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Summary
The most popular discrete models to simulate traffic flow are cellular au-

tomata, discrete dynamical systems whose behavior is completely specified in
terms of its local region. Space is represented as a grid, with each cell contain-
ing some data, and these cells act in accordance to some set of rules at each
temporal step. Of particular interest to this problem are sequential cellular
automata (SCA), where the cells are updated in a sequential manner at each
temporal step.

We develop a discrete model with a grid to represent the area around a toll
plaza and cells to hold cars. The cars are modeled as 5-dimensional vectors,
with each dimension representing a different characteristic (e.g., speed). By
discretizing the grid into different regimes (transition from highway, tollbooth,
etc.), we develop rules for cars to follow in their movement. Finally, we model
incoming traffic flow using a negative exponential distribution.

We plot the average time for a car to move through the grid vs. incoming
traffic flow rate for three different cases: 4 incoming lanes and tollbooths, 4
incoming lanes and 4, 5, and 6 tollbooths. In each plots, we noted at certain
values for the flow rate, there is a boundary layer in our solution. As we increase
the ratio of tollbooths to incoming lanes, this boundary layer shifts to the right.
Hence, the optimum solution is to pick the minimum number of tollbooths for
which the maximum flow rate expected is located to the left of the boundary
layer.
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Introduction

Figure 1. The New Jersey Turnpike (I-95) at night.

Models for traffic flow can be broken down into two basic types.

• The first type treats space and time as a continuum; both cars and time are
continuous in nature.

• The second type, discrete models, treats space as a lattice and time discretely.
A common discrete model is a cellular automaton, where space is modeled
by a lattice and each lattice site represents a state of the system. The lattice
sites are updated and their states change. For traffic flow, the states of the
lattice sites represent whether a car is present at that spatial location or not.

Near a tollbooth, cars must stop to pay before moving on. Since each car
affects the other cars in its direct neighborhood, it is not reasonable to model
cars as a continuum. Discrete time also allows us to control the movement of
the cars at each individual time step. Finally, discrete models in general are
much easier to understand and to implement on modern computing resources.

Assumptions
• Upon nearing a toll plaza, a driver maneuvers based on local congestion to

minimize travel time.

• Within 100 ft of the toll plaza, a driver remains in a lane and slows down
to an average speed of about 5–10 mph. We base the speed of the cars on
what is suggested in most driver’s manuals: Car separation should be one
car length for every 10 mph of speed.

• Once a driver pays the toll, they maneuver to a highway lane and accelerate
to highway speeds.
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• Drivers do not cooperate. While the drivers are not directly competing
against one other, they are affecting each other and are hence fierce indirect
obstacles/opponents.

• Vehicles are of constant length (17.5 ft).

• It takes about 4 s for a tollbooth employee to process a motorist [Chao n.d.].

A Quasi-SCA Model of Toll Plaza Dynamics

Case 1: Equal Numbers of Lanes and Booths

Preliminaries
Cellular automata (CA) are discrete dynamical systems whose behavior

is completely specified locally. Space is represented as a uniform grid, with
each cell containing data. Time advances in discrete steps, and the laws of the
universe are expressed in a look-up table relating each cell to nearby cells to
compute its new state. The system’s laws are local and uniform.

The basic one-dimensional cellular automata model for highway traffic flow
is the CA rule 184, as classified by Wolfram [Nagel et al. 1998; Jiang n.d.; Wol-
fram 2002]. CA 184 is a discrete time process with state space η ∈ {0, 1}Z and
the following evolution rule: If η ∈ {0, 1}Z is the state of at time n, then the
state η′ at time n + 1 is defined by

η′ :=






1, if η(x) = η(x + 1) = 1;
1, if η(x) = 1 − η(x + 1) = 0;
0, otherwise,

where η(x) denotes the value of η : Z → {0, 1} at the coordinate x.
In this model, cars march to the right in a rather uniform manner, and all

nodes execute their moves in parallel.
Toll plaza dynamics, while similar to traffic dynamics, are quite different.

• Toll plazas cannot be approximated as covering an infinite domain.

