USA, 2012.

2. B. Qela and H.T. Mouftah, “An Adaptable System for Energy Management in

Intelligent Buildings,” in Proc. of 2011 IEEE International Conf. on

Computational Intelligence for Measurement Systems and Applications (CIMSA

2011), pp.40-46, Ottawa, Ont., Canada, Sep. 19-21, 2011.

3. B. Qela and H.T. Mouftah, “Observe, Learn and Adapt (OLA) - A new algorithm

for Smart Homes, using Wireless Sensors and Artificial Intelligence”(Under

review).

4. B. Qela and H.T. Mouftah, “Synergy of Reinforcement Learning and Agent-based

Techniques, for Finding Optimal Solution in a Predefined Interval,” in Proc. of

the Summer Computer Simulation Conference (SCSC’10), Ottawa, Ont., Canada,

July 12, 2010.

5. B. Qela and H.T. Mouftah, “Simulation of a House Heating System using C# - An

Energy Conservation Perspective,” in Proc. of 23rd IEEE Canadian Conference

on Electrical and Computer Engineering (CCECE’10), pp. 1-5, Calgary, AB,

Canada, May 2010.

6. B. Qela and H.T. Mouftah, “Synergy of Wireless Sensor Networks, Ambient

Intelligence and Artificial Intelligence for Energy Management in Smart Homes

and Buildings,” 2nd Annual Wisense Workshop, Queen’s University, Kingston,

ON, Canada, May 13, 2010.

7. B. Qela, G. Wainer and H.T. Mouftah, “Simulation of Large Wireless Sensor

Networks Utilizing Cell-DEVS,” in Proc. of 2009 Winter Simulation Conference

(SCSC’09), pp. 3189-3200, Austin, TX., US, Dec. 2009.

8. B. Qela and H.T. Mouftah, “Wireless Sensor Networks for Energy Management

in Intelligent Buildings,” 1st Wisense Workshop, University of Ottawa, Ottawa,

ON, Canada, July 27, 2009.

Chapter 1

10

1.5 Thesis Outline

The organization of subsequent sections of thesis is as follows: A survey of background

material is provided in Chapter 2. In Chapter 3 a methodological approach, analytical

modeling, and the key steps and synopsis of the proposed solution are described. In Chapter

4 a new algorithm for finding the global maximum of a function in a predefined interval for

small-scale embedded systems with limited memory and processing power is presented, as a

result of applying the concepts of the Reinforcement Learning (RL) and agent-based

techniques. A specific application was developed and implemented in order to verify and

establish the benefits of applying the above mentioned technique. Chapter 5 describes and

demonstrates the simulator model, design architecture, and its aim to be used as an ‘expert

system shell’ for further stages of research. Initial results and discussion of the simulator are

presented in this section. In Chapter 6 a novel algorithm ‘Observe, Learn and Adapt’ (OLA)

for smart homes, utilizing wireless sensors and artificial Intelligence concepts is presented.

The implementation fundamentals, validation and performance results showing OLA’s

feasibility for adaptable learning thermostats is shown via simulation results and

performance evaluation; necessary improvements to the existing simulator (‘expert system

shell’) are depicted and presented as well. In Chapter 7 the concluding remarks and findings

of the research efforts are presented. Recommendations for future research are also

discussed. Appendices include additional valuable information related to the thesis.

Appendix A introduces a simulation model of WSN by implementing the Topology Control

Algorithm using the Cell-DEVS (Discrete Event System Specification) formalism. Further,

in Appendix B, focus is to design and emulate a few potential features of a Heater-Cooler

System Prototype by experiment (utilizing hardware and firmware tools), which could be

beneficial for the interested reader. In Appendix C, the complete structure of Master and

Daily clusters used for OLA algorithm are included. Whilst, in Appendix D confidence

interval calculations used for statistical analysis of OLA results are included for

completeness.

11

CHAPTER 2

INTELLIGENT SYSTEMS AND WIRELESS SENSOR NETWORKS

The development of intelligent electronic sensing devices, powerful embedded

microcontrollers and wireless communication devices is a foundation for new advanced

sensor devices, which can monitor actuate, compute and communicate, yet are small in size

and cost [ELK08][HAR07][HON10]. The wireless sensor devices have the capability to

self-organize into the so-called WSN. Their ability to sense diverse variables of interest,

such as the temperature, humidity, pressure, airflow, occupancy, sunlight and other, could

greatly improve the limitations of the existing and future energy management systems; many

governments and EGUs are interested in finding solution to manage the ever-increasing

energy demand, electricity costs and environmental impacts.

 The Energy Management in Intelligent Buildings, by utilizing WSN, AmI, Advanced

Control Systems and AI are key elements that embody the concept of “Intelligent Buildings”

by striving to make them more adaptable, autonomous and aware of our environment; yet

flexible and intelligent to sense, actuate, compute and evolve into “Adaptive Systemic

Solutions” - adaptable, re-configurable systems, which act and adapt by exploiting wireless

sensor/actuator network capabilities and system intelligence; enabling efficient energy

management in our homes and buildings, enriching automation and control systems, and

exploiting the renewable energy resources.

2.1 Wireless Sensor Networks

The emergence of powerful embedded micro-computer systems for WSN provides a good

ground for creation of new smart sensor systems, which can be useful to further promote

new scientific endeavors and enhance our lives. WSN are used in many different

applications, such as medicine, transportation and urban monitoring, traffic control, military,

environment and habitat monitoring, energy management, smart homes, automatic meter

readings, industrial applications, telemedicine, etc [BYO08][CHE08][KAN10][NEW07]

[SUH08][WU08]. The effectiveness of WSN is not just their monitoring, actuating,

Chapter 2

12

computing and communications capabilities - with the added microcomputer processing

power, analog and digital ports, transceivers and available memory, they have the

capabilities to self-organize and communicate in the deployed area. Their processing power

is limited, however WSN are usually deployed in large numbers and their load is shared

accordingly.

2.1.1 Wireless Sensor Node Architecture

The main components of a Wireless Sensor Node as depicted in Figure 2.1 are the

sensor/actuator, embedded controller (microcomputer) unit, power supply, memory and

communication device (i.e., transceiver).

Figure 2.1 - Wireless sensor node architecture

Sensor nodes are attractive for use in WSN due to their low cost, small size, versatility,

easy deployment and energy efficiency. Sensor node architecture [HEA08][ZHE06],

including its hardware and software platform chosen, depends on the application and

requirements.

Due to the fact that sensor nodes have limited bandwidth, computing power and limited

energy resources, one of the main constraints in WSN is the energy efficiency of sensor

nodes (i.e., power consumption) [SAK07][ELI07][ZHE07]. The main sources of energy

consumption of sensor nodes are the microcontroller and transceiver. Consequently, the

energy consumption of sensor nodes is an essential factor when considering the wireless

sensors for a specific application [YEA07]. In order to reduce the power consumption,

Chapter 2

13

sensor nodes support different modes of operation, such as active, idle and sleep modes. The

WSN Topology Control is one of the approaches used to solve the energy efficiency

problem in sensor networks (refer to Appendix A for Simulation of Large WSN using Cell-

DEVS).

2.1.1.1 Embedded Controller

Microcontrollers are most commonly as a core controller unit of the sensor nodes, due to

their low cost, with memory build in, rich peripheral set and flexibility to connect to other

devices, low power consumption in comparison to high-end processors (i.e., used in desktop

computers) and rich set of peripherals including many input/output (I/O) ports; equipped

with analog and digital converters, internal oscillators, comparators, timers, etc. In addition,

microcontrollers can be programmed many times and there are plenty of debugging and

development tools and kits (hardware and software) for prototyping and development

purposes.

Some examples of microcontrollers used in sensor nodes are:

Texas Instrument

Texas Instruments MSP 430 is a 16-bit RISC microcontroller suitable for embedded

application; powerful enough to handle the computational tasks that are required by wireless

sensor nodes. MSP 430 is equipped with RAM (from 2 to 10 kB), A to D (analog to digital),

D to A (digital to analog) converters, RTC (real time clock), many I/O ports and other

interconnection possibilities.

Microchip PIC series

The PIC18F6720 series are Microchip’s RISC based microcontrollers that contains 8-bit

CPU core, RAM (4 kB), and most of the peripherals inside a single integrated circuit,

including A to D, D to A, RTC, PLL, UART, many peripherals and I/O ports; enabling easy

interface for sensor nodes.

Chapter 2

14

Atmel Atmega128L

Atmega128L is an 8-bit micro (RISC architecture), feature rich, has 4 kB of RAM, 8 MHz

oscillator, peripheral interconnection possibilities; intended for embedded applications -

feasible for use in sensor nodes.

2.1.1.2 Memory

There are different types of memory used in microcontrollers:

• RAM (Random Access Memory)

o Fast, mainly used for data

• ROM/EEPROM (Read only memory / Electronically Erasable Programmable ROM)

o Used for external data storage and program code – erase and programming

cycles are slow (in bytes)

• FLASH Memory

o Program code memory

o Enables many erase and programming cycles (in blocks/faster)

2.1.1.3 Transceivers

Transceiver is a communication device that consists of a transmitter and a receiver, which

enables the two-way wireless communications among sensor nodes. The essential task

performed by the transceiver in sensor nodes is be able to receive and transmit data via radio

waves at a specific frequency (e.g. wireless sensor networks typically use frequencies

between 433 MHz and 2.4 GHz). Main parts of the transceiver are the radio frequency

building block (performs analog signal processing) and the baseband building block

(performs the digital signal processing). There are many manufacturers that offer

transceivers particularly suited for WSN, which incorporate all the necessary circuitry for

transmit and receive operation.

Chapter 2

15

Some examples of transceivers used in sensor nodes are:

RFM Monolithics RFM TR1000

• Designed for short range wireless communications

• Frequency ranges 868 MHz and 916 MHz

• Supports short-range radio communications (up to 115.2kb/s)

• Radiated power 1.5 dBm

Chipcon CC1000

• Designed for very low power and low voltage wireless sensor applications

• Wide frequency ranges (300 – 1 GHz)

• Programmable output power

Ember EM2420

• Wide Frequency ranges 868 MHz, 915 MHz and 2.4 GHz

• Data rate of 20, 40 and 250kb/s respectively

• Radiated power -0.5dBm

• Tx mode (22.7mA), Rx mode (25.2mA)

2.1.1.4 Sensor Node Power Supply

Batteries are the main source of power for the sensor nodes. For the purpose of tiny sensor

nodes, batteries should be small in size, preferably rechargeable (via means of vibrations,

solar and other), and with high capacity to operate for long periods of time. The capacity of

the battery needs to withstand different modes of operations (active mode or high power, idle

or sleep modes with low power consumption). Due to the fact that throughout the operation

of the sensor node, the voltage level of batteries drops, delivering marginal power which

might impair the sensor nodes’ readings, the need for DC-to-DC converters is needed in

order to overcome this problem. The challenge is to design efficient switching power supply,

which would potentially reduce the power dissipation in the process of conversion (i.e.

voltage level boosting).

Chapter 2

16

 2.1.1.5 Sensor Node Operating System

A typical example of an operating system used mainly for sensor nodes is the TinyOS

[HIL00][LYN05]. TinyOS is an operating system that supports modularity and event based

programming paradigms, hence it is suitable for wireless sensor nodes. TinyOS is based on

the component based model approach. Therefore, the modularity of TinyOS (reuse of its

components) permits it to be the main driver for implementation of different WSN

applications.

TinyOS is not like a traditional operating system, but rather a programming structure

(with base code less than 400 bytes) for embedded systems (in particular well suited for

sensor nodes) with a set of components, which enable development of different applications,

and reuse of the existing components.

Some examples of sensor nodes are:

Mica Mote family

Mica2

• Tiny wireless platform for sensor

networks

• Uses AA battery (greater than 1 yr.

Lifetime when using sleep modes)

• Can be used as a router

• Has multi-channel radio transceiver

• Equipped with expansion connector

for external sensors

Figure 2.2 - Mica2 sensor node

Source: Crossbow (www.xbow.com)

XYZ sensor node

• Open source wireless sensing platform

• Equipped with OKI ML67Q500x ARM THUMB

processor and CC2420 Chipcon radio (IEEE

802.15.4 compliant)

• Supports different sleep modes

• Capable to operate at different speeds and power

configurations

Figure 2.3 - XYZ sensor node

Source:www.eng.yale.edu/enalab/xyz/

Chapter 2

17

Eyes

• Three year European project on Wireless

Sensor Networks (self-organization and

energy-efficiency of sensor nodes)

• Tiny sensor node platform based on the

MSP430 controller

• Equipped with RFM10001low power

radio module

Figure 2.4 - Eyes sensor node

Source: www.eyes.eu.org/sensnet.htm

2.1.2 WSN Topology Control

The objective of WSN Topology Control in general, is related to the efficiency of WSN

network in order to increase its lifetime. In a ‘nutshell’ Topology Control exploits the

redundant deployment of the sensor nodes, to overcome the energy limitations by restricting

the set of nodes, which are considered neighbors of a given node. While making sure that

sensing area is still covered by a sufficient number of sensors. Moreover, reducing the

interference problems (i.e., which is noticeable when large number of sensor nodes are

active).

The effectiveness of WSN is not just in their monitoring, actuating, computing and

communications capabilities: with the added processing power, analog and digital ports,

transceivers and memory, they can self-organize and communicate in the deployed area (as

depicted in Figure 2.5).

Figure 2.5 - Sensor nodes self-organized

Chapter 2

18

The Topology Control in flat networks is mainly concerned with the power control of

the sensor nodes – controlling the transmission range and/or the number of nodes’ neighbors.

On the other hand, we have the WSN Topology Control in hierarchical networks by

dominating sets and/or clustering; the main idea here is to choose a set of active nodes

within a network, such as to effectively utilize and conserve the nodes’ energy by assigning

a specific role to the chosen nodes. One example of the Topology Control in hierarchical

networks by clustering is Low Energy Adaptive Clustering Hierarchy (LEACH) [HEI02].

The assumption here is that the number of nodes and coverage area is known.

From each node’s neighborhood (a cluster of sensor nodes) a ‘clusterhead’ is chosen.

The ‘clusterhead’ collects data readings from cluster members and performs data

aggregation, prior to transmission of data to the data sink (sensor nodes where the data has to

be delivered, typically sinks are more powerful sensor nodes with high transmission power

capabilities, more energy resources and computational power). In order to avoid the energy

drainage, ‘clusterheads’ rotate their role among cluster members. In addition to the above,

there are many other strategies that consider the problem of WSN Topology Control, such as

the hybrid adaptable approaches, which tend to take advantage of both power and

hierarchical control; one such example is The Adaptive Self-Configuring Sensor Networks’

Topologies (ASCENT) [CER02]. In the case of ASCENT Topology Control algorithm, the

network adapts to the needs of the ongoing communications rather than constructing a

‘backbone’ or a clustering structure, where each node assesses its connectivity and adept

their participation in a multihop network topology based on the operating region.

Sensor nodes that are ‘active’ participate in the dissemination of data to the sinks, while

the other nodes, which are in ‘passive’ state, wake up periodically to check if their

participation is needed. Therefore, in the initial state only few sensors are active, taking care

of the transmission of data. In the scenarios where the range of transmission from the source

to sink (destination node) is at the limit of transmission range, the sink might experience

high data packets losses. Consequently, sink issues a ‘help message’ to the currently passive

neighbors (sensor nodes which are in a listening mode) to join the network. After receiving

the ‘help message’ node can decide to join the network and announces its change of status

by sending a ‘neighbor announcement message’ to its neighboring sensor nodes. This

process continues until the active sensor node stabilizes, and the network comes to a reliable

Chapter 2

19

operational state (where packet losses from source to sink are minimal e.g. acceptable

threshold). During the operation some sensor nodes might fail due to their consumption of

energy resources, obstacles or other, where the data packet losses happen again, in which

case the above-described process is re-initiated again.

The essence of Topology Control for WSN is to exploit the redundancy of sensor nodes

in a network and minimize the number of active nodes, whilst ensuring a reliable and

efficient service. In addition, Topology Control helps to extend the life of sensor nodes by

compensating for their energy limitations, optimizing the utilization of many sensor

operational states. In addition to the above considerations, it is of vital importance to observe

and evaluate the behavior of WSN model under different test scenarios prior to adopting any

approach. An example of the Topology Control for WSN is provided in Appendix A.

2.1.3 Data Aggregation in WSN

The basic principle of data aggregation can be described as a collective operation of the

intermediate nodes performing some form of aggregation function on the data from the

neighbouring sensor node e.g. by gathering the data and computing the representation of

several messages, which is equivalent or a close approximation of the messages; examples of

data aggregation are calculating the average, median, minimum, maximum or other practical

values from the measured readings of sensors, prior to forwarding the aggregated value

towards a data sink. Therefore, operating on a data whilst is being transported from the

sources to the sink. This process is also known as in-network processing.

Main characteristics of data aggregations are:

• Accuracy

o How well does the value received at the data sink correlates to the true value

• Completeness

o Percentage of data messages involved in the calculation of the final –

aggregated value

• Latency

o Time element that is involved in the process of data aggregation among nodes

could lead to the possible delays in the intermediate nodes

Chapter 2

20

• Message overhead

o Reduced overhead as a result of a lower number of messages being forwarded

throughout a network; data aggregation implies computation of a smaller

representation of a large number of data messages at the intermediate nodes

within a network

Benefits of data aggregation depend on where the sensors are located with respect to the

sink(s). As depicted in the following Figure 2.6 (on the left), the scenario where the sensors

are located e.g. in a radial configuration – whereas all the sensor nodes are only hop away

from the sink, represent a scenario where data aggregation would not prove to be beneficial.

However, in Figure 2.6 (on the right), it can be seen that the data aggregation proves to be

beneficial, since the sensor nodes along the network are more than one hop away from the

sink, hence the aggregation of the data in the intermediate nodes would lead to less messages

overhead through the network, towards a sink. Therefore, data aggregation usefulness

depends on the location of the sources of data relative to the sink.

Figure 2.6 - The usefulness of data aggregation in different scenarios

The intermediate result of the aggregated values, typically are representation of the

aggregated value and the number of sensor readings that contributed to compute the given

aggregated value. In other words, the data aggregation at the intermediate nodes when

transported along the network consists of the aggregated value and the count of sensors that

contributed in the computed value.

Chapter 2

21

A practical example of data aggregation is Tiny Aggregation (TAG) [MAD02]. TAG is

a generic service for aggregation, similar to SQL query languages, which was developed for

the ad hoc networks of TinyOS sensor motes. TAG is a popular scheme used for WSN. The

basic operation of TAG aggregation scheme is based on the convergecast tree - gathering of

data from many or all available sources to a single or several sinks. TAG processes the data

aggregation while the data is transported in the network, discarding the redundant and

irrelevant data, whilst combining the more important sensor readings into more compact

results, when available.

An example of query syntax in TAG would be:

SELECT AVG (Temperature), Room FROM sensors

WHERE floor 5

GROUP BY Room

HAVING Temperature > 25

EPOCH DURATION 45s

The interpretation of the above is the following: The selected parameter of interest is the

average temperature in floor 5; sensors are partitioned into group by rooms, query reports

when the temperatures are above 25 °C, and the process is repeated every 45 seconds.

2.1.4 Transport Protocol for WSN

The architecture of computer and communications network is usually structured in different

layers, such as physical, data, network, transport, presentation, session, and application layer

based on the open systems interconnection (OSI) reference model; where each layer provides

service to its immediate upper layer as shown in Figure 2.7. The physical layer is the

hardware platform of the network responsible for transmission over the physical medium,

whereas the data layer provides link services to the network layer. The network layer

provides routing and addressing services to the transport layer, and the transport layer

provides message transportation services to the layers above it. Transport layer in general

provides end-to-end segment transportation, where messages are segmented into a series of

segments at the source node, and afterwards are reassembled at the destination node.

Chapter 2

22

Figure 2.7 - Generic network layering structure

Examples of transport protocols are Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP). Since there is no interaction between the TCP/UDP and lower

layer protocols, TCP/UDP might not be a feasible solution for WSN, where the interaction

with lower layers can provide valuable information to the transport protocol, and enhance the

overall system performance. In WSN, typically there is a small amount of data to be sensed;

hence, the TCP/UDP protocol might be a large overhead. The energy conservation in WSN

transport protocol could possibly be related not only to physical layer, but also to data link,

network, and other layers. Therefore, the WSN transport protocol design emphasis should be

towards the energy conservation and congestion control, loss recovery, security, and

management, by taking into account that the energy, memory and computational constraints

of sensor nodes.

The aim of congestion control in WSN is to generate less traffic, have limited number of

packets being lost, fewer re-transmissions, therefore energy savings in sensor nodes. The

congestion in WSN typically happens near the sink (i.e. data transmission is typically from

the sensors to the sinks) where Medium Access Control (MAC) can recover the segment loss

due to bit errors, however cannot recover the errors due to buffer overflow (i.e. limited

memory/processing capabilities of sensor nodes), leading to packets being lost. The packet

loss in WSN is mainly due to the congestion, quality of wireless channel or sensor node

failure. A practical protocol used for congestion control is “CODA: Congestion Detection

and Avoidance in Sensor Networks” [WAN03]. The Congestion Control and Avoidance

Chapter 2

23

(CODA) protocol is an upstream congestion control protocol, consisting of congestion

detection, open loop hop-by-hop backpressure (from the node where the congestion occurred

back to the source) and closed loop end-to-end multi-source regulation. CODA attempts to

detect congestion by monitoring the buffer occupancy and wireless channel load. Hence, if

buffer occupancy and/or wireless channel load exceed the certain set threshold, implies that

the congestion has occurred; where node that has detected the congestion notifies its

upstream neighbors (hop-by-hop backpressure process) to reduce their transmission rate, and

the neighboring nodes trigger the reduction of their output rate. Although, under normal

operation sensor nodes would regulate themselves at predefined rates, when this rate exceeds

its theoretical threshold, a source is prone to contribute to congestion hence, it sets a

‘regulation bit’ in the event packet, and the closed loop control is triggered. This in fact

forces the sink to send the ACK signal to all the sources associated with that particular data

event. The ACK, which sources expect to receive from the sink, are related to the

predefined transmission rate, or to the number of ACK expected to receive over a predefined

period. If the source node receives a prescribed number of ACK it maintains its rate.

However, since during this process the congestion can build up, ACK can be lost; in which

case the sources would reduce their rates independently (e.g. according to some

multiplicative decrease function) and the sink stops sending the ACK based on the network

conditions (e.g. when the source reporting rates are less than the desired rate). When the

congestion is cleared, the sink starts sending the ACK control message to the sources,

informing them to increase their rates (e.g. according to some additive increase function).

2.2 Artificial Intelligence

 Artificial intelligence is a science with defined objectives of making machines perform

things which would require intelligence if performed by humans, which implies capability of

performing some forms of cognitive tasking. Thus, here lies the challenge of most

intelligent systems today.

One of the major ‘paradigm shifts’ in AI field was its change of focus from general

purpose, weak methods to domain specific methods, which initially lead to the development

of expert systems. In addition to the expert systems, AI field was further enriched by

introduction of techniques such as fuzzy logic, biologically inspired techniques such as

Chapter 2

24

artificial neural networks (ANN) [NEG05], ART [GRA07], clustering algorithms,

evolutionary computations - GA, simulated annealing, PSO, intelligent agents [RUS03] etc;

hence, providing vast methods for building intelligent systems with supervised and/or

unsupervised learning capabilities [FAU94].

Among vast applications of AI in many facets of our lives, “Intelligent Building and

Homes” is an interesting and ever-growing area of research for many scholars, researchers

and engineers. Multiagent framework for intelligent building equipped with sensors and

actuators, where multiple agents control the parts of the environment using fuzzy logic rules

linking sensors and actuators, was described by Rutishauser et al in [RUT05]. However, the

proposed system cannot address the stability-plasticity dilemma (i.e. how to learn the new

knowledge without destroying the existing knowledge base); as a result the long-term

knowledge could be degraded or rendered insufficient for making right decisions if

misleading/erroneous samples are introduced. The existing AI techniques such as, ART

[GLO76a][GLO76b] could be valuable for scenarios described above, since it resolves the

stability-plasticity dilemma (i.e. by clustering together new concepts which are similar to the

existing ones, while creating new clusters when encountering new knowledge).

Brdiczka et al in [BRD09] in their research associated to learning situation models for

providing context-aware services in a dynamic smart home environment, present intelligible

framework consisting of different layers of situation model; the approach taken utilizes

expert knowledge, and it consists of several methods which are used to acquire different

levels of situation model (i.e., role detection, unsupervised extraction of data, and supervised

learning, and integration of user feedback/preferences).

The conducted experiments utilize multiple tracking cameras, microphones, and sensors

having to be installed in room, including many processors for processing and analyzing

video and audio streams. Incorporating occupancy sensors with capacitive sensing [GEO09]

might prove efficient with respect to price and processing power for scenarios such as,

sitting and/or lying down. The feasibility of intelligent systems lies in its ability to learn and

adapt with minimal required interaction by the user during its operation. A vital role and

purpose of AI techniques (among others) is to reduce the complexity of hardware by

introducing low computational overhead.

Chapter 2

25

2.2.1 Expert Systems

The rule-based and/or frame-based expert systems are a typical approach taken to represent

and build knowledge-based systems [SHO76][DUD79][NEG05][WAN10]. The rule-based

expert system uses if-then rules, while the frame-based expert system uses ‘frames’ (i.e.

objects and/or structures) to represent the knowledge.

A rule-based expert system consists of if-then rules (conditions and actions) and can

have multiple conditions to represent the knowledge needed to solve a problem in a

particular domain of study.

If x1, x2… xn represent the conditions for a particular problem; and y1, y2… yn represent

the actions to be taken if a particular condition(s) are true, in a rule-based expert system,

rules can be expressed as shown in examples below:

A simple if-then rule:

if (x1)

then (y1)

A rule with multiple conditions:

if (x1 AND x2 AND x3…AND xn)

then (y2)

A rule with multiple mixed (AND/OR) conditions:

if (x1 AND x2 OR x3 OR x4 … AND xn)

then (yn)

The main idea behind rules as a knowledge representation technique is to reflect the

knowledge of an expert in a specialized narrow domain, for which the system is being

developed. Depicted in Figure 2.8 is a conceptual model of typical rule-based and/or frame-

based expert systems.

The knowledge-base contains the domain knowledge as a collection of if-then rules,

which in conjunction with facts (database of facts) is used as a ‘filtering criteria’ of the

Chapter 2

26

reasoning process, by linking the rules with the facts and inferring the conclusion (i.e.

solution of a particular problem and/or user inquiry).

Figure 2.8 - Generic conceptual model used in rules-based(frame-based) expert system

There are two fundamental principles based on which the rules are executed: the

forward and backward chaining. The forward chaining is based on data driven reasoning,

where the reasoning starts with the known data, and the rules are fired only if there is a

match of facts in the database (of facts). And it continues forward each time (i.e., when a

rule is fired) adding new facts to the database. This is a technique which first gathers the

data, and afterwards infers from it. Whilst the backward chaining instead is a goal driven

reasoning, where the expert system starts with a hypothetical solution or a goal, and the aim

is to prove it. The inference engine in backward chaining does not fire the rules based on the

known facts (as is the case of forward chaining) instead, it checks to find the rule that

matches the hypothetical solution or the set goal. If the solution is not found, it sets up a

new sub-goal and continues by checking if the sub-goal can be proven based on the existing

database of facts. The process continues until the goal is found and/or there are no matching

rules to fire (throughout the search process).

The frame-based expert systems on the other hand, offer several advantages which are

not available in rule-based expert systems, such as, using data structures in order to

encompass the necessary knowledge about a particular object and/or concept [WAN10]

[RAT07] instead of simple if-then rules. Frames are described by a collection of attributes

Chapter 2

27

and characteristics of objects of interest, which are called slots. In addition, frames consist

also of facets which are value based (extended knowledge about a particular attribute) and

prompt (user) based facets, which allow user to enter attribute values for a particular object

of interest. The instance-frames are distinct-particular objects and the class-frames are a

group of similar objects. The concepts of object oriented programming such as the

inheritance and also methods associated with objects and/or classes are adopted also in

frame-based expert systems.

In addition to the rule-based and frame-based expert systems [ALT85] [KAM94]

[WEN10], the so-called ‘expert system shells’ nowadays are also very useful [PAM10]; they

enable the researchers to concentrate on the knowledge-base representation instead of

programming language. Although being able to understand and interpret both can be

beneficial during the implementation and development stages.

2.2.2 Intelligent Agents

In the context of AI and AmI, an agent is a device that senses the environment via sensors

and acts upon sensory inputs via actuators. The added features of an agent could be its

capabilities to make intelligent decision about certain operation(s) to be performed, leading

to intelligent agent concept [RUS03]. The agent function defines the actions of an intelligent

agent related to sensory data inputs, whilst the agent program is its very implementation. An

agent program is a tangible implementation of code for i.e., wireless sensor/actuator node

which percepts via sensor, executes a matching rule, and takes action via actuator, as

depicted in Figure 2.9. There are several different agent program types, such as simple

reflex agents, model-based reflex agents, goal-based agents and utility-based agents [YIG09]

[SCH07][SAK93][WU08][BOG06][HAR10][CUN08][SIL08]. Simple reflex agents are the

simplest form of intelligent agents, which do not take into account the percept history during

their actions, and only consider the sensory input being sensed. This is mainly done via

matching of the sensory input with the rule matching function. The model-based reflex

agents, on the other hand, use an internal model to keep track of the current state of the

environment around the agent; it also includes additional state(s) which assists the agent to

understand the consequence of actions (if taken).

Chapter 2

28

Figure 2.9 - Agent interacting with the environment

The goal-based agent, in addition to the capabilities of model-based reflex agents,

includes information about a set of goals which an agent is trying to achieve; which, aids in

the decision process of an agent related to the desired state and/or action to be taken.

However, considering the goal as the only option for the high quality solution might not

always be the best choice, especially for scenarios when more than one solution exists (i.e.

due to the complexity of the environment, etc.). A distinctive attribute of the utility-based

agents is utility function - a measure which describes the performance element i.e. ‘degree of

happiness’ associated with a certain action being taken. In other words, utility function

introduces the means to measure the likelihood of success against the importance of a certain

goal.

The above mentioned agent programs are the ‘essential ingredients’ necessary to create

a learning agent and multi-agent learning systems [BI04][REN03][GEL01][JAV10]. The

learning element is one essential component of the learning agent, which is responsible for

potential agent’s improvements, such as to perform better in the future. This is achieved via

a feedback element of the learning agent which decides how well the agent is performing

based on some defined criteria. The learning agent, encompass also the exploration of

environment as an important element of learning process and finding potential alternative

solutions.

