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ABSTRACT Proactively caching content at the network edge is particularly effective in high-mobility
vehicular networks, where intermittent connection is the major challenge for seamless content transmission.
The objective of this paper is to achieve proactive caching in vehicular networks by mobility prediction,
specifically by predicting the next roadside unit (RSU) for a vehicle with reinforcement learning techniques.
The paper proposes two proactive caching algorithms based on multi-armed bandit (MAB) learning,
non-contextual MAB and contextual MAB, respectively. This paper fills the void in the literature regarding the
application of MAB learning to mobility-prediction based proactive caching. Their feasibility, superiority,
and applicability are evaluated with simulation in two modern cities: Las Vegas, USA with a grid road
layout, and Manchester, UK with a more historical layout. Additionally, this paper is the first that proposes
to investigate the uncertainty associated with proactive caching systems in the form of entropy with a
specifically extended Subjective Logic framework, in order to provide an insight into the underlying link
between prediction accuracy and uncertainty.

INDEX TERMS Proactive edge caching, reinforcement learning, multi-armed bandit, mobility prediction,
vehicular networks, uncertainty analysis, entropy, subjective logic.

I. INTRODUCTION
Past decades have witnessed a rapid growth of the automobile
industry and its economic and societal impacts continue
to expand. With the rapid development in electronics and
communications, vehicles will be able to communicate with
each other, forming a large communication network, i.e.,
vehicular networks [1]. In addition, the upcoming era of
autonomous vehicles means that vehicles will soon not only
act as a simple means of transportation but also become
moving entertainment centers where passengers are able to
entertain themselves while traveling in the car [2], transfer-
ring the vehicular network to content-centric, e.g., streaming
videos. On the other hand, different from general mobile
networks, a peculiarity of vehicular networks is high-speed
mobility. As fast-moving objects, vehicular users conse-
quently experience short intermittent connectivity with road-
side units (RSUs) more frequently than ordinary mobile
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users [3], [4]. Such frequent link re-connections due to vehi-
cles’ high-mobility means that vehicles may not be able to
finish consuming the content before leaving the connected
RSU, meaning that they have to re-establish the connection
to the remote server for the remaining parts at a drastically
reduced data rate [4], [5]. This is the main factor that causes
intermittent content transmissions and a degraded quality of
experience (QoE) [6].

To address the above challenge, proactive edge caching
has been a promising technique to achieve seamless con-
tent transmission. This technique allows the vehicular net-
work to pre-cache the (unfinished) content at the proper
places in the network so that vehicular users can reduce
the frequency of accessing content from content providers
located in the core network. Therefore, a higher data rate
can be achieved. In order to anticipate where to pre-cache
the content, mobility-prediction techniques can be applied.
Such techniques generally require computing resources to
perform machine learning in the network. Recently, thanks
to the development of mobile edge intelligence, mobile edge
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computing (MEC) units can be installed on the network edge
i.e., RSUs, which enables them to perform both storage and
computation functionalities [7], [8], hence the key enabler of
mobility-prediction based proactive caching. Instead of pre-
dicting the exact position of vehicles, predicting the network
edge node (i.e., RSU) and pre-caching the desired content
at the node in advance allows vehicles to obtain immediate
satisfaction after entering a new coverage area.

Effective proactive caching at the targeted RSU relies on
effective prediction. For prediction purposes, the rapid devel-
opment of machine learning (ML) and deep learning (DL)
has played an important role. However, conventional ML and
DL models require a great amount of training data and a
training phase is normally indispensable. Thus, these models
cannot well adapt to time-varying vehicular environments.
Therefore, an online learning approach is needed. In fact,
predicting the next RSU as a proactive caching node is a
direct application of reinforcement learning (RL) because
every prediction is a decision to make. The key feature of
RL is that it does not require any prior knowledge of the
environment, which makes it a suitable solution to online
learning and enables the potential to achieve high adaptability
in intelligent vehicular networks.

Nevertheless, in systems that do not have to be represented
by states, the learning problems become stateless decision
problems and the learning agent becomes stateless, which
significantly reduces the number of trials needed to learn
a mature strategy and speed up the learning process [9].
This is of great help in a dynamically changing vehicular
environment.Multi-armed bandit (MAB) problem [10], [11]
are basic instances of RL problems or to be specific, single-
state model-free RL problems, where a learning agent does
not have to build up a model of the environment. This feature
makes it efficient in dealing with the variable vehicular envi-
ronment. It has also attracted significant attention in various
applications, from recommendation systems and information
retrieval to healthcare and finance, thanks to its excellent per-
formance combined with certain attractive properties, such as
learning from fewer feedback [12]. In a bandit problem, the
agent, i.e., the bandit, takes an action to achieve an immediate
reward without states being involved, aiming to maximize the
total amount of rewards.

Uncertainty is inextricably linked to learning algorithms
and their models and is an important concept in machine
learning methodology [13]. Assessing and quantifying uncer-
tainty helps understand more precisely the benefits that mod-
els can bring. Reducing uncertainty will inevitably give us
more accurate prediction results. Subjective logic [14], [15]
has emerged as an effective method for uncertainty evalua-
tion. This formalism allows us to express specific forms of
probability distributions by generating a multinomial opin-
ion over a discrete set of elements. It provides a concise
formalism to represent Dirichlet-multinomial and Dirichlet-
categorical models [16] and therefore, the opinion induces
a categorical distribution over the element set that allows
evaluation of the overall uncertainty as the entropy of the

distribution. This model has also been recently used to assess
uncertainties in deep networks [17], [18]. This will be further
developed in this paper.

The purpose of the paper is to achieve effective mobility-
prediction based proactive caching in vehicular networks.
The approach to mobility prediction is by predicting the next
RSU that a vehicle is about to access through MAB learning.
We treat this as a decision-making process and investigate
the feasibility and prediction performance of bandit learning.
We designed two original prediction algorithms for proactive
caching systems: non-contextual MAB and contextual MAB.
The motivation for exploring two MAB-based algorithms
is to further investigate the benefits of introducing context
in contextual MAB on the prediction performance. Another
purpose of the work is to investigate the uncertainty behind
the proposed proactive systems with the Subjective Logic
framework. The motivation behind this is that uncertainty is
inseparably connected to learning algorithms, and we aim to
verify and support the superiority of the proposed systems
from the theoretical viewpoint of uncertainty. Our work fills
the void of using MAB learning to solve proactive caching
problems in such scenarios. Specifically, the main contribu-
tions of the paper can be summarized as follows:
• We design both non-contextual MAB-based and con-
textual MAB-based algorithms to address proactive
caching at the next RSU. Despite the many applications
of MAB in a range of fields such as ad placement and
packet routing, we show how it can be used, for the first
time, in pre-caching problems.

• We implement the proposed algorithms with online
learning in a distributedway on individual RSUs, to real-
ize instant learning and prediction, whilst previous sim-
ilar work in [4] and [19] was based on centralized and
offline approaches. Besides, the performance compari-
son with the baseline systems shows the advantages of
using MAB learning in solving the proactive caching
problem. Particularly, the contextual MAB with only
a single context shows a faster convergence and bet-
ter accuracy than the conventional sequence prediction
model applied in [20].

• We extend the subjective logic framework specifically
to proactive caching systems to analyze, using entropy,
the overall uncertainty behind the bandit learning based
systems as well as two baseline systems. By doing this,
we aim to investigate the uncertainty variation and its
connection with the prediction accuracy of different
proactive caching systems.

• We experiment with the test data of two cities with
significantly differing characteristics, Las Vegas and
Manchester, fromUSA and UK respectively. The results
show the scalability and adaptability of MAB-based
approaches in proactive caching problems with different
road layouts.

The rest of the paper is structured as follows. The related
works regarding proactive caching and MAB applications in
vehicular networks are summarized in Section II. Section III
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mainly discusses the network architecture and system model.
The proposed algorithms are introduced in Section IV, and
in Section V, the uncertainty analysis model is provided.
Section VI shows the simulation results. Section VII dis-
cusses the theoretical analysis, time complexity, and conver-
gence of the proposed algorithms. Section VIII concludes the
paper.

II. RELATED WORK
This section discusses some relevant studies and is divided
into two parts: Proactive Caching in Vehicular Networks and
Reinforcement Learning and Uncertainty.