• Drivers must make decisions based on who moves in front of them. In this
sense, we use ideas from Sequential Cellular Automata (SCA) [Tosic and
Agha n.d.] instead of the classical schemes.

• Cells are updated in a slightly different manner than in classical cellular
automata. To model car movement properly, “cars” are moved through
cells one at a time.

Our model is like a board game. For these reasons, we dub our model a
“Quasi-SCA Model of Toll Plaza Dynamics.”
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We divide a multilane highway into equally partitioned lanes. Each cell
is approximately 25 ft long and contains information on whether it contains a
car and, if it does, certain information about the car. Furthermore, there are
specialized cell characteristics for different regimes, as shown in Figure 2. In
our model, we also move forward in discrete time steps. For convenience, this
time step is set to be 2 s in length.

Figure 2. Possible regimes.

To implement our model, we exploit the object-oriented features of C++. We
create a car class, with certain variables associated with it, as shown in Table 1.

Table 1.
Car class variables in C++.

The highway is represented as a large 50 × n array of car variables, where
n is the number of lanes. When initialized, this array contains empty grid
spaces. As cars enter in from the left, grid spaces are activated and infused
with information about the cars. Then, with this information, the state of the
system at the next time step can be determined.

Vehicle Speed
The speeds of cars not in the tollbooth regime are dictated by car separation

having to be one car length for every 10 mph of speed. Since our model is
discrete in both space and time, this criterion must be quantized. Moving one
grid space ahead in one temporal step corresponds to a speed of about 8.5 mph.
If we approximate one grid space as one car length and 8.5 mph ∼ 10 mph, we
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can generalize the speeds of the cars in the following manner:

s(i, j, t) :=






0, if minx>i{x | o(x, j, t) = 1} = i + 1;
1, if minx>i{x | o(x, j, t) = 1} = i + 2;
2, if minx>i{x | o(x, j, t) = 1} = i + 3;
3, otherwise.

We enforce 25.6 mph as an upper limit to speed, since the vehicles must
slow down as they approach the toll. At each time step, the speed for a car is
updated just before it initiates movement.

Congestion
Since a driver is far more forward-focused than rearward-focused, we con-

sider congestion to be determined only by the cars immediately in front—in
particular, the nearest five cars. We write congestion for the car located in grid
cell η(i, j, t) as

c(i, j, t) :=
1
5

5∑

k=1

o(i + k, j),

where

o(i, j, t) :=
{

1, if grid cell (i, j) contains a car;
0, otherwise

Sequencing
Cells are updated sequentially as opposed to simultaneously, because cars

make decisions based on the cars in front. Furthermore, in a given column of
our array, that is, one spatial location across four lanes, the car with the largest
speed has the first initiative; the car with the second largest speed moves second,
etc. In the case of a tie, the car closer to the top of the grid moves first.

Movement
Transition Regimes

Transition regimes are regions where traffic comes in from the highway
or leaves to the highway. In these regimes, drivers maneuver in a manner
such that they can optimize travel time but minimize effort. Thus, movement
possibilities in the transition regimes can be described by Figure 3.

The optimal maneuver is to move forward, but a driver will enter a lane to
the right or left if the move minimizes congestion.

In two locations of the transition regimes, there are special considerations.
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Figure 3. Movement in transition regimes: Center lane, far left lane, far right lane

• The transition from highway regime: There must be some way to depict the
arrival of traffic from the highway. We discuss later how we do this.

• The tail end of the transition-to-highway regime: Provided a car has suffi-
cient speed, we eliminate the car from the grid. We also record its TotalTime-
OnGrid variable.

Tollbooth Regime
In the tollbooth regime, drivers no longer veer to the right or left. Instead,

they move forward in line until they reach the tollbooth. In this region, span-
ning the 100 ft in front of the tollbooth, cars move at a maximum rate of one
grid space per temporal element. Once in the tollbooth, they wait two entire
temporal elements solely in the booth (about 4 s) until they move on to the tran-
sition regime. This is implemented by incrementing a car’s TotalTimeInToll
variable (initialized to zero when a vehicle enters the map) every temporal step
that a car is in the booth (for the entire step) and checking if it is greater than 2.
Often in this region, lines will form. As soon as a car emerges from the toll-
booth, all of the cars behind move forward immediately. The dynamics of this
regime are quite a bit different and simpler than the dynamics of the transition
regime.