Chapter 2

29

2.2.3 Reinforcement Learning

Reinforcement learning (RL) is a widely used learning technique for agent and multi-agent

based systems. An agent-based model without feedback could have a limited set of

capabilities to learn and adapt in an open environment. The feedback mechanism of an agent

interacting with the environment provides a ‘good ground’ to learn optimal ‘agent’s action

policies,’ which can be evaluated by means of reward and punishment; assisting into

‘awareness’ of agent about success and failure rates of its actions via feedback (i.e.,

reinforced learning), which leads to an improvement of agent performance. However, it has

to be noted that the agent’s action policies can lead to local instead of global optimum;

hence, in addition to the choice of optimal parameters of the reinforcement learning

algorithms, cooperation and coordination in multi-agent systems during the learning process

can be more effective means to achieve better results [JU04][BER00][ARA00].

One of the limitations of RL techniques is the required memory of a system to store

possible states and actions when an agent operates in a dynamic environment, such as for

example, as described by Yen et al.[YEN02] tradeoff between exploration and exploitation

of the environment are very important factors to be considered; in problems involving large

number of states and/or actions, learning process of an agent might turn out to be very slow,

and on the other hand, storing all possible states could take vast amounts of memory.

Amongst other AI techniques, RL has a vital role in the emergence of autonomous

agents and/or robots in real environments and vast range of applications and or variations of

RL approaches in machine learning [JIN10][YAM96][HES10]. RL techniques have the

capabilities to learn from experience, whilst approximate reasoning technique lacks this

attribute, however provide simple yet powerful means for knowledge representation; when

both schemes are combined can lead to efficient hybrid systems used for control (where RL

is used for fine-tuning of fuzzy logic rules) [BER91].

The RL techniques are also used in context aware systems [TUD10], whereas a self-

adapting algorithm characterized by four phases, uses the reinforcement learning technique

in its planning phase, in order to explore the possible system’s states and for the selection of

actions to be executed by system in case of context changes.

Chapter 2

30

2.2.4 Adaptive Resonance Theory

ART is an unsupervised learning algorithm with biological motivations. ART1 [CAR87a]

network model is a self-organizing architecture, designed for clustering binary vectors.

ART1 works with objects called feature vectors, which are a collection of binary values

representing information, which can be separated into different clusters. Typically, new

clusters are created when new data are encountered, whereas the vigilance parameter (0 ≤ ρ

< 1) is used to determine where to place new data, based on the threshold (i.e. to determine

the cluster size). The vigilance parameter enables one to control the degree of similarity of

data which can be placed on a same cluster (i.e. set of similar data). ART efficiently solves

the problem of stability/plasticity dilemma by learning without destroying existing

knowledge (i.e. existing cluster are not altered). The basic architecture of ART network is

depicted in Figure 2.10.

Figure 2.10 - ART network architecture

Where,

F1 layer: Comparison layer (short term memory)

F2 layer: Recognition layer (long term memory)

ρ: Vigilance parameter (0 ≤ ρ < 1) (controls the cluster size)

bij: Bottom-up weight vectors

tij: Top-down weight vectors

Chapter 2

31

The comparison layer F1 processes the input patterns, whilst the recognition layer F2

classifies the cluster units based on similarities. The F1 layer is connected to F2 layer via

bottom-up weight vector bij, and the F2 layer is connected to F1 layer via top-down weight

vector tij. Similarity of top-down weight vector with the input vector is a factor which

decides whether a particular cluster unit is allowed to learn or not. The G1 and G2 are gain

control units, used to aid the reset mechanism to disable or enable competing units to fire.

A variety of different ART implementations have been demonstrated since the

introduction of ART1; such as ART2 [CAR87b] and Fuzzy ART [CAR91a] models, which

were designed to work with analog and/or binary input patterns. Furthermore, ART1 was

also used to design ARTMAP [CAR91b] in order to be able to learn arbitrary mapping of

binary input and output patterns.

The ART network models applications include and are not limited to pattern and image

recognition, engineering and manufacturing, remote sensing, medical diagnosis, robot

behavior learning and vision [FUN03] [LI10] [SMI94][AMI10][BRA09].

2.3 Ambient Intelligence

Ambient Intelligence (AmI) is a new multidisciplinary paradigm, a concept and vision of

future technologies embedded in our living environment, providing support and assistance

while preserving security and privacy of the users.

2.3.1 Overview of Ambient Intelligence

Vision of AmI and ubiquitous computing, involves integration of sensing/actuating

“intelligent agents” into our living environment, where integration and communication

among different types of these smart devices is essential [WEB05]. From the technical point

of view, AmI utilizes the existing technologies and intelligent techniques in order to

orchestrate the distribution of electronic intelligence - embedded in our living environment.

Today, there are no established standards that cover all the aspect of AmI concepts.

However, there is a consistent and active research being done in this new and interesting

area. The concepts such as the multi-agent sensors and AI techniques are being considered

for integration within the AmI concepts.

Chapter 2

32

The development of AmI applications that adapt to the user preferences and

environment, among others, requires a well defined architecture and a planning mechanism

for a goal-oriented behavior [AMI05]. This aspect of AmI has not been fully explored nor

addressed extensively, especially the aspect of coordination among devices and application

of distributed intelligence, in order to provide a more versatility that can be applicable for

different applications and use.

The lack of a general reference models for AmI system designs, has led many

researchers to investigate and bring forth hierarchical conceptual model for AmI

architectures [RUI09], where versatility and applicability is essential element of system

design space; while the importance of network and middle-ware layer (intelligent kernel) is

considered as “the brain” of the AmI space. In addition, multi-agent model and interaction

of different agents and challenges of heterogeneous data exchange among agents is an

important aspect considered in AmI space design. However, lack of self-organization is an

additional aspect which has to be considered carefully for scalable and flexible AmI

solutions, since one of the main objectives of AmI applications should encompass design

characteristics, such as autonomous, adaptive and learning systems. Thus, a challenge

remaining for the AmI to evolve - is the necessity to expand its boundaries, by embracing

more critically AI techniques.

2.3.2 Applications of Artificial Intelligence Techniques in Ambient Intelligence

AI techniques are essential for AmI to become a successful multidisciplinary model

[REM05] and perhaps ‘The next step in AI’s evolution’ [RAM08]. In order for AmI to

reflect adaptability, anticipation and learn the user needs and patterns, it requires some form

of intelligence. Applications of AI techniques related to machine learning, intelligent agents

and robotics complement the AmI vision of a smart environment - capable of sensing,

interpreting and representing the information, learning about the environment, anticipating,

perform variety of tasks, and interact with humans in a non-intrusive and user-friendly

manner [AUG07a][COO09][LOC10].

From the AmI enabling technologies and main architectural blocks of AmI

[INF01][RAM08], the ‘Knowledge and Reasoning Layer’ is where the contribution of AI is

noticeable [HOO10], where the application of techniques such as knowledge representation,

Chapter 2

33

information retrieval, expert systems, computational intelligence, multi-agent systems, etc.

are an integral part of AmI overall system architecture.

Application of AI techniques in AmI context, encompassing not only intelligent system

design, but also consider the user friendly interfaces, efficient services support, user-

empowerment and support for human interaction in a context of an intelligent transport

system are discussed in [MIL06]. Furthermore, embedded intelligent agents [HAG04] are

utilized in iDorm in order to add ‘the intelligence factor’ to the AmI, by aiding in reasoning,

learning and planning aspect of the overall system; hence, assisting in building a vision of

AmI.

In [JIA08] Jian et al] propose Multi-Agent System based architecture of the AmI

system. Whereas, multiple intelligent agents are distributed in different appliances and react

and reflect autonomy and cooperates with other agents in order to provide personalized and

automated services to the user. Whilst, Augusto and McCullagh in [AUG07b] describe the

concepts and applications of AmI, in particular the relationship between AmI and related

areas, such as human computer interaction, sensors, networks, ubiquitous computing and

artificial intelligence; whereas the AI reasoning, knowledge repository, discovery learning

and decision making, fit into the architecture of a typical AmI system.

34

CHAPTER 3

ADAPTIVE SYSTEMS FOR SMART BUILDINGS

UTILIZING WSN AND AI

3.1 Methodological Approach

In order to provide adaptive systemic solutions for our living environments, one should

observe and analyze the problem from a ‘systems perspective’ and not just focus on the sole

problem of how to make a PCT smarter. The emphasis of this research is to utilize multiple

variables at hand (i.e., WSN agents and AI adaptive learning techniques) in order to bring

forward an adaptive system for PCTs. By introducing multiple variables, albeit it might seem

that we are adding complexity to the problem. However, by applying the principles of

system interaction (i.e., utilizing the diversity of resources: WSN, AI and AmI) we facilitate

and simplify the overall control, and the learning process of the system itself. The principles

of system interaction are in fact analogous to interdisciplinary research concepts, where

many fields of science work together to acquire a needed solution to multi-dimensional

problems. Similar principles can be applied to any problem which encompasses many facets

of discovery; in this particular case, development of an Adaptive System for Smart Buildings

Utilizing WSN and AI.

The envisioned system mentioned above, consists of few subsystems sharing knowledge

and data to achieve a better outcome (i.e. considering that a system is a collection of several

subsystems). The WSN agents and AI based techniques enable the system to interact with a

multitude of sensor data and to use the existing knowledge base. Furthermore, by exploiting

the rule-based expert system and adaptive learning principles, the system is capable of

learning and adapting, by using existing knowledge, and creating new knowledge, as well.

The rule-based expert systems cannot offer the best possible solution alone. They have a

drawback, which is their dependence on prior knowledge and also the amount of time

required to match a rule with the memory. Thus, using only one AI technique in this case

would not render a flexible solution. Therefore, the goal is to provide a flexible adaptation

Chapter 3

35

of the overall system to new knowledge without destroying the existing knowledge, i.e., an

adaptive learning system for energy conservation and comfort zone adjustment. Since our

main objective is to create an adaptive learning system, existing models, such as ART,

expert systems, and other AI techniques are investigated to determine the best possible

choice, for the system being proposed and considered in this research. One critical element

of this research is to combine several AI techniques, and explore innovative solutions,

leading to an Adaptive Learning System (ALS) - a hybrid intelligent system capable of

adapting and learning in our living environments.

Figure 3.1 – ALS conceptual block diagram

The ALS conceptual block diagram shown in Figure 3.1 depicts the main buildings

blocks of the system. The rule-based expert system provides the decision rules, and is used

to compare the existing knowledge with the new knowledge being introduced. The

Knowledge-base contains information about the heating/cooling stages of the HVAC system

being used, available zones to control, air flow rates for different temperature ranges,

thermal characteristics of the house, etc.

The environment is constantly monitored via sensors which are capable of detecting the

temperature changes, airflow, and the activity/presence of occupants. Thus, allowing the

Chapter 3

36

ALS system to gather input data, and detect when the occupant’s schedules or patterns are

changing. The actuators enable control of the air dampers within different zones of the

environment being conditioned, and the heater/cooler stages of the HVAC being controlled.

The learning vectors learn preferences and patterns based on the user input and sensors

(i.e. which is reflected in the weight factor of each element), while the adapting cluster

vectors extract information from the learn vectors and adapt to the changes, when new

patterns (preferences) are detected. The term cluster in the ALS model refers to an initial set

of clustered data (i.e., group of data, daily clusters), which in our case are: PCT daily

schedules consisting of temperature set points and their associated time intervals (based on

the occupant’s preferences) for each day of the week, DR and TOU price incentives, offset

temperature tolerances, number of zones to control, etc. In addition to daily clusters, a master

cluster maintains the record of each active daily clusters (refer to the Appendix C for further

information on the Daily and Master structures used in the implementation of ALS model

via OLA algorithm).

On the other hand, the learning vectors hold the occupant’s temperature set points and

offset tolerances for different times of the day, preferences and the associated weights,

indicating if the element’s value has changed or not (i.e., learning vectors hold information

for each daily cluster). The learning vectors are updated based on the activity being detected

by the sensors; hence, changes related to each particular element, are recorded in the

adapting vectors. Based on the changes being detected, the initial weights associated with

each particular element are updated. Since our objective is to adapt to pattern changes,

rules-based expert system is used to analyze and decide (i.e., based on the weights associated

with each element, and the existing knowledge). Hence, if the pattern and/or preference

change of a user is persistent (i.e., not just a onetime occurrence) it is considered for

adaptation. The weights created based on the user preferred tolerances (for any parameter of

interest) are used to determine if the change is considered for adaptation or not. Thus, the

detected values are applied in order to update the existing elements with the new values.

Thus, the adapting cluster vectors are created. Based on the number of occurrences (i.e. the

number of occurrences after which the adaptation takes place), the adapting cluster vectors

values are compared. If the values are within the scope of the occupant’s set limits and/or

tolerances, a new cluster is created. Thus, offering a new clustered knowledge (i.e. without

Chapter 3

37

destroying the existing knowledge) based on the occupant’s preferences, pattern and/or

schedule changes.

This PhD thesis roadmap and approach taken underline the importance of making a

scalable solution, starting with only a few inputs / outputs and simple UI, and emerging into

a more complex system with multiple sensors, sources of information, and a variety of

output types. The solution extends beyond a PCT by proposing an adaptive – hybrid

intelligent system, which does not require constant programming input by the occupant, a

system that learns and adapts (while offering optimal comfort and energy conservation). The

system communicates with the EGU Smart Meter to provide the most efficient savings

(TOU price rates), and to help manage the peak load demand (DR incentives). The aim is to

create a system which can optimize the comfort with respect to energy consumption by

learning the occupancy preferences, schedule changes and patterns; enabling energy savings

and comfort zone adjustment of the environment.

3.2 Analytical Modeling

The ALS model proposed therein utilizes WSN and AI concepts from a rule-based expert

system and ART, in order to bring forward a novel ALS technique, as described in detail

below. Moreover, the ALS model could potentially find its use in other applications, which

require some form of adaptive learning and/or intelligence, in addition to its sensing

capabilities, where the system learns and adapts based on the occupant’s schedule,

preferences, and/or pattern changes. The main objective of the ALS is to adapt to the

occupant’s pattern and/or schedule changes by providing comfort, while not ignoring the

energy conservation aspect. It has to be noted that the ALS model ensures that the existing

knowledge is not destroyed by the new knowledge (i.e. by pattern and/or schedule changes

of the occupant). Thus, the ALS verifies if the new knowledge is already available, and if

not, it is added to the existing knowledge-base as new knowledge. A simplified flowchart

showing the main concepts of the ALS model is depicted in Figure 3.2, while further details

are provided in the following subsection 3.2.1 “Adaptive Learning System (ALS) Model”.

Chapter 3

38

Figure 3.2 – Basic ALS model flowchart

Chapter 3

39

3.2.1 Adaptive Learning System (ALS) Model

Let m represent the number of wireless sensors: s1, s2,…, sm available in a smart

environment, and let g = 1,2, …, R represent the readings of each sensor group, for every

week day, such as:

Sg = {S1, S2,…, SR} . (1.1)

The sensor groups Sg represent active wireless sensor readings in different locations (or

rooms) within a smart environment.

Let L represent a learning vector with the following elements, each associated with a

weight placeholder:

L = {l1, l2,…, lN, wN+1, wN+2,…, wN+N} . (1.2)

The l1 to lN elements of the learning vector represent the actual values of interest, such as heat

and/or cool set points, set point start and end times, user preferences, etc. The weights are

associated with each element of the learning vector i.e., wN+1 is the weight associated with

the learning element l1, wN+2 is the weight associated with the learning element l2, etc.

Let Ac represent an adapting vector:

Ac = {a1, a2,…, aN} .

(1.3)

The vector Ac includes only the values of interest (and not the associated weights). Thus, for

each elements l1 to lN of the learning vector, there is a corresponding element of the adapting

vector a1 to aN. Furthermore, let cij represent all the existing clusters under consideration,

where i = 1,2, …, 7 represent the number of weekdays under observation, and j = 1, 2,…, N

number of occurrences for every event under observation, for each weekday. In addition, let

A* represent a set of the corresponding adapting cluster vectors:

A* = {Aci1, Aci2,…, AciN} .

(1.4)

The vectors Ac11 to Ac1N represent a set of adapting vectors (daily cluster) under observation

i.e., for every event under observation, for each weekday occurrences.

Chapter 3

40

And let L* represent a set of learning vectors under observation, where:

L* = {L1, L2,…, LN} . (1.5)

Where L* is a set of learning (cluster) vectors Li, ∀ i = 1, 2,…, N, where N is the maximum

number of learning occurrences (i.e., for each weekday). Furthermore, for every learning

vector Li, for a weight wN+k, initial weight conditions are:

 w N+k = -1 . (1.6)

Where constant N is a number representing the size of learning vector elements, and k = 1, 2,

…, N represents the corresponding weights associated with learning vector elements. From

the Equation 1.6, it has to be noted that the assigned value of -1 is the initial default value of

the weight wk, which signifies that the value of learning vector element corresponding to its

associated weight has not changed; whilst, any other value indicates a change of element’s

value.

Expression 1.7 is used to perform the conditional checks, in order to initially populate the

cluster vectors. For each learning vector element, where k = 1, 2,…, N (adapting vector is

half of the size of learning vector, i.e., it does not include the weights):

The Acij[k] assigned value of 0 signifies that the value of the element at index k did not

change, whilst the value of 1 means it has changed. It has to be noted that the above

expression (1.7) is repeated for every existing cluster (the occurrences of patterns within a

reasonable interval of interest).

Now, after the initialization of all the adapting vectors with default values, according to

the number of occurrences considered and detected by sensors Si, the conditional expression

1.8 is necessary, in order to record if any of the elements were changed.

if (Li[N+k] == -1)

 Acij[k] = 0

else

 Acij[k] = 1

(1.7)

Chapter 3

41

Let T be a temporary vector and Acij vectors to adapt (i.e., new vectors of a specific cluster

indicating the state of elements needed to be modified within each cluster, due to the

occurring changes).

if(Ac11[k]== 1 AND Ac12[k]== 1 AND … AND Ac1N[k]== 1)

 T[k] = 1

else

 T[k] = 0

(1.8)

After which the values of T are assigned to the Ac1j vectors to adapt, for each element.

Ac1j[k] = T[k] .

(1.9)

The same procedure shown in (1.8) and (1.9) is repeated for all the vectors to adapt Acij, for

each existing cluster. Where, c1j, c2j,…, cNj, represent different clusters. And j represents the

number of occurrences within a particular cluster data.

The new data extracted from the sensor sets i.e. Sg are used by learning vector L, for every

existing cluster (i.e. daily cluster) in order to compare the currently sensed values with the

previous ones; hence, detect if a change is obvious or not, for each element.

∀ i = 1, 2…N and ∀ k = N+1, N+2, …,N+N

L1[i] � S1[i], L2[i] � S2[i] … LN[i] � SR[i] .

L1[k] = -1, L2[k] = -1, … LN[k] = -1 .

(1.10)

Where S1, S2,…SR are the sets of wireless sensor readings of each sensor group Sg, for each

day of a week; representing the sets of sensor readings for different instances of interest (i.e.,

different days of a week, different patterns and/or scenarios under observation).

The values, 1 to N - represent the number of elements in a learning vector, and the values

N+1 to N+N - represent the number of the elements’ associated weights. Note, that the

weights associated with elements initially are populated (initialized) as -1 indicating that yet

Chapter 3

42

no change has occurred. Thus, prior to starting learning process, each weight is assigned the

value of -1.

Now, based on the cluster data available in learning vectors L, the Lcij learning vectors

include each particular daily cluster changes (each representing a different vector

corresponding to a specific occurrence), as shown in the following equation:

Lc11 [k1] = L1 [k1] .

Lc12 [k2] = L1 [k2] .

…

Lc1N [kn] = L1 [kn] .

(1.11)

Where,

k1 – represents the number of elements in the 1st set under evaluation

k2 – represents the number of elements in the 2nd set under evaluation

…

kn – represents the number of elements in the nth set under evaluation

The same equation is applied also for the Lc2k, Lc3k,…, LcNk clusters.

Let ϵ represent different tolerances based on which the particular elements’ weights are

evaluated, and the decision with respect to adaptation is considered.

Where,

ϵlow < ϵmed < ϵhigh (1.12)

Let wlow, wmed, whigh represent different weights associated with the elements of clusters,

decided by the expert system based on the application considered. The following expression

(1.13) ensures that the weights for different elements are assigned according to their values

chosen for a particular problem at hand. In this case, for each element of the learning vector

if the corresponding weight value is not -1, it indicates that a change was observed, hence

based on the sensed value and its tolerances with respect to typical desired value, new

weight is assigned, corresponding to that particular element of the learning vector.

Chapter 3

43

∀ i = 1, 2,…, N

 if (Lc11[N+i] ≠ -1 AND L1[N+i] ≠ -1) Then

 if (Lc11[i]- ϵlow ≤ L1[i] ≤ Lc11[i] + ϵlow)

 Lc11[N+i] = whigh .

 if (Lc11[i] - ϵmed ≤ L1[i] ≤ Lc11[i] + ϵmed)

 Lc11[N+i] = wmed .

 if (Lc11[i] - ϵhigh ≤ L1[i] ≤ Lc11[i] + ϵhigh)

 Lc11[N+i] = wlow .

(1.13)

The above expression (1.13) is repeated for all existing elements Lc1k, Lc2k, Lc3k,…, LcNk

of clusters under observation (i.e., daily cluster occurrences) with respect to learning vectors:

L1, L2,…, LN. Thus, it establishes the adaptive approximation between the values and

weights, based on the resulting sensor inputs (values received) and set tolerances.

Following the weights associated with each element of cluster vectors Lcik for each

particular cluster, another conditional check is performed. The weight checking process is

the final check where previous steps (i.e. weights assigned based on data tolerances ϵ) are

used, and the rule-based knowledge is used in the decision making process, in order to adapt

the new knowledge within the existing clusters. Based on the weights assigned i.e. wlow,

wmed, whigh, the possible outcomes related to the adaptation, for each element of every cluster

considered are used (i.e. the following approach, can be modified for use in different

applications with similar requirements):

λ - is the learning rate, where: 0 ≤ λ ≤ 1

wlow, wmed, whigh - are the weights associated with each element of the vector under

consideration, and does not necessarily have to be only three weights. Number of weights

can be chosen based on the complexity and granularity of the adapted values under

consideration.

β - is the weight multiplier coefficient, which can be adapted, based on the problem at hand

(typically, β = 1).

Therefore, for the problem under consideration, which consists of three important

weights, noted as whigh, wmed and wlow, we have:

Chapter 3

44

whigh = β λ .

wmed = (β/2) λ .

wlow = (β/4) λ .

(1.14)

Furthermore, for simplicity, we consider the case of three different clusters, for learn

and adapt process.

Let k = 1, 2, 3 and cluster vectors under consideration Lc1k, Lc2k, Lc3k. Hence, the following

clusters are considered for adaptation:

Lc11, Lc12, Lc13 - are three occurrences of cluster one,

Lc21, Lc22, Lc23 - are three occurrences of cluster two, and

Lc31, Lc32, Lc33 - are three occurrences of cluster three, while

ϴ[k] - are the resulting values of the adapted elements.

There are three different weights: whigh, wmed and wlow, which can be assigned to any daily

vector based on the proximity of the actual value to the particular element’s value (i.e. three

consecutive occurences of a particular day). The rules-based decision according to the

weights, is based on the following possible combinations: LLL, LLH, LHL, LHH, HLL,

HLH, HHL, HHH, MMM, MMH, MHM, MHH, HMM, HMH, HHM, LLM, LML, LMM,

MLL, MLM, MML, LMH, LHM, MLH, MHL, HML, HLM. Where, H stands for whigh, M

for wmed and L for wlow.

The resulting values returned from the rules-based decisions are based on the weight

occurences i.e. in cases when all three weekly occurences have the same weights, average of

the weekly elements is returned. Otherwise, if only two weekly occurences of any particular

elements have high weights, while the third one has low weight, the resulting value returned

is based on the average of the data elements corresponding to high weights, ignoring the low

weight element. Furthermore, the low weight signifies a major shift from a typical existing

value, hence the approach is slightly conservative and tends not to make radical changes to

the existing schedule or set points. Hence, in cases, such as when major shifts from the

existing schedules and/or setpoints occur, adaptation will take place only after three

consecutive occurences of the low weights.

Rule-based decisions (1.15) according to the weights (high, medium and low) are

depicted below, ∀ i = 1, 2,…, N:

Chapter 3

45

if (Lc11[N+i] == whigh AND Lc12[N+i] == whigh AND Lc13[N+i]== whigh)

ϴ[i] = (Lc11[i] + Lc12[i] + Lc13[i])/3

if (Lc11[N+i] == wlow AND Lc12[N+i] == whigh AND Lc13[N+i]== whigh)

ϴ[i] =(Lc12[i] + Lc13[i])/2

if (Lc11[N+i] == whigh AND Lc12[N+i] == wlow AND Lc13[N+i]== whigh)

ϴ[i] =(Lc11[i] + Lc13[i])/2

if (Lc11[N+i] == whigh AND Lc12[N+i] == whigh AND Lc13[N+i]== wlow)

ϴ[i] = (Lc11[i] + Lc12[i])/2

if (Lc11[N+i] == whigh AND Lc12[N+i] == wlow AND Lc13[N+i]== wlow)

ϴ[i] = Lc11

if (Lc11[N+i] == wlow AND Lc12[N+i] == whigh AND Lc13[N+i]== wlow)

ϴ[i] = Lc12

if (Lc11[N+i] == wlow AND Lc12[N+i] == wlow AND Lc13[N+i]== whigh)

ϴ [i] = Lc13

if (Lc11[N+i] == wlow AND Lc12[N+i] == wlow AND Lc13[N+i]== wlow)

(1.15)

Chapter 3

46

ϴ[i] =(Lc11[i] + Lc12[i] + Lc13[i])/3

if ((Lc11[N+i] == wmed OR Lc11[N+i] == whigh) AND (Lc12 [N+i] == wmed OR

Lc12[N+i] == whigh) AND (Lc13 [N+i]== wmed OR Lc13[N+i] == whigh))

ϴ[i] = (Lc11[i] + Lc12[i] + Lc13[i])/3

if (Lc11[N+i] == wlow AND Lc12[N+i] == wlow AND Lc13[N+i]== wmed)

ϴ[i] = Lc13 [i]

if (Lc11[N+i] == wlow AND Lc12[N+i] == wmed AND Lc13[N+i]== wlow)

ϴ[i] = Lc12 [i]

if (Lc11[N+i] == wlow AND Lc12[N+i] == wmed AND Lc13[N+i]== wmed)

ϴ[i] =(Lc12[i] + Lc13[i])/2

if (Lc11[N+i] == wmed AND Lc12[N+i] == wlow AND Lc13[N+i]== wlow)

ϴ[i] = Lc11[i]

if (Lc11[N+i] == wmed AND Lc12[N+i] == wlow AND Lc13[N+i]== wmed)

ϴ[i] =(Lc11[i] + Lc13[i])/2

if (Lc11[N+i] == wmed AND Lc12[N+i] == wmed AND Lc13[N+i]== wlow)

ϴ[i] = (Lc11[i] + Lc12[i])/2

Chapter 3

47

if (Lc11[N+i] == wmed AND (Lc12[N+i] == wmed OR Lc12[N+i] == whigh) AND

(Lc13[N+i]== wmed OR Lc13[N+i]== whigh))

ϴ[i] = (Lc12[i] + Lc13[i])/2

if ((Lc11[N+i] == whigh OR Lc11[N+i] == wmed) AND Lc12[N+i] == wlow AND

(Lc13[N+i]== whigh OR Lc13[N+i]== wmed))

ϴ[i] = (Lc11[i] + Lc13[i])/2

if ((Lc11[N+i] == whigh OR Lc11[N+i] == wmed) AND (Lc12[N+i] == wmed OR

Lc12[N+i] == whigh) AND Lc13[N+i]== wlow)

ϴ[i] = (Lc11[i] + Lc12[i])/2

Finally, the values obtained are assigned to the adapting vector corresponding to the Ac1

cluster vector under observation. Thus, ∀ i = 1, 2,…, N:

Ac1 [i] = ϴ[i] . (1.16)

The rules-based decisions, as depicted in expressions (1.15) and (1.16), are repeated

similarly for all the existing clusters under observation, in this case Ac2 and Ac3; by using the

same logic and the existing knowledge within Lc21, Lc22, Lc23 and Lc31, Lc32, Lc33 cluster

occurrences. Furthermore, the adapted values based on the Ac1, Ac2 and Ac3 are used to

replace the previous values (which are added, if not available in the existing knowledge

base). Thus, new clusters of data are created, reflecting the adaptability of a system under

observation, based on the occurrences. As an example, if Ac1 to Ac7 represent daily clusters

under observation (i.e., Monday to Sunday), Lc11, Lc12, Lc13 are three occurrences during

Monday (i.e., cluster vector Ac1), Lc21, Lc22, Lc23 are three occurrences during Tuesday (i.e.,

cluster vector Ac2), etc.

In order to verify the ALS model, two different scenarios involving pattern changes of

heat set point of PCT and also leave time, are considered. Table 3.1 below shows different

heat/cool set points (SP) and time of the day default schedules, set by an occupant. Hence,

Chapter 3

48

the scenarios under consideration are the pattern of ‘Leave’ time and ‘Heat’ SP pattern

changes initiated by the occupant.

Table 3.1 – Daily PCT schedule of temperature SPs

Figure 3.3 – Leave time patter changes adapted via ALS vs. averaging

The graph in Figure 3.3 depicts the adapted ‘Leave’ time after three consecutive

occurrences of occupant’s pattern changes (i.e. occupant leaving the house at different times

compared to the pre-programmed PCT daily schedule). The tolerances used in this example

for the ALS model are depicted in Table 3.2, which are considered while executing the rules-

based decisions in a response to the occupant’s pattern changes. Fig. 3.3 depicts how the

ALS model after few occupant’s pattern changes of ‘Leave’ time (three occurrences in our

case), it adapts the leave time value of 7.5 hr (7:30 AM) instead of 8 hr (8:00 AM). In

addition, Fig. 3.3 also shows the example of an averaged value (i.e. averaging of the

occurrences instead of applying ALS model), which corresponds to 8.58 hr (8:34:48 AM).

Table 3.2 – Tolerances and weights for ‘Leave’ time and heat set points

Chapter 3

49

 Taking into account that occupant’s first leave time was at 7.5 hr, second time at 10.5

hr and third time at 7.5 hr, the ALS model adapted value is 7.5 hr, which is closer to the

occupant’s preferred value. Thus, ALS, whilst adapting to the occupant’s preferred values, it

also takes into account the energy conservation aspect.