A. PROACTIVE EDGE CACHING IN VEHICULAR NETWORKS
Proactive edge caching in the literature can roughly be cat-
egorized as what to cache and where to cache. The former
mainly relies on content popularity prediction. For example,
the authors in [21] proposed a two-level prediction model for
predicting video popularity to pre-cache popular videos in the
content delivery network, and in the survey [22], the authors
summarized the studies on popularity-based video caching
techniques in cache-enabled networks. However, most pop-
ularity prediction methods require RSUs to collect vehicles’
data which may contain sensitive information. We believe
that this will become increasingly difficult for network oper-
ators given the increasing restrictions on security and privacy.
In addition, they are not very effective because vehicles are
fast-moving objects and this causes validity issues of the
prediction. The latter, on the other hand, depends on howwell
the system is able to anticipate where a vehicle is going. This
is more manageable and applicable for network operators and
also essential in the rapidly changing vehicular environment.
Therefore, this paper is interested in where to cache.

Predicting where to cache at the network edge via mobil-
ity prediction may include caching at vehicle nodes and
RSU nodes. Past work in [23] and [24] focused on vehi-
cle node caching, but they both require numerous data for
offline training and the vehicles needed to send their tra-
jectories to every RSU they visit in [24], which inevitably
raised concerns on transmission overhead and privacy issues.
Therefore, this paper concentrates on RSU node edge
caching. Khelifi et al. [19] put forward a proactive caching
scheme based on vehicular mobility prediction on top of
a Named Data Networking architecture. The authors used
Long Short Time Memory (LSTM) to first predict the mov-
ing direction of the vehicle and then estimated the next
possible RSU, instead of directly predicting the next RSU.
Similarly, the work in [4] also used LSTM to predict the
direction of a vehicle by training realistic traffic data, after
which Q-learning is applied to determine how much con-
tent to cache. The work in [25] applied the Markov chain
model to predict the next RSU. The authors of [20] proposed
a sequence-prediction based proactive caching system to
address the problem. Their model is based on a sequence pre-
diction algorithm, Compact Prediction Tree+ [26], by train-
ing vehicle-specified simulated traffic traces. Nevertheless,

all these previous studies require an offline training phase
with massive labeled data for a proper model. This is the
first fundamental difference from this workwherewe concen-
trate on online learning, which can improve the adaptability
of learning models in a time-varying environment. Besides,
the prediction models in these studies are considered in a
centralized way, that is prediction is made by a central node
for a vehicle after the offline training stage. In contrast, this
paper has considered a distributed system where RSUs learn
and make predictions independently, which is the second
substantial difference.

B. REINFORCEMENT LEARNING AND UNCERTAINTY
One of the most widely used model-free RL techniques is
Q-Learning proposed by Watkins [27]. It is an off-policy
method where the policy is updated based on the best pos-
sible future scenario, in contrast to its on-policy counterpart
State–action–reward–state–action (SARSA) [28] that takes
into account what actually happens after an action is taken for
policy updating. However, given a highly dynamic vehicular
environment and discrete action set in our problem, it is
applicable and practical to consider it as stateless instead
of its classical counterpart, which can dramatically reduce
the number of Q-values needed for estimation by the learn-
ing agent, thereby potentially reducing the number of tri-
als needed for it to learn a mature strategy and improving
the adaptability of RL-based cognitive devices (e.g., RSUs).
The MAB model is a single-state model [11] with no state
transitions (i.e., stateless). While it has been widely used
and proven to be effective in areas such as ad placement,
computer game-playing, etc., its application in vehicu-
lar networks seems to be more limited. Dai et al. [29]
proposed a multi-armed bandit learning algorithm called
Utility-table based Learning to solve the distributed task
assignment problem in a MEC-empowered vehicular net-
work. The work in [30] focused on task caching problems
in the edge cloud. The authors proposed an intelligent task
caching algorithm based on a multi-armed bandit algo-
rithm and evaluated its benefits in task latency performance.
Authors of [31] discussed the potential of using a MAB
problem in future 5G small-cell networks as well as its appli-
cations and future research directions. A detailed example of
using a MAB model for energy-efficient small cell activation
in 5G networks has been provided in [31]. Xu et al. [32] inves-
tigated collaborative caching problems in small-cell networks
by learning the cache strategies directly at small base stations
online by utilizing multi-agent MAB.

The uncertainty associated with learning models has
attracted significant attention. Subjective logic first proposed
in [14] has emerged as an effective method for uncertainty
evaluation. The work in [16] used a subjective logic frame-
work to solve bandit problems, where the action selection is
based on sampling the multinomial opinion over the action
set. They quantified the overall uncertainty of the proposed
system with the entropy of the categorical distribution. The
authors in [33] argued that Beta distribution and subjective
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logic are isomorphic in terms of fusion while finding the
equivalence between uncertainty and entropy of Beta mod-
els. It has also been used for assessing uncertainty in deep
networks as studied in [17] and [18].

Despite the benefit of proactive caching and the potential
of theMAB, to the best of our knowledge, there are no studies
focused on the problem of applying MAB to predict the next
RSU for proactive caching. In addition, no one has studied
the uncertainty of these systems so far. We believe this area
is worth more investigation.

III. NETWORK ARCHITECTURE AND PROBLEM
STATEMENT
We consider a MEC-enabled vehicular network where RSUs
at the network edge are capable of caching and computing,
as shown in Fig. 1. Vehicles in the network frequently request
and download the content they are interested in. The intelli-
gent RSUs are able to learn and predict the next possible RSU
a vehicle will connect to and send a pre-caching request to
that RSU. In this way, seamless content transmission can be
achieved and user experience can be improved.

Consider an areaG in an urban area deployed withN RSUs
in a set R = {r1, r2, . . . , rN }. There are residential areas
and workplaces in G where vehicular users from the set V =
{v1, v2, . . . , vM } travel to and from on a daily basis. A content
database (content provider), C = {c1, c2, . . . , cK }, exists
in the backhaul network providing K types of content with
various sizes for vehicles to request. The content is comprised
of fck (ck ∈ C) fragments and each fragment is a constant
size Fc. Each RSU ri ∈ R is MEC enabled so that they
are capable of making mobility predictions and proactively
caching content. There may be m neighboring RSUs of ri
and hence the next potential pre-caching node is selected
from the neighbors. Besides, there is a central server that is
responsible for sending the outcome of the earlier proactive
caching decision to RSUs so that they can refine their learning
models.

The communication model characterizes only the key ele-
ments needed to study the problem, given that the interest
of the work is to predict where to cache accurately. Simply,
a vehicle vj ∈ V in the network always accesses the closest
RSU, because the RSU access criteria do not influence the
MAB learning algorithms. vj may request a type of content
ck from the connected RSU ri in a random way. ri then starts
to transmit ck to vj from its cache directly or through the
content provider in the backhaul network or both, depending
on the dwelling time and data rate. In order to fully focus
on the mobility prediction task for proactive caching, the
following assumptions are made: 1) the underlying issues
arising at the physical andMAC layers e.g., packet loss, inter-
ference, and re-transmissions are not considered in vehicular
communications so, the transmission rate e is a constant;
2) the dwell time of the vehicles in the coverage area of an
RSU is extracted from the test trace being simulated and
is known so that the number of content fragments can be
derived; 3) the system is completely proactive, meaning that

FIGURE 1. Architecture of MEC-enabled vehicular network.

FIGURE 2. Distributed structure of proactive caching system.

reactive caching is not enabled; 4) a vehicle does not request
new content until it finishes consuming the current one and
the system keeps a record of content consumption so that
when handover occurs, vehicles continue to download the
remaining of its previously requesting content; 5) despite the
architecture of MEC, the computing and caching resource is
assumed to be unlimited. These assumptions are legitimate
because they do not influence the prediction performance of
the proposed algorithms, which is the primary focus of this
paper. Moreover, the abstraction of fragmented content is also
a valid application in reality when delivering large data files
or streaming content (e.g., videos) over many sources such as
HTTP-based streaming such as Dynamic Adaptive Streaming
over HTTP (DASH) [25], [34].