We illustrate this situation in Figure 4. The red cars in lanes one and four
are stopped, waiting behind cars located in the booth. The green cars ahead
of the toll are transitioning to the highway regime. The yellow car is moving
into the tollbooth, and the blue car is moving further inside the region. The
green car before the toll is just now moving into the tollbooth region. While its
current speed is 25.6 mph, once inside the region, it decelerates to 8.5 mph.
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Figure 4. Movement in the tollbooth regime

Modeling the Incoming Traffic Flow
To make our model more accurate, we use a statistical distribution to predict

incoming flow. Two commonly-used distributions are the Poisson and the
negative exponential. However, the Poisson distribution fits well only for light
traffic [Aston 1966]. The negative exponential distribution is a good fit for
heavy traffic; it is used to model the variations of gap length in a traffic stream
over distance and random arrivals. It has probability density function

f(t) = qe−qt,

where t is the time (s) between arrivals and q is the rate of arrival (cars/s), and
cumulative distribution function

F (t) = 1 − e−qt. (1)

To implement this arrival time into our simulation, we assign it to a site of
entry (a space) into the grid. A random number generator creates a random
fraction F ; using (1), we solve for t = − lnR/q. The value t is assigned to a
“spawn site,” a place where “cars” are created. We use a counter to keep track
of the time between different spawnings of cars. If this counter is greater than
F and the “spawn site” is empty (contains a null car), then a car is created at
the spawning site. Otherwise, the counter is incremented until one of these
two conditions are met. Cars “arrive” in each lane of the simulation using this
method. We use a modified q such in units of car per 2 s per lane.

Results
We simulate for varying values of q, the flow rate of cars per 2 s per lane,

for a 4-lane highway with 4 tollbooths. We let q vary from 0.01 cars/s/lane
(0.02 cars/s overall) to 1 car/s/ lane (2 cars/s overall. Figure 6 outlines a given
time evolution for a small value of q.

The time through which the cars move through the grid (or toll plaza) is an
appropriate measure of congestion. Thus, we plot in Figure 7 the average time
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Figure 6.Time evolution of a simulation, four temporal steps.

getting through the grid versus the flow rate. The average time is obtained
from a simulation accounting for one hour of traffic. We also plot for each flow
value the maximum amount of time that anyone spent getting through the grid.

For q in [0.01,0.37] cars/(2 s)/lane (0.02–0.74 cars/s overall), drivers enjoy
an average time through the grid below 50 s. We consider this an optimal
situation. However, at around a q = 0.36 cars/(2 s)/lane, there appears to be a
boundary layer. For q > 0.37, it takes drivers an average of 2 min or more to
get through the quarter-mile long grid, corresponding to less than 10 mph. We
demonstrate later that by adding more tollbooths, we shift the boundary layer
and lower the average time for larger q. Thus, a good strategy to determine
the number of tollbooths is to estimate the anticipated maximum flow rate and
choose a number of lanes for which q is never beyond the boundary layer.

Congestion is at its worst during rush hour, when toll plazas serve as bot-
tlenecks. But what do these congestion levels mean in total time through the
plaza? Is the number of tollbooths optimal?

The Hiawassee M/L Toll Plaza in Florida uses a 4-tollbooth plaza. In
October 2003, the Eastbound car count 7–8 a.m. was 3403 cars [Orlando–
Orange County Expressway Authority 2003], so cars arrived at a rate of 0.945
cars/s/lane. With our assumption that a car is 17.5 ft long, clearly, four toll-
booths are not enough to handle this heavy demand.

However, EZPass and other such programs allow one to minimize the time
at a tollbooth. If even a small portion of the cars use the EZPass system, the
value of q for which the boundary layer results grows vastly. If we were to
accurately determine an optimal value of tollbooths for a certain value of q for
a highway using such a system, we would have to approach the problem in a
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Figure 7. Average time through grid vs. flow rate.