Figure 3.4 – Adapted set points via ALS vs. averaging

In Figure 3.4 are depicted the results of adapted value via ALS model versus average,

for three different daily cluster occurrences of the heat SP pattern changes. The first week’s

‘Wake’ heat SP (refer to Table 3.1) was changed from 18 °C to 22 °C, on the second week it

was changed to 19 °C, and on the third week it was changed again to 17 °C. If the average of

three occurrences was taken, the adapted value would have been 19.33 °C, indicating a shift

of 1.33 °C from a typical schedule initially chosen by the occupant. Thus, ALS adapted

value of 18 °C, is closer to the occupant’s scheduled heat SP, and it also signifies better

energy conservation. The ALS Model proposed and discussed above was applied in a

practical example, hence a new algorithm: “Observe, Learn and Adapt (OLA) - A new

algorithm for Smart Homes using Wireless Sensors and Artificial Intelligence” was

developed. The OLA algorithm and the tools developed (House Simulator – expert system

shell) in order to prove the ALS model, are described in Chapter 5 and 6.

Chapter 3

50

3.3 Synopsis of the Solution

3.3.1 High Level Architecture

The envisioned concept of an “Adaptive Systemic Solution” – consists of an adaptive

environmental control system, utilizing WSN and AI, which can provide energy

management in a Smart Home and/or Building; The WSN consisting of numerous

‘intelligent agents’ (i.e., smart sensor/actuator nodes) and central controller unit that utilizes

rule-based expert system concepts in conjunction with the learning and adaptability, related

to the user preferences, rates of heating/cooling of different zones, and added ‘system

awareness aspect’ for energy savings. The AI to the environmental control problem enables

the main controller unit to adapt and learn from the system dynamics, using a rule-based

expert system strategy and adaptive learning, which are the building blocks of the main

controller unit, as depicted in Figure 3.5.

Figure 3.5 - Main controller unit for energy management in intelligent buildings

The main controller unit consists of a “System Core”, which includes the ALS and rule-

based expert system concepts. Since the rule-based expert system depends on prior

knowledge and the amount of time required matching the rule with the memory, using only

one AI technique in this case would not render a flexible solution. Therefore, the goal is to

blend and utilize AI models based on unsupervised learning strategies, such as the proposed

ALS model implementation (via OLA) as described in previous Section 3.2.1 “Adaptive

Chapter 3

51

Learning System (ALS) Model.” The capabilities of a system to monitor and control,

maintain, and upgrade are also vital components of the overall system and should be taken

into account. One of the main features of the primary main control system must be its

robustness, ability to adapt and perform autonomous functions, and maintain its operational

state in case of faults (system recovery). Also, capabilities to remotely upgrade sensor

nodes’ firmware over-the-air assist the overall system performance and capabilities.

The main controller unit, in a way should reflect a ‘magnified’ and more powerful

version of a PCT with wireless interface – two way communication and network capability,

interface to a multitude of sensors/actuators, offering a variety of options for controlling

thermal comfort and/or other appliances. Today’s PCTs are able to communicate with the

home appliances, electricity generating utility meters - helping in the peak load control

(demand response initiative), offering efficient use of energy resources, thermal comfort and

energy savings. The integration of PCT devices and multiple wireless sensor networks into

Home Automation Systems, contributes in the implementation of “Smart Homes and

Buildings”. The main controller unit has the ability to access and retrieve information

constantly from the sensor nodes placed in many essential parts of the building, managing

more closely the HVAC and lighting control systems within that building. Hence, this

reduces the unnecessary waste of energy resources when not needed.

The wireless sensors on the other hand, offer the freedom to place sensors in any

possible part of the building without the need of wires, while providing abundant

reading/monitoring information for the optimal energy management within a building. The

capabilities of sensor nodes to sense different variables of interest, such as temperature,

humidity, pressure, airflow, occupancy, sunlight and other, could greatly reduce the

limitations of the existing energy management systems. Thus, enabling a better management

of energy, by using the sensors’ data to analyze and control efficiently HVAC system(s) for

optimal adjustment of heated and/or cooled air flow in multi-zones via actuators (controlling

air valves, fans, etc.). In addition, utilizing indoor and outdoor sensors/actuators to sense the

light intensity, open and close windows and/or blinds, in order to optimize the yield with

respect to energy conservation and comfort, can apply in this case, as well. By turning lights

on/off only when needed (i.e., lighting control system) in specific parts of the buildings,

sensors/actuators further contribute in conserving energy. The present and near future

Chapter 3

52

intelligent building designs, should be equipped and/or consider the means to exploit solar

energy (i.e., via solar panels), making use of renewable energy resources, as a secondary

source of power.

The intelligent building system should be able to take actions based on its ‘sensor

inputs’ (i.e., sensor/actuator node data) where the overall aggregated and/or compiled

information is used to achieve the optimal results associated with the energy efficiency and

comfort.

The sensor nodes are capable to communicate among each other and the main controller

unit. Whilst, the main controller unit also communicates with the AMI infrastructure

(directly or indirectly via central controller unit), in order to monitor the TOU prices/rates

and implement the DR Electricity Management, in order to save energy and manage the peak

load demands.

In addition to the two-way communication capabilities of the main controller unit and

sensor nodes, the ability (via gateways) to access the internet - opens many opportunities to

explore the power of WSN and control units within a system (equipped with the state-of-the-

art intelligent software) to remotely access, analyze, act and forecast best suitable actions,

leading to energy conservation and comfort. Thus, as a result, the ability to communicate

with the AMI devices (i.e., Smart Meters) enables thriving implementation of DR Energy

Management initiatives, help EGU to reduce the peak load demand, improve the control of

energy supply and demand, and reduce the overall energy costs.

The WSN contribute in actuation, sensing and dissemination of the real-time

information to the main control system. In a way, WSN represents the “awareness of a

building”, and the AmI is a result of it. The strategy for creation of such a system, should

encompass not only the system automation, AI and AmI, but furthermore must take

advantage of a low cost and compact size, yet powerful wireless sensors. A well-thought

composition of such a “systemic solution” could lead in fact, to a brilliant synthesis of WSN

technology, AI techniques and AmI.

Chapter 3

53

3.3.2 Wireless Sensor Networks for Energy Management in Smart Homes and

Buildings: ‘An Adaptive Intelligent System’

The methodology for creation of proficient Intelligent Buildings is by striving to make them

more adaptable, autonomous and aware of our environment, flexible and intelligent enough

to sense, actuate, compute and evolve into ‘An Adaptive Intelligent System’ which is

adaptable and re-configurable; can respond and adapt to new changes and requirements by

exploiting the wireless sensor/actuator network capabilities, and the overall system

intelligence. Thus, providing the means for efficient energy management and helping to

accomplish many other essential operations of Intelligent Buildings, such as tapping into the

renewable energy resources, in addition to the automation and control.

Figure 3.6 - WSN for energy management in smart homes and buildings

The Figure 3.6 depicts a conceptual design of the Energy Management in Intelligent

Buildings, by utilizing WSN, AmI, Advanced Control Systems and AI.

The Ambient Intelligence (distributed electronic intelligence) is a modern technology

embedded into our natural surroundings with sensing, adaptability and/or reaction to the

presence of people and objects. Thus, WSN mutually with the AI and AmI capture the

Chapter 3

54

essential ingredients that could be incorporated into Intelligent Buildings in order to

accommodate many needs, such as the energy management, security, and/or other needs.

3.3.3 System Integration

Considering that different parts of the building might experience different load profiles

and occupancy preferences, having only one centralized control unit for HVAC system for

energy management would not suffice. A reasonable approach to the problem is system

integration of several sub-systems with dedicated functionality (i.e., based on the size of

building and its needs) contributing towards the achievement of a single objective - efficient

energy management.

Figure 3.7 depicts a conceptual system design where the system integration and

interaction among several sub-systems is considered. The shared effort of the envisioned

system to augment its performance is by dissemination of data and control power to the

peripheral parts of the system, as required. The idea of system interaction, combined with

the power of wireless sensor nodes, strengthens the system ability to react in different

scenarios i.e., when different zones within a building require different accommodations

(heating or cooling). The overhead in wireless sensor nodes and main control system is

removed by the peripheral controller unit taking the role of a ‘clusterhead’ or sink within a

neighborhood of sensor nodes responsible for specific coverage areas (i.e. zones within a

building), to process, aggregate and exchange gathered data with the main control system, in

order to achieve the optimal energy management schemes for the entire building, at any

given time.

The peripheral controller unit is equipped with high-energy resources (plug-in device)

and transmission power, whereas the sensor nodes are equipped with limited transmission

range and energy resources (batteries). Therefore, a benefit of peripheral control systems is

also in removing the burden from limited energy resources of the sensor nodes (shorter

transmission range required i.e. less power consumption) far away from the main controller

unit. Thus, reducing the need to replace and/or charge sensors’ batteries frequently, leading

to less interruption of data feed from the sensors and reducing the system maintenance cost).

Thus, the real-time response of the system is improved by faster computations, less error

Chapter 3

55

prone communications, prolonged lifetime of sensor node energy resources, and finally

better overall system efficiency.

Figure 3.7 - System integration for energy management in smart homes and buildings

Considering all the factors that influence intelligent building system operation, it must

be said that the system can accommodate different building requirements with respect to

energy savings and management of electricity within it. As described earlier, the role of

sensor nodes in this matter is of vital importance. However, based on the size of a building,

its requirements, thermal characteristics and geographic position, for better-controlled

environment and energy management, system integration encompassing WSN, main

controller and peripheral units, leads to a more advantageous intelligent building system

design. The emergence of WSN has lead to the advancement in Ambient Intelligence, and

has opened an abundant source of opportunities for application of powerful controllers, and

AI concepts. The main objective of this section is to convey the key elements of an

‘Adaptive Systemic Solution,’ a glimpse of a design paradigm to be considered in energy

management system implementations in intelligent buildings, in general. An adaptive system

should not only monitor and control, but adapt and optimize the comfort with respect to

energy consumption by observing the surrounding and external elements of design, utilizing

the power of WSN, learning occupancy patterns and preferences; enabling efficient comfort

zone adjustment of the entire building.

Chapter 3

56

“In order to achieve paramount results in our efforts to design an ‘Adaptive Systemic

Solution,’ we must cross the boundaries of a single discipline and consider the problem from

a ‘Systems perspective.’ Where the interaction of several subsystems, each with different

attributes and specific qualities are considered - complementing each other as a whole, thus

applying and using the gathered knowledge of inter-disciplines, towards the creation of

complex intelligent systems.”

3.4 Development Tools

To facilitate the proof of concept, in addition to PC, the following software / hardware

development tools were used:

• Microsoft Visual C# for the implementation of the House/Thermostat Simulator

system and proof of concept for the proposed adaptive learning technique (its

implementation) via OLA. Implementation of the RL and Agent-based technique for

finding optimal solution in a predefined interval

• CD++ toolkit for Discrete-Event modeling and simulation of wireless sensors and

initial Thermostat Simulator System using DEVS and Cell-DEVS

• Embedded development tools (hardware and software)

� CCS C Compiler for 24 bit PICmicro®MCUs

� In-Circuit Debugger (ICD-U40)

� PICmicro®MCU 24FJ128GA006 development board

� One off board Temperature sensor (DS1631)

� One on board Digital Potentiometer / Two on board Push Button(s)

� Three onboard LED(s) / One off board 2x7 segment LED Display

� Two off board LEDs and one off board Push Button

56

CHAPTER 4

FINDING GLOBAL MAXIMUM IN A PREDEFINED INTERVAL

In this chapter, a new algorithm for use in embedded controllers with limited memory,

processing power and/or energy resources for finding the global maximum of a function in a

predefined interval, by using the reward/punish concepts from reinforcement learning and

agent based techniques is presented. “Reinforcement Learning and Agent-based Search”

application was implemented in C# to observe the algorithm at work and demonstrate its

main features. The performance results for several different functions are presented in order

to demonstrate the efficiency of the algorithm at work. Thus, its usefulness in embedded

systems with limited memory and/or processing power, such as the wireless sensor and/or

actuator nodes is discussed.

4.1 Introduction

In many real world applications use of only one technique to solve a particular problem

will not suffice to bring forward the best possible solution. Hence, the combination of

different techniques has led to the emergence of more sophisticated intelligent hybrid

systemic solutions, which combine at least two different artificial intelligent (AI) techniques

and/or intelligent technologies. The change of focus from weak to domain specific methods

within AI, lead to exploration and discovery of biologically inspired techniques such as

ANN, GA, simulated annealing, PSO, RL, intelligent agents, etc. The RL and agent-based

computing, as a part of AI techniques, has shown to be capable of solving complex real

world problems in vast engineering and computer science applications [POS08][SON98]

[TAN09]. The GA and PSO are also known to be useful in solving optimization problems

[IZQ08]. In addition, the use of multi-agent based approaches is apparent also in wireless

sensor networks, where sensor and/or actuator nodes act as intelligent agents cooperating

among themselves to achieve a particular objective. The advantages of efficient problem

solvers are numerous, however, in our case, of particular interest are the problems which are

closely related to small-scale embedded systems, or better say sensor/actuator nodes with

Chapter 4

58

limited computational power, memory and energy resources, implying that fast and efficient

processing algorithms, should be considered as an essential part of the overall system design.

The role of DR and TOU rate incentives applied by utilities (EGUs), have great impact

in peak load curtailment, and are used to control the peak load demands to be able to cope

with ever-increasing energy demands and available resources i.e. capacity which is limited

due to the number of generators available. On the other hand, DR and TOU incentives help

the consumers to save on high electricity prices.

However, there are many parameters which play a role in achieving a peak load

curtailment during the cold winter and/or hot summer days. The control of power usage in

homes and buildings is not related just to HVAC systems and appliances; it includes the load

control switches for water heaters, pool pumps, hybrid electric vehicles, lighting etc. Thus,

the pattern of electricity usage by consumers in general, is not constant. Different parts of a

city and/or province might have different power usage patterns, where the control of peak

load demand, poses a challenge to predict and control. Different zones within a city might

have to Opt-in (engage) and Opt-out (disengage) to DR commands and TOU rates, at

different times of a day, based on the demand for electricity.

The dynamic nature of a problem at hand implies that utilities must forecast many

possible scenarios, based on the weather data and/or previous knowledge-base history in

order to respond quickly, better optimize and control the power usage during peak load

periods. The utilities communicate (via Smart Meters) with “Smart Thermostats”, in order to

manage the usage of power during peak load events, accordingly. Taking into account the

randomness of possible power usage patterns, hence peak load demands, utilities can send to

each zone of a city several possible predefined functions, reflecting forecasted daily power

usage; hence, providing information to the consumer about the DR and high TOU rate prices

about the power usage during the peak load periods. The “Smart Thermostats” share this

information with the existing WSN in a building and/or home, to better manage the power

(i.e. pre-heating and/or pre-cooling of zones), based on the patterns (and prices) extracted

from the functions delivered by the utility.

Thus, the main benefits of the proposed algorithm described herein, are to ‘bridge a gap’

between the EGUs (i.e., utilities) and “Smart Thermostats” into “Smart Grid” initiatives.

While, from the “Smart Environment” perspective, benefits are that the “Smart Thermostats”

Chapter 4

59

and/or WSNs (sensor/actuator nodes) are not required to receive and store hundreds or

thousands of daily data in memory for many possible daily energy usage patterns. But, can

easily extract the information from functions (i.e. delivered by the utility) describing those

daily patterns. The “Smart Thermostat” and/or sensor nodes can process the information

from functions, find the optimal points (i.e. global and local maxima), make decisions and

act accordingly. Thus, helping utilities to better manage and control the power (i.e. load

curtailment) during high peak load periods, and furthermore provide energy savings for

consumers.

The algorithm is intended for use in sensor/actuator nodes i.e., microcontrollers with

limited memory, processing power and/or energy resources. Thus, the objective is to find the

global maximum value of a function in a predefined interval with minimal number of

function evaluations and iterations, given a function y = f(x).

4.2 Description of the Algorithm

The main idea adopted for the algorithm is based on the reinforcement learning

(feedback evaluation) and agent based techniques. The feedback evaluation of an agent

interacting with the environment provides a means to learn optimal agent’s action policies,

which are evaluated via reward and punishment. This feedback mechanism aids in the

‘awareness’ of the agent about success and failure rates of its actions and its performance.

Utilities can provide many possible peak load profiles for any particular day, from

which “Smart Thermostats” and/or sensor nodes can extract the possible peak load profile of

critical periods and conform to the DR and TOU rate incentives, accordingly. Based on the

granularity needed to properly evaluate a given function, a few hundred or even thousands of

function evaluations could be needed to determine the peak load profiles of a day (i.e. to find

global and local optima). In this case, sequential search techniques are impractical. On the

other hand, the uncertainty in finding the optimal points, would pose a problem if the GA

approach was used. Since, it would require additional verification i.e. comparison of the

results of same function from different runs, under different mutation rates to ensure that the

actual optimal points are found. Thus, demanding more processing power by the

sensor/actuator nodes. Furthermore, based on the dynamic nature of power distribution and

usage, potential functions reflecting the possible peak load profiles of a day (i.e. provided by

Chapter 4

60

utility), can be numerous, and different each time. Therefore, it cannot be assumed that there

is only one-time daily processing of a given function.

The use of RL concepts, such as the action selection mechanism, where the action

evaluation (i.e., reward or punishment) comprise the basic strategy considered for the

problem at hand. However, the algorithm described therein, builds on the synergy of

concepts from the RL and agent-based approaches. It introduces four guidance methods:

Reward, Discover, Alert, and Optimal, and ‘Create Agents’ concept (described in Section

4.3). The ‘Reinforcement Learning and Agent-based Search’ algorithm can be used in

embedded systems with limited memory, power and processing resources, such as wireless

sensor nodes. On the other hand, other methods, such as the sequential search techniques

would demand more resources and processing power in order to find the global maximum of

a function. Similarly, use of GA techniques in this case would prove impractical, due to the

lack of generalization i.e., need for specific implementation required for each class of

problems considered at hand.

The ‘Reinforcement and Agent-based Search’ algorithm could be useful for scenarios

such as the ‘intelligent agents’ which are required to perform autonomous operations,

involving decision making, prediction, learning capabilities and/or adaptability. Hence, the

main sink node of the system (core controller unit) could feed the information by only a few

characters, representing the function to be evaluated. Furthermore, hundreds or thousands of

P(x, y) values could be expensive to transmit and require a large amount of memory on the

sensor/actuator side, in comparison to transmitting several characters needed to represent

different functions. Additionally, sensor/actuator node could extract the function under

consideration (by parsing the string) and executing the algorithm. Therefore, find the optimal

points for further processing and/or autonomous decision making without a need to receive

and store large amounts of information. The reinforcement component of the algorithm is

implemented as a simple rule consisting of the following enumeration (named ‘Judge’) and

corresponding ‘guidance methods’: Reward, Discover, Alert, and Optimal.

Figure 4.1 depicts the main ‘guidance methods’ used in the algorithm. Initially, the

‘guidance methods’ - Reward, Discover, Alert and Optimal are described. Additionally, the

synergy of reinforcement learning and agent-based search techniques is shown by the use of

new concept ‘Create Agents’ in addition to the ‘guidance methods’.

Chapter 4

61

4.2.1 Reward Method

Reward is one of the ‘guidance methods’ which moves the point forward sequentially while

the function is increasing (refer to Figure 4.1, point P0 moving towards new position i.e.

point P1). The Reward method, only the first time has a step size of one, and increments by

two and more (if necessary for accelerated search of the space). The ability not to miss the

maximum points, even though the step size is larger is by collaboration with the other

methods (i.e. Alert, Discover and Optimal). If during the search no optimal point is found

and the limit of the subinterval is reached a flag is set to indicate that the boundary is

reached.

Figure 4.1 - Graphical view of the main concepts

4.2.2 Discover Method

Discover method is executed when the function is decreasing, otherwise it is analogous to

the Reward method (refer to Figure 4.1, point Pk moving towards point Pk+1)

Chapter 4

62

4.2.3 Alert Method

Alert method is executed if the global or local maximum is close or is found (i.e., function

goes from increasing to decreasing within the subinterval, as depicted in Figure 4.1). If the

previous step (prior to execution of the Alert method) was Reward, step size is reduced

accordingly to what the increment step size was performed by Reward method, and the

consequent movements of the point are made slowly, until the optimal point is reached. For

each step, the P(x, y) point is evaluated if it is within the ±Tolerance limits set at the initial

stage, and if true, Optimal method is executed and the point Pmax (xm, ym) is recorded (refer to

Figure 4.1). Otherwise, if the optimum point is not reached on the first trial, Alert moves

slowly until the point is reached.

4.2.4 Optimal Method

As shown by former Alert method, Optimal method is executed during tracking for the

global maximum point of the function. The Optimal, checks if the point exists and if not it

records the point as a new point found. The optimal point indicates to the search method that

the global maximum point is found, hence the subinterval completes (this gives flexibility to

define subintervals and/or different implementation techniques of the algorithm). One could

divide the function interval into several subintervals, approximately sufficient not to miss

any maximum (local or global). Otherwise, one could record the coordinates of global

maximum point, and adjust the minimum value of the next subinterval to the optimal point

value plus given Tolerance, and the maximum value to the previous maximum or a new

maximum; taking into account that the new maximum of the subinterval is less than the

maximum of the entire predefined interval (refer to Figure 4.1, subinterval 1, subinterval 2

and the predefined interval). Furthermore, in Section 4.3 it will be described how the

synergy between RL i.e., ‘guidance methods’ and agent-based techniques, provides a more

effective solution to the above described scenario.

Chapter 4

63

4.2.5 Main Steps of the Algorithm

4.2.5.1 Problem Definition

Given function y = f(x), where x ϵ [a, b] find maximum value of a function in a predefined

interval [a, b] with minimal number of function evaluations and iterations.

4.2.5.2 Algorithm

The main steps of the algorithm are depicted in Figure 4.2. The interval under observation, is

divided into several subintervals of interest, and accordingly, for each subinterval the

minimum and maximum range is adjusted (total should be equal to the predefined interval).

In addition to the ‘guidance methods’ described earlier, few methods, such as SearchProcess

and CheckBoundaryPoints are discussed below.

The ‘SearchProcess’ method executes while the point of interest is not found or the

maximum range of the subinterval is not reached. During each execution, function is

evaluated and checked against the old and new x values, and increasingFunction flag is

assigned accordingly. If the function under consideration is increasing i.e. function value is

greater for the input value Xnew versus the value Xold then increasingFunction is true,

otherwise it is false. Additionally, for each specified subinterval method SearchProcess is

executed, while keeping track of the reference points and values for the old and new steps

taken.

The CheckBoundaryPoints method checks each subinterval boundary points using the

references to Xold and Xnew values by evaluating the function under consideration. Thus,

marks the increasingFunction as true if the function is increasing and false otherwise. If the

boundary of the search space is reached (maximum predefined interval value) method

terminates, otherwise consequent subinterval is executed following the same principles.

Furthermore, the method ‘Create Agents’ is described in Section 4.3. The step size ∆s can be

chosen based on the granularity of a function under consideration. Moreover, the term α is

the tuning factor of the step size ∆s (i.e. Xnew = Xold + α· ∆s), which directly affects the search

process (i.e. α > 1 accelerate the search, and α < 1 decelerate). When the search process is in

the accelerated mode, and transition from the Reward to Discover state happens while no

optimal point is detected, the Alert state becomes active and moves back to the step which

Chapter 4

64

was active prior to the Discover state. Thus, it ensures that no optimal point is missed during

the search process. Furthermore, while in the Alert state, value of α is decreased (i.e. α < 1)

and is neither modified nor updated until the optimal point is found.

START

Initialize Min and Max values of function boundaries:

MinRange = a

MaxRange = b

Initialize Step Size:

Step = Δs

Divide interval in several subintervals of interest:

i1, i2,…, in

For each subinterval adjust the Min and Max range:

a1 < i1 < b1

a2 < i2 < b2

…

an < in < bn

Assign small tolerance to boundaries of each subinterval:

Tolerance = ϵ

Initialize Array OptimumList placeholder for

points of interest

Initialize

functionEvaluationCounter = 0

processingCounter = 0

Initialize

increasingFunctionFlag = false

Declare guidance methods:

enum Judge { REWARD, ALERT, DISCOVER, OPTIMAL }

For sub-interval i1 and following subintervals of interest

i2,…, in
perform the following actions:

Initialize min and max values of first sub-interval i1
Min = a1

Max = b1

Xold = Min

Xnew = Xold + α· Δs

α ≥ 1

1

Chapter 4

65

Figure 4.2 – Basic flowchart of the RL and Agent-based search algorithm

increasingFunctionFlag == True

increasingFunctionFlag CheckBoundaryPoints(ref Xold , ref Xnew)

Execute method SearchProcess(ref Xold , ref Xnew, ref Min, ref Max)

Invoke Reward method If Judge.Discover

Yes
No

Invoke Discover method
Reduce α (i.e. α ≤ 1)

Invoke Alert method

Yes

Is boundary of subinterval reached ?

Stop

Execute method CreateAgents

Xold = Xnew

Xnew = Xnew + α· Δs

Optimal Point found?

Invoke Optimal method

Add new optimal point Popt (x,y)

Yes

No

Sort points in OptimalList array in descending order and return

Pglobal (x,y)global and Plocal (x,y)local optimum points

Yes

Previous step Judge.Reward ?

No

Yes

Yes

Is boundary of interval reached ?

Yes

Min = ai

Max = bi
No

Xold = Min

Xnew = Xold + α· Δs

α ≥ 1

Continue with next

step

Judge.Optimal ?

α ≤ 1

Yes

No

No

1

Chapter 4

66

4.3 Synergy of Reinforcement Learning and Agent-Based Search

Technique

The agent-based technique, in addition to the reinforcement learning i.e. ‘guidance methods,’

randomly generates a cluster of agents, whereas each point P(x, y) is evaluated for its fitness.

Taking into account that we are looking for the maximum value (i.e., global maxima) of a

function within a specified interval [a, b], point Pmax (xm, ym) which gives the highest value is

chosen as a starting point of the search process. It will be shown (in Section 5) with tangible

simulation results that agent-based technique complements very well the reinforcement

learning strategy applied to this problem, and indeed it offers much better results in

comparison to the reinforcement ‘guidance methods’ alone (referred also as “Reinforcement

Only”). The addition of a new concept ‘Create Agents’ was introduced to the previously

discussed algorithm, in order to make it more flexible and efficient in finding the optimal

solution (i.e., global and local maxima), for much shorter processing time and with less

functional evaluation overhead. The basic principle applied is the following: Based on the

function y = f(x) under investigation, agent-based concept involves creation of generation of

agents for the given predefined interval [a, b]. The list of agents is sorted in ascending order,

and the best agent, i.e. the one that produces maximum value for the function y = f(x) in a

sub-interval [a1, b1] where a ≤ a1 and b1 ≤ b, is chosen as the initial starting point of the

SearchProcess method described priori. Agent size being used can be set to any number;

however it was observed that agent size of 10 would suffice for most of the problems with

small interval range. Predefined interval can be divided in several sub-interval based on the

granularity of the solution space required, and the functions being evaluated. It is not

prudent to use unnecessarily large number of subintervals for problems where the solution

can be achieved with only a few.

4.4 Reinforcement Learning and Agent-Based Search Application

The application software “Reinforcement Learning and Agent-based Search” was

implemented in C# in order to evaluate and demonstrate the algorithm proposed, by

simulating the algorithm at work (for several functions) under different scenarios, in

Chapter 4

67

particular ‘Reinforcement Only’, in isolation from the ‘Agent-based Search’ technique

applied, and finally the synergy of the reinforcement learning and agent-based technique.

4.4.1 Graphical User Interface – Main Features

On the right hand side of the application GUI (refer to Figure 5.3), functions being

evaluated are displayed, including the points of interest. While on the left hand side of the

GUI, function being evaluated, its range and step size used, following which are displayed

the output results including the optimum points found (and their coordinates), number of

iterations taken during this process, including the number of function evaluations during the

search process. Clicking on the ‘Reinforcement Only’ button invokes the Reinforcement

algorithm whilst, clicking on the ‘Reinforcement and Agent’ button, invokes the

Reinforcement and Agent-based search algorithm, for the selected function under test, which

gets executed. The output results are displayed in the output text window and also drawn in

the graph.

4.5 Performance Results

Several functions with different characteristics were tested in order to verify the algorithm,

its main features; and also to compare the “Reinforcement Only” versus “Reinforcement

Learning and Agents-based Search” techniques. The first function considered is depicted in

Figure 4.3. Function: y = 2 ((cos (πx) / x) + 1) where x ϵ [1, 5]; Step size = 0.005; Tolerance

= 0.05; Pmax (x, y) to be found;

Figure 4.3 - Reinforcement learning and agent-based search application

Chapter 4

68

From the results shown in Table 4.1, it can be observed that by applying the

‘Reinforcement Only’ technique, the maximum is found after 189 iterations, while the

number of function evaluations is 382. However, the results depicted in Tables 4.2 indicate

better performance of the “Reinforcement Learning and Agent-based Search” when

compared to the “Reinforcement Only” technique. As shown in Tables 4.2, for the

“Reinforcement Learning and Agent-based Search” technique, the maximum value of a

function was found after 30.8 iterations (calculated from 10 trials) versus 189 for the

“Reinforcement Only”. Similarly, the number of function evaluations was found to be 109.2

versus 382. The effectiveness of “Reinforcement Learning and Agent-based Search” is likely

not to be affected by the step size as much as the “Reinforcement Only” technique. Thus, it

indicates a much better performance, and validates the optimality of former against the later

technique.

Table 4.1 - Simulation results for ‘Reinforcement Only’

Table 4.2 - Simulation results for ‘Reinforcement Learning and Agent based Search’

In addition, the error of maximum value Pmax (1.95, 3.01) is less than the set Tolerance

(0.05). Noticeably, introduction of the new concept ‘Create Agents’ within the algorithm

offers competitive performance advantages to the algorithm. The scenario shown above

verifies the effectiveness of algorithm for finding optimal solution in a predefined interval.

Chapter 4

69

However, further scenarios are considered, in order to show its usefulness in real-world

applications, as mentioned earlier, in the Introduction section of this Chapter. Thus, in order

to show the algorithm at work for different situations (related to the utility’s peak load

demand), several possible scenarios are considered and verified, as depicted in Figures 4.4,

4.5 and 4.6. The functions being considered reflect different peak load profiles described by

polynomials of 6th degree. The x-axes of the graph represents the time of a day 0 to 24 hours,

while y-axes represents the probable utility load profiles of energy usage (in percentage) at

different times of a day. During cold winter and/or hot summer days, the demand for

electricity can be higher that the supply, due to the number of generators available and/or

active at a time. The existing infrastructure is getting older and cannot keep up with the ever-

increasing electricity demand (i.e. new generators are not build as the demand for electricity

grows). In addition, utilities are more interested in balancing the power profile (i.e. peak

load curtailment), rather than activating and/or building new generators just to meet the low

occurring extra energy demands (i.e. several occurrences per month), needed possibly just

for few hours a day.