A typical proactive caching process is shown in a diagram
in Fig. 2. The current associated RSU may face a prediction
decision involving a few neighboring RSUs when a vehicle
requests content from it. Assuming the vehicle v̂ sends its
request for a content ĉ right after it enters the coverage
of the RSU r̂ , r̂ serves v̂ with its cached fragments of ĉ
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TABLE 1. List of abbrevations.

if available or through a content provider in the backhaul
network otherwise, which would cause some delay or both
ways. Whichever way, r̂ evaluates how many fragments of
ĉ it can transmit to v̂ before handover. If ĉ has a relatively
small size and/or v̂ would stay connected rather long, ĉ can
be fully transmitted (consumed) and therefore, no proactive
caching in the next RSU is required. Otherwise, r̂ will predict
the next RSU and request it to perform proactive caching on
the remaining number of fragments FR of cK from fragment
No. fr , by sending the proactive caching request message.
A transmission delay µwould be introduced if fr is not found
in the actual next RSU, via FR×Fc

ω
where ω is the backhaul

link rate. The role of the central server that connects multiple
RSUs is to transmit prediction/cache hit feedback message
which acts as rewards in the learning algorithms.
Problem Statement: In vehicular networks with proactive

caching enabled, the goal of this feature is to realize seamless
content transmission, which addresses the challenge caused
by intermittent connectivity. If the next possible RSU that a
vehicle is about to access can be accurately predicted, a higher
cache hit ratio can be achieved. Therefore, how to predict
the next RSU node for a connecting vehicle as accurately as
possible through multi-armed bandit learning is the primary
problem studied in this paper. Additionally, how the uncer-
tainty of prediction associated with proactive systems evolves
during learning is another problem to be investigated.

IV. ALGORITHM DESIGN
This section will briefly introduce some background ofmulti-
armed bandit problem, following which the learning algo-
rithms designed for proactive caching will be discussed.

A. MULTI-ARMED BANDIT PROBLEM
Multi-armed bandit (MAB) problem, sometimes also known
as k-armed bandit problem, is a special instance of reinforce-
ment learning (RL). Different from a full RL problem where
a learning agent may have multiple states associated with the
environment (e.g., positions in a game), it only has a single
state in the MAB problem [11] (i.e., no state transitions).

From this perspective, MAB is essentially identical to state-
less Q-Learning [35] and can also be treated as a model-free
reinforcement learning technique. A well-known scenario of
the bandit problem is where a gambler in a casino sits in
front of a slot machine with one or multiple arms (referred
to as a one-arm bandit and k-armed bandit respectively) and
tries to get payoffs by pulling the arm(s). The ultimate goal
of the gambler is to achieve the highest cumulative rewards
through learning the inherent reward pattern of each lever and
gradually concentrating on the best lever. During the learning
process, the gambler will face the exploration-exploitation
dilemma [36]: where the gambler tries out the potential arms
that may return high payoffs (exploration) or pulls the arm
that has yielded the highest reward from the past experiments
(exploitation). This is a non-trivial process and carefully
balancing exploration and exploitation is crucial in MAB
problems.

A MAB problem can be formally given as a tuple [16]:
〈A,R〉, where A = {a1, a2, . . . , ak} is the a set of k actions
(i.e., arms) andR = {θ1, θ2, . . . , θk} associates action ai with
its reward probability distribution defined by θi. There are a
number of variants ofMABproblems and it is out of the scope
of the paper to cover all of them. Therefore, in the following
a canonical example of MAB - the Bernoulli bandit problem
and the contextual bandit will be discussed as they are closely
related to the problem here and the proposed learning algo-
rithm for proactive caching. In addition, the approaches to
resolve the exploration-exploitation dilemma in MAB prob-
lems are plenty such as ε-greedy, upper-confidence bound
algorithm, Thompson sampling [36], etc. The aim of this
paper is not to find out a sophisticated way to balance explo-
ration and exploitation so the most straightforward ε-greedy
is adopted here.

1) BERNOULLI MULTI-ARMED BANDIT
Consider a k-armed bandit problem 〈A,R〉. The agent takes
actions from action setA and any action played will generate
an outcome: success (reward 1) or failure (reward 0). Action
a ∈ A produces a success with probability θ ∈ R. In other
words, for an action a, a reward r = 1 is produced with
probability θ and r = 0 with probability 1 − θ . In this case,
θ can be viewed as the expected reward of taking action a,
is unknown to the agent, and is invariant in a stationaryMAB
problem.Oneway to estimate such θ is to use sample-average
method [11] by averaging the rewards actually received. The
estimate of θ for action a at timestep t can be denoted as:

Qt (a) =
sum of rewards when a taken prior to t
number of times a taken prior to t

=

∑t−1
i=1 ri · 1Ai=a∑t−1
i=1 1Ai=a

(1)

where Ai is the action taken at timestep i, 1condition equals
to 1 if condition is true and 0 if not, and ri = {1, 0} is
the reward of i-th selection of action a. According to the
law of large numbers, Equation (1) converges to θ as the
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FIGURE 3. Example of the sample-average process shown with Beta
distribution.

denominator tends to infinity. A more intuitive way to illus-
trate this is through the probability density function of
Beta(α = successes, β = failures) distribution as shown in
Fig. 3. Consider a 95% confidence interval, in the late stage
of the sample-average process after 1000 trials with 500 suc-
cesses and 500 failures, the range that captures the true prob-
ability θ is [0.469, 0.531], i.e., P (0.469 < θ < 0.531) =
0.95. However, the intermediate stage with 100 trials (50
successes and 50 failures) returns a much wider range of
[0.403, 0.597] for the same 95% confidence interval, and the
initial stage with only 10 trials gives an even wider range
of [0.212, 0.788]. Thus, the more trials, the more certain
one can be about the approximation to the true probability
θ . By taking the proper action with the associated action-
selection strategy (e.g., ε-greedy), it is also to maximize
the cumulative rewards

∑T
t=0 r

t where T is the given time
horizon.

2) CONTEXTUAL BANDITS
As an extension of the above multi-armed problem, the con-
textual bandit problem associates actions with side informa-
tion or context [37]. In such problems, the agent aims to learn
a policy that maps contexts to actions, that is, π (ai | sj) where
sj is one of the contexts. Another viewpoint is that it now
consists of multiple independent MAB tasks associated with
contexts, and the agent aims to learn the best policy under
various contexts. Every time an agent is assigned aMAB task
(possibly with a certain probability), it will be given a ‘‘clue’’
(i.e., context) and learn what the best action is under this clue.
In general, the agent can do better with the presence of con-
text information that distinguishes one bandit problem from
another [11]. Despite the fact that contextual bandit problems
involve learning policies, they still resemble the generalMAB
tasks, as the action taken only affects the immediate reward,
and makes no difference to the future situations as well as
their rewards. Therefore, it is an intermediate between the
MAB problem and the full RL problem.

B. MAB-BASED PROACTIVE CACHING ALGORITHMS
The primary focus of the proactive caching problem in this
paper is where to pre-store relevant content in the immediate
future. Therefore, it is vital for an RSU to predict as accu-
rately as possible the next potential RSU a vehicle is about
to hand over to. Intuitively, this may not seem to be closely
related to a MAB problem so in the following we will first
demonstrate how to match them together.

1) MAPPING OF PROACTIVE CACHING TO MAB PROBLEMS
As discussed in the last subsection, the MAB problemmainly
consists of agents, actions, rewards, and contexts as in a
contextual bandit problem. An agent aims to maximize its
cumulative rewards by taking appropriate actions from the
action set in a given period of time. Regarding the next-RSU
prediction based proactive caching in vehicular networks,
an RSU assists a vehicle to successfully hit the content that
was previously being transmitted. They resemble each other
in terms of node selection and success or failure (reward).
Therefore, we model this problem as a MAB problem using
the following mappings:
• RSUs as bandit learning agents: Any RSU in the
vehicular network acts as a learning agent, and its neigh-
boring RSUs are equivalent to its actions. Predicting the
next RSU as a proactive caching node is actually making
a decision on one of the agent RSU’s neighbors.

• Stateless RSU: In general, the state of a reinforcement
learning agent is associated with the environment. Since
the interaction of an RSU with the vehicular environ-
ment can be extremely dynamic and complicated to
represent, the single-state feature of MAB resolves this
problem. In other words, an agent RSU is single-state or
stateless which means that it does not transfer to a new
state by taking an action.

• Action selection as next RSU prediction: The agent
RSU will either exploit its current knowledge to select
the greedy action/neighbor or explore other non-greedy
actions that may return a higher reward depending on the
exploration-exploitation scheme adopted.