Figure 8. Maximum time through grid vs. flow rate.

slightly different fashion. In particular, we would have to vary the time drivers
spend at the booth and designate certain lanes as having a quick pass system.

Case 2: More Tollbooths than Lanes

Preliminaries
The situation changes quite a bit if there are more tollbooths than incoming

lanes. Drivers in the far left and right lanes start moving into the new tollbooth
lanes. Hence, we introduce a new scheme, as presented in Figure 9.
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Figure 9. Possible regimes.

Movement in the Expansion Regime
The expansion regime is where the incoming traffic lanes fan out to a greater

number of tollbooth lanes. For the center lanes, movement is identical to the
transition regimes. On the outer lanes, however, movement is slightly different.
The movement possibilities are outlined in Figure 10.

Figure 10. Movement in the expansion regime.

For a driver in the outside lane, the optimal maneuver is to move into one
of the newly-created tollbooth lanes, unless the congestion is less in the current
lane. Another new addition is that the driver will not try to move into one of the
inner lanes—more for psychological reasons than practical reasons. According
to the model, the driver assumes that the outside lanes are the least dense (and
fastest), since they did not exist on the highway. Drivers on the newly created
lanes are allowed to move only forward in our model. While a driver may
move to an outside lane just to move back again, we consider the chance of this
occurring as very slim.

Movement in the Compression Regime
The compression regime is where a greater number of tollbooth lanes col-

lapse onto a smaller number of highway lanes. We have the movement possi-
bilities presented in Figure 11.
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Figure 11. Movement in the compression regime.

A driver in a tollbooth lane that is a highway lane follows the same rules as
in the earlier tollbooth regime. A driver not in a highway lane, however, tries
to move back onto a highway lanes; if this is not possible, they keep driving
forward and trying again until they are forced to stop at the end of the tollbooth
lane. This protocol can provide for some hectic situations.

Results
We simulate our second model for varying values of q for 4 highway lanes

with 5 and 6 tollbooths. The range for q is the same as our first model. Fig-
ures 12–13 show the results for these two cases, for which we take the expansion
and compression regimes to be 125 ft long.

Figure 12. Average time through grid vs. flow rate, for 6 lanes.

The boundary layer is moved to the right as the number of toll lanes in-
creases. Furthermore, the value for q on the right side of the boundary layer
decreases with more toll lanes. Thus, as suggested, one should choose a suffi-
cient number of lanes that correlates to this behavior. If the maximum flow rate
one expects is a certain value, one can run a simulation for a certain number of
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Figure 13. Average time through grid vs. flow rate, for 6 lanes.

tollbooths and choose the least number of tollbooths such that the maximum
flow is to the left of the boundary layer.

However, with an increased number of lanes comes an increased maximum
individual travel time: At times, people become stuck in the toll lanes and have
to wait for an opportune moment to move over. In our model, this is reflected
in the fact that while the four-tollbooth case results in a maximum travel time of
about 3.4 min, the 5- and 6-lane cases sometimes have a maximum individual
travel time near 4 min.

Model Improvements and Discussion
Drivers do not always move in a predictable manner. A probabilistic model

taking into account the unpredictable nature of humans could further improve
our model.

Our model also does not take into account the possibility of accidents. An
accident model would surely improve our model.

While we do take into account the random nature of incoming traffic flow,
we could develop an even better model to approximate the flow rate.

Lastly, our model could include a probabilistic model for the time that a car
waits at a tollbooth.

Conclusion
We develop a quasi-SCA model for toll plaza dynamics that treats time and

space in a discrete manner to capture the motivation and actions of drivers. We
use a negative exponential distribution for the incoming flow rate of cars. We
compute the average waiting time for different traffic flow rates.
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At a certain flow rate, there is a boundary layer at which travel time increases
sharply with flow rate. Thus, an optimal solution to the tollbooth problem is
to choose the minimum number of tollbooths such that the expected rate of
incoming flow corresponds to a point before the boundary layer.
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