Figure 4.4 depicts the first load profile of the utility function y1 under consideration.

y1 = 0.941 x 6-7.3795 x 5+21.2895 x 4-28.0191 x 3 + 16.540 x 2 - 2.8859 x + 0.6294.

Where x ϵ [0, 2.4]; Step size: 0.005; Tolerance = 0.05; Pmax (x, y) to be found;

Figure 4.4 - Finding maximum value of utility function y1

Global and local max of energy

usage (%) during 24 hr period

Chapter 4

70

Table 4.3 - Simulation results for ‘Reinforcement Only’
Simulation

Trial

Iterations Nr. of

Function

evaluations

Global max Local max

Time of

day (hr)

Energy usage

(%)

Time of day

(hr)

Energy usage

(%)

1 126 256 18.3 167.6694 8.3 111.2027

Table 4.4 - Simulation results for ‘Reinforcement Learning and Agent based Search’

Simulation

Trial

Iterations Nr. of

Function

evaluations

Global max Local max

Time of

day (hr)

Energy usage

(%)

Time of day

(hr)

Energy usage

(%)

1 16 73 18.3144 167.6841 9.88252 111.4962

2 15 74 18.3603 167.7214 8.86443 111.4060

3 23 85 18.2849 167.6525 10.01474 111.5465

4 6 58 18.2870 167.6550 10.12052 111.6004

5 14 74 18.3879 167.3370 10.14696 111.6160

6 22 84 18.3308 167.6991 10.06763 111.5718

7 8 54 18.2925 167.6612 9.61808 111.4410

8 6 56 18.3114 167.6811 9.68419 111.4501

9 9 54 18.3682 167.7263 9.72386 111.4569

10 14 69 18.3089 167.6787 10.2130 111.6588

Average 13.3 68.1

From the results depicted in Tables 4.3 and 4.4 we can observe the global maximum of

the energy usage (%) at specific time of a day (shown in hours). Similarly to the previous

case, the results indicate clearly better performance of the ‘Reinforcement Learning and

Agent-based Search’ versus ‘Reinforcement Only’ for the utility function y1 being evaluated.

The improvement factor is 9.47 for the number of iterations (i.e. 13.3 versus 126 iterations)

and 3.75 for the number of function evaluations (i.e. 68.1 versus 256). The maximum value

Pmax with respect to time of a day (hrs) and energy usage (%) is (18.5, 167.74). The error of

maximum value found via algorithm Pmax (18.3, 167.67) is much less than the set Tolerance

(i.e. time of a day: 0.05 x 10 = 0.5 hrs, energy usage: 0.05 x 100 = 5 %). For the utility’s

load profile y1, based on the results obtained, the estimated global peak (maximum power

load demand) is most likely to occur at 18:18 PM ± 30 min. Where the electricity demand

exceeds utility’s capacity by 67 % (global maximum). During this time period, the energy

usage patterns leading to minimum energy usage can be applied (i.e. “Smart Thermostat”

tolerance settings leading to maximum conservation), while consumers help utilities to

manage the peak load demand by their participation in DR and TOU rate incentives.

Chapter 4

71

Additionally, during the time periods, when energy usage is about 11% above the capacity

(i.e. local maximum, refer to the Tables 4.3 and 4.4), medium tolerances can be applied, to

help utilities in peak load management, and consumers to achieve energy savings,

respectively.

Figure 4.5 depicts the second load profile of the utility function y2 under consideration.

Function: y2 = 0.946 x 6-7.3805 x 5+21.275 x 4-28.067 x 3 + 16.492 x 2 - 2.8414 x + 0.6194.

Where x ϵ [0, 2.4]; Step size: 0.005; Tolerance = 0.05; Pmax (x, y) to be found;

Figure 4.5 - Finding maximum value of utility function y2

Table 4.5 - Simulation results for ‘Reinforcement Only’

Simulation

Trial

Iterations Nr. of

Function

evaluations

Global max Local max

Time of

day (hr)

Energy usage

(%)

Time of day

(hr)

Energy usage

(%)

1 112 228 17.6 130.4727 7.6 107.3728

The results shown in Tables 4.5 and 4.6, reveal the performance consistency of the

‘Reinforcement Learning and Agent-based Search’ versus ‘Reinforcement Only’ for the

utility function y2 being evaluated. The improvement factor is 7.46 for the number of

iterations (i.e. 15 versus 112 iterations) and 3.02 for the number of function evaluations (i.e.

75.3 versus 228). The maximum value Pmax with respect to time of a day (hrs) and energy

usage (%) is (17.8, 130.57). The error of maximum value found via algorithm Pmax (17.68,

130.5) is much less than the set Tolerance (i.e. time of a day: 0.05 x 10 = 0.5 hrs, energy

usage: 0.05 x 100 = 5 %). For the utility’s load profile y2, based on the results obtained, the

Global and local max of energy

usage (%) during 24 hr period

Chapter 4

72

estimated global peak (maximum power load demand) is most likely to occur at 17:48 PM ±

30 min. Where the electricity demand exceeds utility’s capacity by 30.578 % (global

maximum). Still, in this case maximum and/or medium tolerances leading to energy

conservation can be applied by “Smart Thermostats” (around the peak period 17:48 PM),

based on the utility’s load curtailment response due to the energy load profiles associated i.e.

within different zones of a city.

Table 4.6 - Simulation results for ‘Reinforcement Learning and Agent based Search’

Simulation

Trial

Iterations Nr. of

Function

evaluations

Global max Local max

Time of

day (hr)

Energy usage

(%)

Time of day

(hr)

Energy usage

(%)

1 25 88 17.6825 130.5416 7.72735 107.4475

2 30 118 17.6554 130.5228 7.65304 107.4094

3 7 56 17.6819 130.5412 7.608359 107.3791

4 17 78 17.6767 130.5379 7.617477 107.3858

5 13 64 17.6010 130.4738 7.767022 107.4616

6 7 56 17.6332 130.5046 7.780243 107.4654

7 14 73 17.6846 130.5429 7.589818 107.3649

8 12 64 17.6360 130.5070 7.614589 107.3837

9 23 90 17.6983 130.5508 7.632827 107.3964

10 15 66 17.6332 130.5046 7.578267 107.3555

Average 15 75.3

 The local maximum point found for energy usage is about 7% above the existing

capacity during the early morning hours (7:42 AM). Thus, utilities may decide to shed the

load among many zones of a city, whereas minimum tolerances can be applied by “Smart

Thermostats”. Otherwise, if the load is shared among few zones of a city, medium tolerances

can be applied in order to balance the power usage to less than or equal to 100 %.

Moreover, in Figure 4.6 another load profile expressed by the utility function y3 is

shown for comparison.

Function: y3 = 0.7325 x 6-5.6931 x 5+16.597 x 4-22.278 x 3 + 13.183 x 2 - 2.1656 x + 0.5997.

Where x ϵ [0, 2.4]; Step size: 0.005; Tolerance = 0.05; Pmax (x, y) to be found;

The results depicted in Tables 4.7 and 4.8, for the ‘Reinforcement Learning and Agent-based

Search’ versus ‘Reinforcement Only’ for the utility function y3 being evaluated, which

indicate a global maximum very close to the local maximum. The algorithm is able to find

the optimal point for energy usage, and not get trapped in a local maximum. The

Chapter 4

73

improvement factor is 5.94 for the number of iterations (i.e. 15 versus 112 iterations) and

2.48 for the number of function evaluations (i.e. 18 versus 108). The maximum value Pmax

with respect to time of a day (hrs) and energy usage (%) is (18.6, 106.15).

Figure 4.6 - Finding maximum value of utility function y3

Table 4.7 - Simulation results for ‘Reinforcement Only’
Simulation

Trial

Iterations Nr. of

Function

evaluations

Global max Local max

Time of

day (hr)

Energy usage

(%)

Time of day

(hr)

Energy usage

(%)

1 107 220 18.35 106.0736 7.4 102.2437

Table 4.8 - Simulation results for ‘Reinforcement Learning and Agent based Search’
Simulation

Trial

Iterations Nr. of

Function

evaluations

Global max Local max

Time of

day (hr)

Energy usage

(%)

Time of day

(hr)

Energy usage

(%)

1 38 113 18.3715 106.0872 7.40805 102.2507

2 23 93 18.2764 106.0180 7.42294 102.2632

3 18 77 18.2898 106.0291 7.49483 102.3140

4 26 96 18.2983 106.0364 7.46504 102.2948

5 17 79 18.3305 106.0603 7.43981 102.2765

6 20 80 18.3497 106.0734 7.39680 102.2409

7 19 87 18.2983 106.0360 7.56869 102.3504

8 12 66 18.3439 106.0695 7.47492 102.3015

9 31 110 18.2952 106.0336 7.45775 102.2897

10 18 86 18.3384 106.0658 7.46838 102.2971

Average 18 88.7

Global and local max of energy

usage (%) during 24 hr period

Chapter 4

74

The error of maximum value found via algorithm Pmax(18.3, 106.07) is again within set

limits, much less than the set Tolerance (time of a day: 0.05 x 10 = 0.5 hrs, energy usage:

0.05 x 100 = 5 %). In this scenario, since both global and local energy usage peak loads

(shown in Figure 4.6) are slightly above the available capacity, utility might decide to send

the DR and/or TOU rate incentives, such as to spread the load among all the zones within a

city. Thus, having minimal impact on consumers (i.e., requiring minimum adjustment of

tolerance settings via “Smart Thermostat”), while achieving the load shedding during the

critical high demand times of a day.

4.6 Summary

In this chapter, a new algorithm for finding the optimal solution in a two dimensional space

within a predefined interval is presented. The synergy of Reinforcement Learning and

Agent-based technique was found to be practical. It was demonstrated with the simulation

results as a viable and flexible technique to be used in finding global and local maximum of

different functions.

A number of example functions were used to validate its performance with respect to

the number of iterations and function evaluations, including possible real-world scenarios,

which can be implemented by utilities in order to improve the control of power usage via

peak load DR and TOU rate incentives. From the “Smart Grid” perspective, the algorithm

‘bridges a gap’ and offers a viable solution for further exploitation of “Smart Environments”

by utilities, to better manage the peak load demand while offering the consumers options to

save on ever-increasing energy costs. Hence, the role of utilities in potential future

implementation of such strategies is of vital importance, to further enhance the existing peak

load control methods, and/or their efficiency.

During the simulation process, neither the algorithm nor the application code needed to

be modified, hence it provides good foundation as a sound method for general use, where no

particular implementation is necessary to evaluate and find solutions for different problems.

Its usefulness in scenarios such as those of wireless sensor nodes with limited memory and

processing power was discussed. The proposed algorithm was implemented, tested and

evaluated for finding global maximum of a function in a predefined interval.

74

CHAPTER 5

SIMULATOR OF A HOUSE HEATING-COOLING SYSTEM

5.1 Introduction

The simulator of a house heating-cooling system was implemented using C# in order to

simulate different scenarios of house heating/cooling system efficiency, energy consumption

and associated costs under different scenarios. And more importantly for its use as an

“expert system shell” to assist in development – proof of concept and implementation of the

advanced intelligent algorithms for future “Smart Thermostats,” such as, the proposed ALS

model and zone controlled environment technique for Smart Homes and Buildings.

Hence, the simulator shall aid in investigation of the advantages of multi-zone versus

single controlled house heating system; furthermore, to assist in proof of concept,

development and implementation of ALS model (described in Chapter 6). Initial results

showing the benefits of a controlled and programmable schedule achieved by a PCT versus

the fixed (permanent hold) set points are presented, including the total energy consumption

in KWh, and corresponding energy costs for several test cases. Additionally, the results of

having a programmable weekly schedule based on the occupancy preferences and utility

TOU rates, to optimize comfort and conservation of energy accordingly, are presented and

further on elaborated in Chapter 6 (i.e., via “Observe, Learn and Adapt” algorithm, which is

a practical implementation of the ALS model with the aid of a simulator described therein).

5.2 Model of a House Heating-Cooling System

The main building blocks of a house heating-cooling system model considered for the

simulator, consists of the Outdoor Temperature Generator, Transducer, House Heating/

Cooling and a Thermostat unit, as shown in Figure 5.1. The simulator was implemented

using C# high level language, by following the principles of object oriented design (OOD),

and friendly user interface aspect of it. The complexity of a user interface in PCT is one of

Chapter 5

76

the main reasons why most of the people do not utilize at their potential current PCTs

[MEI08].

The purpose of Outside Temperature Generator is to read the outside temperature data

from a comma separated value file and provide the hourly temperature data to the

Thermostat. The Transducer computes the approximate heating losses of a house based on

the outdoor and indoor temperature inputs and thermal isolation of a house model. House

Heating Unit receives the inputs from a Thermostat and reacts by applying the control signal

to turn on/off the heater (or air conditioner) and provides the heated/cooled air with the

constant air flow and temperature to the house. Similar principles apply for a multi-stage

heater/cooler units in a zone control environment, where multiple variables (instead of one)

are needed to control the heater/cooler stages and/or adjust the heated/cooled air flow, based

on the user preferred settings and/or requirements. The following subsection 5.2.1,

elaborates on the multi-zone controlled environment concepts, which takes into account

additional blocks and parameters of interest i.e. control of multiple heater/cooler stages and

adjustment of the heated/cooled air flow rates in different zones.

Figure 5.1 - Basic blocks of a house heating-cooling system

The Thermostat unit consists of the Indoor Temperature Sensor and a Controller. The

Indoor Temperature Sensor receives the input from the Heating-Cooling System and

Transducer, and computes the room temperature accordingly (taking into account the heat

being generated by the heater and also the loss generated based on the house

thermodynamics).

Chapter 5

77

The Controller part of the Thermostat reacts when temperature values received from the

Indoor Temperature Sensor are different than set point temperatures of a day.

5.2.1 Zone Controlled Environment for Smart Homes and Buildings

This section describes the proposed Knowledge-Base concepts applied in the simulator,

which complement the ALS model for achieving a zone controlled environment in Smart

Home and/or Building. The basic building blocks of the conceptual model used during

design of the simulator were depicted in Figure 5.1. However, consideration for the zone

controlled environment aspect, multiple heater/cooler stages of the HVAC units and air flow

control, involves additional building blocks and parameters of interest to be considered.

Based on the energy savings incentives, time of the day, DR and TOU rates,

desired/chosen set points and offsets, etc, one should consider control of the dampers within

different zones of a house/building i.e. making use of sensors and/or actuators to adjust the

heated/cooled air flow to different zones. Therefore, utilizing wireless sensors (i.e.,

monitoring) and actuators (i.e., variable air volume control) within the house and/or building

are emphasized as the ‘necessary ingredients’ to complement the ALS model in achieving

the optimal results.

A Knowledge-Base is created to receive input values for the air flow rate, heater

temperature, and current room temperature. House simulator inquires the Knowledge-Base

library, which after processing the information returns the recommended air flow rate, and it

decides if only the first stage of heater should remain on, or if the second stage should be

turned on or off. Whereas, air flow offsets and heat / cool offset, are variables which can be

adjusted for best results based on the house thermal dynamics.

Notation:

Af – airflow rate

Ht – heater

βh – heater stages used

Tn - room temperatures

∆T – temperature difference (gap between outside and inside temperature)

ρn – airflow offsets

µn - heater offset

Chapter 5

78

Kb – Knowledge base function used to optimize zone control

Let βh = 2; signifying HVAC system with two heater stages.

Let ρ1, ρ2… ρn represent the available airflow offsets (which are controlled via actuators)

Let Kb = f (Af, Ht, ∆T) represent a Knowledge-Base as function which relies on the airflow

rate, heater and temperature difference within a specific zone.

Therefore, Kb = f (Af, Ht, ∆T) in a generalized form is implemented as follows:

if (∆T < T1)

 Af = Af ± ρ1

βh =1

if (∆T >= T1 AND ∆T < T2)

 Af = Af ± ρ2

βh =1

 if (∆T >= T2 AND ∆T < T3) (1.17)

 Af = Af ± ρ3

…

if (∆T >= Tk)

βh =2

Ht = Ht + µn

 Af = Af ± ρn-1

if (∆T >= Tn-2 AND temperature < Tn-1)

βh =2

Ht = Ht + µn

 Af = Af ± ρn

 return Af

The above Knowledge-Base rules depend mainly on the house parameters, such as

house size (air volume), number of windows, estimated air leakage, ventilation, zones to

control, etc. Therefore, it is considered as a part of expert system, as an applicable approach,

which can be fine tuned for optimal performance, for any specific house and/or building.

Similar approach as depicted in (1.17) can be used for adjusting the daily temperature

offsets based on the desired set points of a day/night and also based on the occupancy

detection via sensors. Thus, zones which are not frequently used, can be optimized, such as

to conserve energy, by keeping them at the maximum tolerable offsets (set by the user),

Chapter 5

79

while the set point temperatures in living room and/or frequently used spaces are being kept

at the comfortable settings.

The following subsection describes the thermal model of a house used, based on the

fundamental principles of thermodynamics and [AME09] recommendations, from which

simulation formulas are derived.

5.2.2 Thermal Model of a House for ‘Simulation Engine’

Initial thermal model used in the ‘simulation engine’ is a simplified model of house heat and

cool gain/loss system, in order to observe and analyze its response, and to enable planning

for a feasible implementation of a ‘Smart Thermostat’. Heat flow through a house depends

on many factors, such as the difference in inside and outside temperature, conductivity of

building materials, thickness of materials, etc. In order to provide better approximation to the

real world scenarios, implementation of the model considers the contributing parameters in

the overall heat loss, such as the ventilation losses and house air leakage. Heat transfer

process (i.e., from the warmer side to the colder side) is affected by thermal resistivity of

materials k, temperature difference ∆t, wall thickness L and area A [AME09], as depicted

below:

(1.18)

While the heated air supply into the house is represented as:

 (1.19)

Where ∆T is the difference between indoor and outdoor temperature, Aflow is the heated

airflow, and c is the specific air capacity.

Based on the equations above and principles of thermodynamics, the derived thermal model

considered for the rate of heat/cool losses and gain of a house, is the following:

 (1.20)

kA

L

tt

L

Att
kq

ssss)()(2121 −
=

−
=

cATq flow
h

⋅⋅∆=

eq
R

external
T

room
T

lossesdt

dQ −
=









λ

l

eq
R =

Chapter 5

80

 (1.21)

eqR - Equivalent thermal resistance of the house

















W

Km
2

l - Wall Thickness (m)

λth - Thermal conductivity









⋅ Km

W ; for air @ 20°C λ = 0.0257









⋅ Km

W

room
T - Room temperature (°C); this is temperature as read by the room sensors.

external
T - External temperature (°C); this is the temperature read by outside sensor at the

outside wall of the house.

The initial model of a heated air supply to the house is modeled as follows:

(1.22)

Where,

dt

dQ
 - Heat flow from the heater into the room

f
M - Air mass flow rate through heater (kg/sec)

 c – Specific heat capacity of the air at constant pressure (J/kg K)




















−









⋅
=

lossesdt

dQ

heatdt

dQ

c
air

Mdt

dT
incrementroom 1

 (1.22)

dt

dT
incrementroom - Rate of temperature change inside the room

air
M = Vd ⋅

air
M - Mass of air (kg)

V - Volume of the house (m3)

c
f

M
room

T
heat

T

heatdt

dQ
⋅⋅−=








)(

Chapter 5

81

Constants:

c = 1010 J/kg K

d = 1.21 kg/m3

Temperature in Kelvin)(15.273)(CTKT °+=

When calculating
heatdt

dQ








 Theat, Tcool and Troom are converted from °C to K

Qheat =)()(12
2
1

2

1

/ ttTc
f

MTc
f

Mdt

heatdt

dQ
h

t
th

t

t

t −∆⋅⋅=⋅∆⋅⋅=







∫

Qlosses =)(
11

12

2

1

2

1

/ ttT

eq
R

tT

eq
R

dt

eq
R

external
T

room
T

l

t

tl

t

t

−⋅∆⋅=⋅∆⋅=
−

∫

)(
1

_ lossesheatincrementroom QQ
c

air
M

T −
⋅

=

Qcool =)()(12
2
1

2

1

/ ttTc
f

MTc
f

Mdt

cooldt

dQ
c

t
tc

t

t

t −∆⋅⋅=⋅∆⋅⋅=







∫

Qcool_losses =)(
11

12

2

1

2

1

/ ttT

eq
R

tT

eq
R

dt

eq
R

room
T

external
T

m

t

tm

t

t

−⋅∆⋅=⋅∆⋅=
−

∫

)(
1

__ lossescoolcooldecrementroom QQ
c

air
M

T −
⋅

=

Where,

hT∆ =
room

T
heat

T −

lT∆ =
external

T
room

T −

cT∆ =
cool

T
room

T −

mT∆ =
room

T
external

T −

t1, t2 – time: lower and

upper bound of

simulation time

Chapter 5

82

5.2.3 Estimated Equivalent Thermal Resistance of a House

 (1.23)

eq
R - Equivalent thermal resistance of a house

















W

Km
2

 wallR - Thermal resistance of a wall



















W

Km
2

windowR - Thermal resistance of a window

















W

Km
2

wallL - Thickness of walls [m]

windowL - Thickness of windows [m]

wallK - Thermal coefficient of a walls [W/mK]

windowK - Thermal coefficient of a windows [W/mK]

wallA - Area of a walls [m2]

windowA - Area of a windows [m2]

wallswalls

walls
walls

AK

L
R

⋅
=

windowswindows

windows
windows

AK

L
R

⋅
=

windowswalls

windowswalls

RR

RR

eq
R

+

⋅
=

Chapter 5

83

A simplified Heater-Cooler Prototype System was also implemented in order to

‘emulate’ few of its potential features by experiment utilizing hardware and firmware. The

proposed system was experimented utilizing PIC24F microcontroller development board

suitable for this scheme, other additional components and integrated circuits. In addition to

the hardware, for firmware development, Embedded C language for PICmicro® family from

Custom Computer Systems Inc. (shortly CCS) was chosen. For further details refer to the

Appendix B.

5.3 Simulator Design

The House Simulator is a discrete event simulator, designed with the following key concepts

in mind:

• To be able to simulate house heating/cooling systems under different test scenarios.

• To be able to utilize it as an “expert system shell” for development of future

advanced smart thermostat learning algorithms.

• To be simple, user friendly and beneficial for everyone that is enthusiastic to invest

little effort to save money and energy, and most importantly to aid in initiatives

leading towards a sustainable environment for future generations.

5.3.1 C# Programming Language

C# is a relatively new programming language, which inherits the best from both worlds ‘C

and C++’. It is a fully object oriented language, with extensive features available for

development of Windows and Internet applications. Among some of the features of C# are

also the highly expressive syntax, full support for classes, OOD principles, type-safe coding,

memory management, and vast available resources (advanced code editor, debugger, and

toolbox) at fingertips of the programmer. Indeed, C# is simple, elegant, type-safe and

powerful programming language for development of Windows and Internet applications, by

making use of .NET Framework (platform for the development, deployment and execution

of distributed applications).

Chapter 5

84

5.3.2 Graphical User Interface – Main Features

The Graphical User Interface (GUI) of a House Simulator is depicted in Figure 5.2, which

captures the main elements of a simulator look and feel. The left hand side of the Figure 5.2

shows the indoor and outdoor temperature graphs. The outside temperature profiles are part

of the Outdoor Temperature Generator – where the weather profiles are read by the

simulator, and represent the real weather data taken from the Canada’s National Climate

Archive and/or user defined. The indoor temperature profile represents a dynamic response

of the house heating/cooling system which takes into account factors such as the thermal

model of a house, heating loss and gain.

On the right bottom side of the Figure 5.2 is the Thermostat interface, which displays

the data as simulation progresses, such as the indoor/outdoor temperatures, total energy

consumed (KWh), total cost ($), heat/cool set points at different stages of simulation, TOU

Rates at different points of simulation and the mode of operation (Heat, Cool, Auto, Off).

The right top corner of Fig.5.2 depicts a multi-zone layout of a typical two storey house.

Figure 5.2 - Simulator graphical user interface

The user can also select different parameters of the house (dimensions, windows, walls,

thermal coefficients, thickness of walls, windows etc.) and zones to simulate and analyze

energy efficiency and heat losses that occur.

Indoor

temperature

Outdoor

temperature

Chapter 5

85

Figure 5.3 - Simulator schedule control

The simulator schedule control shown in Figure 5.3, enables one to select different daily

schedules, including set points and time intervals during the simulation process (i.e. user can

adjust heat and cool set points at different times of the day based on his/her preferences and

working schedule).

The Figure 5.4 depicts the simulator DR and TOU rates control, which enables one to

Opt-In and/or Opt-Out (i.e. participation) in utility DR events, thus enabling cost reduction

incentives for the user, and helping utilities in peak load curtailments. Independently, the

user can also enter different TOU Rates (typically set by the utilities: On Peak, Mid Peak and

Off Peak) and observe its impact on monthly costs for different simulation scenarios.

Figure 5.4 - Simulator DR and TOU rates control

Based on the selected values one can use different house parameters during simulation.

The user can also select to simulate the house for different number of days, adjust the time

intervals for any possible simulation scenario. Further improvements of the simulator and

Chapter 5

86

additional controls are presented in Chapter 6 since they are closely related to the proposed

OLA algorithm, which is a practical implementation of the ALS model.

5.4 Simulator Model

As described earlier in Section 5.2, heat flow through a house depends on many factors, such

as the difference in inside and outside temperature, conductivity of building materials,

thickness of materials, etc. Initial thermal model used in the ‘simulation engine’ mimics a

house heat and cool gain/losses in order to observe and analyze its response; it enables for a

feasible implementation of a ‘Smart Thermostat’ and furthermore implementation of

practical adaptive learning system strategies (i.e. OLA).

The simulator conceptual model depicted in Figure 5.5 signifies the main conceptual

blocks of the simulator model, such as the “House Simulator,” “Smart Thermostat” and a

placeholder for “Adaptive Learning” models to be implemented. Thus, taking into account

the feasibility and ensuring that the placeholders -‘hooks’ for the ALS models within the

simulator environment exist, prior to their implementation. The flow of information is from

the “House Simulator” to “Smart Thermostat” and vice versa, similarly the same applies for

“Adaptive Learning,” which can be incorporated into the overall design, and affect the

“House Simulator” and “Smart Thermostat” interchangeably.

The simulator conceptual model was translated and closely adapted into C# classes as

depicted in Figure 5.6; indeed, as it will be seen at later stages of research in Chapter 6,

implementation strategy is essential for the effective proof of concepts (i.e. typically, designs

which do not account for scalability might become obsolete later on).

Figure 5.5 - Simulator conceptual model

Chapter 5

87

The class Thermostat represents the main class of the simulator, where the control

algorithm resides, while classes House, Room, Schedule and Utility are the other classes

which represent a ‘has-a’ relationship with a main class, and are instantiated within main

application with default system values, and properties. These values can be adjusted for

different house system models and parameters. The main advantage in the implementation of

the following design strategy is to be able to change any class parameters on the fly (i.e.

simulation step size, interval, initial conditions, schedules, etc.). Enabling a flexible house

model for experimentation and simulation under different conditions; furthermore, to be

utilized as an ‘expert system shell,’ to explore and implement new adaptive learning system

models.

Figure 5.6 - Diagram of a simulator model

Indoor and Outdoor Temperature - provides information about the indoor and outdoor

temperatures to the simulator.

Time - provides the necessary info for the simulation process, including simulation step size,

speed, time of the day, set points at different instances of a day, etc.

Chapter 5

88

HVAC System Parameters - react based on the heater and cooler state, temperature profiles,

heating gain/loss, and other house system parameters of the design.

Utility / TOU Rates - provides the electricity cost at different times of day based on the TOU

rates set by the Utility (e.g. On Peak, Mid Peak and Off Peak).

Graph - Plots 24 hour daily outside temperatures from the weather data; plots the indoor

room temperatures at different time intervals (based on granularity of simulation step size

selected i.e. 12 sec, 1 min, 2 min, 5 min, etc.).

Schedule – enables user to select and set the desired heat and cool set points for different

times of day (hour: min) for each week day and weekends.

House System Parameters - enables the user to select different house parameters, including

house volume, wall and window area, wall and window thickness and thermal coefficients,

number of windows, etc.

Report – For each step of simulation, data is saved into a log file, which includes heat loss,

heat gain, total energy consumption, energy consumption for different TOU rates, total cost

for each step and the total cost for the entire simulation period as shown in table below.

Table 5.1 - Report data

Thermostat & Control Algorithm – provides the main control of the heating/cooling system,

by orchestrating the input output relationships, calculating the essential values based on the

parameters supplied to the simulator (i.e. equivalent thermal resistance of a house, heat/cool

set points, air flow rate, heater capabilities, etc). Improvement and prevalent features of

adaptive learning for Smart Thermostat, such as use of OLA and Knowledge-Base shall be

introduced and discussed in the subsequent chapter.

Chapter 5

89

5.5 Performance Results

The TOU Rates are based on the projected rates that are in effect since 2010, from the Hydro

One website, (On Peak rate = 0.093$, Mid Peak rate = 0.08$ and Off Peak rate = 0.044$).

The set point (SP) values for typical schedule used are based on the Tables 5.2 and 5.3.

Table 5.2 - Monday to Friday schedule

Table 5.3 - Saturday and Sunday schedule

The default house parameters used during the simulation are shown in Table 5.4.

Table 5.4 - Initial house parameters

The response time of a system based on the parameters indicated on the Table 5.4, for

different average output temperatures (0 °C, -2.5 °C and -5 °C) and set point of 20 °C are

shown in Figures 5.7 and 5.8, whereas the initial inside house temperature is 0 °C.

The response time of a system depicted in figure 5.7, to reach the desired set point based

on an average outside temperatures of -5 °C, - 2.5 °C and 0 °C is approximately 175 min,

Chapter 5

90

130 min and 105 minutes, respectively. In this case, the actual set point has an offset of ±

0.5 °C, however due to the step size (min on/off time of HVAC system set at 5 minutes) the

average offset i.e. dead band of the system is approximately ± 1°C.

Figure 5.7 - Response time of a system (step size 5 min)

 Figure 5.8 - Response time of a system (step size 2 min)

In Figure 5.8, response time of system - settling time is similar to the one shown in

Figure 5.7. Based on identical conditions i.e. an average outside temperatures of -5 °C, - 2.5

°C and 0 °C set point is reached after approximately 180 min, 130 min and 108 minutes,

Chapter 5

91

respectively. The actual set point has an offset of ± 0.5°C, similar to the previous case.

However, due to better granularity of a step size (min on/off time of HVAC system set at 2

minutes) the average offset i.e. dead band of the system is maintained within ± 0.54 °C.