• Reward generation: When handover happens, the sys-
tem will return a reward to the previous agent RSU. This
is achieved by determining whether there is pre-cached
content in the RSU after the handover, or alternatively
whether the RSU is the previously predicted one. The
reward in return helps an agent RSU compute the esti-
mated values of its actions.

• Previous RSU as context: The agent RSU may also
make use of contexts for its action selection as in a
contextual bandit problem. By identifying the previous
RSUs that the visiting vehicles coming from as contexts,
it can map such contexts into various bandit tasks and
perform more effective learning. Technical details about
the contextual information will be discussed shortly.

In a vehicular network with multiple RSUs, the problem
becomes aMulti-agent Multi-armed bandit (MAMAB) prob-
lem where each individual RSU is an independent player
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and learns its own best action or best policy. On this
basis, we designed two algorithms to address mobility-
prediction based proactive caching: non-contextual MAB
and contextual MAB.

2) ADDRESS PROACTIVE CACHING WITH BANDIT LEARNING
We will elaborate on the two bandit learning algo-
rithms that address proactive caching from three aspects:
action selection and value estimation, reward function, and
context information.
a) Action selection and value estimation Two critical

elements in MAB problems are action selection and
action value update. Given the estimated action values
Q(a) of actions in action set A, the ε-greedy method
is used to make a selection: the best action is selected
with probability 1−ε; otherwise, actions will be selected
randomly with a small probability ε regardless of their
action values, as demonstrated in Equation (2) where At
is the predicted action at timestep t .

At =

{
argmaxa Q(a), 1− ε
random, ε

(2)

Another important method is the action value esti-
mation, also known as action-value method in the lit-
erature. Recall in a Bernoulli multi-armed bandit, the
true success probability θ of action a is its expected
reward, defined as θ .

= E [r | A = a]. The sample-
average approximation method for action-value estima-
tion shown in Equation (1) can have a more compact
representation with incremental implementation [11].
For action a which has been selected for n times, the
estimated value is:

Qn+1 =
1
n
·

n∑
i=1

ri

=
1
n

(
rn + (n− 1)

1
n− 1

n−1∑
i=1

ri

)

=
1
n
(rn + (n− 1)Qn)

= Qn +
1
n
(rn − Qn) (3)

An important parameter in the incremental value
updating rule of Equation (3) is 1

n , the step-size. As can
be noted from Equation 3, this step-size declines as n
grows. In fact, this is effective in a stationary bandit
problem where the reward probabilities (i.e., θ) remain
unchanged over time. Vehicular networks, however, are
dynamic environments with varying traffic densities
and may result in a non-stationary bandit problem.
Therefore, recent rewards should be given more weight
when updating action values. This is often achieved
using a constant step-size denoted with α ∈ [0, 1] and
Equation (3) therefore becomes:

Qn+1 = Qn + α(rn − Qn) (4)

A more general form of Equation (4) that is adopted
in our algorithms is:

Q(a)← (1− α)Q(a)+ αr (5)

where Q(a) is the quality value of action a, named
Q-value as in Q-learning [9], [35], r is the reward asso-
ciated with the most recent trial and is determined by
a reward function, and α ∈ [0, 1] is the step-size or
learning rate .

b) Reward function The reward function R is used to
generate a reward associated with the action taken pre-
viously when an outcome is observed. Given an action
a taken at time step t and the observed outcome as b
(may occur immediately), its reward can be computed
with rt = R(b). In a Bernoulli MAB problem discussed
earlier, the reward function R is actually the outcome
itself (1 or 0), meaning that rt = R(b) = b. In order
to introduce punishment to wrong predictions or cache
misses, we referred to the reward function that has been
successfully applied in the Dynamic Spectrum Access
problem in [9]:

R(b) =

{
1, b = True
−1, b = False

(6)

As mentioned earlier, the outcome b is determined by
observing whether a vehicle switches to the predicted
RSU, equivalent to a cache hit or miss if a pre-caching
request was sent to the RSU. The relevant reward will
then be generated with Equation (6) and fed back to
the earlier decision-making RSU.With Equation (3), (5)
and (6), the learning agent aims to update its estimate
of each action Q(a) = E [rt ], make an action selec-
tion and maximize its cumulative rewards max

∑
rt .

Notably, due to the constant α adopted in Equation (5)
and the negative reward introduced in Equation (6),
Q(a) ∈ [−1, 1] is no longer a probability i.e., it is
not an estimate of θ as in the sample-average method
(Equation (1)), but directly represents the expected
reward of the action a.

c) Contextual information The above methods for updat-
ing actions’ Q-values, selection, and reward function
can be applied to both non-contextual and contextual
bandit problems. However, the agent in the general non-
contextual MAB learning could face the dilemma where
two or more of its actions may converge to very close
estimatedQ-values, which poses great uncertainty when
predicting an accurate next RSU node. Therefore, the
motivation for proposing a contextual MAB algorithm
is to resolve this as best as possible. The agent in a
contextual MAB problem maps contexts to its action set
and associates a specific Q-table with each individual
context and aims to learn a policy under different them.
In the vehicular network, vehicles may come from var-
ious directions which can be useful contextual informa-
tion. If the agent RSU can make use of it and split it to
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separate bandit tasks, it is likely to improve the overall
accumulated rewards.
Specifically, the context we introduced on top of a

non-contextual MAB-based algorithm is the previous
RSU that a vehicle connected to before the current agent
RSU. The rationale behind this is that the previous RSU
is a very easily accessible context and this does not
require additional effort on signaling extra information,
compared to other types of context e.g., road informa-
tion, vehicle angel, etc. Once a vehicle connects to an
RSU and starts to request content from it, the agent RSU
needs to predict the next RSU (action selection) and
inform it to pre-cache the needed content if necessary.
In contextual MAB, the agent RSU now needs to first
identify the previous RSU as context and learn the action
values associated with it so that decisions are properly
made under a particular context. The equivalent equa-
tions to Equations (2) and (5) for action selection and
Qvalue updating in contextual MAB become:

At =

{
argmaxa Qt (a | sj), 1− ε
random, ε

(7)

Q(a | sj) ← (1− α)Q(a | sj)+ αr (8)

where sj is the detected context at t.

Algorithm 1 Non-Contextual Multi-Armed Bandit
Initialization (if not done): For RSU m ∈ M with the
number of actions (RSU neighbors) Am, their Q-values are
initialized to Q(a) = 0 for a ∈ Am
while not the end of the test do

if Content transmission is happening whilst in RSU m
then

Predict the next RSU by:
a∗← selection decision based on Eq. (3) Precaching
content at a∗ if needed;

end if
if Handover happens then

r∗ ← observe the reward according to Eq. (6)
Update Q(a∗) with Eq. (5);

end if
end while

We sum up the above in Algorithm 1 and Algorithm 2 for
non-contextual and contextual bandit learning respectively,
which have been applied to our proactive caching problem.
Additionally, a general flowchart of MAB-based proactive
caching is integrated and shown in Fig. 4, though contextual
MAB may also involve identifying the context and updating
its action values correspondingly.

V. UNCERTAINTY ANALYSIS MODEL
In decision-making problems, reducing uncertainty is
deemed to be vital as less uncertainty means that an agent is
likely to makemore accurate decisions. Thus, it is meaningful
to assess and quantify the uncertainty in a learning problem.

Algorithm 2 Contextual Multi-Armed Bandit
Initialization (if not done): For RSU m ∈ M with the
number of actions (RSU neighbors) Am, their Q-values are
initialized to Q(a) = 0 for a ∈ Am
while not the end of the test do

if Content transmission is happening whilst in RSU m
then

s← detect the previous RSU s beforem if s is a new
detection then

Create an entry of s to its action values Initialize
Q(a | s) = 0 for a ∈ Am;

end if
Predict the next RSU by:
(a∗ | s) ← selection decision based on Eq. (7)
Precaching content at a∗ if needed;

end if
if Handover happens then

r∗ ← observe the reward according to Eq. (6)
Update Q(a∗ | s) with Eq. (8);

end if
end while

In this work, we adopt Subjective Logic framework [15]
and particularly adjust it to investigate uncertainty in bandit
learning based proactive caching systems. The motivation
behind this is to provide a more insightful analysis model
for the performance of proactive caching systems and how
uncertainty evolves during the learning process. We also
aim to give a greater insight as to how MAB-based systems
outperform the others and how the context introduced by the
contextual MAB algorithm could benefit the whole system.
This subsection will introduce some background and discuss
how we achieve this.