 The Figure 5.9 depicts the simulation results of a house for the duration of three months

during the winter season (weather data for outdoor temperatures, used for simulation is from

the Canada’s National Climate Archive for month of December 2008, January and February

2009). The actual simulator model was compared to the HOT 2000 Simulator [NAT08].

Thus, for an average indoor temperature set point of 20 °C, analogous house parameters and

initial conditions, monthly report was compared against a similar case of the proposed

simulator (considering an average outdoor temperature of 0°C); whereas the monthly margin

of the calculated error for the estimated energy consumption was 7.57%.

The simulation results of total energy consumption for house heating in KWh (duration

of 3 months) are shown in Figure 5.9. Respectively, in Figure 5.10 total associated costs in

dollars for the energy consumed, are shown. In both Figures 5.9 and 5.10, the first column

shows the consumption for three months (KWh or dollars spent), based on a typical weekly

schedule of set points. While, the second to fifth column show the consumption (KWh or

dollars spent) for fixed set points during the entire period of 3 months (i.e. set point of 20 °C,

22 °C, 24 °C and 25 °C).

Figure 5.9 - Total heat consumption for 3 months (KWh)

Chapter 5

92

The potential savings in energy consumption and cost is possible to achieve with only 4

different set points weekly schedule preferences, instead of fixed/permanent set points.

Taking as an example the permanent set point of 20 degrees C for 3 months versus the

typical schedule, one would observe that the cost associated with keeping a heat set point of

20 degrees C for 3 months is $1374.1, while typical schedule total costs are $1319.49,

savings of $54.6 (equates to 906 KWh energy savings).

Figure 5.10 - Total cost of heating for 3 months in dollars

In addition, Figure 5.11 depicts the results of the simulation for a zone controlled house

environment, which reflect a better yield with respect to energy conservation; hence, more

cost savings for a zone controlled house. While, in Figure 5.12, simulation results of energy

costs demonstrate the energy consumed and TOU rates, during 3 month period of heating.

The effect of a zone controlled environment can be considered very important step

towards better energy conservation and management. The role of sensor nodes in this case is

obvious necessity for any “Smart Thermostat,” which would be used to control the indoor

temperatures in a zone controlled environment. Furthermore, it can be said that in addition

to the possible lack of intelligence in current PCTs, another important factor which impacts

their performance, is when PCTs are equipped with only one or two sensors i.e. typically for

Chapter 5

93

an intelligent PCT, more than a few sensor/actuator nodes are needed for an optimal control

of a multi-zone controlled environment.

Figure 5.11 - Total heat consumption of a two zone system

From the simulation results shown in Figure 5.11 (energy consumption) and Figure 5.12

(associated costs), it can be observed that the zone control environment yields better energy

efficiency and cost savings results, when compared to a single zone controlled environment.

Figure 5.12 - Total cost of heating of a two zone system

Chapter 5

94

Figure 5.13 - Energy consumed based on different TOU Rates (KWh)

Figure 5.13 shows the energy consumption for simulation of a typical weekly schedule

of set points and permanent set points of 20 °C, 22 °C, 24 °C and 25 °C, based on the

different TOU rates applied (at different times of day) for a period of 3 months.

An indication of TOU rates, comfort and consumption portrays the main concepts which

are leading to incentives proposed by EGUs, and are being endorsed by many customers

around the globe. Hence, the effect of an adaptable thermostat could prove to be beneficial

into balancing the effect of higher costs with the comfort of the user, minimizing the energy

consumption, whilst maintaining the user comfort.

5.6 Summary

The outcome results from the simulation of a house heating system, indicate possible energy

conservations by utilizing a PCT with flexible schedule(s), and furthermore by zone

controlled systems. The energy and cost savings of a house heating system for a period of

three months were demonstrated by analyzing different test scenarios. The disadvantages of

current PCTs are their user interface and lack of intelligence, which if enhanced, indeed

could lead us one incremental step forward towards a more efficient energy conservation and

comfort in our living environments. However, it has to be noted that the schedules and

patterns change, and in most cases users utilize permanent hold set points instead of using

Chapter 5

95

the existing schedules due to many factors, including PCTs complexity to program, frequent

schedule changes, etc. Last but not least, one of the main objectives for enhanced

performance and learning capabilities of PCTs is also the minimal possible user intervention,

whilst not jeopardizing the user comfort. Thus, an intelligent PCT would prove to be more

satisfactory for consumers, too. In order to attest beneficial for further energy savings, cost

reduction and sustainable resources, PCTs can be complex systems, however, must be

“smart and adaptable devices,” with a simple user interface.

In addition to its usefulness for simulation of a house heating/cooling system under

different scenarios, more importantly the simulator was built to be used as a tool to assist in

implementation and further development of the intelligent algorithms (learning strategies)

for future PCTs i.e. “Smart Thermostats.”

Therefore, the simulator conceptual model described herein, which consists of a “House

Simulator,” “Smart Thermostat,” with a ‘hook’ for the “Adaptive Learning” algorithm,

facilitates the efforts during the implementation phase (i.e. practical ALS model

implementation). Thus, as depicted previously in Section 5.4, Figure 5.5, the “House

Simulator” and “Smart Thermostat” are two integral parts of the simulator, which interact

with each other (same is in a real-world scenario i.e. HVAC and PCT in a house

environment), and allow integration of supplementary functionality, components/objects,

and/or new algorithms.

Moreover, the interaction of building blocks within a simulator, provide a good ground

for evaluation of different scenarios, as shown in this chapter. Few extra features closely

related to the practical ALS model implementation are described in the Chapter 6.

95

CHAPTER 6

ADAPTIVE LEARNING SYSTEM IMPLEMENTATION

6.1 Introduction

The leading edge technology in the area of intelligent systems and smart sensor networks,

are an essential part of our everyday life; their evolution will help us to better utilize our

resources (energy saving initiatives) and enhance our way of living. The role of PCT is to

provide consumer with a means to manage and reduce energy use, whilst accommodating

their every day schedules, preferences and needs. It has to be noted that the use of only one

AI model, would not always suffice to bring forward the best systemic solutions; hence, the

utilization of different techniques has lead to the materialization of many hybrid intelligent

systems (which combine at least two intelligent technologies).

The concepts of an adaptable PCT herein are being investigated in order to aid in

bringing forward systemic solutions which are adaptable, ‘energy aware’ and easy to use.

The Observe Learn and Adapt (OLA) algorithm proposed and described in this chapter,

illustrates the actual implementation of the proposed ALS model; an integration of wireless

sensors and artificial intelligence concepts towards the same objective: adding more

intelligence to a PCT for better energy management and conservation in Smart Homes and

Buildings. Moreover, as described earlier in Chapter 5, a simulator tool was designed in

order to be used as an “expert system shell” to assist in development, implementation and

verification of ALS model via OLA. In addition, the actual performance results of learning

and adaptability of a PCT equipped with OLA, as a result of the occupant’s changing

schedules and/or patterns are shown. Additionally, the overall system improvements with

respect to energy consumption and savings are demonstrated via simulation for the zone

controlled home equipped with OLA and Knowledge-Base, versus a home without zone

control, Knowledge-Base nor OLA.

Chapter 6

97

6.2 Description of the OLA Algorithm

6.2.1 Overview

OLA in essence is a ‘reflection’ of hybrid intelligent system concepts, combining rules-

based expert system, unsupervised learning approaches, and wireless sensors, in order to

bring forward a new algorithm which can be used to add learning capacity to the existing

PCTs; ‘transforming’ current PCT into a ‘Smart Thermostat’ concept - a PCT with adaptable

learning capabilities.

In a ‘nutshell’ OLA behavior is as follows: observe via sensors, acquire and learn from

the new inputs (by comparing new knowledge with the existing one), and adapt outputs (via

actuators) or other, based on the decision made (if decision is true, adds new clustering

knowledge to the dedicated cluster group, i.e. see Daily Clusters). The main building blocks

of the OLA algorithm for ‘Smart Thermostats’ are depicted in Figure 6.1 below.

Figure 6.1 - Conceptual diagram of the elements used in OLA

Chapter 6

98

Knowledge-Base - is an additional knowledge to the ‘Smart Thermostat’ which contains

information about the tuned settings and weight options, necessary for optimality in case of

the entire house or zone control scenarios. In Figure 6.1, the wide arrow from OLA to

Knowledge-Base and to the Master Cluster, indicate that OLA can request and retrieve

information from the Knowledge-Base and Master cluster (and its Daily Clusters). Whilst

the narrow arrow from the Future Event List (FEL) to the OLA, indicate that FEL is an input

to OLA. The Knowledge-Base is the existing knowledge implemented within OLA.

Master Cluster - contains information for every existing cluster and includes also additional

information necessary for adapting the best solution at any time. Further information related

to the structure of Master Cluster structure is given in Appendix C.1.

Daily Clusters - contain specific information related to the user patterns, schedule and

activity for each day of a week (updates knowledge when required). Further information

related to the structure of Daily Cluster structure is given in Appendix C.2.

Future Event List (FEL) - emulates actual sensory/actuator data: “Sense via sensors, Act

via actuators.” Contains information about future events and is used to emulate different

patterns and also to verify the learning and adaptability of the algorithm at work. Few FEL

parameters used emulate wireless sensors functions (occupancy detection, temperature

readings at different spaces, actuation); hence, wireless sensors play a major role in a smart

home application of OLA. On the other hand, actuators are the key contributors used for

adjustment of the air flow (variable air valves) in different zones and/or rooms. Although,

wireless and wired sensor can measure the same physical properties, feasibility of wireless

sensors is their ease of integration in the existing building environments, where wired

sensors are not preferred due to the wiring. Furthermore, in cases when relocation of sensors

in necessary within a house and/or a building, wireless sensors offer greater flexibility,

whilst wired sensors would pose a challenge. On the other hand, actuators are the key

contributors used for adjustment of the air flow rates in different zones and/or rooms.

Chapter 6

99

6.2.2 Main Steps of the Algorithm

Figure 6.2 depict the main implementation steps of the OLA algorithm based on the

proposed ALS model (illustrated and described in Chapter 3, Section 3.2.1). Each block has

an associated number based on which additional description is given below, while in the

subsequent Section 6.2.3 the main routines are explained.

 Figure 6.2 - Main steps of OLA algorithm

1. Create and initialize Master and Daily clusters with default parameters.

2. Create and initialize FEL.

3. For each day of a week, create and initialize Learn vectors (Learn vectors extract

information from the wireless sensors i.e. FEL).

4. For each day of a week, create and initialize Adapt vectors based on the Learn vector

inputs. Adapt vectors add adaptability parameter status (value 0 for unchanged and

1 for changed).

Chapter 6

100

5. Keep track of each daily cluster by ensuring not to overlap existing data elements

(three consecutive weeks) with the new ones, when populating the vectors.

6. Evaluate daily cluster ‘adaptWeek’ flag (based on the ‘adaptWeek’ value invoke

proper Daily Cluster Adapt method).

7. Invoke ‘Adapt’ and initialize vectors of adaptation. Decide which particular

elements for a period greater than two weeks need to adapt (from Adapt vectors).

8. Perform ‘Weight Update and Decision’ based on the active daily cluster (day of a

week).

9. Invoke ‘Get Active Cluster’ of the day and ‘Read Cluster’ data.

10. Initialize and populate ‘Weight Learn’ vectors (with cluster data from Learn vector

for particular week only (not the entire set).

11. Invoke ‘Weight Process’. Compare each element of weight decision vectors. Based

on the initial set of tolerances for elements of the vectors, decide which weight to

assign to each one.

12. Repeat the ‘Weight Process’ - by invocation of a method for all subsets of data (i.e.

since limit for learning and adaptability is set to perform adaptation after three

occurrences of the daily cluster).

13. Invoke ‘Adapt Elements,’ which takes as an input day of a week and potential

vectors to be adapted.

14. Invoke ‘Check Weights,’ which takes as an input the element to be analyzed, day of

a week and the associated daily cluster vector. ‘Check Weights’ makes a decision

based on a set of rules according to the weights of daily cluster vectors. It returns the

adapted value (after evaluating the vector elements and the associated weights) for

each element of the cluster.

15. Update Daily Cluster (Monday, Tuesday, etc.) based on the adapted vector values,

and currently active cluster).

16. Update Master Cluster knowledge base – reads and adapts Master cluster with new

cluster updated information, related to daily cluster updated.

17. Clear Learn and Adapt vectors.

Chapter 6

101

18. When processing temperature data, query the Knowledge-Base for optimal settings,

and if necessary adjust the amount of heat, and/or offsets into the dedicated zones of

the smart home.

19. Continue with the next Daily Cluster.

6.2.3 Main Routines of the Algorithm

The main routines of OLA algorithm are explained below.

Initialize FEL

Reads FEL file and creates a new FEL object which contains read data to emulate sensory

inputs. Thus, it has different occupant’s patterns and/or schedule changes for the simulation

process, in order to emulate different scenarios. Structure of FEL file is as shown in Table

6.1 below.

Table 6.1 - FEL structure

Populate Learn Vectors

Learn vectors are populated from the FEL information and have a size of 120 elements (40

elements * 3 weeks, representing data available for 3 consecutive daily cluster occurrences).

The Learn vectors contain information based on the schedule of a day and have the

following structure:

Chapter 6

102

{Heat SetPoint, Cool SetPoint, Start time, Stop time, Heat weight, Cool weight, Start time

weight, Stop time weight}; where the vector elements in positions 0 to 3 are Heat Set Point,

Cool Set Point, Start and Stop time of Set Points, while in positions from 4 to 7 are their

respective weights (associated with elements from 0 to 3). The adapted schedule for ‘Smart

Thermostat’ has five Set Points (SP): {SP1, SP2, SP3, SP4, SP5}. Therefore, we have in

total: 5 SP multiplied by 8 elements in each, which equals to 40 elements for each

occurrence of the ‘specific daily schedule’, and 120 for a total of three occurrences. If the

data elements are not changed, value of -1 is entered for that particular element of the Learn

vector.

Populate Adapt Vectors

Adapt vectors are populated only after comparison with the Learn vector data and

adaptWeekDay indicator (takes note of occurrences of particular day of a week i.e.

adaptWeekMon for Monday, adaptWeekTue for Tuesday, etc. and based on which

occurrence of the day it is (first, second or third) it retrieves correct set of elements from

Learn vector.

Adapt vector structure is as follows: {Heat Set Point, Cool Set Point, Start Time, Stop

Time}. Adapt vector is populated only after comparison with the Learn vector data. The

adaptWeekDay indicator takes note of the occurrences of a particular day of a week i.e.

adaptWeekMon for Monday, adaptWeekTue for Tuesday, etc. and based on the occurrence

of a day (first, second or third) it retrieves the correct set of elements from the Learn vectors.

Furthermore, for each element and particular daily occurrence (first, second or third) of the

Learn vector, it performs the steps as depicted in Figure 6.3.

Adapt vector does not keep track of weights associated with each element of the Learn

vector; hence it has only 20 elements for each daily occurrence. Its structure is {Heat

SetPoint, Cool SetPoint, Start Time, Stop Time} * five different SetPoints for the entire

active daily cluster.

Chapter 6

103

Figure 6.3 - Populate adapt vectors

Chapter 6

104

The term “i�i+j” where j = 4, shown in Figure 6.3 indicates that the weights are

skipped when populating the adapt vectors. Thus, learn vectors, in addition to the Heat SP,

Cool SP, Start time and Stop time, contain values of the weights associated with each

element, While, the adapt vectors contain only the values to be adapted. The adaptWeekDay

set to a value of 3 (i.e. before the Adapt method is invoked) is based on several assumptions.

For example, considering a scenario when the occupant changes temporarily the heat set

point temperature, perhaps in an extremely cold winter day; this might be one time

occurrence, and not necessarily the preferred ‘permanent set point’ temperature. Therefore,

prior to adapting to the occupant’s preferred set points, OLA compares at least 3 instances of

the occurrence, before adapting to a change.

Similarly, a PCT schedule has typically five different set points during a day, which

implies that at least five different start and stop time intervals are available (refer to Table 2

“Time of Day” column) where potential changes might occur. Therefore, in cases when the

occupant leaves a house one hour earlier than usual, this might be only one time occurrence,

and not, a typical permanent schedule or pattern change. Thus, the term adaptWeekDay = 3

(refer to Figure 6.3) does not imply that three weeks are essential for OLA to learn. Instead,

it indicates that three occurrences of a change are considered as a common factor for the

adaptation of new values. It has to be noted that OLA still reacts and applies optimal

settings for savings, when house is unoccupied. In addition, OLA will keep track of the

occupant’s pattern changes and it adapts (without user interaction) if the similar pattern is

repeated.

Adapt

Adapt routine has input parameter the day of the week. Hence it is triggered for each day (1

for Monday, 2 for Tue, etc.). Three temporary vectors with a limit of 20 elements each are

initialized (v1, v2, v3) and each one is populated with the data from Adapt vector (v1 for the

first occurrence, v2 for the second occurrence, and v3 for the third occurrence of a specific

day). For each element and particular day occurrence, verification is done to see if the

change is consistent or not. After which, the elements associated with the temporary vector

Chapter 6

105

vt are copied to a permanently assigned vectorToAdapt of a day (vectorToAdapt1 for

Monday, vectorToAdapt2 for Tuesday, etc.). Figure 6.4 depicts the main steps of the routine.

Figure 6.4 - Adapt routine

Weight Update Decision

Consists of three main routines as described below under a, b and c.

a) Read Cluster Data

Reads the active daily cluster file; adds all data in a ReadData array list for further

processing. Whereas all the necessary data is copied into a SPWeightDecision vector

(size of 40 elements).

Chapter 6

106

Afterwards, another SPWeightLearn vector extracts the data from the appropriate Learn

vector of the daily cluster (new data from FEL) for comparison with the

SPWeightDecision vector (existing data from the active daily cluster).

b) Get Active Cluster of Day

Based on the day of a week, it acquires the daily cluster active cluster file (information

which is updated each time Master Cluster) and returns the cluster file name to the Read

Cluster Data. Next, it performs the above processing for all the elements of interest

(Heat Set Point, Cool Set Point, Start and Stop times; for all Set Points defined in cluster

data). And for each Weight Process completed (based on the day of the week) it assigns

the data and weights to a Monday vector, Tuesday vector, etc. Whereas, HEAT_TOL =

1, COOL_TOL = 1, START_TIME_TOL = 1 hr, STOP_TIME_TOL = 1 hr, are values

that can be adjusted, and are available for further tuning.

c) Weight Process

First it initializes the weights to zero. Thereafter, for each week (first, second and third)

it performs a weight process, whereas all the data elements from the SPWeightDecision

and SPWeightLearn vector are compared, as depicted in Figure 6.5.

Adapt Elements

Adapt Elements routine, consists of four main sub-routine as described below under a, b, c

and d.

a) Check Weights (int elem, int day, double [] vec)

Checks each element of a vector, of the specific day consisting of {Heat SetPoint, Cool

SetPoint, Start Time, Stop Time, WeightHeat, WeightCool, WeightStart, WeightStop},

for five SetPoints of a day. From ALS model description we know that β is a weight

multiplier coefficient which can be adapted based on the problem at hand. In case of

ALS implementation via OLA, β = 1 and λ = 0.1.

Chapter 6

107

Figure 6.5 - Weight process

Chapter 6

108

Hence, there are three different weight: HIGH_WEIGHT = 0.1, MED_WEIGHT = 0.05

and LOW_WEIGHT = 0.025, which can be assigned to any daily vector based on the

proximity of the actual value to the particular element for three consecutive occurences

of a particular day. The rule-based decision according to weights is based on the

following possible combinations:

LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH, MMM, MMH, MHM, MHH, HMM,

HMH, HHM, LLM, LML, LMM, MLL, MLM, MML, LMH, LHM, MLH, MHL, HML,

HLM. Where H stands for HIGH_WEIGHT, M for MED_WEIGHT and L for

LOW_WEIGHT.

The resulting value returned from the CheckWeights is based on the of weight

occurences, i.e. if all three weekly occurences have the same weights, average of three

weekly elements is returned; if only two weekly occurences of the particular vector

elements have high weights while third one has low weight, the resulting value returned

is based on the avarage of data elements corresponding to high weights, ignoring the

low weight element. The low weight signifies a major shift from typical existing value,

hence the approach is slightly conservative and tends not to make radical changes to the

existing schedule or set points. Hence, in cases such as when major shifts from the

existing schedules and/or setpoints occur, adaptation will take place only after three

consecutive occurences of the low weights.

b) Update SetPoints

Each time that CheckWeights routine is invoked, returned result is assigned to the

appropriate element of the daily cluster schedule (when all the elements are updated the

schedule is updated and becomes active).

c) Update Master Cluster

Invokes Read Cluster Data routine and it updates the master cluster active file

parameter and file number that was replaced by current file. Master cluster structure is

shown in Appendix C.1.

Chapter 6

109

d) Update Daily Clusters

Following the previous step, Update Daily Cluster routine creates new cluster based on

the existing and new knowledge which was adapted (i.e. updated Set Points, Start and

Stop times, or other parameters of interest). Daily Cluster Structure is shown in

Appendix C.2.

Knowledge-Base

A sample method of how Knowledge base is used to adjust the air flow rate and to turn

on/off different heater stages of HVAC (for different indoor and outdoor temperatures) is the

Airflow Rate and Heater Adjustment depicted in Figure 6.6.

Start

NrOfHeatStages 1

T < T1 Af Af – offset_1

T1 ≤ T < T2 Af Af – offset_2

T2 ≤ T < T3 Af Af + offset_3

T3 ≤ T < T4 Af Af + offset_4

Yes

Yes

Yes

Yes

No

No

No

No (must be ≥ T4)

Af Af + offset_5

NrOfHeatStages 2

Return NrOfHeatStages, Af

Heater NrOfHeatStages

Figure 6.6 - Airflow rate and heater adjustment

Chapter 6

110

Each time the processing of temperature data from the ‘Smart Thermostat’ is performed,

rules-based expert system checks for the optimal settings, and the acquired facts are used to

by the system, in order to adjust the amount of heat, air flow rate and/or offsets into the

dedicated zones of the smart home

Airflow Rate and Heater Adjustment is a sample method from Knowledge-Base class,

which receives as input, values for the air flow rate, heater temperature, and current room

temperature and inquires the Knowledge-Base library. The Knowledge-Base after processing

the information, based on the algorithm depicted in Figure 6.6, it returns the recommended

air flow rate, and the necessary active heater stages to be turned on or off. Whereas, the

offset_0,…,offset_5 are differnt airflow rates (incremental) and NrOfHeatStages are the

actual number of heater stages (both are variables which can be adjusted for best results

based on the house thermal dynamics). While, T represent the difference between indoor and

outdoor temperatures, and T1, T2, T3, T4 and T5 are the limits (i.e. T1 = 10 °C, T2 = 20 °C, T3

= 30 °C and T4 = 40 °C).

Knowledge-Base after processing the information returns the recommended air flow

rate, and if the second stage of the heater should be turned on or not.

6.3 Application of OLA and the Big Picture

Most of the current PCTs are equipped with capabilities to communicate with a Smart Meter

(a two way communication device, capable to monitor power consumption, communicate to

Utility and/or other end devices, such as PCTs, home appliances, load switches, etc.).

OLA can be used in current PCTs (leading to ‘Smart Thermostats’) in order to augment

their performance, by introducing devices capable to learn and adapt (while offering optimal

comfort and conservation) in a Smart Home environment. Furthermore, ‘Smart

Thermostats’ are meant to be used as devices which do not require constant programming

input by the user.

In order to provide the most efficient savings, and help manage the peak load demand; a

multi-sensor system must be capable to communicate with the core controller unit (i.e.

‘Smart Thermostat’), process inputs (TOU rates, DR) to and/or from the Utility to the core

controller unit or dedicated end sensor/actuator nodes. Since typically wireless sensors

and/or actuators have limited memory and/or processing power, synergy of the

Chapter 6

111

reinforcement learning and agent-based techniques such as described in subsequent chapter

can be used to further enhance the performance of the overall system by enabling the sensor

nodes to act as ‘intelligent agents’ and extract the possible future peak load events after

receiving the potential functions and time of a day interval - from Utility (via Smart Meter).

The aim of OLA is to optimize the comfort with respect to energy consumption by

learning occupancy preferences and patterns, thus enabling the comfort zone adjustment,

including the individual control of heating/cooling of rooms, and/or the entire home.

6.4 Improvements of the Simulator

Few new concepts were added and updated within the simulator, during the implementation

of OLA, including Knowledge-Base and FEL (i.e., sensors) and controls, such as the

Settings for Comfort and Savings and Offsets for Zone Controlled Environment, as depicted

in Figure 6.7 below.

Figure 6.7 - Improvements of the simulator

Knowledge-Base and FEL, as described in previous section, were implemented as an

integral part of OLA algorithm and added to the Simulator. Similarly, ‘Settings for Comfort

and Savings’ control enables the user to select the desired maximum and minimum

Chapter 6

112

temperature offsets during DR events and/or high, medium and low TOU rates, while

‘Offsets for Zone Controlled Environment’ control, enables user to select the desired zone

offsets during particular times of day (i.e. set different offsets for different zones during day

and night time). The above settings are also captured within the FEL and Daily Cluster

structure. In addition, the displayed zone 1 and 2 data simultaneously, and the options to

enable full house control versus zone controlled via OLA enabled algorithm, aids in overall

performance verification of a system.

6.5 Performance Results

Several simulation scenarios are considered in order to demonstrate the performance and

verification of OLA at work. The initial settings used for the scheduled set points and their

daily intervals, for week days and weekends are depicted in Tables 6.2 and 6.3 below.

Whilst, the main house parameters used for the simulation scenarios are shown in Table 6.4.

Table 6.2 - Monday to Friday schedule

Table 6.3 - Saturday and Sunday schedule

The TOU rates used are the rates based on the projected rates that are taking effect in

2010, from the Hydro One website, (On Peak rate = 0.093$, Mid Peak rate = 0.08$ and Off

Peak rate = 0.044$). The initial TOU rate intervals used for TOU Rates during the

simulation are shown in Table 5.5. The TOU rates applied during the weekends are assumed

to be Off Peak.

Chapter 6

113

Table 6.4 - House parameters Table 6.5 - TOU rates

A sample scenario of the updated simulator at work, is shown below in Figure 6.8,

which shows two different simulation scenarios of the entire house and zone controlled

house with OLA enabled. The zone controlled environment displays zone one (shown in red)

and zone two (shown in blue) temperatures. Based on the activity of persons in zones, OLA

decides which offset tolerances to apply (i.e., typically, if a zone is sensed by wireless

sensors as unoccupied the offset tolerance is greater, whilst if zone is occupied, the offset

tolerances are smaller).

Figure 6.8 - Simulation (entire house and zone controlled)

Outdoor

temperature

Zone 1 Zone 2

Chapter 6

114

The first case considered for verification of functionality was with and without learning

enabled (no changes to the existing scheduled set points or intervals). The average outside

temperature set for this case was 0 °C for the duration thirty days. The results of simulation

are shown in Table 6.6. From the results, it can be observed that potential savings in case of

entire house with OLA enabled versus the entire house with OLA disabled are 79 KWh.

Table 6.6 - Results of OLA (Entire house vs. zone controlled)

Furthermore, when comparing zone controlled house with OLA enabled versus the

entire house with OLA disabled, potential savings equate to 279 KWh. Hence,

improvements with respect to relative energy consumption with and without algorithm at

work are apparent.

In order to further observe and verify the functionality of the algorithm, a 30 day

simulation was run with and without the preconfigured FEL (i.e. with and without sensors)

as inputs to OLA; weather data for outdoor temperatures used in this case was from the

Canada’s National Climate Archive (with an average of – 7.06 °C). The configuration was

set to zone controlled environment with OLA enabled (and FEL not active) for cases 2 to 5.

The first case depicts energy consumption when the configuration is set for the

simulation of entire house when OLA and Zone Control (ZC) are disabled. Recorded results

indicate estimated energy savings of 147 KWh when Zone Control and OLA are enabled.

The learning and adaptation period of the algorithm is set to three weeks. The different

cases of OLA with and without FEL changes (to be detected by algorithm) are depicted in

Table 6.7. Algorithm adapts to a new change in the schedule and/or user pattern, after the

third occurrence of a specific change in user pattern and/or schedule.

Chapter 6

115

Table 6.7 - Results of OLA (with and without FEL/Sensors)

For case study number 3, changes initiated/detected by FEL/Sensors and adapted by

OLA are for Monday Cluster daily patterns, whereas the end time for Set Point 2 and start

time for Set Point 3 changed from 6:00 to 8:00 AM, to 6 to 7:30 AM, respectively for

Tuesday Cluster from 6:00 to 8:00 AM, to 6:00 to 7:15 AM. The changes take effect during

the last week of simulation only (i.e. first three weeks are dedicated to learning the patterns).

The actual changes taking effect were observed in the Master Cluster and Monday/Tuesday

Cluster files (although cumbersome, main idea why input/output file system method was

used to implement Master and Daily Cluster objects, instead of arrays, is to be able to verify

and analyze the changes only when program is running in debug mode, but also when the

simulation process terminates); the changes taking effect, and the occurring total energy

differences/savings due to the changes, validate the OLA successful adaptation to the

change.

The outcome of adapted and/or updated schedule for two concurrencies (only for two

days of a month) of different patterns are reflected in the results of case study number 3 in

comparison to case 2 (zone controlled heating with OLA enabled but FEL inactive); where

the estimated energy savings are 5 KWh (and indeed are 152 KWh in comparison to case 1).

Furthermore, case study number 4 reflect the adapted changes for Monday to Friday

scheduled end time of Set Points 2 and start time of Set Point 3 as follows:

Monday Cluster Set Points 2 and 3 changed from 6:00 to 8:00 AM, to 6:00 to 7:30 AM.

Tuesday set points 2 and 3 changed from 6:00 to 8:00 AM, to 6:00 to 7:15 AM. Wednesday

Cluster Set Point 2 and 3 changed from 6:00 to 8:00 AM, to 6:00 to 7:00 AM. Respectively,

Thursday Cluster Set Points 2 and 3 changed from 6:00 to 8:00 AM, to 6:00 to 7:00 AM,

while Friday Cluster from 6:00 to 8:00 AM, to 6:00 to 7:45 AM. The estimated energy

saving of 11 KWh in comparison to reference case 2 are confirmed (since in this case the

Chapter 6

116

occurrence of newly adapted patterns from the ‘Smart Thermostat’ takes place in the last

week of the simulation process). In addition to the case 4 scenario described before, case 5

introduces two additional parameter changes; the additions are: Monday Cluster Heat Set

Point 3 changed from 18 °C to 17 °C, and end time of Set Point 3 and start time of Set Point

4 from 7:00 AM to 18:00 PM, to 7:30 AM to 18:30 PM.

As before, the changes take place after three weeks of OLA learn and adapt schedule.

The estimated savings of the daily adapted patters (only for the last week of simulation

process) indicate 13 KWh in comparison to the reference case study 2.

The significance of quantitative results (when multiplied by 4.2 as an approximate

measure of monthly occurrences) shows savings of 54.6 KWh per month for very small

changes in pattern behavior of the user; in fact the total conservations add up to a total of

54.6 + 147 KWh = 201.6 KWh per month for OLA enabled, ZC enabled and FEL active.

Hence, adapting to changes makes a difference in the overall results, and demonstrates

performance and benefits of OLA and ZC enabled Smart Home with FEL/Sensors active.

Table 6.8 - Statistics of set points start/stop times

The statistical analyses of multiple tests performed in order to validate the OLA

algorithm at work are shown in Tables 6.8 and 6.9. Two scenarios shown in Tables 6.8 and

6.9 emulate pattern changes of user preferences, with respect to the Set Point Start and End

times and Heat Set Points, for each day of the week.

Chapter 6

117

Table 6.9 - Statistics of heat set points

As presented in Tables 6.8 and 6.9, different input parameters were used for each day of

the week (for both cases). The outcomes of OLA adapted values (after three weeks of

learning) are normally distributed and fall within the limits of the 95 percent confidence

interval of the sample mean values (for confidence interval calculation refer to Appendix D).

From Table 6.8, we can observe that the OLA adapted values, for example, for the

Monday schedule when the occupant leaves a house at 7:30 AM (converted to 7.5 hours in

simulator) first week, and on the second and third week leaves at 7:45 AM and 8:15AM,

respectively. The OLA adapted value after the third occurrence is not the average value of

three consecutive occurrences which is 7:49:48 AM (i.e. 7.83 hours), instead is 7:45:00 AM

(i.e. 7.75 hours). Thus, implies that OLA adapts the value which is closer to frequent

occurrences. Furthermore, referring to Table 8, from Friday`s occupant pattern changes (time

of leaving the house), it can be observed that OLA adapted value is 7:45:00 AM (7.75 hours)

which, in fact is the occurrence of pattern on first and third week). Hence, OLA did not

adapt the average value of three weekly occurrences, which is 8:34:48 AM (8.58 hours)

affected by a change of pattern on second week of observation 10:45 AM (7.75 hours).

Instead it adapted the value which is closer to the typical user patterns observed during the

first and third occurrence, and at the same time leads to energy conservation (if the occupant

typically leaves a house at 7:45 AM, there is no need to keep the indoor temperature at 21°C,

for an extra hour, knowing that scheduled leave heat set point, set by the occupant is 17 °C).

The same principle is also valid for the heat set points scenario as depicted in Table 6.9. By

taking the week of Friday as an example, where the first week’s ‘Away’ set point (refer to

Chapter 6

118

Table 6.2, Monday to Friday schedule) was changed from 18 °C to 19 °C, on second week it

was set to 18 °C, and it was changed again to 22 °C in the third week. If the average of three

occurrences was taken, the adapted value would have been 19.67 °C, which indicates a shift

of almost two degrees from a typical schedule initially chosen by the occupant. Thus, the

OLA adapted value of 18.5°C, is closer to the occupant’s scheduled set point, and it leads to

energy conservation.

In all the scenarios described above, the relations of energy savings to the occupant’s

comfort are in agreement with the occupant’s preferences of initial schedule, temperature

limits and tolerances, based on which OLA acts. One of the advantages of OLA enabled

house is that the comfort of the occupant is not altered during the process. Instead,

occupant’s preferences are maintained, while energy savings are achieved.

6.6 Summary

The OLA algorithm enables ‘Smart Thermostat’ to utilizes FEL (i.e., sensors) and learning

capabilities to adjust and adapt schedule based on user input pattern changes and

preferences, taking into consideration parameters, such as zone offset tolerances, comfort

settings, utility DR and TOU rates, etc.

OLA encompasses the main attributes which could provide potential improvement to

the current PCTs with regard to their lack of intelligence, by adding learning capabilities and

flexibility to act and adapt without intervention due to the occupant’s pattern and/or schedule

changes (as it was demonstrated in this chapter). The notion of “Smart and Adaptable

Devices,” has to be considered as an important attribute of current PCTs. OLA with the aid

of sensors and application of ALS model learning technique captures the essence of an actual

PCT reflecting into a smart and adaptable device. As it was demonstrated during the

performance evaluation, the OLA adapted values (after three weeks of training) are obtained

and are within 95 percent of the sample mean values. Moreover, performance results indicate

potential savings with respect to energy consumption for zone controlled OLA enabled

house versus a house with OLA disabled and no zone controlled environment.

118

CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

The main objective of this thesis was to investigate and bring forward an ‘Adaptive Systemic

Solution,’ with the aim of improving energy management and conservation in Smart Homes

and Buildings, and by the same token enhancing the learning capabilities of current PCTs -

‘transforming’ them into smart and adaptable devices i.e. ‘Smart Thermostats’.

Section 1.7 of Chapter 1, briefly summarizes thesis contributions, whilst below are

described the concluding remarks of the thesis contributions, and research efforts.

An Adaptable Hybrid Intelligent System utilizing WSN and AI techniques was

proposed, based on which, a novel ALS model utilizing WSN, rule-based system and ART

concepts, was proposed and demonstrated. The proposed ALS analytical model (described

in detail in Chapter 3) is a technique which enables PCTs to learn and adapt to the

occupant’s input pattern changes and/or other parameters of interest. In order to verify the

ALS model, two different scenarios involving pattern changes of temperature set point of the

PCT, including leave time, were considered. In both cases, the ALS model adapted values

were much closer to the occupant’s preferred values, and demonstrated improvement with

respect to energy conservation, when compared to just averaging of values.

A new algorithm for finding global maximum of a function with minimal function

evaluation/iterations in a predefined interval within a two dimensional space was proposed

(Chapter 4). The proposed algorithm represents a synergy of concepts from the RL and

agent-based techniques, for use in small-scale embedded systems with limited memory

and/or processing power, such as wireless sensor/actuator nodes (i.e., intelligent agents). The

“Reinforcement Learning and Agent-based Search” application was implemented in order to

observe the algorithm at work and demonstrate its main features. The main benefits of the

proposed algorithm are to ‘bridge a gap’ between the EGUs (i.e., utilities) and “Smart

Thermostats” into “Smart Grid” initiatives. Several sample functions with different

Chapter 7

120

characteristics were tested in order to verify the performance of the algorithm with ‘RL only’

versus ‘RL and Agent-based Search’ - emulating different scenarios, such as finding critical

global and local peak load demand points, which can be used in conjunction with the utilities

(via DR and TOU rate incentives) in managing peak load demands. During the verification

process of the algorithm at work for function: y = 2 ((cos (πx) / x) + 1) where x ϵ [1, 5], step

size of 0.005 and tolerance of 0.05, it was observed that for the ‘RL and Agent-based

Search’ technique global and local maximum was found after 30.8 iterations (calculated

from 10 trials) versus 189 for ‘RL Only, while the number of function evaluations was found

to be 109.2 versus 382 for ‘RL Only’. The error of points was less than the set tolerance of

0.05. Thus, the enhancement to the algorithm provided by the integration of agent-based

concepts is shown to yield better performance (i.e., less function evaluation needed to find

the optimal points within a predefined interval). Additionally, several other functions more

closely related to the real-world scenarios i.e., load profile functions representing the peak

load demand at different times of a day were considered. As an example, based on the

results obtained via the algorithm at work, during the execution of the utility load profile

function represented by y1 = 0.941 x
 6-7.3795 x

 5+21.2895 x
 4-28.0191 x

 3 + 16.540 x
 2 -

2.8859 x + 0.6294 with time interval 0 to 2.4 (x10 hrs), step size of 0.005 and tolerance of

0.05, the results indicated better performance of the ‘Reinforcement Learning and Agent-

based Search’ versus ‘Reinforcement Only’ for the utility function y1 being evaluated. The

improvement factor was 9.47 for the number of iterations (i.e., 13.3 versus 126 iterations)

and 3.75 for the number of function evaluations (i.e. 68.1 versus 256). Furthermore, the

maximum value Pmax with respect to time of a day (hrs) and energy usage (%) was (18.5,

167.74) and the error of maximum value found via algorithm Pmax (18.3, 167.67) was much

less than the set Tolerance (i.e., time of a day: 0.05 x 10 = 0.5 hrs, energy usage: 0.05 x 100

= 5 %). Similar results were obtained for other utility load profile functions, reflecting

different patterns of possible peak load demand.

The ‘House Simulator’ (Chapter 5) was developed as a tool to simulate house

heating/cooling systems (equipped with PCTs) under different scenarios and for different

TOU rates applied. More importantly, the role of a ‘House Simulator’ was to assist in

implementation and evaluation of the proposed OLA algorithm; thus, representing an ‘expert

system shell’ whereas the main blocks consist of a ‘House Simulator,’ a ‘Smart Thermostat,’

Chapter 7

121

and a placeholder for ‘Adaptive Learning’ models to be implemented and evaluated. The

approximate energy savings of the scheduled set point settings (refer to Tables 2 and 3)

versus fixed set point (20 ºC) for a period of three months demonstrated potential energy

savings of 906 KWh. Moreover, the comparison of simulation results for the zone controlled

house (i.e., scheduled set points for zone 1, and 17 ºC for zone 2) versus the entire house

(with scheduled set points), confirmed additional energy savings of 614 KWh.

Furthermore, a novel adaptive learning algorithm ‘Observe, Learn and Adapt’ based on

the ALS model was proposed and implemented (Chapter 6). Its evaluation was achieved

with the aid of a tool being developed for this purpose i.e., ‘House Simulator’ (Chapter 5).

Based on the ASHRAE recommendations [AME09], the thermal model for a house was

derived and ‘Simulation Engine’ implemented. The Knowledge-Base technique for Zone

Controlled Environment (i.e., airflow rate and heater adjustment) was proposed. It was

demonstrated via emulation of real-world scenarios, that the OLA algorithm is a practical

implementation reflecting the main features of the ALS learning technique. In

configurations, such as of the entire house with OLA enabled versus entire house with OLA

disabled, for the duration of 30 days and minimal changes, the results of OLA’s performance

assessment, showed potential energy savings of 79 KWh. While in comparison to

configurations which consider a zone controlled OLA enabled house, provides an additional

279 KWh of energy savings. Thus, the improvements with respect to relative energy

consumption/savings with and without application of OLA algorithm are obvious. It has to

be noted that the Knowledge-Base implementation for the zone controlled environment

(depicted in a general form in 1.17), is an integral part of the overall OLA’s design.

Moreover, in order to further evaluate and validate the performance of OLA, a 30 day

simulation was executed with FEL active and inactive (i.e., with and without input from

sensors) where several occupants’ pattern/schedule changes occurred. In the case of OLA

with FEL inactive (i.e. no sensors, incapable to observe and adapt) the system is unable to

detect the occupant’s changing patterns/schedules, while in the case of OLA with FEL

active, this is possible, and therefore is utilized to adapt and apply the new pattern changes to

the current schedule. For a small change of only two Set Point end times for daily clusters of

Monday: Set Point 2 changed from 6:00 to 8:00 AM, to 6 to 7:30 AM, respectively for

Tuesday Cluster from 6:00 to 8:00 AM, to 6:00 to 7:15 AM, for only two occurrences of the

Chapter 7

122

above scenario within a 30 day period (since the learning rate of OLA is 3 weeks before

adapting to the changes) the estimated savings for a daily adapted pattern was 5 KWh for an

OLA enabled house with zone controlled and FEL active versus configuration with FEL

inactive; which in fact is 152 KWh when compared to a configuration without zone control,

with FEL inactive and OLA disabled. The resulting changes were observed in the Master

Cluster file, and scheduled event occurrences, which took place after the changes were

adapted, validating the successful adaptation of OLA to the changes. Further experiments

were conducted with a multitude of actual Heat Set Points and start and end time changes,

and the adapted values taking effect were obvious (as described in detail in Chapter 6,

Section 6.5).

The results of OLA’s performance evaluation confirm improvements of an actual OLA

enabled house with respect to energy savings, and validate the ALS model implementation

via OLA. In addition, it also brings to fruition the concept of a ‘Smart Thermostat’ - a PCT

with enhanced learning and adapting capabilities (based on the occupant’s input pattern

changes and other preferences). Moreover, a zone controlled OLA enabled house with FEL

active (i.e., equipped with sensors), shows further performance improvements with respect to

optimized energy conservation and comfort.

7.2 Future Research

 The convergence of AI techniques and WSN, and their blend into AmI (perhaps the next

step in AI’s evolution) indicate an interesting area to be considered and explored further for

numerous applications in Smart Homes and Buildings.

Moreover, finding an intelligent solution for optimal tuning of the zone controlled

heating/cooling system parameters, which complements the OLA and Knowledge-Base of a

‘Smart Thermostat’ presented in this thesis, could be very practical and challenging

interdisciplinary research (i.e., taking into account that in addition to size, type of materials

used, layout, orientation, number of occupants, type of heating/cooling system used, thermal

dynamics of each building are different). Possible further improvement of OLA to be

considered might be the addition of a fuzzy logic approach for potential self-tuning of offsets

related to control of airflow rate and heating/cooling stages applied for different zones i.e.,

within large buildings. Investigation of fuzzy logic in conjunction with rules-based technique

Chapter 7

123

application could prove to be an effective approach to be considered in this case. On the

other hand, consideration of OLA’s behavior during seasonal transitions could be another

interesting issue to be considered for further improvement. Although, typical schedules for

the first occurrence of each season can be chosen as a starting point for the learning process,

other approaches might be worth while investigating.

The concept of a ‘Smart Grid’ which extends beyond the work presented in this thesis is

an extension which could be a viable direction to follow in order to achieve interoperability

of different systems on a bigger scale. The ALS model can be utilized to further extend the

applicable research of ‘Adaptable Systems for Smart Buildings’ into ‘Smart Grids’. One key

point to be mentioned is further exploration of AmI and non-intrusive means to incorporate

autonomous distributed sensors i.e. ‘intelligent agents’ within Smart Homes and Buildings,

which in addition to complementing the ‘Smart Thermostats’, assist in the overall picture of

‘Smart Grid’ by helping in peak load adjustment (i.e. controlling of smart appliances, load

control switches, plug-in hybrid electric vehicles, lighting control, HVAC systems, etc.)

during peak load hours and/or other times. Managing and/or predicting the peak load

scenarios, while acting in a harmonized manner within different geographic areas of a city

and/or state, where demands are not necessarily uniformly distributed, could pose an

interesting challenge to address; it could encompass EGU, SCADA systems, Smart Meters,

‘Smart Thermostats’, ‘intelligent agents’ and/or other. In addition, the application of RL

and Agent-based technique such as presented in Chapter 4 could be further extended by

adding more ‘awareness’ and intelligence to sensor/actuator nodes (related to control of

appliances, load control switches, etc), which could aid in load curtailment. In addition, the

algorithm might be further enhanced by considering its implementation and feasibility in

three dimensional spaces.

123

BIBLIOGRAPHY

[ALT85] J.L. Alty, “Use of Expert Systems,” IEEE Journal of Computer-Aided

Engineering, Vol. 2, No. 1, pp. 2-9, Feb. 1985.

[AME09] American Society of Heating, Refrigerating and Air-Conditioning Engineers,

“ASHRAE Handbook - Fundamentals,” (I-P Edition), USA, 2009, ISBN 978-

1-933742-54-0.

[AMI10] G.P. Amis and G.A. Carpenter, “Self-supervised ARTMAP,” Elsevier Journal

of Neural Networks, Vol. 23, No. 2, pp. 265-282, 2010.

[AMI05] F. Amigoni, N. Gatti, C. Piciroli and M. Roveri, “What Planner for Ambient

Intelligence Applications?,” IEEE Transactions on Systems, Man and

Cybernitics – Part A: Systems and Humans, Vol. 35, No. 1, pp. 7-21, Jan.

2005.

[ARA00] S. Arai, K. Sycara and T.R. Payne, “Multi-agent Reinforcement Learning for

Planning and Scheduling Multiple Goals,” in Proc. of IEEE 4th International

Conf. on Autonomous Agents, pp. 359-360, July 2000.

[ARE05] Arens, E., C.C. Federspiel, D. Wang, and C. Huizenga, 2005. “How Ambient

Intelligence Will Improve Habitability and Energy Efficiency in Buildings.”

Ambient Intelligence, eds. W. Weber, J.M Rabay and E. Aarts, Springer,

March. pp.63-80.

[AUG07a] J.C. Augusto and D.G. Shapiro, The first workshop on Artificial Intelligence

Techniques for Ambient Intelligence (AITAmI'06). AI Magazine, Vol. 28, No.

1, pp. 86-87, 2007.

[AUG07b] J.C. Augusto and P. McCullagh, “Ambient Intelligence: Concepts and

Applications,” International Journal of Computer Science and Information

Systems, Vol. 4, No. 1, pp. 1-28, 2007.

125

[BER91] H.R. Berenji, “On the Integration of Reinforcement Learning and

Approximate Reasoning for Control,” in Proc. of IEEE 30th International

Conf. on Decision and Control, Vol. 2, pp. 1900-1904, Dec. 1991.

[BER00] H.R. Berenji and D.A. Vengerov, “Learning, Cooperation, and Coordination

in Multi-Agent Systems,” Technical Report, US-00-10, Oct. 2000.

[BI04] Z. Bi, T. Takashina, K. Tanaka and S. Watanabe, “Exploring Agent Learning

Process by using Mechanical Features in Agent-based Simulation,” in Proc.

of IEEE 2nd International Conf. on Intelligent Systems, Vol. 1, pp. 256-260,

June 2004.

[BOG06] P. Bogg, “Towards Information and Goal Based Agent Negotiation,” in Proc.

of IEEE International Conf. on Intelligent Agent Technology (IAT), pp. 613-

617, Dec. 2006.

[BRA09] N.G. Brannon, J.E. Seiffertt, T.J. Draelos and D.C. Wunsch DC,

”Coordinated Machine Learning and Decision Support for Situation

Awareness,” Elsevier Journal of Neural Networks, Vol. 22, No. 3, pp. 316-

325, 2009.

[BRD09] O. Brdiczka, J.L. Crowley and P. Reignier, “Learning Situation Models in a

Smart Home,” IEEE Transactions on Systems, Man, and Cybernetics - Part

B: Cybernetics, Vol. 39, No. 1, pp. 56-63, Feb. 2009.

[BYO08] K. Byoung-Kug, H. Sung-Kwa, J. Young-Sik and E. Doo-Seop, “The Study

of Applying Sensor Networks to a Smart Home,” in Proc. of IEEE 4th

International Conf. on Networked Computing and Advanced Information

Management (NCM),pp. 676-681, Sept. 2008.

[CAR87a] G.A. Carpenter and S. Grossberg, “A Massively Parallel Architecture for a

Self-Organizing Neural Pattern Recognition,” in Journal of Computer Vision,

Graphics and Image Processing, Vol. 37, No. 1, pp. 54-115, Dec. 1987.

[CAR87b] G.A. Carpenter and S. Grossberg, “ART 2: Self-organization of Stable

Category Recognition Codes for Analog Input Patterns,” in Journal of

Applied Optics, Vol. 26, No. 23, pp. 4919-4930, 1987.

126

[CAR91a] G.A. Carpenter, S. Grossberg and D. Rossen, “Fuzzy ART: Fast Stable

Learning and Categorization of Analog Patterns by an Adaptive Resonance

System.” in Proc. of IJCNN-Seattle International Joint Conference of Neural

Networks, Vol. 4, pp. 759-771, July 1991.

[CAR91b] G.A. Carpenter, S. Grossberg and J.H. Reynolds, “ARTMAP: Supervised

Real-time Learning and Classification of Nonstationary Data by a Self-

organizing Neural Network,” in Proc. of IEEE Conf. on Neural Networks for

Ocean Engineering, Vol. 4, No. 5, pp. 565-588, Aug. 1991.

[CER02] A. Cerpa and D. Estrin, “Ascent: Adaptive Self-configuring Sensor Networks

Topologies,” in Proc. of IEEE Infocom, pp. 1278-1287, June 2002.

[CHA08] M. Chana, D. Est’eve, C. Escriba and E. Campo, “A Review of Smart Homes

-Present State and Future Challenges,” Elsevier Journal of Computer

methods and programs in biomedicine, Vol. 91, No. 1, pp. 55-81, July 2008.

[CHE08] B. Chen and J. Wang, “Design of a Multi-Modal and High Computation

Power Wireless Sensor Node for Structural Health Monitoring,” on Proc. of

IEEE International Conf. on Mechtronic and Embedded Systems and

Applications, pp. 420-425, Oct. 2008.

[CHO03] C.Y. Chong and S. P. Kumar,”Sensor Networks: Evolution, Opportunities

and Challenges,” in Proc. of IEEE, Vol. 91, No. 8, pp. 1247-1256, Aug.

2003.

[COO09] D.J. Cook, J.C. Augusto and V.R. Jakkula, “Ambient intelligence:

Technologies, Applications, and Opportunities,” Elsevier Journal of

Pervasive and Mobile Computing, Vol. 5, No. 4, pp. 277-298, Apr. 2009.

[CUN05] R. Cunha, A. Silva, A. Loreiro and L. Ruiz, “Simulating Large Wireless

Sensor Networks Using Cellular Automata,” in Proc. of the 38th Annual

Simulation Symposium (ANSS), 2005.

[CUN98] A. Cunha and J. Neves, “A Game-theoretic Approach to the Socialization of

Utility-based Agents,” in Proc. of IEEE International Conf. on Multi Agent

Systems, pp. 413-414, July 1998.

127

[DOU09] J. Douglas, “Thermal Comfort and use of Thermostats in Finnish Homes and

Offices,” Elsevier Journal of Building and Environment, Vol. 44, No. 6, pp.

1237-1245, June 2004.

[DOU94] J. Douglas, “Smart Thermostats for Comfort and Conservation,” EPRI

Journal, Vol. 19, No. 2, pp. 20-23, Mar. 1994.

[DSO07] M. D'Souza, K. Bialkowski, A. Postula and M. Ros, “A Wireless Sensor Node

Architecture Using Remote Power Charging, for Interaction Applications,”

on Proc. of IEEE 10th Euromicro Conf. on Digital System Design

Architectures, Methods and Tools, pp. 485-494, Aug. 2007.

[DUD79] R. Duda, J. Gaschnig and P. Hart, “Model design in the PROSPECTOR

Consultant System for Mineral Exploration,” Expert Systems in the

Microelectronic Age, Edinburgh Univ. Press, Edinburgh, Scotland, pp. 153-

167, 1979.

[ELI07] J. Eliasson, P. Lindgren, J. Delsing, S.J. Thompson and Ch. Yi-Bing, “A

Power Management Architecture for Sensor Node,” on Proc. of IEEE Conf.

on Wireless Comm. And Networking (WCNC), pp. 3008-3013, March 2007.

[ELK08] A. El Kateeb, A. Ramesh and L. Azzawi, “Wireless Sensor Nodes Processor

Architecture and Design,” on Proc. of IEEE Canadian Conference on

Electrical and Computer Engineering (CCECE), pp. 1031-1034, May 2008.

[FAU94] L. Fausett, “Fundamentals of Neural Networks,” Prentice Hall, USA, 1994,

ISBN: 0-13-334186-0.

[FUN03] W. Fun and Y. Liu, “Adaptive Categorization of ART Networks in Robot

Behaviour Learning using Game-theoretic Formulation,” Elsevier Journal of

Neural Networks, Vol. 16, No. 10, pp. 1403-1420, March 2003.

[GEL01] E. Gelenbe, E. Seref and Z. Xu, “Simulation with learning agents,” in Proc.

of the IEEE, Vol. 89, No. 2, pp. 148-157, Feb. 2001.

[GEO09] B. George, H. Zangl, T. Bretterklieber and G. Brasseur, “Seat Occupancy

Detection Based on Capacitive Sensing,” IEEE Transaction on

Instrumentation and Measurement, Vol. 58, No. 5, pp. 1463-1470, May 2009.

128

[GLO76a] S. Glossberg, “Adaptive Pattern Classification and Universal Recoding I:

Parallel Development and Coding of Neural Feature Detectors,” Springer

Journal of Biological Cybernetics, Vol. 23, No. 3, pp. 121-134, 1976.

[GLO76b] S. Grossberg, “Adaptive pattern classification and universal recoding. II.

Feedback, expectation, olfacation, and illusions,” Springer Journal of

Biological Cybernetics, Vol. 23, pp. 187-202, 1976.

[GRA07] D. Graupe, “Principles of Artificial Neural Networks,” 2nd edition, World

Scientific, Singapore, 2007, ISBN: 13-978-981-270-624-9.

[HAG08] H. Hagras, “Employing Computational Intelligence to Generate More

Intelligent and Energy Efficient Living Spaces,” Springer International

Journal of Automation and Computing, Vol. 5, No. 1, pp. 1-9, Jan. 2008.

[HAG04] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish and H.

Duman, “Creating an Ambient-intelligence Environment using Embedded

Agents,” IEEE Journal of Intelligent Systems, Vol. 19, No. 6, pp. 12-20,

2004.

[HAR10] M. Harbers, J.J. Meyer and K. Van den Bosch, “Explaining Simulations

through Self Explaining Agents,” Journal of Artificial Societies and Social

Simulation, Vol. 13, No. 1, Jan. 2010.

[HAR07] S. Harte, B. O’Flynn, R.V. Martinez-Catala and E.M. Popovici, “Design and

Implementation of a Miniaturised, Low Power Wireless Sensor Node,” in

Proc. of IEEE 28th European Conf. on Circuit Theory and Design (ECCTD),

pp. 894-897, Aug. 2007.

[HEA08] M. Healy, T. Newe and E. Lewis, “Wireless Sensor Node Hardware: A

Review,” in Proc. of IEEE Sensors, pp. 621-624, Oct. 2008.

[HEI02] W. R. Heinzelman, A. P. Chandrakasan and H. Balakrishnan, “An

Application Specific Protocol Architecture for Wireless Microsensor

Networks,” IEEE Transactions on Wireless Communications, Vol. 1, No. 4,

pp. 660-670, 2002.

129

[HES10] T. Hester, M. Quinlan and P. Stone, “Generalized Model Learning for

Reinforcement Learning on a Humanoid Robot,” in Proc. of IEEE Conf. on

Robotics and Automation (ICRA), pp. 2369-2374, May 2010.

[HIL00] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler and K. S. J. Pister,

“System Architecture Directions for Networked Sensors,” in Proc. 9th

International. Conf. on Architectural Support of Programming Languages and

Operating Systems, pp. 93-104, 2000.

[HOL07] K. Hogler Karl and A. Willig, “Protocols and Architectures for Wireless

Sensor Networks,” Wiley, England, 2007, ISBN: 978-0-470-51923-3.

[HON10] S. G. Hong, N.S. Kim, Ch. S. Pyo and W. W. Kim, “Hybrid Sensor Module

and Data Processing Using Low-Power Wakeup in WSN,” on Proc. of IEEE

4th International Conference on Sensor Technologies and Applications

(SENSORCOMM), pp. 191-195, July 2010.

[HOO10] K. Hoon and C. Ramos, “A Survey of Context Classification for Intelligent

Systems Research for Ambient Intelligence,” in Proc. of IEEE International

Conf. on Complex, Intelligent and Software Intensive Systems (CISIS), pp.

746-751, Feb. 2010.

[INF01] IST Advisory Group, “Scenarios for Ambient Intelligence in 2010,”

European Commission Report, 2001.

[IZQ08] J. Izquierdo, I. Montalvo, R. Pérez and M. Tavera, “Optimization in Water

Systems: a PSO Approach.” Proceedings of the 2008 SpringSim

Multiconference, Ottawa, Canada, 2008.

[JAV10] O. Javier and R. Lopez, “Self-Organized and Evolvable Cognitive

Architecture for Intelligent Agents and Multi-agent Systems,” in Proc. of 2nd

International Conf. on Computer Engineering and Applications (ICCEA),

Vol. 1, pp. 417-421, March 2010.

[JIA08] H. Jian, D.Yumin, Z. Yound and H. Zhangqin, “Creating an Ambient-

Intelligence Environment using Multi-Agent System,” in Proc. of International

130

Conf. on Embedded Software and Systems Symposia (ICESS), pp. 253-258,

July 2008.

[JIN10] X. Jinlin; G. Qiang and J. Weiping, “Reinforcement Learning for Engine Idle

Speed Control,” in Proc. of IEEE International Conf. on Measuring

Technology and Mechatronics Automation (ICMTMA), Vol. 2, pp. 1008-

1011, March 2010.

[JU04] J. Ju, M. Kamel and L. Chen, “Reinforcement Learning and Aggregation,” in

Proc. of IEEE International Conf. on Systems, Man and Cybernetics, Vol. 2,

pp. 1303- 1308, Oct. 2004.

[KAM94] E. Kam-Lum, “Introducing Small, PC-based Expert Systems on a Limited

Budget,” in Proc. of IEEE International Electronics Manufacturing

Technology Symposium (IEMT), Vol. 1, pp. 287-295, Sep 1994.

[KAN10] M. E. Kantarci and H.T. Mouftah, “Using Wireless Sensor Networks for

Energy-aware Homes in Smart Grids,” in Proc. of IEEE Symposium on

Comp. and Comm. (ISCC), pp. 456-458, June 2010.

[KOP07] A. M. Koplow and P. Wright, “Design Architecture for Multi-zone HVAC

Control Systems from Existing Single-zone Systems using Wireless Sensor

Networks,” in Proc. of SPIE, Vol. 6414, Jan. 2007.

[KUS07] N. Kushiro, T. Higuma and M. Nakata, K. Sato, “Practical Solutions for

Constructing Ubiquitous Network for Building and Home Control System,”

IEEE Transactions on Consumer Electronics, Vol. 53, No. 4, pp. 1387-1392,

Nov. 2007.

[LI10] P.Li and M. Xianxi, “An Improved ART1 Neural Network Algorithm for

Character Recognition,” in Proc. of IEEE Chinese Control and Decision

Conference (CCDC), 2010, pp. 2946-2949, May 2010.

[LIN02] C. Lin, C. C. Federspiel and D. M. Auslander, “Multi-sensor Single-Actuator

Control of HVAC Systems,” in Proc. of Intl. Conf. for Enhanced Building

Operations, 2002, pp. 14-18, Oct. 2002.

131

[LOC10] M.P. Locatelli, M. Loregian and G.Vizzari, “Artificial Societies in a

Community-based Approach to Ambient intelligence,” Oxford Uni. Computer

Journal, Vol. 53, No. 8, pp. 1152-1168, 2010.

[LYN05] C. Lynch and F. O’Reilly, “PIC-based TinyOS Implementation,” on Proc. of

IEEE Second European Workshop on Wireless Sensor Networks, pp. 378-

385, Jan. 2005.