A. UNCERTAINTY
In the field of machine learning and statistics, a reliable
estimation of uncertainty plays an important role in order
to create reliable statistical models [16]. In [13], uncertainty
in statistical models is classified as aleatoric and epistemic.
Given a set of observed data samples D = {d1, d2, . . . , dn}
that are generated by an unknown stochastic process P, if the
task is to fit a model p (D | 2) that describes the observation
D, the set of parameters 2 needs to be learned from the col-
lected observations. Apparently, the uncertainty that affects
the accuracy of model p (D | 2) comes from both the internal
randomness of process P and the limitation of the number of
observations used to estimate the model. Therefore, these two
types of uncertainty can be described as:

• Aleatoric uncertainty is inherent randomness in the data
generation process P which can be reflected by the
variability in the outcome of a trial. A typical example is
coin flipping. For this type of uncertainty, howevermuch
data is provided, the uncertainty of the final fitted model
p (D | 2) is unlikely to be less than the underlying
model P [16].
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FIGURE 4. Flowchart of MAB-based proactive caching algorithm. This is a general cycle of an agent RSU serving a
connecting vehicle, from Start when it receives a content request from a connecting vehicle, to Finish when its
action-value table is successfully updated with corresponding rewards.

• Epistemic uncertainty on the other hand, is due to the
lack of knowledge about the best model such as finite
sample size. Different from aleatoric uncertainty, epis-
temic uncertainty can be improved by having more sam-
ples or trials.

The present study concentrates on the overall uncertainty
of bandit learning algorithms, accounting for both aleatoric
and epistemic uncertainties, which can be computed as the
entropy of the relevant distribution under the subjective logic
framework.

B. SUBJECTIVE LOGIC
Subjective logic [15] has been a promising approach to eval-
uating uncertainties in a statistical model. It is a compact

formalism to represent specific forms of probability dis-
tributions (Dirichlet-multinomial and Dirichlet-categorical
models) [16]. Specifically, given a discrete domain X =

{x1, x2, . . . , xk} with k elements, there exists an multinomial
opinion for the domain:

o = (b, u, c) , subject to u+
k∑
i=1

b = 1

- b ∈ Rk
≥0: belief vector that represents the degree of

certainty over the k elements
- u ∈ R≥0: uncertainty scalar that shows the degree of
certainty on belief vector

- c ∈ Rk
≥0: base rate vector which often expresses the

prior probability distribution of the k elements
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According to [16], the belief vector acquires the first-order
uncertainty of the distribution of beliefs over the domainmap-
ping to the aleatoric uncertainty whereas umaps to epistemic
uncertainty capturing the second-order uncertainty about the
belief model. In such a model, the probability of an element
xi in the domain X with opinion o can be computed with:

p (xi | o) = bi + uci (9)

An existing mapping between an opinion o = (b, u, c) and
an evidential Dirichlet pdf s = Dire(e) [15], [16]: ei =

Wbi
u

if u 6= 0

ei = ∞ otherwise
(10)

whose reverse is:
bi =

ei
W +

∑k
i=1 ei

u =
W

W +
∑k

i=1 ei

(11)

whereW is a non-informative prior weight normally specified
equal to 2 for consistency.

Equations (10) and (11) form a theoretical foundation for
the uncertainty analysis in the present work. Most impor-
tantly, Equation (11) allows building the multinomial opin-
ion o over actions of RSUs with experiment observations
(i.e., evidence). Hence we are able to obtain the probabilities
of actions and overall uncertainty in the form of entropy
accordingly. How we define evidence and the overall uncer-
tainty calculation will be discussed in the following.

C. UNCERTAINTY EVALUATION OF PROACTIVE CACHING
SYSTEMS
Similar to the uncertainty in decision-making theory, two
sources of uncertainty exist in proactive caching systems,
corresponding to aleatoric and epistemic uncertainties. On the
one hand, for an RSU, the right decision depends on
the proactive caching scheme as well as the randomness in the
system. These are all inherent aleatoric uncertainty. On the
other hand, epistemic uncertainty in such systems comes
from the lack of visits of the RSU or the lack of chances
for it to make decisions, which should be reduced as more
observations are collected.

To form an opinion over an action set, the evidence of
the set needs to be collected, with which the corresponding
belief vector and uncertainty scalar of the opinion tuple can
be obtained through Equation (11). The probability of indi-
vidual action can be achieved accordingly via Equation (9).
For an arbitrary RSU with m actions, the subjective opinion
ot =

(
bt , ut , c

)
at an arbitrary timestep t conveys:

• the belief of an agent on action ai being the best action
with bti

• the global uncertainty over the beliefs with u
• the prior belief c which is constant

Therefore, at timestep 0 or at the beginning of the learning
process, the initial values of the three elements are:

b0i = 0 ∀i ∈ [1,m]
u0 = 1

ci =
1
m
∀i ∈ [1,m]

which means that the agent has no knowledge about which
of its actions is likely to be the best and they have equal
probabilities. The uncertainty at this point is the maximum, 1.

The rule we used to collect evidence that supports the belief
that action at could be the best is straightforward:

et+1i = eti + 1
[
at = ai

]
where the evidence is updated by adding one piece if[
at = ai

]
is true. Thus, the evidence at any timestep t forms

the opinion ot and with Equation (9) a categorical distribution
of the action set can be induced: p

(
a | ot

)
= Cat(bt + utc).

From this distribution, the overall uncertainty can be calcu-
lated as the entropy of the distribution:

H = −
m∑
i=1

p(ai | ot ) log2 p(ai | o
t ) (12)

For the non-contextual MAB algorithm, Equation (12) can
be applied directly because of its single-state feature. In con-
trast, for contextual MAB, the entropy computation needs to
consider the number of contextual situations.

Given an agent that has n contextual situations denoted
by S = {s1, s2, . . . , sn} with m actions, each of these sit-
uations is an independent bandit task as mentioned earlier.
As a consequence, we can compute their entropy called
context entropy as:

H (sj) = −
m∑
i=1

p(ai | ot , sj) log2 p(ai | o
t , sj) (13)

For the agent, the global uncertainty in terms of entropy then
becomes:

H =

∑n
j=1 H (sj)

n log2m
(14)

This draws on the Exploration Entropy in a full reinforcement
learning problem [38] where multiple states are associated
with an agent.

In the proactive caching system, the actions of an agent
RSU have their own success probability, which is a source
of the aleatoric uncertainty. As mentioned earlier, even the
optimal model cannot have less uncertainty than the true
process. The MAB-based algorithms cannot remove such
intrinsic uncertainty but aim to form a belief vector b over
the actions that best describe it. For non-contextual MAB,
sufficient learning (trials) allows the agent RSU to have the
best model for the aleatoric uncertainty, compared to other
non-contextual baseline systems (which we shall see in the
results section). In other words, enough evidence results
in a small epistemic uncertainty u, and a smaller overall
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uncertainty means a better-fitted model. Contextual MAB
(cMAB), on the other hand, introduces a context (i.e., pre-
vious RSU) to further disaggregate the problem into context-
related ones. The aleatoric uncertainty under each context s
may be substantially reduced in contrast to the non-contextual
case. Therefore, after sufficient learning, the agent RSU will
have the best model for the aleatoric uncertainty associated
with each context s, thereby less overall uncertainty.
To sum up, Equation (12) will be applied to evaluate the

overall uncertainty in the non-contextual MAB-based proac-
tive caching algorithm, and Equation (13) and (14) will assess
the contextual MAB-based algorithm.

VI. SIMULATION AND PERFORMANCE EVALUATION
A. SIMULATION SETUP
Simulation in this work includes two parts: traffic simulation
and network simulation. Vehicle traffic traces are generated
by Simulation of Urban MObility (SUMO) [39] and they are
processed with an event-driven network simulation program
implemented in MATLAB [40].

1) TRAFFIC SIMULATION
SUMO is used to simulate a real transportation network dis-
cussed in Section III. The scenario we are interested in is the
daily commuting routine of people living in a particular urban
area.We focus on an area in Las Vegas as our primary city and
Manchester as a secondary city to generalize the application
of MAB-based schemes to two cities with different road
planning. For both areas shown in Fig. 5, five traffic zones
(TAZs) are defined in SUMO and in total 174 vehicles travel
from and to these zones as their origins and destinations. The
positions of these TAZs have been chosen in such a way as
to allow vehicles to have the longest possible trips. These
TAZs are designed to simulate realistic residential and office
areas. We assume that a TAZ contains both residential and
office areas. In order to simulate vehicles with the same daily
routine, each vehicle has its own fixed departure and arrival
zone. However, each vehicle may have different departure
times and lanes (which may result in route differences) from
test trace to test trace. Again, this is to imitate that people in
reality may set off for work at various time slots, park at var-
ious places in an area, and take slightly different commuting
routes, despite having the same workplace (TAZ).

200 files of test traces for each city have been generated to
simulate 200 workdays and the simulation period in SUMO
is between 8 am to 9 am. The vehicles’ routes between
two TAZs are defined by the tool duarouter and follow
the Shortest or Optimal Path Routing rule. They depart at
the maxSpeed and follow the default Car Following Model
to keep the maximum speed which is safe in the sense of
being able to stop in time to avoid a collision. Other road
behaviors apply as well such as lane changing, accelerat-
ing/decelerating, intersections, etc. Technical details about
these settings can be found in SUMO documentation.1

1https://sumo.dlr.de/docs/

FIGURE 5. RSU and TAZ distribution in the two urban areas.

2) NETWORK SIMULATION
Discrete event-driven system simulation [41] allows vehicu-
lar network simulation to be performed through a series of
events. Test traces are generated by SUMO and passed to the
simulation system sequentially. The discrete event list corre-
sponding to the test trace being tested is created at the begin-
ning, which may include departure and arrival of vehicles,
content request, handover, and finishing of content consump-
tion. As the present work concentrates on online learning,
a complete cycle of the simulation is testing 200 trace files
and the learners (i.e., RSUs) make predictions as they learn
throughout the simulation cycle and become increasingly
knowledgeable as the simulation runs. Fig. 6 shows a struc-
ture of the modules mentioned and the relevant parameters
are summarized in Table 2. The number and location of
the RSUs were determined to cover as much of the area
as possible while maintaining a distance of a few hundred
meters between them. However, these factors do not affect
the applicability and adaptability of the proposed algorithms,
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as will be discussed in Section VII on scalability issues.
The closely related parameters to the MAB-based systems in
Table 2 are learning rate α referenced in [42] and ε selected
empirically. The network parameters such as transmission
rate and backhaul link rate, are empirical values and they
have no impact on the performance of proactive caching (i.e.,
prediction accuracy or cache hit ratio).

FIGURE 6. Simulation modules.

TABLE 2. Simulation parameters.

B. PERFORMANCE EVALUATION
The performance of non-contextual and contextual MAB-
based proactive caching systems is compared with three other
proactive caching systems:

• Equal Probability-based Proactive Caching System:
RSUs select a pre-caching node with equal weight from
their neighbors. In other words, it is a random selection
scheme.

• Probability-based Proactive Caching System: This
allows RSUs to make the next pre-caching node deci-
sion based on their previous popularity using informa-
tion from historical traces. This is an intuitive scheme
where an RSU believes the neighbor with more frequent

handovers deserves a higher weight to become the
caching node.

• CPT+ based Proactive Caching System: This system
is based on the sequence prediction algorithm CPT+.
Different from the work [20], we have adjusted the
algorithm to be used in an online mode. In brief, an RSU
trains its prediction tree model with currently available
vehicles’ data and when predicting the next RSU for a
vehicle, it matches all the past RSUs this vehicle has
connected and gives out the most possible RSU (highest
score).

Remark: the five systems are referred to and denoted in
the following as cMAB and MAB for contextual and non-
contextual bandit learning systems, respectively; EQ, PB,
andCPT+ represent for equal probability-based, probability-
based, and CPT+ based systems, respectively.

1) EVALUATION
We mainly focus on the evaluation of the proactive caching
performance of the systems. An action selection is considered
correct when the predicted pre-caching RSU is the actual
RSU to which the handover is made. In the systems consid-
ered, it is identical to a cache hit. Additionally, the extended
subjective logic framework discussed in Section V is applied
to the systems to provide an analysis of uncertainty except for
CPT+. This is because CPT+ is a fundamentally different
algorithm compared to the other four, in terms of its model
and algorithm design. The variability of its action set and
the difficulty of accessibility to ‘‘contexts’’ have made the
extended uncertainty model inapplicable. The entropy calcu-
lation for EQ and PB systems is also based on Equation (12)
as the non-contextual MAB. Furthermore, how proactive
caching systems benefit the network is also considered.

The following aspects will be shown in the results:
• Cumulative prediction accuracy: Denoting the total
number of predictions as Qprediction and correct ones
as Qcorrect of test trace n, the cumulative prediction
accuracy PA up till trace n is defined as:

PA =

∑n
i=1Qcorrect∑n
i=1Qprediction

• Cumulative distribution function (CDF) of uncertainty:
Aims to show uncertainty at the system level as well as
some particular RSUs.

• Proportion of Proactive Caching Content Fragments:
the proportion of the number of content fragments
that are proactively cached and transmitted to vehicu-
lar users. This reflects the effectiveness of a proactive
caching system.

We evaluate the network performance of the systems using
Proportion of Proactive Caching Content Fragments as a
figure of merit, instead of network delay, because the com-
munication model considered in the paper does not model
underlying transmission layers and backhaul links, given the
focus of the paper is to find where to cache accurately.
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FIGURE 7. Cumulative distribution function (CDF) of the overall
uncertainty in Las Vegas. The figure demonstrates the reduction in
uncertainty of the four proactive caching systems in the form of CDF of
entropy.

2) EXPERIMENTAL RESULTS
As Las Vegas is the primary city, its results will first be
discussed, followed by a more general demonstration of the
secondary cityManchester. Fig. 7 shows the uncertainty anal-
ysis of four proactive caching systems in Las Vegas at a sys-
tem level. It is the cumulative distribution of the uncertainty
(entropy) of 32RSUs at the end of test trace 1 and 200, respec-
tively. These results illustrate performance before and after
learning. The two bandit learning schemes, non-contextual
MAB-based (MAB) and contextual MAB-based (cMAB),
outperform the other two baseline schemes in terms of the
reduced amount of uncertainty in decision-making. Both
MAB and cMAB have dramatically reduced the uncer-
tainty level through sufficient learning after 200 traces. The
proportion of RSUs with entropy less than 0.5 bits has
increased from 0% to 49% and 20% to 90%, respectively.

The superiority of the cMAB-based system over its coun-
terpart benefits from introducing the context information.
Uncertainty distributions of bandit learning schemes were
close to PB and EQ systems in the initial stage of simulation,
but this gap has been enlarged in the end. The percentages
of RSUs with less than 1-bit entropy are 100%, 80%, 40%,
and 0% for cMAB, MAB, PB, and EQ respectively. The PB
scheme has not experienced a significant change from this
perspective because of its nature. Since the test traces simu-
late vehicles following their own daily commuting routines,
the transition probability matrix or the weights used by PB
scheme for decisions does not vary too much in the end of
trace 1 and 200. By contrast, despite the fluctuations in the
initial stage of simulation due to the lack of samples, the
EQ scheme is constantly the one with the highest overall
uncertainty and converges to a stable state finally. This makes
sense from the viewpoint of information theory [43] as the
entropy of an RSU with m neighbors is maximized to log2m
with equal probability 1

m among the neighbors.
Fig. 8 shows the prediction accuracy (or hit ratio) in a

cumulative way over the test traces. The accuracy superiority
of bandit learning schemes over the PB and EQ is closely
related to uncertainty reduction. Another point to explain this
is that in bandit learning based schemes, RSUs make their
decision on Q-values and the goal is to maximize the rewards.
Therefore, fewer attempts are wasted on those actions that
are less likely to be successful, whereas PB and EQ schemes,
especially the latter one, attempt ‘‘bad’’ decisions more fre-
quently.We shall see this in individual examples later. In addi-
tion, CPT+ is also shown in the figure, whose prediction
performance is in between cMAB and MAB. In contrast
to MAB, this makes sense since CPT+ relies greatly on a
vehicle’s past RSUs as a kind of context and this reduces
the prediction uncertainty. However, it is outperformed by
the cMAB as a model-free scheme with only one context
(i.e., previous RSU) required. The MAB scheme reaches its
limitation of 53% at a much earlier stage compared to cMAB
with an upper bound of nearly 80%. CPT+ seems to have an
increasing trend after test trace 200 and we can infer that it
would reach the performance of cMAB perhaps at test trace
500 because the performance of CPT+ depends on its model:
the more data, the better model. However, this is also its
limitation in terms of adaptability and flexibility. It is also
observed that the introduction of contextual information helps
RSUs make more accurate decisions throughout the simula-
tion cycle and meanwhile, it takes relatively longer to fully
train the model and converge due to this fact.