[MAD02] S. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong, “A Tiny

Aggregation Service for Ad-hoc Sensor Networks,” in Proc. of 5th

symposium on Operating Systems Design and Implementation (OSDI), Vol.

32, Spec. Issue, pp. 131-146, 2002.

[MEI08] A.K, Meier, “Residential Thermostats: Comfort Controls in California

Homes,” eScholarship Repository, Lawrence Berkeley Nat. Lib., Univ. of

California, Sep. 23, 2008 (http://repositories.cdlib.org/lbnl/LBNL-938E (Last

accessed on Sep., 26, 2010).

[MIL06] J.C. Miles and A.J. Walker, “The Potential Application of Artificial

Intelligence in Transport,” in Proc. of IEEE Intelligent Transport Systems,

Vol. 153, No. 3, pp. 183-198, Sep. 2006.

[NAT08] Natural Resources Canada, HOT 2000 Simulator, CECT, (canmetenergy-

canmetenergie.nrcan-rncan.gc.ca/eng/software_tools/hot2000.html), (Last

accessed on Nov., 08, 2010).

[NEG05] M. Negnevitsky, “Artificial Intelligence: A Guide to Intelligent Systems,”

Addison Wesley, England, 2005, ISBN: 0-321-20466-2.

[NEW07] R. Newman and J. Kemp, “Developing Wireless Sensor Nodes for Real-

World Applications,” on Proc. of IEEE Conf. on Local Computer Networks,

pp. 858-863, Oct. 2007.

[PAM10] C.R. Pamplona Filho, M.J. Cunha, F.M. Azevedo and G.L. Ferrari, “Intellec

System: Shell for Expert Systems Creation with Fuzzy Inference Machine

Developed in Prolog," in Proc. of IEEE International Conf. of System

Science and Engineering (ICSSE), pp. 521-524, July 2010.

132

[POS08] J.L. Posadas, J.L. Poza, J.E. Simo, G. Benet and F. Blanes, “Agent-based

Distributed Architecture for Mobile Robot Control,” Journal of Eng, App. Of

Artificial Intelligence, Vol. 21, No. 6, pp. 805-823, Sep. 2008.

[RAM08] C. Ramos, J.C. Augusto and D. Shapiro, “Ambient Intelligence - the Next

Step for Artificial Intelligence,” in Proc. of IEEE Journal of Intelligent

Systems, Vo. 23, No. 2, pp. 15-18, Apr. 2008.

[RAT07] C. Rattanaprateep and S. Chittayasothorn, “A Frame-based Object Relational

Expert Database System,” in Proc. of IEEE International Conf. of AFRICON,

pp. 1-7, Sep. 2007.

[RED06] R. Reddy, “Robotics and Intelligent Systems in Support of Society,” IEEE

Journal of Intelligent Systems, Vol. 21, No. 3, pp. 24-31, May 2006.

[RED05] A. Redfern, M. Koplow and P. Wright, “Design Architecture for Multi-zone

HVAC Control Systems from existing Single-zone Systems using Wireless

Sensor Networks,” in Proc. of SPIE 13th International Conference on

Intelligence Systems Application to Power Systems, Vol. 6414, 2005.

[REM05] P. Remagnino and G.L. Foresti, “Ambient Intelligence: A New

Multidisciplinary Paradigm,” in Proc. of IEEE Transactions on Systems,

Man and Cybernetics, Part A: Systems and Humans, Vol. 35, No. 1, pp. 1-6,

Jan. 2005.

[REN03] Z. Ren and A.B. Williams, “Lessons Learned in Single-agent and Multiagent

Learning with Robot Foraging,” in Proc. of IEEE International Conf. on

Systems, Man and Cybernetics, Vol. 3, pp. 2757- 2762, Oct. 2003.

[RIC06] V. Ricquenbourg, D. Menga, D. Duran, B. Marhic, L. Delahoche and C.

Logé, “The Smart Home Concept: our Immediate Future,” in Proc. 1st IEEE

International Conference on E-Learning in Industrial Electronics, pp. 23-28,

Dec. 2006.

[RUI09] Ch. Rui, H. Yi-bin, H. Zhang-qin and H. Jian, “Modeling the Ambient

Intelligence Application System: Concept, Software, Data, and Network,”

133

IEEE Transactions on Systems, Man, and Cybernetics – Part C: Applications

and Reviews, Vol. 39, No. 3, pp. 299-314, May 2009.

[RUS03] S. Russell and P. Norvig, “Artificial Intelligence A Modern Approach,” 2nd

Edition, Prentice Hall, USA, 2003, ISBN: 0-13-790395-2.

[RUT05] U. Rutishauser, J. Joller and R. Douglas, “Control and Learning of Ambience

by an Intelligent Building,” IEEE Transactions on Systems, Man, and

Cybernetics – Part A: Systems and Humans, Vol. 35, No. 1, pp. 121-132, Jan.

2005.

[SAK07] S. Sakunia, S. Bhalerao, A. Chaudhary, M. Jyotishi, M. Dixit, R. Junade and

R. PAtrikar, “UbiSens: Achieving Low Power Wireless Sensor Nodes,” in

Proc. of IEEE International Conf. on Wireless and Opt. Comm. Networks

(WOCN), pp. 1-6, July 2007.

[SAK93] S. Sakane, H. Okoshi, T. Sato and M. Kakikura, “Distributed Sensing System

with 3D Model-based Agents,” in Proc. of IEEE International Conf. on

Intelligent Robots and Systems Vol. 2, pp. 1157-1163, July 1993.

[SCH07] D.H. Scheidt and M.J. Pekala, “Model-Based Agents,” in Proc. of IEEE

Power Engineering Society General Meeting, pp. 1-2, June 2007.

[SHE07] Y. Shen and B. Guo, “Dynamic Power Management (DPM) based on

Wavelet Neural Networks in Wireless Sensor Networks,” in Proc. of IFIP

International Conference on Network and Parallel Computing, 2007.

[SHE08] M. Shenassa and K. Khakpour, “Knowledge Base Expert System For Tuning

PID Controllers Using Wireless Technology,” in Proc. of IEEE International

Conference on Comp. and Comm. Eng.(ICCCE), pp. 310-313, May 2008.

[SHO76] E. H. Shortliffe, “Computer-Based Medical Consultations: MYCIN,” Elsevier

Press, New York, 1976.

[SIL08] J. Silva, M. Lima, G. Campos and J. Souza, “A Fuzzy Utility-based Agent for

the Design Problem,” in Proc. of IEEE International Conf. of Engineering

Management (IEMC), pp. 1-5, June 2008.

134

[SMI94] S.D.G. Smith and R.A. Escobedo, “Engineering and Manufacturing

Applications of ART-1 Neural Networks,” in Proc. of IEEE International

Conf. on Neural Networks, World Congress on Computational Intelligence,

Vol. 6, pp. 3780-3785 Jun 1994.

[SON98] K.T. Song and T. S. Chu, “Reinforcement Learning and its Application to

Force Control of an Industrial Robot,” Control Engineering Practice, 1998,

Vol. 6, No. 1, pp. 37-44, 1998.

[SUH08] C. Suh and Y. B. Ko, “Design and Implementation of Intelligent Home

Control Systems based on Active Sensor Networks,” IEEE Transactions on

Consumer Electronics, Vol. 54, No. 3, pp. 1177-1184, Aug. 2008.

[TAN09] Y. Tan, W. Liu and Q. Qiu, “Adaptive Power Management using

Reinforcement Learning,” IEEE/ACM International Conference on

Computer-Aided Design Digest of Technical Papers, 2009.

[TUD10] C. Tudor, A. Ionut, S. Ioan, D. Mihaela, C. Georgiana and M. Daniel, “A

Self-Adapting Algorithm for Context Aware Systems,” in Proc. of IEEE 9th

International Roedunet Conference (RoEduNet, pp. 374-379, June 2010.

[VOJ08] A. Vojdani, “Smart integration,” IEEE Power and Energy Magazine, Vol.6,

No. 6, pp. 71-79, Nov. 2008.

[WAI01] G. Wainer and N. Giambiasi, “Application of the Cell-DEVS Paradigm for

Cell Spaces Modeling and Simulation,” Journal of Simulation, Vol. 71, No. 1,

pp. 22-39, Jan. 2001.

[WAI02] G. Wainer, “CD++: a Toolkit to Define Discrete Event Models,” Software,

Practice and Experience, Wiley, Vol.32, No. 3, pp. 121-1306, Nov. 2002.

[WAN03] C.Y.Wan, S. B. Eisenman and A. T. Campbell, “CODA: Congestion

Detection and Avoidance in Sensor Networks,” in Proc. of 1st ACM

Conference on Embedded Networked Sensor Systems (SenSys), pp. 266-279,

Nov. 2003.

135

[WAN10] C. Wang, S. Jin and H. Pang, “Knowledge Processing of Instructional

Intelligent Expert System,” in Proc. of IEEE International Conf. on Optics,

Photonics and Energy Engineering (OPEE), Vol. 1, pp. 215-217, May 2010.

[WEB05] W. Weber, J.M.Rabaey and E. Aarts, “Ambient Intelligence,” Springer,

Netherlands, 2005, ISBN: 3-540-23867-0.

[WEN10] C. Wenbin, L. XiaoLing, L. YiJun and F. Yu, “A Machine Learning

Algorithm for Expert System based on MYCIN Model,” in Proc. of IEEE 2nd

International Conf. of Computer Engineering and Technology (ICCET), Vol.

2, pp. 262- 265, Apr. 2010.

[WIL06] E. Williams, S. Matthews, M. Breton & T. Brady, “Use of a computer-based

system to measure and manage energy consumption in the home,” In Proc. of

IEEE Intl. Symposium on Electronics and the Environment, pp. 167-172, May

2006.

[WIR00] S. Wiriyacoonkasem and A. Esterline, “Adaptive Learning Expert System,”

in Proc. of IEEE SoutheastCon, pp. 445-448, Apr. 2000.

[WU08] X.Wu and T. Jiang, “Matchmaking of Goals in Intelligent Agents based on

Description Logics (DLs),” in Proc. of IEEE International Conf. On

Intelligent Computation Technology and Automation (ICICTA), Vol. 2, pp.

806-810, Oct. 2008.

[WU08] J. Wu and H. Qin, “The Design of Wireless Intelligent Home System based on

ZigBee,” on Proc. of IEEE 11th International Conf. on Communication

Technology (ICCT), pp. 73-76, Nov. 2008.

[YAM96] T. Yamaguchi, M. Masubuchi, K. Fujihara and M. Yachida, “Realtime

Reinforcement Learning for a Real Robot in the Real Environment,” in Proc.

of IEEE International Conf. on Intelligent Robots and Systems (RSJ), Vol. 3,

pp. 1321-1328, Nov. 1996.

[YE02] F. Ye, G. Zhong, S. Lu and L. Zhang, “Energy Efficient Robust Sensing

Coverage in Large Sensor Networks,” Technical Report, 2002.

136

[YEA07] E.M. Yeatman, “Energy Scavenging for Wireless Sensor Nodes,” on Proc. of

IEEE 2nd International Workshop on Advances in Sensors and Interface

(IWASI), pp. 1-4, June 2007.

[YEN02] G. Yen, T. Hickey, “Reinforcement Learning Algorithms for Robotic

Navigation in Dynamic Environments,” in Proc. of IEEE International Joint

Conf. on Neural Networks, Vol. 2, pp. 1444-1449, May 2002.

[YIG09] P. Yigong, L. Zhong-Cheng, Y. Jin-Shou, “Multi-agent Framework for

Energy Supply/Demand Prediction,” in Proc. of WRI World Congress of

Computer Science and Information Engineering, Vol. 4, pp. 586-590, March

2009.

[YUP07] T. Yu-Ping, H. Jun-Wei, L. Cheng-Ting and C. Chun-Yu, “Building a

Remote Supervisory Control Network System for Smart Home Applications,”

in Proc. of IEEE International Conference on Systems, Man, and Cybernetics,

Vol. 3, pp. 1826-1832, 2007.

[ZEI02] B. Zeigler, T. Kim and H. Praehofer, “Theory of Modeling and Simulation:

Integrating Discrete Event and Continuous Complex Dynamic Systems,”

Academic Press, 2000.

[ZHE06] Z. Zhenhuan and Y. Shuang-Hua, “A Possible Hardware Architecture of

Wireless Sensor Nodes,” on Proc. of IEEE International Conf. on Systems,

Man and Cybernetics, Vol. 4, pp. 3377-3381, Oct. 2006.

[ZHE07] Zh. Zhenhuan and Y. Shuang-Hua, “Analysis of Power Consumption for

Different Sensor Access Modes,” on Proc. of IEEE International Conf. on

Networking, Sensing and Control, pp. 329-333, April 2007.

137

APPENDIXES

APPENDIX A

SIMULATION OF LARGE WIRELESS SENSOR NETWORKS USING CELL-DEVS

A.1 Introduction

The advancement of electronic sensing devices, microcomputers and wireless

communication devices has lead to creation of new smart sensors, which can monitor

actuate, compute and communicate. Typically, these sensors are deployed in non-

deterministic mode (randomly) when deployed in large numbers. These sensor devices have

the capability to self-organize into the so-called Wireless Sensor Networks (WSN). WSN are

ad-hoc networks, consisting of these spatially distributed sensing and processing devices.

We introduce a model and a simulation study of Large Wireless Sensor Networks (WSN) by

implementing the Topology Control Algorithm. We use the Cell-DEVS formalism, which

enables efficient execution of cellular models. Thereafter, we observe and evaluate the

behavior of sensor nodes and entire WSN from the simulation results obtained, under

different test scenarios.

The emergence of powerful embedded micro-computer systems for wireless sensor

networks provides a good ground for creation of new smart sensor systems, which can be

useful to further promote new scientific endeavors and enhance our lives. Wireless sensors

can monitor actuate, compute and communicate, yet are small in size and low in cost. The

WSN are ad-hoc networks, consisting of these spatially distributed sensing and processing

devices [HEA08]. WSN are used in many different applications, such as medicine,

transportation and urban monitoring, traffic control, military, environment and habitat

monitoring, energy management, smart homes, industrial applications, etc. The effectiveness

of WSN is not just in their monitoring, actuating, computing and communications

capabilities: with the added processing power, analog and digital ports, transceivers and

memory, they can self-organize and communicate in the deployed area (as depicted in Figure

A.1). Their processing power is limited however, and WSNs are usually deployed in large

numbers and their load is shared accordingly.

138

Figure A.1 - Sensor nodes self-organized

Due to the fact that sensor nodes have limited bandwidth, computing power and limited

energy resources, one of the constraints in WSN is the energy efficiency of sensor nodes

(i.e., their power consumption). There are many different approaches to solving the energy

efficiency problem, such as the Topology Control Algorithm [CUN05] [YE02] [SHEN07].

The objective of this algorithm is related to the efficiency of WSN network, and it focused

on how to increase its lifetime. The rationale of the network topology control algorithm is to

reduce the number of redundant sensor nodes monitoring a particular region, hence

increasing the efficiency and lifetime of the WSN network. In a nutshell, topology control

exploits the redundant deployment of the sensor nodes, overcoming their energy limitations

by restricting the set of nodes which are considered neighbors of a given node, while making

sure that sensing area is still covered by a sufficient number of sensors. Furthermore, it

reduces interference problems (which are noticeable when large number of sensor nodes are

active).

We here introduce a model and a simulation of Wireless Sensor Networks (WSN) by

implementing the Topology Control Algorithm using the Cell-DEVS formalism (which

enabled efficient execution of this cellular model). The complexity of the problem can be

simplified using the CD++ toolkit and the Cell-DEVS formalism (implementing this

simulation in a other high level programming language is much more complex).

The rest of the work is organized as follows: we first give an overview of the Cell-

DEVS formalism, followed by the WSN model definition. Thereafter, we observe and

evaluate the behavior of sensor nodes and entire WSN from the simulation results obtained,

under different test scenarios. We then describe and discuss the simulation results, analysis

and discussion of the initial and improved results for different scenarios.

139

A.2 Model Definition

Due to the complexity of the model under study, we used Cell-DEVS [WAI02] and the

CD++ toolkit [WAI02], as an efficient way to model and simulate cellular models [CHO98],

in our case the WSN topology problem. Cell-DEVS is an extension to the DEVS formalism

[8], which has been used to model systems that can be represented as cell spaces. A Cell-

DEVS model is represented as a cell space, where each cell is represented as an atomic

DEVS model. Each cell is connected to the local neighboring cells. A delay mechanism in

each cell (transport delay or inertial delay) is used to delay the propagation of state change

events through the cell space, providing the means for defining complex temporal behavior.

An Atomic Cell-DEVS can be defined as follows:

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

Where X is the set of external input events; Y is the set of external output events; I

represents the definition of the model’s modular interface; S is the set of possible states for a

given cell; θ is the definition of the cell’s state variables, N is the set of values for the input

events; d is the delay of the cell; δint is the internal transition function; δext is the external

transition function; τ is the local computing function; λ is the output function, and D is the

duration function.

A Coupled Cell-DEVS model is built by connecting a number of Atomic Cell-DEVS

models together into a cell space of any shape (including 2D and 3D cell spaces). The

borders of the cell space can be either wrapped, in which case the cells at the border from

one side of the cell space are considered neighbors to the cells at the border on the opposite

side of the cell-space, or non-wrapped, in which case the border cells must have special rules

defined by the modeler. A formal definition of Coupled Cell-DEVS is:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,….,tn}, N, C, B, Z, select >

Where Xlist is the input coupling list; Ylist is the output coupling list; I represents the

definition of the model’s modular interface; X is the set of external input events; Y is the set

140

of external output events; n is the dimension of the cell space; {t1,….,tn}is the number of

cells in each of the dimensions; N is the neighborhood set; C is the cell space; B is the set of

border cells; Z is the translation function; and select is the tie-breaking function;

CD++ is an M&S toolkit that implements DEVS and Cell-DEVS theory [WAI01]

[WAI02][ZEI02]. Atomic models can be defined using a state-based approach (coded in

C++ or an interpreted graphical notation), while coupled and Cell-DEVS models are defined

using a built-in specification language. CD++ also includes an interpreter for Cell-DEVS

models. The model specification includes the definition of the size and dimension of the cell

space, the shape of the neighborhood and borders. The cell’s local computing function is

defined using a set of rules with the form: POSTCONDITION DELAY

{PRECONDITION}. This indicates that when the PRECONDITION is satisfied, the state of

the cell will change to the designated POSTCONDITION, who’s computed value will be

transmitted to other components after consuming the DELAY.

We have used these facilities to create an advanced model of WSN, in which we can

analyze the WSN topology problem. This problem is closely related to the minimum

configuration of nodes for fully operational WSN, taking into account sensor node energy

limitations for a long lasting - survivable WSN networks. In our model, we have structured

the area as a two-dimensional cell space of size n x n, where every cell represents one sensor

node. The WSN considered is such as all the sensor nodes have same properties

(homogeneous WSN) and flat (i.e. no hierarchy among nodes). Each node can have up to 8

neighbors and there are 3 possible states for each cell (active, stand-by, and inactive). For

this model, Moore’s neighborhood is adopted (i.e., the origin cell and its 8 close neighbors).

As a result, the Cell-DEVS simulation model, gives an insight into an elegant way of

implementation the Topology Control Algorithm for a large WSN; in our particular case,

addressing the issue of sensor node energy conservation to achieve a longer lifetime

operation of the WSN.

During the active mode of operation, the node emulates an active sensor within the

WSN (i.e. performs processing tasks, hence using energy which decreases with time). In the

beginning of simulation, all the sensor nodes deployed, have the same amount of energy

which decreases as time progresses while node is in active mode (maximum energy

consumption) or in stand-by mode (minimum energy consumption). During the stand-by

141

mode, sensor node is consuming a minimal amount of energy; it wakes up randomly in order

to see if other close-by nodes are already sensing/monitoring the predefined neighborhood

area. If less than two sensor nodes within the neighborhood are active, the cell goes again

into stand-by mode; otherwise it becomes active. After the entire energy of a cell is

consumed, the cell becomes inactive; this process continues until all the sensor nodes’

energy is consumed (i.e. all the cells are inactive).

The n x n cells in the cell space considered were organized in two planes reflecting a

three dimensional space implemented to meet the basic constraints (of the defined WSN

Topology problem) while exploring and capturing the main tasks of the problem considered.

Each sensor node starts to operate with a fixed amount of energy. In this model the energy

levels adopted based on [CUN05] [YE02] are the following:

WSN sensor energy (at the beginning of operation) = 0.8 J

The energy of an WSN sensor node in active mode decreases by 0.0165 J every time step (in

our case every 1 sec)

The energy of a WSN sensor node in stand-by mode decreases by 0.00006 J every time step

(in our case every 1 sec)

The WSN sensor node possible states are:

Plane 0:

2 - WSN sensor node is in active mode within the neighborhood (WSN sensor coverage

area)

1 - WSN sensor node is in stand-by mode within the neighborhood (WSN sensor coverage

area)

0 – WSN sensor node is passive (i.e. energy of a node is consumed)

Plane 1:

0.8 - initial energy level of WSN sensor nodes

-1 - WSN sensor node is passive (i.e. energy of a node is consumed)

Neighborhood ={ (-1,-1,0) (-1,0,0), (-1,1,0), (0,-1,0), (0,0,0), (0,1,0)(1,-1,0),(1,0,0),(1,1,0),

(0,0,1), (0,0,-1) }

142

Plane 0 contains the different deployed sensor nodes, and it is used to be observed

throughout the simulation of the model. Plane 1 was used as “memory” for keeping track of

the energy levels of active and stand-by nodes. The correct decrease of energy level and

node behavior in the Plane 0 is interrelated to Plane 1 which contains the sensors energy

information throughout the simulation.

The Plane 0 areas are organized as follows:

Figure A.2 - Plane 0 organization (zones)

TL - Top left rule, sensor node in the top left corner, i.e. origin coordinate (0, 0)

TC - Top center rule, sensor node coordinates (0, 1) to (0, 9)

BC - Bottom center rule, sensor node coordinates (10, 1) to (10, 9)

TR - Top right rule, sensor node coordinate (0, 10)

BL - Bottom left rule, sensor node coordinate (10, 0)

BR - Bottom right rule, sensor node coordinate (10, 10)

Right rule, sensor node coordinates (1, 10) to (9, 10)

Left rule, sensor node coordinates (1, 0) to (9, 0)

The rest of a cell space is WSN rule, i.e. local transition rule of the model.

The initial model was organized as shown in Figure A.2. The partitioning of the cell

space into ‘zones’ was done to experiment with the problem at hand (initially) by isolating

the ‘zones’. Hence, easing the task to be solved, by observing sensors’ operations at different

‘zones’ (and their interaction) prior to optimizing the final solution.

When compared to the initial model, the improved model (refer to Figure A.3) are the

following:

Entire cell-space can be populated with sensor nodes

143

There are no limitations to functionality of the model (Plane 0 organization)

Cell space is not divided into zones

Enables more flexibility to the initial model (reduces significantly the code size)

Randomness was implemented within the model (it enables us to represent more closely the

real-world applications related to WSN)

Figure A.3 - Plane 0 organization (improved model)

In addition to the existing states present in the initial WSN model (described earlier), an

additional state was implemented in Plane 0 of the improved WSN model:

3 – WSN sensor node is typically in stand-by mode; however, nodes randomly become

active if one or two nodes are active

Within the neighborhood (Moore’s neighborhood coverage area); node goes back to stand-

by mode if the condition is true

(i.e. one or two neighborhood sensors are active), otherwise it remains in the active mode.

A.3 WSN Behavior Definition

In Plane 0, each Moore’s neighborhood (consisting of 9 cells) typically is covered by one

active cell (with the value of 2) and the rest of the stand-by cells have a value of 1, whilst the

passive cells have a value of 0. At the initial stage all the WSN sensor nodes deployed within

the WSN network area (represented by cell space) are active for several time steps until they

configure themselves to active and stand-by mode nodes.

In Plane 1, for every time step, the energy of active cells is decreased; the amount of

energy available x, for any active and stand-by mode cells before cell dies is 0 ≤ x ≤ 0.8.

Each cells energy level in Plane 1 serves as a reference (memory) of the Plane 0 active and

stand-by mode cells (represented by value of 2 and 1 respectively). Plane 0 refers to Plane 1

by (0, 0, 1), while Plane 1 refers to Plane 0 by (0, 0,-1) neighborhood coordinate (refer to

144

Figure A.4). The neighboring cells which are in a stand-by mode are represented by the

value of 1 within the cell, and are also decreased in negligible quantities during the stand-by

mode; The active cells become passive after their energy is consumed and are replaced by

the neighboring cells which are yet alive (cells currently in stand-by mode).

Figure A.4 - Cell space definition

The neighboring cells which are in a stand-by mode are represented by the value of 1

within the cell, and are also decreased in negligible quantities during the stand-by mode; The

active cells become passive after their energy is consumed and are replaced by the

neighboring cells which are yet alive (cells currently in stand-by mode). The cell-space in

Plane 0 defines sensor nodes, whilst in Plane 1 energy level corresponding to each node

(refer to Figure A.4).

The algorithm steps through each neighborhood and decides on which nodes stays

active and which is to be configured as a stand-by nodes; where each neighborhood of cells

is checked for present active cells by comparing the present cell’s value with the residual

energy (which is check referenced in Plane 1) until they becomes passive (represented by

value of 0 in the cell space); Afterwards, one of the stand-by neighboring cell is assigned to

becomes active, and this process continues until all the cells become passive (i.e. the energy

resources of all sensors is consumed). Plane 1 updates the energy levels of each cell during

the simulation as per the specifications.

The WSN simulation model provides closer approximation to the WSN topology

algorithm by implementation of randomness within the WSN model; where randomness,

redundancy and configuration of nodes play a significant role in reflecting the key factors in

deployed networks, such as a network lifetime, coverage area and ratios of active and stand-

145

by sensors at specific points in time. Randomness was implemented by adding another rule

(refer to the rule 3 below) to the model, where stand-by cells randomly become active if only

one or two active neighbors are active. The actual results obtained with the improved model,

more closely reflect the real-world scenarios and provide better insight into the WSN

topology problem.

The problem could be reduced and coded with less than 30 lines of code utilizing the

CD++ toolkit and Cell-DEVS, as shown in the following figure

[WSN]

type : cell

dim: (33, 33, 2)

delay : transport

border : nowrapped

neighbors : (-1,-1,0) (-1,0,0) (-1,1,0) (0,-1,0) (0,0,0) (0,1,0)

neighbors : (1,-1,0) (1,0,0) (1,1,0) (0,0,1) (0,0,-1)

localtransition : WSN-rule

[WSN-rule]

rule : { (0,0,0) - 0.0165 } 1000 {cellpos(2) = 1 and (0,0,-1) = 2 }

rule : { (0,0,0) - 0.00006 } 1000 {cellpos(2) = 1 and (0,0,-1) =1 }

rule : { (0,0,0) - 0.0165 } 1000 {cellpos(2) = 1 and (0,0,-1) = 3 }

rule : 3 1000 {cellpos(2)=0 and (0,0,1)>0 and

 ((0,0,0)=1 and (statecount(2)=2 or statecount(2)=1) and randInt(30)=11) }

rule : 2 1000 {cellpos(2)=0 and (0,0,0) !=0 and (0,0,0) !=3 and (0,0,1) > 0 and (0,-1,0)!=2

 and (1,-1,0)!=2 and (1,0,0)!=2 and (1,1,0)!=2 }

rule : 1 1000 {cellpos(2)=0 and (0,0,0) !=0 and (0,0,1)>0 and

 ((0,-1,0)=2 or (1,-1,0)=2 or (1,0,0)=2 or (0,1,0)=2 or (1,1,0)=2 or

 (cellpos(2)=0 and (0,0,0)=3) or (-1,-1,0)=2 or (-1,0,0)=2 or (-1,1,0)=2) }

rule : 0 1000 {cellpos(2)=0 and ((0,0,0)=1 or (0,0,0)=2 or (0,0,0)=0) and (0,0,1) <= 0 }

146

A.4 Simulation Results

We executed numerous tests, and in this section we present some of the simulation results

obtained and discuss their meaning. The Figure A.5 shows the graphical representation of

the sensor node states defined in the simulation model:

Figure A.5 - Possible sensor states of the initial WSN model

On the left side of the Figure A.5 we have the Plane 0 configuration, where 2 - indicates that

a sensor node is active, 1 – indicates that a sensor node is in stand-by mode and 0 - indicates

that a sensor node is in passive state (i.e. energy of a node is consumed); while on the right

side of the Fig.A5 we have the Plane 1 configuration, where x – is the energy level of WSN

sensor nodes (green cells are the sensor nodes with enough energy, while blue color signifies

that the sensor nodes are close to dying), 1 - WSN sensor node is passive (i.e. energy of a

node is consumed)

The first simulation results presented are shown in Figure A.6 below. Based on the

specification, we can see the sensor nodes active at the beginning of the simulation (red

cells), while the light blue cells represent the unpopulated zones within the cell space.

Figure A.6 - Plane 0 (left, red) and Plane 1 (right, green) prior to execution

147

The following Figure A.7 shows the WSN network during the process of

reconfiguration, where nodes are trying to form a structure and every neighbor is trying to

set some sensors in active mode while others remain in stand-by. The Plane 1 stores the

energy level of each sensor node, which can be monitored.

Figure A.7 - Snapshot of simulations results after 6 time steps

Figure A.8 shows that the WSN sensors are reconfigured as per the specifications and

each neighborhood is covered by typically one active node while others remain in stand-by

mode (energy of each note is decreasing during each step based on the model specification).

Figure A.8 - Snapshot of simulations results after 15 time units

Figure A.9 shows that several active nodes (from previous step) are now passive (died

cells - Plane 1 on the right, gray cells), while cells that were previously in stand-by mode are

taking over by becoming active.

148

Figure A.9 - Snapshot of simulations results after 62 time units

In these simulations, all the sensor nodes become passive after 197 time steps. By

comparing the end result of our simulation and the results obtained in [CUN05] (in

particular, the number of active sensors after 200 time units), it can be observed that after

approximately 200 time steps all the active sensors become passive (as energy of all nodes is

consumed). Hence, the simulation results obtained by our model very closely reflect the

same behavior (i.e. after 197 time units the active sensors become passive). These results can

be seen in Figure A.10.

Figure A.10 - Initial WSN simulation results using Cell-DEVS

149

From the Figure A.10 it can be observed that in the worst case scenario (bottom left

graph), when all nodes are active all the time, the sensor nodes die after 48.48 time units

(where the energy of a node in each step is consumed by 0.0165 J and the initial level of

sensors’ energy is 0.8 J), while when using the Topology Control Algorithm, where selected

sensor nodes within a Moore’s neighborhood are alive (top left graph), the number of

alive/active sensor nodes decreases gradually, extending the life of sensor nodes to 197 time

units (top right graph) and the coverage area (bottom right graph).