Although Fig. 7 and Fig. 8 have demonstrated the poten-
tial interaction between prediction accuracy and uncertainty
reduction, different RSUs may show significantly differ-
ent variations on these two metrics. In Fig. 9 we have
selected 4 types of RSUs according to the number of their
actions/neighbors. From the top to the bottom row, they are
RSUs with 5 actions, 4 actions, 3 actions, and 2 actions,
respectively. The left column is the uncertainty CDF of
relevant RSUs in an aggregated way. For example, there
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FIGURE 8. Cumulative prediction accuracy of the proactive caching
systems in Las Vegas.

are 6 RSUs with 4 actions in our system. To achieve the plot
on the left-hand side, we have collected their uncertainty at
the end of each test trace, resulting in 200 by 6 samples for the
CDF plot. Note that there is only 1 RSU with 5 actions. Simi-
larly, the right-hand column shows the cumulative prediction
accuracy of the corresponding RSUs also in an aggregated
way. The prediction accuracy of test trace 10 of 4-action

RSUs is
∑6

1
∑10

1 Qcorrect∑6
1
∑10

1 Qprediction
. Both columns share the same

legend shown in the bottom left corner. In general, the dis-
tribution of uncertainty of test traces still supports the inner
connection seen in Fig. 7 and 8. Although it may be difficult
to quantify the benefits of the reduction in uncertainty to pre-
diction accuracy at this point, it helps visualize such benefits.

Even with the same number of neighbors, RSUs may show
completely different performance in terms of uncertainty
and prediction accuracy, possibly depending on their geo-
graphical location, traffic patterns, connectivity patterns, etc.
In Fig. 10, we have selected RSU 2 and RSU 22 from themap
in Fig. 5a, both of which have two neighboring RSUs (actions
to be more precise) with unbalanced traffic. Over the 200 test
traces, there are 73% and 27% of the 1116 handovers from
RSU 2 to its two neighbors respectively, and RSU 22 also has
the same proportion based on 2872 handovers. Despite this,
proactive caching schemes have shown significantly different
performance on these two RSUs and we have summarized
in the table of Fig. 10 some statistical data at the end of the
simulation.Without additional context introduced, we believe
there is an unknown inherent success rate of each action for
non-contextual schemes (EQ, PB, and MAB), denoted as θ∗.
For the action 1 of RSU 2, θ∗ can be approximately 80%
according to the table as the success rates of all the three
schemes tend to converge to 80%. For action 2, however,
there does not seem to have a clear converging success rate,
but we can infer that it could be 18% as in EQ scheme. The
reason that PB and MAB have higher performance for action
2 is because they have fewer selections on action 2 than EQ,
referred to as the ‘‘Count’’ row. Precisely because of this,

FIGURE 9. Performance of RSUs with different numbers of actions at the
end of the simulation in Las Vegas. From the top to bottom, they are RSUs
with 5, 4, 3, and 2 actions, respectively. The left column is the CDF of
uncertainty (entropy) of these RSUs and the right column is the
cumulative accuracy. The same legend is shared by two columns. The
significance of the figure is that it demonstrates that smaller uncertainty
results in higher accuracy (horizontally).

FIGURE 10. Statistics of two RSUs in Las Vegas. The table in this figure
shows the accuracy of two RSUs with two actions as well as the
improvement in prediction accuracy among the four proactive caching
systems.

during the learning process, MAB leans towards action 1 as
it tends to have a better Q-value than action 2, and hencemuch
fewer wrong decisions are made, resulting in a 78% overall
accuracy. On the other hand, θ∗ for action 1 and action 2 of
RSU 22 is tending to converge to somewhere around 50%.
Consequently, theMAB scheme is unable to tell which action
would be a better one as they both have similar Q-values and
it shows basically the same prediction performance as EQ
and PB.
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FIGURE 11. Cumulative distribution function (CDF) of the overall
uncertainty of four proactive caching systems at the end of simulation
and prediction accuracy of all the systems in manchester.

It is obvious that the introduction of additional contextual
information in cMAB has dramatically increased not only the
success rate of each action of RSU 2 and RSU 22 but also
their overall prediction accuracy to 99% and 82%, respec-
tively. In particular, compared to its counterpart MAB, it has
resolved the dilemma with RSU 22 where both actions have
similar inherent θ∗. In stead of ‘‘hesitating’’ between the two
actions, RSU 22 learns policy under different contexts in
cMAB and becomes more certain about which action is likely
to be correct. This is even more convincing for the case of
RSU 2, where both actions have over 96% accuracy.

The system performance of Manchester is shown in
Fig. 11, as a secondary city for generalizing the appli-
cation. Similarly, we show the distribution of uncertainty
among RSUs of four systems in the end of test trace 200 in
Fig. 11a and the cumulative prediction accuracy of all five
systems in Fig. 11b. Bandit learning-based schemes still

show comparable benefits to that in Las Vegas, especially
cMAB whose prediction accuracy has reached 80%. The
performance has successfully demonstrated the adaptabil-
ity of the proposed bandit learning schemes in a relatively
more complex transportation network. One of the reasons for
this is that the proposed algorithms only rely on informa-
tion from the vehicular network itself for proactive caching
decisions instead of taking additional information from the
road network. Despite the advantages over the other two
non-contextual systems (EQ and PB) as before in Manch-
ester, we clearly notice the performance limitation of non-
contextual MAB in contrast to its counterpart MAB scheme.
CPT+ still shows similar relative performance to cMAB and
MAB but has a faster growth rate compared to Las Vegas.
This might be because of the relative area size and traffic
pattern difference between the two cities (which will be
explained in detail shortly).

FIGURE 12. Percentage of the average number of fragments served by
proactive caching at the end of the simulation. The figure illustrates that
higher cumulative prediction accuracy results in better proactive caching
performance reflected by higher proportions of content fragments
through caches.

One of the major goals of proactive caching in vehicular
networks is to provide vehicular users with seamless content
delivery by bringing the content close to them accurately.
We measure the number of fragments transmitted directly
from RSU caches to vehicular users and plot a bar chart of
the proportion of the average fragments served by proactive
caching for each of the proactive caching schemes of two
cities in Fig. 12. Overall, the proportions of both cities are
consistent with the cumulative prediction accuracy, and the
cMAB scheme demonstrates remarkable superiority over the
other four. On average, it has achieved 75% in Las Vegas and
81% inManchester, nearly double that of EQ and PB systems.
We can also conclude that our proposed proactive caching
schemes perform similarly irrespective of the road topology.
Note-worthily, the proportions in the two cities are based on
the different absolute total number of fragments transmitted
to vehicles (around 1300 in Las Vegas and 750 inManchester,
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varying trace by trace). This is because a) theManchester area
is relatively smaller than the Las Vegas area as a whole, b)
the connectivity patterns of the two cities are distinct, and c)
vehicles’ content request pattern and frequency are different
from test trace to trace of two cities. However, as the relative
size of the center of the two areas has been kept on a similar
level, this is still an effective contrast.