Our following results present an improved version of the WSN model, in which we use

the following is the graphical representation of the sensor node states defined within the

simulation model:

Figure A.11 - Possible sensor states of the improved WSN model

With respect to the initial model (refer to Figure A.5), in representing the sensor node states

of the improved model, we have added an addition sensor state to indicate the randomly

active sensor nodes, as depicted in Figure A.11.

This model provides closer approximation to the WSN topology algorithm by

implementation of the randomness within the WSN deployed. The actual results obtained,

more closely reflect the real-world scenarios and provide better insight into the WSN

topology problem and how efficiently similar problems can be implemented utilizing Cell-

DEVS and CD++ toolkit. The improved model is quite easy to modify in order to simulate

different sizes of WSN networks. In this case, it requires to change only the values n and m

(i.e., one line of specification, dim : (n, m, 2) where n is the number of columns and m is the

number of rows in the model and provide the desired initial energy levels for the sensor

nodes). The example below (refer to Figure A.12) represent the simulation model for

WSN33, where the cell space is constituted by 33 rows and 33 column, and the total number

of cells (sensor nodes) is 1089.

150

Figure A.12 - Snapshot of Plane 0 (left, red) and Plane 1 (right, green) prior to execution

The following Figure A.13 shows the 33 x 33 WSN network during the process of

reconfiguration, where nodes are trying to form a structure and every neighbor is trying to

set some sensors in active while others remain in stand-by mode. Some of the stand-by

nodes are randomly awaken (in Fig.A13 left, the cells in blue in Plane 0). In case that only

one or two sensor nodes are active, stand-by nodes randomly become active and return to

stand-by mode only if one or two more sensor nodes are currently active within the

neighborhood. On the Plane 1 data (refer to Figure A.13 right), we can see the energy level

of each sensor node up to this time step (see in green, indicating that the energy levels x of

sensor nodes are: x ≥ 0.05J).

Figure A.13 - Snapshot of simulations results after 40 time units

151

Studying the simulation results of this Cell-DEVS model (presented in Figure A.14 and

A.15), we can be see that the coverage area by sensors is reduced after 134 time steps, when

more and more nodes become passive (as their energy is consumed). As time progresses,

there is a smaller area of the WSN cell-space covered. Finally, after 193 time units, the WSN

cell-space becomes passive. Similar, results were obtained when WSN22 and WSN11 were

simulated.

Figure A.14 - Snapshot of simulations results after 134 time units

Figure A.15 - Snapshot of simulations results after 164 time units

Figure A.16 shows the number of active sensors versus time within the WSN network;

evaluated for WSN deployment scenarios within two dimensional cell-spaces, using Cell-

DEVS:

WSN11 - representing 11x11 cell-space, with 121 sensor nodes

WSN22 – representing 22x22 cell-space, with 484 sensor nodes

WSN33 – representing 33x33 cell-space, with 1089 sensor nodes

152

Number of active sensors with the algorithm

0

200

400

600

800

1000

1200

0 50 100 150 200 250

Time

A
c
ti

v
e
 S

e
n

s
o

rs

WSN11

WSN22

WSN33

Figure A.16 - Number of active sensors with the algorithm using Cell-DEVS

As we can see, the number of active sensors decreases after the configuration of sensor

nodes, following the deployment, after which, redundancy is reduced by having only one

active node within the Moore’s neighborhood (while other nodes are in stand-by). In

addition, within each Moore’s neighborhood, the stand-by nodes become active randomly

and remain active if no sensor is active or return to stand-by mode if any sensor node is still

active. The results obtained provide clear indication that network lifetime is increase

approximately by 4, which was shown also in [CUN05].

Number of stand-by sensors with the algorithm

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250

Time

A
c
ti

v
e
 S

e
n

s
o

rs

WSN22

WSN33

WSN11

Figure A.17 - Number of stand-by sensors with the algorithm using Cell-DEVS

In Figure A.17, it can be observed that the number of stand-by sensors increases while

the WSN cell-space is being configured, and starts to decrease as the active sensors’ energy

153

is consumed (refer to Figure A.16) hence stand-by sensors become active. Similarly, in

Figure A.18 we can be observe that the number of sensors alive is at it maximum when the

simulation starts (i.e. all the WSN sensor nodes are active) and starts slowly decreasing as

the time progresses.

Number of sensors alive with the algorithm

0

200

400

600

800

1000

1200

0 50 100 150 200 250

Time

A
c
ti

v
e
 S

e
n

s
o

rs

WSN11

WSN22

WSN33

Figure A.18 - Number of sensors alive with the algorithm using Cell-DEVS

An important aspect considered in WSN networks is the coverage area, which is closely

related to the active sensors within the cell-space. When the redundancy of sensor nodes

within the WSN is controlled, the network lifetime is prolonged; hence wider coverage area

is maintained for a longer time, as shown by the simulation results in Figure A.19.

Area covered by sensor network

0

20

40

60

80

100

120

0 50 100 150 200 250

Time

C
o

v
e

ra
g

e
 (

%
)

WSN1

WSN22

WSN33

Figure A.19 - Sensor network coverage area (%) using Cell-DEVS

154

Finally, in Figure A.20 we can see the number of active sensors in the worst case

scenario when WSN sensor nodes are active the entire time until the energy of sensors is

consumed just before time 50; the network lifetime is approximately 4 time less in

comparison to the implementation of WSN topology control algorithm using Cell-DEVS

(refer to Figure A.16, A.18 and A.19).

Number of active/alive sensors in the worst case

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60

Time

A
c
ti

v
e
 S

e
n

s
o

rs

WSN33

WSN11

WSN22

Figure A.20 - Number of active sensors with the algorithm

A.5 Conclusions

The objective of this research work was to simulate a large Wireless Sensor Network (WSN)

using Cell-DEVS, by implementing the Topology Control Algorithm. By observing and

evaluating the behavior of WSN simulation model, under different test scenarios, it was

proven the effectiveness of Cell-DEVS and the CD++ toolkit, as an elegant approach to

model, simulate and analyze, in this case the WSN topology problem.

The initial WSN model was further enhanced in order to provide closer approximation

to the WSN topology algorithm by implementation of the randomness within the WSN

deployed. In addition, modification and simplification of model was done, where cell-space

is not divided into zones; allowing more flexibility to model any possible WSN cell-space

configuration (entire or partial cell-space populated with sensor node).

The actual results obtained with the improved model, more closely reflect the real-world

scenarios and provide a better insight into the WSN topology problem, in particular. As it

was observed in section 3, the complexity of the problem can be simplified and coded with

155

less than 30 lines of code, utilizing CD++ toolkit and Cell-DEVS approach; whilst similar

problem if implemented in C/C++ (or any other high level programming language) could

possibly take up to several hundred or perhaps thousands of lines of code (based on the

implementation approach taken). Thus, proving how efficiently complex problems of similar

nature can be implemented simulated and analyzed utilizing CD++ toolkit and Cell-DEVS

approach.

156

APPENDIX B

HEATER-COOLER SYSTEM PROTOTYPE

B.1 Introduction

Focus of this work is to design and emulate few potential features of a Heater-Cooler System

Prototype by experiment (utilizing hardware and software).

In order to implement and experiment the main project ideas, in addition to the

PICmicro®MCU 24FJ128GA006 which is a Microchip’s Technology product, Heater-

Cooler System Prototype utilizes the following peripheral devices:

One off board Temperature sensor (DS1631)

One on board Digital Potentiometer

Two on board Push Button(s)

Three onboard LED(s)

One off board 2x7 segment LED Display

Two off board LEDs

One off board Push Button

B.2 Brief Overview of PIC24F PICmicro® and Design Tools

B.2.1 PICmicro®MCU- PIC24F series

The PICmicro®MCU is Microchip’s RISC based microcomputer that contains CPU,

memory, oscillator and most of the peripherals inside a single integrated circuit. The PIC

24FJ128GA006 PICmicro®MCU adopted in the current design belongs to the Microchip’s

family of PIC24F series of general purpose microcontrollers based on FLASH technology.

The PIC24F series are 16-bit microcontrollers with modified Harvard architecture (with

separate internal busses for memory and data). The enhancement of the PIC24F 16-bit CPU

core with respect to the previous PIC18F family of the microcontrollers are the following:

157

• Uses 16-bit data bus and 24-bit address bus with the ability to move information

from between data and memory spaces

• Linear addressing of up to 8MB for program space and 64Kbytes of data

• 16 working registers

• 17x17 hardware multiplier with support for integer math

• Hardware support for 32x16 bit division

• Barrel shifting/rotation up to 15 bits, left or right, shift or rotate

• Instruction set that supports multiple addressing modes and is optimized for high-

level languages

• Operational performance up to 16 MIPS (million of Instructions per Second)

• Instruction clocking Tclk = Fosc/2 (previous families had Tclk = Fosc/4)

B.2.2 Design Tools

One of the most recommended high level languages for programming PICmicro®MCU is C,

although other languages such as Pascal and PICBasic are commonly used. Many

companies offer C compilers for PICmicro®MCU such as, IAR, Hi-Tech, CCS, etc.

In this work the CCS C Compiler for 24 bit PICmicro®MCUs. The CCS C compiler

for 24-bit PICmicro®MCU family is called PCD compiler which supports dsPIC30,

dsPIC33 and PIC24 family. The compiler implements efficiently typical C constructs,

input/output operations and bit manipulations. All typical data types and many built-in

(wrapper) functions are available for ease of use and are optimized for code efficiency.

The compiler’s IDE is user friendly and comes with a build in debugger, providing good

ground for debugging and code implementation. The In-Circuit Debugger (ICD-U40) on the

other hand, enables programming and debugging or the PICmicro®MCU board (connects

via USB to the PC and via ICD connector to the development board).

Main block diagram of the Design Tools used to accomplishment this project is depicted in

Figure B.1.

158

Figure B.1 - Block diagram of design tools used

B.3 Design Implementation of a System ‘Emulator’

A simplified Heater-Cooler Prototype System was implemented in order to ‘emulate’ few of

its potential features by experiment utilizing hardware and firmware. The proposed system

was experimented utilizing PIC24F microcontroller development board suitable for this

scheme, other additional components and integrated circuits. In addition to the hardware, for

firmware development, Embedded C language for PICmicro® family from Custom

Computer Systems Inc. (shortly CCS) was chosen.

Main system tasks covered in the experimental work done for the Heater-Cooler System

Prototype would engage the following activities:

• Read the temperature sensor analog input (representing outside temperature) and

display that information in LED segment display

• Utilize digital potentiometer to “emulate” inside temperature change (e.g. 0 to 5V

representing different temperature levels in degree Celsius) hence, making system to

decide and take actions accordingly

• Use LEDs to indicate different “system states” based on the level of temperature and

data logging to monitor the actual temperature reading from sensor

• Use push button to indicate/emulate “room occupancy”; logic high indicating that

someone is in the room hence, system acts by keeping the room temperature normal;

159

logic low indicating that room is empty, hence system drops the room temperature to

minimum value

• Utilize interrupts within a system to maintain time, perform critical system tasks

which do not fall into the category of sequential commands, hence require fast

response (i.e. monitoring of buttons/switches pressed, de-bouncing, etc. during each

interrupt e.g. every 1 millisecond)

B.3.1 Implementation of a Simple Test Bed for Heater-Cooler System Prototype

Figure B.2 below is a block diagram representation of a test bed for the Heater-Cooler

System Prototype. Main components of the design are depicted in a simplified form.

Figure B.2 - Block diagram of a system

24FJ128GA006 PICmicro® - is a 16-bit microcontroller offers good computational power

and has a rich peripheral set of features desirable in the design of digital and embedded

systems; hence can be utilized in the Heater Control System, as well.

160

The initial tasks included the selection of adequate input/output pins of the microcontroller,

selection and configuration of the system clock to be used (setting of proper fuses); setting

and configuration of the I/O port bits (direction), and also the analog to digital converter

configuration.

The 20 MHz primary oscillator was chosen as a system clock.

Timer 1 Interrupts - The 24FJ128GA006 PICmicro® Timer 1 is a 16 bit register which

was configured and used in the current design to monitor the critical tasks of the design.

Taking into account the 20 MHz oscillator frequency and the execution cycle for typical

instruction which for the PIC24F series which is 2 clock cycles proper ‘system tick count’ of

1 millisecond was implemented in a dedicated Interrupt Service Routine within the firmware

(refer to the Appendix B, Timer1_ISR() source code).

1/20MHz/2 = 0.1 usec ‘ticks’ every instruction cycle; Since Timer 1 is a 16 bit register (0 to

65535), hence overflow occurs every 65535. In order to implement 1 msec interrupts Timer

1 register is loaded with the value of 65535, every time that a Timer 1 interrupt occurs.

Digital Temperature Sensor - The DS1631 digital temperature sensor was interfaced (via

breadboard implementation) to the 24FJ128GA006 PICmicro® board for the emulated

‘external temperature measurements’. The A to D conversion in this case was done by the

DS1631, while the I2C communication between DS1631 and the 24FJ128GA006

PICmicro® was used to communicate and receive the data. The DS1631 in this case was set

as a slave and the 24FJ128GA006 PICmicro® was as a master. The processed data was

used within the microcontroller to display the results and as a reference point for decision

making process.

Digital Potentiometer - The 24FJ128GA006 PICmicro® analog port 0(sAN0) of the

development board (having 10 bit resolution) connected to the digital potentiometer is

chosen for the analog to digital conversion of the emulated ‘internal temperature

measurements’.

Push Buttons - There are 3 buttons within the system (two on board) and one implemented

in the breadboard. The button 0 is the system reset button for the microcontroller. The on

board Button 1 was implemented in the firmware (within the interrupt routine) to switch the

displayed temperature from the external (reading from the DS1631 digital sensor in the

161

breadboard) to internal temperature reading (digital potentiometer in the development board)

each time that Button 1 is pressed.

The Button 2 was implemented off board and interfaced to the PORTF pin F5 of the

24FJ128GA006 PICmicro®. It was set as input to sense when the Button 2 is pressed; which

in turn toggles the off board RED LED 2 and RED LED 3 while the Button 2 is pressed.

De-bouncing factor was considered and implemented not as a delay to the function but using

the Timer 1 interrupts and msec counter in order to allow for several cycles of ON/OFF de-

bouncing sequences prior to deciding that the button was pressed; De-bouncing period for

the Button 2 (150msec) is different than the on board Button 1(100 msec); this was observed

during the experimentation stage.

2x7 Segment LED Display – is implemented off board and interfaced to the PORTD pin

D10 and D11 (for the control of segments to be lit) of the 24FJ128GA006 PICmicro®, and

PORTB pins are utilized to energize individual LEDs within each segment respectively.

Each corresponding LED segment a1 to a2, b1 to b2, c1 to c2, d1 to d2, e1 to e2, and f1 to f2

and g1 to g2 are connected together. Only seven wires connect each particular segment to

the particular PORTB output port.

By controlling the common pins of the segment 1 and segment 2 (leaving a short delay

(5 ms) in between ON and OFF commands issued to D10 and D11 – control lines of the

segment one and two) using only 9 I/O lines, temperature values can be displayed.

LED Indicators – There are 3 on board LEDs (red, green and yellow) and two off board red

LEDs. The on board LEDs are used to indicate different temperature levels (based on the

reading from the emulated ‘internal temperature’, DS1631 temperature sensor reading. Such

as, if the temperature reading is below 15 ºC Red LED indicator is activated (i.e. Heater

ON); if the temperature reading is above or equal to 15 ºC and less than or equal to 25 ºC,

yellow LED indicator is activated (i.e. Heater OFF and AC OFF). If the temperature reading

is above 25 ºC green LED indicator is activated (i.e. AC ON).

The two off board red LEDs are implemented and interfaced to PORTE pins E0 and E1

respectively. Their function is to emulate extra health indicators and/or possible actuators

related to the Heater-Cooler System Prototype. These LEDs toggle if the Button 2 is

pressed. If the Button 2 is not pressed than the LEDs will lit if the emulated ‘internal

temperature’ – i.e. analog to digital conversion value read from the digital potentiometer (as

162

we adjust the know). The settings of the LEDs is such as if the temperature reading is less

than 25 ºC LED2 will lit; if the temperature reading is above or equal to 25 ºC LED3 will lit.

RS-232 communications – In addition to the ICD interface the development board has also

RS232 interface. This interface was utilized for data logging during the system development

stages. Section B.5 (Data Logging) shows the data from actual experimentation, where the

‘Internal Temperature’ is the temperature emulated by turning the digital potentiometer knob

slowly from its minimum to its maximum position; while the ‘External Temperature’ is the

temperature read from the DS1631 digital temperature sensor. Figure B.3 below, shows the

actual experimental setup.

Figure B.3 – Experimental setup

163

B.4 Prototype Design Algorithm

164

Figure B.4 - Prototype design algorithm

165

B.5 Source Code

/*

* File name : Heater_Sys.c

* Title : Heater System

* Author : Blerim Qela

*/

#include <24FJ128GA006.h>

#device ICD=TRUE

#device ADC=10

#fuses HS, NOWDT, PR

//#use delay (clock = 20000000)

//#use RS232 (baud=9600, UART1, stream=PORT1)

#define CLK PIN_D0

#define DATA PIN_D1

#use i2c(master, sda=DATA, scl=CLK)

#define GREEN_LED PIN_B5

#define RED_LED PIN_B2

#define YELLOW_LED PIN_B4

#define RED_LED2 PIN_E1

#define RED_LED3 PIN_E0

#define pushButton1 PIN_F6

#define pushButton2 PIN_F5

signed int16 readTemp;

signed int8 tempHigh, tempLow;

float Temperature, InternalTemp;

unsigned int16 digitalTemp;

unsigned int16 tick_count,msec;

unsigned int8 tp1,tp2, bDebounce;

int1 button1Pressed,button2Pressed;

166

//using timer 1 interrupt functionality

//create a delay routine (msec)

void my_delay(unsigned int16 x){

 unsigned int16 temp;

 temp = x;

 msec=0;

 do{

 #ASM NOP #ENDASM

 }while(msec<temp);

}

// array of 7 segment LEDs; each element activates a specific number

unsigned int16 const Segment_Leds[10]={0x3F00,0x0600,0x5B00,0x4F00,

0x6600, 0x6D00,0x7D00,0x0700,0x7F00,0x6700};

//Timer 1 interrupt routine

#int_TIMER1

void TIMER1_ISR()

{

 set_timer1(55535); // overflow interrupt will occur approx. every 1msec

 tick_count++; //increments tick counter

 msec++; // keep track of msec ticks

 //utilize timer to check for debouncing of button press

 if(!input_state(pushButton1)){

 bDebounce++;

 if(bDebounce >=100){

 button1Pressed = TRUE;

167

 bDebounce = 0;

 }

 }

 if(!input_state(pushButton2)){

 bDebounce++;

 if(bDebounce >=150){

 button2Pressed = TRUE;

 bDebounce = 0;

 }

 }

}

void main(){

 //setup timer 1 as system "tick" counter

 setup_TIMER1(TMR_INTERNAL|TMR_DIV_BY_1);

 //setup A to D converter for digital potentiomete

 setup_adc_ports(sAN0); // setup port AN0 for reading the potentiometer

 setup_adc(ADC_CLOCK_INTERNAL); //The ADC will use internal clock

 set_adc_channel(0);

 set_tris_b(0x02);

 //initial setup sequence for reading temperature sensor

 output_high(DATA); //bring SDA and SCL high

 output_high(CLK);

 i2c_start(); //initiate communication with sensor

 i2c_write(0x90); //control byte send by master (micro)to slave (sensor)

 i2c_write(0x51); //initiate one temperature conversion

 i2c_stop(); //stop command

 button1Pressed = FALSE; // set button flag to 0 initially

 button2Pressed = FALSE; // set button flag to 0 initially

168

 bDebounce = 0;

 msec=0;

 tick_count=0;

 set_timer1(55535); // overflow interrupt will occur approx. every 1msec

 enable_interrupts(INT_TIMER1);

 while(TRUE){

 digitalTemp = read_adc(); //read analog port AN0 of PIC micro

 InternalTemp = (float)digitalTemp/10; // ADC value (0 to 1024)/10

 //check and turn on external LED indicators based on temp. settings

 if((digitalTemp < 25)&& !button2Pressed){

 output_high(RED_LED2);

 output_low(RED_LED3);

 }

 if((digitalTemp >= 25)&& !button2Pressed){

 output_high(RED_LED3);

 output_low(RED_LED2);

 }

 //toggle indicators/devices while button2 is pressed

 if(button2Pressed){

 output_toggle(RED_LED2);

 output_toggle(RED_LED3);

 my_delay(500);

 if(input_state(pushButton2)){

 button2Pressed=FALSE;

169

 }

 }

 i2c_start(); //initiate communication with sensor

 i2c_write(0x90); //control byte send by master (micro)to slave (sensor)

 //write command issued to DS1631 to read last temperature

 //conversion from the register

 i2c_write(0xaa);

 i2c_start(); //initiating the read sequence

 i2c_write(0x91); //read command - requested by master

 tempHigh=i2c_read(); //reading high byte of the temp register

 tempLow=i2c_read(0); //reading low byte of the temp register

 i2c_stop();

 // adjust the MSByte of reading to high byte of the result

 readTemp = (signed long)tempHigh*0x100;

 readTemp = readTemp & 0xFF00;

 readTemp = readTemp + tempLow;

 //add the LSByte part

 Temperature =(float) readTemp /256;

 disable_interrupts(INT_TIMER1);

 printf("External Temp:%3.2f\n\r",Temperature);

 printf("Internal Temp:%3.2f\n\r",InternalTemp);

 //delay_ms(1000);

 enable_interrupts(INT_TIMER1);

 tp1 = (unsigned int8)Temperature;

 tp2= (unsigned int8)InternalTemp;

 //display temperature in 7 segment LEDs

170

 //displays the most significant digit

 output_b(Segment_Leds[tp1/10]);

 output_high(PIN_D11);

 my_delay(5);

 output_low(PIN_D11);

 //displays the least significant digit

 output_b(Segment_Leds[tp1%10]);

 output_high(PIN_D10);

 my_delay(5);

 output_low(PIN_D10);

 tp2= (unsigned int8)InternalTemp;

 if(button1Pressed){

 //press button1 to alternate 7 segment display to show actual digital potentiometer readings

 output_b(Segment_Leds[tp2/10]);

 output_high(PIN_D11);

 my_delay(5);

 output_low(PIN_D11);

 output_b(Segment_Leds[tp2%10]);

 output_high(PIN_D10);

 my_delay(5);

 output_low(PIN_D10);

 if(input_state(pushButton1)){

 button1Pressed=FALSE;

 }

 } if (Temperature < 15){

 //Heater ON - red LED indicator

 output_high(RED_LED);

 output_low(GREEN_LED);

171

 output_low(YELLOW_LED);

 // my_delay(5);

 } else if((Temperature <= 25) && (Temperature >= 15)){

 //Heater OFF / AC OFF - yellow LED indicator

 output_high(YELLOW_LED);

 output_low(GREEN_LED);

 output_low(RED_LED);

 //my_delay(5);

 } else{

 // Temp must be greater than 30 degrees C

 // turn ON the AC - green LED indicator

 output_high(RED_LED);

 output_low(GREEN_LED);

 output_low(YELLOW_LED);

 }

 }

}

Data Logging File

04/25/2009 02:23:08.197 --> Internal Temp:0.00 //digital potentiometer – knob gradually

turned

04/25/2009 02:23:09.239 --> External Temp:20.06 //reading from actual temperature sensor

04/25/2009 02:23:09.259 --> Internal Temp:1.00

04/25/2009 02:23:10.290 --> External Temp:20.00

04/25/2009 02:23:10.320 --> Internal Temp:1.10

04/25/2009 02:23:11.352 --> External Temp:20.00

04/25/2009 02:23:11.372 --> Internal Temp:1.79

04/25/2009 02:23:12.403 --> External Temp:20.00

04/25/2009 02:23:12.423 --> Internal Temp:2.29

172

04/25/2009 02:23:13.475 --> External Temp:20.06

04/25/2009 02:23:13.485 --> Internal Temp:2.50

04/25/2009 02:23:14.516 --> External Temp:20.06

04/25/2009 02:23:14.536 --> Internal Temp:2.89

04/25/2009 02:23:15.578 --> External Temp:20.00

04/25/2009 02:23:15.598 --> Internal Temp:3.20

04/25/2009 02:23:16.629 --> External Temp:20.00

04/25/2009 02:23:16.649 --> Internal Temp:3.79

04/25/2009 02:23:17.691 --> External Temp:20.00

04/25/2009 02:23:17.711 --> Internal Temp:5.00

04/25/2009 02:23:18.742 --> External Temp:20.00

04/25/2009 02:23:18.762 --> Internal Temp:6.50

04/25/2009 02:23:19.804 --> External Temp:20.00

04/25/2009 02:23:19.814 --> Internal Temp:8.80

04/25/2009 02:23:20.855 --> External Temp:20.00

04/25/2009 02:23:20.875 --> Internal Temp:21.50

04/25/2009 02:23:21.917 --> External Temp:20.00

References

1. N. Gardner, “PICmicro MCU C – An Introduction to Programming the Microchip

PIC in CCS C”

2. T. Wilmshurst, “Designing Embedded Systems with PIC Microcontrollers –

Principles and Applications”

3. CCS, Embedded C Language Development Kit for the PIC MCU by Custom

Computer Systems, www.ccsinfo.com

4. Microchip’s Technology, www.microchip.com

5. Dallas Semiconductor Maxim, www.maxim-ic.com

173

APPENDIX C

C.1 Master Cluster Structure

Master cluster structure is organized as follows:

1. Day of week/Cluster #: 1 for Monday, 2 for Tuesday, etc.

2. File number (1 to 10)

3. Currently active ? (1 = yes, 0 = no)Note: only one file can be active at a time

4. Nr. of days used (weight counter)

5. This file replaced file number # (0 means not replaced, e.g. 1 = replaced Monfile#1

6. SetPoint#1 (0 - not changed, 1 - changed)

7. SetPoint #2 (0 - not changed, 1 - changed)

8. SetPoint #3 (0 - not changed, 1 – changed)

9. SetPoint #4 (0 - not changed, 1 - changed)

10. SetPoint #5 (0 - not changed, 1 - changed)

11.Time when previous file was changed by this one (string - date and time) and 0 - means

no time available

C.2 Daily Cluster Structure

Daily cluster structure is organized as follows:

1. 1 - Monday, 2 - Tuesday, etc.

2. SetPoint #

3. Heat SP

4. Cool SP

5. SP start time

6. SP end time

7. Zone1 Heat day Offset

8. Zone1 cool day offset

9. From (cZone1DayFrom.SelectedIndex)

10. To (cZone1DayTo.SelectedIndex)

174

11. Zone1 heat night offset

12. Zone1 cool night offset

13. From (cZone1NightFrom.SelectedIndex)

14 To (cZone1NightTo.SelectedIndex)

15. Zone1 Heat day Offset

16. Zone1 cool day offset

17. From (cZone1DayFrom.SelectedIndex)

18. To (cZone1DayTo.SelectedIndex)

19. Zone1 heat night offset

20. Zone1 cool night offset

21. From (cZone1NightFrom.SelectedIndex)

22. To (cZone1NightTo.SelectedIndex)

23. Maximum temperature offsets enabled by user during HIGH TOU rates - Heat Offset

24. Maximum temperature offsets enabled by user during HIGH TOU rates - Cool Offset

25. Maximum temperature offsets enabled by user during MEDIUM TOU rates - Heat

Offset

26. Maximum temperature offsets enabled by user during MEDIUM TOU rates - Cool

Offset

27. Maximum temperature offsets enabled by user during LOW TOU rates - Heat Offset

28. Maximum temperature offsets enabled by user during LOW TOU rates - Cool Offset

29. Maximum temperature offset enabled by user during DR Utility Events - Heat Offset

30. Maximum temperature offset enabled by user during DR Utility Events - Cool Offset

31. Settings for Savings (cPreferences.SelectedIndex)

32. OptIn to DR events (OptIn)

33. Demand Response Event (cDemandResponse);

34. Learn and Adapt (LearnAdapt)

175

APPENDIX D

Confidence Intervals

Different set points and/or pattern changes of the user, which represent the sample data for

different occurrences observed during the simulation run. Let X1, X2,…, Xn represent the

random sample occurrences of different patterns with normal distribution, and the mean

value X is:

 X = ∑
=

n

i

iX
n 1

1
 (D.1)

The mean of each daily occurrences (pattern changes for a particular day of a week)

during the simulation run, provides the single numerical value for the estimated expected

value E|X| = µ. In order to verify how close the real values are to the estimate, we compute

the variance σ2:

 σ2 = XX
n

n

i

i −
−
∑
=11

1
 (D.2)

The small resulting values of σ2 signify that the results are close to the mean value X. Thus,

we could be confident that X is close to the expected value E|X|. On the other hand, if the

resulting value of σ2 is large, it signifies that the results are widely dispersed around X;

hence, we cannot be confident that X is close to E|X|. Therefore, instead of seeking a single

value to estimate the E|X|, we specify the confidence interval 100 (1 – α) %, which is highly

likely to contain the true value of the parameter. Thus, we find the interval [L(X), U(X)]

which define the limits of the expected value being within the chosen confidence interval.

Thus, the probability P of µ being within the defined interval is defined as:

 P = [L(X) ≤ µ ≤ U(X)] = 1 – α (D.3)

Where lower limit L(X) is defined as:

 L(X) = X – z α/2

n

σ
 (D.4)

176

Furthermore, upper limit U(X) is defined as:

 U(X) = X + z α/2

n

σ
 (D.5)

Thus, a 100(1 – α) % confidence interval for the mean µ of a normal population, when the

value of standard deviation σ is known, is given by:

 (X – z α/2

n

σ
≤ µ ≤ X + z α/2

n

σ
) (D.6)

From the normal distribution table, choosing α = 0.05, we get the z value, z 0.05/2 = 1.96.

Therefore the 95 % confidence interval is:

 (X – 1.96

n

σ
≤ µ ≤ X + 1.96

n

σ
 = 0.95) (D.7)

Where,

α = 0.05,

σ =
2σ = XX

n

n

i

i −
−
∑
=11

1
is sample standard deviation,

σ2 is variance,

X is sample mean, and

n is the sample size.

Thus, choosing α = 0.05, yields a 95% confidence interval. A confidence interval of 95%

implies that 95 % of all the samples are within the interval that includes µ, and only 5 % of

samples would yield erroneous interval. In this thesis, the confidence interval of 95% is

used to validate the adapted values for changing patterns and/or user preferences, from the

simulation runs.