VII. DISCUSSION
A. ANALYSIS OF THE ADVANTAGE OF MAB-BASED
ALGORITHMS
We can seek the theoretical accuracy of the previous predic-
tion algorithms. Assume a vehicle v connecting to an RSU m
withN actions. There exists an unknown probability distribu-
tion of v actually going to the N neighbors after m, denoted
as A = [a1, a2, . . . , an] , n ∈ N and

∑
n∈N an = 1. If the

RSU m makes a prediction with B = [b1, b2, . . . , bn] , n ∈
N , then the chance that this is a correct prediction can be
computed by P = A · B =

∑
n∈N an × bn. Depend-

ing on which algorithm, B is different. In the most under-
performed one i.e., Equal-probability algorithm,B is uniform
distribution i.e., b1 = b2 = · · · = bn = 1

N and thus
P =

∑
n∈N an × bn = 1

N ×
∑

n∈N an = 1
N . In the

Probability-based algorithm, B is the transition probabilities
derived from previous traces, where b1 6= b2 6= . . . 6= bn,
and therefore P remains to be P =

∑
n∈N an × bn. If the

traffic pattern through RSU m does not change significantly
over time, we can assume an = bn, so P =

∑
n∈N b2n.

In non-contextual MAB, B depends on Q-values and action
selection algorithm (i.e., ε-greedy). Therefore, the probability
bn of its neighbor n ∈ N to be predicted as the next

RSU is: bn =

{
1− ε, if n has the highest Q-value
ε · 1N , Otherwise . Take

an example of an RSU of two action choices (neighbors)
with uneven traffic patterns (e.g., 80% vs 20%). Its theoretical
accuracy with the Equal-probability algorithm is 50% since
it has 2 neighbors. Because it has an uneven traffic pattern
where one of its neighbors has approximately 80% traffic, the
theoretical accuracy with Probability-based algorithm P =
80%×80% + 20%×20% = 68%. It is because of this traffic
pattern that MAB has a dominant action and therefore, the
overall theoretical accuracy is P = 80%× (1− ε)+ 20%×
ε
2 = 77%, where ε = 0.05. The cMAB algorithm further
expands the advantage of MAB and reduces uncertainty by
breaking it down into context level, hence resulting in an even
higher optimal boundary. The simulated result of RSU 2 in
Fig. 9 is consistent with the theoretical values and this can be
extended to other RSUs with different numbers of actions.

Furthermore, another notable advantage of the proposed
cMAB and MAB algorithms is their natural capabilities of
coping with sudden major changes in the topology or vehic-
ular environment by rapidly adjusting Q-tables and poli-
cies, whereas Probability-based and CPT+ based algorithms,
become very clumsy in this regard due to high reliance on past
data to establish their models.

B. ALGORITHM COMPLEXITY AND SCALABILITY
1) SPACE COMPLEXITY
Theoretically, the two proposed MAB-based algorithms have
advantages in terms of space/computational complexity.
For the three non-contextual algorithms i.e., MAB, Equal-
probability, and Probability-based, the Probability-based one
has the highest computational complexity. This is because
RSUs in this algorithm requires some extra computational
resources to store historical traffic information in order
to establish a probability distribution over their actions.
However, MAB algorithm is a localized algorithm where the
RSUs’ Q-tables get in-place updates, and individual RSUs
have their own fixed probability distribution for prediction in
the Equal-probability algorithm. Although cMAB algorithm
is also a localized algorithm as MAB, it does require RSUs
to build context-relatedQ-tables and therefore, needs slightly
more space thanMAB. Nevertheless, this is worthwhile given
the significantly reduced uncertainty and improved prediction
accuracy by cMAB. CPT+ based algorithm, however, con-
sumes the most resources because it requires building a large
prediction treemodel to achieve a certain prediction accuracy,
which is still outperformed by cMAB. Such an advantage
also makes it practical for the implementation of MAB and
cMAB algorithms.

2) TIME COMPLEXITY
The three main functionalities in the proposed MAB and
cMAB algorithms are: A - Next RSU selection (including
ε -greedy), B - Pre-caching content and C -Q-table updating
with rewards. From the perspective of actual code imple-
mentation, for MAB algorithm, an agent RSU with k actions
requires O(k), O(1), and O(k) time complexity for function
A, B and C respectively. This is because functions A and
C require action set traversal whereas B only needs inser-
tion manipulation with a vector. In addition, as functions
A, B and C are executed sequentially, they account for a
O(k) complexity. The system may have multiple RSUs but
due to the nature of event-driven simulation, only one of
them is ‘‘working’’ at a time. Therefore, assuming the largest
action set of these RSUs is K , then the overall performance
of N -length test can be represented by O(NK ). The major
difference between the two lies in the additional context s.
Specifically, functions A and C are executed based on s once
it is detected. But this works in the same way as in a non-
contextual MAB and therefore, their complexity is identical
to that in MAB for an arbitrary RSU. Function B remains
the same as well. Apart from this, cMAB algorithm also
involves context detection and creation and these additional
manipulations account forO(1) complexity. Thus, cMAB has
the same overall complexity, that is O(NK ) as above.

3) SCALABILITY
The proposed MAB-based algorithms in a network with
a large number of RSUs are very scalable. This is
because MAB learning is a model-free stateless framework.
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A learning agent normally has a finite set of actions and
does not need to estimate the states of the environment.
This is also true for individual RSUs in a vehicle network
because no matter how large the network is, a RSU always
has a finite set of neighboring RSUs. Even for the proposed
contextual cMAB learning algorithm where RSUs need to
detect the previous RSU that a vehicle hands off from, the
set of context is also finite since the previous RSU is also one
of the neighboring RSUs. Therefore, this property results in
very good scalability of the proposed algorithms.

C. CONVERGENCE
The cumulative prediction accuracy in Fig. 8 and Fig. 11b
demonstrates the convergence of the proposed MAB-based
proactive algorithms. Although a cumulative way to show
this may not be perfect, it is still sufficient to demonstrate
the performance boundary in the commuting traffic scenario
considered in this paper. From the system level, theoretically,
the cMAB algorithm should converge slower than the non-
contextual MAB because given a statistically fixed number
of Q-table updates (identical test traces) for an RSU fewer
updates are allocated to each individual context in cMAB in
contrast to MAB where all the updates are used for only one
Q-table. This difference in convergence can be found in the
previously mentioned results.

During the learning process, Q-values or Q-tables of
individual RSUs may converge to rather different values
depending on the traffic pattern through it. For example, in the
non-contextual MAB algorithm, we have noticed that a high-
accuracy RSU (over 90%) with 4 actions have a converged
Q-table with values: 〈−0.9375,−1,−0.9961, 1〉 at an early
stage of the learning process. This demonstrates a conver-
gence to the last action and that there may exist very deter-
ministic routes for all the vehicles through this RSU. On the
other hand, it has also been found that an average-accuracy
RSU (approximately 50%) with the same number of choices
has a Q-table with values: 〈−1,−1,−0.5643,−0.4379〉.
Throughout the learning process, the RSU tried to converge
to the best action by trial and error but failed to do so because
the last two actions are almost evenly good. This implies the
dilemma in non-contextual MAB and should be resolved by
contextual MAB exploiting the additional contexts available.

VIII. CONCLUSION
This paper studies how to achieve mobility-prediction based
proactive caching in vehicular networks by predicting the
next RSU of the vehicle’s path. As a way of addressing
this, the paper has proposed two bandit learning-based proac-
tive caching algorithms: non-contextualMAB and contextual
MAB and compared their performance with three other base-
line schemes: Equal Probability-based, Probability-based,
andCompact Prediction Tree+ based proactive caching strat-
egy. In addition to this, the subjective logic framework has
been extended to study the uncertainty associated with dif-
ferent proactive caching systems. With this model, we have
analyzed in detail the overall entropy distribution of the

systems as well as the distribution of representative RSUs.
Furthermore, two urban areas of Las Vegas and Manchester
with different road layouts have been tested to demonstrate
the adaptability of the proposed schemes to a diverse set of
road layouts.

Simulation results have shown the advantages of the pro-
posed proactive caching algorithms over their counterparts.
Contextual MAB-based scheme yields the highest benefit to
the system thanks to the introduction of contextual informa-
tion for uncertainty reduction. In both cities, the contextual
MAB-based proactive caching scheme reaches a prediction
accuracy of approximately 80% compared to roughly 50%
of the non-contextual MAB-based scheme. As a result of
this, the network performance is dramatically improved with
contextual MAB in terms of the number of fragments directly
transmitted by caches. The performance of bandit learning-
based systems is similar in both cities regardless of road
topology. Particularly, 75% and 81% content fragments are
proactively served with contextual MAB algorithm and over
53% and 50% with non-contextual MAB algorithm in Las
Vegas and Manchester, respectively.
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